
Curves and Symmetric Spaces, II

Shigeru MUKAI ∗

We describe the canonical model of an algebraic curve of genus 9 over a perfect field

when the Clifford index is maximal (=3) by means of linear systems of higher rank.

Let SpG(n, 2n) be the symplectic Grassmannian, that is, the Grassmannian of La-

grangian subspaces of a 2n-dimensional symplectic vector space, over a field k. In the

case n = 3, SpG(3, 6) is a 6-dimensional homogeneous variety and (equivariantly) embed-

ded into the projective space P13 with homogeneous coordinate (y : X : Y : x), where

x, y ∈ k are scalars and X, Y ∈ Sym3 k are symmetric matrices. Then SpG(3, 6) ⊂ P13

is the common zero locus of the 21 (=6+6+9) quadratic equations

X ′ = yY, Y ′ = xX ∈ Sym3 k and XY = xyI3 ∈Mat3 k. (0.1)

In our study of Fano 3-folds, we observed that this (symmetric) projective variety has

a canonical curve section of genus 9, that is, a transversal intersection

[C ⊂ P8] = [SpG(3, 6) ⊂ P13] ∩H1 ∩ · · · ∩H5

is a curve of genus 9 embedded in P8 by the ratio of the differentials of the first kind. We

showed that every general curve of genus 9 was obtained in this way when k = C ([12],

Corollary 6.3). The purpose of this article is to show the following refinement, which was

partly announced in [14].

Theorem A Let C be a curve of genus 9 over an algebraically closed field. Then C is

isomorphic to a transversal linear section of the 6-dimensional symplectic Grassmannian

SpG(3, 6) ⊂ P13 if and only if C is not pentagonal, i.e., C has no g1
5.

By Bertini’s theorem we have

Corollary C is contained in a smooth K3 surface as an ample divisor.

∗Supported in part by the JSPS Grant-in-Aid for Exploratory Research 12874002.
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This theorem, together with similar results [16] and [15] in genus 7 and 8, will be

applied to our classification of Gorenstein Fano 3-folds with only canonical singularities

(cf. [17]).

We prove the theorem using a certain simple vector bundle of rank 3. By its uniqueness

(see below) and by a standard descent argument (§7), we have the following also:

Theorem B Let C be a curve of genus 9 defined over a perfect field k and assume that

C has no g1
5 over the algebraic closure k̄. Then we have

(1) C has an embedding into the 6-dimensional symplectic Grassmannian SpG(3, 6) ⊂
P13 over k whose image is a transversal intersection with a k-linear subspace P⊂P13 of

dimension 8, and

(2) such subspaces P cutting out C are unique up to the action of PGSp(3). More

precisely, for every isomorphism g : C = SpG(3, 6) ∩ P → C ′ = SpG(3, 6) ∩ P ′ there

exists γ ∈ PGSp(3, k) such that γ(P ) = P ′.

Here GSp(3) is the subgroup of GL(6) stabilizing the 1-dimensional space generated

by a symplectic form and PGSp(3) is its quotient by the center. Let G(8,P13) be the

Grassmannian of 8-dimensional linear subspaces P of P13 and G(8,P13)t the open subset

consisting of P ’s such that the intersection P ∩ SpG(3, 6) is transversal.

Corollary The weighted cardinality, or mass, of the non-pentagonal curves C of genus 9

over the finite field Fq is equal to #G(8,P13)t/#PGSp(3,Fq):∑
non−pentagonal

1

#AutFC
=

#G(8,P13)t(Fq)

q9(q6 − 1)(q4 − 1)(q2 − 1)
.

The key of the proof is linear systems of higher rank (§3), especially their semi-

irreducibility. Let C be as in Theorem A and α a g2
8 of C, which exists by Brill-Noether

theory (cf. [1], Chap. 7). Let β be the Serre adjoint KCα
−1 and Qβ the dual of the ker-

nel of the evaluation homomorphism 3OC −→ β. Then there exists a unique nontrivial

extension of α by Qβ with h0(E) = 6 (Lemma 5.2 and 5.4). Moreover, such an extension

E, often denoted by Emax, does not depend on the choice of α and is characterized by the

following property (Proposition 5.6) :


i)

∧3 E ' KC ,

ii) h0(E) = 6, and

iii) |E| is free and semi− irreducible (Definition 3.3).

(0.2)
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It is known that the variety of special divisors W 2
8 (C) ⊂ JacC and G(3, 6) ⊂ P19 have

the same degree (=42). As a corollary of these arguments, we have a bijection between

W 2
8 (C) and the intersection G(3, 6) ∩P10 (Remark 5.7).

Let ΦE : C −→ G(H0(Emax), 3) be the Grassmannian morphism associated with the

complete linear system |Emax|.

Theorem C Let C be a non-hyperelliptic curve of genus 9 over an algebraically closed

field and assume that a rank 3 vector bundle E = Emax on it satisfies the condition (0.2).

Then the natural linear maps

λ2 :
2∧
H0(E) −→ H0(

2∧
E) and λ3 :

3∧
H0(E) −→ H0(

3∧
E) ' H0(KC)

surjective and Kerλ2 is generated by a nondegenerate bivector σ. The image of ΦE is

contained in the symplectic Grassmannian G(H0(E), σ) (see §2) and the commutative

diagram

C −→ G(H0(E), σ)

canonical ↓ ↓ Plücker

P8 −→ P∗
∧3(H0(E), σ)

P∗λ̄3

(0.3)

is cartesian, where λ̄3 is the linear map

3∧
(H0(E), σ) :=

3∧
H0(E)/(σ ∧H0(E)) −→ H0(

3∧
E) ' H0(KC) (0.4)

induced by λ3.

The author stayed at Japan-U.S. Mathematic Institute (JAMI) in the Johns Hopkins

University in the spring of 1991 and 1996 during the preparation of this article. He gave

series lectures on this topic at Kyushu University in June of 1996. He is very grateful

to these institutions for their hospitality. The stay in 1996 at JAMI was supported by

the Japan Society for the Promotion of Science. This article is a refined version of an

unpublished preprint written at Nagoya University in the autumn of 1996.

Notation and conventions. For a vector space V , the second exterior product
∧2 V

is the quotient of V ⊗ V by the subspace generated by v ⊗ v, v ∈ V . Similarly S2V is

the quotient by that generated by u⊗ v − v ⊗ u, u, v ∈ V . An element of
∧2 V is called

a bivector of V . We denote by G(r, V ) and G(V, r) the Grassmannians of r-dimensional

subspaces and quotient spaces of V , respectively. Two projective spaces G(1, V ) and
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G(V, 1) associated to V are denoted by P∗(V ) and P∗(V ), respectively. P∗ is a covariant

functor and P∗ is contravariant. For a vector space or vector bundle V , its dual is denoted

by V ∨. The tensor product symbol ⊗ between a vector bundle and a line bundle is often

omitted when there seems no fear of confusion.

All (algebraic) varieties are considered over a fixed base field k. A smooth complete

irreducible curve is simply called a curve. By a grd, we mean a line bundle L on a curve

with degL = d and dimH0(L) ≥ r + 1. A saturation of a subsheaf F ′ ⊂ E is the largest

subsheaf F between F ′ and E such that F ′/F is torsion.

1 Preliminary

We prove two lemmas on the number of global sections. Let ξ be a line bundle on

a curve C and η the Serre adjoint KCξ
−1. We denote the evaluation homomorphism

H0(η)⊗k OC −→ η by evη and the dual of its kernel by Qη. We have an exact sequence

0 −→ Q∨η −→ H0(η)⊗k OC −→ η. (1.1)

Its dual

0 −→ η−1 −→ H0(η)∨ ⊗k OC −→ Qη −→ 0 (1.2)

is also exact if η is free. The rank of Qη is equal to dim |η| = r − 1, where we put

r = h0(η). The following is a variant of so called the base point free pencil trick.

Lemma 1.1 For a vector bundle E of rank r on C, we have

dim Hom (E, ξ) + dim Hom (Qη, E) ≥ r(h0(E)− deg η)− χ(E).

Proof. Take the global section of the exact sequence (1.1) tensored with E. Then we have

dim Hom (Qη, E) + h0(Eη) ≥ rh0(E).

By the Riemann-Roch theorem (and the Serre duality), we have

h0(Eη)− h0(E∨ξ) = χ(Eη) = χ(E) + r deg η.

Our assertion follows immediately from these. 2

If E is of canonical determinant, i.e.,
∧r E ' KC , then we have

dim Hom (E, ξ) + dim Hom (Qη, E) ≥ r(h0(E)− r − s)− 2ρ+ 2, (1.3)
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since χ(E) = (r− 2)(1− g), where s = h0(ξ) = h1(η) and ρ := g− rs is the Brill-Noether

number of η, or equivalently, of ξ.

The number of global sections behaves specially if a vector bundle has a non-degenerate

quadratic from with values in KC . The following is one of such phenomena clarified in

Mumford [10].

Proposition 1.2 Let E and F be rank two vector bundles on a curve C such that

(detE)⊗ (detF ) ' KC. Then h0(E ⊗ F ) is congruent to degE modulo 2.

Proof. Take a line subbundle L of F and put M = F/L. The coboundary map δ :

H0(E ⊗M) −→ H1(E ⊗ L) coming from the exact sequence

E ⊗ [0 −→ L −→ F −→M −→ 0]

is anti-self-dual, that is, δ + δ∨ = 0, with respect to the Serre pairing. Hence h0(E ⊗ F )

is congruent to

h0(E ⊗ L) + h0(E ⊗M) = h0(E ⊗ L) + h1(E ⊗ L)

modulo 2. Since h0(E⊗L)−h1(E⊗L) is congruent to deg(E⊗L), we have our assertion.

2

2 Symplectic Grassmannian

Let A be a k-vector space. For a subspace B ⊂ A the linear map
∧2 B → ∧2 A is injective.

Definition 2.1 A bivector σ ∈ ∧2 A is degenerate if σ is contained in
∧2 B for a proper

subspace B ⊂ A.

A bivector σ is always degenerate if dimA is odd. In the case dimA is even, σ is degenerate

if and only if the value of the Pfaffian is zero. There exists a minimal subspace B ⊂ A

such that σ ∈ ∧2 B. This subspace B is called the co-radical of σ.

Definition 2.2 A symplectic vector space is a pair (V, σ) of a vector space V and a

nondegenerate bivector σ ∈ ∧2 V ∨ of the dual vector space.
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∧2 V ∨ is the quotient of V ∨⊗V ∨ by the space of symmetric bilinear forms on V . Hence

a bivector σ is a coset of the subspace. When the characteristic of k is not 2, the coset has

the unique anti-symmetric representative, say σAS. A subspace U ⊂ V is a Lagrangian

if 2 dimU = dimV and the restriction σ|U : U × U −→ k of σ to U is symmetric. If

char(k) 6= 2, then the second condition is equivalent to the usual one, that is, σAS|U = 0.

We denote the set of Lagrangian subspaces of (V, σ) by G(σ, V ).

Two vectors u and v ∈ V are perpendicular with respect to σ if the restriction of σ

to the subspace spanned by u and v is symmetric. For a nonzero vector v ∈ V , the set

of vectors u ∈ V perpendicular to v is a subspace of codimension one. We denote this

subspace by v⊥. σ induces a bilinear form σ̄ on the quotient space V̄ := v⊥/kv and (V̄ , σ̄)

becomes a symplectic vector space of dimension two less. If a Lagrangian subspace U

of (V, σ) contains v, then the quotient U/kv is a Lagrangian of (V̄ , σ̄). Conversely, if Ū

is a Lagrangian of (V̄ , σ̄), then its inverse image by v⊥ → V̄ is a Lagrangian of (V, σ)

which contains v. By this correspondence we identify G(σ̄, V̄ ) with the subset of G(σ, V )

consisting of [U ] with v ∈ U .

For our purpose, the Grassmannian of quotient spaces is more convenient than that of

subspaces. A quotient space A
f−→ Q of A is Lagrangian with respect to a nondegenerate

bivector σ if 2 dimW = dimA and if (
∧2 f)(σ) = 0. We denote the set of Lagrangian

quotient spaces of the pair (A, σ) by G(A, σ), which coincides with G(σ,A∨). Let U be

the universal quotient bundle on G(A, n), dimA = 2n. Then σ ∈ ∧2 A determines a

global section of
∧2 U , which we denote by s. Then G(A, σ) coincides with the zero set

of s ∈ H0(G(A, n),
∧2 U). We endow G(A, σ) with structure of scheme as the zero locus

of s. Its isomorphism class is denoted by SpG(n, 2n).

Proposition 2.3 The symplectic Grassmannian G(A, σ) is a smooth variety of dimen-

sion n(n+ 1)/2 and the anti-canonical class is n+ 1 times the the hyperplane section H

of the Plücker embedding.

Proof. Since
∧2 A generates

∧2 U , G(A, σ̃) is locally a smooth complete intersection for

general σ̃ by Bertini’s theorem ([13], Theorem 1.10). The normal bundle of G(A, σ̃) is the

restriction of
∧2 U . In particular, the dimension is equal to n2−n(n− 1)/2 = n(n+ 1)/2.

Since the GL(2n)-orbit of non-degenerate bivectors is dense in
∧2 A, G(A, σ) is isomorphic

to G(A, σ̃). G(A, σ) is irreducible since the symplectic group Sp(n) acts transitively. Since

c1(G(A, n)) = 2nH and c1(
∧2 U) = (n− 1)H, the anti-canonical class of G(A, σ) is equal
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to the restriction of c1(G(A, n))− c1(
∧2 U) = (n+ 1)H. 2

The divisor class group of the Grassmannian G(n, 2n) is generated by the hyperplane

section class H. Its Chow group of codimension 2 cycles is generated by two Schubert

subvarieties:

Y = {[U ] |U ∩W 6= 0} and Y ′ = {[U ] |U +W ′ 6= V } (2.1)

for a subspace W of dimension n − 1 and W ′ of codimension n − 1. It is well known

that the self intersection H ·H is (rationally) equivalent to their sum. On the symplectic

Grassmannian, obviously Y and Y ′ are equivalent and hence we have

H ·H ∼ Y + Y ′ ∼ 2Y. (2.2)

Let a be a nonzero vector of A. The image σ̄ of σ in
∧2(A/ka) is degenerate since

dim(A/ka) is odd. In fact, the co-radical Ā of σ̄ is of codimension one. Similar to the

inclusion G(σ̄, V̄ ) ↪→ G(σ, V ), we have a natural inclusion G(Ā, σ̄) ↪→ G(A, σ). Moreover,

G(Ā, σ̄) is the scheme of zeros of the global section of E = U|G(A,σ) corresponding to

a ∈ A.

Let G(A, n) ⊂ P∗(
∧nA) be the Plücker embedding of the Grassmannian G(A, n). The

tautological line bundle OG(1) is isomorphic to
∧n U . Since σ vanishes on G(A, σ), so do

all the linear forms σ ∧ (
∧n−2 A) ⊂ ∧nA. Let

∧n(A, σ) be the quotient space of
∧nA by

the subspace σ ∧ (
∧n−2 A). Then G(A, σ) is contained in the subspace P∗(

∧n(A, σ)) and

we have a commutative diagram

G(A, σ) −→ P∗(
∧n(A, σ))

∩ ∩
G(A, n) −→ P∗(

∧nA).

Plücker

(2.3)

G(A, σ) coincides with G(A, 1) = P1 for n = 1 and is a smooth hyperplane section of the

smooth 4-dimensional quadric G(A, 2) ⊂ P5 for n = 2.

Now we set n = 3 and investigate the conormal space of G(A, σ) ⊂ P∗
∧3(A, σ) and

an important cubic cone in it. Let A → Q be a 3-dimensional quotient space and put

W = Ker [A→ Q]. Then we have a filtration of subspaces

F0 =
3∧
W ⊂ F1 = (

2∧
W ) ∧ A ⊂ F2 = W ∧

2∧
A ⊂ F3 =

3∧
A. (2.4)
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Then
∧3 A → F3/F2 '

∧3 Q is the Plücker coordinate of Q. F2/F1 is isomorphic to

W ⊗ (
∧2 Q). (F2/F1)⊗detQ−1 ' Hom (Q,W ) is canonically isomorphic to the cotangent

space of G(A, 3) at [Q]. F1 ⊗ detQ−1 is canonically isomorphic to the conormal space of

G(A, 3) ⊂ P∗
∧3 A. Hence we have an exact sequence

0 −→ k −→ F̄1 ⊗ detW−1 −→ Hom (W,Q) −→ 0.

||
N∨G(A,3)/P ⊗ detQ⊗ detW−1

Assume that [A → Q] ∈ G(A, σ) is Lagrangian. Then σ belongs to W ∧ A ⊂ ∧2 A.

Let

F̄0 ⊂ F̄1 ⊂ F̄2 ⊂ F̄3, F̄i = Fi/(Fi ∩ σ ∧ A),

be the quotient filtration of (2.4) by σ ∧ A ⊂ F2. Then F̄3/F̄2 '
∧3 Q is the Plücker

coordinate of Q. The cotangent space of G(3, σ) at [Q] is F̄2/F̄1 ⊗ detQ−1 ' S2W . The

conormal space is isomorphic to F̄1 ⊗ detQ and we have an exact sequence

0 −→ k −→ F̄1 ⊗ detQ −→ S2Q −→ 0.

||
N∨G(A,σ)/P ⊗ (detQ)2

(2.5)

Let α : P∗(
∧3 A) · · · −→ P∗(

∧3(A, σ)) be the projection with center P∗(σ ∧A). Since

σ is nondegenerate, G(3, A) is disjoint from the center. We consider the image of the

Schubert subvariety

SQ = {[U ] | rk [U → A→ Q] ≤ 1} ⊂ G(3, A)

by α for a Lagrangian quotient space A→ Q (cf. (3.3) and (4.1)). SQ is a 5-dimensional

subvariety of P∗((
∧2 W ) ∧ A) = P∗(N

∨
G(A,3)/P,Q) and α(SQ) is a subvariety of P∗(F̄1) =

P∗(N
∨
G(A,σ)/P,Q) = P6. By the exact sequence (2.5), P∗(NG(A,σ)/P,[Q]) has the distinguished

point corresponding to Ker [A → Q], which we denote by κQ, and the special projection

onto P∗(S
2Q). α(SQ) contains the point κQ.

Proposition 2.4 The image α(SQ) is a cubic hypersurface of P∗(NG(A,σ)/P,[Q]). More

precisely, it is the cone over the discriminant hypersurface of P∗(S
2Q) with vertex κQ.
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Proof. Choose a basis {v1, v2, v3, v−1, v−2, v−3} of A such that {v1, v2, v3} is a basis of

Ker [A→ Q] and σ = v1 ∧ v−1 + v2 ∧ v−2 + v3 ∧ v−3. Let {u1, u2, u3} be a basis of U ∈ SQ
such that u1, u2 ∈ Ker [U → Q]. The exterior product u1 ∧ u2 is equal to

a1v2 ∧ v3 + a2v3 ∧ v1 + a3v1 ∧ v2 ∈
2∧

Ker [A→ Q]

for a1, a2 and a3 ∈ k. Put u3 = a4v1 + a5v2 + a6v3 + b1v−1 + b2v−2 + b3v−3. Then the

Plücker coordinate u1 ∧ u2 ∧ u3 of U is

a0v1 ∧ v2 ∧ v3 + (a1v2 ∧ v3 + a2v3 ∧ v1 + a3v1 ∧ v2) ∧ (b1v−1 + b2v−2 + b3v−3)

= a0v1∧ v2∧ v3 + (a2b1v12−a1b2v21) + (a1b3v31−a3b1v13) + (a3b2v23−a2b3v32) +
3∑
i=1

aibivii,

where we put a0 = a1a4 + a2a5 + a3a6,

v11 = v−1 ∧ v2 ∧ v3, v22 = v1 ∧ v−2 ∧ v3, v33 = v1 ∧ v2 ∧ v−3

and vjk = vi ∧ vj ∧ v−j for every {i, j, k} = {1, 2, 3}. Since vjk + vkj ∈ A ∧ σ for every

j 6= k, u1 ∧ u2 ∧ u3 is congruent to

a0v1 ∧ v2 ∧ v3 − (a1b2 + a2b1)v12 − (a1b3 + a3b1)v13 + (a2b3 + a3b2)v23 +
3∑
i=1

aibivii

modulo A ∧ σ. Hence α(SQ) consists of γ0v1 ∧ v2 ∧ v3 +
∑

1≤i≤j≤3 γijvij such that the

quadratic form
∑

1≤i≤j≤4 γijXiXj is of rank ≤ 2. 2

Remark 2.5 The discriminant of a ternary quadratic form

q(x, y, z) = ax2 + by2 + cz2 + dyz + exz + fxy, a, b, . . . , f ∈ k

is equal to 4abc− ad2 − be2 − cf 2 + def.

3 Linear systems of higher rank

A linear system of rank r is a pair (E,A) of a vector bundle E of rank r and a space of

global sections A ⊂ H0(E). The special one with A = H0(E) is called a complete linear

system and denoted by |E|. A linear system (E,A) on an algebraic variety C is free if the

evaluation homomorphism evE,A : A⊗k OC −→ E is surjective. If this holds, we obtain a

morphism ΦE,A of C to the Grassmann variety G(A, r) of r-dimensional quotient spaces.
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It is characterized by the property that Φ∗E(U , A) = (E,A), where U is the universal

quotient bundle on G(A, r).

Let
m∧
evE,A :

m∧
A⊗k OC −→

m∧
E

be the exterior product of the evaluation homomorphism evE,A. It induces the linear map

m∧
A −→ H0(

m∧
E),

which we denote by λm. The image λm(s1 ∧ · · · ∧ sm) of a simple m-vector s1 ∧ · · · ∧ sm
is zero if and only if m global sections s1, . . . , sm ∈ A ⊂ H0(E) are linearly dependent at

the generic point of C, that is, they generate a subsheaf of rank less than m. The case

m = r is most important. Assume that the the linear map λr :
r∧
A −→ H0(detE), is

surjective. Then the map

Ψ : P∗(H0(detE))→ P∗(
r∧
A). (3.1)

induced by λr is a linear embedding and the following diagram is commutative:

C
ΦE−→ G(A, r)

∩ ∩ Plücker

P∗(H0(detE))
Ψ−→ P∗(

∧r A).

(3.2)

Even when λr is not surjective, the above is still commutative though Ψ = P∗λr is only

a rational map. The linear map λr is important in analyzing E itself also.

Now we assume that the base field k is algebraically closed (until the end of §6). The

dual Grassmannian G(r, A) ⊂ P∗(
∧r A) is also important for (E,A).

Definition 3.1 A linear system (E,A) of rank r is irreducible if it satisfies the following

equivalent conditions:

i) for every r-dimensional linear subspace U of A the image of U ⊗k OC −→ E is of

rank r, and

ii) the kernel of the natural linear map λr :
∧r A −→ H0(C, detE) contains no (non-

zero) simple r-vectors, that is, G(r, A) ∩P∗(Kerλr) = ∅.

The following is known as Castelnuovo’s trick (cf. [2], Chap. 10):

Proposition 3.2 If r(dimA− r) ≥ h0(detE), then (E,A) is reducible,
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Proof. The left hand side of the inequality is the dimension of G(r, A). The codimen-

sion of P∗(Kerλr) ⊂ P∗(
∧rH0(E)) is at most h0(detE). Hence, if the inequality holds,

then the intersection G(r, A) ∩P∗Kerλr is not empty. 2

A line bundle is irreducible. But the irreducibility seems a strong condition in general.

Irreducible ones of rank ≥ 2 will not appear in the sequel. Instead the following concept

plays a crucial role in our proof.

Definition 3.3 A linear system (E,A) of rank r on a (smooth complete) curve C is

semi-irreducible if the evaluation homomorphism evU : U ⊗k OC −→ E is either injective

or everywhere of rank r − 1 for every r-dimensional subspace U of A.

For an r-dimensional quotient space A→ Q, we denote by SQ the Schubert subvariety

{[U ] | rk [U → A→ Q] ≤ r − 2} ⊂ G(r, A) (3.3)

associated to Q. SQ is contained in the projective space P∗((
∧2 W ) ∧ (

∧r−2 A)), which is

the projectivisation P∗(N
∨
G(A,r)/P,[Q]) of the conormal space of G(A, r) ⊂ P∗(

∧r A) at [Q].

The following is obvious:

Lemma 3.4 (E,A) is semi-irreducible if and only if SEp ∩ P∗Kerλr = ∅ for every fiber

Ep of E, p ∈ C.

Now we restrict ourselves to complete linear systems for simplicity.

Proposition 3.5 Assume that a complete linear system |E| of rank r is free and semi-

irreducible.

(1) If F is a proper nonzero subbundle, then h0(F ) ≤ r(F ) + 1, where r(F ) is the rank

of F .

(2) If h0(E) ≥ r + 3, then E is simple, i.e., EndE = k.

Proof. (1) Assume that F is of rank r − 1 and h0(F ) ≥ r. Then the evaluation homo-

morphism B ⊗k OC → F is surjective for every r-dimensional subspace B ⊂ H0(F ) by

semi-irreducibility. Hence we have h0(F ) ≤ r. General case follows from this since, for

every proper subbundle F , there exists a subsheaf F ′ ⊂ E of rank r − 1 which contains

F and h0(F ′) ≥ h0(F ) + r(F ′)− r(F ).
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(2) It suffices to show that every endomorphism φ : E −→ E is either zero or an

isomorphism. Assume that φ is neither. Then both the kernel and the image are proper

subsheaves and we have

h0(E) ≤ h0(Kerφ) + h0(Imφ) ≤ r(Kerφ) + 1 + r(Imφ) + 1 = r + 2

by (1), which is a contradiction. 2

The following is proved similarly.

Lemma 3.6 Assume that two complete linear systems |E| and |E ′| are free, semi-irreducible

and of the same rank r and assume further that h0(E ′) ≥ r + 3. Then every nonzero ho-

momorphism E → E ′ is injective.

4 Linear sections of the symplectic Grassmannian

Throughout this section C ⊂ P8 is a transversal linear section SpG(3, 6) ∩H1 ∩ · · · ∩H5

of the 6-dimensional symplectic Grassmannian.

Lemma 4.1 C is of genus 9 and the restriction of tautological line bundle O(1) is iso-

morphic to the canonical bundle KC of C.

Proof. By Proposition 2.3 and by adjunction, we have KC ' OC(KSpG + H1 + · · · +
H5) ' OC(1). The Chern class of the universal quotient bundle U on G(3, 6) is the sum

1 + σ1 + σ2 + σ3 of the special Schubert cycles ([8], Chap. 1). By Pieri’s formula, we have

2g(C)− 2 = deg[SpG(3, 6) ⊂ P13] = (c3(
2∧
U).c1(U)6) = (σ1σ2 − σ3.σ

6
1) = 21− 5 = 16,

since SpG(3, 6) is the zero locus of a global section of
∧2 U . Hence C is of genus 9. 2

Let G(A, σ), dimA = 6, be a representative of SpG(3, 6).

Lemma 4.2 The linear map
∧3(A, σ)→ H0(KC) is surjective and its kernel is generated

by the linear forms f1, . . . , f5 ∈
∧3(A, σ) defining the five hyperplanes H1, . . . , H5.

Proof. Let Xi be the common zero locus of the first i linear forms f1, . . . , fi for 1 ≤ i ≤ 5.

Then we obtain a ladder

C = X5 ⊂ X4 ⊂ X3 ⊂ X2 ⊂ X1 ⊂ X0 := G(A, σ).

12



Since C is irreducible, so is eachXi. Hence the kernel of the restriction mapH0(Xi,OX(1)) −→
H0(Xi+1,OX(1)) is generated by fi+1, for every 1 ≤ i ≤ 4. Hence

∧3(A, σ)/〈f1, . . . , f5〉 −→
H0(KC) is injective. This map is also surjective because the source and the target have

the same dimension. 2

Let E be the restriction of U to G(A, σ) and E that to C.

Lemma 4.3 The restriction map A→ H0(E) is injective.

Proof. Assume the contrary. Then for each of the Lagrangian quotient spaces A → Q

parameterized by C, Ker [A → Q] contains a nonzero common vector a. Hence C is

contained in the symplectic Grassmannian G(Ā, σ̄), where Ā is the co-radical of A/ka.

This contradicts the preceding lemma sinceG(Ā, σ̄) lies in a 4-dimensional linear subspace.

2

By this lemma we identify A with its image in H0(E).

Lemma 4.4 (1) A nonzero global section s ∈ A of E has at most two zeros (counted with

multiplicity), that is, A∩H0(E(−D)) = 0 for every effective divisor D of degree 3 on C.

(2) If A′ ⊂ A is a subspace of codimension one, then the cokernel of the evaluation

homomorphism A′ ⊗k OC −→ E is of length ≤ 2.

Proof. Assume that s has at least three zeros. Then we have an exact sequence E∨ −→
OC −→ OD −→ 0 for an effective divisor D of degree ≥ 3. Let G(Ā, σ̄) ⊂ G(A, σ) be

the 3-dimensional symplectic Grassmannian determined by s ∈ A. Then the intersection

G(Ā, σ̄) ∩ C contains D. Since G(Ā, σ̄) is a quadric, its intersection with the linear span

〈D〉 is of positive dimension, which is a contradiction. This shows (1). The proof of (2)

is similar. 2

Let U ⊂ A be a 3-dimensional subspace and HU ⊂ P∗
∧3 A the hyperplane corre-

sponding to it. Then the intersection HU ∩G(A, r) consists of the r-dimensional quotient

spaces A→ Q such that the composite U ↪→ A→ Q is not an isomorphism. It is singular

along the Schubert subvariety

{[A→ Q] | rank [U ↪→ A→ Q] ≤ r − 2}. (4.1)

If HU 6⊃ C, then the evaluation homomorphism evU : U ⊗ OC −→ E is of rank 3 at

the generic point. Hence it is injective. If HU ⊃ C, then HU belongs to 〈[H1], . . . , [H5]〉.
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Since the intersection C = H1 ∩ · · · ∩H5 ∩G(A, σ) is transversal, HU ∩G(A, σ) must be

smooth along C. Hence evU is of rank 2 everywhere. So we have proved the following,

which indicates that the semi-irreducibility is a key concept in for canonical curves of

genus 9.

Proposition 4.5 The induced rank three linear system (A,E) on C = G(A, σ) ∩ H1 ∩
· · · ∩H5 is semi-irreducible.

By Proposition 3.2, there exists a 3-dimensional subspace U of A such that HU ⊃ C.

Let F and α be the image and the cokernel of evU . Then α is a line bundle, detF is

isomorphic to β := KCα
−1 and we have exact sequences

0 −→ β−1 −→ 3OC −→ F −→ 0 and 0 −→ F −→ E −→ α −→ 0. (4.2)

By (2.2), the line bundles α and β are both of degree 8.

Proposition 4.6 C is non-pentagonal.

Proof. It is obvious that C is non-hyperelliptic. Since SpG(3, 6) ⊂ P13 is an intersection

of quadrics (see (0.1)), so is C ⊂ P8. Hence C has no g1
3 or g2

5. Let ξ be a g1
5 on C. Then

we have h0(ξ) = 2. Taking the global section of the exact sequence

[0 −→ F∨ −→ 3OC −→ β −→ 0]⊗ ξ,

we have

6 ≤ 3h0(ξ) ≤ dim Hom (F, ξ) + h0(ξβ) = dim Hom (F, ξ) + 5 + h1(ξβ).

Hence we have

dim Hom (F, ξ) + dim Hom (ξ, α) ≥ 1. (4.3)

Assume that there exists a nonzero homomorphism F → ξ and let s be a nonzero

global section in the kernel of B ↪→ H0(F ) → H0(ξ). Then s has at least three zeros

since degF − deg ξ = 3. If Hom (F, ξ) is zero, then Hom (ξ, α) is not by (4.3). Hence α

contains a subsheaf isomorphic to ξ. Let A′ be the inverse image of H0(ξ) by A→ H0(α).

Then the cokernel of the evaluation homomorphism A′ ⊗k OC → E is of length 3. Both

contradict Lemma 4.4. 2
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Remark 4.7 (1) For a curve of genus 9, non-existence of g1
5 is equivalent to that Clifford

index equals to three (Martens[9], Beispiel 9).

(2) The Green’s property (Np) ([6]) gives another proof of the proposition: First a

general curve of genus 9 satisfies (N3) by Ein[3]. Hence SpG(3, 6) ⊂ P13 and its complete

linear sections do so. By the converse of Green’s conjecture (Green-Lazarsfeld[7]), they

are non-pentagonal.

By the proposition and (1) of the remark, C has no g3
8. Hence we have h0(α) =

h0(β) = 3. By Lemma 5.1 below, we have h0(E) ≤ h0(α) +H0(Qβ) ≤ 6. Combining with

Lemma 4.3, we have

Proposition 4.8 The restriction map A→ H0(E) is an isomorphism.

In the following sections we aim at a kind of converse of Proposition 4.5.

5 Rank 3 linear systems on a non-pentagonal curve

Throughout this section we assume that C is a non-pentagonal curve of genus 9. In

particular, C has no g2
7. Let α be a g2

8, β its Serre adjoint and Qβ the cokernel of evβ as

in the introduction and in (1.1). The image of Φβ : C −→ P2 is a singular plane curve of

degree 8. Hence there exists a pair (p, q) of points such that h0(β(−p− q)) = 2. Since C

is non-pentagonal, ξ := β(−p− q) is a free g1
6. Hence we have a commutative diagram

0 −→ β−1 −→ 3OC −→ Qβ −→ 0

∩ ↓ ↓
0 −→ ξ−1 −→ 2OC −→ ξ −→ 0

(5.1)

and an exact sequence

0 −→ OC(p+ q) −→ Qβ −→ ξ −→ 0. (5.2)

Lemma 5.1 (1) h0(Qβ) = 3.

(2) H0(α−1Qβ) = 0.

Proof. (1) h0(Qβ) ≥ 3 is obvious from the defining exact sequence of Qβ. The opposite

inequality h0(Qβ) ≤ 3 follows from (5.2).
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(2) Qβ is isomorphic to βQ∨β since it is of rank 2. Hence Qβ is a subbundle of 3β. If

α 6' β, then H0(α−1β) = 0 and hence H0(α−1Qβ) = 0. If α ' β, then H0(α−1Qβ) '
H0(Q∨β ) = 0 by the exact sequence (1.1). 2

We consider Γ-split extensions

0 −→ Qβ −→ E −→ α −→ 0. (5.3)

Lemma 5.2 There exists a nontrivial extension E of α by Qβ with h0(E) = 6.

Proof. The extensions with h0(E) = 6 are parameterized by the kernel of the natural

linear map ϕ : Ext 1(α,Qβ) −→ H0(α)∨⊗H1(Qβ), which is equal to the first cohomology

H1 of the homomorphism

[α−1 ev∨−→ H0(α)∨ ⊗OC ]⊗Qβ.

Since its cokernel is Qα ⊗Qβ, we have an exact sequence

H0(α)∨ ⊗H0(Qβ)
ψ−→ H0(Qα ⊗Qβ) −→ H1(α−1Qβ)

ϕ−→ H0(α)∨ ⊗H1(Qβ) (5.4)

The first map ψ is injective by (2) of Lemma 5.1 and h0(Qα ⊗ Qβ) is even by Proposi-

tion 1.2. Since h0(α)h0(Qβ) = 9, ϕ is not injective. 2

Proposition 5.3 Let E be as in the preceding lemma. Then the complete linear system

|E| is free and semi-irreducible.

Proof. |E| is free since both |Qβ| and |α| are so. Let U ⊂ H0(E) be a 3-dimensional

subspace and F ⊂ E the saturation of the subsheaf F ′ generated by U . Obviously

h0(F ) ≥ 3. If F is of rank one, then degF ≥ 8 by our assumption. Since F 6⊂ Qβ,

the extension (5.3) splits, which is a contradiction. Hence F is of rank two. Let ξ

be the quotient line bundle E/F . Since |E| is free, so is ξ. Since Hom(E,OC) = 0,

we have h0(ξ) ≥ 2, which implies deg ξ ≥ 6 by our assumption. By duality, we have

h0(detF ) = h1(ξ) ≤ 4.

Assume that h0(F ) ≥ 4. Then F contains a line subbundle ζ with h0(ζ) ≥ 2 by

Proposition 3.2. Since ζ 6⊂ Qβ, ζ is isomorphic to a proper subsheaf of α. Hence we have

h0(ζ) = 2. Let η be the quotient line bundle F/ζ. Then we have h0(η) ≥ h0(F )−h0(ζ) = 2.

Since deg ζ + deg η + deg ξ = 16, one of the three line bundles is of degree ≤ 5, which

is a contradiction. Hence we have h0(F ) = 3 and h0(ξ) ≥ h0(E) − h0(F ) = 3. Since
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h1(ξ) = h0(detF ) ≥ 3, ξ is a g2
8 and F ′ is isomorphic to Qξ. In particular, F ′ = F and

F ′ is a subbundle. 2

Now conversely we study a uniqueness.

Lemma 5.4 Nontrivial extensions E of α by Qβ with h0(E) = 6 are unique.

Proof. The assertion is equivalent to h0(Qα⊗Qβ) ≤ 10 by the exact sequence (5.4). Take

the global section of the exact sequence

(5.2)⊗Qα : 0 −→ Qα(p+ q) −→ Qα ⊗Qβ −→ Qαξ −→ 0

and we have

h0(Qα ⊗Qβ) ≤ h0(Qα(p+ q)) + h0(Qαξ) = h0(Qα(p+ q)) + h1(Qα(p+ q))

= 2h0(Qα(p+ q))− χ(Qα(p+ q)).

Since χ(Qα(p+ q)) = −4, it suffices to show h0(Qα(p+ q)) ≤ 3. Assume the contrary.

Case where h0(Qα(p + q)) = 4. Let {s1, s2, s3, s4} be a basis of H0(Qα(p + q)) such

that s1, s2, s3 ∈ H0(Qα) and F the image of the evaluation homomorphism H0(Qα(p +

q))⊗kOC −→ Qα(p+q). Then the quotient F/Qα is generated by the image of s4. Hence

we have degF ≤ degQα + 2 = 10. We have h0(detF ) ≤ 4 by the non-existence of g2
6.

Since h0(F ) ≥ 4, there exists a 2-dimensional subspace of H0(F ) which generates a rank

one subsheaf by Proposition 3.2. This contradicts the non-existence of g1
5.

Case where h0(Qα(p + q)) ≥ 5. Since degQα(p + q) = 12 and since C has no g1
4, we

have h0(det(Qα(p+ q))) ≤ 5. By Proposition 3.2, there exists an exact sequence

0 −→ ζ −→ Qα(p+ q) −→ η −→ 0

such that h0(ζ) ≥ 2. Since η(−p− q) is a quotient of Qα, we have h0(η(−p− q)) ≥ 2 and

deg η(−p− q) ≥ 6, which implies deg ζ ≤ 4. This is a contradiction. 2

We strengthen this lemma.

Lemma 5.5 A rank 3 vector bundle E on C which satisfies

i)
∧3 E ' KC, ii) h0(E) ≥ 6 and iii) |E| is semi-irreducible

is an extension of α by Qβ.
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Proof. By Lemma 1.1, or by (1.3), we have

dim Hom (Qβ, E) + dim Hom (E,α) ≥ 2.

(h0(E) = r+s and the Brill-Noether number ρ is equal to 0.) Hence there exists a nonzero

homomorphism either f : Qβ −→ E or g : E −→ α.

If the image of f is a line bundle L, then h0(L) ≥ 2 since Hom (Qβ,OC) = 0. This

contradicts (1) of Proposition 3.5. Hence f is injective. By semi-irreducibility, the cokernel

is a line bundle and isomorphic to α.

If g : E −→ α is not surjective, then the kernel of H0(E) −→ H0(α) is of dimension ≥
4, which contradicts semi-irreducibility. Hence g is surjective and its kernel is isomorphic

to Qβ. 2

By the two lemmas above, we have the following

Proposition 5.6 Vector bundles E on C which satisfy the condition of the lemma are

unique up to isomorphism.

This vector bundle is often denoted by Emax.

Corollary If E is a rank 3 vector bundle of canonical determinant on C and if |E| is

semi-irreducible, then h0(E) ≤ 6.

Remark 5.7 (1) By the proposition and its proof, we obtain an explicit bijection between

two sets: W 2
8 (C), the set of g2

8’s of C, and the intersection G(3, H0(Emax))) ∩ P10. It is

known that the cardinality of W r−1
d (C) of a general curve C of genus g is equal to the

degree of a g-dimensional Grassmannian when the Brill-Noether number ρ is zero (cf. [1]

Chap. VII and [4] Example 14.4.5).

(2) By (1) of Proposition 3.5, it is easy to show that Emax is stable. It is also easy to

show a converse: if E is stable,
∧3 E ' KC and h0(E) = 6, then |E| is semi-irreducible.

6 Linear section theorems

We prove Theorem C in several steps. Assume that E satisfies the condition (0.2). Since

E is a rank 3 vector bundle of canonical determinant, KCE
∨ is isomorphic to

∧2 E. Hence,

by the Riemann-Roch theorem, we have
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h0(E)− h0(
2∧
E) = degE + 3(1− 9) = −8.

and h0(
∧2 E) = 14. Since dim

∧2 H0(E) = 15, the linear map λ2 :
∧2 H0(E) −→

H0(
∧2 E) is not injective.

Step 1. Every nonzero bivector σ in Kerλ2 is non-degenerate.

Proof. The rank of σ is either 2, 4 or 6. If σ is of rank 2, then σ is equal to s1 ∧ s2

for a pair of global sections s1 and s2 which are linearly independent in H0(E) and

generate a rank one subsheaf in E. This contradicts Proposition 3.5. Assume that σ

is of rank 4. Then σ is equal to s1 ∧ s2 − s3 ∧ s4 for s1, s2, s3 and s4 ∈ H0(E). By

semi-irreducibility, s1 and s2 generate a rank two subsheaf in E. Let F be its saturation.

Since λ2(s1 ∧ s2) = λ2(s3 ∧ s4), we have λ3(s1 ∧ s2 ∧ si) = λ3(s3 ∧ s4 ∧ si) = 0 for i = 3, 4.

Hence s3 and s4 are contained in H0(F ) and we have h0(F ) ≥ 4. This contradicts the

semi-irreducibility of |E|. 2

The nondegeneracy of σ is equivalent to the non-vanishing of Pfaffian. Hence Kerλ2

is of dimension one and λ2 is surjective. Since |E| is free, we obtain the Grassmannian

morphism ΦE : C −→ G(A, 3), were we put A = H0(E). Its image is contained in the

symplectic Grassmannian G(A, σ) and we obtain the commutative diagram (0.3), where σ

is a generator of Kerλ2. Since
∧3(A, σ) is of dimension 14, the kernel of λ̄3 :

∧3(A, σ) −→
H0(KC) is of dimension ≥ 14− 9 = 5. Let f1, . . . , fk, k ≥ 5, be its basis and H1, . . . , Hk

the hyperplanes corresponding to them. Since |E| is semi-irreducible, the intersection

SEp ∩P∗Kerλ3 is empty for every p ∈ C by Lemma 3.4. Hence so is α(SEp) ∩P∗Ker λ̄3.

Step 2. There exists a point p ∈ C such that the intersection G(A, σ)∩H1∩· · ·∩Hk

is transversal at ΦE(p).

Proof. Assume the contrary. Then, for every p ∈ C, there exists a member Hp

of 〈[H1], . . . , [Hk]〉 = P∗Ker λ̄3 such that the intersection G(A, σ) ∩ Hp is singular at

ΦE(p). Hence the intersection P∗(N
∨
G(A,σ)/P,[Ep])∩P∗Ker λ̄3 is a point by Proposition 2.4.

Therefore, we obtain a section of the P6-bundle P∗(Φ∗ENG(A,σ)/P) over C which is disjoint

from
∐
p∈C α(SEp). By projecting from

∐
p∈C κp, we obtain a section of P∗(S

2E) over

which discriminant form δ ∈ H0(S3(S2E)∨⊗ (det E)⊗2) has no zeros. Let ξ ⊂ S2E be the

line subbundle corresponding to the section. Then δ induces a nowhere vanishing global

section of ξ−3 ⊗ (det E)⊗2. This implies 3 deg ξ = 2 degE = 32, which is absurd. 2
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In particular, we have k = 5 and hence the linear map λ̄3 is surjective. Therefore,

P∗λ̄3 is a linear embedding. Since the canonical morphism ΦK is an embedding, so is ΦE

by the commutative diagram (0.3). We identify C with its image ΦE(C).

By Step 2, the intersection G(A, σ) ∩H1 ∩ · · · ∩H5 is complete on a non-empty open

subset C0 of C. Hence the twisted normal bundle NC/G(A,σ)(−1) is generated by the

five global sections induced from f1, . . . , f5 over C0. Since NC/G(A,σ)(−1) is of trivial

determinant, it is generated over C. Therefore, the intersection is complete along C and

contains it as a connected component. By the connectedness of linear sections (Fulton-

Lazarsfeld [5], Theorem 2.1), the intersection coincides with C, which completes the proof

of Theorem C. (If we use the refined Bézout theorem (Fulton[4], Theorem 12.3), the proof

finishes at the last paragraph.)

Theorem A is an immediate consequence of Theorem C, Proposition 5.3 and Proposi-

tion 4.6.

7 Proof of Theorem B

We do not assume that k is algebraically closed any more. Let C ' G(A′, σ′) ∩ P ′ be

another expression of C = G(A, σ) ∩ P as a complete linear section of a 6-dimensional

symplectic Grassmannian and E ′|C the restriction of the universal quotient bundle. Both

|E|C | and |E ′|C | are semi-irreducible (over k̄) by Proposition 4.5. Hence they are isomorphic

to each other over k̄ by Proposition 5.6 and there exists a nonzero homomorphism f :

E|C −→ E ′|C over k. This is an isomorphism by Lemma 3.6. Since the diagram

∧2 H0(f)∧2 A =
∧2 H0(E|C) −→ ∧2 H0(E ′|C) =

∧2 A′

↓ ↓
H0(

∧2 E|C) −→ H0(
∧2 E ′|C)

H0(
∧2 f)

is commutative, the isomorphism H0(f) maps kσ onto kσ′. Thus we have proved (2) of

Theorem B.

Assume that k is perfect and let Ē be a vector bundle on C̄ = C ⊗k k̄. We consider a

descent problem of Ē under the following condition:

(∗) Ē is simple and σ∗Ē ' Ē for every element σ of the Galois group Gal k of k̄/k.
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As is well known, the obstruction ob(Ē) for Ē to descend to C is defined as an element

of the second Galois cohomology group H2(Gal k,Aut Ē). Choose an isomorphism fσ :

Ē
∼−→ σ∗Ē for each σ ∈ Gal k. Then ob(Ē) is the cohomology class of the cocycle

{cσ,τ}σ,τ∈Gal k defined by cσ,τ = f−1
στ ◦ τ ∗(fσ) ◦ fτ ∈ Autk̄ Ē. In other words, ob(Ē) is the

factor set of the extension

1 −→ Autk̄ Ē −→ Autk Ē −→ Gal k −→ 1.

Lemma 7.1 If dimH i(C̄, Ē) = n > 0, then the obstruction ob(Ē) is an n-torsion.

Proof. Let {s1, . . . , sn} be a basis of H i(C̄, Ē) and Aσ ∈Mn(k̄) the matrix representing

H i(fσ) : H i(C̄, Ē) −→ H i(C̄, σ∗Ē)

with respect to the bases {s1, . . . , sn} and {σ∗s1, . . . , σ
∗sn}. Then we have

detH i(cσ,τ ) = (detAστ )
−1τ(detAσ) detAτ

in k̄×. Therefore, {detH i(cσ,τ )}σ,τ∈Gal k is cohomologous to zero. Since cσ,τ are all constant

multiplications, detH i(cσ,τ ) are equal to cnσ,τ . Hence ob(Ē) is an n-torsion. 2

Now we prove (1) of Theorem B. Let C be a non-pentagonal curve of genus 9 defined

over k. It suffices to show the following:

Proposition 7.2 Assume that C has no g1
5 over k̄. Then there exists a vector bundle E

on C such that E ⊗k k̄ is isomorphic to the vector bundle Emax on C ⊗k k̄ in Theorem C.

Proof. By Propositions 3.5 and 5.6, Emax satisfies (∗). Hence the obstruction ob(Emax)

belongs to H2(Gal k,Aut k̄Emax) = H2(Gal k, k̄×). Let

Det : H2(Gal k,Aut k̄Emax) −→ H2(Gal k,Aut k̄ detEmax)

be the determinant homomorphism. Since detEmax is the canonical bundle, it descends to

C. Hence ob(Emax) belongs to the kernel and is a 3-torsion. On the other hand, ob(Emax)

is a 14-torsion by the preceding lemma since dimH1(Emax) = 14. Therefore, ob(Emax)

vanishes and Emax descends to C. (This is a Galois group variant of an argument of

Mumford-Newstead [11].) 2
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