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ABSTRACT. Let X be a non-Gorenstein Q-Fano 3-fold with only
cyclic quotient terminal singularities such that the class of —Kx
generates the group of numerical equivalence classes of divisors,
and | — Kx| contains Du Val K3 surfaces. We prove that g(X) :=
hO(—Kx) — 2 < 8 and give the classification of X with g(X) > 6.
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Notation, terminology and convention.

The set of positive integers.

Linear equivalence.

Numerical equivalence (only when it is used for two Q-Cartier

divisors).

F.: P(0 @& O(—n)) over P.

F,.: Surface obtained by contracting the minimal section of F,,.

@Q?: Smooth quadric 3-fold.

ODP: Ordinary double point, i.e., singularity analytically isomorphic
to {ay + 22 +u? =0 C C*}

Oayas...ag(Vi): The Schubert cycle {[C*]|dimC* NV}, j1; 4, > i} in
G(k,n) for a complete flag 0 € Vi, C Vo C --- C V.

r-plane: An r-dimensional linear subspace of a projective space.

(X,Y): The linear hull of subvarieties X and Y in a projective space.

Fs/x: The ideal sheaf of a closed subvariety S in a variety X.

ez
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|D ® Zs/x|: The sub-linear system of | D| consisting the members con-
taining S.

xS : Xg — X: The blow-up of a variety X along a sub-variety S.

Ex s: The closed subscheme of )~(5 defined by NX,S_lfS/X-

VXS Xg — Xg: The rational map defined by |ux s*Lx — Ex s|, where
Lx is a naturally defined very ample divisor on X (for example,
X is embedded in a projective space by Lx).

Abuse of notation: We use the same notation for the strict transforms
of curves as original ones. We indicate the variety where curves
are located so there is no confusion.

Singular curve (resp. line) of X: A curve (resp. line) contained in Sing X.

Definitions

Q-Fano variety: Definition 1.1.

Decomposable and indecomposable: Definition 1.2.

Primary Q-Fano variety: Definition 1.3.

Genus g(X) of a Q-Fano 3-fold X: ¢g(X) := h°(—Kx) — 2.

Standard weighted blow-up: Definition 2.1.

Economic exceptional divisor: Definition 2.4.

Basic set-up: 2.12.

Exceptional plane: Definition 2.9.

Good plane: Definition 2.9.

Rules of the game: 2.14.

Notation and terminology for weighted dual graphs: See the beginning
of the subsection 3.1.

Good line: Definition 3.9.

Fw a and Ca: Definition 4.3.

1. INTRODUCTION

We will work over C, the complex number field.

1.1. Definition and history of Q-Fano 3-folds.

Definition 1.1. A projective variety X is called a Q-Fano variety if
X has only terminal singularities and —Kx is ample. If X is also
Gorenstein, i.e, — Ky is Cartier, we just say that X is a Fano variety.

Among Q-Fano varieties, Q-factorial ones with Picard number 1 form
an important class since the minimal model conjecture asserts that
every projective variety is birational to a terminal Q-factorial variety
which is a Q-Fano fiber space with relative Picard number 1 (so-called
Mori fiber space) or a minimal variety. In dimension 3, the minimal
model conjecture was solved affirmatively by efforts of many birational



4 Hiromichi Takagi

geometers, especially by Y. Kawamata, J. Kollar, S. Mori, M. Reid
and V. V. Shokurov. So the classification of Q-factorial Q-Fano 3-folds
with Picard number 1 is a natural problem. In this introduction, let
X be a Q-factorial Q-Fano 3-fold with Picard number 1 henceforth.

In case X is smooth, the classification is classical. This was consid-
ered by G. Fano [Fan37] for the first time, and modernized and com-
pleted mainly by T. Fujita [Fuj80|, [Fuj81], [Fuj84], V. A. Iskovskih
[Isk77], [Isk78], [Isk79], [Isk90] and V. V. Shokurov [Sho79b|, [Sho79a].
Moreover the work of K. Takeuchi [Take89| simplified and amplified
the classification in case Pic X ~ Z(—Kx) (i.e., X is a smooth pri-
mary Fano 3-fold as defined below) based on the theory of extremal
ray.

1.2. Mukai’s classification of indecomposable Fano 3-folds.

S. Mukai [Muk95b] found a complete different method for the classifi-
cation of smooth primary Fano 3-folds. To explain this, we need some
definitions.

Definition 1.2. We say that a Weil divisor D on a variety is decom-
posable if there exists a decomposition as D ~ A + B, where A and
B are Weil divisors with h%(A4) > 2 and h°(B) > 2. Otherwise we
say that D is indecomposable. A Q-Fano 3-fold W, where we allow W
to have canonical singularities, is said to be indecomposable if — Ky, is
indecomposable. In particular, smooth primary Fano 3-folds are inde-
composable.

Mukai determined the defining equation of an indecomposable (canon-
ical Gorenstein) Fano 3-fold W in P(H°(—Kyy)). More precisely for
7 < g(W) < 10 for example, he proved that W is a linear sec-
tion of some Grassmannian, where g(W) := h%(—Ky ) — 2, which is
called genus of W. His method uses the theory of vector bundle. Let
S € | = Kw| be a Du Val K3 surface (the existence of such an S was
proved by Shokurov [Sho79b] and Reid [Reid83]). Mukai constructed
the vector bundle on S which defines the embedding of S into some
Grassmannian and then he extended the embedding of S to that of W.

The reason why he considered indecomposable Fano 3-folds is that
it is suitable for inductive treatment; start with a smooth primary
Fano 3-fold, blow it up at a general point and take the anti-canonical
model. Then the anti-canonical model, which is again a Fano 3-fold,
is no longer smooth but still indecomposable. By using this inductive
structure of indecomposable Fano 3-folds and the above descriptions
of them with genera < 12, he gave a new (and generalized) proof of
the famous genus bound ¢(X) < 12 and g(X) # 11. We remark here
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that his descriptions of indecomposable Fano 3-folds play crucial roles
in this paper.

In case X is singular but Gorenstein, Mukai’s and Takeuchi’s meth-
ods work if X is primary, and Fujita’s method works for the other cases
(see [Fuj85], [Fujoo]).

1.3. Non-Gorenstein Q-Fano 3-fold.

So we are interested in the case that X is non-Gorenstein. Kawamata
[Kaw92| proved that such X’s form a bound family and hence in partic-
ular, there are universal bounds (in fact, effective ones) of (—Kx)3, the
number of non-Gorenstein points and the index of singularities. We ex-
pect that we can improve those bounds by studying X more explicitly.
Similarly to the smooth case, we make a case division by

qF(X) := max{t € N| — Kx = tD for an ample Weil divisorD},

which is called Q-Funo index of X.

First let us mention the case that ¢F(X) > 2. In the Gorenstein
case, Fujita [Fuj80] [Fuj90] studied the linear system |D| and proved
that | D| contains a smooth member S. Then he succeeded in classifying
X by using properties of S. But in the non-Gorenstein case, |D| may
be empty or have only bad members. So the strategy in the Gorenstein
case does not work immediately. We should find out some new method.

1.4. Primary Q-Fano 3-fold X.
Definition 1.3. X is called a primary Q-Fano 3-fold if ¢F'(X) = 1.

Now let us focus on primary Q-Fano 3-folds X. So far there are
mainly two methods to aim at the classification of primary Q-Fano
3-folds.

One is based on the theory of extremal rays, which was developed
by Takeuchi [Take89] for the smooth case as we stated above and was
generalized in [Taka02a] and [TakaO2b]. In [loc.cit], we treated the
case that Pic X ~ Z(—2Kx) and almost completed the classification.
Though this method need many numerical calculations, the list of the
possibilities of X made by it is very precise, i.e., almost all the possi-
bilities really exist.

The other is based on the theory of the Hilbert function and the
unprojection. Let R := @, H°(Ox(—iKx)). Then R is known to
be Gorenstein (see for example [Wat81]). R is written as the quotient
of the polynomial ring R’ := k[z1,...,z,], where z; are lifts of gener-
ators of R. R’ has the natural grading which comes from that of R.
Let a; := wt x;. When we apply this method, we always embed X in
the weighted projective space P(aq,...,a,) := Projk[zy,...,z,]. By
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the Riemann-Roch theorem for a projective terminal 3-fold [Kaw86,
[Reid87] and the Kodaira-Kawamata-Viewheg vanishing theorem, the
Hilbert function P(t) := >.7° h%(Ox(—iKx))t" of R is determined
by (—Kx)? and the data of non-Gorenstein points (so-called baskets),
whose possibilities are finite by [Kaw92]. We also note that P(t) has
the Gorenstein symmetry. So we can make a list of the possibilities
of X and P(t). Actually by this method, S. Altmok [Alt], I. Fletcher
[Fle00] and Reid gave the classification of primary Q-Fano 3-folds with
codimension not greater than 3 in P(aq,...,a,). Since in these cases,
the type of equations of X is known a priori by commutative algebra,
the existence of X is easy to check. Unfortunately it is difficult to check
whether they really exist in case codimension > 4. The unprojection
will be useful for this problem. The unprojection was defined and stud-
ied by S. Papadakis and Reid in [PRe02], [PapOla], [Pap01b], which is
roughly speaking the tool to produce a variety with bigger codimension
in some weighted projective space from that with smaller codimension
by contracting a divisor. The simplest example is the inverse of a usual
projection.

1.5. Main theorem.
In this paper, we propose a new method and apply this for primary
Q-Fano 3-folds with the following properties:

1.4. X is a primary Q-Fano 3-fold such that

(1) X is non-Gorenstein.
(2) There exists a Du Val K3 surface in | — Kx|.
(3) X has only cyclic quotient terminal singularities.

We conjecture that (2) holds if ¢g(X) is appropriately big. This
is a modified version of the general elephant conjecture by Reid. In
[TakaO2b, §1], this conjecture was treated in case —2Ky is Cartier
and under some extra assumptions, we proved that it is affirmative if
9(X) = 2.

The condition (3) can be considered to be that of generality. We
conjecture that there is a small deformation of Q-Fano 3-folds X such
that nearby fibers have only quotient terminal singularities. This was
proved to be affirmative in case —2Kx is Cartier by T. Minagawa
[Min99a, Theorem 2.4] and the author [TakaO2b, §2].

The following is the main result:

Theorem 1.5. Let X be as in 1.4. Then g(X) < 8. Assume that
g(X) > 6. Then any singularity of X is a 1/r (1, —1, 1)-singularity for
some r. Moreover the following hold.
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(A) Assume that g(X) = 8. Then X has at most two singular points
and they are 1/2 (1,1, 1)-singularities.
(B) Assume that g(X) = 7. Then X has only one singular point and
it is a 1/r (1, —1,1)-singularity with r = 2,3, 4.
(C) Assume that g(X) = 6. Then one of the following holds:
(C1) X has two singular points and
they are 1/r; (1, —1, 1)-singularities (r1 < ro) with

(r1,m) = (2,2),(2,3),(2,4) or (3,3).

(C2) X has only one singular point and it is a 1/r(1,—1,1)-
singularity with r = 2,3,4,5.

Actually we can also obtain information of Bs | — K x| and birational
properties of X in the course of the proof up to deformation of X. See
for summaries the subsections 5.4, 6.4 and 7.6 and the section 8.

As is known by the result, there are very few possibilities of X. So we
expect that we can find nice biregular characterizations of such Q-Fano
3-folds and consequently we can remove extra assumptions in 1.4.

We will study the existence problem of X elsewhere because it needs
more calculations like [Taka02b, §4, 5].

1.6. Structure of the paper.
Hereafter let X be as in 1.4. This paper is organized as follows:

In the section 2, we prove that if g(X) > 2, then by an explicit
birational map, X is transformed to an indecomposable Fano 3-fold W
with g(W) = ¢g(X) and with at least one plane (see 2.12). This is a
basic result for our treatment of X in the following sections. For this
construction, we need the assumptions (2) and (3) in 1.4. As a corollary,
we obtain g(X) < 8 (see Corollary 2.11). For proving this fact, Mukai’s
classification of indecomposable Fano 3-folds is indispensable since his
theorem claims in particular that they do not contain planes if their
genus are greater than 8. Moreover in the section 2, we investigate
singularities and exceptional planes on W (see Definition 2.9) and its
relation with singularities of X (see Corollary 2.8 and Proposition 2.13).
In particular, if we deform X necessarily, then Sing W is contained in
exceptional planes on W and is the union of lines and a finite number of
points. Moreover any two exceptional planes on W can intersect only at
one point (see 2.14 (a)—(c)). These properties of W turn out to restrict
the geometry of W more than expected. In fact, the classification of
X is almost reduced to that of indecomposable Fano 3-folds satisfying
2.14 (a)—(c).

In the section 3, we continue the study of the relation of the geome-
tries of X and W by restricting all to the strict transforms of a general
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member of | — Kx| and introducing weighted dual graphs. We derive
more delicate properties of W which does not follow from 2.14 (a)—(c).

In the section 4, we study the projection of W --» W from its linear
subspace A especially in case W is a del Pezzo 3-fold. In the sections
5, 6 and 7, we see that this situation often occurs.

Based on the results in the previous sections, we classify X (or W)
with g(X) = 8,7,6 in the sections 5, 6, 7 respectively.

In the section 8, we summarize the results and re-describe them from
the view point of the minimal model program.

1.7. Outline of the proof.
Roughly speaking, it suffices to classify indecomposable Fano 3-folds
W satistying 2.14 (a)—(c).

The method is very simple and classical; we study the projections
of W from planes, singular lines and singular points very closely. We
explain the strategy in case g(X) = 7. Though the case that g(X) =8
is simpler and the case that g(X) = 6 is harder, the basic process is
similar to this case.

First we consider the projection W --+» Wp from a plane P on W.
By the geometry of OG(5,10), we see that Wp is a (2, 2)-complete
intersection in P (see Proposition 6.5). Also for X with other genera,
we determine Wp or W, for a singular line [ by using the geometry of
the ambient variety like this. Moreover we can prove that Wp has only
terminal singularities (see Proposition 4.8).

Next we calculate the degree of the ‘weighted center’ Cp of vy p (see
Definition 4.3 for the precise definition) rather formally (see Propo-
sitions 4.4 and 4.6). Since Wp is a del Pezzo 3-fold, we have that
pw.p(Fw.p) € |Lw — P| (Proposition 4.4 (1)). Together with 2.14 (c),
this fact restricts the possibilities of C'p. In fact, we can prove that
Cp is irreducible and reduced (Proposition 6.5 (2)). This implies that
P is the unique plane on W and moreover a good plane as defined in
Definition 2.9 (see Proposition 4.9). In particular, we see that:

Sing X consists of one 1/r (1, —1, 1)-singularity for some r; if r = 2,
then W has no singular line; if r > 3, then W has a unique singular
line [ on P and has a cA,_s-singularity generically along [.

Now whether Wp is factorial or not becomes essentially related to
Sing X. Wp is factorial if and only if W has no singular line, i.e., r = 2
(Proposition 4.9). So if Wp is not factorial, then there is a unique singu-
lar line [ on P. In this case, we consider the projection W --» W, from
[ and can prove that W is a smooth quintic del Pezzo 3-fold (Proposi-
tion 6.7). Similarly to Cp, we can define C; for vyy,;. C; is reduced but
not necessarily irreducible. If Cj is irreducible, then we see that Eyy;
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is irreducible. This implies that W has a cA;-singularity generically
along [, i.e., r = 3 (Theorem 6.10 (2) (a)). If C; is reducible, then

A~

we see that Ly, has two components and W; has no curve singularity
dominating [. This implies that W has a cAs-singularity generically
along [, i.e., r = 4 (Theorem 6.10 (2) (b)).

Like this, we can explain why Sing X is bounded effectively by study-
ing the geometry of Wp and W.

1.8. Case X has lower genus.

The technique in the sections 2 and 3 works also for the case that
2 < g(X) < 5. But that in the section 4 is only for the case where
Wa is a del Pezzo 3-fold, where A is a plane P C W or a singular line
I C W. It is sufficient for the case g(X) > 6 except the one case where
g(X) =6 and Wp ~ Q3. As we know in the subsection 7.5, the case
where Wp is not a del Pezzo 3-fold is hard to treat with. Unfortunately
the possibilities of W have wider ranges in the cases where g(X) < 5.
But we believe that we can also classify these cases after some efforts
in the future.

Acknowledgment. I am grateful to Professor Miles Reid for his con-
stant interest in my subject. I wish and believe from the heart his
quick recovery. This work was partially done while I stayed at Univer-
sity of Warwick and Isaac Newton Institute for Mathematical Sciences,
to which I thanks for warm hospitality. While my preparation of this
paper, I had many opportunities to give talks about the content of this
paper which was not completed yet. I think that if there had not been
such opportunities, I could not have completed this paper. So I thanks
all the organizers.

2. INDECOMPOSABLE FANO MODEL W

2.1. Construction of an indecomposable Fano model.

Definition 2.1. For a 1/r (a, —a, 1)-singularity with (r,a) = 1, the
weighted blow-up with weight 1/r (a,r — a,1) is called the standard
weighted blow-up.

Lemma 2.2. Let X be a projective 3-fold with only cyclic singularities
and 1/r; (a;, —a;, 1) the types of singularities of X. Let

gm 9m-—1 g2
Xm ? m—1 >t ? Xl =X

be the composite of the standard weighted blow-ups of cyclic quotient
singularities such that X,, is smooth (X,, is so-called the economic
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resolution). Then

bi(r; — b;)
Ky VP =(=Ky)> = SV
(~Kx, ) = () = 3 A2,
where b; is the integer such that 1 < b; < r; and a;b; = 1 (mod 1;).

Proof. Let x € Sing X and 1/r (a,—a, 1) the type of z. Let b be the
integer such that 1 < b <rand ab= 1 (mod r). Define ¢ by ab = rc+1.
We may assume that

9k 9k—1 9k
X, — X1 — - — X=X

be the economic resolution of x. It suffices to prove that

O

By the standard calculation of the weighted blow-up, we see that
1
2.1 —Ky,)?=(-Kx)? = ——.
(21) (~Kxa)? = (K =
On X, over z, there are 1/a (r, —r, 1)-singularity and 1/(r—a) (r, —r, 1)-
singularity (the argument below works if a = 1 or 7 —a = 1). Let ¥’
(resp. b”) be the integer such that 1 < ¥ < a (resp. 1 <" <r —a)

and b’ = 1 (mod a) (resp. rb” =1 (mod r — a)). Then it is easy to
see that
(2.2) V=a-c

V' =b—c

By induction, we have

(2.3) (—Kx. )P = (—Kx,)* — Va—V) V(r—a-— b”)‘

a r—a
By (2.1), (2.2) and (2.3), we obtain the assertion.

The following proposition is a key to our treatment below.

Proposition 2.3. Let X be a Q-Fano 3-fold with only cyclic quotient
singularities. Let ¢’ : X,, — X be the economic resolution of X as
in Lemma 2.2. Then (—Kx, )* = 29(X) — 2. Moreover assume that
| — Kx| contains a Du Val K3 surface and h®(—Kx) > 2. Then there
exists a composite of a finite number of blow-ups

gn gn—1 gm+1
Xn—>Xn71 — —>Xm

along v; ~ P! with —Kx, - v; < 0 such that —Kx,, is nef.
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Proof. By the Riemann-Roch theorem for terminal 3-folds [Kaw86],
[Reid87] and the Kodaira-Kawamata-Viewheg vanishing theorem, we
have
bi(r; — b;)
—Kx)?=2n"(—Kx) —6 T
(—Kx) (—Kx) -6+ Z -

2

Hence by Lemma 2.2, we obtain
(—Kx,)* =2h"(-Kx) —6=2g9(X) — 2.

Define g;11 : X;41 — X; (¢ > m) inductively as the blow-up along a
curve 7; with —Kx, -v; < 0. Let D € | — Kx| be a Du Val K3 surface
and D; the strict transform of D on X; (¢ > m). Then we can show
inductively the following:

(A) X; is smooth.
(B) Di € |- Kx,|.
(C) D; is a Du Val K3 surface.

For i = m, (A) is clear. Since the discrepancy of every step of
the economic resolution is minimal and D is a Du Val K3 surface,
D,, € | — Kx,,| and D,, is also a Du Val K3 surface. So (B) and (C)
hold for i = m. Since v,, C Bs| — Kx, |p,.|, we have ~,, ~ P! by
[Ale91, Corollary 1.5]. So (D) is checked for i = m.

Assume that we have the assertion for i-th step. By (D) for i-th
step, (A) holds for (i+ 1)-st step. Since D; is generically smooth along
Yi, (B) holds for (i + 1)-st step. By (C) for i-th step and D;;; — D; is
crepant, (C) holds for (i 4+ 1)-st step. Since 7,41 C Bs| — Kx,,,|p,.. ],
(D) holds for (i + 1)-st step by [ibid.].

Note that h’(—Kx,) = h°(—=Kx) > 2. Hence ~; is contained in the
intersection of two general members of | — Kx,|. So the sequence of the
above blow-ups terminate, i.e., for some n > m, —Kx_ is nef. O

Definition 2.4. We say that a g-exceptional divisor F' is economic
(resp. nmon-economic) if F' is extracted by ¢; : X; — X, with i < m
(resp. i > m).

Definition 2.5. Let W be an indecomposable Fano 3-fold. Then an
irreducible surface S (resp. an irreducible curve C) on W is called a
plane (resp. a line, a conic) if and only if S ~ P? and (—Ky)2S = 1
(resp. C' ~ P! and —Ky - C = 1,2). Note that if —Kyy is very ample,
then a plane, a line and a conic are usual ones in the projective space
P (HO(—Ky)).

A kind of surprise is the following:
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Corollary 2.6. Let the assumptions be as in Proposition 2.3. We use
the notation there. Moreover assume that X s indecomposable and
g(X) > 2. Then

(1) _KXi i = —1 fOT’ any i > m and ‘/VZ/XZ = ﬁ]l’ﬁ(_l) D ﬁPl(_Q)
or Op, ® Op,(—3).

(2) X, is an indecomposable weak Fano 3-fold with (—Kx, )*> = (—Kx,, )>.
In particular, | — Kx,,| is free by [Isk79, Theorem 6.3] and [Muk95b,
Theorem 6.5].

(3) Let h: Z — W be the anti-canonical model. Then by deforming X
if necessarily, we may assume that the image of an h-exceptional
divisor is a point or a line on W.

Proof. By g(X) > 2, we have

(—Kx, )*=2g(X)—2>2.
By the formula
(_KX1+1)3 = <_KX1')3 - 2{<_KX1‘ ’ rVi) + 1}7

we have (—Kx,,,)* > (—Kx,)®. Hence X, is a weak Fano 3-fold, and

indecomposability of X, follows from primarity of X. By the Riemann-

Roch theorem, (— Ky, )? = 2h°(—=Kx, )—6. Since h°(—=Ky, ) = h°(—=Kx),

we have (—Kx,,)® = (—Kx,)®. So —Kx, -7 = —1 for any i > m.

Since deg A, x, = —3, we can write A, /x, ~ Op,(a) ® Op,(—a — 3)

with a > —1. Let F; be the g;-exceptional divisor, Cj its minimal

section, and 7 a ruling. Then —Kx,, |r,, = Co + (a + 2)r whence

—Kx,.,Co=—a—1.If =Kx, , -Cy >0, then a = —1 and we have

the former case. If =Ky, , - Cy <0, then Cy becomes the center of g;

for some j > ¢+ 1. Since —Kx, - Cy = —1, we have —Kx,,, - Cp = —1

and so a = 0.

Let E be an h-exceptional divisor which is contracted to a curve on
W which is not a line. After a sequence of flops Z --+ Z’, E can be
contracted primitively. Then by [Min99b, Theorem 0.9], £ disappears
after a suitable small deformation of Z’. By the existence of smooth
simultaneous flops [Pin83, Theorem 3|, this implies that £ disappears
after a suitable small deformation of Z, which induces that of X. So
we obtain (3). O

Remark. (i) For Corollary 2.6, we are inspired by [Ale94, Theorem
4.5]. In contrast to [ibid.], however, we need to construct a Goren-
stein model very explicitly for our purpose.

(ii) For No. 3.1”in [Taka02a], h : Z — X is the blow-up at the unique
(1,1, 1)-singularity and the image of the h-exceptional divisor on
W is a curve of degree 5. However No. 3.1’ can be deformed to
No. 3.1, for which h is a small contraction.
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Corollary 2.7. Let the assumptions be as in Corollary 2.6. Let F; be
the g;-exceptional divisor and F! the strict transform of F; on X,,. We
denote by Cy the minimal section of F; (i > m+ 1), which is Fy or Fs,
and by r a ruling. Then one of the following holds:

(a) (economic case)

(al) F, ~ P? and Dx,|F, is a line l. Bs| — Kx,| N F; is an empty
set, a simple point or 1. Moreover if Bs| — Kx,| N F; is an
empty set, then g(F}) is a 1/r (1, —1,1)-singularity for some
r and | — Kx,| has no base point over g(F}).

(a2) F; =~ Ty, (k > 2) and Dx,|F, is a ruling r. Bs| — Kx,| N F;
is the vertex of F; or r. Moreover if Bs| — Kx,| N F; is the
vertex of F;, then g(F}) is a 1/r (1, —1, 1)-singularity for some
r and Bs| — Kx,|N g~ (g(F})) is at most one simple point on
the exceptional divisor resolving the %(1, 1, 1)-singularity over
g(Fy).

(a3) F; ~ P :=P(k,m,1) (k > 2 and m > 2) and Dx,|r, is the
unique member C' of |Op(1)|. Bs| — Kx,| N F; is C.

(b) (non-economic case)

(b1) F; ~ Fy and Dx,|r, is an irreducible member C' of |Cy + r|.
Bs| — Kx,| N F; is an empty set, a simple point or C.

(b2) F; ~F; and Dx,|p, is the union of Cy and a ruling r. Bs| —
Kx,|NF;is Cy or Cy+r.

(b3) F; ~ T3 and Dx,|p, = Cy + 11 + 19, where v; are two different
rulings. Bs| — Kx,| N F; is Cy, Cy +1; or Cy + 11 + 2.

(b4) F; ~ 3 and Dx,|r, = Co + 2r, where r is a ruling. Bs| —
KXZ.|HE 18 Oo+27’.

In particular
(1) Bs| — Kx,| N F; is connected.
(ii) For the case (b), vi-1 (1 > m+ 1) is a non-reduced component of
Bs|— Kx, .| if and only if and Bs | — Kx,| N F; contains a curve.

Proof. The proof is an easy exercise. Here we only prove the ‘Moreover’
parts of (al) and (a2) by using the other descriptions.

First assume that F; ~ P? and Bs| — Kx,| N F} is an empty set.
We may assume that g; (j < i) is the standard weighted blow-up of
a singularity over g(F;). Let F}' (j < i) be the strict transform of F}
on X;. Then by induction, we see that Bs| — Kx,| N F}’ is an empty
set for any j < i. So | — Kx,| has no base point over g(F/). Moreover
we know that (a3) does not occurs for any 7 < ¢ and in particular this
shows that g(F}) is a 1/r (1, —1, 1)-singularity for some r.

Next assume that F; ~ Fy (k > 2) and Bs| — Kx,| N F} is the vertex
v of F;. We may assume that ¢g; (j < [) is the standard weighted
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blow-up of a singularity over g(F;) and g;4; is the standard weighted
blow-up at v. Let F! be the strict transform of F; on X;;;. Then
Bs| — Kx,,,| N F}" is an empty set. Moreover similarly to the previous
case, we can prove that | — Ky, | has no base point over g(Fj) and
g(F!)isal/r(1,—1,1)-singularity for some r. So by the descriptions in
(al) (resp. (a2)) (except the ‘Moreover’ part), we see that for [ > j > i,
Bs| — Kx,| N Fj is an empty set (resp. Bs|— Kx,|N F} is at most a
simple point). O

Corollary 2.8. Let the assumptions be as in Corollary 2.7. We use
the notation there. Moreover denote by F] the strict transform of F; on
X,. Then h(F!) is a plane, a conic, a line, or a point. More precisely,
(1) h(F}) is a plane if and only if
(i1) the case (al) in Corollary 2.7 holds and Bs | — Kx,
or
(i2) the case (b1) in Corollary 2.7 holds and Bs| — Kx,|NF; = 0.
(23) h(E}) is a conic if and only if the case (b3) in Corollary 2.7 holds
and Bs| — Kx,| N F; = Cy.
(7i1) h(E}) is a line if and only if
(17i1) Bs|— Kx,|NF} is a simple point and the case (al), (a2) or
(b1) in Corollary 2.7 holds,
(1432) the case (b2) in Corollary 2.7 holds and Bs | — Kx,| N F; =
Cy, or
(77i3) the case (b3) in Corollary 2.7 holds and Bs| — Kx,| N F; =
00—1-7“1 O’I"C()—l-’l"g.
() h(F!) is a point if and only if Bs| — Kx,| N F; = Dx,

Proof. Since h°(—Kz) = h°(—KYx,), we have
W (—Ky — F!) = h(—Kx, — F)).
On the other hand, we have
W (—Kz — F)) = h°(—Kw @ ey w)-

Let ' : Z — W' be the morphism defined by | — Kz|. We have a
natural morphism 7 : W — W'. Let s := dim(h'(F})). If 7l is
birational (resp. not birational), then

(- Kw ® In(En W) = h(—Kw @ Ih(Fnwe)

(resp. W’ (— Ky ® fh(F{)/W) <K (—Ky ® fh/(F{)/W/)).
Hence we have the formula:

dim Im (HO(—KX-) - HO(_KXAE)) =s+1

K3

(resp. dimIm (H°(—=Kx,) — H°(=Kx,|r)) > s+ 1).

mE:®7

F;-
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Thus by Corollary 2.7 (a) and (b), we have s < 2.
Assume that s = 2. Then by Corollary 2.7,
(A1) Bs| — Kx,| N F; = 0 and the case (al) or (bl) in Corollary 2.7
holds, or
(A2) the case (b3) in Corollary 2.7 holds and Bs | — Kx,| N F; = C,.

It is easy to see that if the case (Al) occurs, then h(F;) is a plane.
Assume that the case (A2) occurs. Then we may assume that g;,; is
the blow-up along Cy. Let F!" be the strict transform of F; on X;41.
Then Bs| — Kx,,,| N F/ = 0. So h(F]) is a conic.

Assume that s = 1. Then clearly h(F;) is a line and it is easy to see
that one of (iiil) (iii3) holds.

Assume that s = 0. Then clearly h(F;) is a point and it is easy to
see that Bs| — Kx,| N F; = Dx, |, O

Definition 2.9. We say that a plane on W is an exceptional plane
if its strict transform on Z is g-exceptional. An exceptional plane is
called a good plane if it satisfies Corollary 2.8 (il).

The following is a refinement of indecomposability of W:

Corollary 2.10. Let the assumptions be as in Corollary 2.7. Then any
member of | — Kw| is a prime divisor, or a union of a prime divisor
and exceptional planes. In particular W contains no surface of degree
between 2 and g(X) — 2 if g(X) > 4.

Proof. By Corollary 2.8, any irreducible component of a member €
|— K| which is not an exceptional plane is not contracted by W --» X.
Hence by primarity of X, the former half of the assertion follows.

If g(X) > 4 (and hence —Ky is very ample), and there exists a
surface S of degree between 2 and g(X) — 2 on W, then dim(S) <
g(X) — 1 whence |Ly ® Zg/w| has a movable part. This contradicts
the former half of the assertion. O

Corollary 2.11. Let the assumptions and the notation be as in Corol-
lary 2.6. Moreover assume that X is non-Gorenstein. Then

(1) W contains at least one plane.
(2) —Kw is not very ample if and only if g(X) = 2.
(3) (The genus bound) g(X) < 8.

Proof. (1) This follows from Corollary 2.8 (i).

(2) By [Isk79, Theorem 6.3] and [Muk95b, Theorem 6.5], it suffices to
deny the case that g(X) = 3 and | — K| defines a double cover
over a quadric 3-fold W’. Assume that this case occurs. Then by
(1), W’ contains a plane and hence W' is singular. Thus Oy (1) is
decomposable and hence so is — Ky, a contradiction.
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(3) We are inspired by the proof of [Muk95b, Theorem 6.5]. By [ibid.],
we have that g(X) = g(W) < 10 or = 12.

If (W) = 12, then W is smooth by [ibid.]. Hence by Lefschetz’s
theorem, W cannot contain a plane, a contradiction to (1). If
g(W) = 10 (resp. g(W) = 9), W is a linear section of the 5-
dimensional Go-variety G in P'3 (resp. the 6-dimensional Symplec-
tic Grassmannian G in P*?) by [ibid.]. By [LM, Corollary 4.10], G
contains no plane, a contradiction to (1).

U

2.2. Refinement of the results for a primary X.

2.12 (Basic set-up). Let X be as in 1.4. In the previous subsection 2.1,
we obtained the following for this X :

(1) A sequence of birational morphisms

gn gn—1 g2
Xn —Xp1— - — X=X,

where g; is the standard weighted blow-up of a cyclic quotient singu-
larity fori < m or the blow-up along v;_1 ~= P! with —Kx, ,-vy;—1 =
—1 for v > m. We denote the composite of these birational mor-
phisms by g. X, is a weak Fano 3-fold, which we denote by Z.

(2) Denote the anti-canonical model of Z by h : Z — W. W is an
indecomposable Fano 3-fold with g(W) = ¢g(X). W contains at
least one plane.

(3) We may assume that the image of an h-exceptional divisor is a
point or a line on W.

We fix this set-up from here on till the end of the paper.

Proposition 2.13. (1) An h-exceptional divisor is g-exceptional. As-
sume that — Ky s very ample. Then the strict transform of a
plane contained in W is g-exceptional, i.e., any plane on W is ex-
ceptional. In particular by Corollary 2.8 (i), a plane on W satisfies
(i1) or (i2) in loc. cit. Assume that — Ky, is not very ample. Let
' 7 — W' be the morphism defined by | — Kz|. Note that there
is a natural morphism w : W — W'. Let P be a plane on W and
P’ the plane on W such that 7(P) = n(P’). Then exactly one of
the strict transforms of P and P’ is g-exceptional.

(2) Sing W is contained in the unions of exceptional planes.

(3) Let G, C Z be the strict transforms of exceptional planes, and Gy
their images on X;. Then any connected component of Bs | — Kx,|
intersects exactly one Gy ; and contains it. In particular, any two
exceptional planes do not intersect along a curve by (1).
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Proof. (1) Let H be an h-exceptional divisor. By 2.12 (3), there is a

member L of | — Ky /| containing h(H) and | — Ky @ Fhm)w| is
movable. Then h*L is a member of | — Kz| and is reducible. On
the other hand, g.h*L is a member of | — Kx| and hence it must
be irreducible by primarity of X. Hence H is contracted by g. The
rest can be similarly proved.

Let w be a terminal singularity of W. Note that A7 (w) is 1-
dimensional. By Corollary 2.8, a g-exceptional divisor is the strict
transform of a plane or an h-exceptional divisor. So if w is not
contained in any exceptional plane, then h=!(w) is disjoint from
g-exceptional divisors whence g(h™!(w)) is numerically trivial for
—Kx, a contradiction.

So it suffices to show that h(F') is contained in an exceptional
plane for an h-exceptional divisor F'. Since F' is g-exceptional by
(1) and is crepant, general fibers of h|r intersect a g-exceptional
divisor F” which is extracted after the extraction of the transform
of F. Hence h(F') C h(F"). So the assertion follows by induction.
By the construction of g and Corollary 2.8 (i), any connected com-
ponent of Bs | — K'x,| contains one of G ;. Assume by contradiction
that there exists a connected component of Bs| — Kx,| intersect-
ing both Gy ; and G} ;. By Corollary 2.8 (i), we see then that
Ghr,j, Gry C Bs| — Kx;| and Gy N Gy = (). Hence there exists
1 > 7 + 1 such that

(i) the connected components [y, and [ of Bs| — Kx,| containing

Gy and Gy ; respectively are distinct, and
(ii) there exists a connected component of Bs |— K, | containing
Gk,i—l and Gk’,i—l-
Hence the g;-exceptional divisor F; intersects [, and [;,. This im-
plies that Bs| — Kx,| N F; is not connected, a contradiction to
Corollary 2.7.
]

2.14 (Rules of the game). We collect the properties of W which we use
frequently afterward:

(a)
(b)
()

Sing W is the union of lines and a finite number of points contained
in exceptional planes on W (2.12 (3) and Proposition 2.13 (2)).
The intersection of two exceptional planes does not contain a curve
(Proposition 2.13 (3)).

Any member of | — K| is a prime divisor, or a union of a prime
divisor and exceptional planes. In particular W is indecomposable
and if g(X) > 4, then W contains no surface of degree between 2
and g(X) — 2 (Corollary 2.10).
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The following corollary is not needed in this paper but it should be
useful for the classification of X with g(X) < 5.

Corollary 2.15 (Existence of index 2 model). Let P; be the strict trans-
forms of planes on W. Let Z --» Z' be the flop of (=1, —1)-curves on
the strict transforms of planes which are not good. Then the strict
transforms of all the P; on Z' are copies of P? and can be contracted
to 1/2 (1,1, 1)-singularities at a time. Let Z' — Z" be the contraction
and Z" — W' the anti-canonical model. Then W' is a canonical inde-
composable Q-Fano 3-fold such that all the non-Gorenstein points are
1/2(1,1,1)-singularities.

Proof. The assertion is clear except that all the non-Gorenstein points
on W’ are 1/2 (1,1, 1)-singularities. Let z be a 1/2(1, 1, 1)-singularity
on 7Z". Since — K is nef, there is no curve through z which is numer-
ically trivial for Kz». This implies the assertion. 0

3. STUDY OF THE RELATION BETWEEN X AND W BY USING
WEIGHTED DUAL GRAPHS

3.1. Basic properties of weighted dual graphs.

3.1. In this section, we use the notation as in 2.12. Let D be a general
member of | — Kx| and D, the strict transform of D on x. Note that
D has only 1/r (a, —a)-singularity at a 1/r (a, —a, 1)-singularity of X
by weight-reason (see [Reid87, (4.10)] for example). Hence Dx, —
D is just the composite of the minimal resolutions of singular points
contained in Sing X .

Notation and terminology for weighted dual graphs

I'x,: The dual graph with

vertices: curves in Bs |- K, |p,| and curves in the intersections between
the exceptional divisors for X; — X and Dy,, and

weights of vertices: the intersection numbers of the corresponding curves

o, The curve on D; corresponding to a vertex v € I'x,.
Vo The vertex v € I'x, corresponding to a curve a.

I'x, p: The connected component of I'y, having a vertex v € I'x, p such
that a, contains the image of the strict transform of an exceptional
plane P. This makes sense by Proposition 2.13 (3).

Fixed vertex: A vertex corresponding to a curve in Bs | — Kx;|py |-

Economic vertex: A vertex in 'y, corresponding to an economic ex-
ceptional divisor.

Economic chain: A chain in I'x,, consisting of economic vertices.
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Claim 3.2. I'yx, is a disjoint union of trees and the curve correspond-
ing to a vertex is a copy of PL. In particular the sum of g-exceptional
divisors is a simple normal crossing divisor.

Proof. By [Ale91, Corollary 1.5], the assertion is true for I'x. Since
D; — D is a composite of blow-ups at points and along smooth curves
and the vertices in I'x correspond to copies of P’s, the former half of
the assertion follows. Since the economic resolution is locally toric, the
sum of exceptional divisors for X,, — X is a simple normal crossing
divisor. Hence the latter half of the assertion follows from the former
one. O

Proposition 3.3 (Properties of graphs). I'x, satisfy the following:

(1) No vertex in 'z is not fized.

(2) If I'x, p (i > m) has a fizved vertex, then at least one fired vertex
has weight —1. In particular if P is not a good plane, then at least
one fized vertex in I'x, p has weight —1.

(3) An exceptional vertex in U'yx, (i > m) has the weight —1,0 or 1.

(4) Two exceptional vertices in I'x, (i > m) with the weights 1 do not
intersect.

(5) Two wvertices in I'x, (i > m) with the weights —1 do not intersect.

Proof. (1) follows since Bs | — Kz|N Dz = Bs|— Kz|p,| by h'(07) = 0,

and | — Kz| is free. (2) follows from the construction of g. (3) and
(4) follow by the construction of g and Corollary 2.8. (5) follows by
Corollary 2.6 (1). O

We investigate how these weighted dual graphs are changed by g;|p,

(1>m+1).

3.4 (Operations of graphs). In all cases, g;|p, reduces the weights of

vertices intersecting vy, , € I'x, | by 1 because of Claim 3.2. Moreover

the graph changes at v,,_, according as the cases (b1)—(b4) in Corollary

2.7 as follows:

(b1) The shape of graph is unchanged. v,, , changes to @

(b2) v,,_, changes to @—@ or @ @, where @ (resp.

) corresponds to the fiber-component of Fi|Dxi (resp. the min-
imal section of F).

(b3) v,, , changes to @—@—@, where @ (resp. @)
corresponds to a fiber-component of Fi|Dxi (resp. the minimal
section of F}).

(b4) vy, , changes to @—@ or @—@, where @ (resp.

) corresponds to the fiber-component of Fj| Dx, (resp. the min-
imal section of F;).
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In the cases (b2)—(b4), we cannot specify the way how the new vertices
in I'x, intersect the vertices which intersected v., , i I'x, ..

Claim 3.5. Assume that X has only 1/r (1, —1, 1)-singularities. Then
@ in Tx, intersects at least two economic vertices (clearly such ver-

tices belong to different economic chains). Moreover if @ intersects
only two economic vertices, then one of the economic chains to which
the two wvertices belong corresponds to a 1/s (1, —1,1)-singularity with
s> 3.

Proof. Clearly @ intersects at least one economic vertex. Assume
that @ intersects only one economic vertex v. Let v be the curve
corresponding to @ and F' the exceptional divisor corresponding to
v. Let u be the index of the singularity corresponding to the economic
chain having v. Since X has only 1/r (1, —1, 1)-singularities, F' is iso-
morphic to P? (then we set ¢ = 1) or F, for some ¢ > 2. Then it is easy
to see that —Kx -y = —t/u, a contradiction. The latter half can be
similarly proved. O

Note that the number of vertices of the dual graph never decreases.
Since | — K| is free and Dy is a general member of | — K|, vertices with
weight 0 (resp. 1) in Iz correspond to h-exceptional divisors which are
contracted to lines by h (resp. the strict transforms of exceptional
planes on W). Hence we have

Corollary 3.6. Let P be an exceptional plane on W. Set
dy : = #{curves a in Bs| — Kx|p| such that v, € Tx p}.
dy : = #{h-exceptional divisors contracted to lines in P}.

Then

Z(TZ'— 1)+d1 S 1—|—d2,
where the summation  (r;—1) is taken over the singularities contained
in the curves corresponding to vertices of I'x p.

3.2. Applications of weighted dual graphs.

Proposition 3.7 (A characterization of a good plane). Let P be an ex-
ceptional plane on W and assume that I'; p is a chain

with r —1 vertices, where @ corresponds to P and other vertices have
weights 0. Then it is the resolution graph of a 1/r (—1,1)-singularity
of D which is a 1/r (—1,1,1)-singularity on X. In particular P is a
good plane.
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Proof. Assume the contrary. Then @ corresponds to a non-economic
exceptional divisor, which we denote by F'. By 3.4 and the weights of
I'z p, the contraction of F' corresponds to the inverse of the operation
(bl) or (b2) and hence by the contraction of F', I'z p changes to

D—0O—O——O

with 7 — 1 or r — 2 vertices according as the case (bl) or (b2). By
considering inductively, only the inverse of (b1) or (b2) appears before
the inverse of (b4) does and the graph is of the form

O —(O)— (D) — - —@.

Note that the intersection of the curves corresponding to @ and its
right-hand @ is a smooth point of the strict transform of D since so is
the intersection of the corresponding curves on D, and the contraction
corresponding to the inverse of (b1) or (b2) is an isomorphism near the
intersection.

Assume that the inverse of (b4) appears at this step. We denote
this graph by I'x, p. Then @—@ corresponds to £}] Dx,» where

the multiplicity of the curve corresponding to @ is two in Fj| Dx,- S0
since the intersection number between F; and the curve corresponding
to @ on the right of @ is 1 by Claim 3.2, the intersection of the
curves corresponding to these @ and @ is a singular point of Dy,
a contradiction.

Hence only the inverse of (bl) or (b2) appears and I'x,, p is of the
form

O —(O)— ) —(D)—O)— - —©).

Note that any economic chain in I'y,, p contains at least one @ and

at least two @’S for a 1/s (e, s — ¢, 1)-singularity with ¢ > 1 and
s —c > 1, we conclude that

is the economic chain for a 1/s (1, —1, 1)-singularity with some s. Then,
however, this contradicts Claim 3.5 and we finish the proof. O

The following three propositions are used only in the subsections 7.3
and 7.5.

Proposition 3.8. Let P be an exceptional plane on W and assume
that there are at most Aq-singular lines on P. Then one of the following

holds:
(1) P is a good plane corresponding to a 1/r (1,—1,1)-singularity with
r=2,3.
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(2) P is not a good plane and any singularity contained in the curves
corresponding to the vertices of U'x p is a 1/2 (1,1, 1)-singularity.
I'x,..p is not a chain.

Moreover if the assumption of this proposition is satisfied for any ex-

ceptional plane P on W, then (2) does not occur for any P.

Proof. Since the length of a chain in 'y, p is at most 3, an eco-
nomic chain in 'y, p corresponds to a 1/s(1, -1, 1)-singularity with
s=2,3,4.

Assume by contradiction that I'x, p has an economic chain corre-
sponding to a 1/4 (1, —1,1)-singularity. By Proposition 3.7 and the
assumption of this proposition, I'x,, p is not a chain. By the shape
of I'x,, p. other vertices in I'x,, p are not economic. By Proposition
3.3 (2), at least one of fixed vertices in I'y, p has weight —1. This
contradicts Claim 3.5.

Assume that there exists an economic chain L corresponding to a
1/3(1,—1,1)-singularity in 'y, p. We prove that L =T'x, p. Assume
the contrary. Then by the shape of I'x,, p, other vertices in I'x,, p are
not economic. So we can obtain a contradiction as the above case.

Finally we treat the case that any economic chain in I'x,, p corre-
sponds to a 1/2 (1,1, 1)-singularity. By Claim 3.5, I'x, p is not a chain
if P is not good. It remains to show the last assertion. If the assump-
tion of this proposition is satisfied for any exceptional plane P on W,
then X has only 1/2 (1,1, 1)-singularities. So by [Taka02b, Theorem
1.0], Z = X,,. Hence I'x,, p is the disjoint union of economic chains
corresponding to 1/2 (1, 1, 1)-singularities. O

Definition 3.9. Let [ be a singular line on W and P the exceptional
plane on W containing [. [ is called a good line if the dual graph of the
strict transform of P and h-exceptional divisors over [ is a chain.

Proposition 3.10. Assume that there is at most one h-exceptional
divisor contracted to a point on W. Then X has only 1/r(1,—1,1)-
singularities. Let

be the economic chain in Ux,, for a 1/r (1, —1,1)-singularity x. Then
one of (1), (2) or (3) holds:

(1) (1-1) no vertex in

s a fized one.
(1-2) any @ does not intersect a fived vertex.



primary Q-Fano 3-folds 23

(1-3) @ does not intersect a fixed vertex, or intersects only one
fized vertex v. If the former case occurs, then @ cor-
responds to a good plane. If the latter case occurs, then
Bs| — Kx, | is reduced along a,.

(2) r=3.

(2-1) v = @ is a fized vertex and Bs| — Kx,, | is reduced along
Q.

(2-2) @ does not intersect a fived vertex except @

Hence in this case, the economic exceptional divisor over x corre-

sponding to @ becomes the h-exceptional divisor contracted to a

point on W by Corollary 2.8.

(3) r=2 and @ is a fived vertex. Hence in this case, the economic
exceptional divisor over x becomes the h-exceptional divisor con-

tracted to a point on W by Corollary 2.8.

In particular for any exceptional plane P, I'x, p contains at most one
economic chain which is not of type (1) and if W has only ¢DV singu-
larities, then U'x,, contains only economic chains of type (1).

Proof. 1f there exists a 1/r (a,r — a, 1)-singularity with a,7 —a > 1,

then at least two economic exceptional divisors becomes h-exceptional

divisors contracted to a point by Corollary 2.8, a contradiction.
Assume that there is no divisor in the economic chain

which becomes an h-exceptional divisor contracted to a point on W.
Then by a similar reason to the above, (1-1), (1-2) follows. We show
(1-3). If @ does not intersect a fixed vertex, then @ corresponds to
a good plane by Proposition 3.7. Assume that @ intersects at least
one fixed vertex. Let F' be the exceptional divisor corresponding to
@. Then by (=K, )*F =1, @ intersects only one fixed vertex v
and Bs| — Ky, | is reduced along c,.

Assume that there is a (unique) vertex v in the economic chain such
that the divisor corresponding to v is an h-exceptional divisor con-
tracted to a point on W.

If F' corresponds to one of @, then any exceptional divisor corre-
sponding to another @ becomes an h-divisor contracted to a point
on W by Corollary 2.8. Hence r = 3 and the former half of (2-1) holds.
Moreover (2-2) and the latter half of (2-1) can be proved similarly to
(1-3).

If F' corresponds to @, then Bs| — Kx, | N F' is a line. Hence if
r > 3, then any exceptional divisor corresponding to one of @ would
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become an h-divisor contracted to a point on W by Corollary 2.8, a
contradiction. Hence r = 2 and (3) holds. O

Proposition 3.11. Assume that there is at most one h-exceptional
divisor contracted to a point on W. Let P be an exceptional plane.

Assume that Iz p is a chain and P is not a good plane. Then one of
the following holds:

(l) FXm,P 18

©——O—0O——0O—O— —O),
where

O—0)——(0)

corresponds to a 1/r (1, —1,1)-singularity for somer (resp. a1l/s(1,—1,1)-
singularity for some s).
In this case, I'z p s

O——(O)—D—(O)— - — (),

where the length of the left (resp. right)

isT—1 (resp. s—1). If P is the unique exceptional plane, then W
has only cDV singularities on P.

(2) FXm,P 18

O—O0——0—0——0O.
where
O—O
O—OQ——O)

corresponds to a 1/3 (1, —1, 1)-singularity and (resp. a1/s(1,—1,1)-
singularity for some s).
In this case, I'y p is

O—0O—0O——©,
where the length of

(resp.

(resp.
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18 S. @ on the right-side in I'x,, p corresponds to an h-exceptional
divisor F' contracted to a point on W. Hence P has two good lines
and F' s contracted to their intersection.

(3) FXm,P 18

D—0O—0a

where

corresponds to a 1/r (1, —1,1)-singularity for some r,

corresponds to a 1/s (1, —1,1)-singularity for some s, and @ be-
tween two @ s corresponds to a 1/2(1,1,1)-singularity. In this
case, I'z p 13

O— —(O)—D— () — - — (),

where the length of the left (resp. right)

isr (resp. s). @ between two @ 'sin I'x, p corresponds to an
h-exceptional divisor F' contracted to a point on W. Hence P has
two good lines and F' is contracted to their intersection.

Proof. First we give the descriptions of I'x,, p. Since P is not a good
plane, I'x,, p contains at least one @ by Proposition 3.3 (2). Hence
by Claim 3.5 and Proposition 3.10, I'x,, p contains one of the following:

(a)
O— - —O—0—E—0—0——O.

This is the case (1).

(b)
O—0——0—O——©O.

This is the case (2).
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D—0O—0O0——0O

We prove that this is the case (3). We denote

O—- - —0O

by IV, If I does not contain @, then the operations to obtain
['; terminate without resolving the base curves corresponding to
fixed vertices of I, a contradiction to Proposition 3.3 (1). Hence
[ contains @ and by Claim 3.5, [" = @ Hence we have (3).

Next we give the descriptions of I'z p. In any case, we can see
that the base curves are reduced in I'x,, p by Proposition 3.10. So
the blow-ups along the base curves induce the operations of type
(b1) in 3.4. Hence we obtain the desired descriptions.

0

4. PROPERTIES OF VARIOUS LINEAR PROJECTIONS OF W

In this section, A is a linear subspace A of W.
4.1. Study of the center of vy for a linear subspace A of W.

Lemma 4.1. Let A be a linear subspace of W satisfying one of the

following:

(a) (only if g(X)=6) A is the point v as in Proposition 7.1 (2),

(b) A is a singular line [.
(b1) W has only hypersurface singularities at any point on l, or
(b2) (only if g(X) =6) V is the cone and v € .

(¢) A is aplane P. W has only local complete intersection singularities
at any point on P.

Then pw a is crepant and hence WA has only canonical singularities.

Proof. Assume that A satisfies (a). Since mult ,W' = 5 by Proposition
7.1 (2), the assertion holds by [Rei80, Theorem 2.11].

Assume that A satisfies (b1). We can check the assertion locally
around a point w. So W (resp. [) is a hypersurface (resp. a copy of
C) in C* locally analytically near w. By explicit computations, we can
see that py, is crepant.

Assume that A satisfies (b2). Let p/ : W — W, be the blow-
up along the strict transform [ of [ on W, and E’ the p’-exceptional
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divisor. Since Eyy,, has only hypersurface singularities by Proposition
7.8 (a), so is W,. Hence by the computation in the case (bl), u' is
crepant and by the conclusion in the case (a), so is pu” 1= p' o . Let
7 : W' — W” be the canonical model for p* Ly — y/*Ew,, — E' over
W and 7' : W" — W the natural morphism. Let Ey,, and E” be the
images of u'" Ew,, and E" on W” respectively. Then

Ho(ﬂ'/*LW - E{/V,v — E”) ~ HO(IMW’Z*LW — EW,Z)-

Since 7" Ly — Eyy,, — £ is "-ample, this implies that W ~ W, over
W. Consequently py; is crepant since so is 7'

Assume that A satisfies (¢c). We can check the assertion locally
around a point w. By [Lau77, Theorem 3.13|, the embedded dimension
of W at w < 5. So locally analytically near w, W can be embedded in
C®. Let xq,.... x5 be the coordinates of C°. Then we can write

W={f=g=0}
P:{Jfl:l'g:Ig:O}.
Since P ¢ Sing W and W has only hypersurface singularities except a

finite set of points, we can see that py p is crepant by explicit compu-
tations. O

Lemma 4.2. Let 7 : S — T be a birational morphism between normal
surfaces. Assume that

(1) S has only canonical singularities,
(2) —Kg is m-ample, and
(3) C' :=excm is connected.

Then C ~ P! and —Kg-C = 1. Moreover C contains at most one
singularity of S and its type is A,, for some m € N.

Proof. This easily follows from [LLS85, Theorem 0.1]. O

Definition 4.3. Assume that gy is crepant and Wa is a normal
3-fold such that Ky, is Q-Cartier. Define
FVV,A = VW,A*(_KWA) — (_KWA)'
CA = UW:A*(_KWA : FVV,A)-
Proposition 4.4. Let the assumptions be as in Definition 4.3 and as-

sume that Wa is a del Pezzo 3-fold of degree > 3. Set s := dim A (note
that Wa C P9X)=3). Then

(1) EWA = VI/V,A*LWA — FW,A and FI/V,A = MVV,A*LW — QEW,A-
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(2) Assume moreover that vy a is birational. Then

29(X)—2if s=0.
degCa = { 4degWh —2¢(X)+2 if s=1.
4degWa —2g(X)+ 3 if s = 2.
(3) In addition to the assumption of (2), assume that g(X) > 4. Then
Ca = 0Ch + Y dim;,
where §,d; € N, and C)\ and m; are irreducible curves such that
(3-1) C\ #£ 0 and (CY) is a hyperplane of PIX)=3,
(3-2) deg Oy > pa(C) +9(X) —s — 1, and
(3-3) if dim(m;) is smaller than g(X)—s—1, then m; is the image of

the strict transform of a plane, or that of a pw a-exceptional
divisor.

Remark. In the below sections, we see that Ca = C'y or Ca = C'\+dm,
where d € N and m is a line.

Proof. (1) This follows from the definition of Fy o and
vwa L, = pwa"Lw — Ewa.
(2) We have
deg Ca = (Lw, - Ca) = vwa"Lw, (=K Fwa
= (Lw)” = 3(uw,a"Lw)* EBwa + 2uw,a" L (Bw,a)*.
The second equality follows from Lemma 4.2.

If s =0, then deg Ca = 2¢g(X) — 2. We treat the other cases. By
(MW,A*LW — EW,A)3 = deg WA and (VW,A*LWA)2FW,A = 0, we have

pw,a*Lw (Bw,a)® = 2(pw,a*Lw)* Ewa + 2deg Wa — (Lw).
This gives
deg Ca = 4d — (29(X) — 2) + (uwa"Lw )’ Ewa.

If s =1 (resp. 2), then (uwa*Lw)*Ewa = 0 (resp. 1). So we have
the assertion.

(3) Assume that C'a contains an irreducible and reduced curve n con-
tained in an r-plane with r < g(X)—s—2. Let F” be the irreducible
component of Fyya such that vy a(F’) = n. Then pya(F") is con-
tained in an (r + s + 1)-plane with » + s +1 < g(X) — 1. Thus
|Lw @ Fuy arry/w| has the movable part. This implies that if
pw.a(F') is a divisor, then it is a plane by 2.14 (c).

Note that by (1), pwa(Fwa) € |Lw| if A is not a plane, or
pwa(Fwa) € |Lw — Al if A is a plane. Hence Fyya contains an
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irreducible component F” such that pwya(F”) is a divisor and is
not a plane. So C'y = vy a(F") is not contained in an r-plane
with r < g(X) — s — 2. On the other hand, C'y is contained in a
hyperplane section of W by (1). Hence (C',) is a hyperplane of
P9(X)=s_ This implies that

Pa(Ch) < degCy — (9(X) —s —1).

Thus we obtain (3).
U

Lemma 4.5. Let C' be an irreducible projective curve and L be a Cartier
divisor on C such that d := deg L > 2p,(C)+2 (note that in particular,
L is very ample). Let ¢ : C — PP be the embedding defined by
|L|. Then ¢(C) is the intersections of quadrics.

Proof. See [ACGH, p.142, F-2|. The result is stated only for a smooth
curve but the proof works also for a singular curve since the general
position theorem [ibid. p.109] has nothing to do with singularities of a
curve. U

Proposition 4.6. Let the assumptions be as in Proposition 4.4 (3)
and assume that Ca is reducible. Then C'\ is not the intersection of
quadrics. Assume moreover that

deg Cp = pa(Ch) +9(X) =5 -1
and for any i, dim(m;) is smaller than g(X) — s — 1. Then

deg Cp = 2(g9(X) —s) — 3.

Proof. Define C'a to be the closed subscheme associated to the ideal
I/WA*ﬁ’M‘;A(—FW’A). Note that C'a = Ca as a cycle.

Assume that C is the intersection of quadrics. Then since Ca # C'y
and —Kyw, = 2Lw,, there is a member D € | — Ky, | such that
Cih € Dbut Ca ¢ D. Let F” be the irreducible component of Fyya
such that vy p(F") = Cy. Set D" := vy, D — F". By the assumption
and Proposition 4.4 (3-3), m; is the image of the strict transform of a
plane or that of a pw a-exceptional divisor. Hence —Ky — pwa(D’)
is linearly equivalent to at most a sum of planes. By Proposition 2.13
(1), this implies that the strict transform of pw A (D’) is contained in
| — Kx|. This means that

ho(—Kx) > B(=Kwa® Iy jwy) > B(=Kwa® Iz, ) = (= Kw),

a contradiction.
If deg Oy = pa(Ch)+g(X)—s—1, then C'y is embedded in P9 ~s~1
by [Lw, |y |- Hence the assertion follows from (1) and Lemma 4.5. [
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Proposition 4.7. Let | be a singular line on W and the assumptions
as in Proposition 4.4 (3) for A = 1. Then any plane on W intersects [.

Proof. Assume that there exists a plane @ such that QNI =0. T hen
vy, (Q') is a plane on Wy, where @' is the strict transform of @ on Wj.
By Proposition 4.4 (1), vy, (Ew,) is a hyperplane section of W;. Hence
m = vy (Q") Nvw(Ew,) is a line. Since @' N Eyw,; = 0, there is an
irreducible component I of Fyy; dominating m and intersecting both
Q' and Ey, along curves (in particular F' ¢ Ey,;). Then py,(F) is a
surface contained in W N L, where L is a 3-plane containing [. So since
W is the intersection of quadrics, we have deg pw,;(F) < 2. Thus by
g(X) >4 and 2.14 (c), pw,(F) is a plane. On the other hand, @' N F’
contains a curve and Q" ~ ). Hence Q N puw,(F) is also a curve, a
contradiction to 2.14 (b). O

4.2. Classification of del Pezzo 3-folds appearing as W for the
projection from a linear subspace A of W.

Proposition 4.8. Assume that Wa is a (possibly non-normal) del
Pezzo 3-fold of degree < 5. Then Wa has only canonical singulari-
ties. Moreover the following hold:

(1) If degWa = 5, then Wa is smooth.

(2) If degWa = 4, then Wa has only terminal singularities, and one
of the following holds:
(2-1) Wa is factorial, or
(2-2) Wa is not factorial. A factorization W - Wa is a small

—~

resolution and p(W) = 2 (and hence there are two factoriza-
tions). Moreover one of two factorizations has a contraction
of E ~ P? to a smooth point on a smooth quintic del Pezzo
3-fold, and the other has a P-bundle structure over P2. Wx
contains a unique plane Ey, which is the image of E. If the
assumptions is as in Proposition 4.4 (3), then vy a(Ewa) is
a hyperplane section containing F;.

Proof.
Step 1. W, is not covered by planes (resp. irreducible quadrics if
deg Wa > 4).

Assume by contradiction that Wy is covered by planes (resp. irre-
ducible quadrics if degWa > 4). We can choose a plane (resp. an
irreducible quadric) S C Wa which is neither the strict transform of
A (only if dim A = 2), that of a plane on W, nor the image of a iy a-
exceptional divisor. Then the member of |Ly/| corresponding to that
of |Lw, ® Fsw,| is reducible and contains at least two irreducible
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components neither of which is a plane since |Ly, ® Zs/w,| has the
movable part. This contradicts 2.14 (c).

Step 2. We classify an extremal ray of a Q-factorial terminalization
of Wx roughly.

Let ' : W) — Wa be the normalization and 7" : WA — W} be a
Q-factorial terminalization such that Ky, is 7"-nef. Set 7 := 7' o 7"
Then we can write Ky1 = 7" Ky, — Z, where Z is an effective divisor.
If Z # 0, then we can find an extremal ray R of W} such that Z-R > 0
(this follows from the cone theorem. See for example [Reid94, the proof
of Theorem 1.1]). If Z = 0, then let R be any extremal ray of W3.
Note that if Z = 0, then W3 is Gorenstein. Hence we can use the
classification of [Mor82] and [Cut88]. Let p be the extremal contraction
associated to R and Ly := 7" Lw,. By —Ky1 = 2Ly +Z, p satisfies
one of the following:

(1) pis (3,0)-type. This case occurs if and only if WA ~ W, i.e., Wa
is terminal and factorial.

(2) Z =0 and p is of (3,1)-type. A general fiber D is a quadric in P3
and LWi |p is a hyperplane section.

(3) Z=0and p is a P*-bundle and L], is a hyperplane section for
a fiber r of p.

(4) Z =0 and p is of (2,0)-type which contracts £ ~ P? to a smooth
point. LWi| £ is a hyperplane section.

(5) Z >0 and pis of (3,1)-type. A general fiber D is P* and Ly |p is
a hyperplane section.

(6) Z > 0 and p is of (2,0)-type.

First we prove that 7 = 0. In particular, we see then that W has
only canonical singularities.

If (5) occurs, then 7(D) is a plane. Thus W, is covered by planes,
a contradiction to Step 1.

If (6) occurs, then by —Ky1 = 2Ly + Z and [AW93, Theorem]|,
|Lw, | is p-free. Hence we can choose a smooth member D of [Ly |
locally near excp. By restricting p to D, we have a Kp-negative
contraction of (1,0)-type, i.e., p|p is the blow-down of a (—1)-curve
F:= excp|p. But we have —Kp - F' > 1by —Ky1 = 2Ly1 + 7, a
contradiction.

Step 3.

We prove that if (2) occurs, or (3) occurs and the base S of p is not
P2, then deg Wx < 3.

If (2) occurs, then 7(D) is a quadric surface. So by Step 1, this case
occurs only if degWa < 3. Assume that (3) occurs and S is not P2
Note that S is a smooth weak del Pezzo surface by [Cut88] and [MMS5,
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the proof of Proposition 4.16]. So if S is not P?, then S is covered by
smooth rational curves n such that n? = 0. Let M, := p*n. Then

(_KWA)QMn - (_KWA - Mn)QMn - (_KMn)2 = 8.

This implies that 7(M,,) is a quadric surface. Hence degWa < 3 by
Step 1.

Step 4. We treat the case that (3) of Step 2 occurs and S ~ P2

By the assumption, p(W3) = 2.

Assume that W3 has a crepant divisor T. First we treat the case
that (7" is a point. If deg W > 3, then it intersects T at one point
since a fiber of p is mapped to a line on Wa. Thus T is a section
of p. Then it is easy to see that WA = P(Op2 @ Op2(—3)) and hence
(Lwy)? =9. So degWa < 2.

Next we treat the case that 7(7") is a curve. We can write

T'=z2(-Kyy) —uD,
where D is the pull back of a line by p. By
(—Kw1)*T = 0 and (— Ky )*D =12,

we have 3u = 2zdeg Wa. Moreover T'- m = 2z for a fiber m of p so
2z € 7. Let n be a general fiber of T. Then by T -n = —2, we have
u(D -n) = 2. We can easily derive the following solutions, where we
set 2/ = 2z:

(a) degWh = 1. 2,3,6 and u = 2//3.
(b) degWa = 2. 3 and u = 22//3.
(c) degWar =3. 2/ =1,2and u = 2.

So if degWa > 4, then Wi — W is a small resolution and in
particular W is terminal. Moreover, by the method of [Take89], we
see that deg Wa < 4, i.e., degWa = 4.

Step 5. We treat the case that (4) of Step 2 occurs.

Let W3 be the target of p and W3 be the anti-canonical model of
W3. Tt is easy to see that W3 is a del Pezzo 3-fold with only canonical
singularities and deg W3 = deg Wa + 1.

Case 1.

Assume that W3 is smooth. Then we show that degWa < 4. We
use the classification of smooth del Pezzo 3-folds [Fuj80] [Fuj84]. Note
that W3 = W3 in this case. If deg W3 = 6, then

2 =1,
7 =1,

W3 ~ P! x P* x P! or a divisor of (1, 1)-type on P? x P
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Moreover Ly is a divisor of (1,1,1)-type (resp. the restriction of a
divisor of (1,1)-type) if W3 ~ P! x P! x P! (resp. a divisor of (1,1)-
type on P? x P?). Then Ly = p*(Lyz) — E is decomposable, a
contradiction. Hence deg W < 4.

Case 2.

Assume that W3 is a cone over a del Pezzo surface of degree > 3.
Then W3 contains families of quadrics, which are cones over conics
in the del Pezzo surface. Since p(E) is a smooth point of W3 and is
disjoint from the exceptional locus of W2 — W3, a general quadric
in W3 does not pass through the image of p(F). Hence a general
quadric in W3 is transformed to that in Wa. Thus by Step 1, we have
deg W = 3.

Case 3. Assume that degWa > 4, W3 is singular and is not a
cone. We prove that this case does not occur. By [Fuj85], deg W3 < 6
and W3 (resp. Wa) is (si21) or (silll) in [ibid.] if degW3} =5 (resp.
deg W3 = 6). We use the notation in [ibid.]. Note that W3 (resp. Wa)
is denoted by V in [ibid.].

Assume that deg W3 = 5. If W3 is (si21), then

(Ho)*(Ho+ H,)F =2,

where F'is the pull back of a ruling of M ~ F; on W, where W is in the
notation in [ibid.]. Hence a surface which is the intersection of general
members of |(Hy+H;)|y| and [F|¢| is transformed to a quadric in Wa,
a contradiction. If W3 is (sil11), then

(Ha)?(Ho + H,)H, = 2.

Hence a surface which is the intersection of general members of |(H, +
H,)|#| and |H,|¢| is transformed to a quadric in Wa, a contradiction.

Assume that deg W32 = 6. Then we prove that Ly, is decomposable.
In this case, V of Fujita’s notation is contained in a P! x P2-bundle
over P! such that the pull-back of Ly, is the restriction of an ample
decomposable tautological divisor of V. Hence Ly, is decomposable.
This implies that W is decomposable, a contradiction.

Consequently we see that degWa < 4. Moreover if degWa = 4,
then W3 is smooth and in particular, we have p(W3) = 2.

We study the case that p(W1) = 2. Assume that W} has a crepant
divisor 7. Then 7(7") cannot be a point. Indeed, otherwise the curve
E N T(# 0) is K-negative and K-trivial at the same time, a contra-
diction. Hence 7(T) is a curve. We can write T' = z(—Ky,) ) —uk. By
(—Kw1)?T = 0 and (—Ky1)°E = 4, we have u = 2zdegW3. Since
W3 is a del Pezzo 3-fold, we have 2z € Z. Let n be a general fiber of
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T. Then by T'-n = —2, we have u(E - n) = 2. Thus we can easily
derive the following solutions:

(a) degWi=1,F-n=1and z = 1.

(b) degWA=1,E-n=2and z =1/2.

(c) degWi=2E-n=1and z=1/2.

Hence if deg Wa = 4, then W} — Wj is a small resolution and in
particular Wy is terminal.

Step 6. We complete the proof.

By Steps 4 and 5, if deg Wa = 5, then W, is smooth. Assume that
degWa = 4. Since p(W}) = 2, the method of [Take89] applies. We
can easily show that after the flop Wi --» W™, the cases (3) and (4)
interchange.

We may assume that W3 satisfies (4) of Step 2. Assume that there
exists a plane P on Wa which is not the image of E. Let P’ be the
strict transform of P on W3 of Step 5. Then P’ is contained in a 3-
plane, a contradiction to Pic W3 = Z[ng ]. Hence the uniqueness of
the plane on W, follows.

Assume that gy a is crepant. Considering the total transform on W
of a hyperplane section containing Fi, we see by 2.14 (c¢) and Propo-
sition 4.7 that E} is the image of a p a-exceptional divisor, or the
strict transform of A (only if A is a plane). Thus by Proposition 4.4
(1), vwa(Ew,a) is a hyperplane section containing Fj. O

Remark. In this paper, we do not need the case that deg Wa < 3 and
so we did not study these case in detail.

4.3. Relation between Cx and singularities of X.
We gather the results which hold when W, is a del Pezzo 3-fold and
Ca is irreducible.

Proposition 4.9. Let P be a plane on W and the assumption as in
Proposition 4.4 (3) for A = P. Assume that degWp < 5 and Cp is
wrreducible. Then P is unique and is a good plane.

Assume moreover that vy p(Ew.p) is irreducible (this holds for ex-
ample if Wp is factorial by Proposition 4.4 (1)). Then Sing X consists
of one 1/2 (1,1, 1)-singularity.

Proof.
Step 1. We prove the uniqueness of P.

If there were a plane P’ # P such that P N P’ # (), then it would
be contracted to a line on Wp. This contradicts irreducibility of Cp.
Assume that there is a plane P’ # P such that P N P’ = (). Then it
is mapped to a plane P” on Wp. Since vy p(Ew.p) is a hyperplane
section by Proposition 4.4 (1), P” intersects vy p(Ew,p) along a line
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m. So there is a vy p-exceptional divisor over m. By Proposition 4.4
(3-1), m # C'y. But this contradicts irreducibility of Cp. So P is a
unique plane.

Step 2. We prove that P is good.

By irreducibility of Cp, no pw p-exceptional divisor is vy, p-exceptional
and the strict transform of P is not contracted to a curve by vy p.

Case 1. vy p(Lw p) is reducible.

By Proposition 4.8, deg Wp = 3,4. Assume that deg Wp = 4. Then
by Proposition 4.8 (2-2), we have vy p(Ew,p) = E1 + Es, where Ej is
a plane, and Es is a cubic surface such that (Fy) is a 4-plane. Assume
that degWp = 3. Then since Cp is a twisted cubic curve and hence
it is not a plane curve, we have vy p(Ew.p) = E; + Eo, where E; is a
plane, and Ej is a quadric surface.

We prove that £} on Wp is not a pyy, p-exceptional divisor. Take a
general line n in ;. Then

(4.1) pypLlw -m =2

since Cp ¢ Ey. So pw,p(E1) is not a point. If pw, p(£]) is a line, then
a pw,p-fiber § in E] is the strict transform of a line on E;. Thus 6 Nn
is one point and hence by (4.1), the image of £} on W is a conic, a
contradiction. So F/ is not a pw, p-exceptional divisor whence it is the
strict transform of P.

Consequently we see that Eyw p is reduced and has 2 components,
which implies that P is a good plane by Proposition 3.7.

Case 2. vy, p(Ew,p) is irreducible.

It suffices to prove that Eyy p is irreducible since this implies that W
has only isolated singularities along P and by Proposition 3.7, P is a
good plane corresponding to a 1/2 (1, 1, 1)-singularity.

Assume the contrary. Then the strict transform P’ of P is con-
tracted to a point v by vy, p. Thus vy p(Ewp) is a cone since the
images of puw p-fibers are lines on Wp and they pass through v. Be-
sides vy, p(Ew p) is a non-normal del Pezzo surface.

Let £ be the irreducible component of Ey, p different from P’. We
show that E/ — [ is a P!-bundle and in particular £’ is smooth. Let
D € |vwp*Lw,| be a general member. Since |vy p*Ly, | is free, D|g
is irreducible and reduced (as a scheme). Moreover since

(42) VW,P*LWA . f =1

for a general fiber f of pw p|g, D|g — [ is birational and hence D|g ~
P!. This implies that no fiber of yy p|g is contained in Sing £’. By
(4.2) for a general fiber f of pw p|e, we have f ~ P! and hence there
is no horizontal singular locus over [. Thus we know that £’ is regular
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in codimension 1. Let 7 : E/ — E’ be the normalization. Since E' — [
is flat and its general fiber r is P* such that ((twpom)* L, |m) -7 =1,
we see that £/ — [ is a P-bundle by a standard argument. Since E’ is
regular in codimension 1, any fiber f’ of pw p|g is generically reduced
and vy p* Ly, - f' = 1. So by flatness of E' — [, f' ~ P! ie, E' — 1
is a P-bundle.

Since Cp is irreducible, vy p is isomorphic over the generic point
of a ruling of vy p(Ew p). This means that vy p(Lw p) is normal, a
contradiction. O

Proposition 4.10. Let P be a plane and assume that there is at least
one singular line on P. Moreover assume that

(1) for any singular line I on P, the assumptions as in Proposition 4.4
(3) hold for A =1,

(2) W, is factorial, and

(3) Cy is irreducible.

Then Sing X consists of one 1/3 (1, —1,1)-singularity and P is a good

plane corresponding to this singularity.

Proof. By irreducibility of C; and Proposition 4.7, P is the unique plane
on W and any irreducible component of Eyw; is not vy -exceptional.
On the other hand, vy, (Ew,) is a hyperplane section of W; by Propo-
sition 4.4 (1), which is irreducible and reduced by factoriality of W.
Thus Ey, is irreducible and reduced, which implies that W, has a cA;-
singularity generically along [. Hence by Proposition 3.8, P is a good
plane corresponding to a 1/3 (1, —1, 1)-singularity. O

5. g(X) =38
The main results in this section are Theorems 5.2 and 5.5.

5.1. Preliminaries.
By [Gus83] and [Muk95b, Theorem 6.5,

W~ G(2,6) NP,

From here on in this section, U; and U7 mean i-dimensional vector
subspaces of C® and U, means the 2-dimensional vector subspace of C°
corresponding to x € G(2,6).

By the cellular decomposition of G(2,6), we know that there are the
following two types of a plane P on G(2,6):

(A) P =045(Uy,Uy) (we call such a plane a o4 2-plane).
(B) P =053(Us) (we call such a plane a o3 3-plane).

Similarly a line is of the form o4 3(Uy, Us).
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5.2. Case W has a 03 3-plane.
In this subsection, we assume there exists a o3 3-plane P = 033(Us)
on W.

Lemma 5.1. There is no line | in W such that 1 ¢ P and IN P # (.

Proof. Assume that there is a line [ in W such that [ ¢ P and INP # ().
We can write | = 043(Uy, Uj) for some Uy and Uj. By the assumption
on [, we have Uy C Uz and dimUsNU; = 2. Let P’ = 045(Uy, Us+Uy).
Then [ C P and PN P’ is a line. Thus P’ is contained in (P, [) whence
P’ is contained in W, a contradiction to 2.14 (b). O

Theorem 5.2. W has only isolated singularities. Hence P is a good
plane and corresponds to a 1/2 (1,1, 1)-singularity of X by Proposition
3.7. Moreover X is No. 4.8 in the tables of [Taka02a|. In particular P
18 the unique plane on W.

Proof.
Step 1. We consider the projection G(2,6) = G(2,6)yw3)-
This coincides with the rational map

G(2,6) --» G(2,3) ~ P?

defined by

[C?] + [Im (C* — C°/Us)].
By this description, for z,y € G(2,6), x and y is in the same fiber of
the projection if and only if U, + Us = U, + Us. Hence a fiber of the
projection is isomorphic to G(2,5).

Step 2. Let I' be a fiber of G(2,6) --» G(2,6)q,1,) and v = T'|y.
Then we see that v is a subscheme supported on P, or the union of an
irreducible conic and a subscheme supported on P.

Indeed, since W is not contained in G(2,5) and P C I', we know that
v is 2-dimensional. Assume by contradiction that v has a 2-dimensional
component 7' # P. Then by deg G(2,5) = 5, 2.14 (¢) and Lemma 5.1,
7/ is a plane disjoint from P. So vy = G(2,5) NP and hence 7 is a linear
complete intersection in G(2,5). In particular «y is purely 2-dimensional
and connected. This is impossible. Thus the 2-dimensional part of
is supported on P.

Since v is 2-dimensional and is a linear section of G(2,5), there is
a 2-dimensional linear complete intersection I of G(2,5) containing
v. Let T = dP + Q be the decomposition as a 2-cycle, where @) does
not contain P as a component. Since degl” = 5, we have deg @ < 4.
Assume that deg @ = 4. Let ¢ : P — I" be the natural inclusion. Then
Kp = Op,(—3) and *K = Op2(—1), we have that P N @ is a conic
and hence Q| is the union of PNQ and a curve ¢ such that degq < 2.
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Thus by the connectedness of v and Lemma 5.1, ¢ is an irreducible
conic intersecting P. Assume that deg @ < 3. Then since PN Q is a
curve, we obtain the same conclusion as above.

Step 3. Let S := 05(Us)|w. We see that Sieq = P and S is generi-
cally non-reduced.

Indeed, for x € o3(Us) N W, there exists y € 033(Us) such that
dimU, NU, = 1. Then we have (z,y) C G(2,6) whence (z,y) C W.
So by Lemma 5.1, we have (z,y) C P, i.e., S;ea C P. The inclusion in
the other direction is clear.

Take U," (i = 1,2,3) such that

Ulnulnu? =1Us
U4l _|_ U42 + U43 _ (CG.

Then we have
O'Q(Ug) = 01(U41) N 01(U42) N O'1(U43).

Since o, (Uy") is singular along G(2, U,"), S is generically non-reduced.

Step 4. Let m : Wg — Wy be the normalization. Let Wy =
pw,s © T, Uy g = s o T and By, ¢ i= 7" Fy,s. Note that v in Step 2
is a fiber of W --» Ws. So by Steps 1 and 2, we see that Wy ~ P? and
a general fiber of vy, ¢ is the strict transform of an irreducible conic
intersecting P. Moreover since vy, ¢ is generically a Pl-bundle over
a smooth surface, the degree of a 1-dimensional fiber with respect to
— Ky, is two.

Step 5. We show that neither a jy, s-exceptional divisor nor the
strict transform P’ of P on W is vy s-exceptional. Moreover we prove
that py, 5 is crepant.

Case 1. Assume that a jiy;, g-exceptional divisor E' is vy, g-exceptional,
or P’ is contracted to a curve on Wj.

Note that if the former case occurs, then vy, 5(£') is a curve since
a fyy s-exceptional curve is not vy, s-exceptional. Let 0 := vy, o(£') if
the former case occurs (resp. 0 := vy, g(P’) if the latter case occurs).
Then since

V{/V,S*(S ~ deg 5(%{/,5*LW - Eﬂv,s),

we know by considering puy, ¢ (V5 0) that vy, ¢°0 contains a compo-
nent A which is neither P’ nor a puyy, ¢-exceptional divisor. By Step
2, yy5(A) is not a point. Hence a general fiber [ of V‘//V’S|V(/V,s_1(5) is
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reducible. Since pyy, "Ly -1 = 2 and py, ¢ Ly is vy, g-ample, an irre-
ducible component of uy, 5(1) is a line intersecting P. This contradicts
Lemma 5.1.
Since
K, 1 = s Ly T =2

for a general vy, o-fiber ', any py, S—eiceptional divisor is crepant by the
conclusion of Case 1. In particular, W has only canonical singularities
and any /‘{/V, g-exceptional divisor is mapped to a line or a point on W.

Case 2. Assume that vy, (F') is a point.
Then by

(5.1) (Hw.s Lw — Eiys) -1 =0

for a 1-dimensional vy, ¢-fiber [, there is a pyy, ¢-exceptional divisor.
Hence by Step 3, we can write Ly, g = dP' + F', where d > 2 and F' is
a non-zero fiy, s-exceptional divisor. Thus by (5.1) and the assumption
of Case 2, we have I -1 = 2 for a l-dimensional vy, ¢-fiber [. This
implies that if /' contains at least two components, then there is a
conic intersecting P at two points, a contradiction to that W is the
intersection of quadrics. Hence F' = 2F’, where F' is irreducible. In
particular, vy, g[r is birational. Let ¢ be a general line on Ws. We
may assume that vy | is an isomorphism over ¢. Let ¢’ be the strict
transform of ¢ on F’. Then

(5.2) (Hw,s Lw — Eyys) - ¢’ =1.
Note that by [Kol96, IT, Theorem 2.8], W is smooth outside P’.
Subcase 2.1. Assume that uy, 5(F") is a line.

Since a fiber m of iy, ¢| is mapped isomorphically onto vy, ¢(m),
we see that deg vy, ¢(m) = 1,2. Thus we have

/L{/V,S*LW ('=1,2
respectively. Then by —Kp - (' = 3, we have F' -’ = —2,—1. On the
other hand, by (5.2), we have F’ - (' = 0,1/2, a contradiction.

Subcase 2.2. Assume that uy; g(F”) is a point.

Then by —Kpg - (" = 3, we have F’ - (' = —3. Hence by (5.2), we
have piyy, ¢" Ly - (' = =5, a contradiction.

Step 6. We complete the proof.

By Step 5 and (5.1), vy p is equi-dimensional and Ey, g = 2P". In
particular this implies that uy; ¢ is small by Step 5. Since Ejy, g is 1y -
ample and P’ -1 = 1 for a vy, p-fiber [, Wy is a P-bundle over W.
Since W is smooth and 4y, ¢ is small, W has no singular line whence

X has only 1/2 (1,1, 1)-singularities. It is easy to see that 7 : Wp— S
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is f':Y" — X' in [Taka02a]. Hence X is No. 4.8 and we finished the
proof.
U

5.3. Case W has a o49-plane.

Assume that W has a o49-plane P := 049(U;,Uy). Then by the re-
sults of the previous subsection, W has no o3 3-plane. We study the
projection W --» Wp in detail.

Proposition 5.3. (1) The projection W --» Wp is the restriction of
the projection G(2,6) --» G(2,6),,w,)-
(2) G(2 6)04(U1) = G<27 5)

Proof. (1) Note that
oy (Uy) = {[CH|U; C C?*} ~ P~

So 04(Uy) N (W) is a linear subspace containing P = 045(Uy, Uy).
Hence o4(Uy) N (W) = P. This proves the assertion.

(2) Let z,y € G(2,6)\04(Uy). The images of z and y by the projection
coincide if and only if (04(Us),2) = (04(U1),y). Moreover this is
equivalent to that there exists z € o04(U;) such that y € (z,z2).
Assume that such a z exists. Then (z,z) C G(2,6) since G(2,6)
is an intersection of quadrics and (z, z) N G(2,6) contains at least
three points z,y, z. Hence dimU, N U, = 1. Let u; be a basis of
U, NU, and uy (resp. uy') a basis of Uy (a vector € U, such that
uy, uy’ form a basis of U,). Note that uj,us form a basis of U,.
Then y € (x, z) means that for some a,b € C, uy, aus + buy’ form a
basis of U,. Since y & 04(U3), b # 0. Thus U, = U,(mod Uy). By
reversing this argument, we can see that there exists z € o4(U;)
such that y € (z, z) if and only if U, = U,(mod U;). Hence

G(2,6) == G(2,6)q,01)
is nothing but the rational map defined by
[C?] = [Im (C* — C°/U)]
whence G(2,6)5,0,) ~ G(2,5).

Since o4(Uy) N (W) = P, we have (W)p ~ PS.

Proposition 5.4. (1) Wp = G(2,5) N {(W)p.
(2) Wp is smooth, i.e., Wp is a smooth quintic del Pezzo 3-fold.

Proof. (1) Let = be a point of G(2,6) \ 04(U1). By the proof of Propo-
sition 5.3 (2), the fiber of

G(2,6) --» G(2, 6)04((]1)
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containing x is
{[C}|IC* c U, @ U, } ~ P2,

Note that a fiber of the projection P --» P? from o4(U;) (resp.
(W) —=» (W)p) is a P® (resp. P?). Hence in a fiber of P* --» PY,
the fibers of W --» Wp and (W) --» (W)p intersect. Hence we
have Wp = G(2,5) N (W)p.
(2) This follows from (1) and Proposition 4.8.
U

Theorem 5.5. Let Cp be as in Definition 4.3. Then degCp = 7 and
one of the following occurs:

(1) Cp is irreducible. In this case, Sing X consists of one 1/2(1,1,1)-
singularity. Moreover X is No. 1.13 in the tables of [Taka02a].

(2) Cp = Cp+m, where m is a line. p,(Cp) = 0. In this case, Sing X
consists of two 1/2 (1,1, 1)-singularities. Moreover X is No. 1.14
in the tables of [Taka02al.

Proof. Since W has only local complete intersection singularities, we
can apply Propositions 4.4 and 4.6 by Lemma 4.1 and Proposition 5.4
(2). Then we have Cp = C'p, or deg C'» = 6 and p,(Cp) = 0.

Case 1. Cp is irreducible.

Since Wp is smooth and deg Wp = 5, we can apply Proposition 4.9
and then we obtain (1).

Case 2. Cp = C, + m, where m is a line.

Let

Vivp W/, — Wp
be the blow-up along C'p. Since Cp is the union of two smooth curves,
it has only planar singularities. So W} has only Gorenstein termi-
nal singularities. We can prove that vy, p(P’) is not a point, where
P’ is the strict transform of P on Wp. Indeed, if vy p(P') were a

point, then vy, p(Ew,p) would be a cone and the embedded dimension
of vw p(Ew.p) at the vertex is 5, a contradiction since Wp is smooth.

So vy, p is equi-dimensional and hence Wp and W}, are isomorphic in
codimension 1. On the other hand, — Ky, and —Ky, are relatively
P

ample over Wp. So Wp and W}, are actually isomorphic by the nega-
tivity lemma.

By Proposition 5.4 (2), any two planes intersect mutually. Hence W
has at most two planes since planes different from P are contracted to
lines on Wp, and Cp contains only one line.

Subcase 2.1. W contains two planes.
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In this case, any component of Ey, p is not vy, p-exceptional. Thus
Eyw, p is irreducible since so is vy, p(Ew,p). This implies that P is a
good plane corresponding to a 1/2(1, 1, 1)-singularity. So we obtain
the assertion in this case.

Subcase 2.2. W contains one plane.

We deny this case. By Proposition 4.4 (3-3), m is the image of an
irreducible component of Ey,p. Recall that P’ is not contracted to a
point by vy, p. Hence Ey p = P’ + E', where P’ is the strict transform
of P and E’ is the other irreducible component, which dominates a sin-
gular line [ on W. Similarly to the last part of the proof of Proposition
4.9, we can prove that E' is a P-bundle over .

Assume that vy p(P") = m. Then vy p(E') is a non-normal del
Pezzo surface since it is covered by lines. Since Wp is smooth, vy, p(E")
is not a cone. So B/ — vy, p(E') is finite and birational. Moreover since
E' is smooth, £’ — vy, p(E’) is the normalization. Let D be the non-
normal locus of vy p(£') and D’ the pull back of D on E'. By [Fuj85]
or [Reid94|, D' — D has degree 2. This means that a general fiber f
of P — m intersects £’ at two points. Then, however, uy p(f) is a
line intersecting [ at two points, a contradiction.

Assume that vy, p(E') = m. Let ¢ be a general fiber of E' — m.
Since Cp is reduced, we have E' -6 = —1. So by Proposition 4.4 (1),
we have P’ - ¢ = 2 whence vy, p(P’) is non-normal. On the other hand,
we can prove that vy, p(P’) is covered by irreducible conics as below.
Thus by [Fuj85] or [Reid94], vy, p(P’) must be normal. This is the final
contradiction. L

Since Wp is smooth and Cp has only planar singularities, Wp has
only isolated singularities (recall that vy p is the blow-up along Cp).

Let v C Wp be the strict transform of a general line on P. We may
assume that v C RegWp and P’ — P is isomorphic near 7 (hence in
particular v C Reg P’). By —Kp/ -y = 3 and —Kyp, -7 =1, we have
P’ -~y = —2. Moreover by £'-~v =1, we have Ewp-v = —1. So by
VVV,P*LWP = MVV,P*LW - Emp, we have VW,P*LWP Y = 2, i.e., I/W’P("}/)
is a conic. So vy p(P') is covered by irreducible conics. O

5.4. Summary of the results in the case g(X) = 8.

Assume that g(X) = 8. Then X has only 1/2(1, 1, 1)-singularities and
any plane on W is good. Hence X is No. 1.13, 1.14 or 4.8 . More
precisely, X is No. 1.13 or 1.14 (resp. No. 4.8) if and only if any plane
on W is a o4 o-plane (resp. a o3 s-plane).

6. g(X)=7

The main result in this section is Theorem 6.10.
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6.1. Preliminaries.
By [Muk95b, Theorem 6.5],

W ~ OG(5,10) N P,

where OG(5,10) is the orthogonal Grassmannian embedded in P by
the spinor embedding.
Recall the following:

Proposition 6.1. OG(5,10) is defined in P by the following 10 qua-
dratic forms:

Ni = @pTosas — Ta3Tas + T2aT35 — T25834

N_j : = 21921345 — T13T1245 + T14T1235 — T15T1234
Ny : = 2gT1345 — T13%45 + T14T35 — T15T34

N_g 1 = T19%9345 — T23T1245 + T24T1235 — T25T1234
N3 1 = 2gx1245 — T12Ta5 + T14T25 — T15T24

N_3 : = T13T9345 — T23T1345 + T34T1235 — T35T1234
N4 1= XTpT1235 — T12%35 + T13T25 — T15T23

N_y 1 = 214T9345 — T24T1345 + T34T1245 — Ta5T1234
Ny : = TpX1934 — T12T34 + T13To4 — T14T03

N_5 1 = 215%9345 — To5T1345 + T35T1245 — T45T1235

Proof. See [Muk95a, Proposition 1.9 O

Proposition 6.2. Let x be any point of OG(5,10). Then
T,0G(5,10) N OG(5, 10)

is the cone over G(2,5) with the vertex x, where T,OG(5,10) is the

projectivized tangent cone of OG(5,10) at z.

Proof. Since OG(5,10) is homogeneous, we may assume that z is the
xg-point regarding the coordinate as in Proposition 6.1. Then

TxOG(57 10) = {1’1234 = T1235 = T1245 = T1345 = L2345 — 0}-

Hence T,,0G(5, 10)NOG(5, 10) is defined by 5 x 5 Pfaffians with entries
x;; with 1 <17 < j < 5. So we have the assertion. O

Proposition 6.3. Let (x € [ C P) be a triplet consisting of a point,
a line and a plane in OG(5,10). Then up to the projective equivalence
in P, this is unique.

Proof. By Proposition 6.2, [ (resp. P) corresponds to a point I’ (resp.
a line P') in G(2,5). So it suffices to prove the uniqueness of a pair
(I" € P'). This can be easily verified by noting that a line in G(2,5) is
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of the form o39(Uy, Us), where U; is an i-dimensional vector sub-space
of C°. O

Proposition 6.4. Assume that W is a 3-dimensional linear complete
intersection of a Grassmannian G and has only canonical singularities.
Then there is a 5-dimensional (resp. 4-dimensional) linear complete
intersection A (resp. B) of G such that A is smooth (resp. B has only
isolated singularities and is smooth outside singular curves of W and
a finite number of points w € W where emb-dim,,W = 5).

Proof. Let H be a d-dimensional linear complete intersection of G' con-
taining W. Then

=dmH —-—dmW —1=d— 4.

On the other hand, we can prove that members € | Ly ® Hy/ x| singular
at a point of Sing W form at most one dimensional family. Indeed, since
W is a complete intersection in GG and has only canonical singularities,
the embedded dimension of W at any singular point (resp. any singular
point except a finite number of points) < 5 (resp. = 4) by [Lau77,
Theorem 3.13]. So by a simple dimension count, we can prove the
assertion.

Hence by induction, we can take a desired A. As for B, just note
that we can take a 4-dimensional linear complete intersection which is
smooth at the generic points on singular curves by the estimates of the
embedded dimensions of W at singular points. O

6.2. Projection of W from a plane.

Proposition 6.5. Let P be a plane on W. Then
(1) Wp is a (2,2)-complete intersection in P5.
(2) Cp is irreducible.

(3) P is unique and is a good plane.

Proof. As in Proposition 6.3, we may assume that P is the (zg, 212, 213)-
plane. Project OG(5,10) from H := the (zy, x12, T13, To3)-plane. Then
OG(5,10)g is {N_s = N_5 = 0} in P!, Since W is a linear section of
OG(5, 10), we have that P = H N W. Hence Wp is a (2,2)-complete
intersection in P°.

Since W has only local complete intersection singularities, we can
apply Propositions 4.4 and 4.6 by (1) and Lemma 4.1. Then we have
(2). Hence by Proposition 4.9, we have (3). O

From here on, we denote the unique plane on W by P.
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6.3. Projection of W from a singular line.

Proposition 6.6. Assume that Wp is factorial. Then Sing X consists
of one 1/2 (1, 1, 1)-singularity.

Proof. This directly follows from Propositions 4.9 and 6.5. O

From now on, we may assume that Wp is not factorial. Then by
Proposition 4.8 (2-2), vy p(Ew,p) is a reducible hyperplane section on
Wp. So there is a unique singular line [ on P. We study the projection
W --» W,.

Proposition 6.7. (1) W, is a smooth quintic del Pezzo 3-fold.
(2) pa(Cp) = 1.

Proof. (1) We use the notation as in Proposition 4.8 (2-2). In the
proof of Proposition 4.9, we saw that F is the strict transform of
P. Let E; be as in that proof. Clearly F, is the image of the pyy, p-
exceptional divisor contracted to [. Let o be the image of P on W}.
Then W --» Wp is the composite of W --» W and W, --» (W}),.
Hence E; is the image of the strict transform of Ey, ,. The linear
system I' consisting of images of members € |Ly,| is

|LWP + E1| - |2LWP - E2|

Recall that we can choose the factorization Wp of Wp such that
the stricﬁ\transform of /1 can be contracted to a Snlgoth point. Let
Wp — Wp be the contraction morphism. Then Wp is a smooth
quintic del Pezzo 3-folds and this is en/ﬂ\oedded in P by the strict
transforms of members of I'. So W; = Wp.
(2) Tf By ~ F3, then clearly p,(Cp) = 1. Assume that F, ~ F;. Since
a pw p-fiber is mapped to a line, it is a ruling of Ey. Since vy p
is the blow-up along Cp at the generic point of Cp, a ruling of F,
intersects Cp at two points. Hence p,(Cp) = 1.
O

Lemma 6.8. There is a smooth 4-dimensional linear complete inter-
section B of OG(5, 10) containing W.

Proof. Since P is a good plane and P is unique, W has only ¢DV
singularities. Hence by Proposition 6.4, there is a 5-dimensional (resp.
4-dimensional) linear complete intersection A (resp. B) of OG(5,10)
such that A is smooth (resp. B has only isolated singularities and is
smooth outside ). Assume that Epg, is reducible. Then Ep; contains
a fiber F' of P3-bundle E4; — . Since Ep; is a Cartier divisor on Bl,

so is Fg; N I/Vl on I/Vl Hence IF'N VV, # () is a divisor on I/Vl Then,
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however, vy, (F N /I/IZ) is a surface in P3, a contradiction to the fact
that PicW, = Z[Lw,]. Thus Ep, is irreducible and hence Ep; is a
P2-bundle. This implies that El is smooth along Ep; and so is B along
[,i.e., B is smooth. O

Proposition 6.9. Let C; and C] be as in Definition 4.3. Then deg C; =
8. Moreover one of the following holds:

(1) Cj is irreducible.

(2) C; = C]+m, where m is a line. deg(C}) =7 and p,(C]) = 1.
Moreover g is the unique singularity of C] and mult ,C] = degC] — 5,
where o is the image of P on Wj.

Proof. Since W has only hypersurface singularities by Lemma 6.8, we
can apply Propositions 4.4 and 4.6 by Lemma 4.1 and Proposition 6.7
(1). Let d := deg C] and p := p,(C}). If p=d —5 and (] is reducible,
then d > 9 by Proposition 4.6, a contradiction. Hence we have the
following possibilities:

(i) d =6 and p = 0.

(ii) d="7and p=0, 1.
(iii) d=8 and 0 < p < 3.

If d =6 and p = 0, then by the Riemann-Roch theorem,

h(Oci(2Lw,)) = 2d +1 —p = 13.
Hence by the proof of Proposition 4.6, we obtain
W (=Kx) > h'(=Kw, ® Ioyw,) = h'(=Kw,) — 13 = 10,

a contradiction. Since Cp is the transform of C] and degCp = 5, the
case that d =7 and p= 0, or d = 8 and p = 0, 1 is excluded. Moreover
we see that g is a singular point of €] and mult ,C] = d—5. Since Cp is
smooth, g is the unique singularity of C}. So we have the assertion. [

By the following theorem, we know the possibilities of the generic
type of singularity of W along [ and hence those of Sing X.

Theorem 6.10. Let B be as in Proposition 6.4.
(1) Let v be a line on B. Then

Ny g = Opi(—2) ® Op1(1)%2, Opi(—1) ® Op1 & Opr(1), or Opy.

(2) Let | be a singular line on W. Then any irreducible component
E of Ew,; dominates | and a general fiber of pw,|g is irreducible.
Moreover one of the following holds:

(a) Ew, isirreducible. In this case, W has a cA;y-singularity gener-
ically along 1.  Hence Sing X consists of one 1/3(1,—1,1)-
singularity.
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(b) Ew, is reducible and the following hold:

(b-1) Ew, has an irreducible component E' which is vy, -exceptional

(clearly pw, (E") =1).
(6—2) J%/B ~ ﬁ]pl(—Q) Q5] ﬁ]}»l(l)@z.
(b-3) Ew, = E'+ E", where E" is irreducible and E' # E".
(b-4) vw,(E") is a non-normal del Pezzo surface and vy, (E')
coincides with Sing vy, (E").
(b-5) E" — vwy(E") is finite. Moreover W has a cAs-singularity
generically along l. Hence Sing X consists of
one 1/4 (1, —1,1)-singularity.

Proof. (1) Note that there is a 2-dimensional complete intersection S of

(2)

OG(5, 10) containing v and contained in B. Since .A4/g ~ Op1(—2),
the assertion follows from standard computations by using the nor-
mal bundle sequences.

If Ew,; has an irreducible component D mapped to a point on [,
then D ~ P? since B is smooth. Then, however, vy, (D) is a plane
on W, a contradiction to Proposition 6.7. Hence Eyy; has at most
two components since W has a ¢DV singularity generically along
. So if Eyw, is non-reduced, then Ey,; = 2E’ for some E’. Thus
vw,(Ew,) is also non-reduced since vy, (Ew,) # 0 by Proposition
4.4 (1). This contradicts Proposition 6.7. So Ey, is reduced and
this implies that W has a cA-singularity generically along (.

Let E be an irreducible component of Ey,;. Recall that exch is a
simple normal crossing divisor by Claim 3.2 and hence the restric-
tion of h to the strict transform of £ on Z has an irreducible general
fiber. Since pyy; factors through Z or its birational transform by a
composite of flops, this is also the case for E.

Assume that Fyy, is irreducible. Then the assertion follows from
irreducibility of a general fiber of pw,| g, -

Assume that Eyy, is reducible. Then by Proposition 4.4 (1) and
Proposition 6.7, one of irreducible components of Ey;; (we denote
this by E') is vy, -exceptional.

Let H := _EB’Z|EBJ and F'is a fiber of Fp; — [. Then we have

(upy L — Epi)|ps, = H + F.

By the assumption, the exceptional locus of the morphism defined
by |H + F| contains a two dimensional subset. So

N == Opr(—2) @ Op: (1)%?
and E’ is the unique member of |H — 2F|. Since

W, e lpw, L —2ER,|,
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we have By, € |2H + F|. Hence Ey,; = E' + E”, where E" is an
irreducible member of |H + 3F|. Let Cy be the minimal section of
E” and r a ruling. Since

(H+ FY?(H +3F) =5

and |H + F| is free, we have

(i) B ~F, and (H + F)|gw ~ Cy + 3r,

(ll) L' ~ Fg and (H + F)|E” ~ CO + 4’[", or
(lll) B ~ F5 and (H -+ F)|E// ~ CO + 57.
But the last case does not occur since otherwise vy p(E”) is a
cone over a quintic curve, which cannot lie on a smooth 3-fold. In
particular, (H + F)|g» is ample, and so E” — vy, (£") is finite.
Let 0 := E' N E”, which is a generically section of EFp; — [. By

(%) gr = (H — 2F)*(H + 3F) = —1,

we have 6 = Cy if £ ~TF; (resp. 6 = Cy + 1’ for some ruling ' if
E" ~F3). This implies that the image of £’ is Sing vy, (Ew,).

Finally we prove that W has a cAs-singularity generically along
[. By irreducibility of general fibers of py,| g and pw;|gr, we have
only to prove that there is no singular curve of % dominating .
This condition is equivalent to that the irreducible component " of
0 dominating [ is not a singular curve of W;. Since E” — vy, (E")
is finite, vy, (I') is a curve. On the other hand, by Proposition 6.9,

C; is reduced so I’ cannot be a singular curve of W.
O

6.4. Summary of the results in the case g(X) =7.

W has a unique plane P and P is a good plane. In particular Sing X
consists of one 1/r (1, —1, 1)-singularity for some r.

(1) Assume that Wp is factorial. Then r = 2.

(2) Assume that Wp is not factorial. Then W has a singular line [ and

one of the following holds:

(2-1) () is irreducible. In this case, W has a cA;-singularity gener-
ically along [. Hence r = 3.

(2-2) C} is reducible and deg C] = 7. In this case, W has a cAs-
singularity generically along [. Hence r = 4.

7. 9(X)=6

In this section, we prove Theorem 1.5 in case g(X) = 6. See the

subsection 7.6 for more precise statements.

In the subsection 7.1, we prove that W is a quadric section of V/,

where V' is a smooth quintic del Pezzo 4-fold or the cone over a smooth
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quintic del Pezzo 3-fold (Propositions 7.1). Unlike the other cases, W
is not a linear section of the key variety and there are two possibilities
of the key variety. These fact make the situation more complicated
than the other cases.

In the subsection 7.2, we study the projection of both W and V from
a singular line [ on W (if W has no singular line, then we see that X has
only 1/2 (1,1, 1)-singularities. So we may assume that W has at least
one singular line). In the subsections 7.1 and 7.2, we see that there are
essentially three cases (we denote by P the plane on W containing [):

(a) V is smooth and Wp is a cubic in P*.
(b) V is smooth and Wp ~ Q3.
(¢) V is the cone.

We would like to mention here that it is interesting that the difference
of two possibilities of V' can be explained by the property of W, (see
Proposition 7.6). In Proposition 7.7, we study the relation between
the singularity of W along [ and the geometry of W; if V' is smooth.
There is a similar statement in case g(X) = 7 (Theorem 6.10) but the
existence of the singularity of W; produces a new phenomena (see (b-
5-2) in this proposition). We study this situation in Proposition 7.11
if [ is contained in the plane P C W such that Wp ~ Q3.

In the subsection 7.3, we prove that the case (¢) does not occur.
The proof is very long. First of all we determine the configuration of
singular lines and the possibilities of Sing W along them. Then we deny
them by using the techniques in the section 3.

In the subsection 7.4, we prove the main result for the case (a). This
case can be treated like the other cases for g(X) = 7,8 since both
Wp and W, are del Pezzo 3-folds and we can use the technique in the
section 4 for them.

Lastly we treat the case (b) in the subsection 7.5 after long but
elementary calculations in Proposition 7.11. In this case, the study of
W --» Wp is harder than the case that Wp is a del Pezzo 3-fold. One
reason for this is the following: it is easy to see that even if we define
Fwp and Cp for this case as in Definition 4.3, pw p(Fw,p) is not a
hyperplane section of W. Hence we cannot restrict the possibilities of
Cp as in the proof of Proposition 4.4 (3).

7.1. Preliminaries.

Proposition 7.1. W is a quadric section of one of the following:

(1) a smooth quintic del Pezzo 4-fold V.
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(2) a cone V' over a smooth quintic del Pezzo 3-fold V'. In this case,
W contains the vertex v of V' and any two planes intersect only at
v. Moreover W, ~ V',

Proof. By [Gus82] and [Muk95b, Theorem 6.5], W is a quadric section
of a quintic del Pezzo 4-fold V. By [Fuj85, (2.9) Theorem|, V is one of
the following:

(i) V is smooth.
(ii) V is a cone over a quintic del Pezzo n-fold V' with the (3 — n)-
dimensional vertex, where n = 1, 2.
(iii) V is a cone over a singular quintic del Pezzo 3-fold V'’ which is
not a cone.
(iv) V is singular but is not a cone.
(v) V is a cone over a smooth quintic del Pezzo 3-fold V.

Assume that V satisfies (ii) or (iii). Then V, ~ V’. Since W is not a
cone, W --» W, is generically finite. Hence W, ~ V' and by Proposi-
tion 4.8, V’ is smooth. If V satisfies (iv), then we can prove that |Ly/| is
decomposable similarly to Step 5 in the proof of Proposition 4.8. This
implies that |Ly/| is also decomposable, a contradiction.

Assume that V satisfies (v). If a plane P on W does not pass the
vertex v of V| then V' contains a 3-plane (P,v) whence a general hy-
perplane section V’ of V' which does not pass v contains a plane, a
contradiction (V' is a smooth quintic del Pezzo 3-fold). Hence any
plane on W passes v so in particular, v € W. Moreover by 2.14 (b),
any two planes intersect only at v.

U

7.2. Projection of W from a singular line.
Let [ be a singular line and V' as in Proposition 7.1. In this subsection,
we study the projections V --» V; and W --» W.

Proposition 7.2. (1) Assume that V is smooth, or V is the cone and
v &l. Then Vi is a 4-dimensional quadric.

(2) Assume that V' is smooth. Then vy, is a birational divisorial con-
traction which contracts an irreducible divisor Fy; to a cubic sur-
face S spanning a 4-plane and hence S ~ Fy or Fs. Any fiber is a
copy of P* or P2. Moreover the following hold:

(2-1) Let o be a smooth point of S which is the image of a plane
containing l. Then Vi has an ODP at o, and locally analyti-
cally,

(oeScV)~(oc{r=2=t=0}C {zy+2w+t*=0}),
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where the latter objects are located in C° whose coordinates
arex,...,t.

(2-2) If S ~ Fs, then the vertex is the image of a plane containing
[ and is a smooth point of Vj.

(2-3) vy is the blow-up along S outside Sing S.

Proof. (1) By =Ky = 3Ly, we have deg 47,y = 1 and hence Byt = 1.
Thus (uy,;*Ly — Ey;)* = 2 whence Vj is a 4-dimensional quadric.
(2) By
vy Ly, = pyv" Ly — By
and
—Kg = pvi"(—Kv) — 2By,
we have

dby; = VV,Z*(_KVz) - (—Kf/,) = MV,Z*LV — 2By,

where d is the codimension of S := vy, (Fy,) in V. Thus d = 1,
and by Evf = 1, we have

degS = _(VV,I*LVZ)2FV,Z2 = 3

Moreover since Ey; = vy;* Ly, — Fy; and Ey; does not move, there
is only one hyperplane in P containing S, i.e., (S) is P*. Thus
S ~ TF; or Fs5. Recall that a fiber of vy, is the strict transform of
the intersection of V' and a plane containing [. So a fiber is the
strict transform of a line or a plane since V is an intersection of
quadrics. Hence by [AW98, Theorem|, we see that (2-2) holds and
V; has an ODP at g in (2-1).
We show the local analytic description in (2-1). We start with

(oeSCV)~(oe{r=2=t=0} C{ra + zas + taz = 0}),

where the latter objects are located in C® whose coordinates are
x,...,t and
[ i=xay + zay + tas

is the equation of the ODP. Let [; be the linear part of a;. If one of
[; = 0, then the rank of the quadric part of f is not greater than
4, a contradiction. By the rank condition of the quadric term of
f, one of [; contains y. We may assume that a; = y. Similarly we
may assume that as = w. Let

az = ax + By + vz + dw + et.

By replacing y with y+ at and w with w + ¢, we may assume that
a = v = 0. Moreover by replacing = with = + 5t and z with z + dt,
we may assume that § = 6 = 0. Hence by replacing ¢t with \/et, we
have the desired expression.
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Lastly we prove (2-3). Let U, := V; \ Sing S. Let v/ : U/ — U,
be the blow-up along S \ SingS. Then excv’ is an irreducible
divisor and hence vyy; 1(U;) and U] are isomorphic in codimen-
sion 1. Moreover U is smooth and — Ky, is v/-ample. Recall that
—Kyy,, 1) is vyy-ample. Hence vy~ (U;) and Uj are isomorphic
over U].

0

7.3. Let P be the plane on W containing | and o the image of P by
W -—> W,. Let W, --» (W), (resp. 'V, --» (V}),) be the projection of
Wy (resp. V}) from o. Note that the composite

W s Wi == (1)),

(resp. V -=» Vi =+ (V}),)
is the projection of W (resp. V') from P.

Proposition 7.4. W, is a (2,2)-complete intersection in P°. If o €
Sing Wy (resp. & Sing W;), then Wp ~ Q> (resp. Wp is a cubic in P*).
Assume that W, is factorial and Wp ~ Q*. Then vy, ,(Ew,,) is a
quadric and vy, , s the blow-up along an irreducible curve C, which is
a (2,2)-complete intersection in P3.
If C, passes through the singularity of vw, o( Ew, ). then Wi has one
singularity, which is analytically isomorphic to

{2? + 9y + 22 + w* = 0} with k = 4,5.

If C, does not pass through the singularity of vw, ,(Ew, o), then W, has
two singularities, which are analytically isomorphic to

{2% +y* + 22 + wb = 0} with k = 2,3.

Proof. Assume that V' is smooth, or V' is the cone and v ¢ I. Then
since

Wi € |uvy"(2Lv) — 2By,

we have W, € |2Ly;|. Hence W} is a (2, 2)-complete intersection in P
by Proposition 7.2. Assume that V is the cone and v € [. Then since
W is a projection of W, from a (smooth) point, W} is a (2, 2)-complete
intersection in P°.
Since
(MWZ,Q*LWI - EWZ:Q)S =4 —mult ,IW;

and W, has only terminal singularities by Proposition 4.8, the second
assertion follows.

The description of vy, , is easy to verify so we only prove irreducibil-
ity of C,. It is easy to see that the image of the sum of vy, ,-exceptional
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divisors on Wj is a hyperplane section, and any vy, ,-exceptional divi-
sor is not gy, ,-exceptional. Hence by factoriality of W, the sum of
v, o-exceptional divisors is irreducible and so is C,,. O

Proposition 7.5. Let C; and C] be as in Definition 4.3. Then deg C; =
6. Moreover one of the following holds:

(1) Cj is irreducible.

(2) Cp = C]+m, where m is a line. degC] =5 and p,(C}) = 0.

Proof. We can apply Propositions 4.4 and 4.6 by Lemma 4.1 and Propo-
sition 7.4. Hence we can easily obtain the assertion. O

Proposition 7.6. W, is not factorial if and only if V' is the cone and
v € l. If this is the case, then the strict transform of Ew., on W is a
cubic surface.

Proof. Assume that V is the cone and v € [. Since W, --» W, is the
projection from a singular point of vy, (Ew,,) and the multiplicity of
any singular point of vy, (Ew,,) is 2, the image of vy, (Ew,,) on W, is
a cubic surface. This implies that W is not factorial.

Conversely assume that W; is not factorial. Then W; contains a
unique plane F; by Proposition 4.8 (2-2). By Proposition 4.7, no plane
on W is mapped to a divisor on W;. Consider the total transform on
W of a hyperplane section containing F;. Then we see that F; is the
image of a pw, -exceptional divisor by 2.14 (c¢). By Proposition 4.4 (1),
vw,(Ew,) is a hyperplane section hence it is the sum of £} and a cubic
surface Fs such that (Fs) is a 4-plane.

We prove that Fs is contracted to a point by W; --» W. If (] is
irreducible, then clearly C; C Es. Assume that C; = C] + m, where m
is a line. Then C] C F,. Since F5 contains no P! of degree 5, F, ~ ;.
Since

Ci = Bs| — Kw, ® o,
and the minimal section Cy of [Fy is contained in Bs | — Kw, ® J¢,/w,|,
we have that m = Cj. So in any case, C; C Fy and Cj € |2Lg,|. This
implies that Fj5 is contracted to a point by W; --» W since for a general
curve v in Fjy, _KWZ -y = 0. Assume that V is smooth, or V is the
cone and v ¢ [. Then the embedded dimension of W at any point € [
is at most 4. So a pyy-exceptional divisor contracted to a point on [ is
a copy of P2, a contradiction. Thus V is the cone and v € [. O

Proposition 7.7. Assume that V' is smooth.
(1) Let vy be a line on V. Then

Ny = Opi(—1) @ Opi(1)%* or O5F & Opi(1).
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(2) Letl be a singular line. Then any irreducible component E of Ew,

dominates | and a general fiber of pw,|g is irreducible. Moreover

one of the following holds:

(a) Ew, isirreducible. In this case, W has a cA;-singularity gener-
tcally along .

(b) Ew, is reducible. In this case, W has a cA;-singularity (i > 2)
generically along . Moreover the following hold:

(b-1) Ewy has an irreducible component E' which is vy, -exceptional

(clearly pw (E") =1).
(b-2) e/%/v >~ ﬁpl(—l) D ﬁ]}»l(l)@z.
(0-3) Ew, = E'+ E", where E" is irreducible and E' # E".
(b-4) vw,(E") is a non-normal del Pezzo surface and vy, (E')
coincides with Sing vy, (E").
(b-5) One of the following holds:

(b-5-1) v, (E") is not a cone. In this case, E" — vy, (E")
is finite. Moreover W has a cAs-singularity gener-
wcally along 1. In particular, | is a good line.

(b-5-2) v, (E") is a cone. In this case, the vertex of the
cone is a singular point of Wj.

(b-6) The plane containing l is the unique plane on W.

Proof. (1) This can be shown similarly to Theorem 6.10 (1).
(2) Since V is smooth, W is factorial by Proposition 7.6. Hence by the

same way as the first part of the proof of Theorem 6.10 (2), we can
see that Eyy, is irreducible, or By, = E' + E", where E' # E", F'
and " are irreducible, and

pwa(E) = pwa(E") = 1.

So in particular, W has a cA-singularity generically along [. Trre-
ducibility of a general fiber of pyy,|g also follows as in the proof of
Theorem 6.10 (2).

If By, is irreducible, then the assertion follows from irreducibility
of a general fiber of pyy;| Ewy-

Assume that Ey; is reducible. Then since vy, (Ew,) € |Lw,| by
Proposition 4.4 (1) and W, is factorial, one of irreducible compo-
nents of By, say F', is vy-exceptional. Let H 1= —Ey;|g,, and
Fis a fiber of Ey; — [. Then

(v Ly — Bvy)|p,, = H + F.

By the assumption, the exceptional locus of the morphism defined
by |H + F| contains a two dimensional subset. So

J%/V ~ ﬁpl(—l) D ﬁ]pl(l)@Q
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and E’ is the unique member of |H — F|. Since
Wi € s (2Lv) = 2Bv|,

we have By, € |2H 4 2F|. Hence E” € |H + 3F|. Let Cj be the
minimal section of £’ and r a ruling. Since

(H+F)*(H+3F)=4

and |H + F| is free, one of the following three cases occurs:
(i) B" ~F, and (H + F)|gr ~ Cy + 2r,
(ll) E” ~ ]FQ a,nd (H —+ F)|E” ~ CO —+ 37°, or
(111) E” ~ ]F4 and (H + F)|E” ~ CO + 47".
Let 0 := E' N E”, which is a generically section of Fz; — [. By

(8%)gn = (H = F)X(H + 3F) = 0,
we have
0~ Cy if B ~TF,,
O0~Co+r if B ~TFy,
0~ Cy+2r if B ~TF,.

This implies that vy, (E') = Sing vy, (E").

Assume that E” ~ Fj or Fy. Then (H + F)|g» is ample, and so
E" — vy, (E") is finite. By the almost same way as in the proof
of Theorem 6.10 (b-5), we can prove that W has a cAg-singularity
generically along [. This gives (b-5-1).

Assume that E” ~ F,. Then

(H+ F)|gr - Co =0

so Cp is vy -exceptional. Since the embedded dimension of the
vertex of vy, (E") is 4, the vertex is a singular point of W,. This
gives (b-5-2).
(b-6) follows from Proposition 4.7.
U

Remark. For (b-5-2), we cannot obtain the bound of the type of sin-
gularity along [ here. Proposition 7.11 is devoted to the study of the
singularity along [ if (b-5-2) occurs for [ and Wp ~ Q? for the plane
P C W containing .

7.3. Case V is the cone.
Assume that V is the cone. We use the notation as in Proposition 7.1.
This subsection is devoted to prove that this does not occur.

Let W --» W, be the projection from the vertex v of V. By Lemma
4.1 and Proposition 7.1 (2), we can apply the results in the section
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4. We begin by stating basic properties of W --s W, in the next
proposition.

Proposition 7.8. (a) Ew, is a quintic del Pezzo surface. If Ey,, is
non-normal, then Ey, is (c¢) or (d) in [Reid94, Theorem 1.1]. If
Ew., is normal, then vy,,(Ew,,) has only Du Val singularities and
its type are A; (i =1,2,3,4), Ay + Ay or Ay + As.

(b) C, is the intersection between vy, (Ew,) and a member D of | —
Ky, |, where D has only Du Val singularities.

(¢) vw,p is the blow-up along C,.

(d) Assume that v, (Ew,,) is normal. Then W, has only ¢cDV singu-
larities and Fy,, ts the unique h-exceptional divisor contracted to
a point on W.

(e) Letl be a singular line on W. Then one of the following holds:
(e-1) (v €1l) lis the image of the fiber of vw, over a point w of C,

such that emb-dim,,C, = 3. In particular, w is contained in
Slng VVV,U(EVV,U)-

(e-2) (v & 1) I is the image of a curve which is isomorphically
mapped to a multiple line m in C,. [ is a good line and the
singularity of W along [ is generically of type cAx_1, where
k is the multiplicity of m in C,.

In particular, we see by this description that there is at most
one singular line Z v on one plane.

(f) At least one plane on W is not good.

Proof. (a) By Proposition 4.4 (1), vw,(Ew,) € |Lw,|.- Thus by Ey,, ~
vwao(Ew,y), Ew, is a quintic del Pezzo surface. Moreover since W,
is smooth, FEy, cannot be a cone. Hence we have the last two
assertions by [Fuj85] and [Reid94, Theorem 1.1].

(b) This can be easily checked at the generic points of irreducible com-
ponents.

(¢) Let v/ : W' — W, be the blow-up along C,. Since C, is a complete
intersection in W,, W' has only hypersurface singularities and v/ is
equi-dimensional. Thus W’ and W, are isomorphic in codimension
1. On the other hand, both — Ky and — K3y, are relatively ample

over W,. Hence W’ and WU are isomorphic.
(d) Based on (b), we calculate the blow up vy, analytically locally as
follows:
Let w be a point of W, and f (resp. g) is the local equation of
D (resp. v, (Fyw,)) in C* with coordinates z,y, z. Then

Wy, ={(z,y,z:p: @)lpf —qg = 0} € C* x P".
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So Wv has only ¢DV singularities over w except (0,0,0;0: 1) and
if v (Ew,) has at most a Du Val singularity at w, then W, has
only ¢DV singularities all over w. So if vy, (Ew,) is normal, then
Wv has only ¢DV singularities. Moreover if vy, (Ew,,) is normal,
then there is no singular curve of Wv on Fy, and hence Fy, is
the unique h-exceptional divisor contracted to a point on W.

(e) This easily follows from the local description of vy, and Lemma
4.2.
(f) If any plane on W is good, then W has only ¢DV singularities by
Corollary 2.8 and Proposition 2.13 (1). This is absurd.
O

Proposition 7.9. V is not the cone.

Proof. Assume that V' is the cone. Then by Proposition 7.8 (f), there
exists at least one singular line on WW.

Case 1. W contains at least two planes.

Let [ be a singular line. By Proposition 7.4, W} is a del Pezzo 3-fold
and so by Proposition 4.7, [ intersects any plane on W. Thus v € [ since
any two planes intersect only at v by Proposition 7.1 (2). Moreover
(; is reducible since the image of a plane which does not contain [
is a line in C;. Hence by Proposition 7.5, degC] = 5. This implies
that W, has only two planes and any component of Ey; is not vg -
exceptional. Since vy (Ew,;) € |Lw,| by Proposition 4.4 (1), and the
strict transform of Ey, is contained in vy, (Ew,) as a cubic surface
by Proposition 7.6, the part of Fy,; dominating [ is irreducible and
reduced. This implies that W has only a cA;-singularity generically
along [. Moreover we can show that there are at most two singular
lines in one plane and this leads to a contradiction by Proposition 3.8.
Indeed, by Proposition 7.8 (a), the assertion is true if Eyy, is normal.
Assume that Eyy, is non-normal. Then since two planes are mapped
to disjoint lines on W, the non-normal locus of Ey, is not the image
of a plane. This implies that the image of a plane contains only one
singular point of Ey, whence a plane contains at most one singular
line.

Case 2. W contains only one plane.

Denote this plane by P.

Step 1. We restrict the possibilities of C,,.

Since P is contracted to a line on W, C, is reducible. So

d:=degCl <9.
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Let p := p,(C?). By Proposition 4.4, we have that p < d—5. Moreover,
if p = d — 5, then by Proposition 4.6, d > 9. By these facts, we have
the following possibilities:

(i) d=6 and p=0.

(ii) d=7and p=0,1.

(ili) d=8 and 0 < p < 2.

(iv) d=9and 0 <p <A4.

Let m be the image of P on W,,. By the above list of the possibilities
and Proposition 4.4 (3-3), we have C, = C; + (10 — d)m since Ey,, is
irreducible and is not vyy,,-exceptional.

Ifd=6and p=0, or d =7 and p = 1, then by the Riemann-Roch
theorem,

hW(Oc(2L,)) =2d+1—p < 14.
Hence by the proof of Proposition 4.6, we obtain
h(—=Kx) > B (=Kw, @ Jo,w,) > h*(—=Kw,) — 14 =9,

a contradiction. Since P is not a good plane by Proposition 7.8 (f),
P contains at least one singular line [ 5 v. Since degC] = 5 or 6 by
Proposition 7.5, and (] is the transform of C,, the case that d = 8 and
p=0,ord=9and p=0,1 is excluded. By this observation, we know
that if d > 8, then the image of [ on C) is a singularity of C]. Now the
possibilities of C] are:

(i) d="7and p = 0.

(i) d=8and p=1,2.
(ili) d=9 and p = 2, 3, 4.

Step 2. We treat the case that deg C] = 5.

In this case, the strict transform E{MU of By, on W, is F; since
F3 cannot contain a smooth rational curve of degree 5. Assume that
Ew, is non-normal. Then since Ey, --+ E{,V’U is the projection from
a singular point, Ey;, is a cone, a contradiction. So Fyy,, is normal.

Since (] is the strict transform of C! and degC] = 5, we see that
the image of [ on C! is a singularity of C! and in particular d > 8.
Moreover since (] is smooth, C! has only one singularity. On the other
hand, as we saw in Step 1, the image of a singular line 5 v on C is a
singularity of C! since d > 8. Thus [ is the unique singular line 3 v.
Hence by Proposition 7.8 (a), Iz is one of the following:

(1) (d=8)

O—O—OQ——©.
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where the length of the chain

is at most 4. The left @ corresponds to the singular line Z v.

2) ([d=8)
O—O—O——©
D

Q ?

where the length of the chain

O—O0O—0O——O

is at most 4. The @ at the bottom corresponds to the singular
line Z v.
3) (d=9)

O—0O—O——©
OF

where the length of the chain

©O—0—0OQ——O

1s at most 4.

We deny this case in Step 4 together with the case that degC] = 6
and By, is normal.

Step 3. We treat the case that degC] = 6.

The assumption implies that any component of Ey,; is not vy,-
exceptional. Moreover since the image of Eyy,, on W is a cubic surface
by Proposition 7.6, the part of Ey,; dominating [ is irreducible and
reduced. So W has only a cA;-singularity generically along [. By
Step 2, deg (], = 6 for any singular line I’ 5 v. Hence W has only a
cA;-singularity generically along singular lines > v.

Assume that d = 8,9. Then W has only cA;-singular lines. This
contradicts Proposition 3.8 since P is not good plane by Proposition
7.8 (f) and P is the unique plane. Thus we may assume that d = 7.
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Assume that Ey, is normal. Recall that by Proposition 7.8 (a),
the number of singular lines 3 v is at most 2. Hence I'; is one of the
following;:

(i)

O—O—0—0O.

O—O—0O—©O
0.

corresponds to the singular line Z v.

We deny this case in Step 4.
Assume that Ey, is non-normal. Then by Proposition 7.8 (a), Ew,,

is (c) or (d) in [Reid94, Theorem 1.1]. Let m : £f — Ew, be the
normalization and C (resp. C') the strict transform of C, (resp. C)

on E. Let Cy be the minimal section of £ and r a ruling.
Then one of the following holds:

(a)

Here the right

E~TF;,C' ~Cy+6r, and C — C" ~ Cy + 2.

By this description, we see that the image of P on W is the non-
normal locus of By, and C—C" = Cy+2r' for some fiber r’. Hence
a general member D of | — Kyy, | intersects one of the branches of
vw.o(Ew,) along Sing vy, (Ew,,) simply. So by the explicit calcu-
lation of the blow-up, we see that the singular curve on W, dom-
inating m is contained in Ey, whence it is contracted to v on
W. Hence there is no singular line Z v on W. This contradicts
Proposition 3.8.

(b)
E~T; C"~2Cy+5r, and C — C" ~ 3r.
Then, however, " is reducible, a contradiction.
(c)
E~F,,C'~Cy+5r, and C —C" ~ Cy+r.

Then C, contains two different lines, a contradiction.
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(d)
E~TF,,C' ~2Cy+3r, and C — C" ~ 3r.

Then pa(é’) = 1, a contradiction to that p = 0.

Now we have denied the case that Eyy, is non-normal.

Step 4. We deny the case that Eyy, is normal.

In this case, Fy, is the unique h-exceptional divisor contracted to a
point on W by Proposition 7.8 (d). So we can apply Proposition 3.10
and Proposition 3.11.

Assume that 'z is a chain. Then we obtain a contradiction to Propo-
sition 3.11 since two good lines does not intersect at v.

In the other cases, I'; has one vertex with three edges. The length
of a branch is at most 2 and at least one branch has length 1. Note
that at least one of fixed vertices in I'x, has weight —1 by Proposition
3.3 (2).

If there is a vertex @ as in Proposition 3.10 (3) which intersects
three fixed vertices, then any economic chain in I'; corresponds to a
1/2 (1,1, 1)-singularity. This contradicts [Taka02b, Theorem 1.0].

Hence by Proposition 3.10, I'y, contains one of the following:

(a)
O— " —O—0—0—0U—WO

In this case, another branch intersects @ . Since the length of
this branch is at most 2, it contains at most one economic chain.
Hence by Claim 3.5, all the vertices in this branch have weights
> 0. Note that the curve corresponding to @ is reduced in
Bs| — Kx, | by Proposition 3.10. Hence the blow-up along the
curve corresponding to @ induces the operation (bl) in 3.4. So

if the vertex of this branch intersecting @ has weight > 1, then
the operations to obtain I'; terminate after resolving the base curve
corresponding to @ in the above graph. Thus I'y, is one of the
following;:

(1)
O —0O—0 O—WO

)

where the bottom @ is the economic chain for a $(1,1,1)-
singularity.

©.

©
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O— —0O—0——0—0——WO
©)
OF

where in the bottom @— o . @ is the economic chain
for a 1(1,1,1)-singularity and (0) is a fixed vertex.
(a-3)

O— —O—0——0O—0O——WO
©)
OF

where the bottom @—@ is the economic chain for a
(1, -1, 1)-singularity.

Similarly to the above, we see that the blow-ups along the base
curves of | — K, | induce the operations of type (b1) in 3.4. So we
can easily obtain I'z. Then, however, W has only ¢cDV singularities
for the cases (a-1) and (a-2) and any singular line passes through
v for the case (a-3), a contradiction.

O—0O0——0—0——0O.

In this case, another branch intersects @ or the left @ Since
the length of this branch is at most 2, it contains at most one
economic chain. Hence by Claim 3.5, all the vertices is branch have
weights > 0. Assume that the vertex of this branch intersecting
@ or @ has weight > 1. Then similarly to the case (a), the
operations to obtain I'z terminate after resolving the base curves
corresponding to @_@in the above graph. Hence 'y, is

one of the following:
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(b-1)

O—©O O—OQ——©

)

where the bottom @ is the economic chain for a %(1, 1,1)-
singularity
(b-2)

O—O——0—0O——©
@
),

where the bottom @—@ is the economic chain for a
(1, =1, 1)-singularity.
(b-3)

O—O0O—0—0—0O——O
©)
OF

where in the bottom @—
for a %(1, 1, 1)-singularity and
(b-4)

O—0O0O—a)—0O—OQ——O
©
OF

where in the bottom @ @, @ is the economic chain
for a 1(1, 1, 1)-singularity and @ is a fixed vertex.

@ is the economic chain
is a fixed vertex.

.
©
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Similarly to the case (a), we see that the blow-ups along the base
curves of | — Ky, | induce the operations of type (bl) in 3.4. So
we can easily obtain I';. Then, however, any singular line passes
through v for the cases (b-1) and (b-2), and W does not have a
cA-singularity generically along a singular line for the case (b-3),
a contradiction. Assume that the case (b-4) occurs. Let v be the
curve corresponding to @ and r — 1 the length of

Then it is easy to see that —Kx -y = 1/3 — 1/r. Hence we have
r > 4. Then, however, I'; has a branch with length > 4, a contra-
diction.

()

O——O—0——0
O—..—0O
D—O)— - —@)

There is another branch intersecting @ or O —_—
Then, however, there is a branch with length > 3, a contradiction.

O

7.4. Case V is smooth and Wp is a cubic in P* for some plane
P.

Theorem 7.10. Assume that V is smooth and Wp is a cubic in P*
for some plane P. Then

(1) Cp is a twisted cubic curve in P3.
(2) P is the unique plane on W and a good plane corresponding to a
1/r (1, =1, 1)-singularity for r = 2, 3.

Proof. Since Wp is a del Pezzo 3-fold of degree 3, we can apply Propo-
sition 4.4 and we see that Cp is a twisted cubic curve. Hence by
Proposition 4.9, P is the unique plane on W and a good plane. We
may assume that P contains a singular line [. By Proposition 7.4, the
image of P on W, is a smooth point of W,. So by Proposition 7.2,
S ~ 3 (see Proposition 7.2 for the definition of S). Since F3 does not
contain a smooth rational curve of degree 5, ('} is irreducible by Propo-
sition 7.5. By Proposition 7.6, W, is factorial. Hence by Proposition
4.10, P corresponds to a 1/3 (1, —1, 1)-singularity. O
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7.5. Case V is smooth and Wp ~ ° for some plane P.

Assume that V is smooth and Wp ~ @Q? for some plane P in this
subsection. Then by Theorem 7.10, Wp ~ @Q? for any plane P.
First we give descriptions of vy locally analytically near a fiber

contained in Singﬁ//l for a singular line [.

Proposition 7.11. Let [ be a singular line and P the plane on W
containing l. Assume that Wp ~ Q3. Then

(1) W, has only cDV singularities and any singular curve is contained
in a fiber of vy,;. Hence W also has only cDV singularities.

(2) Let o be the image of P by W --» W;. There is a singular curve
on v, " o) if and only if o € SingCy. If a singular curve ex-
ists on vy, (o), then it is a line (denote it by §) and W, has
a cA-singularity generically along 6. Moreover if k = 2,3 for o
(see Proposition 7.4 for the definition of k), then W) has a cA;-
singularity generically along 0.

(3) Let w be a point # o on Cy (recall that vy, (w) ~ P').

(3-1) If w is a smooth point of W, then vy; Y (w) ¢ Sing W.

(3-2) Assume that w is a singular point. Then w € Sing C; and W,
has a cAy-singularity generically along vy, (w). Moreover
vw(Ew,) is a non-normal cone and w is its vertes.

Proof. Since W; has only isolated singularities by Proposition 4.8 and
(] is reduced by Proposition 7.5, any singular curve on W, is contained
in a fiber of vy,.

Step 1. We study the singularities of W; on vy, 1(0).

Analytically locally near g, we use the description in Proposition 7.2
(2-1). W, is the intersection of V; and a smooth hypersurface M in CP.
By the symmetry of variables, we have only to consider the following
three cases:

(A)
M ={z = f(y,zw. )}
Then in C*,
Wy = {fy + 2w + t* = 0}.
Cl = {Z:t:f<y,0,2,0) :O}
We denote the i-th part of f by f;. Let
fii=az+ bt + cy + dw.
f2 = Q(zi‘ t) + ll(y7 ’LU)Z + l2(y7 w)t + Ll(ya w)LQ(:% w):
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where a,...,d € C, @ is a quadric form, and [; and L; are linear
forms.

Since ] is smooth or the union of two smooth curves at o, we
have that

cy+dw # 0 or LiLy Z 0.
(B)
M = {y = f(x,z,w,t)}.
Then in C*,
W, ={zf + 2w+ t* = 0}.
Ci={zr=2z=t=0}
We denote the i-th part of f by f;. Let
f1:=ax + bz + ct + dw.
f2:=Q(x, 2, t) + awz + Bwz + yw?,
where
a,...,d,a,...,v€C,
and @ is a quadric form.
(©)
M= {t = f(z,y. 2, w)}.
Then in C*,
W, = {ay + 2w + > =0}.
Cl = {.T =z = f(anaoaw) - 0}
We denote the i-th part of f by f;. Let
fi:=ax +bz+ cy + dw.
f2 = Q($/ Z) + ll(y7 ’LU)ZL’ + l2(y7 UJ)Z + Ll(ya w)LQ(ya UJ),

where a,...,d € C, @ is a quadric form, and [; and L; are linear
forms. Since (] is smooth or the union of two smooth curves at p,
we have that

cy+dw # 0 and Ly Ly # 0.
Case (A)

/W/l:{(yazawat;p:q:r)|z:t:f:piq:T}CC4X]P2.
We check the singularities of /1/171 on
{ly=z2=w=1t=0}.
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By blowing up at the origin, we can easily show that if C; is singular
at o, then k = 2,3 for o if and only if

b+# 0, or
a#0,0=0and Li(1, —a)Ls(1,—a) # 0.

The chart p # 0.
Set ¢’ := q/p and 1’ :=r/p. Then

W, = {(y, z,w, t, ¢, 7t =qz f=r"zw=—r"y—(¢)z} c C"
By erasing ¢t and w, we have
Wi ={(, 2.¢.7)|f(y. 2. —r'y — (¢)’2,¢'2) =’z = 0} C C*,
It is easy to see that
SingW, N {y =z =0} =
ly=z=c—dr' =a—d(¢)*+bd —r' =0}.
Assume that C) is smooth at po. Then we can see that ﬁ//l has at

most isolated singularities on this chart (see Step 3).
Assume that (] is singular at ¢. Then

SingW,N{y=2=0={y=2=a+bgd —r' =0}
Set
" =r"— (a+bg).
Then
W= {(y.2.¢.r")
F:=fy,z,—(" +a+bd)y— (¢)2,¢2) — (" +a+bd)z =0} c C~
So we can see that the quadric part of F'is | Lz+ny?, where L is a linear

form > r” and n € C. This implies that W, has only cA-singularity at
any point of

Sing W, N{y =2z=0}.

Assume that £ = 2,3. We prove that W, has a cA;-singularity
generically along

{ly=2=1r"=0}
If we regard ¢’ as a constant, then the quadric part of F' is
Mz + Li(y, —(a+bq')y) La(y, —(a + bq)y),

where M 1is a linear form > r”. It is easy to see that

Li(y, —(a+bq')y)La(y, —(a + bq')y) £ 0
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if and only if b # 0, or
L1(17 _a)LQ(lv —CL) 7é 0.

As we saw above, this holds if £ = 2, 3.
The chart ¢ # 0.
Set p' :=p/q and 1’ :=r/q. Then

Wi = {(y, zw,t,0,1)|t = —r'y—p'w, z = —p ("'y+pw), f =1t} C C".
By erasing ¢ and z, we have
W= {(y, 0.9 7)|G =f (y, =0 (r'y + p'w).w, ="y —p'w)
+r'(r'y + p'w) = 0} ¢ C*.
It is easy to see that
SingW; N {y =w =0} =
{ly=w=c—r'(ap’ +b—7r")=d—p'(ap’ +b—1r") =0}.
Assume that C) is smooth at o (see Step 3). Then we can see that

ﬁ//l has at most isolated singularities on this chart.
Assume that ( is singular at g. Then

SingW,N{y =w =0} =
ly=w=ap +b—r" =0}U{y=w=p =r"=0}.
The quadric part of G is
—b(r'y + p'w) + L1 Lo
SO ﬁ//l has an ODP at

if b 0. Set

Then
W= {(y.w,p/.7")H := f(y, —p{("" + by + pPw}, w, — (" + by — p'w)

+(" +b){(r" +b)y + pw} =0} c C~
Since we checked the singularities on the chart p # 0, we have only to
check the singularity at

{ly=w=p =r"=0}.

We can see that the quadric part of H is bLy + LiLo, where L is a
linear form > 7. If b # 0, or b = 0 and L, is not a multiple of Ly, then
W, has only cA-singularity at

{y=w=p =r"=0}.
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Assume that b = 0 and L; is a multiple of L,. Then we see that the
cubic part of H is

Hy = (r" —ap' — L)(r"y + p'w) + f3(y,0,w,0),

where f3 is the cubic part of f. Let vy’ := L; and we regard it as a
new coordinate. If y = (y’ + nw with ¢ # 0, then after completing
the square with respect to v/, the cubic part of H contains r”p'w but
not (r”)? and hence is not a cube. If w = ¢y’ with ¢’ # 0, then after
completing the square with respect to y/, the cubic part of H contains
(r")?y but not (r"")® and hence is not a cube. So W; has at worst
cD-singularity at

The chart r # 0.
Set p' :=p/r and ¢’ := ¢/r. Then

ﬁ//l = {(v, z,w,t,p’,q’)|z =pfit=dfy=—-pw- (q/)2f} c C".

We have only to check the singularity at the origin but clearly WN/} is
smooth at the origin.
Case (B)

fW/l:{(x,z,w,t;p:q:r)|x:z:t:p:q:r}CC4><]P>2.
We check the singularities of W on
{r=z2z=w=t=0}.

The chart p # 0.
Set ¢’ := q/p and 1’ :=r/p. Then

W, ={(z,z,w.t,q.7)|z = ¢zt =r'z, f + ¢w+ (r')2x = 0} C CE.
By erasing z and t, we have
W, = {(z,w, ¢, )| f(z, ¢z, w r'z) + ¢w+ ()% =0} c C*.

It is easy to see that
Singﬁ//lﬂ{x:w:m:
{r=w=a+bf +c’ + () =d+q =0}.

Then we can see that ﬁ//l has at most isolated singularities on this chart

(see Step 3).

The chart ¢ # 0.
Set p' := p/q and ' :=r/q. Then

M/l = {(3:7 z,w,t,p’,r')|x = plz,t = leap,f +w + (’I“,)2Z - 0} C Cﬁ‘
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By erasing x and ¢, we have
Wi = {(zw,/,")lp f(p'z, 2,w,7'2) + w+ (')*z = 0} € C.

Since we checked the singularities on the chart p # 0, we have only to
check the singularity on

But Wl is smooth on

The chart r # 0.
Set p' :=p/r and ¢’ := ¢/r. Then

Wi ={(z,2,w,t,0,¢)lw = p't,z = ¢t,p'f + ¢w+1 =0} € C°.
By erasing x and z, we have
/W/l = {(w* t:pla q/)|plf(p/t* qlta w, t) + q,w +1= O} - (C4'

Since we checked the singularities on the charts p # 0 and ¢ # 0, we
have only to check the singularity at

{fw=t=p =¢ =0}
But /1/171 is smooth at

Case (C)

ﬁ//l:{(I’?J:Zawm:qirﬂﬂf323f:p2q:7”}C(C4><IP>2.
We check the singularities of % on
{r=y=2z=w=0}

By the symmetry of variables, we have only to consider the charts p # 0
and r # 0.
The chart p # 0.

Set ¢’ := q/p and 1’ :=r/p. Then

Wy ={(2.y.z.w.q. 1)z = ¢z, f =r'z,y = —dw — (')’x} C C".
By erasing z and y, we have
Wi = {(z.w.q.7)|f(z,—qw — (v')*z, ¢z, w) — 'z = 0} C C*.
It is easy to see that

SingW,N{zr=w=0}= {s=w=c¢ —d=a—c(r')? +bg —r' =0}
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Assume that ] is smooth at 0. Then we can see that /I/I7l has at most
isolated singularities on this chart (see Step 3).
Assume that C} is singular at o. Then

Sing Wi N {z =w =0} = {x =w =a+bg = = 0}.
Set
=1 — (a+bqg).
Then
ﬁ;l ={(z,w,q . 7")|F := f(x,—¢d'w— (" +a+ bq')Qx, qdz,w)
—(r" +a+bg)r =0} c CL
So we can see that the quadric part of F'is Lx + A77/w2, where L is

a linear form > r” and n € C. This implies that W, has only cA-
singularity at any point of

Sing W, N {z =w=0}.
Moreover if we regard ¢’ as a constant, then the quadric part of I is
Lz + Li(—q'w, w)Lo(—q'w, w),
where M is a linear form > r”. Since
Li(—¢'w,w)Ly(—q'w,w) £ 0,
ﬁ//l has a cA;-singularity generically along
{r=w=r"=0}
The chart r # 0.
Set p' := p/r and ¢’ := q/r. Then
Wi ={(y.zwt.p.d)le=pfz=qfpy+qw+f=0}cC"
By erasing x and z, we have

Wi = {(y,w, 0", N (=0 W'y + dw),y,—¢ 'y + ¢'w),w)
+p'y + ¢'w =0} c C*.

We have only to check the singularity at the origin but clearly W, has
an ODP at the origin. -

Step 2. We study singularities of 1, on vy, (w) for a point w # p.

If w is a smooth point, then W, has at most isolated cA;-singularities
on vy~ (w) since C) is reduced and has only planar singularities.

Assume that w is a singular point. If w ¢ Sing C, then we can easily
see that vy, ' (w) ~ P? by taking a local coordinate. But by Propo-
sition 4.7, vy (o) is the unique 2-dimensional fiber, a contradiction.
Hence w € Sing (.



72 Hiromichi Takagi

We prove that C is a local complete intersection in W;. Indeed, let
C:={x; = vy = k(z9,23) =0}
locally, where x,-x4 are coordinates of C*. Then W is of the form
{1l + zom + nk = 0},

where [, k,n € Clxy,...,z4. We have only to prove that n is a unit.
If n is not a unit, then vy, (w) ~ P? so we obtain a contradiction as
above.

Since p is also a singular point on W;, k = 2,3 for w by Proposition
7.4. We use the local equation of W, at w as in Proposition 7.4. As
we proved above, (] is a local complete intersection in W;. So by the
symmetry of the equation, we may assume that Cj is the intersection
in C* between W, and the following:

(i) {z = f(z,w)} N{y = g(z,w)}.
(i) (only for k=3) {x = f(y,2)} N{w = g(y, 2)}.
Hence in C? with coordinates z,w for (i) (resp. with coordinates y, 2
for (ii)),
Cr={f*+g*+ 22+ v =0}
(resp.
Co={f"+y"+2"+g° =0}).
We denote the i-th part of f and g by f; and g; respectively. Moreover
we set

f1:=az+ pw
and
g1 = vz + ow.
Since (] is the union of two smooth curves at w, we see that
f12 + 912 + 224+ 52,kwk Z0
for (i) (resp.
f12 + y2 + 22 Z 0
for (ii), which always holds).
The case (i).

Wi =A{(z,y,z,wip:q)ly—g:o—f=p:q} CC' xP".
By the symmetry of the equation, it is sufficient to check the singularity
of W, on the chart p # 0. On this chart, by setting ¢’ = ¢/p,

Wi={F:={qd(y—g)+ P +y*+2+u"=0}.
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First we see that 17, has a cA;-singularity generically along vy, (w).
By considering ¢’ as a constant, the quadric part F, of F' is

{d(y—g) + 11} + 97 + 2% + Gop”.
By completing the square with respect to vy,

¢(fi=dg)  (h—da) K
Fy=(14+(¢)? + = L2 oW
2 ( (q) ){y 1+ (q/)2 } 1+ (q/)2 2,k
It suffices to prove that for a general ¢/,
(f1— q,gl)2

rank ( + 22 4+ Sy ™) = 2.

1+ (¢')?
Assume that £k = 2 and
rank ((f1 — ¢'g1)” + (1 + (¢")*) (2> + w?)) < 1
for all ¢’. Then we have
PB4+ 1=92+8+1=ay+55=0.
This implies that
a—0=0F+v=0
or
at+do=0—v=0.
Hence
[P +g® + 2+ w? =0,
a contradiction.
Assume that £ = 3 and

rank ((fi —q'g1)* + (1 +(¢)%)2%) <1
for all ¢’. This implies that 3 = § = 0. Then we can easily see that
has an ordinary cusp at w, a contradiction.
Thus W, has a cA;-singularity generically along vy, 1 (w).
Next we see that W, has only a cDV singularity at any point on
vyt (w). Let ¢ be an arbitrary complex number and
J =q —c
Then the quadric part F,. 5 of F(y, z,w,q" +c) is
{c(y—g1) + 1P + 9"+ 2% + dopw”.
It is easy to see that F.o # 0. If rank F,.» > 2, then /VI\//} has only a

cA-singularity at (0,0,0,c). So we may assume that

(7.1) {c(y—g1) + 1P +y* + 2% + 60" = ()
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for some linear form y’. The cubic part Fi.3 of F(y, z,w,q" + ¢) is

2c(y — g1) + L (v — 1) — cg2 + fo} + Oz 0’
We regard ' as a new coordinate.
Assume that we can write
y = CY +nz + 0w with ¢ # 0.
Then after completing the square with respect to y’, the cubic part
becomes
2{c(nz+ 0w — g1) + f1}{q"(nz + 6w — g1) — cgo + fa} + 850"
By (7.1), c(y — g1) + f1 is not a multiple of ¢y’ whence

c(nz+0w—g1)+ fLr £ 0.
Assume that
nz + 0w — g1 # 0.

Then the cubic part contains l¢”, where [ is a linear form which is not
divisible by ¢”. But it does not contain ¢” so it is not a cube. Assume
that

nz+ 0w — g, = 0.
Then by (7.1),
{eCy + [P+ (Y + 0 + 22+ G = ().
Hence we have
fi2+ g2+ 22+ G pw® = 0.
g1 +cfi =0.
Then k£ = 3, and f; and g; are multiples of z. This implies that C; has
a simple cusp at w, a contradiction.
Assume that we can write
v =n'z+0w.
Then by (7.1),
+1=0and f, —cg; = 0.
So
F.o = 22+ (52,kwk

whence £k = 3 and y' = z. Then after completing the square with
respect to z, the cubic part contains y2¢” but not (¢”)* and so is not a
cube. .
Consequently in any case W, has only a ¢cDV singularity at (0,0, 0, ¢).
The case (ii).
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W= {(z,y,z,w;p: Q)lw—g:z— f=p:q} C C x PL.

First we check the singularity of fI/I7l on the chart p # 0. On this
chart, by setting ¢’ = ¢q/p, we have

W, = {F = {¢'(w—g) + [}* + 4> + 22 + w* = 0}.

We see that ﬁ//l has a cA;-singularity at any point on vy, (w) with
q # 0. By considering ¢’ as a constant, the quadric part of F is

{d(w—g1)+ f1}? + 9>+ 2°
For a ¢’ # 0, we may regard ¢'(w — ¢1) + f1 as a coordinate. Hence for
aq #0,
rank ({¢'(w — g1) + fi}> +y* +2%) =3
and we are done. We check the singularity at the origin. Note that
F2:f12+y2+z2,
which is # 0. If rank Fy > 2, /I/T//l has a cA-singularity at the origin. So

we may assume that Fy = (y')? for some linear form y’. Then we have
f1 # 0 and f; is not a multiple of y’. Since

Fy=2f1d(w — 1) + v’
after completing the square with respect to ', the cubic part contains
q'wl with some linear form [ but not (¢’)?. Thus it is not a cube. Hence
W, has at worst cD-singularity at the origin.

Next we check the singularity of W; on the chart ¢ # 0. On this
chart, by setting p’ = p/q, we have

W, ={G={®+*+ 2+ {p(x—f)+g}> =0}
It is enough to check the singularity at the origin. Since
Go=2"+y° + 2%,
Wl has a cA;j-singularity at the origin and we are done.

Step 3. We finish the proof.

(2) was proved in Step 1 and (3) was proved in Step 2. We finish
the proof of (1) now. In Step 2, we proved that W; has only ¢DV sin-
gularities on vy, t(w) for any w # p. Assume that o € Sing C;. Then
we proved in Step 1 that W, has only ¢DV singularities on vy~ (o).
Thus (1) holds in this case. So we may assume that o ¢ Sing C; for
any [ and P. Then we proved that W; has only isolated singularities
on vy, (o). Hence by Proposition 7.7, P is a good plane and so W
has only ¢DV singularities. O
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Theorem 7.12. Let P be a plane on W and assume that there is a

singular line on P. Then one of the following occurs:

(1) P is a good plane corresponding to a 1/r (1,—1,1)-singularity with
r=3,4,5.

(2) FXm,P 18

O—a—0O—©.

The left @ corresponds to a 1/2 (1, 1,1)-singularity and the right

O—©O

corresponds to a 1/3 (1, —1, 1)-singularity.

(3) I'x,..p is
O—0O—a—0O—0O.

The left @—@ and the right @—@ correspond to
1/3(1, -1, 1)-singularities.

(4) I'x,,.p is
O—)—0O—0—0O.

The left @ corresponds to a 1/2 (1, 1,1)-singularity and the right

O—0O—O

corresponds to a 1/4 (1, —1, 1)-singularity.

Fxcept the case (1) with r = 3, P is the unique plane on W by Propo-
sition 7.7 (b-6).

Proof.
Step 1. We give a rough classification of singular lines on P.

By Proposition 7.7 and Proposition 7.11 (2), one of the following
holds:

(1) P is a good plane.

(2) P contains two good lines.

(3) P contains the unique singular line [ and [ is of type A but not
good.

Assume that (2) occurs. Then by Proposition 3.11 and Proposition
711 (1), T'x,, is

©O— —O—0O—a—0—©O
where

©)
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corresponds to a 1/r (1, —1, 1)-singularity and

corresponds to a 1/s (1, —1, 1)-singularity for some r, s.
We show that (3) does not occurs. Assume the contrary. Since P is

not good, I'x,, contains at least one @ by Proposition 3.3 (2). Hence
by Claim 3.5 and Proposition 3.10, I'y, contains

O— —O0O—0——0—0——0.

By the shape of I'z, Proposition 3.3 (2) and Claim 3.5, the possibil-
ities of 'y, are as follows:

(1)
@)— - —(O)—(D) D—O)— - —(0)

)

where the bottom @ is the economic chain for a £(1,1,1)-
singularity

(i)

O——0O—0 ©O—0O—O

Y

where the bottom @ is the economic chain for a (1,1,1)-
singularity, the right

is the economic chain for a %(1, —1, 1)-singularity, and @ be-
tween @ and @ is a fixed vertex.

Similarly to the proof of Proposition 3.11, we see that the blow-ups
along the base curves of | — Kx, | induce the operations of type (bl)
in 3.4. So we can easily obtain I';. Then, however, W has three (resp.
two) singular lines on P for (i) (resp. (ii)), a contradiction.

Step 2.

Case 1. #SingW; = 1. N

In this case, SingW, = {p}. So by Proposition 7.11 (3), W, has
no singular curve outside I/‘/_V’ll(g) and hence W has a cA;- or cAs-
singularity generically along [ by Proposition 7.7 (1).

There are two cases:
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(a) 0 € Sing (.
In this case, P contains two good lines. If #Sing Wy, = 1 for the
other line ', then I'; is one of the following (we use the notation
as in Step 1):

(a-1)
©O—0—©O

(r = s =2). By Claim 3.5, this case does not occur.

(a-2)
©O—O—0—©O

(r=2,s=23).

(+-3)
O—0O—0—0—©

(r=s=23).
We treat the case that #Sing W; = 2 for the other line I’ in Case
2 below.
(b) o ¢ Sing (. N
In this case, there is no singular curve of W, on Vﬁ,}l(g) by Propo-
sition 7.11 (2). Hence P is a good plane. Hence P corresponds to
a 1/r(1,—1,1)-singularity for r = 3, 4.

Case 2. #SingW; = 2. .

Let SingW; = {o,¢'}. By Proposition 7.11 (3), W, has a cA;-
singularity along V‘,’V’ll(g’ ) ~ P'. Hence W has a cAs-singularity generi-
cally along [ by Proposition 7.7 (1).

Moreover by Proposition 7.11 (2), one of the following holds:

(i) o € Sing ().

In this case, V{V}l(g) contains one singular curve and the type is
generically ¢A;. Hence I'z is

O—0—0—0—O

(r=2,s=4).
(i) o & Sing ().

. , -1 s . .
In this case, vy5;(0) contains no singular curve. Hence I'z is

O—O—0—0O.

So P is a good plane corresponding to a 1/5 (1, —1, 1)-singularity.
U

If W has no singular line, then W contains at most two planes by
[Taka02a]. If there exists at least one singular line on W, then W
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contains at most two planes by Propositions 4.7 and 7.5. Hence by
Proposition 7.7 (b-6) and Theorem 7.12, we obtain the possibilities of
Sing X as summarized in the next subsection.

7.6. Summary of the results in the case g(X) = 6.

We summarize the results when X has a singularity with index > 3.

We emphasize the relation among the geometries of X, W and W, for

a singular line /.

Note that W has at least one singular line and W is factorial for any
singular line [. Moreover one of the following holds:
If Wp is a cubic in P* for a plane P, then (1-1) always holds. Hence

for the other cases, Wp ~ @? for any plane P on W.

(1) Sing X consists of one 1/r(1,—1,1)-singularity. In this case, W
has the unique plane P and P is a good plane. Hence W has the
unique singular line [ on P.

(1-1) (r=3)
() is irreducible.
(1-2) (r > 4)
e C; = C] + m, where m is a line.
e m is the image of one component of Eyy;.
e vg(Ew,) is non-normal.
e The image of P on W; € Reg C; N Sing W].
(1-2-1) (r = 4)
e W, has no singular curve.
e vg(Ew,) is not a cone.
(1-2-2) (r=2>5)

e IV, has only one singular curve, which is the com-
ponent [” of the intersection between two compo-
nents of Eyy; dominating [. The generic type of
the singularity along I’ is cA;.

o vy (Ew,) is a cone.

(2) Sing X consists of a 1/r1 (1, —1, 1)-singularity x; and a 1/r9 (1, —1, 1)-
singularity xo with

(r1,r2) = (2,3),(2,4) or (3,3).

(2-1) (Two singularities x; correspond to two good planes P; on
hd (7"17712) = (27 3) or (373)
e There is the unique singular line Iy on P, and if r; = 2,
then there is no singular line on P; (resp. if r; = 3, then
there is the unique singular line {; on P).
o (), = C} +m;, where m; is a line.
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e m; is the image of Ps_;.
e The image of P, on W, € Reg (), N Sing W,.
(2-2) (W contains only one plane P.)
e There are two good lines [; on P and [; corresponds to z;.
I'z p is one of the following:

(ri,m9) = (2,3)

O—0O—0—W©

(T’l,Tg) = (2,4)

O—0—0—0—O

(Tla TQ) = (37 3)

©O—0O—0—0—O

o If r; = 2 (resp. 7 = 3), then (), is irreducible (resp.
C, = Cj, + my, where my is a line). Cj, = Cj, + my,
where my is a line.

e m; is the image of one component of Eyy;,.

o If C};, = €} + my, then vy, (Ewy,) is non-normal and is
a cone if (r1,72) = (2,4) and 7 = 2 (resp. is not a cone
otherwise).

e The image of P, on W), € Sing C;, N Sing W/,.

e Let v be the set theoretic base locus of | — Kx|. Then
v ~ P! and ~ contains z; and .

~Kx -y =1/6,1/4,1/3

if
(ri,m) = (2,3),(2,4) or (3,3)
respectively.

8. BIRATIONAL MAPS FROM X TO OTHER MORI FIBER SPACES

8.1. Correction of the classification of extremal contractions of
(2, 1)-type from singular 3-folds with only 1/2 (1, 1, 1)-singularities.
In [Taka0O2a, Proposition 2.2], we gave the classification of extremal
contractions as in the title. But one case is missing so we give the
correct statement and proof here.

Proposition 8.1. Let X be a singular analytic 3-fold

with only 1/2 (1,1, 1)-singularities and f : X — (Y,Q) an extremal
contraction of (2,1)-type to a germ (Y,Q) (see [TakaO2a, Definition
2.0] for the definition). Let E := exc f and C := f(F). Assume that
E is irreducible and X contains at least one singularity over Q. Then
one of the following holds:
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(A) C is singular at Q and mult oC = 3. Y is smooth at Q.
(B) C is smooth at Q. In this case, the description of f is exactly as
in [Taka02a, Proposition 2.2 (4)] except (4e).

Assume that X is projective. Then
(—Ks)? = 8(1 — g(C)) — 2m — 18,

where C is the normalization of C' and m/ (resp. m) is the number of
fibers of type (A) (resp. (B)).

Proof. [(2), ibid.] holds without any change. Hence there is a unique
1/2 (1,1, 1)-singularity on X over @ and we denote it by P. Let ¢ :
Z — X be the blow-up at P and F' := exc g. Then by [(2), ibid.| again,
— K is nef over Y and the flopping curves are the strict transforms of
components of the f-fiber over (). Since Z is smooth and a sequence of
(971 E)-flops terminates, we see that after a finite sequence of (g7 E)-
flop Z --» Z', 7' is also smooth, and there exists neither a (g;'F)-
flopping contraction or a flipping contraction from 7’ over Y. Let E’ be
the strict transform of E on Z’. Since — Kz is nef over Y and a general
fiber of £ over Y is E’-negative by f-ampleness of —F, there exists an
extremal ray R in NE(Z'/Y) with respect to K such that E'- R < 0.
By the choice of Z’; the contraction ¢’ : Z/ — X’ of R is the divisorial
contraction of E'. By [Mor82, Theorem 3.3], X’ is smooth. Moreover
a general curve in the strict transform F” of F' on X' is K x,-negative.
Hence there exists the divisorial contraction f': X’ — Y’ of F".

First we prove that Y/ =Y. Assume the contrary. Then Y/ — Y is a
small contraction and the exceptional curves are the strict transforms of
(97 E)-flopped curves. So there exists a flipping contraction Y’ — Y
over Y since —Kx is f’-ample, and at least one (g, ' E)-flopped curve
intersects ' and is not contained in E’. This is a contradiction.

Next we prove that the following case in [Mor82, Theorem 3.3] does
not occur:

(F/, —KXI |F’) ~ (P2, ﬁp2(1))
Assume that this case occurs. Let [’ be the strict transform of a line
on F’ such that E' NI’ # (. Since Y’ =Y, there exist such {"’s and
they cover (¢/)~'F’. Then we have —Kz -1’ = 0. This implies that
—Kz -1 =0 for general ["’s and they cover F', a contradiction.
Hence we have the following possibilities:
(1) (F,—Kx/|p) =~ (P2, Op2(2)).
(i) I is a quadric in P? and —K x|z = Ops(1)| 5.
Let F” be the strict transform of F” on Z’. Now we calculate

(_KZ/ - Fl/)2F//
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in two ways. First by

—Kz = (¢) (=Kx/) — E' and (E')?*(¢')"F' = —mult O,
we have

(~Kz — F"?F" = (~Kp)? — mult oC.

On the other hand, by
(F") = (P, (=K )" = (—Kz)2F and (=K ) (F")2 = (=K7) F™,
we have

(~ K — 'R = (= Kp)? = {F* — (F'}*} =5+ (F)".

Hence for (i), mult oC = 3 and for (ii), mult oC = 1. This gives the
descriptions (A) and (B). The calculation of (—Kg)? is easy so we omit
it. U

Remark. In [Taka02al, the contraction of this type appears as f’ in the
case that h°(—=Kx) =4 and z = u = 1 (see [p.32, ibid.]). The formulas
on this page are correct except (5-1-4"). (5-1-4’) should be replaced by

(—=Kx/)? —2—16n =8g(C) + 2m + 18m/.

However by (5-1-2'), we have (—Kx/)? < 16 so m’ = 0, i.e., there is
no fiber of type (A). By this consideration, we see that the tables in
[Taka02a] are correct.

8.2. Description of birational maps.

During the proof of the main theorem, we obtained rational maps from
X to another Mori fiber spaces. We re-describe them from the view
point of the minimal model program. We use the notation in previous
sections (for example, in 2.12).

Let « be a 1/r(1,—1,1)-singularity on X with the highest index.
Let f : Y — X be the standard weighted blow-up at x and E :=
exc f. Let P, be the plane such that the strict transforms of P, and F
belong to the same connected component of excg (P, is well-defined
by Proposition 2.13 (3)). Then we have the following diagram:

Y-->Y'
VN
X X/,
satisfying

(1) Y --» Y is one flop or a composite of one flop Y --» Y/ and one
flip Y] --» Y. See the below more precise descriptions.
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(2) For the case that g(X) = 8 and W contains a o3 3-plane, X’ ~ P?
and f” is a Pl-bundle. For the other cases, f’ is of (2, 1)-type, and
one of the following holds:

(2-1) (r =2) Wp is a factorial del Pezzo 3-fold of degree g(X) — 3,
or g(X) =6 and Wp ~ Q3. In this case, X' ~ Wp and the
center of f"is Cp, or

(2-2) (r > 3). There is a singular line [, corresponding to z, and
W), is a factorial del Pezzo 3-fold of degree g(X) — 2. In this
case, X' ~ W, and the center of f"is Cj . We denote by o
the image of P, on W_.

See the below for the descriptions of f’.

(3) Assume that X' ~ W (A = P, or [,)). Then the following hold:
(3-1) Y --» Y’ contains a flip if and only if Ca = Cy + m, where

m is a line. Moreover if this is the case, then m is the image
of the flipped curve.

(3-2) Let Eyy A be Ew,a if r = 2 (resp. the irreducible component of
Ew,a such that Eyy, \NP, does not contain a curve dominating
l. if r > 3). Then Ey, A is the strict transform of E.

Descriptions of Y --» Y’ and f'.

The statements below with (%) are verified by playing 2-ray game as
in [Taka02a).

X has one 1/2(1, 1, 1)-singularity.

(a) (x) Wp is smooth.

b)Y =ZandY' = Wp. h: Z — W and pwp : Wp — W are
flopping contractions, and hence Y --» Y is a flop.

(¢) f'=vwp. vwp is the blow-up of Wp along Cp, where

() Cp is smooth, and

{deg Cp=2g(X)—9, and
9(Cp) = g(X) — 6 (with () if g(X) = 8)
if Wp is a del Pezzo 3-fold (resp.
degCp =9, and
{(*) 9(Cr) =6
if g(X) =06 and Wp ~ @Q?). In particular, Y is smooth.
X has two 1/2 (1, 1, 1)-singularities.

(a) g(X)=0,8.
(b) Y --» Y is a composite of a flop Y --» Y/ and a flip Y] --» Y.
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¢) f"is the blow-up of Wp along C%. If g(X) =8, then
P
deg C', = 6 and
Cp ~PL
If g(X) =6 and Wp ~ Q3, then
() C% is smooth,
degC, = 8, and
(%) pa(Cp) = 3.

In particular, Y’ is smooth.

We have g(X) < 7 below.
X has one 1/3 (1, —1, 1)-singularity.
(a) Y --» Y’ is a flop.
(b) (b-1) If g(X) = 7, then W, is smooth, and f’ is an extremal con-
traction of type (A) as in Proposition 8.1.

(), is irreducible,
deg C;, =8, and
(%) pa(Cl,) = 2.

0 is the unique singularity of C;, and mult ,Cj, = 3.

(b-2) If g(X) = 6, then W), is singular, and f’ is an extremal

contraction of type (B) as in Proposition 8.1.
(x) C), is smooth,
deg C;, = 6 and
(%) pa(Cl,) = 2.

X has one 1/4 (1, —1, 1)-singularity.

(a) Y --» Y’ is a composite of a flop Y --» Y/ and a flip Y/ --» Y.
By the flip, the 1/3 (1, —1, 1)-singularity on Y] disappears and a
Gorenstein terminal singularity ¢y’ appears on Y’ such that f(y') =
0

(b) f"1is the blow-up of W;, along C; with
degC] = 2g(X) —T7 and
Pa(Cy,) = 9(X) — 6.
(b-1) If g(X) = 7, then W, is smooth. g is the unique singularity
of Cj and mult (] = 2.
(b-2) If g(X) = 6, then o € Sing W, and Cj_ is smooth.
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(¢) vwy, (Ew,,) is non-normal and is not a cone.
The following hold below:

e g(X)=6.
e f'is an extremal contraction of type (B) as in Proposition 8.1.
[

| ~PL
X has one 1/5 (1, —1, 1)-singularity.

(a) Y --» Y’ is a composite of a flop Y --» Y/ and a flip Y --» Y.
By the flip, the 1/4 (1, —1, 1)-singularity on Y] disappears and a
1/2 (1,1, 1)-singularity 3" appears on Y’ such that f(y') = o.

(b) Sing W, = {o} and ¢ € (7.

(¢) vwy, (Ew,,) is a non-normal cone.

{deg C; =5 and

X has two singularities, one of which is not a 1/2 (1, 1, 1)-singularity.

(a) one of the following holds:
(a-1) X hasone 1/2 (1,1, 1)-singularity and one 1/3 (1, —1, 1)-singularity,
(a-2) X hasone 1/2 (1,1, 1)-singularity and one 1/4 (1, —1, 1)-singularity,
or
(a-3) X has two 1/3(1,—1, 1)-singularities.
(b) Y --» Y’ is a composite of a flop Y --» Y/ and a flip Y] --» Y.
By the flip, a 1/2 (1, 1, 1)-singularity on Y disappears for (a-1) and
the 1/3 (1, —1, 1)-singularity on Y] disappears and a 1/2(1,1,1)-
singularity appears on Y for (a-2) and (a-3).
(c) 0 € SingW,, and Sing W, C C] . W, has one singularity for (a-1)
and two singularities for (a-2) and (a-3).
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