Period map of hyperelliptic curves.

KOMATSU Makoto (e-mail: komatu@kurims.kyoto-u.ac.jp)

Abstract

Monodromy covering of complement of discriminant of parameter space of versal deformation of curve singularity of type A_{2n} , is regarded as total space of C^* -bundle. For n=2, we had that Rosenhain's normal form gives trivialization of the bundle. Moreover, under our trivialization, we gave factor of automorphy which expresses monodromy group action.

Contents

1	Introduction.	1
2	Framework of automorphic forms.	2
3	Definition of period mapping.	4
4	Monodromy covering and configuration space of ramified points.	5
5	Rosenhain's formula.	8
6	Monodromy covering as C*-bundle.	12
7	Triviality of the bundle $(S-D)^{\wedge} \to \mathbf{H}_2^*$.	18
8	The factor of automorphy j .	23
9	Relation to Siegel modular forms.	27
\mathbf{A}	Appendix.	28

1 Introduction.

For any positive integer n, we define that

$$F_{A_{2n}}(x,y,t) := -y^2 + x^{2n+1} + t_2 x^{2n-1} + \dots + t_{2n} x + t_{2n+1}$$
.

 $F_{A_{2n}}$ is universal unfolding of the polynomial $-y^2 + x^{2n+1}$. Moreover, we define that

$$\Xi_{A_{2n}} := \{(x, y, t) \in \mathbf{C}^2 \times \mathbf{C}^{2n} | F_{A_{2n}}(x, y, t) = 0 \}$$
.

It is called versal deformation of curve singularity of type A_{2n} . The parameter space \mathbb{C}^{2n} is denoted by $S_{A_{2n}}$. That is, $S_{A_{2n}} := \mathbb{C}^{2n} (\ni t = (t_2, \dots, t_{2n+1}))$. Moreover, π denotes the natural projection $\Xi_{A_{2n}} \ni (x, y, t) \mapsto t \in S_{A_{2n}}$. We write $X_t := \pi^{-1}(t)$. On $\Xi_{A_{2n}}$ and $S_{A_{2n}}$ we define \mathbb{C}^* -action as

$$\lambda \cdot (x, y, t) := (\lambda^2 x, \quad \lambda^{2n+1} y, \quad \lambda \cdot t)$$
$$\lambda \cdot t := (\lambda^4 t_2, \dots, \lambda^{4n+2} t_{2n+1})$$

This action has fixed points on $S_{A_{2n}}$. But we can lift this action to one on $(S_{A_{2n}} - D_{A_{2n}})^{\wedge}$, and there the action is fixed point free. So $(S_{A_{2n}} - D_{A_{2n}})^{\wedge}$ is regarded as total space of \mathbb{C}^* -bundle. Here we think of the following problem.

1

Problem 1 Clarify the structure of the above \mathbf{C}^* -bundle $(S_{A_{2n}} - D_{A_{2n}})^{\wedge} \to \mathbf{C}^* \setminus (S_{A_{2n}} - D_{A_{2n}})^{\wedge}$.

At the present time, only for n = 1, answer to the problem is already known. For n = 1, the answer is a classical result, which we will see later (in subsection 2.4). In the following, we think of the problem for n = 2.

Remark. For any integer g > 1, $\mathbf{C}^* \setminus (S_{A_{2g}} - D_{A_{2g}})$ is regarded as a moduli space of hyperelliptic curve of genus g with one Weierstrass point on it. That is, suppose that

Moreover, for $(R, W), (R', W') \in MH'_a$,

$$(R,W) \sim (R',W') : \iff \exists \phi : R \xrightarrow{\sim} R' \text{ (biholomorphic) such that } \phi(W) = W'$$
.

And we write $MH_g := MH'_g / \sim$. Furthermore, $\overline{X_t}$ denotes compact Riemann surface given by doing resolution of singularities of $X_t \sqcup \{\infty\}$. Then the map

$$S_{A_{2g}} - D_{A_{2g}} \ni t \longmapsto (\overline{X_t}, \infty) \in MH'_g$$

gives bijection $\mathbf{C}^* \setminus (S_{A_{2g}} - D_{A_{2g}}) \xrightarrow{\sim} MH_g$. Therefore, $S_{A_{2g}} - D_{A_{2g}}$ is total space of a \mathbf{C}^* -bundle with MH_g as its base space.

Here we avoid the problem for A_{2n+1} . The case A_{2n+1} with $n \geq 1$, is rather different from that of A_{2n} . Therefore we cannot apply the way of A_2 to A_{2n+1} . As for the problem for A_{2n+1} , we have no idea now. In the case A_{2n} , using a period mapping and applying a well-known framework of automorphic forms, we can see that the transition functions of the bundle S_{A_2} are given as a factor of automorphy. In the following section we review the framework of automorphic forms.

2 Framework of automorphic forms.

In this section we review a well-known framework of automorphic forms.

2.1 Equivariant group action on a trivial bundle and a factor of automorphy.

Suppose X be a complex manifold, and G be a group acting on X discontinuously. Then the following (2-1-1), (2-1-2) are equivalent.

- (2-1-1) To give a factor of automorphy $j: G \times X \to \mathbf{C}^*$.
- (2-1-2) To give a G-action on $\mathbb{C}^* \times X$ which satisfies the following (i), (ii).
 - (i) The G-action is commutative to the natural C^* -action on $C^* \times X$.
 - (ii) The G-action is equivariant to the natural projection $\mathbb{C}^* \times X \to X$.

In fact, if a factor of automorphy j is given, we can give a G-action on $\mathbb{C}^* \times X$ using j as follows:

$$\mathbf{C}^* \times X \ni (\lambda, x) \xrightarrow{\sigma} (j(\sigma, x)^{-1}\lambda, \sigma(x)) \in \mathbf{C}^* \times X \qquad (\sigma \in G) . \tag{1}$$

It can be easily seen that this G-action satisfy the above (i) and (ii). On the other hand, suppose that a G-action on $\mathbb{C}^* \times X$ satisfying (i) and (ii) is given. Then we define a map $j: G \times X \to \mathbb{C}^*$ by the following relation:

$$(1,x) \stackrel{\sigma}{\longmapsto} (j(\sigma,x)^{-1},\sigma(x)) \qquad (\sigma \in G, x \in X) .$$
 (2)

Then this j is a factor of automorphy. Those two procedures now explained are inverse to each other.

2.2 Invariant ring and ring of automorphic forms.

In general, when a group G is acting on a ring R, we denote by R^G the G-invariant subring of R. And for any complex analytic space X, we denote by $\mathcal{O}(X)$ the ring of all of holomorphic functions on X. Moreover, if a group G is acting on X and a factor of automorphy $j: G \times X \to \mathbb{C}^*$ is given, then for any integer k, we define that

$$A_k(X,G,j) := \{ f \in \Gamma(X,\mathcal{O}_X) \mid f(\sigma(x)) = j(\sigma,x)^k f(x) \text{ for any } x \in X, \ \sigma \in G \} . \tag{3}$$

In this article, only the case that $\sum_{k \in \mathbf{Z}} A_k(X, G, j)$ is direct sum, is appear. Note that the following relations hold:

$$\bigoplus_{k \in \mathbf{Z}} A_k(X, G, j) \cong \Gamma(X, \mathcal{O}_X)[\lambda, \lambda^{-1}]^G \subseteq \Gamma(\mathbf{C}^* \times X, \mathcal{O}_{\mathbf{C}^* \times X})^G \cong \Gamma((\mathbf{C}^* \times X)/G, \mathcal{O}_{(\mathbf{C}^* \times X)/G}). \tag{4}$$

In (4), only the first isomorphism may be unfamiliar (at least, to the author). Therefore we explain it. Suppose f be an element of $\mathcal{O}(X)[\lambda,\lambda^{-1}]^G$. We express f as Laurent polynomial in λ :

$$f(\lambda, x) = \sum_{k \in \mathbf{Z}} \lambda^k f_k(x) \qquad (\text{finite sum})$$
 (5)

where $f_k \in \mathcal{O}(X)$. From the expansion, f satisfies the equality

$$f(j(\sigma, x)^{-1}\lambda, \sigma(x)) = \sum_{k} j(\sigma, x)^{-k} \lambda^{k} f_{k}(\sigma(x))$$
(6)

for any $\sigma \in G$. Because f is G-invariant, (1), (5) and (6) imply that

$$f_k(\sigma(x)) = j(\sigma, x)^k f_k(x) \quad (\forall \sigma \in G, \ \forall x \in X, \ \forall k \in \mathbf{Z}) .$$

That is, f_k is a (G,j)-automorphic form of weight k. On the oter hand, for given finite set $\{f_k\}$ (where $f_k \in A_k(X,G,j)$ for any k), if we define f by (5), we can easily see that f is an element of $\mathcal{O}(X)[\lambda,\lambda^{-1}]^G$.

2.3 Our plan.

We denote by D_{A_n} the discriminant set of S_{A_n} :

$$D_{A_n} := \{ t \in S_{A_n} | F_{A_n}(x, 0, t) \text{ has multiple roots.} \}$$
 (7)

We treat $S_{A_n} - D_{A_n}$ rather than S_{A_n} itself. Suppose that there exist X and G which make the left hand side of the following diagram

commutative, where u is a natural projection, and s is a global section of the trivial bundle $\mathbb{C}^* \times X \to X$ defined as in the above diagram. Then by (4), the ring $\mathbb{C}[t_2,\ldots,t_{n+1}]$ is regarded as a subring of $\mathcal{O}(X)[\lambda,\lambda^{-1}]^G$, and hence it is regarded as a subring of the ring of (G,j)-automorphic forms. Moreover, transition functions of the bundle $S_{A_n} - D_{A_n}$ is given as a factor of automorphy j. By the way, the G-actions on the total space and on the base space of the bundle $\mathbb{C}^* \times X \to X$ are equivariant to the projection. Hence, by the relation (2) the section s satisfies

$$s(\sigma(x)) = j(\sigma, x) \cdot \sigma(s(x)) \qquad (\forall \sigma \in G, \ \forall x \in X) .$$

Moreover, the \mathbf{C}^* -actions on $(\mathbf{C}^* \times X)/G$ and on $\mathbf{C}^* \times X$ are equivariant to the map u. And, in addition, u is G-invariant. Therefore, we have

$$(u \circ s)(\sigma(x)) = j(\sigma, x) \cdot (u \circ s)(x) \qquad (\forall \sigma \in G, \ \forall x \in X) \ .$$

Keeping the above framework in mind, we consider Problem 1 for n=4 as follows.

- (2-3-1) We take an open dense subset of Siegel upper half space of degree two, say \mathbf{H}_{2}^{*} , as X in Diagram-1.
- (2-3-2) Next we investigate the effect of G-action on the map $u \circ s$ to obtain a factor of automorphy j explicitly.

2.4 Example. (A_2 -type curve singularity.)

As an example, we review the answer to the problem 1 for n=2 (cf. [Sai]). In order to adapt the problem to the theory of Weierstrass' \wp function, we modify the definition of F_{A_2} as follows:

$$F_{A_2}(x,y,g) := -y^2 + 4x^3 - g_2x - g_3$$
.

Then $S_{A_2} = \mathbb{C}^2$ and $D_{A_2} = \{g \in S_{A_2} | g_2^3 - 27g_3^2 = 0\}$. In this case, using the following multi-valued holomorphic mapping:

$$S_{A_2} - D_{A_2} \ni g \mapsto \left(\int_{A(g)} \frac{dx}{y}, \int_{B(g)} \frac{dx}{y} \middle/ \int_{A(g)} \frac{dx}{y} \right) \in \mathbf{C}^* \times \mathbf{H} ,$$
 (8)

we can apply the above framework to $S_{A_2}-D_{A_2}$, where $G=SL(2,\mathbf{Z})$ and $X=\mathbf{H}$. As a consequence, we obtain that $S_{A_2}-D_{A_2}\cong \mathbf{C}^*\times \mathbf{H}/SL(2,\mathbf{Z})$. Moreover, we have $j\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau\right)=c\tau+d$, and obtain the expression of g_i (i=2,3) as (G,j)-automorphic forms, which coincide to the well-known expressions as Eisenstein series.

3 Definition of period mapping.

We denote that $S := S_{A_4}$, $\Xi := \Xi_{A_4}$, and $D := D_{A_4}$. Discriminant of the polynomial $F_{A_4}(x,0,t) \in (\mathbf{C}[t])[x]$ is as follows:

$$\Delta(t) := 3125t_5^4 - 3750t_2t_3t_5^3 + 2000t_2t_4^2t_5^2 + 2250t_3^2t_4t_5^2 - 900t_2^3t_4t_5^2 + 825t_2^2t_3^2t_5^2 \\ + 108t_2^5t_5^2 - 1600t_3t_4^3t_5 + 560t_2^2t_3t_4^2t_5 - 630t_2t_3^3t_4t_5 - 72t_2^4t_3t_4t_5 + 108t_3^5t_5 \\ + 16t_2^3t_3^3t_5 + 256t_4^5 - 128t_2^2t_4^4 + 144t_2t_2^2t_4^3 + 16t_2^4t_4^3 - 27t_3^4t_4^2 - 4t_2^3t_3^2t_4^2 \ .$$

By (7), we have $D = \{t \in S \mid \Delta(t) = 0\}$. We take a point $t_0 \in S - D$. t_0 is used as a base point of the fundamental group of S - D. Projection $\pi : \Xi - \pi^{-1}(D) \to S - D$ has the property of local triviality. Hence $\pi_1(S - D, t_0)$ acts on $H_1(X_{t_0}, \mathbf{Z})$, and then we have what is called monodromy representation of $\pi_1(S - D, t_0)$ and monodromy covering of S - D. Here we define them. Suppose C be an element of $H_1(X_{t_0}, \mathbf{Z})$ and γ be an element of $\pi_1(S - D, t_0)$. Then we denote by $\gamma(C)$ an element of $H_1(X_{t_0}, \mathbf{Z})$ given by modifying C continuously along the path γ . Thus γ is regarded as an automorphism of $H_1(X_{t_0}, \mathbf{Z})$. Moreover, this action preserves the intersection form $\langle \ , \ \rangle$ on $H_1(X_{t_0}, \mathbf{Z})$. Therefore we have the following anti-homomorphism:

$$\rho^*: \pi_1(S-D, t_0) \longrightarrow \operatorname{Aut}(H_1(X_{t_0}, \mathbf{Z}), \langle , \rangle) \qquad \text{(monodromy representation)}, \tag{9}$$

where $\operatorname{Aut}(H_1(X_{t_0}, \mathbf{Z}), \langle , \rangle)$ denotes all of automorphisms of $H_1(X_{t_0}, \mathbf{Z})$ which preserve the intersection form \langle , \rangle . Note that for any $\gamma, \gamma' \in \pi_1(S - D, t_0)$, we define the product $\gamma\gamma'$ by joining the end point of γ to the initial point of γ' . $\Gamma := \rho^*(H_1(X_{t_0}, \mathbf{Z}))$ is called as monodromy group. We take a symplectic basis of $H_1(X_{t_0}, \mathbf{Z})$ as in **Figure-1**. Then by the basis, the following group isomorphism holds:

$$E: \operatorname{Aut}(H_1(X_t, \mathbf{Z}), \langle , \rangle) \xrightarrow{\sim} Sp(4, \mathbf{Z}) \qquad \gamma \longmapsto M$$
where $(\gamma(A_1) \gamma(A_2) \gamma(B_1) \gamma(B_2)) = (A_1 \ A_2 \ B_1 \ B_2)M$, (10)

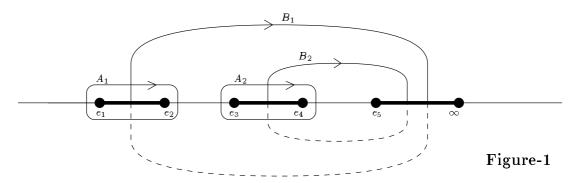
is obtained, where $t = t_0$. By the isomorphism, Γ is regarded as a subgroup of $Sp(4, \mathbf{Z})$. Now we define a covering space of S - D as follows:

$$(S-D)^{\wedge} := (\text{universal covering space of } S-D) / \text{Kernel}(\rho^*).$$

 $(S-D)^{\wedge}$ is called as monodromy covering. Natural projection $(S-D)^{\wedge} \to S-D$ is denoted by σ . Here we can define a period mapping.

$$P: (S-D)^{\wedge} \ni h \longmapsto \left(\begin{array}{ccc} \omega_{11}(h) & \omega_{12}(h) & \omega_{13}(h) & \omega_{14}(h) \\ \omega_{21}(h) & \omega_{22}(h) & \omega_{23}(h) & \omega_{24}(h) \end{array} \right) \in M_{2,4}(\mathbf{C}) \;, \qquad \omega_{ij}(h) := \int_{A_j(h)} \frac{x^{i-1} dx}{y} \;,$$

where $A_1(h)$, $A_2(h)$, $A_3(h) = B_1(h)$, $A_4(h) = B_2(h)$ are symplectic basis of $H_1(X_{\sigma(h)}, \mathbf{Z})$ and depend on h "continuously". That is, each $A_j(h)$ is a local system. We choose one element $h_0 \in \sigma^{-1}(t_0)$, and on the h_0 , take $A_j(h_0)$ (j = 1, 2, 3, 4) as in the **Figure-1**.



Remark. Each $A_j(t)$ is multi-valued on S-D. But, on $(S-D)^{\wedge}$, each $A_j(t)$ is single-valued. In fact $(S-D)^{\wedge}$ is the minimal covering on which each $A_j(t)$ is single-valued. Therefore the above period map P is single-valued.

By the definition of P, each P(h) $(h \in (S-D)^{\wedge})$ is a 2×4 matrix. We define a map φ as

$$\varphi: \operatorname{Image}(P) \ni (\Omega_A \ \Omega_B) \longmapsto (\Omega_A^{-1} \Omega_B) \in \mathbf{H}_2$$
,

where Ω_A , Ω_B denote the left 2 × 2 part, the right 2 × 2 part of the 2 × 4 matrix P(h), respectively.

4 Monodromy covering and configuration space of ramified points.

We denote the *n*-th symmetric group by S_n . The aim of this section is to give a well-known homomorphism $Sp(4, \mathbf{Z}) \to S_6$ explicitly, to review a result of A'Campo about monodromy group of the deformation of curve singularity of type A_4 , with more precise consideration, and to show that the monodromy covering $\sigma : (S-D)^{\wedge} \to S-D$ is factored by a configuration space of five roots of $F(x, 0, t_0)$.

4.1 $Sp(4, \mathbf{Z})$ -action on $H_1(X_{t_0}, \mathbf{Z})/2H_1(X_{t_0}, \mathbf{Z})$.

Suppose that i, j are elements of $\{1, \ldots, 6\}$. Now we take a path on $\overline{X_{t_0}}$ which has e_i as its initial point and e_j as its end point, where e_6 means ∞ . Then the path and its image under the hyperelliptic involution of X_{t_0} make a closed path on $\overline{X_{t_0}}$, which determine an element of $H_1(X_{t_0}, \mathbf{Z})$. we denote it by $[e_i, e_j]$. $[e_i, e_j]$ is uniquely determined by e_i, e_j up to $\text{mod } 2H_1(X_{t_0}, \mathbf{Z})$. Under the assumption that the basis of $H_1(X_{t_0}, \mathbf{Z})$ is given as in the **Figure-1**, the six cycles $[e_i, e_6]$ are written as follows:

$$[e_1, e_6] \equiv B_1, \quad [e_2, e_6] \equiv A_1 + B_1, \quad [e_3, e_6] \equiv A_1 + B_2, [e_4, e_6] \equiv A_1 + A_2 + B_2, \quad [e_5, e_6] \equiv A_1 + A_2, \quad [e_6, e_6] \equiv 0, \quad \text{mod } 2H_1(X_{t_0}, \mathbf{Z}) .$$

$$(11)$$

Here we write

$$[e_i, e_j] \equiv \varepsilon_1''(ij)A_1 + \varepsilon_2''(ij)A_2 + \varepsilon_1'(ij)B_1 + \varepsilon_2'(ij)B_2 \mod 2H_1(X_{t_0}, \mathbf{Z})$$

where $\varepsilon_k''(ij), \varepsilon_k'(ij) \in \{0,1\}$ for $i, j \in \{1, \dots, 6\}, k \in \{1,2\}$. Here we note that the six $(\varepsilon'(i6)\varepsilon''(i6)) + (1101)$ $(i \in \{1, \dots, 6\})$ coincide mod $(2\mathbf{Z})^4$ with the elements of **OTC** in (67):

Remark. (1101) corresponds to the Riemann constant. That is, (1101) corresponds to $B_1 + B_2 + A_2$, and $\frac{1}{2}(\int_{B_1+B_2+A_2}\omega_1, \int_{B_1+B_2+A_2}\omega_2)$ is what is called Riemann constant, where ω_1, ω_2 are the basis of C-vector space of holomorphic 1-forms on X_{t_0} satisfying $\int_{A_j}\omega_i = \delta_{ij}$ (Kronecker's delta).

By Appendix A.3, any element of $Sp(4, \mathbf{Z})$ is regarded as an element of S_6 using the homomorphism b in (68). Here we note that, for any $M \in Sp(4, \mathbf{Z})$ and for any $i \in \{1, ..., 6\}$ the relation

$$M \circ ((\varepsilon'(i6) \ \varepsilon''(i6)) + (1101)) = (\varepsilon'(M(i)6) \ \varepsilon''(M(i)6)) + (1101) \mod (2\mathbf{Z})^4$$

holds. The aim of this subsection is to prove the following lemma.

Lemma 2 For any $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(4, \mathbf{Z})$ and for any $i, j \in \{1, ..., 6\}$, the following equality $(\text{mod}(2\mathbf{Z})^4)$ holds.

$$M\left(\begin{array}{c} {}^t\!\varepsilon''(ij) \\ {}^t\!\varepsilon'(ij) \end{array}\right) \equiv \left(\begin{array}{c} {}^t\!\varepsilon''(M(i)M(j)) \\ {}^t\!\varepsilon'(M(i)M(j)) \end{array}\right) \bmod (2\mathbf{Z})^4 \ .$$

Proof. We have only to prove the case $i \neq j$. By the definition of $M \circ \varepsilon$, it satisfies that

$$M \circ \varepsilon - M \circ \delta = \varepsilon M^{-1} - \delta M^{-1}$$

for any $M \in Sp(2g, \mathbf{Z})$, $\varepsilon, \delta \in \mathbf{Z}^{2g}$. Therefore, for any $i, j \in \{1, \dots, 6\}$ satisfying $i \neq j$, and for any $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(4, \mathbf{Z})$, we have

$$\begin{array}{lll} \varepsilon(ij)M^{-1} & \equiv & (\varepsilon(i6) + (1101) - \varepsilon(j6) - (1101))M^{-1} \\ & \equiv & (\varepsilon(i6) + (1101))M^{-1} - (\varepsilon(j6) + (1101))M^{-1} \\ & \equiv & M \circ (\varepsilon(i6) + (1101)) - M \circ (\varepsilon(j6) + (1101)) \\ & \equiv & \varepsilon(M(i)6) + (1101) - \varepsilon(M(j)6) - (1101) \\ & \equiv & \varepsilon(M(i)M(j)) \ , \end{array}$$

where $\varepsilon(ij) = (\varepsilon_1'(ij) \ \varepsilon_2'(ij) \ \varepsilon_1''(ij) \ \varepsilon_2''(ij)) \in \{0,1\}^4$, and " \equiv " means $\operatorname{mod}(2\mathbf{Z})^4$. By the way, for $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2g,\mathbf{Z}), M^{-1} = \begin{pmatrix} {}^tD & {}^{-t}B \\ {}^{-t}C & {}^tA \end{pmatrix}$. Therefore,

$$\begin{pmatrix} {}^t\varepsilon'(M(i)M(j)) \\ {}^t\varepsilon''(M(i)M(j)) \end{pmatrix} \equiv {}^tM^{-1} \begin{pmatrix} {}^t\varepsilon'(ij) \\ {}^t\varepsilon''(ij) \end{pmatrix} = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix} \begin{pmatrix} {}^t\varepsilon'(ij) \\ {}^t\varepsilon''(ij) \end{pmatrix} .$$

In other words.

$$\begin{pmatrix} {}^t\varepsilon''(M(i)M(j)) \\ {}^t\varepsilon'(M(i)M(j)) \end{pmatrix} \equiv \begin{pmatrix} A & -B \\ -C & D \end{pmatrix} \begin{pmatrix} {}^t\varepsilon''(ij) \\ {}^t\varepsilon'(ij) \end{pmatrix} \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} {}^t\varepsilon''(ij) \\ {}^t\varepsilon'(ij) \end{pmatrix} \mod (2\mathbf{Z})^4 \ .$$

This completes the lemma.

4.2 Monodromy group.

The aim of this subsection is to investigate a result of A'Campo precisely. It is convenient that the monodromy representation is modified to be homomorphism. So now we define ρ .

$$\rho(\gamma) := K(E \circ \rho^*(\gamma))^{-1} K^{-1} \qquad \text{where} \quad K := \begin{pmatrix} I_2 & 0\\ 0 & -I_2 \end{pmatrix} . \tag{12}$$

Note that, $K \not\in Sp(4, \mathbf{Z})$ but $KMK^{-1} \in Sp(4, \mathbf{Z})$ for any $M \in Sp(4, \mathbf{Z})$. Since $\pi_1(S - D, t_0)$ is isomorphic to the Artin braid group of five strings, it has canonical generators $\gamma_1, \ldots, \gamma_4$ where each γ_i is given by the exchange of e_i and e_{i+1} counterclockwisely as in the following figure.

$$\gamma_i$$
 e_i
 e_{i+1}

Then it can be easily seen that

$$E \circ \rho^*(\gamma_1) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad E \circ \rho^*(\gamma_2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix},$$

$$E \circ \rho^*(\gamma_3) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad E \circ \rho^*(\gamma_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

$$(13)$$

Obviously, as a subset of $Sp(4, \mathbf{Z})$, monodromy group $\Gamma = \rho(\pi_1(S - D, t_0))$ is generated by the above four matrices. In [ACa], A'Campo gave the following

Lemma 3 (A'Campo [ACa]) $\Gamma_2(2) \subset \Gamma \subset Sp(4, \mathbb{Z})$, and $\Gamma/\Gamma_2(2) \cong S_5$.

Using the homomorphism (68), let us obtain a more precise characterization of Γ . Here we define that $\Gamma' := \{M \in Sp(4, \mathbf{Z}) | M(6) = 6\}$, where each M is regarded as an element of S_6 by the map (68). Then obviously, we obtain that

$$\Gamma_2(2) \subset \Gamma' \subset Sp(4, \mathbf{Z}), \text{ and } \Gamma'/\Gamma_2(2) \cong S_5.$$
 (14)

Moreover, it can be easily seen that $\rho(\gamma_i) \in \Gamma'$ for any $i \in \{1, 2, 3, 4\}$, which implies that $\Gamma \subset \Gamma'$. Therefore, by (14) and Lemma 3, we obtain that $\Gamma = \Gamma'$.

4.3 Monodromy covering and a configuration space of five roots of $F(x, 0, t_0)$.

First we define a natural homomorphism $\pi_1(S-D,t_0) \to S_5$. Here we use an element $(e_1,\ldots,e_5) \in \mathbb{C}^5$ where e_1,\ldots,e_5 are roots of $F(x,0,t_0)$ as in **Figure-1**. Note that $\pi_1(S-D,t_0)$ is isomorphic to the Artin braid group of five strings. Now we take an element $\gamma \in \pi_1(S-D,t_0)$. Then five roots of F(x,0,t), say $(e_1(t),\ldots,e_5(t))$, starting from (e_1,\ldots,e_5) , move "along γ " to arrive a point. We denote the end point by $(e_{\gamma^{-1}(1)},\ldots,e_{\gamma^{-1}(5)})$. Thus we have a group homomorphism $\pi_1(S-D,t_0) \to S_5$.

Here we obtain the following lemma.

Lemma 4 The diagram:

$$\pi_1(S-D,t_0)$$
 \longrightarrow S_5

$$\rho \bigvee_{\Gamma_2(1)} \bigvee_{S_6}$$
 Diagram-2

is commutative, where $\pi_1(S-D,t_0) \to S_5$ is the homomorphism given above, $\Gamma_2(1) \to S_6$ is given in (68), $\pi_1(S-D,t_0) \to \Gamma_2(1)$ is given in (12), and $S_5 \hookrightarrow S_6$ is natural embedding.

Proof. We take a $\gamma \in \pi_1(S-D,t_0)$ arbitrarily. Then by the definition of ρ^* , any cycle $[e_i,e_j] \in H_1(X_{t_0},\mathbf{Z})$ is mapped by $\rho^*(\gamma)$ to $[e_{\gamma^{-1}(i)},e_{\gamma^{-1}(j)}] \in H_1(X_{t_0},\mathbf{Z})$, up to $2H_1(X_{t_0},\mathbf{Z})$. On the other hand, Lemma 2 implies that $[e_i,e_j]$ is mapped by $E \circ \rho^*(\gamma)$ to $[e_{(E \circ \rho^*(\gamma))(i)},e_{(E \circ \rho^*(\gamma))(j)}] \mod 2H_1(X_{t_0},\mathbf{Z})$. Therefore, for any $i,j \in \{1,\ldots,6\}$,

$$[e_{\gamma^{-1}(i)}, e_{\gamma^{-1}(j)}] \equiv [e_{(E \circ \rho^*(\gamma))(i)}, e_{(E \circ \rho^*(\gamma))(j)}] \mod 2H_1(X_{t_0}, \mathbf{Z})$$

is valid. As a result, we have that $(E \circ \rho^*(\gamma))(i) = \gamma^{-1}(i)$ for any $i \in \{1, ..., 6\}$. Therefore, $E \circ \rho^*(\gamma) = \gamma^{-1}$ in S_6 . Hence, it can be easily seen that $\rho(\gamma) = \gamma$ in S_6 . This completes the proof.

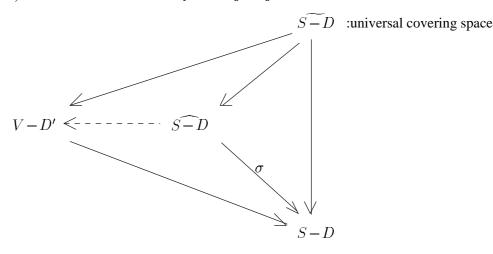
Definition 5

$$V := \{(e_1, \dots, e_5) \in \mathbf{C}^5 | e_1 + \dots + e_5 = 0\},$$

$$D' := \{e \in V | e_i = e_j \text{ for some distinct } i, j \in \{1, \dots, 5\}\}.$$

From the above lemma, we have the following corollary.

Corollary 6 The monodromy covering $\sigma: (S-D)^{\wedge} \to S-D$ is factored by V-D'. That is, there exists a covering map $e: (S-D)^{\wedge} \to V-D'$ such that the following diagram is commutative.



5 Rosenhain's formula.

In this section, first we define root functions by modifying Rosenhain's expression arising from a theory of periods on curves of genus two. Then we obtain some automorphic property of the functions under the action of the monodromy group Γ .

5.1 Rosenhain's formula and root functions.

Suppose t be any point of S-D. We write F(x,y,t) as

$$F(x, y, t) = -y^2 + (x - e_1) \cdots (x - e_5)$$
.

Then X_t with a basis of $H_1(X_t, \mathbf{Z})$ taken as in the **Figure-1** gives a period matrix $\tau \in \mathbf{H}_2$. Rosenhain [Ros] gave expressions of anharmonic ratios of four of six ramified points of X_t by theta constants:

$$\frac{e_k - e_1}{e_2 - e_1} = \lambda_k(\tau) \qquad (k = 3, 4, 5) , \tag{15}$$

where

$$\lambda_3(\tau) = \frac{\vartheta_{134}^2(\tau)\vartheta_{135}^2(\tau)}{\vartheta_{124}^2(\tau)\vartheta_{125}^2(\tau)}, \qquad \lambda_4(\tau) = \frac{\vartheta_{143}^2(\tau)\vartheta_{145}^2(\tau)}{\vartheta_{123}^2(\tau)\vartheta_{125}^2(\tau)}, \qquad \lambda_5(\tau) = \frac{\vartheta_{153}^2(\tau)\vartheta_{154}^2(\tau)}{\vartheta_{123}^2(\tau)\vartheta_{124}^2(\tau)}.$$
(16)

For the sake of convenience, we define $\lambda_1(\tau) := 0$, $\lambda_2(\tau) := 1$. The invariableness of each λ_i under the action of $\Gamma_2(2)$, is almost trivial by the transformation formula of theta constants. For any $i \in \{1,\ldots,5\}$, we define functions β_i as the product of λ_i with the least common multiple of denominators of λ_3, λ_4 , and λ_5 , that is,

$$\beta_i := \vartheta_{123}^2 \vartheta_{124}^2 \vartheta_{125}^2 \lambda_i \qquad (1 \le i \le 5) . \tag{17}$$

Then we can write β_i as follows:

$$\beta_1 = 0, \quad \beta_2 = \vartheta_{213}^2 \vartheta_{214}^2 \vartheta_{215}^2, \quad \beta_3 = \vartheta_{312}^2 \vartheta_{314}^2 \vartheta_{315}^2, \quad \beta_4 = \vartheta_{412}^2 \vartheta_{413}^2 \vartheta_{415}^2, \quad \beta_5 = \vartheta_{512}^2 \vartheta_{513}^2 \vartheta_{514}^2.$$

Moreover, we define functions α_i as follows.

$$\alpha_i := \beta_i - \frac{1}{5} \sum_{j=1}^5 \beta_j = \frac{1}{5} \sum_{j=1}^5 (\beta_i - \beta_j).$$
 (18)

Using those α_i $(i \in \{1, ..., 5\})$, we define a map $F : \mathbf{H}_2 \to S$ as follows:

$$F: \mathbf{H}_2 \ni \tau \longmapsto t \in S , \tag{19}$$

where
$$t_i = (-1)^i \sum_{1 \le \nu_1 < \dots < \nu_i \le 5} \alpha_{\nu_1} \cdots \alpha_{\nu_i} \quad (i \in \{2, 3, 4, 5\}).$$
 (20)

Since each θ_{ijk} $(1 \le i < j < k \le 5)$, and hence each $\beta_i - \beta_j$ (i < j) has no zeros on \mathbf{H}_2^* we conclude that $F(\mathbf{H}_2^*) \subset S - D$. Moreover, by (15), (18), for any $h \in (S-D)^{\wedge}$, there exists $\lambda \in \mathbf{C}^*$ such that $\lambda \cdot \sigma(h) = F \circ \varphi \circ P(h)$, and hence the equality

$$\sigma(\lambda \cdot h) = F \circ \varphi \circ P(\lambda \cdot h)$$

holds. As a result, we have the following lemma.

Lemma 7 For any $\tau \in \mathbf{H}_2^*$, we have

$$\varphi \circ P(\sigma^{-1}(F(\tau))) = \{ M \circ \tau | M \in \Gamma \} .$$

5.2 Five functions as modular forms.

The functions $\alpha_1, \ldots, \alpha_5$, which was defined in the previous subsection, have modular property under the action of Γ over \mathbf{H}_2 . In this subsection we obtain the modular property and investigate the factor of automorphy. To begin with, we show the following easy lemma.

Lemma 8 $\Gamma \ni M \mapsto \chi(M) := \kappa(M)^2 \exp[2\pi \sqrt{-1}\phi(M,(1101))] \in \mathbb{C}^*$ is group homomorphism.

Proof. First note that a formula of ϕ defined in (62). For any $M_1, M_2 \in Sp(2g, \mathbb{Z})$ and $\varepsilon \in \mathbb{Z}^{2g}$, simple computation gives

$$\phi(M_2M_1,\varepsilon) = \phi(M_2, M_1 \circ \varepsilon) + \phi(M_1,\varepsilon) - \phi(M_2, M_1 \circ 0) +
+ \frac{1}{2} (\varepsilon'^t D_3 - \varepsilon''^t C_3)^t [(A_3^t B_3)_0 - (-(C_1^t D_1)_0^t B_2 + (A_1^t B_1)_0^t A_2 + (A_2^t B_2)_0)],$$

where $M_3 := M_2 M_1$, $M_i = \begin{pmatrix} A_i & B_i \\ C_i & D_i \end{pmatrix}$ (i = 1, 2, 3). Note that $[\cdots]$ is an element of $(2\mathbf{Z})^{2g}$. Hence, with the equality given in (64), we have

$$\kappa(M_2 M_1)^2 \exp[2\pi \sqrt{-1}\phi(M_2 M_1, \varepsilon)]
= \kappa(M_2)^2 \exp[2\pi \sqrt{-1}\phi(M_2, M_1 \circ \varepsilon)] \kappa(M_1)^2 \exp[2\pi \sqrt{-1}\phi(M_1, \varepsilon)] .$$
(21)

Therefore, if $g=2, M_1, M_2 \in \Gamma$ and $\varepsilon=(1101)$, we obtain a result that we wanted.

Therefore, the map

$$\Gamma \times \mathbf{H}_2 \ni (M, \tau) \longmapsto \kappa(M, \tau)^2 \exp[2\pi\sqrt{-1}\phi(M, (1101))] \in \mathbf{C}^*$$
(22)

is a factor of automorphy. The following lemma gives a square root of (22).

Lemma 9 Suppose that $\varepsilon = (1101)$. Then

$$\Gamma \times \mathbf{H}_2 \ni (M, \tau) \longmapsto \kappa(M, \tau) \exp[\pi \sqrt{-1}(\phi(M, \varepsilon) - \frac{1}{2}\varepsilon''(-\varepsilon''B + \varepsilon'''A + (A^tB)_0 - \varepsilon''))] \in \mathbf{C}^*$$

is a factor of automorphy.

Proof. For any $M_1, M_2 \in Sp(2g, \mathbb{Z}), \varepsilon \in \mathbb{Z}^{2g}$, we have

$$(A_{3}{}^{t}B_{3})_{0} - (-(C_{1}{}^{t}D_{1})_{0}{}^{t}B_{2} + (A_{1}{}^{t}B_{1})_{0}{}^{t}A_{2} + (A_{2}{}^{t}B_{2})_{0})$$

$$= [-\varepsilon'{}^{t}B_{3} + \varepsilon''{}^{t}A_{3} + (A_{3}{}^{t}B_{3})_{0} - \varepsilon''] - [-\varepsilon'{}^{t}B_{2} + \varepsilon''{}^{t}A_{2} + (A_{2}{}^{t}B_{2})_{0} - \varepsilon'']$$

$$- [-\varepsilon'{}^{t}B_{1} + \varepsilon''{}^{t}A_{1} + (A_{1}{}^{t}B_{1})_{0} - \varepsilon''] + 2\delta'{}^{t}B_{2} - 2\delta''{}^{t}A_{2} + 2\delta'',$$

$$\phi(M_{2}, M_{1} \circ \varepsilon) + \varepsilon'{}^{t}(\delta'{}^{t}B_{2} - \delta''{}^{t}A_{2} + \delta'')$$

$$= \phi(M_{2}, \varepsilon) + (\varepsilon'{}^{t}D_{2} - \varepsilon''{}^{t}C_{2} + (C_{2}{}^{t}D_{2})_{0} - \varepsilon')(-B_{2}{}^{t}\delta' + A_{2}{}^{t}\delta'')$$

$$+ (\delta'{}^{t}D_{2} - \delta''{}^{t}C_{2} + (C_{2}{}^{t}D_{2})_{0})^{t}(-\delta'{}^{t}B_{2} + \delta''{}^{t}A_{2} + (A_{2}{}^{t}B_{2})_{0}) - \delta'{}^{t}\delta''$$

$$- 2(C_{2}{}^{t}D_{2})_{0}(-B_{2}{}^{t}\delta' + A_{2}{}^{t}\delta'') - (C_{2}{}^{t}D_{2})_{0}{}^{t}(A_{2}{}^{t}B_{2})_{0},$$

where $M_3 := M_2 M_1$ and $\delta := \frac{1}{2} (M_1 \circ \varepsilon - \varepsilon)$. Using the above equalities, we can prove the lemma by simple computation.

Here we denote that, for any $M \in \Gamma$, $\tau \in \mathbf{H}_2$,

$$j_{1101}(M,\tau) := \kappa(M,\tau) \exp\left[\pi \sqrt{-1} (\phi(M,\varepsilon) - \frac{1}{2}\varepsilon'^t(-\varepsilon'^t B + \varepsilon''^t A + (A^t B)_0 - \varepsilon''))\right] \det(C\tau + D),$$

where $\varepsilon = (1101)$. Note that $j_{1101}(M,\tau)^2 = \kappa(M)^2(\det(C\tau + D))^3 \exp[2\pi\sqrt{-1}\phi(M,(1101))]$. The factor of automorphy j_{1101} is important by the following lemma.

Lemma 10 For each $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma$, $i \in \{1, 2, 3, 4, 5\}$ and $\tau \in \mathbf{H}_2$, it satisfies that

$$\alpha_{M(i)}(M \circ \tau) = j_{1101}(M, \tau)^2 \alpha_i(\tau) .$$

Proof. By the definition of α_i , we can write as

$$\alpha_{M(i)}(M \circ \tau) = \frac{1}{5} \sum_{j=1}^{5} (\beta_{M(i)}(M \circ \tau) - \beta_{M(j)}(M \circ \tau)).$$

Hence now let us investigate the factor of automorphy of $\beta_i - \beta_j$ under the action of Γ . By the way, with the aid of formulas:

$$\begin{split} \vartheta_{135}^2\vartheta_{145}^2 &= \vartheta_{136}^2\vartheta_{146}^2 + \vartheta_{132}^2\vartheta_{142}^2 \;, & \vartheta_{134}^2\vartheta_{154}^2 &= \vartheta_{136}^2\vartheta_{156}^2 + \vartheta_{132}^2\vartheta_{152}^2 \;, \\ \vartheta_{143}^2\vartheta_{153}^2 &= \vartheta_{146}^2\vartheta_{156}^2 + \vartheta_{142}^2\vartheta_{152}^2 \;, & \vartheta_{125}^2\vartheta_{135}^2 &= \vartheta_{126}^2\vartheta_{136}^2 + \vartheta_{124}^2\vartheta_{134}^2 \;, \\ \vartheta_{125}^2\vartheta_{145}^2 &= \vartheta_{126}^2\vartheta_{146}^2 + \vartheta_{123}^2\vartheta_{143}^2 \;, & \vartheta_{124}^2\vartheta_{154}^2 &= \vartheta_{126}^2\vartheta_{156}^2 + \vartheta_{123}^2\vartheta_{153}^2 \;, \end{split}$$

the differences $\beta_i - \beta_j$ are written as follows:

$$\beta_i - \beta_j = \operatorname{sign}(i-j) \cdot \vartheta_{ijk}^2 \vartheta_{ijl}^2 \vartheta_{ijm}^2 , \qquad (23)$$

where $\{i, j, k, l, m\} = \{1, 2, 3, 4, 5\}$, and $sign(x) := \pm 1$ if $\pm x > 0$.

Remark. By (23), we have

$$\prod_{1 \le i < j \le 5} (\beta_j - \beta_i) = \Theta^6, \quad \text{where} \quad \Theta := \prod_{1 \le i < j < k \le 5} \vartheta_{ijk} . \quad \Box$$

Note that, for any $M \in Sp(4, \mathbf{Z})$, (71) holds. Then, for any $M \in \Gamma$, $\tau \in \mathbf{H}_2$ and $\{i, j, k, l, m\} = \{1, 2, 3, 4, 5\}$,

$$\begin{split} &\beta_{M(i)}(M \circ \tau) - \beta_{M(j)}(M \circ \tau) \\ &= \operatorname{sign}(M(i) - M(j))\vartheta_{M(i)M(j)M(k)}^2(M \circ \tau)\vartheta_{M(i)M(j)M(l)}^2(M \circ \tau)\vartheta_{M(i)M(j)M(m)}^2(M \circ \tau) \\ &= \operatorname{sign}(M(i) - M(j))\vartheta_{M(ijk)}^2(M \circ \tau)\vartheta_{M(ijl)}^2(M \circ \tau)\vartheta_{M(ijm)}^2(M \circ \tau) \\ &= \operatorname{sign}(M(i) - M(j))\kappa(M)^6 \exp 2\pi \sqrt{-1}\phi(M,ijk) \exp 2\pi \sqrt{-1}\phi(M,ijl) \exp 2\pi \sqrt{-1}\phi(M,ijm) \\ &\times \det(C\tau + D)^3\vartheta_{ijk}^2(\tau)\vartheta_{ijl}^2(\tau)\vartheta_{ijm}^2(\tau) \\ &= \operatorname{sign}(M(i) - M(j))\operatorname{sign}(i - j)\kappa(M)^6 \exp 2\pi \sqrt{-1}(\phi(M,ijk) + \phi(M,ijl) + \phi(M,ijm)) \\ &\times \det(C\tau + D)^3(\beta_i(\tau) - \beta_i(\tau)) \;. \end{split}$$

Hence, the proof of Lemma 10 is reduced to the proof of the following lemma.

Lemma 11 Suppose that i, j, k, l, m are permutation of 1, 2, 3, 4, 5, Then for any $M \in \Gamma$, the following equality holds:

$$\begin{split} & \operatorname{sign}(M(i) - M(j)) \operatorname{sign}(i - j) \kappa(M)^6 \exp 2\pi \sqrt{-1} (\phi(M, ijk) + \phi(M, ijl) + \phi(M, ijm)) \\ &= & \kappa(M)^2 \exp 2\pi \sqrt{-1} \phi(M, 6) \;. \end{split}$$

Proof. First we define two sets:

$$S := \{A|A \subset \{1,2,3,4,5\}, \#A = 2\} = \{\{i,j\}|i,j \in \{1,2,3,4,5\}, i \neq j\},$$

$$T := \{\text{even theta characteristics of genus two}\} \ (\subset \{0,1\}^4).$$

Note that #S = #T = 10. It can be easily checked that the map

$$S \ni \{i, j\} \longmapsto ij6 \in T \tag{24}$$

gives bijection from S to T. Here we define Γ -action on S as follows: for any $M \in \Gamma$ and $\{i, j\} \in S$, we define

$$M: \{i,j\} \longmapsto \{M(i),M(j)\}$$
.

Then the Γ -actions on S and on T are compatible to the map (24), that is, the map (24) satisfies

$$\{M(i), M(j)\} \longmapsto M(ij6)$$

for any $\{i, j\} \in S$ and $M \in \Gamma$. Now we denote that

$$\chi_1(M, \{i, j\}) := \operatorname{sign}(M(i) - M(j)) \operatorname{sign}(i - j),$$

$$\chi_2(M, \{i, j\}) := \kappa(M)^6 \exp 2\pi \sqrt{-1} (\phi(M, ijk) + \phi(M, ijl) + \phi(M, ijm))$$

$$\times \kappa(M)^{-2} \exp(-2\pi \sqrt{-1} \phi(M, 6)).$$

What we want to prove is the equality

$$\chi_1(M, \{i, j\}) = \chi_2(M, \{i, j\}) \qquad (\forall M \in \Gamma, \forall \{i, j\} \in S) .$$

The proof is decomposed into two steps.

Step 1 For any $M, M' \in \Gamma$, $\{i, j\} \in S$ and $\mu \in \{1, 2\}$, the equality

$$\chi_{\mu}(M'M, \{i, j\}) = \chi_{\mu}(M', \{M(i), M(j)\})\chi_{\mu}(M, \{i, j\})$$

holds. In fact, if $\mu = 1$, this equality is trivial. On the oter hand, if $\mu = 2$, this equality holds by (21) and (71).

Step 2 Suppose $M=M_{\nu}^{\pm 1}$ ($\nu=1,2,3,4$), where $M_{\nu}:=\rho(\gamma_{\nu})$. Then we have

$$\chi_1(M, \{i, j\}) = \chi_2(M, \{i, j\})$$
 for $\forall \{i, j\} \in S$.

Now we check this fact by giving the values $\chi_{\mu}(M_{\nu}^{\pm 1}, \{i, j\})$ explicitly. First let us give $\chi_{2}(M_{\nu}^{\pm 1}, \{i, j\})$. Suppose n be any integer. Then

$$4\phi(M_1^n,\varepsilon) = n(-(\varepsilon_1')^2 + 2\varepsilon_1') , \qquad 4\phi(M_2^n,\varepsilon) = n(\varepsilon_1'' - \varepsilon_2'')^2 ,$$

$$4\phi(M_3^n,\varepsilon) = n(-(\varepsilon_2')^2 + 2\varepsilon_2') , \qquad 4\phi(M_4^n,\varepsilon) = n(\varepsilon_2'')^2 .$$

Especially, $4\phi(M_{\nu}^{n},(1101))=n$ ($\forall \nu=1,2,3,4$). Thus, it can be easily seen that, in the meaning of mod.4,

$$4\phi(M_{\nu}^{n}, ijk) + 4\phi(M_{\nu}^{n}, ijl) + 4\phi(M_{\nu}^{n}, ijm) - 4\phi(M_{\nu}^{n}, (1101))$$

$$= \begin{cases} 2n & \text{(when } \{i, j\} = \{\nu, \nu + 1\}) \\ 0 & \text{(otherwise)} \end{cases}$$
(25)

On the other hand, it is well known (cf.[R-F] p90) that, for any $\nu \in \{1,3,4\}$, the equalities

$$\kappa(M_{\nu})^2 = \kappa(M_{\nu}^{-1})^2 = 1 \tag{26}$$

hold. Moreover, by the decomposition $M_2 = {}^-C_2 {}^+B_2 {}^-C_2 {}^+A_{12} {}^+C_2 {}^-B_2 {}^-C_1$ and relation (64), the equality (26) also holds for $\nu = 2$. Consequently, if $\{i, j, k, l, m\} = \{1, 2, 3, 4, 5\}$, then for any $\nu \in \{1, 2, 3, 4\}$ we have

$$\chi_{\mu}(M_{\nu}^{\pm 1}, \{i, j\}) = \begin{cases} -1 & \text{(when } \{i, j\} = \{\nu, \nu + 1\}) \\ 1 & \text{(otherwise)} \end{cases}$$
 (27)

with $\mu = 2$. On the other hand, for any $\nu \in \{1, 2, 3, 4\}$, the action of $M_{\nu}^{\pm 1}$ over $\{1, \ldots, 5\}$ coincides with that of $(\nu, \nu + 1)$. Therefore, (27) with $\mu = 1$ holds. Hence the claim of **Step 2** is verified. Thus the proof of Lemma 11 is completed.

Thus the proof of Lemma 10 is completed.

6 Monodromy covering as C*-bundle.

By lifting the \mathbb{C}^* -action on S-D to $(S-D)^{\wedge}$, we can define a \mathbb{C}^* -action on $(S-D)^{\wedge}$. The aim of this section is to show that, with the \mathbb{C}^* -action, $(S-D)^{\wedge}$ becomes the total space of a \mathbb{C}^* -bundle in the strict sense.

6.1 Injectivity of P.

In proving the injectivity of P, we use the following well known fact, which is a part of the Torelli's theorem.

Fact 12 (Torelli) Suppose that:

- X_1, X_2 are compact Riemann surfaces of genus two.
- For each k (= 1, 2), $A_{k1}, A_{k2}, B_{k1}, B_{k2}$ are **Z**-basis of $H_1(X_k, \mathbf{Z})$ such that $\langle A_{ki}, B_{kj} \rangle = \delta_{ij}$, $\langle A_{ki}, A_{kj} \rangle = \langle B_{ki}, B_{kj} \rangle = 0$, where $\langle \cdot \cdot , \cdot \rangle$ is the intersection form on X_k and δ_{ij} is Kronecker's delta.
- ω_{k1}, ω_{k2} are holomorphic 1-forms on X_k , linearly independent over ${\bf C}$ and satisfying $\int_{A_{kj}} \omega_{ki} = \delta_{ij}$.
- We denote that $\tau_k := \begin{bmatrix} \int_{B_{k1}} \omega_{k1} & \int_{B_{k2}} \omega_{k1} \\ \int_{B_{k1}} \omega_{k2} & \int_{B_{k2}} \omega_{k2} \end{bmatrix}$.

Then

$$\left[\begin{array}{c} \tau_1 = \tau_2 \end{array}\right] \Longrightarrow \left[\begin{array}{ccc} \exists \, f: X_1 \stackrel{\sim}{\longrightarrow} X_2 & (biregular) & such \,\, that \\ f^*\omega_{2i} = \omega_{1i} \,\, (i=1,2), & f_*A_{1j} = A_{2j}, \,\, f_*B_{1j} = B_{2j} \,\, (j=1,2) \end{array}\right].$$

Proof. See, for example, [Mar] or [Mum1].

Lemma 13 P is injective.

Proof. Suppose that h, h' are elements of $(S-D)^{\wedge}$. To avoid confusion, only in the proof, we use new letters to write defining equations of $X_{\sigma(h)}$ and $X_{\sigma(h')}$ as follows:

$$X_{\sigma(h)}: y^2 = (x - e_1) \cdots (x - e_5), \qquad X_{\sigma(h')}: w^2 = (z - e'_1) \cdots (z - e'_5).$$

We denote by $\overline{X_t}$ a compact Riemann surface given by the resolution of singularity of $X_t \cup \{\infty\}$. Suppose that P(h) = P(h'). Then by the Torelli's theorem there exists a biholomorphic bijective map $f: \overline{X_{\sigma(h)}} \to \overline{X_{\sigma(h')}}$ satisfying

$$f^*\left(\frac{z^{i-1}dz}{w}\right) = \frac{x^{i-1}dx}{y} \qquad (i=1,2) ,$$
 (28)

$$f_*A_j(h) = A_j(h')$$
 $(j = 1, 2, 3, 4)$. (29)

The divisor on $\overline{X_{\sigma(h)}}$ given by $\frac{dx}{y}$ is $2 \cdot \infty$. On the other hand, the divisor on $\overline{X_{\sigma(h')}}$ given by $\frac{dz}{w}$ is also $2 \cdot \infty$. Therefore, by (28) with i = 1, we obtain that $f(\infty) = \infty$. Hence there exists a constant $\lambda \in \mathbf{C}^*$ such that

$$\{e'_1, \dots, e'_5\} = \{\lambda^2 e_1, \dots, \lambda^2 e_5\},$$
 (30)

$$f$$
 coincides with the map $(x,y) \mapsto (z,w) = (\lambda^2 x, \lambda^5 y)$. (31)

By (31) we obtain $f^*\left(\frac{zdz}{w}\right) = \frac{1}{\lambda}\frac{xdx}{y}$. Therefore, together with the relation (28) we have that $\lambda = 1$. Hence $\{e_1', \dots, e_5'\} = \{e_1, \dots, e_5\}$ and f is the trivial isomorphism (that is, (31) with $\lambda = 1$). Moreover, this map satisfy the condition (29) and hence we conclude that h = h'.

6.2 Injectivity of $(dP)_h$.

First we review a well known fact.

Fact 14 (Saito, K.) On the above situation and notations, we have

$${}^{t}\left(\frac{\partial\omega_{1k}}{\partial t_{2}}\ \frac{\partial\omega_{1k}}{\partial t_{3}}\ \frac{\partial\omega_{1k}}{\partial t_{4}}\ \frac{\partial\omega_{1k}}{\partial t_{5}}\right){}^{t}T={}^{t}\left(-\frac{3}{2}\omega_{1k}\ \frac{5}{2}\omega_{2k}\ \frac{15}{2}\omega_{3k}\ \frac{15}{2}\omega_{4k}\right)$$

for each $k \in \{1, 2, 3, 4\}$, where

$$T = \begin{pmatrix} 2t_2 & 3t_3 & 4t_4 & 5t_5 \\ -15t_3 & 6t_2^2 - 20t_4 & 4t_2t_3 - 25t_5 & 2t_2t_4 \\ 60t_4 - 10t_2^2 & 75t_5 - 27t_2t_3 & 10t_2t_4 - 18t_3^2 & 20t_2t_5 - 9t_3t_4 \\ 25t_5 + 15t_2t_3 & 18t_2t_4 - 6t_2^3 & 40t_2t_5 - 3t_3t_4 - 4t_2^2t_3 & 10t_3t_5 - 4t_4^2 - 2t_2^2t_4 \end{pmatrix}$$

and det $T = -75\Delta$.

Proof. First we note that

$$\frac{\partial}{\partial t_k} \int_{A_k(t)} \frac{dx}{y} = -\int_{A_k(t)} \frac{x^{5-k} dx}{2yf} , \qquad (k = 2, 3, 4, 5) , \qquad (32)$$

and, for any fixed $t \in S - D$,

$$d\left(\frac{x^n}{y}\right) = \frac{nx^{n-1}}{y}dx - \frac{x^n\frac{\partial f}{\partial x}}{2yf}dx = \frac{2nx^{n-1}f - x^n\frac{\partial f}{\partial x}}{2yf}dx. \tag{33}$$

Here we denote, for any integer n,

$$W_n := 2nx^{n-1}f - x^n \frac{\partial f}{\partial x} .$$

Then we can write (33) as

$$d\left(\frac{x^n}{y}\right) = \frac{W_n}{2yf}dx \qquad (n \in \mathbf{Z}). \tag{34}$$

For simplisity, we write $\mathbf{Q}[t] := \mathbf{Q}[t_2, t_3, t_4, t_5]$ and $\mathbf{Q}[t, x] := \mathbf{Q}[t_2, t_3, t_4, t_5, x]$. For any nonnegative integer n, W_n is a polynomial of x with coefficients in $\mathbf{Q}[t]$, whose leading term is $(2n-5)x^{n+4}$. Therefore, it can be easily seen that, as $\mathbf{Q}[t]$ -modules,

$$\mathbf{Q}[t,x] = \bigoplus_{k=0}^{\infty} \mathbf{Q}[t]x^k = \left(\bigoplus_{k=0}^{3} \mathbf{Q}[t]x^k\right) \bigoplus \left(\bigoplus_{n=0}^{\infty} \mathbf{Q}[t]W_n\right) .$$

Hence, each $P \in \mathbf{Q}[t,x]$ has unique expression as

$$P = \sum_{k=0}^{3} \varphi_k x^k + \sum_{n=0}^{\deg_x P - 4} \psi_n W_n ,$$
where $\varphi_k, \psi_n \in \mathbf{Q}[t] \quad (k \in \{0, 1, 2, 3\}, n \in \{0, 1, \dots, \deg_x P - 4\}) .$ (35)

By (32), (34) and (35), we have

$$\int_{A_k(t)} \frac{P}{2yf} dx = \sum_{k=0}^{3} \varphi_k(t) \int_{A_k(t)} \frac{x^k}{2yf} dx + \sum_{n=0}^{\deg_x P - 4} \psi_n(t) \int_{A_k(t)} \frac{W_n}{2yf} dx$$
$$= -\sum_{k=0}^{3} \varphi_k(t) \frac{\partial}{\partial t_{5-k}} \int_{A_k(t)} \frac{dx}{y} .$$

What we need for our purpose is to get $\{\varphi_k\}$ satisfying (35) when $P = x^i f$ (i=0,1,2,3). First, $W_n(n \in \{0,1,2,3,4\})$ are as follows.

$$\begin{split} W_0(x) &:= -5x^4 - 3t_2x^2 - 2t_3x - t_4 , \\ W_1(x) &:= -3x^5 - t_2x^3 + t_4x + 2t_5 , \\ W_2(x) &:= -x^6 + t_2x^4 + 2t_3x^3 + 3t_4x^2 + 4t_5x , \\ W_3(x) &:= x^7 + 3t_2x^5 + 4t_3x^4 + 5t_4x^3 + 6t_5x^2 , \\ W_4(x) &:= 3x^8 + 5t_2x^6 + 6t_3x^5 + 7t_4x^4 + 8t_5x^3 . \end{split}$$

From these formulae, we have expression of $x^i f$ into the form like (35) for each i(=0,1,2,3) as follows.

$$3f = 2t_2x^3 + 3t_3x^2 + 4t_4x + 5t_5 - W_1,$$

$$5xf = 15t_3x^3 + (20t_4 - 6t_2^2)x^2 + (25t_5 - 4t_2t_3)x - 2t_2t_4 - 5W_2 + 2t_2W_0,$$

$$-15x^2f = 10(6t_4 - t_2^2)x^3 + (75t_5 - 27t_2t_3)x^2 + (10t_2t_4 - 18t_3^2)x + 20t_2t_5 - 9t_3t_4$$

$$-15W_3 - 10t_2W_1 - 9t_3W_0,$$

$$-15x^3f = 5(5t_5 + 3t_2t_3)x^3 + (18t_2t_4 - 6t_2^3)x^2 + (40t_2t_5 - 3t_3t_4 - 4t_2^2t_3)x$$

$$+10t_3t_5 - 4t_4^2 - 2t_2^2t_4 - 5W_4 - 10t_2W_2 - 5t_3W_1 - (4t_4 + 2t_2^2)W_0.$$

Finally, we have

$$\begin{split} -\frac{3}{2} \int_{A_{k}(t)} \frac{dx}{y} &= \left[2t_{2} \frac{\partial}{\partial t_{2}} + 3t_{3} \frac{\partial}{\partial t_{3}} + 4t_{4} \frac{\partial}{\partial t_{4}} + 5t_{5} \frac{\partial}{\partial t_{5}} \right] \int_{A_{k}(t)} \frac{dx}{y} \;, \\ -\frac{5}{2} \int_{A_{k}(t)} \frac{dx}{y} &= \left[15t_{3} \frac{\partial}{\partial t_{2}} + (20t_{4} - 6t_{2}^{2}) \frac{\partial}{\partial t_{3}} + (25t_{5} - 4t_{2}t_{3}) \frac{\partial}{\partial t_{4}} - 2t_{2}t_{4} \frac{\partial}{\partial t_{5}} \right] \int_{A_{k}(t)} \frac{dx}{y} \;, \\ \frac{15}{2} \int_{A_{k}(t)} \frac{x^{2} dx}{y} &= \left[10(6t_{4} - t_{2}^{2}) \frac{\partial}{\partial t_{2}} + (75t_{5} - 27t_{2}t_{3}) \frac{\partial}{\partial t_{3}} + (10t_{2}t_{4} - 18t_{3}^{2}) \frac{\partial}{\partial t_{4}} + (20t_{2}t_{5} - 9t_{3}t_{4}) \frac{\partial}{\partial t_{5}} \right] \int_{A_{k}(t)} \frac{dx}{y} \;, \\ \frac{15}{2} \int_{A_{k}(t)} \frac{x^{3} dx}{y} &= \left[5(5t_{5} + 3t_{2}t_{3}) \frac{\partial}{\partial t_{2}} + (18t_{2}t_{4} - 6t_{2}^{3}) \frac{\partial}{\partial t_{3}} + (40t_{2}t_{5} - 3t_{3}t_{4} - 4t_{2}^{2}t_{3}) \frac{\partial}{\partial t_{4}} + (10t_{3}t_{5} - 4t_{4}^{2} - 2t_{2}^{2}t_{4}) \frac{\partial}{\partial t_{5}} \right] \int_{A_{k}(t)} \frac{dx}{y} \;. \end{split}$$

Therefore, the matrix T is given. We can check the equality det $T=-75\Delta$ by computer.

Lemma 15 (Saito, K.) The differential of P at any point $h \in (S-D)^{\wedge}$, that is, $(dP)_h : T_h((S-D)^{\wedge}) \to T_{P(h)}(M_{2,4}(\mathbb{C}))$ is injective.

Proof. It is sufficient to prove that $\det \frac{\partial(\omega_{11},\ldots,\omega_{14})}{\partial(t_2,\ldots,t_5)} \neq 0$ for any $h \in (S-D)^{\wedge}$. Then, by Fact 14 it is sufficient to see that $\det(\omega_{ij})_{i,j=1,\ldots,4} \neq 0$ for any $h \in (S-D)^{\wedge}$. In general, suppose X be a compact Riemann surface of genus $g(\geq 1)$ and \mathcal{M}_X be the sheaf of germs of meromorphic functions on X, then there exists the following canonical isomorphism as \mathbb{C} vector spaces (of 2g-dimensional):

$$H^1(X, \mathbf{C}) \cong Hom_{\mathbf{C}}(H_1(X, \mathbf{C}), \mathbf{C}) \cong \Gamma(X, d\mathcal{M}_X) / d\Gamma(X, \mathcal{M}_X).$$
 (36)

In particular, when X is a compact Riemann surface (of genus two) defined by F(x,y,t)=0, $\frac{x^{i-1}dx}{y} \mod d\Gamma(X,\mathcal{M}_X)$ $(i=1,\ldots,4)$ are C-basis of the right hand side space of (36). Hence $\det(\omega_{ij})_{i,j=1,\ldots,4} \neq 0$.

6.3 Image of $\varphi \circ P$.

The aim of this subsection is to prove the following lemma.

Lemma 16 Image($\varphi \circ P$) = \mathbf{H}_2^* .

Proof. First we recall two well-known facts.

Fact 17 (cf. [Wei]) Suppose τ be an element of \mathbf{H}_2 . Then there is a compact Riemann surface R of genus two with a symplectic basis $\{A_1, A_2, B_1, B_2\}$ of $H_1(R, \mathbf{Z})$ which gives τ as period matrix if and only if $\tau \in \mathbf{H}_2^*$.

Fact 18 (cf. for example, [Gun]) Suppose that R is an arbitrary compact Riemann surface of genus two. Then there exists $t \in S-D$ such that R is complex analytically isomorphic to $\overline{X_t}$.

By the above two facts it is obvious that

$$\operatorname{Image}(\varphi \circ P) \subset \{M \circ \tau | \tau \in \operatorname{Image}(\varphi \circ P), M \in \Gamma_2(1)\} = \mathbf{H}_2^*$$
.

Hence, for any $\tau' \in \mathbf{H}_2^*$ there exists $M \in \Gamma_2(1)$ such that $M \circ \tau' \in \operatorname{Image}(\varphi \circ P)$. But it is not trivial whether τ' itself is an element of $\operatorname{Image}(\varphi \circ P)$ or not. To prove the lemma, we have only to show that, for any $\tau \in \operatorname{Image}(\varphi \circ P)$ the $\Gamma_2(1)$ -orbit of τ is included in $\operatorname{Image}(\varphi \circ P)$. This will be given by Claim 19 stated later on. To state the claims, now we give a little preparation.

Suppose that R is a compact Riemann surface of genus two which is given as a ramified covering over $\mathbf{P}^1 = \mathbf{P}^1(\mathbf{C})$ with six ordered ramified points W_1, \ldots, W_6 . We take an oriented simple closed path on \mathbf{P}^1 which go through W_1, \ldots, W_6 in this order. For each $n \in \{1, \ldots, 6\}$ we denote by I_n , the segment of the path having W_n, W_{n+1} as its both ends, where $W_7 := W_1$. Then each $\kappa^{-1}(I_n)$ is a closed path on R. We give an orientation to each $\kappa^{-1}(I_n)$ and denote it by C_n such that $\langle C_n, C_{n+1} \rangle = 1$ for any $n \in \{1, \ldots, 5\}$, where $\langle \ , \ \rangle$ is the intersection form on $H_1(R, \mathbf{Z})$. Note that here we identify, for each n, oriented closed path C_n with the element of $H_1(R, \mathbf{Z})$ having C_n as a representative. For the sake of convenience, we define W_n and C_n for any integer n such that $W_{n+6} = W_n$ and $C_{n+6} = C_n$ (for any $n \in \mathbf{Z}$). Now we define that

$$A_1^{(n)} := C_{n+1}, \quad A_2^{(n)} := C_{n+3}, \quad A_3^{(n)} = B_1^{(n)} := -C_n, \quad A_4^{(n)} = B_2^{(n)} := C_{n+4} \qquad (n \in \mathbf{Z}).$$

Then for each n, $A_1^{(n)}$, $A_2^{(n)}$, $B_1^{(n)}$, $B_2^{(n)}$ are symplectic basis of $H_1(R, \mathbf{Z})$. It can be easily seen that

$$(A_1^{(n-1)} \quad A_2^{(n-1)} \quad A_3^{(n-1)} \quad A_4^{(n-1)}) = (A_1^{(n)} \quad A_2^{(n)} \quad A_3^{(n)} \quad A_4^{(n)})S' \qquad (n \in \mathbf{Z})$$
where
$$S' := \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$
(37)

On the other hand, the above R with a basis $A_1^{(n)}, \ldots, A_4^{(n)}$ gives a period matrix $\tau (\in \mathbf{H}_2^*)$. Obviously, this τ depends on the order of the branch points $\{W_i\}$ and the above simple closed path $\bigcup_n I_n$ (and, moreover, the ambiguity of the orientation of $\kappa^{-1}(I_1)$). But, if we consider the procedure of constructing the monodromy covering $(S-D)^{\wedge}$, it can be easily seen that Γ -orbit of the τ depends only on R and the sixth branch point W_6 but it doesn't depend on the order of the other five branch points, the oriented simple closed path and the ambiguity of the orientation of $\kappa^{-1}(I_1)$. Therefore we write the Γ -orbit as $\operatorname{orb}(R,W_6)$. Here we brought the preparation to an end.

Now we define that $S := K(S')^{-1}K^{-1}$. We note that $S^n(6) = n'$, where $n' \in \{1, ..., 6\}$ and $n' \equiv n \mod 6$. Accordingly, we have $\Gamma S^n = \{M \in \Gamma_2(1) | M(n) = 6\}$ and hence $\Gamma_2(1) = \coprod_{n=0}^5 \Gamma S^n$. Therefore, to prove the lemma, we have only to show the following claim.

Claim 19 $S^n \circ \operatorname{orb}(\overline{X_t}, \infty) \subset \operatorname{Image}(\varphi \circ P)$ for any $n \in \mathbb{Z}$ and $t \in S - D$.

Proof. Suppose that t is any element of S-D. And suppose that $pr: \overline{X_t} \to \mathbf{P^1}$ is a map which is an extension of the projection $X_t \ni (x,y) \mapsto x \in \mathbf{C}$. pr is a ramified covering of $\mathbf{P^1}$ with six ramified points, say $W_1, \ldots, W_6 \in \mathbf{P^1}$ where W_6 is a point satisfying $x = \infty$. As in the preparation given above, we take an oriented simple closed path on $\mathbf{P^1}$ which go through W_1, \ldots, W_6 in this order, and using the path we take elements $C_n, A_i^{(n)} \in H_1(\overline{X_t}, \mathbf{Z})$ $(j, n \in \mathbf{Z}, 1 \leq j \leq 4)$. Then we have

$$\operatorname{orb}(\overline{X_t}, W_6) = \{ \varphi \circ P(h) | h \in \sigma^{-1}(t) \} \subset \operatorname{Image}(\varphi \circ P) .$$

Now we show that the inclusion

$$S^n \circ \operatorname{orb}(\overline{X_t}, W_0) \subset \operatorname{Image}(\varphi \circ P)$$
 (38)

holds for any integer n. First note that, for any $n \in \mathbb{Z}$ we have

$$S^n \circ \operatorname{orb}(\overline{X_t}, W_0) = \operatorname{orb}(\overline{X_t}, W_{-n}). \tag{39}$$

By (39), if $(\overline{X_t}, W_0) \not\sim (\overline{X_t}, W_{-n})$, then any point $t' \in S - D$ satisfying $(\overline{X_{t'}}, \infty) \sim (\overline{X_t}, W_{-n})$ is not included in the \mathbb{C}^* -orbit of t. Therefore,

$$\operatorname{orb}(\overline{X_t}, W_{-n}) = \{ \varphi \circ P(h) | h \in \sigma^{-1}(t') \} \subset \operatorname{Image}(\varphi \circ P)$$

holds for the n. This inclusion and (39) imply (38). On the other hand, if $(\overline{X_t}, W_0) \sim (\overline{X_t}, W_{-n})$, then

$$S^n \circ \operatorname{orb}(\overline{X_t},W_0) = \operatorname{orb}(\overline{X_t},W_{-n}) = \operatorname{orb}(\overline{X_t},W_0) \subset \operatorname{Image}(\varphi \circ P) \;.$$

Therefore (38) holds for any integer n.

Here the proof of Lemma 16 is completed.

6.4 C*-action on $(S-D)^{\wedge}$.

Lemma 20 If $\lambda \in \mathbb{C}^*$, $\lambda \neq 1$, then λ -action on $(S-D)^{\wedge}$ has no fixed points.

Proof. Suppose that there exists $\lambda \in \mathbb{C}^*$ and $h \in (S-D)^{\wedge}$ satisfying $\lambda \cdot h = h$. Then

$$\omega_{2j}(h) = \omega_{2j}(\lambda \cdot h) = \lambda^{-1}\omega_{2j}(h) \qquad (j = 1, 2, 3, 4).$$

By an elementary result of the theory of compact Riemann surface that $(\omega_{21}(h), \ldots, \omega_{24}(h)) \neq 0$ for any $h \in (S-D)^{\wedge}$. Therefore $\lambda = 1$.

Remark. To prove the above lemma, there is another way which doesn't use the period mapping. The proof is easy, but a little more complicated than the above proof. So we don't mention it here.

6.5 Fiber of $\varphi \circ P$ at each point of \mathbf{H}_2^* .

First we take an element $h \in (S-D)^{\wedge}$. For the h, a symplectic basis $A_j(h) \in H_1(X_{\sigma(h)}, \mathbf{Z})$ $(j \in \{1, \ldots, 4\})$ is obtained. Using $\{A_j(h)\}$, an isomorphism (10) with $t = \sigma(h)$ is obtained. We denote the group of automorphisms of $\overline{X_{\sigma(h)}}$ by $\operatorname{Aut}(\overline{X_{\sigma(h)}})$. Any $f \in \operatorname{Aut}(\overline{X_{\sigma(h)}})$ determines an element M_f of $\operatorname{Aut}(H_1(X_{\sigma(h)}, \mathbf{Z}), \langle , \rangle)$. M_f is regarded as an element of $Sp(4, \mathbf{Z})$ via (10). The following fact is an easy corollary of Fact12.

Fact 21 The above homomorphism $\operatorname{Aut}(\overline{X_{\sigma(h)}}) \ni f \mapsto M_f \in Sp(4, \mathbf{Z})$ is injective. Its image coincides with $\operatorname{stab}_{Sp(4, \mathbf{Z})}(\tau)$.

Proof. Omitted.

As a preparation of Lemma 23, we prove the following lemma.

Lemma 22 Using the above notations, it satisfies that

$$f(\infty) = \infty \iff M_f \in \Gamma$$
.

Proof. $[\Rightarrow]$ Suppose that $f(\infty) = \infty$. Then there exists $\lambda \in \mathbb{C}^*$ satisfying $\lambda \cdot \sigma(h) = \sigma(h)$ such that, f coincides with an automorphism of $\overline{X_{\sigma(h)}}$ defined by $(x,y) \mapsto (\lambda^2 x, \lambda^5 y)$. Note that $|\lambda| = 1$. Hence $\lambda = e^{\sqrt{-1}u}$ for some real u. Then, obviously, M_f is obtained by monodromy transformation given by the path $[0,1] \ni \theta \mapsto e^{\sqrt{-1}u\theta} \cdot \sigma(h) \in S-D$. Hence $M_f \in \Gamma$.

 $[\Leftarrow]$ Suppose that $M_f \in \Gamma$. Then similar argument as Lemma 4 implies that each $[e_i, e_j]$ is mapped by M_f to $[e_f(i), e_f(j)]$ (mod $2H_1(X_{\sigma(h)}, \mathbf{Z})$). Therefore, as the proof of Lemma 4, we have

$$M_f(i) = f(i)$$
 for any $i \in \{1, ..., 6\}$.

Since $M_f \in \Gamma$, we obtain $M_f(6) = 6$ by Lemma 3 and the following argument. Hence f(6) = 6. This completes the proof.

Since φ absorb the \mathbb{C}^* -action on $\operatorname{Image}(P)$, composite map $\varphi \circ P$ induces a map $\mathbb{C}^* \setminus (S-D)^{\wedge} \to \mathbb{H}_2$. The aim of this subsection is to show the injectivity of the map.

Lemma 23 The map $C^* \setminus (S-D)^{\wedge} \to H_2$ is injective.

Proof. Suppose that h, h' are elements of $(S-D)^{\wedge}$ satisfying $\varphi \circ P(h) = \varphi \circ P(h')$. Then there exist $\lambda, \lambda' \in \mathbf{C}^*$ such that

$$\lambda \cdot \sigma(h) = F \circ \varphi \circ P(h)$$
 and $\lambda' \cdot \sigma(h') = F \circ \varphi \circ P(h')$

are valid. Then, if we denote $\varphi \circ P(h)$ by τ , we have

$$\sigma(\lambda \cdot h) = \sigma(\lambda' \cdot h') \quad \text{and} \quad \varphi \circ P(\lambda \cdot h) = \varphi \circ P(\lambda' \cdot h') = \tau . \tag{40}$$

The first equality of (40) implies the existence of $M \in \Gamma$ satisfying $P(\lambda' \cdot h') = P(\lambda \cdot h)M$. Therefore,

$$(KM^{-1}K^{-1}) \circ \tau = \varphi(P(\lambda \cdot h)M) = \varphi(P(\lambda' \cdot h')) = \tau.$$

Hence, by Fact 21 there exist $f \in \operatorname{Aut}(\overline{X_{\sigma(\lambda \cdot h)}})$ such that $M_f = M$ where M_f is an element of $\operatorname{Aut}(H_1(X_{\sigma(\lambda \cdot h)}, \mathbf{Z}), \langle \ , \ \rangle)$ induced by f. And using $A_j(\lambda \cdot h)$ $(j \in \{1, \ldots, 4\})$ as a basis of $H_1(X_{\sigma(\lambda \cdot h)}, \mathbf{Z})$, via (10) with $t = \sigma(\lambda \cdot h)$, M_f is regarded as an element of $Sp(4, \mathbf{Z})$. Since $M_f = M \in \Gamma$, Lemma 22 implies that $f(\infty) = \infty$. Hence there exists $\lambda'' \in \mathbf{C}^*$ satisfying $\lambda'' \cdot \sigma(\lambda \cdot h) = \sigma(\lambda \cdot h)$ such that f coincides with an element of $\operatorname{Aut}(\overline{X_{\sigma(\lambda \cdot h)}})$ defined by $(x, y) \mapsto ((\lambda'')^2 x, (\lambda'')^5 y)$. Therefore, $\lambda' \cdot h'$ is on the \mathbf{C}^* -orbit of $\lambda \cdot h$. That is, h' is on the \mathbf{C}^* -orbit of h.

7 Triviality of the bundle $(S-D)^{\wedge} \to \mathbf{H}_2^*$.

The aim of this section is to prove the triviality of the bundle φ : Image $(P) \to \mathbf{H}_2^*$, that is, to prove the Theorem 1 mentioned later. Before proving the theorem, as a preparation, we show some lemmas as follows.

Lemma 24 Suppose that τ is any element of \mathbf{H}_2^* and U is a sufficiently small neighborhood of τ in \mathbf{H}_2^* . Then there exist exactly two maps $\widehat{F}_{\tau}^{(i)}: U \to (S-D)^{\wedge}$ (i=1,2) satisfying

$$\sigma \circ \widehat{F}_{\tau}^{(i)} = F|_{U}$$
 and $\varphi \circ P \circ \widehat{F}_{\tau}^{(i)} = id_{U}$.

Proof. Here we use the following well-known facts (cf. [Fre]).

(i) Since $Sp(4, \mathbf{Z})$ acts on \mathbf{H}_2 discontinuously, for any subgroup $G \subset Sp(4, \mathbf{Z})$, and for any element $\tau \in \mathbf{H}_2$, there exists a neighborhood U of τ in \mathbf{H}_2 such that

$$\begin{bmatrix}
\text{if } M \in \operatorname{stab}_{G}(\tau), \text{ then } M \circ U = U, \\
\text{if } M \in G - \operatorname{stab}_{G}(\tau), \text{ then } (M \circ U) \cap U = \emptyset.
\end{bmatrix}$$
(41)

Moreover, each element $\tau' \in U$ satisfies $\operatorname{stab}_G(\tau') \subset \operatorname{stab}_G(\tau)$.

(ii) For each τ , stab_{$Sp(4,\mathbf{Z})$} (τ) is finite set including $\pm I$. Moreover, $\{\tau \in \mathbf{H}_2 | \operatorname{stab}_{Sp(4,\mathbf{Z})}(\tau) \neq \{\pm I\}\}$ is proper analytic subset of \mathbf{H}_2 .

Now we take $\tau \in \mathbf{H}_2^*$. Since σ is covering map, there exists a neighborhood $U_{F(\tau)}$ of $F(\tau)$ in S-D such that, each connected component of $\sigma^{-1}(U_{F(\tau)})$ is isomorphic to $U_{F(\tau)}$ by σ :

$$\sigma|_{(\mathrm{the\ component})}: (\mathrm{the\ component}) \xrightarrow{\sim} U_{F(\tau)}$$

Then the conditions of the lemma implies that \hat{F}_{τ} must be the composition $(\sigma|_{U_b})^{-1} \circ (F|_{U'})$, where

$$h \in \sigma^{-1}(F(\tau)) \cap (\varphi \circ P)^{-1}(\tau)$$
,
 U_h is a connected component of $\sigma^{-1}(U_{F(\tau)})$ containing h ,
 U' is a neighborhood of τ in \mathbf{H}_2^* satisfying $F(U') \subset U_{F(\tau)}$. (42)

In this case, moreover, it must satisfy that

$$\hat{F}_{\tau}(\tau') \in \sigma^{-1}(F(\tau')) \cap (\varphi \circ P)^{-1}(\tau')$$
(43)

for any $\tau' \in U'$. By the way, it can be easily seen from (ii) that for any $\tau' \in \mathbf{H}_2^*$, $\#\operatorname{stab}_{\Gamma}(\tau') = \#\sigma^{-1}(F(\tau')) \cap (\varphi \circ P)^{-1}(\tau')$ holds, and that $\{\tau' \in \mathbf{H}_2^* | \operatorname{stab}_{\Gamma}(\tau') = \{\pm I\}\}$ is open dense subset of \mathbf{H}_2^* . Therefore, if we note (43), for each $\tau \in \mathbf{H}_2^*$, there exist at most two local sections \hat{F}_{τ} satisfying the

conditions of the lemma. From now on, we show that there exists just two local sections \hat{F}_{τ} satisfying the conditions. Suppose U_{τ} be a neighborhood of τ in \mathbf{H}_{2}^{*} satisfying $F(U_{\tau}) \subset U_{F(\tau)}$ and the condition (41) with $U = U_{\tau}$, $G = \Gamma$. Then we take h, U_{h}, U' satisfying (42). Moreover, suppose that $U' \subset U_{\tau}$ and that

$$\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_\tau})(U') \subset U_\tau \tag{44}$$

holds. Then by Lemma 7, for each $\tau' \in U'$ there exists $M \in \Gamma$ such that

$$\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_\tau})(\tau') = M \circ \tau' . \tag{45}$$

Then, the conditions

$$M \circ \tau' \in M \circ U' \subset M \circ U_{\tau}$$
, and $M \circ \tau' = \varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_{\tau}})(\tau') \in \varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_{\tau}})(U') \subset U_{\tau}$

imply that $(M \circ U_{\tau}) \cap U_{\tau} \neq \emptyset$, hence, by (41) with $U = U_{\tau}$ and $G = \Gamma$, we conclude that $M \in \operatorname{stab}_{\Gamma}(\tau)$. If $\operatorname{stab}_{\Gamma}(\tau) = \{\pm I\}$, then $M = \pm I$, which implies that $\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_{\tau}})(\tau') = \tau'$. Therefore, $\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U'}) = id_{U'}$.

On the other hand, suppose that $\operatorname{stab}_{\Gamma}(\tau) \neq \{\pm I\}$. In this case we assume moreover that U' is connected and that, not only U_{τ} , but also U' satisfies the condition (41) with U=U' and $G=\Gamma$. Furthermore, we assume that $\operatorname{stab}_{\Gamma}(\tau')=\{\pm I\}$. Since $M\in\operatorname{stab}_{\Gamma}(\tau)$, then (41) with U=U' and $G=\Gamma$ implies that

$$\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_\tau})(\tau') = M \circ \tau' \in M \circ U' = U', \tag{46}$$

that is,

$$\varphi \circ P \circ (\sigma|_{U_h})^{-1} \circ (F|_{U_\tau})(U') \subset U' \tag{47}$$

holds. Here we denote by M' an element of Γ satisfying $M' \circ (M \circ \tau') = \tau'$. Note that, since $\operatorname{stab}_{\Gamma}(\tau') = \{\pm I\}$, we have $M' = \pm M^{-1} \in \operatorname{stab}_{\Gamma}(\tau)$. From now on, we write $\psi := \varphi \circ P \circ (\sigma|_{M'(U_h)})^{-1} \circ (F|_{U'})$ for short. Then the conditions $M' \in \operatorname{stab}_{\Gamma}(\tau)$, (41) with U = U' and $G = \Gamma$, and (47) imply $\psi(U') \subset M' \circ U' = U'$, and the conditions (46) and $M' \circ (M \circ \tau') = \tau'$ imply $\psi(\tau') = M' \circ (M \circ \tau') = \tau'$. The following arguments are devoted to proving that $\psi = id_{U'}$. We write $U'' := \{\tau'' \in U' \mid \operatorname{stab}_{\Gamma}(\tau'') = \{\pm I\}\}$ for short. Since we assume that U' is connected, U'' is also connected, open dense subset by (ii). Therefore, since U' is Hausdorff space, $\psi : U' \to U'$ is continuous, and U'' is dense in U', we have only to show that $\psi|_{U''} = id_{U''}$. Moreover, since $\tau' \in U'', \psi(\tau') = \tau'$ and U'' is connected, we have only to show that the fixed point set of $\psi|_{U''}$: $\{\tau'' \in U''|\psi(\tau'') = \tau''\}$ is open and closed subset of U''. By the way, since U'' is Hausdorff space, and $\psi|_{U''} : U'' \to U''$ is continuous, the set $\{\tau'' \in U''|\psi(\tau'') = \tau''\}$ is open subset of U''. Therefore, we have only to show that the set $\{\tau'' \in U''|\psi(\tau'') = \tau''\}$ is open subset of U''. Suppose $\tau'' \in U''$ satisfies $\psi(\tau'') = \tau''$. Then by the argument in the case $\operatorname{stab}_{\Gamma}(\tau) = \{\pm I\}$, there exists a neighborhood U''' of τ'' in U'' such that $\psi(\tau''') = \tau'''$ for any $\tau''' \in U'''$. Therefore, $\{\tau'' \in U''|\psi(\tau'') = \tau''\}$ is open subset of U''. Hence We conclude that $\psi = id_{U'}$.

Lemma 25 Suppose that $\tau \in \mathbf{H}_2$ is diagonal matrix: $\tau = \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix}$, and M is any element of $\Gamma_2(1)$. Then there exists a permutation i, j, k, l, m of 1, 2, 3, 4, 5 such that the following 1, 2 hold.

1. For
$$\tau_{12} \in \mathbf{C}$$
 satisfying $|\tau_{12}| \ll 1$, we write $\tau := \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix}$. Then we have

$$\alpha_{\nu}(M \circ \tau) = C + C'\tau_{12} + C_{\nu}\tau_{12}^{2} + O(\tau_{12}^{3}) \qquad (\nu = k, l, m)$$

where C, C', C_k, C_l, C_m are independent to τ_{12} and C_k, C_l, C_m are different from each other.

2. $\alpha_i(M \circ \tau)$, $\alpha_i(M \circ \tau)$, C are different from each other.

Proof. First we note that

$$\vartheta_{\varepsilon} \begin{pmatrix} \tau_{1} & \tau_{12} \\ \tau_{12} & \tau_{2} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{2^{2n}}{(2n)!} \frac{d^{n}\vartheta_{\varepsilon'_{1}\varepsilon''_{1}}}{d\tau_{1}^{n}} (\tau_{1}) \frac{d^{n}\vartheta_{\varepsilon'_{2}\varepsilon''_{2}}}{d\tau_{2}^{n}} (\tau_{2}) \tau_{12}^{2n} = \vartheta_{\varepsilon'_{1}\varepsilon''_{1}} (\tau_{1})\vartheta_{\varepsilon'_{2}\varepsilon''_{2}} (\tau_{2}) + O(\tau_{12}^{2})$$

$$\tag{48}$$

for $\varepsilon \neq (1111)$ and

$$\vartheta_{1111} \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix} = \frac{\pi}{2\sqrt{-1}} \sum_{n=0}^{\infty} \frac{2^{2n}}{(2n+1)!} \frac{d^n \Theta_1}{d\tau_1^n} (\tau_1) \frac{d^n \Theta_1}{d\tau_2^n} (\tau_2) \tau_{12}^{2n+1} = \frac{\pi}{2\sqrt{-1}} \Theta_1(\tau_1) \Theta_1(\tau_2) \tau_{12} + O(\tau_{12}^3) , (49)$$

where $\Theta_1(\tau) := \vartheta_{00}(\tau)\vartheta_{01}(\tau)\vartheta_{10}(\tau)$ for $\tau \in \mathbf{H}$. On the other hand, (18), (61), and (23) imply that for any $\tau \in \mathbf{H}_2$, for any $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(4, \mathbf{Z})$ and for any distinct $i, j \in \{1, \dots, 5\}$ it satisfies that

$$\begin{array}{lcl} \alpha_i(M \circ \tau) - \alpha_j(M \circ \tau) & = & \mathrm{sign}(i-j)\vartheta_{ijk}^2(M \circ \tau)\vartheta_{ijl}^2(M \circ \tau)\vartheta_{ijm}^2(M \circ \tau) \\ & = & \Phi(M;i,j)\det(C\tau + D)^3\vartheta_{M^{-1}(ijk)}^2\vartheta_{M^{-1}(ijl)}^2\vartheta_{M^{-1}(ijm)}^2 \,, \end{array}$$

where $\{k, l, m\}$ is complement of $\{i, j\}$ in $\{1, \dots, 5\}$, and

$$\begin{split} \Phi(M;i,j) &:= & \operatorname{sign}(i-j)\kappa(M)^6 \\ &\times \exp[2\pi\sqrt{-1}(\phi(M,M^{-1}(ijk)) + \phi(M,M^{-1}(ijl)) + \phi(M,M^{-1}(ijm)))] \; . \end{split}$$

Here we note that $\Phi(M; i, j)$ is non-zero constant, which depends M, i, j but is independent to τ . Furthermore, for any $M \in Sp(4, \mathbf{Z})$, the function

$$\mathbf{H}_2 \ni \tau \longmapsto \det(C\tau + D) \in \mathbf{C}$$

is holomorphic, and has no zeros on \mathbf{H}_2 . Therefore, to prove the lemma, we have only to show that, for any $M \in Sp(4, \mathbf{Z})$, there exists a permutation i, j, k, l, m of 1, 2, 3, 4, 5 satisfying the following (50), ..., (55).

$$\vartheta_{M^{-1}(ijk)}^2 \vartheta_{M^{-1}(ijl)}^2 \vartheta_{M^{-1}(ijm)}^2 (\tau(0)) \neq 0 , \qquad (50)$$

$$\vartheta_{M^{-1}(i|i)}^2 \vartheta_{M^{-1}(i|k)}^2 \vartheta_{M^{-1}(i|k)}^2 \vartheta_{M^{-1}(i|m)}^2 (\tau(0)) \neq 0 , \qquad (51)$$

$$\vartheta_{M^{-1}(jli)}^2 \vartheta_{M^{-1}(jlk)}^2 \vartheta_{M^{-1}(jlm)}^2 (\tau(0)) \neq 0 , \qquad (52)$$

$$\vartheta_{M^{-1}(kli)}^2 \vartheta_{M^{-1}(klj)}^2 \vartheta_{M^{-1}(klm)}^2 = C_m' \tau_{12}^2 + O(\tau_{12}^4), \qquad (53)$$

$$\vartheta_{M^{-1}(kmi)}^2 \vartheta_{M^{-1}(kmj)}^2 \vartheta_{M^{-1}(kml)}^2 = C_l' \tau_{12}^2 + O(\tau_{12}^4) , \qquad (54)$$

$$\vartheta_{M^{-1}(lmi)}^{2}\vartheta_{M^{-1}(lmj)}^{2}\vartheta_{M^{-1}(lmk)}^{2} = C_{k}^{\prime}\tau_{12}^{2} + O(\tau_{12}^{4}), \qquad (55)$$

where C'_m, C'_l, C'_k are non-zero constants, which depend on τ_1, τ_2 but are independent to τ_{12} , and $\tau(0) := \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix}$. Now let us check that those conditions hold for any $M \in Sp(4, \mathbf{Z})$. In the following, we write $\Psi(\tau_1, \tau_2) := \frac{\pi}{2\sqrt{-1}}\Theta_1(\tau_1)\Theta_1(\tau_2)$ for short. Checks are divided into six cases as follows.

Case 1. Suppose that M(1) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{2, 3, 4, 5, 6\}$. By (48), (49) it can be easily seen that

$$\begin{split} &\vartheta_{342}^2\vartheta_{345}^2\vartheta_{346}^2 = (\vartheta_{01}\vartheta_{10})^2(\tau_1)\vartheta_{10}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \,, \\ &\vartheta_{352}^2\vartheta_{354}^2\vartheta_{356}^2 = (\vartheta_{01}\vartheta_{10})^2(\tau_1)\vartheta_{00}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \,, \\ &\vartheta_{452}^2\vartheta_{453}^2\vartheta_{456}^2 = (\vartheta_{01}\vartheta_{10})^2(\tau_1)\vartheta_{01}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \,, \\ &\vartheta_{263}^2\vartheta_{264}^2\vartheta_{265}^2(\tau(0)) = \vartheta_{00}^6(\tau_1)\Theta_1^2(\tau_2) \,, \\ &\vartheta_{234}^2\vartheta_{235}^2\vartheta_{236}^2(\tau(0)) = \vartheta_{243}^2\vartheta_{245}^2\vartheta_{246}^2(\tau(0)) = \vartheta_{253}^2\vartheta_{254}^2\vartheta_{256}^2(\tau(0)) = (\vartheta_{01}^4\vartheta_{00}^2)(\tau_1)\Theta_1^2(\tau_2) \,, \\ &\vartheta_{362}^2\vartheta_{364}^2\vartheta_{365}^2(\tau(0)) = \vartheta_{462}^2\vartheta_{463}^2\vartheta_{465}^2(\tau(0)) = \vartheta_{562}^2\vartheta_{563}^2\vartheta_{564}^2(\tau(0)) = (\vartheta_{10}^4\vartheta_{00}^2)(\tau_1)\Theta_1^2(\tau_2) \,. \end{split}$$

Here we note that $\vartheta_{00}(\tau)\vartheta_{01}(\tau)\vartheta_{10}(\tau)\neq 0$ for any $\tau\in\mathbf{H}$. Therefore, taking

$$\{k,l,m\} = \{M(3),M(4),M(5)\}$$
 and $\{i,j\} = \{M(2),M(6)\}$,

conditions (50)-(55) are satisfied.

Case 2. Suppose that M(2) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{1, 3, 4, 5, 6\}$. By (48), (49) it can be easily seen that

$$\begin{split} \vartheta_{341}^2\vartheta_{345}^2\vartheta_{346}^2 &= (\vartheta_{00}\vartheta_{10})^2(\tau_1)\vartheta_{10}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \;, \\ \vartheta_{351}^2\vartheta_{354}^2\vartheta_{356}^2 &= (\vartheta_{00}\vartheta_{10})^2(\tau_1)\vartheta_{00}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \;, \\ \vartheta_{451}^2\vartheta_{453}^2\vartheta_{456}^2 &= (\vartheta_{00}\vartheta_{10})^2(\tau_1)\vartheta_{01}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4) \;, \\ \vartheta_{163}^2\vartheta_{164}^2\vartheta_{165}^2(\tau(0)) &= \vartheta_{01}^6(\tau_1)\Theta_1^2(\tau_2) \;, \\ \vartheta_{134}^2\vartheta_{135}^2\vartheta_{136}^2(\tau(0)) &= \vartheta_{143}^2\vartheta_{145}^2\vartheta_{146}^2(\tau(0)) = \vartheta_{153}^2\vartheta_{154}^2\vartheta_{156}^2(\tau(0)) = (\vartheta_{00}^4\vartheta_{01}^2)(\tau_1)\Theta_1^2(\tau_2) \;, \\ \vartheta_{361}^2\vartheta_{364}^2\vartheta_{365}^2(\tau(0)) &= \vartheta_{461}^2\vartheta_{463}^2\vartheta_{465}^2(\tau(0)) = \vartheta_{561}^2\vartheta_{563}^2\vartheta_{564}^2(\tau(0)) = (\vartheta_{10}^4\vartheta_{01}^2)(\tau_1)\Theta_1^2(\tau_2) \;. \end{split}$$

Therefore, taking $\{k, l, m\} = \{M(3), M(4), M(5)\}$ and $\{i, j\} = \{M(1), M(6)\}$, conditions (50)-(55) are satisfied.

Case 3. Suppose that M(3) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{1, 2, 4, 5, 6\}$. By (48), (49) it can be easily seen that

$$\begin{split} &\vartheta_{124}^2\vartheta_{125}^2\vartheta_{126}^2 = \vartheta_{10}^4(\tau_1)(\vartheta_{00}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{162}^2\vartheta_{164}^2\vartheta_{165}^2 = \vartheta_{01}^4(\tau_1)(\vartheta_{00}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{261}^2\vartheta_{264}^2\vartheta_{265}^2 = \vartheta_{00}^4(\tau_1)(\vartheta_{00}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{451}^2\vartheta_{452}^2\vartheta_{456}^2(\tau(0)) = \Theta_1^2(\tau_1)\vartheta_{01}^6(\tau_2)\;,\\ &\vartheta_{142}^2\vartheta_{145}^2\vartheta_{146}^2(\tau(0)) = \vartheta_{241}^2\vartheta_{245}^2\vartheta_{246}^2(\tau(0)) = \vartheta_{461}^2\vartheta_{462}^2\vartheta_{465}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{00}^4\vartheta_{01}^2)(\tau_2)\;,\\ &\vartheta_{152}^2\vartheta_{154}^2\vartheta_{156}^2(\tau(0)) = \vartheta_{251}^2\vartheta_{254}^2\vartheta_{256}^2(\tau(0)) = \vartheta_{561}^2\vartheta_{562}^2\vartheta_{564}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{10}^4\vartheta_{01}^2)(\tau_2)\;. \end{split}$$

Therefore, taking $\{k, l, m\} = \{M(1), M(2), M(6)\}$ and $\{i, j\} = \{M(4), M(5)\}$, conditions (50)-(55) are satisfied.

Case 4. Suppose that M(4) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{1, 2, 3, 5, 6\}$. By (48), (49) it can be easily seen that

```
\begin{split} &\vartheta_{123}^2\vartheta_{125}^2\vartheta_{126}^2 = \vartheta_{10}^4(\tau_1)(\vartheta_{01}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{162}^2\vartheta_{163}^2\vartheta_{165}^2 = \vartheta_{01}^4(\tau_1)(\vartheta_{01}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{261}^2\vartheta_{263}^2\vartheta_{265}^2 = \vartheta_{00}^4(\tau_1)(\vartheta_{01}\vartheta_{10})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ &\vartheta_{351}^2\vartheta_{352}^2\vartheta_{356}^2(\tau(0)) = \Theta_1^2(\tau_1)\vartheta_{00}^6(\tau_2)\;,\\ &\vartheta_{132}^2\vartheta_{135}^2\vartheta_{136}^2(\tau(0)) = \vartheta_{231}^2\vartheta_{235}^2\vartheta_{236}^2(\tau(0)) = \vartheta_{361}^2\vartheta_{362}^2\vartheta_{365}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{00}^2\vartheta_{01}^4)(\tau_2)\;,\\ &\vartheta_{152}^2\vartheta_{153}^2\vartheta_{156}^2(\tau(0)) = \vartheta_{251}^2\vartheta_{253}^2\vartheta_{256}^2(\tau(0)) = \vartheta_{561}^2\vartheta_{562}^2\vartheta_{563}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{10}^4\vartheta_{00}^4)(\tau_2)\;. \end{split}
```

Therefore, taking $\{k, l, m\} = \{M(1), M(2), M(6)\}$ and $\{i, j\} = \{M(3), M(5)\}$, conditions (50)-(55) are satisfied.

Case 5. Suppose that M(5) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{1, 2, 3, 4, 6\}$. By (48), (49) it can be easily seen that

$$\begin{split} \vartheta_{123}^2\vartheta_{124}^2\vartheta_{126}^2 &= \vartheta_{10}^4(\tau_1)(\vartheta_{00}\vartheta_{01})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{162}^2\vartheta_{163}^2\vartheta_{164}^2 &= \vartheta_{01}^4(\tau_1)(\vartheta_{00}\vartheta_{01})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{261}^2\vartheta_{263}^2\vartheta_{264}^2 &= \vartheta_{00}^4(\tau_1)(\vartheta_{00}\vartheta_{01})^2(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{341}^2\vartheta_{342}^2\vartheta_{346}^2(\tau(0)) &= \Theta_1^2(\tau_1)\vartheta_{10}^6(\tau_2)\;,\\ \vartheta_{132}^2\vartheta_{134}^2\vartheta_{136}^2(\tau(0)) &= \vartheta_{231}^2\vartheta_{234}^2\vartheta_{236}^2(\tau(0)) = \vartheta_{361}^2\vartheta_{362}^2\vartheta_{364}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{10}^2\vartheta_{01}^4)(\tau_2)\;,\\ \vartheta_{142}^2\vartheta_{143}^2\vartheta_{146}^2(\tau(0)) &= \vartheta_{241}^2\vartheta_{243}^2\vartheta_{246}^2(\tau(0)) = \vartheta_{461}^2\vartheta_{462}^2\vartheta_{463}^2(\tau(0)) = \Theta_1^2(\tau_1)(\vartheta_{10}^2\vartheta_{00}^4)(\tau_2)\;. \end{split}$$

Therefore, taking $\{k, l, m\} = \{M(1), M(2), M(6)\}$ and $\{i, j\} = \{M(3), M(4)\}$, conditions (50)-(55) are satisfied.

Case 6. Suppose that M(6) = 6. In this case, $\{M^{-1}(1), \dots, M^{-1}(5)\} = \{1, 2, 3, 4, 5\}$. By (48), (49) it can be easily seen that

$$\begin{split} \vartheta_{341}^2\vartheta_{342}^2\vartheta_{345}^2 &= (\vartheta_{00}\vartheta_{01})^2(\tau_1)\vartheta_{10}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{351}^2\vartheta_{352}^2\vartheta_{354}^2 &= (\vartheta_{00}\vartheta_{01})^2(\tau_1)\vartheta_{00}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{451}^2\vartheta_{453}^2\vartheta_{453}^2 &= (\vartheta_{00}\vartheta_{01})^2(\tau_1)\vartheta_{01}^4(\tau_2)\Psi^2(\tau_1,\tau_2)\tau_{12}^2 + O(\tau_{12}^4)\;,\\ \vartheta_{123}^2\vartheta_{124}^2\vartheta_{125}^2(\tau(0)) &= \vartheta_{10}^6(\tau_1)\Theta_1^2(\tau_2)\;,\\ \vartheta_{132}^2\vartheta_{134}^2\vartheta_{135}^2(\tau(0)) &= \vartheta_{142}^2\vartheta_{143}^2\vartheta_{145}^2(\tau(0)) = \vartheta_{152}^2\vartheta_{153}^2\vartheta_{154}^2(\tau(0)) = (\vartheta_{00}^4\vartheta_{10}^2)(\tau_1)\Theta_1^2(\tau_2)\;,\\ \vartheta_{231}^2\vartheta_{234}^2\vartheta_{235}^2(\tau(0)) &= \vartheta_{241}^2\vartheta_{243}^2\vartheta_{245}^2(\tau(0)) = \vartheta_{251}^2\vartheta_{253}^2\vartheta_{254}^2(\tau(0)) = (\vartheta_{01}^4\vartheta_{10}^2)(\tau_1)\Theta_1^2(\tau_2)\;. \end{split}$$

Therefore, taking $\{k,l,m\} = \{M(3),M(4),M(5)\}$ and $\{i,j\} = \{M(1),M(2)\}$, conditions (50)-(55) are satisfied. The proof is completed.

Theorem 1 There exists a holomorphic map $\hat{F}: \mathbf{H}_2^* \to (S-D)^{\wedge}$ such that

$$\sigma\circ \widehat{F}=F|_{\mathbf{H}_2^{\color{red}\star}}\qquad and \qquad \varphi\circ P\circ \widehat{F}=\mathrm{id}_{\mathbf{H}_2^{\color{red}\star}}\;.$$

Proof. First we take a local section given in Lemma 24. Then using analytic continuation we have a section over \mathbf{H}_2^* , which may be multi-valued. Again by Lemma 24, this section is at most two-valued. In the following we show that the section is in fact single valued. Since \mathbf{H}_2 is simply connected, it suffices to show that for any diagonal $\tau = \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix} \in \mathbf{H}_2$ and $M \in Sp(4, \mathbf{Z})$, there exists a neighborhood U of $M \circ \tau$ in \mathbf{H}_2 such that the local section given in Lemma 24 on neighborhood of a point of U - A can be analytically continuated to single-valued section on U - A. Here we note that, for sufficiently small $\varepsilon > 0$,

$$U_{\tau}(\varepsilon) := \left\{ \left(\begin{array}{cc} \tau_1' & \tau_{12}' \\ \tau_{12}' & \tau_2' \end{array} \right) \middle| \tau_1', \tau_2', \tau_{12}' \in \mathbf{C}, \ |\tau_1' - \tau_1| < \varepsilon, \ |\tau_2' - \tau_2| < \varepsilon \text{ and } |\tau_{12}'| < \varepsilon \right\}$$

is a subset of H_2 , and it satisfies that

$$U_{ au}(arepsilon)\cap A:=\left\{\left(egin{array}{cc} au_1' & 0 \ 0 & au_2' \end{array}
ight)igg| au_1', au_2'\in {f C},\; | au_1'- au_1|$$

We fix this ε . Then $M \circ U_{\tau}(\varepsilon)$ is a neighborhood of $M \circ \tau$ in \mathbf{H}_2 , and the equality

$$(M \circ U_{\tau}(\varepsilon)) \cap A := \left\{ \left. M \circ \left(\begin{array}{cc} \tau_1' & 0 \\ 0 & \tau_2' \end{array} \right) \right| \tau_1', \tau_2' \in \mathbf{C}, \ |\tau_1' - \tau_1| < \varepsilon \ \text{and} \ |\tau_2' - \tau_2| < \varepsilon \right\} \ .$$

holds. Here we take $\tau'_{12} \in \mathbf{C}$ satisfying $0 < |\tau'_{12}| < \varepsilon$, and denote $\tau' := \begin{pmatrix} \tau_1 & \tau'_{12} \\ \tau'_{12} & \tau_2 \end{pmatrix}$. τ' is an element of $U_{\tau}(\varepsilon) - A$. Note that $\pi_1((M \circ U_{\tau}(\varepsilon)) - A, M \circ \tau') \cong \mathbf{Z}$ and it is generated by an element having

$$[0,1] \ni \theta \longmapsto M \circ \tau'(\theta) \in (M \circ U_{\tau}(\varepsilon)) - A \tag{56}$$

as its representative, where $\tau'(\theta) := \begin{pmatrix} \tau_1 & \tau'_{12}e^{2\pi\sqrt{-1}\theta} \\ \tau'_{12}e^{2\pi\sqrt{-1}\theta} & \tau_2 \end{pmatrix}$. By Lemma 25, it can be easily seen that the monodromy transformation given by the path

$$[0,1] \ni \theta \longmapsto (t_2(M \circ \tau'(\theta)), \ldots, t_5(M \circ \tau'(\theta))) \in S - D$$
,

where t_2, \ldots, t_5 are regarded as functions on \mathbf{H}_2 by (20), is identity in $\operatorname{Aut}(H_1(X_t, \mathbf{Z}), \langle , \rangle)$ where $t = (t_2(M \circ \tau'), \ldots, t_5(M \circ \tau'))$. This means that, from analytic continuation of the local section $\hat{F}_{M \circ \tau'}^{(i)}$ along the path (56), multi-valuedness doesn't occure. Hence, analytic continuation of $\hat{F}_{M \circ \tau'}^{(i)}$ gives a single-valued section of the bundle $(S-D)^{\wedge} \xrightarrow{\varphi \circ P} \mathbf{H}_2^*$ on $(M \circ U_{\tau}(\varepsilon)) - A$. Therefore, from \hat{F}_{τ} , the aimed section \hat{F} is obtained.

8 The factor of automorphy j.

In section 6 we have checked that the monodromy covering $(S-D)^{\wedge}$ is total space of a \mathbb{C}^* -bundle in the strict sense. Moreover, Theorem 1 implies that the following isomorphism as \mathbb{C}^* -bundles:

$$\mathbf{C}^* \times \mathbf{H}_2^* \xrightarrow{\sim} (S-D)^{\wedge}, \qquad (\lambda, \tau) \longmapsto \lambda \cdot \hat{F}(\tau).$$

Under this isomorphism, the monodromy group action on $(S-D)^{\wedge}$ induces Γ -action on $\mathbf{C}^* \times \mathbf{H}_2^*$. The aim of this section is to describe the Γ -action. Since the monodromy group action on $(S-D)^{\wedge}$ commutes to the \mathbf{C}^* -action on the space, Γ -action on $\mathbf{C}^* \times \mathbf{H}_2^*$ also commutes to the \mathbf{C}^* -action on $\mathbf{C}^* \times \mathbf{H}_2^*$. Therefore we can apply **Diagram-1** to the bundle $\mathbf{C}^* \times \mathbf{H}_2^*$, where $X := \mathbf{H}_2^*$, $G := \Gamma$. And the factor of automorphy j appeared in **Diagram-1** is now given to satisfy the following equality:

$$\hat{F}(M \circ \tau) = j(M, \tau) \cdot \gamma(\hat{F}(\tau)) \qquad (\tau \in \mathbf{H}_2^*, \ M = \rho(\gamma) \in \Gamma) \ .$$

Taking the images of both sides of the equality by σ , we have

$$F(M \circ \tau) = j(M, \tau) \cdot F(\tau) \qquad (\tau \in \mathbf{H}_2^*, M \in \Gamma).$$

Hence

$$j(M,\tau)^2 = \chi(M) \det(C\tau + D)^3 = (j_{1101}(M,\tau) \det(C\tau + D))^2 \qquad (\tau \in \mathbf{H}_2^*, M \in \Gamma).$$

More exactly, the following theorem holds.

Theorem 2 On trivialization of $(S-D)^{\wedge} \xrightarrow{\varphi \circ P} \mathbf{H}_2^*$ using the global section \hat{F} given in the Theorem 1, the following equality holds:

$$j(M,\tau) = j_{1101}(M,\tau)\det(C\tau + D) \qquad (\tau \in \mathbf{H}_2^*, M \in \Gamma) . \tag{57}$$

Since $\rho(\gamma_i)$ (i=1,2,3,4) generate Γ , to prove the theorem needs only to check (57) for the generators. If $M=\rho(\gamma_i)$, the left hand side of (57) is obtained by investigating the behavior of values of α_1,\ldots,α_5 when τ go through a path in \mathbf{H}_2^* with τ as initial point and $\rho(\gamma_i) \circ \tau$ as end point. On the other hand, the right hand side of (57) is obtained by simple computations using (61). Before proving the theorem, as a preparation, we give some lemmas.

Lemma 26 Suppose that $(e_1, \ldots, e_5) = (-\sqrt{3}, -1/\sqrt{3}, 0, 1/\sqrt{3}, \sqrt{3})$. Then period matrix given by the curve X(e) with the basis $A_1, A_2, B_1, B_2 \in H_1(X(e), \mathbf{Z})$ as in the **Figure-1**, is $\frac{\sqrt{-1}}{\sqrt{3}} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

Proof. This curve has automorphism $\varphi:(x,y)\mapsto (\frac{1+\sqrt{3}x}{\sqrt{3}-x},\frac{-8\sqrt{-1}}{(\sqrt{3}-x)^3}y)$, which induces an automorphism φ_* of $H_1(X(e),\mathbf{Z})$. Using the basis A_1,A_2,B_1,B_2 mentioned above, φ_* is expressed as follows:

$$(\varphi_*(A_1), \varphi_*(A_2), \varphi_*(B_1), \varphi_*(B_2)) = (A_1, A_2, B_1, B_2) \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}.$$

Since period matrix given from X(e) with A_1, A_2, B_1, B_2 coincides with the one given from X(e) with $\varphi_*(A_1), \varphi_*(A_2), \varphi_*(B_1), \varphi_*(B_2)$. Therefore τ satisfies the following equalities.

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix}^{-1} \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix} ,$$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix} ,$$

where the second equality is given by using $\varphi \circ \varphi \circ \varphi$ instead of φ . As a solution of the equalities, we obtain that $\tau = \frac{\sqrt{-1}}{\sqrt{3}} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$ **Lemma 27** Suppose that $e_1, \ldots, e_5 \in \mathbf{R}$, $e_1 < \cdots < e_5$. And suppose that A_1, A_2, B_1, B_2 are basis of $H_1(X(e), \mathbf{Z})$, which are given as in the **Figure-1**. Then for the period matrix τ given from X(e) with A_1, A_2, B_1, B_2 , all elements $\tau_1, \tau_2, \tau_{12}$ are in $\sqrt{-1}\mathbf{R}_+$.

Proof. First note that the period matrix τ of a compact Riemann surface X with positive genus g depends on the choice of symplectic basis $A_1,\ldots,A_g,B_1\ldots,B_g$ of $H_1(X,\mathbf{Z})$, but is independent to the choice of basis ω_1,\ldots,ω_g of g-dimentional C-vector space $\Gamma(X,\Omega_X^1)$. Here we use $y^{-1}(x-e_3)^{i-1}dx$ (i=1,2) as basis of $\Gamma(X(e),\Omega_{X(e)}^1)$, and we denote that $\eta_{ij}:=\int_{A_j}y^{-1}(x-e_3)^{i-1}dx$ $(i\in\{1,2\},\ j\in\{1,2,3,4\},\ A_3:=B_1,\ A_4:=B_2)$, then

$$\tau = \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}^{-1} \begin{pmatrix} \eta_{13} & \eta_{14} \\ \eta_{23} & \eta_{24} \end{pmatrix} = \frac{1}{\eta_{11}\eta_{22} - \eta_{12}\eta_{21}} \begin{pmatrix} \eta_{22}\eta_{13} - \eta_{12}\eta_{23} & \eta_{22}\eta_{14} - \eta_{12}\eta_{24} \\ \eta_{11}\eta_{23} - \eta_{21}\eta_{13} & \eta_{11}\eta_{24} - \eta_{14}\eta_{21} \end{pmatrix}.$$

Since A_1, A_2, B_1, B_2 are taken as in the **Figure-1**, the period η_{11} is an element of \mathbf{R}_+ . In fact,

$$\eta_{11} = 2 \int_{e_1}^{e_2} \frac{dx}{\sqrt{x - e_1} \sqrt{x - e_2} \sqrt{x - e_3} \sqrt{x - e_4} \sqrt{x - e_5}} ,$$

where in the above integrand, if $e_1 < x < e_2$, then $\sqrt{x - e_1} \in \mathbf{R}_+$, $\sqrt{x - e_j} \in \sqrt{-1}\mathbf{R}_+$ (for $\forall j \in \{2,3,4,5\}$). Hence $\eta_{11} \in \mathbf{R}_+$. Similar argument implies that $\eta_{12}, \eta_{21}, \eta_{22} \in \mathbf{R}_-$, $\eta_{13} \in \sqrt{-1}\mathbf{R}_+$ and $\eta_{14}, \eta_{23}, \eta_{24} \in -\sqrt{-1}\mathbf{R}_+ = \sqrt{-1}\mathbf{R}_-$. Therefore $\eta_{11}\eta_{22} - \eta_{12}\eta_{21} \in \mathbf{R}_-$, $\eta_{22}\eta_{13} - \eta_{12}\eta_{23} \in \sqrt{-1}\mathbf{R}_-$, $\eta_{11}\eta_{24} - \eta_{14}\eta_{21} \in \sqrt{-1}\mathbf{R}_-$ and $\eta_{22}\eta_{14} - \eta_{12}\eta_{24} \in \sqrt{-1}\mathbf{R}$. Therefore $\tau_1, \tau_2 \in \sqrt{-1}\mathbf{R}_+$ and $\tau_{12} \in \sqrt{-1}\mathbf{R}$. Moreover, by theorem of Weil, the element τ_{12} is not equal to zero. Hence $(\tau_1, \tau_2, \tau_{12}) \in ((\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+))$. On the other hand, $\mathcal{F} := \{(e_1, \dots, e_5) \in \mathbf{R}^5 \mid e_1 < \dots < e_5\}$ is connected subset of \mathbf{R}^5 , and the map

$$\mathcal{F} \ni e \longmapsto (\tau_1, \tau_2, \tau_{12}) \in \mathbf{C}^3 \tag{58}$$

is continuous. Therefore, the image of the map is connected subset of \mathbb{C}^3 . By the way, lemma 26 implies that the intersection of $(\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+)$ and the image of the map (58) is not empty. Hence, the image of the map (58) is contained in $(\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+) \times (\sqrt{-1}\mathbf{R}_+)$. The proof is completed.

Lemma 28 Suppose that $\zeta_8 := \exp(2\pi\sqrt{-1}/8)$. Then

$$j_{1101}(\rho(\gamma_1), \tau) = \zeta_8 , \qquad j_{1101}(\rho(\gamma_2), \tau) = \zeta_8 \sqrt{1 - \tau_1 - \tau_2 + 2\tau_{12}} ,$$

$$j_{1101}(\rho(\gamma_3), \tau) = \zeta_8 , \qquad j_{1101}(\rho(\gamma_4), \tau) = \zeta_8 \sqrt{1 - \tau_2} ,$$

where $\sqrt{1-\tau_1-\tau_2+2\tau_{12}}$ and $\sqrt{1-\tau_2}$ are both lie in the fourth quadrant.

Proof. It can be easily obtained from theorem TFTC that the values of $j_{1101}(\rho(\gamma_k), \tau)$ for k = 1, 3, 4 are as above. So now we have only to show the equality for k = 2. Since $\rho(\gamma_2) = {}^{-}C_2 {}^{+}B_2 {}^{-}C_2 {}^{+}A_{12} {}^{+}C_2 {}^{-}B_2 {}^{-}C_1$, using (64), we can easily see that the following equality holds.

$$\begin{array}{lcl} \kappa(\rho(\gamma_2),\tau) & = & \kappa({}^-C_2{}^+B_2{}^-C_2{}^+A_{12}{}^+C_2{}^-B_2{}^-C_1,\tau) \\ & = & \kappa({}^-C_2,({}^+B_2{}^-C_2{}^+A_{12}{}^+C_2{}^-B_2{}^-C_1)\circ\tau)\kappa({}^+B_2,({}^-C_2{}^+A_{12}{}^+C_2{}^-B_2{}^-C_1)\circ\tau) \\ & & \times \kappa({}^-C_2,({}^+A_{12}{}^+C_2{}^-B_2{}^-C_1)\circ\tau)\kappa({}^+A_{12},({}^+C_2{}^-B_2{}^-C_1)\circ\tau) \\ & & \times \kappa({}^+C_2,({}^-B_2{}^-C_1)\circ\tau)\kappa({}^-B_2,{}^-C_1\circ\tau)\kappa({}^-C_1,\tau) \; . \end{array}$$

By theorem TFTC, first we have

$$\begin{split} \kappa(^+B_2,(^-C_2^+A_{12}^+C_2^-B_2^-C_1)\circ\tau) &= \kappa(^+A_{12},(^+C_2^-B_2^-C_1)\circ\tau) = \kappa(^-B_2,^-C_1\circ\tau) = 1 \ , \\ \kappa(^-C_1,\tau) &= \sqrt{1-\tau_1} \qquad \text{where } \sqrt{1-\tau_1} \text{ lies in the fourth quadrant.} \end{split}$$

Moreover, since

$${}^{-}B_{2}{}^{-}C_{1} = \frac{1}{1-\tau_{1}} \begin{pmatrix} \tau_{1} & \tau_{12} \\ \tau_{12} & \tau_{12}^{2} - (1-\tau_{1})(1-\tau_{2}) \end{pmatrix} ,$$

the inequality $\Im(\frac{\tau_{12}^2-(1-\tau_1)(1-\tau_2)}{1-\tau_1})>0$ holds, and

$$\kappa(^{+}C_{2},(^{-}B_{2}^{-}C_{1})\circ\tau)=\sqrt{1+\frac{\tau_{12}^{2}-(1-\tau_{1})(1-\tau_{2})}{1-\tau_{1}}}\;,\quad\text{which lies in the first quadrant}.$$

Since

$$({}^{+}A_{12}{}^{+}C_{2}{}^{-}B_{2}{}^{-}C_{1}) \circ \tau = \frac{1}{(1-\tau_{1})\tau_{2}+\tau_{12}^{2}} \begin{pmatrix} \tau_{1}\tau_{2}-\tau_{12}^{2} & \tau_{12}-\tau_{1}\tau_{2}+\tau_{12}^{2} \\ \tau_{12}-\tau_{1}\tau_{2}+\tau_{12}^{2} & \tau_{1}+\tau_{2}-2\tau_{12}-1 \end{pmatrix} ,$$

the inequality $\Im(\frac{\tau_1+\tau_2-2\tau_{12}-1}{(1-\tau_1)\tau_2+\tau_{12}^2})>0$ holds, and

$$\kappa({}^{-}C_2,({}^{+}A_{12}{}^{+}C_2{}^{-}B_2{}^{-}C_1)\circ\tau)=\sqrt{1-\frac{\tau_1+\tau_2-2\tau_{12}-1}{(1-\tau_1)\tau_2+\tau_{12}^2}}\;,\quad\text{which lies in the fourth quadrant}.$$

Since

$$(^{+}B_{2}^{-}C_{2}^{+}A_{12}^{+}C_{2}^{-}B_{2}^{-}C_{1}) \circ \tau = \frac{1}{-\tau_{1} - \tau_{1}\tau_{2} + (\tau_{12} + 1)^{2}} \begin{pmatrix} \tau_{1} & \tau_{12} + \tau_{12}^{2} - \tau_{1}\tau_{2} \\ \tau_{12} + \tau_{12}^{2} - \tau_{1}\tau_{2} & \tau_{2} + \tau_{12}^{2} - \tau_{1}\tau_{2} \end{pmatrix} ,$$

the inequality $\Im(\frac{\tau_2+\tau_{12}^2-\tau_{1}\tau_2}{-\tau_1-\tau_1\tau_2+(\tau_{12}+1)^2})>0$ holds, and

$$\kappa({}^{-}C_{2},({}^{+}B_{2}{}^{-}C_{2}{}^{+}A_{12}{}^{+}C_{2}{}^{-}B_{2}{}^{-}C_{1})\circ\tau)=\sqrt{1-\frac{\tau_{2}+\tau_{12}^{2}-\tau_{1}\tau_{2}}{-\tau_{1}-\tau_{1}\tau_{2}+(\tau_{12}+1)^{2}}}\;,$$

which lies in the fourth quadrant. Especially, if $\tau_2 = \sqrt{-1}$, $\tau_{12} = 0$, and $|\tau_1| \ll 1$, then

$$\kappa({}^{-}C_{1},\tau) \approx 1 , \qquad \kappa({}^{+}C_{2},({}^{-}B_{2}{}^{-}C_{1}) \circ \tau) = \zeta_{8} ,$$

$$\kappa({}^{-}C_{2},({}^{+}A_{12}{}^{+}C_{2}{}^{-}B_{2}{}^{-}C_{1}) \circ \tau) = \sqrt{\frac{1}{\sqrt{-1}} + \frac{-\tau_{1}}{1-\tau_{1}}} \times \sqrt{-\sqrt{-1}} = \zeta_{8}^{-1} ,$$

$$\kappa({}^{-}C_{2},({}^{+}B_{2}{}^{-}C_{2}{}^{+}A_{12}{}^{+}C_{2}{}^{-}B_{2}{}^{-}C_{1}) \circ \tau) = \sqrt{\frac{1-\sqrt{-1}+\tau_{1}}{1-\tau_{1}(1+\sqrt{-1})}} \times \sqrt{1-\sqrt{-1}}$$

where $\sqrt{1-\sqrt{-1}}$ lies in the fourth quadrant. Hence, for the τ , we have that $\kappa(\rho(\gamma_2),\tau) \asymp \sqrt{1-\sqrt{-1}}$, which lies in the fourth quadrant. On the other hand, theorem TFTC implies that $\kappa(\rho(\gamma_2),\tau) = \kappa(\rho(\gamma_2))\sqrt{1+2\tau_{12}-\tau_1-\tau_2}$, where $\kappa(\rho(\gamma_2)) = \zeta_8^n$ for some integer n independent to τ , and the value $\sqrt{1+2\tau_{12}-\tau_1-\tau_2}$ lies in the forth quadrant. Hence $\kappa(\rho(\gamma_2)) = 1$, and the proof is completed.

Proof of theorem 2

We denote that $\rho(\gamma_{\mu})=\begin{pmatrix}A_{\mu}&B_{\mu}\\C_{\mu}&D_{\mu}\end{pmatrix}$ for any $\mu\in\{1,2,3,4\}$. Moreover, we use the following notations.

$$M_{\mu,t} := (1-t)I + t\rho(\gamma_{\mu}) \qquad \mu \in \{1,2,3,4\} , \quad 0 \le t \le 1 ,$$

$$\alpha(\mu,i,j,t) := \exp(-\pi\sqrt{-1}t/2) \det(tC_{\mu}\tau^{(\mu)} + I)^{-3}(\alpha_{j}(M_{\mu,t} \circ \tau^{(\mu)}) - \alpha_{i}(M_{\mu,t} \circ \tau^{(\mu)})) ,$$

$$\hat{F}(\mu,t) := \exp(-\pi\sqrt{-1}t/4) \left(\sqrt{\det(tC_{\mu}\tau^{(\mu)} + I)}\right)^{-3} \cdot \hat{F}(M_{\mu,t} \circ \tau^{(\mu)})$$

where in the definition of $\hat{F}(\mu,t)$, the value $\sqrt{\det(tC_{\mu}\tau^{(\mu)}+I)}$ is 1 if t=0. For $\mu\in\{1,2,3,4\}$, $\tau^{(\mu)}$ is an element of \mathbf{H}_2^* , which is chosen later to satisfy the following condition.

Condition 29 For any pairs (i, j) satisfying $1 \le i < j \le 5$ and $(i, j) \ne (\mu, \mu + 1)$, if t runs trough [0, 1], the following three hold.

- 1. The value $\alpha(\mu, i, j, t)$ remains on a neighborhood of the non-zero value $\alpha(\mu, i, j, 0)$.
- 2. The ratio $\alpha(\mu, \mu, \mu + 1, t)/\alpha(\mu, i, j, t)$ remains on a neighborhood of zero.
- 3. $\alpha(\mu, \mu, \mu + 1, t)$ starts $\alpha(\mu, \mu, \mu + 1, 0)$ and rotates 1/2-times around zero.

Note that, the C-block and D-block of $M_{\mu,t}$ are tC_{μ} and I, respectively. For any μ , $\hat{F}(\mu,1)$ equals to $\gamma_{\mu}(\hat{F}(\tau^{(\mu)}))$ or $(-1) \cdot \gamma_{\mu}(\hat{F}(\tau^{(\mu)}))$. To prove the theorem, we have only to show that $\hat{F}(\mu,1) = \gamma_{\mu}(\hat{F}(\tau^{(\mu)}))$ for any μ . So now we investigate behaviors of $\alpha(\mu,i,j,t)$ and $\hat{F}(\mu,t)$ when t run through [0,1]. For each $\mu \in \{1,2,3,4\}$, we take $\tau^{(\mu)} \in \mathbf{H}_2^*$, by which it is easy to investigate the behavior of $\alpha(\mu,i,j,t)$ when the real parameter t runs from 0 to 1. Suppose that, for each $\mu \in \{1,2,3,4\}$, all elements of $\tau^{(\mu)}$ are taken from $\sqrt{-1}\mathbf{R}_+$. We write $\tau_1 = \sqrt{-1}t_1$, $\tau_2 = \sqrt{-1}t_2$, $\tau_{12} = \sqrt{-1}t_{12}$ where t_1 , t_2 , t_{12} are elements of \mathbf{R}_+ .

When $\mu = 1$, we take t_1 sufficiently large.

When $\mu = 3$, we take t_2 sufficiently large.

To investigate the behavior of $\alpha(\mu, i, j, t)$, we use the Fourier expansion of the ten theta constants ϑ_{ε} . The expansion is written as follows:

$$\vartheta_{\varepsilon}(\tau) = \exp[\pi \sqrt{-1} (\frac{1}{4} \varepsilon' \tau^t \varepsilon' + \frac{1}{2} \varepsilon'^t \varepsilon'')] \times \sum_{n \in \mathbf{Z}^2} (-1)^{\varepsilon'' t_n} q_1^{n_1^2 + \varepsilon_1' n_1} q_2^{n_2^2 + \varepsilon_2' n_2} r^{2n_1 n_2 + \varepsilon_2' n_1 + \varepsilon_1' n_2} ,$$

where $q_1^x := \exp[\pi \sqrt{-1}\tau_1 x], \ q_2^x := \exp[\pi \sqrt{-1}\tau_2 x], \ r^x := \exp[\pi \sqrt{-1}\tau_1 x]$ for any $x \in \mathbb{C}$. That is,

$$\begin{array}{lll} \vartheta_{0000}(\tau) & = & 1+2\sum_{0< n\in \mathbf{Z}} (q_1^{n^2}+q_2^{n^2})+2\sum_{n_1,n_2=1}^{\infty} q_1^{n_1^2}q_2^{n_2^2}(r^{2n_1n_2}+r^{-2n_1n_2}) \,, \\ \vartheta_{0001}(\tau) & = & 1+2\sum_{0< n\in \mathbf{Z}} (q_1^{n^2}+(-1)^nq_2^{n^2})+2\sum_{n_1,n_2=1}^{\infty} (-1)^{n_2}q_1^{n_1^2}q_2^{n_2^2}(r^{2n_1n_2}+r^{-2n_1n_2}) \,, \\ \vartheta_{0010}(\tau) & = & 1+2\sum_{0< n\in \mathbf{Z}} ((-1)^nq_1^{n^2}+q_2^{n^2})+2\sum_{n_1,n_2=1}^{\infty} (-1)^{n_1}q_1^{n_1^2}q_2^{n_2^2}(r^{2n_1n_2}+r^{-2n_1n_2}) \,, \\ \vartheta_{0011}(\tau) & = & 1+2\sum_{0< n\in \mathbf{Z}} (-1)^n(q_1^{n^2}+q_2^{n^2})+2\sum_{n_1,n_2=1}^{\infty} (-1)^{n_1+n_2}q_1^{n_1^2}q_2^{n_2^2}(r^{2n_1n_2}+r^{-2n_1n_2}) \,, \\ \vartheta_{0100}(\tau) & = & q_2^{\frac{1}{4}}\left[\sum_{n_2\in \mathbf{Z}} q_2^{n_2(n_2+1)}+2\sum_{0< n_1\in \mathbf{Z}, 0\leq n_2\in \mathbf{Z}} q_1^{n_1^2}q_2^{n_2(n_2+1)}(r^{n_1(2n_2+1)}+r^{-n_1(2n_2+1)})\right] \,, \\ \vartheta_{0110}(\tau) & = & q_2^{\frac{1}{4}}\left[\sum_{n_1\in \mathbf{Z}} q_2^{n_2(n_2+1)}+2\sum_{0< n_1\in \mathbf{Z}, 0\leq n_2\in \mathbf{Z}} (-1)^{n_1}q_1^{n_1^2}q_2^{n_2(n_2+1)}(r^{n_1(2n_2+1)}+r^{-n_1(2n_2+1)})\right] \,, \\ \vartheta_{1000}(\tau) & = & q_1^{\frac{1}{4}}\left[\sum_{n_1\in \mathbf{Z}} q_1^{n_1(n_1+1)}+2\sum_{0\leq n_1\in \mathbf{Z}, 0< n_2\in \mathbf{Z}} q_1^{n_1(n_1+1)}q_2^{n_2^2}(r^{(2n_1+1)n_2}+r^{-(2n_1+1)n_2})\right] \,, \\ \vartheta_{1001}(\tau) & = & q_1^{\frac{1}{4}}\left[\sum_{n_1\in \mathbf{Z}} q_1^{n_1(n_1+1)}+2\sum_{0\leq n_1\in \mathbf{Z}, 0< n_2\in \mathbf{Z}} (-1)^{n_2}q_1^{n_1(n_1+1)}q_2^{n_2^2}(r^{(2n_1+1)n_2}+r^{-(2n_1+1)n_2})\right] \,, \\ \vartheta_{1100}(\tau) & = & 2q_1^{\frac{1}{4}}q_2^{\frac{1}{4}}r^{\frac{1}{2}}\sum_{n_1,n_2=0}^{\infty} q_1^{n_1(n_1+1)}q_2^{n_2(n_2+1)}(r^{2n_1n_2+n_1+n_2}+r^{-2n_1n_2-n_1-n_2-1}) \,, \\ \vartheta_{1111}(\tau) & = & -2q_1^{\frac{1}{4}}q_2^{\frac{1}{4}}r^{\frac{1}{2}}\sum_{n_1,n_2=0}^{\infty} (-1)^{n_1+n_2}q_1^{n_1(n_1+1)}q_2^{n_2(n_2+1)}(r^{2n_1n_2+n_1+n_2}-r^{-2n_1n_2-n_1-n_2-1}) \,. \end{array}$$

Then $\alpha_j(\tau) - \alpha_i(\tau)$ are written as follows.

$$\begin{array}{lclcrcl} \alpha_{2}(\tau) - \alpha_{1}(\tau) & \in & 64q_{1}^{\frac{3}{2}}q_{2}^{\frac{1}{2}}r^{-1}(r+1+(q_{1},q_{2}))^{2} \;, \\ \alpha_{3}(\tau) - \alpha_{1}(\tau) & \in & 16q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}(1+(q_{1},q_{2})) \;, \\ \alpha_{4}(\tau) - \alpha_{1}(\tau) & \in & 16q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}(1+(q_{1},q_{2})) \;, \\ \alpha_{5}(\tau) - \alpha_{1}(\tau) & \in & 4q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}r^{-1}(r+1+(q_{1},q_{2}))^{2} \;, \\ \alpha_{3}(\tau) - \alpha_{2}(\tau) & \in & 16q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}(1+(q_{1},q_{2})) \;, \\ \alpha_{4}(\tau) - \alpha_{2}(\tau) & \in & 16q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}(1+(q_{1},q_{2})) \;, \\ \alpha_{5}(\tau) - \alpha_{2}(\tau) & \in & 4q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}r^{-1}(r+1+(q_{1},q_{2}))^{2} \;, \\ \alpha_{4}(\tau) - \alpha_{3}(\tau) & \in & 64q_{1}^{\frac{1}{2}}q_{2}^{\frac{3}{2}}r^{-1}(1-r+(q_{1},q_{2}))^{2} \;, \\ \alpha_{5}(\tau) - \alpha_{3}(\tau) & \in & 4q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}r^{-1}(1-r+(q_{1},q_{2}))^{2} \;, \\ \alpha_{5}(\tau) - \alpha_{4}(\tau) & \in & 4q_{1}^{\frac{1}{2}}q_{2}^{\frac{1}{2}}r^{-1}(1-r+(q_{1},q_{2}))^{2} \;. \end{array}$$

On the other hand, to consider the cases $\mu=2$ and 4, we use the Jacobi transform of au, that is, $\sigma = \begin{pmatrix} \sigma_1 & \sigma_{12} \\ \sigma_{12} & \sigma_2 \end{pmatrix} := J \circ \tau = -\tau^{-1}$. For any real, symmetric, 2×2 matrix S, the transformation

formula of $\alpha_j - \alpha_i$ under the action of $\begin{pmatrix} I & 0 \\ S & I \end{pmatrix}$ is, by theorem TFTC, written as follows:

$$\alpha_{j}\begin{pmatrix} I & 0 \\ S & I \end{pmatrix} \circ \tau - \alpha_{i}\begin{pmatrix} I & 0 \\ S & I \end{pmatrix} \circ \tau = -\det(\sigma - s)^{3}\vartheta_{J(ijk)}^{2}(\sigma - s)\vartheta_{J(ijl)}^{2}(\sigma - s)\vartheta_{J(ijm)}^{2}(\sigma - s).$$
(59)

Especially, using the above formula with S=0, the differences $\alpha_j-\alpha_i$ can be written as follows.

$$\begin{array}{lll} \alpha_{2}(\tau)-\alpha_{1}(\tau)&=&-(\det\sigma)^{3}\vartheta_{234}^{2}(\sigma)\vartheta_{235}^{2}(\sigma)\vartheta_{245}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 4p_{2}^{\frac{1}{2}}(1+(p_{1},p_{2}))\,,\\ \alpha_{3}(\tau)-\alpha_{1}(\tau)&=&-(\det\sigma)^{3}\vartheta_{234}^{2}(\sigma)\vartheta_{135}^{2}(\sigma)\vartheta_{135}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 4p_{2}^{\frac{1}{2}}(1+(p_{1},p_{2}))\,,\\ \alpha_{4}(\tau)-\alpha_{1}(\tau)&=&-(\det\sigma)^{3}\vartheta_{235}^{2}(\sigma)\vartheta_{145}^{2}(\sigma)\vartheta_{134}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 4p_{2}^{\frac{1}{2}}(1+(p_{1},p_{2}))\,,\\ \alpha_{5}(\tau)-\alpha_{1}(\tau)&=&-(\det\sigma)^{3}\vartheta_{235}^{2}(\sigma)\vartheta_{135}^{2}(\sigma)\vartheta_{134}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 4p_{2}^{\frac{1}{2}}(1+(p_{1},p_{2}))\,,\\ \alpha_{3}(\tau)-\alpha_{2}(\tau)&=&-(\det\sigma)^{3}\vartheta_{234}^{2}(\sigma)\vartheta_{123}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 64p_{1}p_{2}^{\frac{1}{2}}(1+(p_{1},p_{2}))\,,\\ \alpha_{4}(\tau)-\alpha_{2}(\tau)&=&-(\det\sigma)^{3}\vartheta_{235}^{2}(\sigma)\vartheta_{123}^{2}(\sigma)\vartheta_{125}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1+s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{2}(\tau)&=&-(\det\sigma)^{3}\vartheta_{245}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\vartheta_{125}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1+s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{4}(\tau)-\alpha_{3}(\tau)&=&-(\det\sigma)^{3}\vartheta_{145}^{2}(\sigma)\vartheta_{123}^{2}(\sigma)\vartheta_{125}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1+s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{3}(\tau)&=&-(\det\sigma)^{3}\vartheta_{145}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\vartheta_{345}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1-s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{3}(\tau)&=&-(\det\sigma)^{3}\vartheta_{135}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\vartheta_{345}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1-s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{3}(\tau)&=&-(\det\sigma)^{3}\vartheta_{134}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\vartheta_{345}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 16p_{1}p_{2}^{\frac{1}{2}}s(1-s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{3}(\tau)&=&-(\det\sigma)^{3}\vartheta_{134}^{2}(\sigma)\vartheta_{124}^{2}(\sigma)\vartheta_{345}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 64p_{1}p_{2}^{\frac{1}{2}}s(1-s^{-1}+(p_{1},p_{2}))^{2}\,,\\ \alpha_{5}(\tau)-\alpha_{4}(\tau)&=&-(\det\sigma)^{3}\vartheta_{134}^{2}(\sigma)\vartheta_{125}^{2}(\sigma)\vartheta_{345}^{2}(\sigma)\in -(\det\sigma)^{3}\cdot 64p_{1}p_{2}^{\frac{1}{2}}s(1-s^{-1}+(p_{1},p_{2}))^{2}\,,\\ where \ p_{1}^{x}:=\exp[\pi\sqrt{-1}\sigma_{1}x],\ p_{2}^{x}:=\exp[\pi\sqrt{-1}\sigma_{2}x],\ s^{x}:=\exp[\pi\sqrt{-1}\sigma_{12}x]\ for\ any\ x\in\mathbf{C}.\ If\ \tau=\sqrt{-1}\left(t_{1}\quad t_{12}\ t_{12}\quad t_{2}\right)\ as\ above,\ then\ \sigma=\sqrt{-1}\left(u_{1}\quad u_{12}\ u_{12}\right),\ where\ u_{1},u_{2}\in\mathbf{R}_{+},u_{12}\in\mathbf{R}_{-}.\\ When\ \mu=2,\ suppose\ that\ u_{1}=u_{2}=1-u_{12}(=:u),\ and\$$

When $\mu = 4$, suppose that $u_1 = -u_{12}$ and that u_2 is sufficiently large.

Relation to Siegel modular forms.

It is obvious, but remarkable fact that by the theorem, and by the expressions of t_i as functions on \mathbf{H}_2^* , the C*-bundle $(S-D)^{\wedge} \to \mathbf{H}_2^*$ with Γ -action is naturally extended to a bundle on \mathbf{H}_2 with Γ -action.

That is, by the theorem, j is naturally regarded as defined not only on \mathbf{H}_2^* , but also on \mathbf{H}_2 . Similarly, by the definition, functions t_i on \mathbf{H}_2^* are naturally regarded as holomorphic functions on \mathbf{H}_2 . Note that $j(M,\cdot)$ is, as function on \mathbf{H}_2 , holomorphic and has no zeros on \mathbf{H}_2 . This means that the \mathbf{C}^* -bundle $(S-D)^{\wedge} \to \mathbf{H}_2^*$ with Γ -action is naturally extended to a bundle on \mathbf{H}_2 with Γ -action.

 Γ is generated by four elements $\rho(\gamma_i)$ $(i \in \{1, ..., 4\})$. By (25), (26) and the definition of χ in Lemma 8, it can be easily seen that $\chi(\rho(\gamma_i)) = \sqrt{-1}$ for any $i \in \{1, ..., 4\}$.

On the other hand, it is well known (cf. [Ig2]) that

$$\Theta(M \circ \tau) = \operatorname{sign}(M) \det(C\tau + D)^{5} \Theta(\tau) \qquad (\text{ for any } \tau \in \mathbf{H}_{2}, \text{ any } M \in Sp(4, \mathbf{Z}))$$
 (60)

where sign(M) = -1 (resp. 1) when the image of $M \in Sp(4, \mathbb{Z})$ under the homomorphism $b: Sp(4, \mathbb{Z}) \to S_6$ in (68) is odd (resp. even) permutation.

Remark 30 (cf. for example, [Fre]) It is well-known that $\{\tau \in \mathbf{H}_2 | \Theta(\tau) = 0\} = A = \mathbf{H}_2 - \mathbf{H}_2^*$, and Θ has simple zero at each generic point of A.

Since each $\rho(\gamma_i)$ is mapped to (i, i+1) by the homomorphism $Sp(4, \mathbf{Z}) \to S_6$, it satisfy that $\chi(\rho(\gamma_i))^2 = \text{sign}(\rho(\gamma_i))(=-1)$ for any $i \in \{1, \ldots, 4\}$, hence $\chi(M)^2 = \text{sign}(M)$ for any $M \in \Gamma$. Therefore, we have

$$j(M,\tau)^4 = \operatorname{sign}(M) \det(C\tau + D)^5 \cdot \det(C\tau + D)$$
 for any $\tau \in \mathbf{H}_2$, any $M \in \Gamma$.

A Appendix.

A.1 Notation.

Suppose $\mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$ be the sets of integer, rational, real, complex numbers, respectively. $\mathbf{R}_{\pm} := \{x | x \in \mathbf{R}, \pm x > 0\}, \sqrt{-1}\mathbf{R}_{\pm} := \{\sqrt{-1}x | x \in \mathbf{R}, \pm x > 0\}$. If $R = \mathbf{Z}, \mathbf{R}$ or \mathbf{C} , for any positive integers m, n, we write

$$M_{m,n}(R) := \{M | M \text{ is } m \times n \text{ matrix with coeffitients in } R\}, \qquad M_n(R) := M_{n,n}(R).$$

We denote $n \times n$ identity matrix by I_n . We write transpose of matrix M by tM . For any positive integer g, we define

$$Sp(2g, \mathbf{Z}) := \{ M \in M_{2g}(\mathbf{Z}) | MJ^t M = J \} \quad \text{where} \quad J := \begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix}.$$

We usually write $M \in Sp(2g, \mathbf{Z})$ as $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ where $A, B, C, D \in M_g(\mathbf{Z})$. Moreover,

$$\mathbf{H}_g := \{ \tau \in M_g(\mathbf{C}) | \tau = {}^t\!\tau, \quad \Im(\tau) \text{ is positive definite} \} \;, \qquad \mathbf{H} := \mathbf{H}_1 \;.$$

For any
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2g, \mathbf{Z}), \ \tau \in \mathbf{H}_g, \ \mathrm{and} \ \varepsilon = (\varepsilon' \ \varepsilon'') = (\varepsilon_1' \dots \varepsilon_g' \varepsilon_1'' \dots \varepsilon_g'') \in \mathbf{Z}^{2g}, \ \mathrm{we \ define}$$

$$M \circ \tau := (A\tau + B)(C\tau + D)^{-1}, \qquad M \circ \varepsilon := \varepsilon M^{-1} + ((C^tD)_0 (A^tB)_0),$$

where $(C^tD)_0$ (resp. $(A^tB)_0$) is $1 \times g$ matrix whose *i*-th element is (i,i) element of C^tD (resp. A^tB) for each *i*. Moreover, $A := \{M \circ \tau | M \in Sp(4, \mathbf{Z}), \ \tau \in \mathbf{H}_2, \ \tau \text{ is diagonal matrix}\}$. $\mathbf{H}_2^* := \mathbf{H}_2 - A$. For any positive integers g, n, we define $\Gamma_g(n) := \{M \in Sp(2g, \mathbf{Z}) | M - I_{2g} \in M_{2g}(n\mathbf{Z})\}$. Note that $\Gamma_g(1) = Sp(2g, \mathbf{Z})$.

Suppose that a group G acts on a set X. Then for any $x \in X$, $\operatorname{stab}_G(x) := \{g \in G | g(x) = x\}$. For any positive integer n, S_n denotes the n-th symmetric group.

A.2 Theta constants and their transformation formula.

The aim of this section is to review transformation formula of theta constants according to [R-F]. (Notations are slightly modified.) In this article we use theta constants with characteristics, which is defined as follows. For any $\varepsilon = (\varepsilon' \varepsilon'') = (\varepsilon'_1 ... \varepsilon'_q \varepsilon''_1 ... \varepsilon''_q) \in \mathbf{Z}^{2g}$ and $\tau \in \mathbf{H}_g$, we define

$$\vartheta_{\varepsilon}(\tau) := \sum_{n \in \mathbf{Z}^g} \exp \left[\pi \sqrt{-1} (n + \frac{\varepsilon'}{2}) \tau^t (n + \frac{\varepsilon'}{2}) + 2\pi \sqrt{-1} (n + \frac{\varepsilon'}{2}) \frac{{}^t \varepsilon''}{2} \right] .$$

If there is no fear of confusion, we write $\vartheta_{\varepsilon}(\tau)$ as ϑ_{ε} for short.

For $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2g, \mathbf{Z}), \ \tau \in \mathbf{H}_g, \ \varepsilon = (\varepsilon' \varepsilon'') \in \mathbf{Z}^{2g}$, it is well known that the following equality holds:

$$\vartheta_{M \circ \varepsilon}(M \circ \tau) = \kappa(M) \exp(\pi \sqrt{-1} \phi(M, \varepsilon)) \sqrt{\det(C\tau + D)} \vartheta_{\varepsilon}(\tau)$$
(61)

where

$$\phi(M,\varepsilon) := \frac{1}{4} \{ -\varepsilon'^t D B^t \varepsilon' + 2\varepsilon''^t C B^t \varepsilon' - \varepsilon''^t C A^t \varepsilon'' + 2(\varepsilon'^t D - \varepsilon''^t C)^t (A^t B)_0 \}. \tag{62}$$

 $\kappa(M)^2$ is a constant, which depends on M, but is independent to ε and τ . It is known that $\kappa(M)^8 = 1$ for any $M \in Sp(2g, \mathbb{Z})$. Note that, by (61), $\kappa(M)\sqrt{\det(C\tau + D)}$ has no ambiguity. We write that $\kappa(M, \tau) := \kappa(M)\sqrt{\det(C\tau + D)}$.

Next we review some property of κ . Suppose I_g be $g \times g$ identity matrix. And suppose E_{ij} be $g \times g$ matrix whose (i,j) element is 1 and all other elements are 0. Then for any $i,j \in \{1,...,g\}$ with $i \neq j$, we define

$${}^{\pm}A_{ij} := \left(\begin{array}{cc} I_g \mp E_{ji} & 0 \\ 0 & I_g \pm E_{ij} \end{array} \right) , \qquad {}^{\pm}B_i := \left(\begin{array}{cc} I_g & \pm E_{ii} \\ 0 & I_g \end{array} \right) ,$$

$${}^{\pm}C_i := \left(\begin{array}{cc} I_g & 0 \\ \pm E_{ii} & I_g \end{array} \right) , \qquad D_i := \left(\begin{array}{cc} I_g - 2E_{ii} & 0 \\ 0 & I_g - 2E_{ii} \end{array} \right) .$$

Note that ${}^+\!C_i{}^-\!C_i={}^+\!B_i{}^-\!B_i={}^+\!A_{ij}{}^-\!A_{ij}=D_i^{\,2}=I_{2g}.$

Fact 31 (cf. [R-F] p89) $Sp(2g, \mathbb{Z})$ is generated by the following g(2g+3) matrices:

$${}^{\pm}A_{ij}, {}^{\pm}B_i, {}^{\pm}C_i, D_i \quad (i, j \in \{1, ..., g\}, i \neq j).$$

Fact 32 (cf. [R-F] p90) It satisfy that

$$\kappa(^{\pm}A_{ij})^2 = \kappa(^{\pm}B_i)^2 = \kappa(^{\pm}C_i)^2 = 1, \quad \kappa(D_i)^2 = -1.$$
(63)

Fact 33 For any $M_1, M_2 \in Sp(2g, \mathbf{Z})$, the following equality holds:

$$\kappa(M_2 M_1, \tau) = \kappa(M_2, M_1 \circ \tau) \kappa(M_1, \tau) (-1)^x \exp[\pi \sqrt{-1} \phi(M_2, M_1 \circ 0)].$$
 (64)

where

$$x = \frac{1}{2} (C_3^t D_3)_0^t [(A_3^t B_3)_0 - (-(C_1^t D_1)_0^t B_2 + (A_1^t B_1)_0^t A_2 + (A_2^t B_2)_0)], \qquad (65)$$

 $M_3 := M_2 M_1$, $M_k = \begin{pmatrix} A_k & B_k \\ C_k & D_k \end{pmatrix}$ for $k \in \{1, 2, 3\}$. Note that $[\cdots]$ in (65) is the right half of $(M_2 M_1) \circ 0 - M_2 \circ (M_1 \circ 0)$. Therefore, $[\cdots]$ is an element of $(2\mathbf{Z})^g$ and x is an integer.

A.3 More on $Sp(4, \mathbf{Z})$.

In this section we explain the following well-known fact.

Fact 34 There exists a homomorphism $b := Sp(4, \mathbb{Z}) \rightarrow S_6$ such that

$$1 \longrightarrow \Gamma_2(2) \stackrel{\iota}{\longrightarrow} Sp(4, \mathbf{Z}) \stackrel{b}{\longrightarrow} S_6 \longrightarrow 1 \tag{66}$$

is exact, where ι is natural inclusion.

The isomorphism b is given by an action of $Sp(4, \mathbf{Z})$ over the six odd theta characteristics of genus two:

$$\mathbf{OTC} := \{ (0101), (0111), (1011), (1010), (1110), (1101) \}. \tag{67}$$

Since explicit description of the isomorphism is needed in the article, here we show the proof of the fact according to [Ig2], [Koe].

Proof. We define $Sp(4, \mathbf{Z})$ -action on $\{0, 1\}^4$ as

$$\left\{0,1\right\}^4\ni\varepsilon\longmapsto\tilde{\varepsilon}\in\left\{0,1\right\}^4\qquad\text{ where }\tilde{\varepsilon}\equiv M\circ\varepsilon\bmod\left(2\mathbf{Z}\right)^4\,,$$

for each $M \in Sp(4, \mathbf{Z})$. Then **OTC** is stable under the action. Therefore, if we call the elements of **OTC** simply as $1, \ldots, 6$ as in the order written in (67), each $M \in Sp(4, \mathbf{Z})$ is regarded as an element of S_6 . Thus we have a homomorphism

$$b: Sp(4, \mathbf{Z}) \to S_6. \tag{68}$$

Since the images of (13), (37) under the map (68) obviously generate S_6 , (68) is surjective. On the other hand, it can be easily seen that $\operatorname{Image}(\iota) \subset \operatorname{Kernel}(b)$. Therefore (66) with (68) give

$$Sp(4, \mathbf{Z})/\Gamma_2(2) \to S_6 \to 1$$
 (exact).

Then , by the fact that $[Sp(4, \mathbf{Z}) : \Gamma_2(2)] = 720 = \#S_6$ (cf. [Koe]), we obtain the exactness of (66).

A.4 Coding.

In this section, suppose that g = 2. It is well known (cf. for example [R-F] p22 or [Krz] p336) that for each even theta characteristic a, there exist three odd theta characteristics p, q, r satisfying

$$p + q + r \equiv a \qquad \text{mod } (2\mathbf{Z})^4 \,. \tag{69}$$

Note that, in the above equality,

- p,q,r are different from each other.
- The complement $\{s,t,u\}$ of $\{p,q,r\}$ in **OTC** also satisfy $s+t+u\equiv a \mod (2\mathbf{Z})^4$.
- For the a, there is no solution other than $\{p,q,r\}$ and $\{s,t,u\}$.

Therefore, we denote a by symbols pqr or stu: a = pqr = stu. Note that, For any permutation p', q', r' of p, q, r, the equality p'q'r' = pqr holds. For example, since

$$\begin{array}{lll} (0100) & \equiv & (0101) + (1011) + (1010) = \text{``1''} + \text{``3''} + \text{``4''} \\ & \equiv & (0111) + (1110) + (1101) = \text{``2''} + \text{``5''} + \text{``6''} \,, \end{array}$$

we write, as symbols,

$$(0100) = 134 = 143 = 314 = 341 = 413 = 431 = 256 = 265 = 526 = 562 = 625 = 652$$
.

Those expression for all even theta characteristics are written in the following table.

$$(0000) = 135 = 246$$
 $(0001) = 145 = 236$ $(0100) = 134 = 256$ $(1111) = 345 = 126$ $(0010) = 235 = 146$ $(0011) = 245 = 136$ $(0110) = 234 = 156$ $(1000) = 124 = 356$ $(1001) = 123 = 456$ $(1100) = 125 = 346$ $(1100) = 125 = 126$

As for theta constants, we use these expressions. For example, $\vartheta_{134}(\tau) := \vartheta_{0100}(\tau)$, etc.

For any $M \in Sp(4, \mathbf{Z})$ and for any $x, y, z \in \mathbf{Z}^4$, the equality

$$M \circ (x + y + z) \equiv M \circ x + M \circ y + M \circ z \mod (2\mathbf{Z})^4$$
 (71)

holds. We apply this fact to the above notations. For example, $M(134) := M \circ (0100)$. We note that M(ijk) = M(i)M(j)M(k) for three distinct $i, j, k \in \{1, ..., 6\}$.

References

- [ACa] Norbert A'Campo.: Tresses, monodromie et le groupe symplectique. Comment. Math. Helvetici, vol. 54 (1979), pp. 318-327.
- [F-K] H.M.Farkas, I.Kra.: Riemann Surfaces, Springer
- [Fre] E.Freitag.: Siegelsche Modulfunktionen. Springer-Verlag. (1983).
- [Gun] Gunning, R.C.: Lectures on Riemann Surfaces. Princeton Mathematical Notes, Princeton University Press, 1966
- [Ig1] Igusa, J.: On Siegel modular forms of genus two, American Journal of Mathematics, vol.84 (1962), pp.175-200.
- [Ig2] Igusa, J.: On Siegel modular forms of genus two (II), Am. J. Math. 86 (1964), 392-412.
- [Ig3] Igusa, J.: On the graded ring of theta-constants, Am. J. Math. 86 (1964), 219-246.
- [Ig4] Igusa, J.: Theta Functions, Springer-Verlag. (1972).
- [Koe] Koecher, M.: Zur Theorie de Modulfunktionen n-ten Grades, I, Mathematische Zeitschrift, vol. 59 (1954), PP. 399-416.
- [Koi] Koizumi, S.: Remarks on K. Takase's Paper "A Generalization of Rosenhain's Nomal Form with an Application" Proc. Japan Acad., 73, (1997), 12-13.
- [Krz] Krazer, A.: Lehrbuch der Thetafunktionen, Leipzig, (1903).
- [Mar] Martens. H. H.: Torelli's Theorem and a Generalization for Hyper-Elliptic Surfaces. Communications, on Pure and Applied Mathematics, vol XVI, (1963) 97-110.
- [Mum1] Mumford, D.: Tata Lectures on Theta I, Birkhäuser (1983).
- [Mum2] Mumford, D.: Tata Lectures on Theta II, Birkhäuser (1984).
- [R-F] H.E.Rauch, H.M.Farkas: Theta Functions with Applications to Riemann Surfaces, Baltimore 1974.
- [Ros] Rosenhain, G.: Abhandlung über die Functionen zweier Variabler mit vier Perioden, 1851, Ostwald's Klassiker der Exacten Wissenschaften, no. 65 (1895).
- [Sai] Saito, K.: Elliptic Integrals, Preliminary lecture notes intended for College on Singularity Theory (19 August 6 September 1991 Trieste).
- [Tak] Takase, K.: A Generalization of Rosenhain's Nomal Form for Hyperelliptic Curves with an Application, Proc. Japan Acad., 72, Ser. A (1996), 162-165.
- [Wei] Weil, A.: Zum Beweis des Torellischen Satzes. Göttingen Nachrichten, Nr.2 (1957), pp.33-53.