Canonical curves of genus eight

Shigeru MUKATI *and Manabu IDE |

Let C be a smooth complete algebraic curve of genus g and Coy_o C P97}
the canonical model. It is generally difficult to describe its equations for
higher genus. We restrict ourselves to the case of genus 8. If C' has no g2,
then C14 C P7 is a transversal linear section [G(2,6) C PN H; N---N Hy
of the 8-dimensional Grassmannian ([Muk2]). This is the case (8) of the
flowchart below. In this article we study the case where C' has a g% a. The
system of defining equations of the canonical model is easily found from the
following:

Theorem (i) Assume that C' has no gi. If a®> = K¢, then C is the in-
tersection of the 6-dimensional weighted Grassmannian w-G(2,5) C P(13 :
26 1 3) with a subspace P(13 : 22), where w = (1,1,1,3,3)/2 (Case (7) of
Flowchart). Otherwise C is the complete intersection of three divisors of
bidegree (1,1),(1,2) and (2,1) in P2 x P2 (Case (6) of Flowchart).

(i) Assume that C has a gj but no g3. Then C is the complete inter-
section of four divisors of bidegree (1,1),(1,1),(0,2) and (1,2) in P! x P4
(Case (5) of Flowchart).

Corollary A curve of genus 8 is a complete intersection of divisors in a
variety X which is either a non-singular toric variety or a weighted Grass-
Mannian:

Case | (1) (2) (3) (4) (5)
X Fo | P! x P, Fy | P-bundle over S; | Bl, P? | P! x P*
Cliff C 0 1 2

(6) (7) (8)
P2 x P? | w-G(2,5) | G(2,6)
3

Here Sy is the blow-up of P? at two points and the bottom row indicates the
Clifford index of C.
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The essential part of the proof of Case (6) is the surjectivity of the
multiplication map H°(a) ® H(Kca™!) — H°(K¢). In order to show this
we investigate the linear section [P? x P? C P®]N H; N Hs of the Segre variety.
(This is one of well-known descriptions of del Pezzo surfaces of degree 6.)
We classify all degenerate cases in Appendix.

In the cases (6) and (7), the image of &, : C'— P? is a plane curve
of degree 8 with 7 double points (counted with multiplicity). The blow-up
S — P? at these points is very important for the theorem. In fact, in the
former case, S is the minimal resolution of the intersection of two divisors
(1,1)Nn(2,1) C P? x P2.

In the latter case (7) the 7 double points lie on the same conic. We
use an extremal contraction of the log del Pezzo surface (S, —Kg — 3A) to
show the theorem, where A is the strict transform of the conic. The linear
systems |n(h + 2A)|, n = 1,2,3, define a morphism of S to the weighted
projective 5-space P(111223), where h is the total transform of a line. This
contracts the (—3)-curve A to a point. Since C belongs to |3h + 24|, its
image is contained in the 4-space P(11122). Moreover, C' — P(11122) is an
embedding. In Section 3 we find five hypersurfaces containing the image of
C' explicitly and show that their equations are the five 4 x 4 Pfaffians of a
skew symmetric matrix of size 5.

no no

self-

(6) == adjoint

Flowchart

Remark. (1) A curve C of genus 7 is a complete intersection of divisors in
a smooth variety X which is either toric or the 10-dimensional orthogonal



Grassmannian ([Muk3]).

ClftC || 0 1 2
X Fg | F1,F3 | P(Op2 @ Op2(2)),P? x P2, P! x P3
3
10-dim. orth.
Grassmannian

(2)The corollary is applied to the K3-extension problem in [I].

Notation and convention: The canonical divisor of a variety X is denoted
by Kx. A gl is a line bundle of degree d and h® > r + 1. For the tenser
product a® G of line bundles, we often omit the tensor symbol ® and denote
by af. Sometimes we denote by «+ 3 as if they are (Cartier) divisors. The
linear equivalence of divisors is denoted by ~.

1 Curves with small Clifford index

In this section, we study the cases (1), -+, (5). For any P"-bundle F = P (&)
on a scheme X (where € is a vector bundle of rank 7 + 1 on X), L denotes
the tautological line bundle on F and 7 the structure morphism F — X.

Case (1): hyperelliptic. There is a 2 : I-morphism
Dk C— P!

onto a rational curve. It is branched over 18 points, and these are distinct
since C' is smooth. Let (sg : s1) be a homogeneous coordinate of P! and
f(s0,51) = 0 an equation of degree 18 defining branch loci. The double
covering

{y* — f(s0,51) = 0}

in the weighted projective space P(1: 1 :9) is isomorphic to C. Thus C is
contained in the scroll Fg = P*(Op1 @ Op1(9)) — P(1:1:9) as a divisor
linearly equivalent to 2L.

Case (2): trigonal. The quadric hull
X= (] QcP

@:quadric
Q>C

is a 2-dimensional rational normal scroll (JACGH] III §3). Moreover, X is
either F3 3 2 P! x P! or Fyo = P*(Op2 @ Op2(2)).



Case (3): bielliptic. There exists a two-to-one morphism
7:C — E; CPS

onto an elliptic curve E7 of degree 7. E7 is a hyperplane section of the del
Pezzo surface S := S7 C P7 of degree 7. The branch locus B of 7 is a
sum of distinct 14 points, and therefore there exists a quadric hypersurface
Q C P with B = QN E;. Since S C P7 is an embedding defined by the anti-
canonical linear system of S, we have F7 ~ —Kgand D := QNE; € |[-2Kg]|.
There is a double covering S

P*(OS ) Os(—Ks)) 5558
branched over D. C is the complete intersection of two divisors S and
a1 (E7) .

Case (4): tetragonal with a non-bielliptic gZ. Let a be a non-bielliptic
g%, and = Kca~ ! its Serre adjoint, which is a gg by Riemann-Roch. Since
the Clifford index of C' is equal to 2, both « and 3 are base point free. The
linear system || defines a birational morphism @, : C — Cg onto a plane
sextic with two nodes, one of which may be infinitely near. Let

7.8 %8 L p?

be the composite of the blow-ups at these nodes, h the pull-back of a line
class of P2, e; the total transform of the exceptional divisor of 71, and ey the
exceptional divisor of my. Since —Kg ~ 3h—e1 —eg and C' ~ 6h — 2e1 — 2eo,

Ko = (Ks+C)lc =—-Ksl|c
= (3h — €1 — 62)’0
= h|c =+ (2h —e1 — 62)‘0

by the adjunction formula. Thus we have
a=hlg, B=(2h—e1 —e)c, and fa~' = (h —e1 — ea)|c

On the other hand, |3| defines a birational morphism @5 : C' — Cg C P3
onto a curve of degree 8. This morphism is extended to a morphism

¢|2h—el—ez| 08— S5 C p?

from S onto a quadric surface S9. If the two nodes of Cg are distinct, then
ler — e2| is empty and S is a smooth quadric. Otherwise, there is a unique



(—=2)-curve D € |e; — ez with D.C' = 0, and Sz is the singular quadric.
In each case, Djgj—c,—e,| contracts a (—1)-curve L € |h — €1 — ea], which is
the strict transform of the line passing through the two nodes of Cg, to a
nonsingular point of S;. Since L.C' = 2, (s has one double point ¢ € Cs.
Since Cg is a curve of degree 8 and arithmetic genus 8 +1 = 9, it is a
complete intersection of So and a quartic surface Sy C P3.

Let ¢ : V — P3 be the blow-up at g, H the pull-back of a hyperplane
class of P3, and F the exceptional divisor. Then —Ky ~ 4h — 2E, and C
is the complete intersection of two divisors of classes 2H — FE ~ —%KV and
4H — 2E ~ —Ky since C' + 2L ~ 4(2h — e1 — eg).

Case (5): tetragonal without g2. Let a be a g} and 3 = wea™! its
Serre adjoint. Then the system |« is base point free since C' is not trigonal.
Now f is a g‘llo by Riemann-Roch, and is very ample since C' has no g%.

1

Lemma 1.1. The multiplication map
i HY0) @ HY(8) — HO(Ko)
18 surjective.

Proof. By the base point free pencil trick ([ACGH] III §3), the kernel of the
multiplication map p is H°(a~!3). If u is not surjective, then the dimension
of the kernel is at least 3. Therefore o~ '3 is a gg. This is a contradiction. [J

There is a commutative diagram of embeddings

Pl x P4 S po _ pr(H0(a) @ HO(S))

%\XQBWJ Tu*
C canonical P7 — p*HO (WC’)-

where p* is the linear embedding associated with the surjective multiplica-
tion map p. By the lemma, the number of linearly independent (1, 1)-forms
vanishing on C is equal to 2. Therefore C' is contained in the intersection
Y of two divisors of bidegree (1,1) in P! x P3. Since every divisor of bide-
gree (1,1) containing C' is smooth, Y is smooth of dimension 3. Moreover
PicY = Z? by Lefschetz theorem. By easy dimension count, there exists a
divisor of bidegree (1,2) and (0,2) on Y which contain C'. Since the degree
of the complete intersection is

(a+b)%.(a+2b).(2b).(a + b) = 14ab® = 14 = deg C,

where a = priOpi(1) and b = pr3jOps(1), the complete intersection Y N
(1,2) N (0,1) coincides with C.



2 Curve with a linear net of degree 7 (Case (6))

Assume that C has a g% a but no gl. Let C be the image of the morphism
Do : C — IP? defined by . Then C is a plane septic with no triple points,
since C' has no g% or gi. By the genus formula, C' has 7 double points, some
of which may be infinitely near. Therefore, there are a composition 7w of
seven one-point-blow-ups

S:=8; — S — - — 8] — Sy = P?

from the projective plane and a commutative diagram

cC — C
1 1
S I, P2

Let E;, 1 < i < 7, be the total transform on S of the exceptional divisor
of the blow-up S; — S;_1, and let h be the pull back of a line. Then the
curve C is a member of the linear system |7h —23"7_| E;|. The canonical
divisor of S is Kg = —3h + Y.1_, Ej.

From the exact sequence

7 7 7
0— OS((TL — 7)]1 + Z Ez) — Os(nh — Z Ez) — Oc(nh — Z EZ) — 0
i=1 i=1 i=1
and the vanishing
) 7 )
H'(Os((n—7)h+ > E;)) = H>(Os((4 —n)h))V =0 for alln <6,
i=1
we have
Lemma 2.1. The restriction map
7 7
HY(S,0s(nh = 3 E;)) — H'(C,0c(nh - 3 Ey))
i=1 i=1

s surjective for every n. Moreover, it is isomorphic for n < 6. O

By the adjunction formula, we have

7 7
Ko = (Ks+C)lc = (4h — Y Ei)lc = hlc + (3h = X Ei)lc,
=1 =1



and therefore the Serre adjoint 8 = Kca™! of the g2 a = O¢(h) is isomor-
phic to O¢(3h — ZZ: E;). By Lemma 2.1, « is self adjoint, i.e., o = 3,
if and only if |2 — ., E;| # 0. We discuss the case a = [ in the next
section, and now assume that o 2 3. The 7 double points of C' does not lie
on the same conic.

Proposition 2.2. The multiplication map
H%a) @ H°(8) — H(ap) = H*(Kc)
18 surjective.

Proof. Assume the contrary. Then there are two independent (1,1)-forms
on P2 x P2. Let P be the pencil generated by them, and X = Xp the base
locus of P. If P contains a (1,1)-form of rank 1, then the image of ¢/, is a
line, which is a contradiction. Therefore P contains no (1, 1)-forms of rank
1.

If P is a regular pencil, then by Appendix, Xp is irreducible. Let 7 :
Xp — P? be the restriction of the projection P? x P> — P2 onto the first
factor. Then there is an effective divisor E such that

KX :W*sz + F.

On one hand, since Ky = Ox(—1,—1), 7*Kp2 = Ox(—3,0), and Ox(C) =
Ox(7,7), we have

E.C =0x(2,-1).0x(7,7) =1.

On the other hand, since Ip is of colength 3 (Proposition 4.3 of Appendix),
we have a composition series

IpZIgCIQC[1CO]p2

of ideal sheaves. Therefore, there is a composition
. L 3 L P2 L 2 U1 o9
Y X3 = Bl,Xo — X9 :=Bl, X1 —- Xy =Bl P =P

of three one-point-blow-ups. The variety X3 is clearly smooth, and has its
canonical bundle
KX3 = T/J*K]p2 + F1 4+ Ey + Ej,

where E; is the total transform of the exceptional divisors of ;. By the
universal property of the blow-up ([H] I 7.14), there is a morphism

Y : X3 — Xp = Bl P>



(If P is general, then V(Ip) consists of distinct three points, and ¢’ is an
isomorphism.) Since Xp is a complete linear section of P2 x P2, it has
at worst rational double points as its singularities. Thus ¢’ is a crepant
resolution, and we have

Ey+Ey+ E3=9¢""E.

Therefore, for some i = 1,2, 3, we have E;.C > 3, and ¢¥*Op2 (1) — E; restricts
to a gcll with d < 4 on C. This is a contradiction.

If P is singular, then by Appendix, Xp is either
I) AUP!xPY, or
I) Fs2U(pxP?).
If Xp is of type I, then C is contained in either the diagonal A or P' x P
The former means that « is isomorphic to 3, and the latter means that the
image of @, and &g are both lines. This is a contradiction.

If Xp is of type II, then C is contained in either F32 or p x P2. In the
former case, the image of @5/ is contained in a conic, and in the latter case,
the image of @), is a point. Thus we have a contradiction. O

Now, we first consider the commutative diagram

7 7
H°(S,h) ® HYS,3h—>.E;) — H°S,4h— Y E;)
=1 =1

! l l
H°(C,o) ® H'(C,f) — H°(C,Kc)

whose horizontal and vertical maps are multiplication and restriction, re-
spectively. The vertical maps are all isomorphisms by Lemma 2.1. Hence
the image of the rational map

(P Psn—y 1)) : S —--— P? x P?

is contained in a divisor W of bidegree (1,1) (This rational map is a mor-
phism in the neighborhood of C'). It is obvious that W is irreducible.
Next, we consider the commutative diagram

HY(S,2h) ® HO(S,3h—iEi) — HO(S,5h—iEi)
=1 =1
! | |
H°(C,a?) ® HY(C,p) — H(C,aK¢).



The vertical restriction maps are all isomorphisms. The dimension of the
kernel of the horizontal multiplication map is at least

(2 ;r 2) x 3 — hO(aKc) = 4.

Hence there is a divisor W’ of bidegree (2, 1), which does not contain W but
contains the image of S. The intersection W N W' contains C' C P? x P2,
Next, we consider the divisor class of bidegree (1,2). Its pull-back to S
is
7 7
h+2Bh—> E;)=Th—2> E;,
i=1 i=1
and therefore, is linearly equivalent to C. We now study the 15 quadrics
which vanish on the canonical model Ci4 C P7 of C. First, Ci4 is contained
in a hyperplane section of the Segre variety

(W c P7] = [P? x P2 c P’| N H,

and there are exactly 9 quadrics vanishing on W. Next, there are 3 quadrics
which cut out W N W’ from W. Finally, since the pull-back of Opr(2) to S

7
is Og(2(4h — > E;)) = Og(C + h), and since we have an exact sequence
i=1

0 — Og(h) — 0Os5(C+h) — Oc(C+h) — 0,

1% 112
Os(2) Oc(2)

there are 3 more independent quadrics vanishing on C. Thus we have found
9 + 3 + 3 = 15 independent quadrics vanishing on C. By Noether’s the-
orem, they form a basis of H°(P",Z(2)), and by the Enriques-Petri the-
orem ([GH], Chap. 4), they define the canonical model Cy4 C P7 scheme-
theoretically. Thus C' is the complete intersection of divisors (1,2) and (2, 1)
in W.

3 Curves with a self adjoint net (Case (7))

Let A be the unique member of |22 — Y7 E;| and A C P? its image.
Then A is an irreducible conic. We choose homogeneous coordinates of
A =2 A =2 P! and P? such that the morphism A — P2 is given by (s :
t) — (zo : 1 : 22) = (s* : st : t2). The surface S is the blow-up at
seven points on A. Let f(s,t) = 0 be the equation of degree 7 over A whose



solutions are the center of this blow-up. We shall construct a key polynomial
F(z) € H(S,05(Th—2 ZZ:1 E;)) which is determinantal in a certain sense.
This will imply that the system of equations of C C P(1:1:1:2:2)is
Pfaffian of skew-symmetric matrices.
We start with a pair of ternary quartic polynomials A(x) and B(x) such
that
A(s?, st,t?) = sf(s,t) and B(s? st,t?) =tf(s,t).

Such polynomials exist by the exact sequence

0 — H°(P?,0p(2)) — H(P?,0p(4)) — H°(A,0zx(4)) —0.

I (1)

HO(P', Op1(8))
Since tA(s?, st,t?) — sB(s?, st, t?) is zero, the quintic polynomials x1 A(z) —
2oB(z) and w9 A(x) — x1 B(z) are divisible by §(x), the equation of A C P2,

We put

{ —zoB(z) +z1A(x) = d(x)D(x) @)

—x1B(z) +x0A(x) =d(x)E(x),

where D(z) and E(x) are cubic forms. Put
{ D0 = wioimo (ol o "
E(z) = ro(2)wo + ri(z)z1 + r2(z)z2

for quadratic forms ¢;(x)’s and r;(x)’s and we obtain

{ [B(x) + go(2)d(x)]xo + [-A(2) + q1(x)d(2)]x1 + g2 (2 )5(93)962—0 (4)
ro(z)d(x)zo + [B(x) + ri(z)é(x)]zr + [-A(2) + ra(2)d(z)]xs

By Cramer’s formula we have
—A+qi6 q20 q20 B+ qod B+qgd —A+q6
B+rd —A4+19 _ — A+ 190 ) 700 B+ 16
Zo B 4o €2

= F(x). (5)

Here F(x) is a form of degree 7 since x;F(x) is a form of degree 8 for
1 =20,1,2. Let yp,y1 and z be new indeterminates which are algebraically
independent over k(xg,z1,z2). We consider the ring homomorphism

1
¥s - k[:pOal‘laanyanle] — k |z, 71, T2, = | ,
()

A(z) B(x) F(x)
P T ) T b2

10



and its kernel Ig. Then Ig is a (quasi-)homogeneous ideal under the grading
degz; =1, degy; = 2 and deg z = 3. By the equation (4), two cubic forms

aO(x7y)x0 +a1(x,y)x1 +a2(x7y)x27 and (6)
b0($a Z/)CUO + b ('Ia y)ml + bQ(ma y)xQ

belong to I'g, where we put

CL()(flf,y> =y + QO(x)7 al(a:,y) = —Yo + QI<m)7 GQ(CE,y) = QQ(m)
bo(z,y) = ro(x), bi(z,y) =y +ri(z), be(x,y) = —yo + ra(z).

By (5), three quartic forms

wos  |01(@y) a2z y)| as(z,y) ao(w,y)|
0 bl(ff,y) bQ(xay) ’ bQ(:Cay) bo(fE, ) =
(7)
Toz — aO(q’.vy) a’l(xvy)’
bo(ﬂf, y) bl (1"’ y)

belong to Is. These five relations (6) and (7) are the five 4 x 4 Pfaffians of
the skew-symmetric matrix

0 z aolz,y) ai(z,y) ao(z,y)
0 bo(x,y) bi(z,y) ba(z,y)
0 T2 —x1 . (8)

0
Now we relate the ideal Ig with the anti-canonical ring of a weak log del
Pezzo surface. Let

R=@ H(S, In(~Ks — s0)]) = @ HO(S, [n(h + 2 A))

n>0 n>0

be the homogeneous coordinate ring of the Q-divisor —Kg — %A, which is
linearly equivalent to i+ 2A. For a global section s € HO(S,n(h + 2n)) =
HO(S,nh +al) = H((n +2a)h —a Y., Ei), a = |2n], its push-forward
75 € HY(P2?, Op2(n + 2a)) is a homogeneous polynomial of degree n + 2a.
We identify R with the image of the injective ring homomorphism ) : R —
klxo,x1,x2,1/0(x)] defined by

1
5y

HO(S,nh +al) 3 s +— 57(2;; € klxo, x1, z2,

11



The degree 1 part HY(S,h) is spanned by the homogeneous coordinates
x,z1,22. The degree 2 part H?(S,2h + A) contains S?(xg,z1,22) as a
subspace. The pull-back of the quartic forms A(z) and B(x) to S belong to
HY(S,4h — Zi?:1 E;) and {A(z)/é(x), B(z)/d(x)} is a complementary basis
of S?(wg,z1,79) C H°(S,Os(2h + A)) by the exact sequence (1). Consider
the multiplication map

7

H°(S,h) ® HY(S,2h +A) — H°(S,3h+ A) = H(S,5h— > E;)
=1
N
7
HO(S,3h+2A) 2 HY(S,7Th —2 Y. E;)
i=1

(9)
from degree 1 and 2 to degree 3. Since the restriction maps H°(S,h) —
H(Oa(h)) and H°(S,2h + A) — H°(OA(2h + A)) are surjective, so is
this multiplication map. By the exact sequence

7 7 7
0— Os(5h— 3. E;) — Os(Th =23 E;) — Oa(Th — 2 E;) — 0,
i=1 =1 i=1

Il
Oa
(10)
the degree 3 part H°(S,3h + 2A) is generated by the image of (9) and
F(x)/6(x)2.
Now we relate the ideal Ig with the (semi-)canonical ring of C' € |7Th —
2 22-711 E;|. Since C is disjoint from A and since Oc(h + 2A) = a, we have
the restriction map

2
HO(S, [n(h +38))) — H'(C,a") (11)
and the restriction homomorphism

R — R(C,a) := @ H(C,a™).
n>0

Since (11) is an isomorphism for n = 1 and 2, the ring homomorphisms ¢g
and v induce that

e : klxo, 1, 2,90, y1] — R(C, )

to the semi-canonical ring.

12



The equation of C C P2, or C C S, is of the form F(x) + §(z)G(z)
for a quintic form G(z) € HY(S,5h — 25:1 E;). There exists a cubic form
c(z,y0,vy1) such that c(x, A(x)/d(x), B(z)/6(z)) = G(x)/6(x)? and there

exists a commutative diagram

®s
k[zo, z1,72,90,y1,2] — R
! !
klxo,x1,22,90,v1] — R(C,a),
e

where the left vertical map is the specialization of z to the degree 3 element
¢(z,y). Hence the five 4 x 4 Pfaffians of

0 clz,y) ao(z,y) ar(z,y) ax(z,y)
0 bo(iﬂ,y) bl(x7y) bQ(xvy)
0 x2 g (12)

0 i)
S 0
belongs to the kernel of pc.

Now we prove Theorem in case (7). Let C C P® = P*H%(K() be the
canonical model of C. Since Sym? H%(a) ¢ HY(K¢), C is contained in the
join of the Veronese surface and a line. This join is nothing but the weighted
projective space P(1:1:1:2:2) whose coordinates are xg,x1, Z2, Yo, Y-
Two polynomials (6) vanish on C. Multiplying these by zg,z; and x5, we
obtain 6 relations of degree 4, which are linearly independent. Together
with 3 relations (7) of degree 4, the five Pfaffians of (12) generate 9 quartic
forms on P(1:1:1:2:2) vanishing on C. There are 6 quadratic forms
vanishing on P(1:1:1:2:2) C P". Hence we have 15 quadratic forms
vanishing on C' C P7. These are all quadratic forms vanishing on C. Hence
the five Pfaffians cut out C' scheme-theoretically from P(1:1:1:2:2) by
the Enriques-Petri theorem.

4 Appendix: Linear section of the Segre variety
and a pencil of matrices
Let Ms3(k) be the space of 3 x 3-matrices over a field k. The 8-dimensional

projective space P® = P* M3(k) naturally contains the Segre variety P2 x P2,
For a linear subspace P of M3(k), we consider the linear section

Xp:=(P?xP*)NHp

13



of the Segre variety, where Hp = P*(M3(k)/P) is the linear subspace defined
by P. If Ais a non-zero matrix, we denote by X4 instead of X 4.
For a non-zero matrix A = (a;j)o<i j<2, we define a (1, 1)-form

fA(xvy) = Z Qi T5Yj,

0<4,j<2

where (g : 1 : 22) X (Yo : 1 : y2) is the coordinate of P2 x P2, Then Xp is
the common zero locus of f4(z,y), A € P, in P? x P2,

Lemma 4.1. For a non-zero matriz A, we have

1) rank A = 1 if and only if X 4 is reducible,

2) rank A = 2 if and only if X4 is singular at one point, and
3) rank A = 3 if and only if X4 is smooth.

We consider the case that P is a pencil, in other words, P is a 2-
dimensional subspace of M3(k). If P contains an invertible matrix, we call
it regular, otherwise we call singular. Let

7 : Xp — P? = Proj k[zg, z1, 2]

be the restriction of the projection P? x P2 — P? onto the first factor. Let
{A, B} be a basis of P and

fa(z,y) = ao(x)yo + a1(z)y1 + az(x)ys,
IB(z,y) = bo(z)yo + b1(x)y1 + ba(x)y2,

the (1, 1)-forms corresponding A and B respectively. Let Ip be the ideal of
k[xo, z1,x2] (or, the ideal sheaf of Op2) generated by the three minors

ar a
b1 b9

az Qo
by b

ap ai

Do = bo by

) Dy = ) Dy =

I

of the 2 x 3-matrix

bo(z) bi(x) ba(x)
Then Ip is independent of the choice of the basis of P, and the common
zeros V (Ip) C P? is the locus where m : Xp — P? is not isomorphic.

If P is regular, then the divisor Y := X 4, corresponding to an invertible
matrix A € P, is nonsingular and the projections Y — P? onto each factor
are P'-bundles. By the Lefshetz Theorem, the Picard number of Y is 2,
and the Picard group is generated by Oy (1,0) and Oy (0,1). Thus if Xp

<a0(x) a (z) az(@) .
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is reducible, it must be a sum of divisors of bidegree (1,0) and (0,1) on Y,
i.e., a section of Y by (1,1)-forms of rank 1. Xp is a union of two cubic
scrolls

Xp= F271 U FLQ.

So we have

Proposition 4.2. If P is reqular and contains no member of rank 1, then
Xp s irreducible.

It is well known that 7 is the blow-up at three points if Xp is smooth.

Proposition 4.3. Let P and Xp be as in the above proposition. Then V (Ip)
is of dimension 0, and Ip C Op2 is of colength 3. Moreover m: Xp — P?
18 the blow-up with center Ip.

Proof. If the dimension of V(Ip) is more than or equal to 1, then the inverse
image 7'V (Ip) must have dimension more than or equal to 2. This is
impossible since Xp is irreducible of dimension 2.

There is a natural embedding

¢ : Bl,P? — P?xP?
w
(.%'0:.7}1 :.%'2) X (D():Dl :DQ)
of the blow-up Bl IP]P’2 into the Segre variety. Since

ag(x)Do + a1(x) D1 + az(xz) D2

apg aip a2
= |ap a1 a :0,
bp b1 by

and also by Do + b1 D1 4+ bo Do = 0, the image of ¢ is contained in Xp. Since
Xp is irreducible and reduced, the image of ¢ coincides with Xp. O

If P is singular, then by Kronecker’s classification ([Ga] Chap. XII), we
have three types (after suitable change of the coordinate and factors of
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P2 x P?),

0 10 01
type I P:< -1 0 0 ( 0 0 ,
0 00 10 O
1 0 0 0 1
type II P:< 0 -1 0 (0 0 —1 ,and
0 0 O 0 0
* x 0 * % 0
type Il P:< x x 0],]l* % O >
0 00 0 00

If P is of type I, then the defining equation of Xp is

Toy1 — T1Yo = Toy2 — T2yo = 0,

and hence
Xp=AU(P x P,

where A C P? x P? is the diagonal. In this case, all the non-zero members
of P are of rank 2.
If P is of type I, then the defining equation of Xp in P? x P? is

ZToYo — T1Yy1 = Toyo — x1y2 = 0,

and hence Xp is the union

Xp={(1:X:p)x(AN2:A:1)|\pe€kiu(0:0:1)x P>
:F&QU(pXPQ),

of a quintic scroll and a plane. All non-zero members are of rank 2 in this
case also.

If P is of type II, then by the classification of Jordan normal form of
2 x 2-matrices, the defining equation of Xp is either

zoyo + 1y1 = x;y; =0 for some 0 <¢ < j <1, or

ToYo = Toy1 = 0.

In the former case, Xp is the union of two P?’s and two P! x P!’s. In the

16



latter case, Xp is the union of P* x P? and P? x (0:0: 1).

P rank 1 Xp degree
X Blj,P? 6
regular ® Fon SFLQ 313
y AU (P x P1) 442
singular F372 U (p X PQ) 541
PPPU2P xP) [1+1+4+2+2
C [P =P u®xp| B+
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