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Abstract

Monodromy covering of complement of discriminant of parameter space of versal deformation
of curve singularity of type A,,, is regarded as total space of C*-bundle. For n=2, we had that
Rosenhain’s normal form gives trivialization of the bundle. Moreover, under our trivialization, we
gave factor of automorphy which expresses monodromy group action.
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1 Introduction.
For any positive integer n, we define that
Fay,(z,y,t) := —y® + 2®" T + 15227 4 ool + typyr -

Fy,, is universal unfolding of the polynomial —y? 4+ 2"+!. Moreover, we define that

Za,, = {(z,y,1) € C? x C2”|FA2n(x,y,t) =0}.

It is called versal deformation of curve singularity of type Ag,. The parameter space C?" is denoted
by Sa,,. That is, Sa,, = C**(3 ¢t = (t2,--.,t2n41)). Moreover, 7 denotes the natural projection
4y, O (2,y,1) — t € Sa,,. We write X; := 771(¢). On Z4,, and S4,, we define C*-action as

(x,y,t) = (AN, APy A1)
t:= (A4t2, ey A4n+2t2n+1)
This action has fixed points on S4,,. But we can lift this action to one on (S4,,— Da,,)", and there

the action is fixed point free. So (Sa,, — Da,, )" is regarded as total space of C*-bundle. Here we
think of the following problem.

Problem 1 Clarify the structure of the above C*-bundle (S4,, — Da,, ) — C*\(S4,, — Da,, )"



At the present time, only for n = 1, answer to the problem is already known. For n = 1, the answer is
a classical result, which we will see later (in subsection 2.4). In the following, we think of the problem
for n = 2.

Remark. For any integer g > 1, C*\(S4,,— Da,,) is regarded as a moduli space of hyperelliptic
curve of genus g with one Weierstrass point on it. That is, suppose that

MH! = {(R,W)

R is hyperelliptic compact Riemann surface of genus g ,
W is one of Weierstrass points on R . )

Moreover, for (R, W), (R',W') € M H,,
(R,W) ~ (R',W') :<== 3¢ : R == R’ (biholomorphic) such that (W) =W".

And we write MH, := MH ;/ ~. Furthermore, X; denotes compact Riemann surface given by doing
resolution of singularities of X; LI {oo}. Then the map

SAQQ_DAQQ St r—— (E,OO) € JT\JH;

gives bijection C*\(S4,,— Da,,) = M H,. Therefore, S4,, — Da,, is total space of a C*-bundle with
MH, as its base space. N

Here we avoid the problem for Ag,41. The case Ay,41 with n > 1, is rather different from that of
Agp. Therefore we cannot apply the way of Ay to Ag,4q. As for the problem for Ag, 41, we have no idea
now. In the case Aj,, using a period mapping and applying a well-known framework of automorphic
forms, we can see that the transition functions of the bundle 5S4, are given as a factor of automorphy.
In the following section we review the framework of automorphic forms.

2 Framework of automorphic forms.

In this section we review a well-known framework of automorphic forms.

2.1 Equivariant group action on a trivial bundle and a factor of automorphy.

Suppose X be a complex manifold, and G be a group acting on X discontinuously. Then the following
(2-1-1), (2-1-2) are equivalent.

(2-1-1) To give a factor of automorphy j : G x X — C*.
(2-1-2) To give a G-action on C* X X which satisfies the following (i), (ii).

(i) The G-action is commutative to the natural C*-action on C* x X.

(i1) The G-action is equivariant to the natural projection C* x X — X.
In fact, if a factor of automorphy j is given, we can give a G-action on C* X X using j as follows:
C*x X 3> (\2)r" (jlo,2) '\, o(z)) EC*x X (0 €G). (1)
It can be easily seen that this G-action satisfy the above (i) and (ii). On the other hand, suppose that

a G-action on C* x X satisfying (i) and (ii) is given. Then we define a map j: G X X — C* by the
following relation:

(1,2) == (j(o,2)™", o(x)) (ceGeeX). (2)

Then this j is a factor of automorphy. Those two procedures now explained are inverse to each other.



2.2 Invariant ring and ring of automorphic forms.

In general, when a group G is acting on a ring R, we denote by R® the G-invariant subring of R. And
for any complex analytic space X, we denote by O(X') the ring of all of holomorphic functions on X.
Moreover, if a group G is acting on X and a factor of automorphy j : G x X — C* is given, then for
any integer k, we define that

Ap(X, G, ) = {f € T(X,0x) | f(o(z)) = j(o,2)* f(x) for any z € X, 0 € G} . (3)

In this article, only the case that )7, 7z Ax(X, G, 7) is direct sum, is appear. Note that the following
relations hold:

@Ak(Xa Gv]) = F(Xa OX)[AaA_l]G C F(C* X X, OC*XX)G = F((C* X X)/G7 O(C“XX)/G’) : (4)
keZ

In (4), only the first isomorphism may be unfamiliar (at least, to the author). Therefore we explain
it. Suppose f be an element of O(X)[A,A\"!]%. We express f as Laurent polynomial in A:

f(Az) = Z AR f(z) ( finite sum) (5)

kEZ

where fi, € O(X). From the expansion, f satisfies the equality
f(ilo,2) " A\ a(2)) = D j(a,2) "N fu(a(2)) (6)
k

for any o € GG. Because f is G-invariant, (1), (5) and (6) imply that
fi(o(2)) = j(o,2) fi(x) (Vo € G, Vo € X, Yk € Z).

That is, fr is a (G,j)-automorphic form of weight k. On the oter hand, for given finite set {fz}
(where fr € Ar(X,G,j) for any k), if we define f by (5), we can easily see that f is an element of
O(X)[A, A71°.
2.3 Our plan.
We denote by D4, the discriminant set of S4,,:

Dy, :={t € 54,|F4,(z,0,t) has multiple roots.} (7)

We treat S4, — Dy, rather than S4, itself. Suppose that there exist X and G which make the left
hand side of the following diagram

Su —Dy €——— (C*x X)/G <——C"x X 3 (L,2)

0S8 H
\ 5 s  Diagram-1

C*\(Sa,—Da,) <—— X/G X 5 2

commutative, where u is a natural projection, and s is a global section of the trivial bundle C*x X — X
defined as in the above diagram. Then by (4), the ring C[ts,...,t,41] is regarded as a subring
of O(X)[A\,A"1]%, and hence it is regarded as a subring of the ring of ((,j)-automorphic forms.
Moreover, transition functions of the bundle 5S4, — D4, is given as a factor of automorphy j. By the
way, the GG-actions on the total space and on the base space of the bundle C* x X — X are equivariant
to the projection. Hence, by the relation (2) the section s satisfies

s(o(z)) = j(o,z)-o(s(x)) (Vo e G,V € X).

Moreover, the C*-actions on (C* x X)/G and on C* x X are equivariant to the map w. And, in
addition, u is G-invariant. Therefore, we have

(uos)(o(z))=j(o,z) (uwos)xz) (Voe G, Vee X).

Keeping the above framework in mind, we consider Problem 1 for n = 4 as follows.



(2-3-1) We take an open dense subset of Siegel upper half space of degree two, say H5, as X in
Diagram-1.

(2-3-2) Next we investigate the effect of G-action on the map u o s to obtain a factor of automorphy
j explicitly.
2.4 Example. (A,-type curve singularity.)

As an example, we review the answer to the problem 1 for n = 2 (c¢f. [Sai]). In order to adapt the
problem to the theory of Weierstrass’ p function, we modify the definition of F4, as follows:

Fa,(z,y,9) = —y* +42° — gaz — g5 .

Then S4, = C? and Dy, = {g € Sa,|g5 — 27g% = 0}. In this case, using the following multi-valued
holomorphic mapping:

d
SA2—DA29gr—>(/ / x// )eC*xH (8)
A(g) B(g) A(g) Y

we can apply the above framework to S4,—D4,, where G = SL(2,Z) and X = H. As a consequence,

b
we obtain that S4,— Dy, = C* x H/SL(2,Z). Moreover, we have j (( Z d
obtain the expression of g; (¢ = 2,3) as (G, j)-automorphic forms, which coincide to the well-known
expressions as Eisenstein series.

, 7| = er +d, and

3 Definition of period mapping.

We denote that 5 := S4,, = 1= =4
(C[t])[z] is as follows:

and D := Dy,. Discriminant of the polynomial Fjy,(2,0,t) €

47

A(t): = 3125t3 — 3750tyt3t5 + 2000191312 4 2250t2t412 — 900t5t 412 + 825t2t212
+1085t2 — 160013515 + 560t5t5t5ts — 630t9t5tats — T2t5tatats + 108t5ts
+1615t515 + 25615 — 128215 + 144t4t215 4+ 161565 — 2Tt513 — 451342 .

By (7), we have D = {t € S| A(t) = 0}. We take a point t; € S—D. tg is used as a base point of the
fundamental group of S—D. Projection 7 : = — 77 1(D) — S— D has the property of local triviality.
Hence m1(S— D, 1) acts on Hy(Xy,,Z), and then we have what is called monodromy representation
of 11(S—D,tg) and monodromy covering of S—D. Here we define them. Suppose C' be an element of
Hy(X4,,Z) and 7 be an element of 71(S—D,ty). Then we denote by v(C') an element of Hq(Xy,,Z)
given by modifying C' continuously along the path . Thus v is regarded as an automorphism of
Hy(X4,,Z). Moreover, this action preserves the intersection form ( , ) on Hy(Xy,,Z). Therefore we
have the following anti-homomorphism:

prim(S—D,ty) — Aut(H1(X4,Z),(, )) (monodromy representation) , (9)

where Aut(H1(X4,,Z),(, )) denotes all of automorphisms of H(X},,Z) which preserve the intersec-
tion form {, ). Note that for any 7,7’ € 71(S— D, o), we define the product ¥’ by joining the end
point of 4 to the initial point of 4/. T := p*(H;(Xy,,Z)) is called as monodromy group. We take a
symplectic basis of Hy(X},,Z) as in Figure-1. Then by the basis, the following group isomorphism
holds:

E:Aut(H(X4,Z),{,)) = Sp(4,Z) ¥ M (10)
where  (y(A1) 7(A2) 7(B1) 7(B2)) = (A1 Ay By By)M

is obtained, where t = #y3. By the isomorphism, I' is regarded as a subgroup of Sp(4,Z). Now we
define a covering space of S— D as follows:

(S—D)" := (universal covering space of S— D)/ Kernel(p*).



(5—D)" is called as monodromy covering. Natural projection (S—D)" — S—D is denoted by o. Here
we can define a period mapping.

h) wlg(h) w13(h) w14(h) 2= ldz
P:(5-D)*>h wn( € My4(C), ,h::/ ,
( ) |__> ( war(h (h) wa(h) waa(h) 24(C) wish) Ay Y
where Ay(h), Az(h), As(h)= Bi(h), Aa(h) = Ba(h) are symplectic basis of Hi(Xy(),Z) and depend
on h “continuously”. That is, each A;(h) is a local system. We choose one element hg € = (#g), and
on the hg, take A;(ho) (j = 1,2,3,4) as in the Figure-1.
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\ /

T~ 7 Figure-1

Remark. Fach A;(¢) is multi-valued on S—D. But, on (S—D)", each A;(¢) is single-valued. In
fact (S—D)" is the minimal covering on which each A(¢) is single-valued. Therefore the above period
map P is single-valued.

By the definition of P, each P(h) (h € (S—D)") is a 2 X 4 matrix. We define a map ¢ as
¢ : Image(P) 3 (24 2B) — (2;'0B) € Hy ,

where Q 4, Q5 denote the left 2 x 2 part, the right 2 x 2 part of the 2 x 4 matrix P(h), respectively.

4 Monodromy covering and configuration space of ramified points.

We denote the n-th symmetric group by S,,. The aim of this section is to give a well-known homo-
morphism Sp(4,Z) — S explicitly, to review a result of A’Campo about monodromy group of the
deformation of curve singularity of type A4, with more precise consideration, and to show that the
monodromy covering o : (S—-D)" — S—D is factored by a configuration space of five roots of F(z,0,1p).

4.1 Sp(4,Z)-action on Hy(X,,,Z)/2H(Xy,,Z).

Suppose that i, are elements of {1,...,6}. Now we take a path on X;, which has e; as its initial
point and e; as its end point, where eg means cc. Then the path and its image under the hyperelliptic
involution of Xy, make a closed path on X3, which determine an element of Hq(X4,,Z). we denote it
by [e;,e;]. [e;, ;] is uniquely determined by e;,e; up to mod2H;(Xy,,Z). Under the assumption that
the basis of H1(Xy,,Z) is given as in the Figure-1, the six cycles [e;, eg] are written as follows:

le1,e6] = B1, [ez,e] = A1+ B1, [es,eq] = Ay + By, (11)
[ea,e6] = A1 + A + By, [es,eq] = Ay + Ay, [es,e6] =0, mod2H,(Xy,,Z).

Here we write
leive;] = el (1) A1+ 5(ij) Az + €1(i) B1 + €5(ij) B2 mod 2H1(Xy,,Z)

where ¢](ij),e)(ij) € {0,1} for 4,5 € {1,...,6}, k € {1,2}. Here we note that the six (&'(i6)c"”(i6)) +
(1101) (i € {1,...,6}) coincide mod(2Z)* with the elements of OTC in (67):
=1 1=2 1=3 i=4 1=5 1=6
('(i6)e"(i6)) + (1101) | (0101) (0111) (1011) (1010) (1110) (1101)




Remark. (1101) corresponds to the Riemann constant. That is, (1101) corresponds to By + By +
Ag, and %(IB1+B2 4, 9 [B 4By Ay wy) is what is called Riemann constant, where wy,w; are the basis
of C-vector space of holomorphic 1-forms on Xy, satisfying fAJ wi = 6;; (Kronecker’s delta). 1

By Appendix A.3, any element of Sp(4, Z) is regarded as an element of Sg using the homomorphism
bin (68). Here we note that, for any M € Sp(4,Z) and for any ¢ € {1,...,6} the relation

M o ((e'(16) £"(16)) + (1101)) = (¢'(M(i)6) " (M (4)6)) + (1101) mod (2Z)*

holds. The aim of this subsection is to prove the following lemma.

Lemma 2 For any M = ( A B

c D ) € Sp(4,Z) and for any i,j € {1,...,6}, the following equality

(mod(2Z)*) holds.
p [ € [ (MM (7)) s
M ( i) )=\ gy ) med A
Proof. We have only to prove the case ¢ # j. By the definition of M o ¢, it satisfies that
Moe—Mo§=eM™' —6M~!
for any M € Sp(2¢9,%), ¢,6 € Z*9. Therefore, for any 4,5 € {1,...,6} satisfying i # j, and for any

M = ( é g ) € Sp(4,Z), we have
e(ij)M~! (e(i6) + (1101) — e(j6) — (1101))M !

= (e(i6) + (1101))M " — (e(56) + (1101))M ~*

= Mo (e(i6)+4 (1101)) — M o (e(j6) + (1101))

= ¢(M(i)6) + (1101) — e(M(§)6) — (1101)

e(M(i)M(3))

eh(ij) eh(ij) €f(ij) e4(ij)) € {0,1}%, and “=” means mod(2Z)*. By the way, for

(
‘D —'B
€ Sp(29,%), M~ = et ) Therefore,

B
D
( (M (i)M(j)) ) _ tM_1< /(i) ) _ ( D -C ) ( (i) )
(MM (5)) | T &"(i5) -B A "(ij) |
In other words,
M@OMG) \ _( A -B “"ij)\ _( A B te"(i5) .
( e (M(3)M(35)) ) - ( -C D ) ( ' (i5) ) - ( C D ) ( (i) ) mod (22)"

This completes the lemma. 1

4.2 Monodromy group.

The aim of this subsection is to investigate a result of A’Campo precisely. It is convenient that the
monodromy representation is modified to be homomorphism. So now we define p.

p(7) = K(Eop*(y)) 'Kt where K := ( Ig OI ) . (12)
—1y
Note that, K ¢ Sp(4,Z) but KMK~! € Sp(4,Z) for any M € Sp(4,Z). Since m(S— D,1o) is

isomorphic to the Artin braid group of five strings, it has canonical generators v1,...,v4 where each
7i is given by the exchange of e; and ;41 counterclockwisely as in the following figure.



Then it can be easily seen that

101 0 1 00 0
0100 0 10 0

Eop*(71): 00 1 0 9 EOp*(’)’g)I 1 1 1 0 )
000 1 1 -1 0 1
100 0 1 00 0 (13)
010 1 0 10 0

Eop(m)=1 9 0 1 o |- Eop(a)=1 ¢ ¢ 1 o
000 1 0 -1 0 1

Obviously, as a subset of Sp(4,Z), monodromy group I' = p(71(S— D, 1g)) is generated by the above
four matrices. In [ACa], A’Campo gave the following

Lemma 3 (A’Campo [ACa]) I'y(2) CI' C Sp(4,Z), and T'/T'2(2) = S5.

Using the homomorphism (68), let us obtain a more precise characterization of I'. Here we define that
IV := {M € Sp(4,Z)|M(6) = 6}, where each M is regarded as an element of S¢ by the map (68).
Then obviously, we obtain that

I2(2) C T/ C Sp(4,Z), and T"/Ty(2) =2 S5 . (14)

Moreover, it can be easily seen that p(v;) € I for any 7 € {1,2,3,4}, which implies that I" C I".
Therefore, by (14) and Lemma 3, we obtain that I' = T".

4.3 Monodromy covering and a configuration space of five roots of F(z,0,1).

First we define a natural homomorphism 71 (S—D,ty) — S5. Here we use an element (eq,...,e5) € (o

where ey,...,e5 are roots of F(z,0,t5) as in Figure-1. Note that 71(S — D,to) is isomorphic to

the Artin braid group of five strings. Now we take an element v € m1(S—D,t). Then five roots of

F(2,0,t), say (e1(t),...,es(t)), starting from (eq,...,e5), move “along " to arrive a point. We denote

the end point by (67—1(1), .. ,67—1(5)). Thus we have a group homomorphism 71(5— D, %) — Ss.
Here we obtain the following lemma.

Lemma 4 The diagram:

71(5'—D,t0> %} 5'5

p \L \p Diagram-2

Ty(1) Se

is commutative, where (S — D, ty) — S5 is the homomorphism given above, I'3(1) — S¢ is given in
(68), m1(S—D,tg) — I's(1) is given in (12), and S5 — Sg is natural embedding.

Proof. We take a v € m1(S—D,tg) arbitrarily. Then by the definition of p*, any cycle [e;,e;] €
H1(X4y,Z) is mapped by p*(7) to [eq-1(;), €y-1(;)] € H1(X4,,2Z), up to 2H1(Xyy, Z). On the other hand,
Lemma 2 implies that [e;, e;] is mapped by E o p*(7) to [e(mop*(4))(i)s €(Eop*(1))()] MmOd 2H1(X4,, Z).
Therefore, for any i,j € {1,...,6},

[es=102 €a=10)] = e(Bor )@ €Bor ()] mod 2H1(Xey, Z)

is valid. As a result, we have that (Fop*(v))(i) = v~!(i) for any i € {1,...,6}. Therefore, Eop*(y) =
7~1in S¢. Hence, it can be easily seen that p(y) = vy in S¢. This completes the proof. |



Definition 5

Vi={(e1,...,e5) € C°ley + -+ + e5 = 0},
D' :={e € Vl]e; = e; for some distinct i,j € {1,...,5}} .

From the above lemma, we have the following corollary.

Corollary 6 The monodromy covering o : (S—D)" — S—D is factored by V—D'. That is, there erists
a covering map e : (S—D)» — V — D’ such that the following diagram is commutative.

S—D :universa covering space

I S=D

5 Rosenhain’s formula.

In this section, first we define root functions by modifying Rosenhain’s expression arising from a theory
of periods on curves of genus two. Then we obtain some automorphic property of the functions under
the action of the monodromy group TI'.

5.1 Rosenhain’s formula and root functions.

Suppose t be any point of S—D. We write F(z,y,t) as
F(‘Tvyvt): —y2-|-($—€1)"'($—65) .

Then X; with a basis of H1(X¢,Z) taken as in the Figure-1 gives a period matrix 7 € Hy. Rosenhain
[Ros] gave expressions of anharmonic ratios of four of six ramified points of X; by theta constants:

€L — €1

= Ae(7) (k=3,4,5), (15)
€9 — €1
where
As(r) = 0234(7)0235(7) A7) = 0245(7)0%45(7) As(7) = V255(7)0%54(7) _ (16)
D04(T)055(7) W305(T)P95(7) D305(7)024(7)

For the sake of convenience, we define A\i(7) := 0, Ay(7) := 1. The invariableness of each \; under
the action of I'y(2), is almost trivial by the transformation formula of theta constants. For any ¢ €
{1,...,5}, we define functions j3; as the product of A\; with the least common multiple of denominators

of A3, A4, and A5, that is,
Bi = 79%2379%2479%25/\2' (1<2<5). (17)

Then we can write 3; as follows:

_ 92 2 2 .92 2 2 92 2 2 92 2 2
ﬂl - 07 /82 - 1921319214192157 63 - 031219314193157 64 - 7941219413194157 65 - 05121951319514'



Moreover, we define functions «; as follows.

o; = ﬂi—%Zﬂj:%Z(ﬂi_ﬁj)- (18)

Using those o; (¢ € {1,...,5}), we define a map F': Hy — S as follows:

F:H29TP——>tES, (19)

where ;= (-1)' Y @, --ra, (i €{2,3,4,5}). (20)
1< << <5

Since each 6;;; (1 < i < j < k <5), and hence each 3; — §; (¢ < j) has no zeros on H} we conclude
that F(H%) C S— D. Moreover, by (15), (18), for any h € (S—D)", there exists A € C* such that
A-o(h) = Fogo P(h), and hence the equality

o(A-h)=FopoP(A-h)
holds. As a result, we have the following lemma.

Lemma 7 For any 7 € HY, we have

po Pl ™ (F(r)={Mor|M €T}.

5.2 Five functions as modular forms.

The functions aq,...,as, which was defined in the previous subsection, have modular property under
the action of I over Hy. In this subsection we obtain the modular property and investigate the factor
of automorphy. To begin with, we show the following easy lemma.

Lemma 8 ' > M +— y(M) := k(M )? exp[27/—1¢(M,(1101))] € C* is group homomorphism.

Proof. Tirst note that a formula of ¢ defined in (62). For any My, My € Sp(2¢g,Z) and ¢ € Z?%9,
simple computation gives

(50(17\/12]\/[1,6) = ¢(1142, 11/[1 ¢] 6) + qb(ﬂ/[l,{f) — (ﬁ(]\/[g, 11‘/[1 0 0) 4+
1
+§(€/tD3 — e"'C3)[(A3'B3)o — (—(C1'D1)o'By + (A1'B1)o'As + (A2°Ba)o)]
A;, B;

C; D,
with the equality given in (64), we have

k(MyMy)? exp[2my/—1¢( My My, )]

where M3 := MyM,, M; = (1 = 1,2,3). Note that [--:] is an element of (2Z)2%9. Hence,

= Kk(Ma3)? exp[2my/—1¢( My, My o &)]k(M1)? exp[2mv/—1¢( My, €)] . (21)
Therefore, if g = 2, My, M3 € I and € = (1101), we obtain a result that we wanted. |
Therefore, the map
I'x Hy 3 (M,7) —— (M, 7)%exp[2my/~16(M, (1101))] € C* (22)

is a factor of automorphy. The following lemma gives a square root of (22).

Lemma 9 Suppose that e = (1101). Then
1
I'xHy 3 (M,7)—— (M, 7)exp[rvV—1(¢(M,e) — §e't(—e'tB +e"A + (A'B)y — ")) € C*

is a factor of automorphy.



Proof. For any My, My € Sp(2g,Z), ¢ € Z?9, we have
(A3'B3)o — (—(C1'D1)o'By 4 (A1'B1)o'A2 + (A2'B2)o)
— [_€ItB3 _l_ €IItA3 _l_ (A43tB3)0 _ 6”] _ [—(':ItBQ _l_ €IItA2 _l_ (A2tB2)0 _ €II:|
_ [_eltBl + €/ItA1 + (AltBl)O _ 6//] + 25/tB2 _ 26//75A2 + 26// ,
S(My, My o€) + e"(§""By — 6""Ay + §")
= (,b(ﬂ/[g,e) =+ (E/th — 6’”02 + (Cgth)o — 6/)(—B2t(5/ + Agté”)
_I_ (6ltD2 _ 6//tC2 + (CztD2)0)t(_6ltB2 + 6IItA2 + (A2tB2)0) _ 6/1‘6//
—  2(C3'Dy)o(—Bol8" + A56") — (Co'D3)o(A2'By)o
where M3 := MyMy and 6 := %(ﬂ/[l oe —¢). Using the above equalities, we can prove the lemma by

simple computation. 1

Here we denote that, for any M € I', 7 € H2,
Jio1(M,7) = k(M, 7)exp[mv/—1(d(M,e) ’t( e""B +e"'A + (A'B)o — €"))]det(CT + D),

where ¢ = (1101). Note that jijo1(M,7)* = H(I\J) (det(Ct + D))?exp[2my/—1¢(M,(1101))]. The
factor of automorphy ji101 is important by the following lemma.

A B

Lemma 10 For each M = ( c D

) eTl,i€{1,2,3,4,5} and 7 € Hy, it satisfies that
apy@(Mor)= Jrion(M, ) ai(T) .

Proof. By the definition of a;, we can write as

5

anroy(M o 7) = 1Z(ﬁM V(M o7) = Baiy(M o).

7j=1

Hence now let us investigate the factor of automorphy of 3; — 3; under the action of I'. By the way,
with the aid of formulas:

V1350745 = V169746 + V1320142 D1340154 = V169156 + 320150
V1430753 = V1469756 + 1420152 D050155 = Vo616 + F2401s4
V125015 = V1o6¥1a6 + V1230143 » 01240154 = V1a6V1s56 + V1230153 5
the differences 3; — [3; are written as follows:
ﬁi - /3] = Slgn(l ) ﬂzykﬁz‘ylﬂ?jm ’ (23)

where {7, j,k,l,m} = {1,2,3,4,5}, and sign(z) := £1 if £z > 0.
Remark. By (23), we have
113 - ) = 0°, where O:= ] Y- []

1<i<j<5 1<i<j<k<5
Note that, for any M € Sp(4,Z), (71) holds. Then, for any M € I', 7 € Hy and {¢,5,k,[,m} =
{1,2,3,4,5},
Br(y(M o 1) — Bar(jy(M o)
= sign(M (i) = M) riaymiynvnM o D)0 aarymay M o TV yniimy (M o 7)
= sign(M(z) — A/[(j))?ﬂ?\/{(”lC (Mo T)19 (Mo )93, (ijm)(M 0 T)
= sign(M(i) — M(5))k(M)® exp QW\/—_qb(l’\[,z]k)exp 2m/—1d( M, ij1) exp 2m/—1p( M, ijm)
X det(Cr—}—D)Sﬁ”k( 7)d ”l(r)ﬂwm( )
= sign(M (i) — M(j))sign(i — j)s(M)® exp 2nv/—1(d( M, ijk) + ¢(M,ijl) + ¢(M,ijm))
x det(CT + D)*(Bi(1) — B(1)) .

Hence, the proof of Lemma 10 is reduced to the proof of the following lemma.
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Lemma 11 Suppose that 1, j,k,l,m are permutation of 1,2,3,4,5, Then for any M € T, the following
equality holds:

sign( M (i) — M(j))sign(i — j)s(M)® exp 21/ —1(p( M, ijk) + ¢(M,ijl) + d(M,ijm))
= k(M) exp2nV/—1¢(M,6) .

Proof. First we define two sets:

S = {AlA C {17273747 5}7#A = 2} = {{i7j}|i7j E {17273747 5}7i # j}7
T := {even theta characteristics of genus two} (C {0,1}*).

Note that #5 = #7T = 10. It can be easily checked that the map
So>{i,j}——ij6 €T (24)

gives bijection from S to T'. Here we define I'-action on S as follows: for any M € I and {i7,j} € S,
we define

M : {6, 5} — {M(3), M(§)} .
Then the T'-actions on S and on 7" are compatible to the map (24), that is, the map (24) satisfies
(M (i), M(§)} — M(ij6)
for any {7,j} € S and M € I'. Now we denote that
(M 40,7} = sign(M(3) — M(j)) sign(i — ),

xo(M,{i,j}) = &(M)°exp2rv/—1(d(M,ijk) + ¢(M,ijl) + d(M,ijm))
x (M)~ exp(—2mV/—1¢(M,6)) .

What we want to prove is the equality

x1(M,{i,j}) = xa(M,{i,5}) (VM € T,¥{i,j} € 5).

The proof is decomposed into two steps.
Step 1 For any M, M' € T, {i,j} € S and p € {1,2}, the equality

Xu(M'M,{i, j}) = xu(M' {M (i), M(5)})xu(M, {1, j})

holds. In fact, if 4 = 1, this equality is trivial. On the oter hand, if u = 2, this equality holds by (21)
and (71).
Step 2 Suppose M = M*! (v =1,2,3,4), where M, := p(7,). Then we have

X1(M,{i,j}) = x2(M,{i,j})  for ¥{i,j} € 5.

Now we check this fact by giving the values y,(MZ*!,{i, j}) explicitly. First let us give yo( M, {3, j}).
Suppose n be any integer. Then

4p(M7,e) = n(—(e1)? +2¢1),  4p(M3,e) = n(e] —€5)?,

AP e) = n(—(eh 4 26h),  A9(MF,e) = n(el)?
Especially, 4¢(M*,(1101)) = n (Vv = 1,2,3,4). Thus, it can be easily seen that, in the meaning of
mod.4,

AG(MD, ijk) + Ag(MP, ij1) + 4p(MP, ijm) — dp(M™, (1101))
— 27Z (When {7’?]} = {V’l/ + 1}) (25)
N 0 (otherwise) '

11



On the other hand, it is well known (cf.[R-F] p90) that, for any v € {1,3,4}, the equalities
k(M) = k(M) =1 (26)

hold. Moreover, by the decomposition My = ~CytBy~CytA15TC2~By~Cy and relation (64), the equal-
ity (26) also holds for v = 2. Consequently, if {¢,7,k,l,m} = {1,2,3,4,5}, then for any v € {1,2,3,4}
we have

—1 (when {¢,j} = {v,v+ 1})

Xﬂ(ﬂ/lscla {la]}) = { 1 (otherwise) (27)

with g = 2. On the other hand, for any v € {1,2,3,4}, the action of M*! over {1,...,5} coincides
with that of (v, 4 1). Therefore, (27) with g = 1 holds. Hence the claim of Step 2 is verified. Thus
the proof of Lemma 11 is completed. |

Thus the proof of Lemma 10 is completed. ]

6 Monodromy covering as C*-bundle.

By lifting the C*-action on S—D to (S—D)", we can define a C*-action on (S—D)". The aim of this
section is to show that, with the C*-action, (S—D)" becomes the total space of a C*-bundle in the
strict sense.

6.1 Injectivity of P.

In proving the injectivity of P, we use the following well known fact, which is a part of the Torelli’s
theorem.

Fact 12 (Torelli) Suppose that:
o X1, Xy are compact Riemann surfaces of genus two.

o For each k(= 1,2), Ap1, Ao, Br1, Bro are Z-basis of Hy(Xy,Z) such that (Ay;, Byj) = b;;,
(Aki, Ak;) = (Brki, Brj) = 0, where ( , ) is the intersection form on Xy and 8;; is Kronecker’s
delta.

® Wwii,wky are holomorphic 1-forms on Xy, linearly independent over C and satisfying / Wi =

Ag;
)
/ WE1 / WE1
/Bkl Bio

ij-

o We denote that mi: =

Wk2 Wk2
Br1 Biz
Then
If: X1 = Xy (biregular) such that
=Ty | = . ; )
[ 1 2 ] [ f*wgz' = Wi (’L = 1,2), f*Alg = A2]‘, f*B].] = BQJ' (] = 1,2)
Proof. See, for example, [Mar] or [Mum1]. 1

Lemma 13 P is injective.
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Proof. Suppose that h,h' are elements of (S—D)”. To avoid confusion, only in the proof, we use
new letters to write defining equations of X, ;) and X,/ as follows:

Xon) i =(z—e1)-(z—es5), Xo(nr) cwl=(z—¢€))- (2 —€l).

We denote by X; a compact Riemann surface given by the resolution of singularity of X; U {c0}.
Suppose that P(h) = P(h'). Then by the Torelli’s theorem there exists a biholomorphic bijective map
[ Xy — Xo(nry satisfying

f* (Zi_;dZ) _ Il_yldx ('L _ 1’2) ’ (28)

FAi(h) = A;(B) (1 =1,2,3,4). (29)
The divisor on X, ;) given by df is 2+ 00. On the other hand, the divisor on X, given by fﬂ—z is also

2-00. Therefore, by (28) with ¢ = 1, we obtain that f(co) = co. Hence there exists a constant A € C*
such that

{ef,. . ek} = {\%eq,..., A5}, (30)
f coincides with the map (z,y) — (z,w) = (A\%z,\y) . (31)

By (31) we obtain f* (Zdz) = Llzdz  Therefore, together with the relation (28) we have that A = 1.

Tw
Hence {e],...,et} = {e1,...,e5} and f is the trivial isomorphism (that is, (31) with A = 1). Moreover,
this map satisfy the condition (29) and hence we conclude that A = A’. 1|

6.2 Injectivity of (dP).
First we review a well known fact.

Fact 14 (Saito, K.) On the above situation and notations, we have

t((?wlk 8w1k 8w1k 8w1k>tT_t< 3 5 15 15 )

— =Wy —Wop — W3 —W
dty Oty Oty Ots 9tk 9k Ty Bk Ty Wk

for each k € {1,2,3,4}, where

2t2 3t3 4t4 5t5
T —15t5 612 — 2014 Atots — 2515 oty
| 60ty —10t2  T5t5 — 2Ttats 10tt4 — 18t2 20t9ts — 9taty

25t5 + 1519ty 18t9ty — 615  40t9ts — 3iaty — 412t 10f3t5 — 413 — 2314
and detT = —T5A.

Proof. First we note that

0 dx 25~k dx
< @ __ . (k=2,3,4,5), 32
oty /Ak(t) y /Ak(t) 2yf ( ) (32)

and, for any fixed t € S— D,

n n—1 "= 2na" 1 f —
d (fc—) SCC R PP - 0z 4y . (33)
y y 2yf 2yf
Here we denote, for any integer n,
0
W, :=2na" "1 f — x”—f .
oz
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Then we can write (33) as

i) = 55t

For simplisity, we write Q[t] := Q|[t2,13,t4,15] and Q[t,z] := Q[t2,13,14,t5,2]. For any nonnegative
integer n, W, is a polynomial of z with coefficients in Q[t], whose leading term is (2n — 5)2z"*4.
Therefore, it can be easily seen that, as Q[t]-modules,

Qlt,+] = D Qlile* = (@ Q[t]r'“) ® (é Q[t]m) .
k=0 k=0 n=0

Hence, each P € Q[t z] has unique expression as

(n€Z). (34)

deg, P—4
Where Pk Un E Q[t] (k€{0,1,2,3}, n€ {0,1,...,deg. P — 4}) .
y (32), (34) and (35), we have
3 L deg, P—4 W
—dm = t/ —dz + /nt/ — " dz
/Ak (t) 2yf Z @k( ny nzz:o ( ) Ag(t) 2yf

8t5 k

_ZL’% /<)

What we need for our purpose is to get {¢y} satisfying (3
First, W,,(n € {0,1,2,3,4}) are as follows.

dz
e
5)

when P = z'f (i=0,1,2,3).

Wo(z) —52% — 3ty2? — gz — 14,

Wi(z) —32% — tyx® + tyz + 25,

Wa(z) —28 4 toxt 4 2t323 + 3t42? + Ats2
Ws(z) 27 4 3tyz® + Atzat + 5t42° + 6ts2?
Wy(z) = 32% 4 5t925 + 6132° 4 Ttgz* + 8t52°

From these formulae, we have expression of z*f into the form like (35) for each i(=0,1,2,3) as follows.

3f = 2tyx® + 3tax? + Atz 4 5ts — Wy,
5cf = 15tza® 4+ (20t — 613)x? 4 (2515 — 4lgts)x — 2tgty — 5Wo + 26, W ,
—152%f = 10(6tg — 13)a> + (T5t5 — 2Ttot3)2? + (10191, — 1813)2 + 20tqts — i3ty
—15Ws3 — 101, W, — 9t3W
—152°f = 5(5ts + 3tot3)x> + (18taty — 615)z> + (40tyts — 3taty — 4t3t3)2

+10t3t5 — 415 — 215t4 — 5Wy — 106, Wy — 5ta Wy — (414 + 265)W, .

Finally, we have

—§/ dx = 2t28+31t38 +41t48 —|—5t58 / dx
2 Jat) ¥ dty Ots Oty Jts oM ’
—§/ v _ 15t3£+(20t4—6t§)i+(25t5 Atotz)—— 9 — oty — 0 / d—x,
2 Ak(t) Yy L 8t2 8t3 8t 8t5 () Yy

1 hde 10615 — 12)-2 & (7515 — 27t51) -2
2 Jaywy ¥ I 27 Bty dts

F(10tts — 1882)-2 4 (20135 — 9tste) - / dw

Oty Jts O
3

? » T ydx — [5(5t5 + 3t2t3)82 (18t2t4 g’)a—ts

+(40tots — 3t3ty — 475%153)i + (10tats — 41% — 2t2t4) 9 / d_x

Oty Ots| Jayt) ¥
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Therefore, the matrix 7 is given. We can check the equality det T = —75A by computer. 1

Lemma 15 (Saito, K.) The differential of P at any point h € (S-D)", that is, (dP)y, : Tp((S-D)*) —
Tp(h)(M2,4(C)) is injective.

8(w11, R ,w14)
8(t27 .. atS)
14 it is sufficient to see that det(w;;)i j=1,..4 # 0 for any h € (S—D)". In general, suppose X be a
compact Riemann surface of genus g(>1) and Mx be the sheaf of germs of meromorphic functions
on X, then there exists the following canonical isomorphism as C vector spaces (of 2¢g-dimensional):

Proof. It is sufficient to prove that det # 0 for any h € (S—D)*. Then, by Fact

HY(X,C)~ Homc(H,((X,C),C) 2 T'(X, dMX)/dF(X, Mx). (36)

In particular, when X is a compact Riemann surface (of genus two) defined by F(z,y,t) = 0,
= dx

; mod dI'(X,Mx) (¢« = 1,...,4) are C-basis of the right hand side space of (36). Hence
det(w;;)ij=1,.4 #70. 1

6.3 Image of oo P.

The aim of this subsection is to prove the following lemma.
Lemma 16 Image(¢o P)= Hj.
Proof. First we recall two well-known facts.

Fact 17 (cf. [Wei]) Suppose T be an element of Hy. Then there is a compact Riemann surface R of
genus two with a symplectic basis {Ay, Ay, By, B2} of Hi(R,Z) which gives T as period matriz if and
only if T € Hj.

Fact 18 (cf. for example, [Gun]) Suppose that R is an arbitrary compact Riemann surface of
genus two. Then there exists t € S— D such that R is complex analytically isomorphic to X;.

By the above two facts it is obvious that
Image(¢ o P) C {M o7|r € Image(po P), M € I'y(1)} = Hj .

Hence, for any 7/ € Hj there exists M € I'y(1) such that M o7’ € Image(p o P). But it is not trivial
whether 7/ itself is an element of Image(¢ o P) or not. To prove the lemma, we have only to show
that, for any 7 € Image(y o P) the I'y(1)-orbit of 7 is included in Image(y o P). This will be given by
Claim 19 stated later on. To state the claims, now we give a little preparation.

Suppose that R is a compact Riemann surface of genus two which is given as a ramified covering
over P! = P1(C) with six ordered ramified points Wi,..., Ws. We take an oriented simple closed
path on P! which go through Wy,..., W in this order . For each n € {1,...,6} we denote by I,,, the
segment of the path having W,,, W, ;1 as its both ends, where W7 := W;. Then each x~!(1,) is a closed
path on R. We give an orientation to each k~1(I,) and denote it by C,, such that (C,,C,41) = 1 for
any n € {1,...,5}, where (, ) is the intersection form on H;(R,Z). Note that here we identify, for
each n, oriented closed path C,, with the element of H{(R,Z) having C,, as a representative. For the
sake of convenience, we define W,, and C,, for any integer n such that W, = W,, and C,44 = C,,
(for any n € Z). Now we define that

A =, AW =ps, AP =B =0, AP =B .=C.  (neZ).
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Then for each n, Agn),Agn),B{n),Bgn) are symplectic basis of Hy(R,Z). It can be easily seen that

(AP AGT A0 A S AP A A e

where Shi= (37)

On the other hand, the above R with a basis Agn), cee, Afln) gives a period matrix 7(€ H3). Obviously,
this 7 depends on the order of the branch points {W;} and the above simple closed path (J, I,
(and, moreover, the ambiguity of the orientation of k~!(Iy)). But, if we consider the procedure of
constructing the monodromy covering (S—D)”, it can be easily seen that I-orbit of the 7 depends
only on R and the sixth branch point Wg but it doesn’t depend on the order of the other five branch
points, the oriented simple closed path and the ambiguity of the orientation of k='(I1). Therefore we
write the I'-orbit as orb(R,Ws). Here we brought the preparation to an end.

Now we define that S := K(S')"!K~!. We note that S™(6) = n', where n’ € {1,...,6} and
n' = n mod 6. Accordingly, we have I'S™ = {M € Ty(1)|M(n) = 6} and hence T'y(1) = [[2_,T'S™.
Therefore, to prove the lemma, we have only to show the following claim.

Claim 19 5" o orb(X;,00) C Image(po P) foranyn € Z andt € S—D.

Proof. Suppose that t is any element of S— D. And suppose that pr : X; — P! is a map which is
an extension of the projection X; 3 (z,y) — z € C. pr is a ramified covering of P! with six ramified
points, say W1y, ..., Wg € P! where W is a point satisfying 2 = co. As in the preparation given above,
we take an oriented simple closed path on P! which go through W;,..., Ws in this order, and using
the path we take elements C’n,A(n) € Hi(X;,Z) (j,n € Z, 1 < j <4). Then we have

J
orb(X;, Ws) = {wo P(h)|h € 07'()} C Tmage(p o P).
Now we show that the inclusion
5™ o orh(X;, Wp) C Image(gp o P) (38)
holds for any integer n. First note that, for any n € Z we have

5™ o orh(X;, Wy) = orb(Xy, W_,,) . (39)

By (39), if (X;, Wy) # (X;, W_,), then any point t' € S— D satisfying (Xy,00) ~ (X;, W_,) is not
included in the C*-orbit of ¢. Therefore,

orb (X5, W_) = {0 P(h)lh € 0™ 1(#)} C Tmage(y o P)
holds for the n. This inclusion and (39) imply (38). On the other hand, if (X¢, Wo) ~ (X, W_5,), then
5™ 0 orb(X7, Wo) = orb(X7, W_,.) = orb(X7, Wo) C Image(g o P) .
Therefore (38) holds for any integer n. 1

Here the proof of Lemma 16 is completed. 1
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6.4 C*-action on (S—D)".
Lemma 20 If A\ € C*, A # 1, then A-action on (S—D)" has no fived points.

Proof. Suppose that there exists A € C* and h € (S—D)” satisfying A - h = h. Then
waj(h) = waj(A-h) = Alwai(h)  (5=1,2,3,4).

By an elementary result of the theory of compact Riemann surface that (wai(h),...,wa(h)) # 0 for
any h € (S—D)". Therefore A =1. 1

Remark. To prove the above lemma, there is another way which doesn’t use the period mapping.
The proof is easy, but a little more complicated than the above proof. So we don’t mention it here.

[

6.5 Fiber of ¢ o P at each point of H.

First we take an element h € (S—D)". For the h, a symplectic basis A;(h) € Hi(X,4),2Z) (j €
{1,...,4}) is obtained. Using {A;(h)}, an isomorphism (10) with ¢ = o(h) is obtained. We denote
the group of automorphisms of X,(;) by Aut(X,()). Any f € Aut(X,()) determines an element M
of Aut(H1(Xo(n),Z),(, )). My is regarded as an element of Sp(4,Z) via (10). The following fact is

an easy corollary of Fact12.

Fact 21 The above homomorphism Aut(X, ) 3 f +— My € Sp(4,Z) is injective. Its image coincides
with stab g, z)(T).

Proof. Omitted. 1
As a preparation of Lemma 23, we prove the following lemma.
Lemma 22 Using the above notations, it satisfies that
floo) =00 <= M;el.

Proof. [=] Suppose that f(oco) = co. Then there exists A € C* satisfying A - o(h) = o(h) such
that, f coincides with an automorphism of X, defined by (z,y) — (A\%z,)\%y). Note that |A| = 1.

Hence A = eV~ for some real u. Then, obviously, M is obtained by monodromy transformation
given by the path [0,1] 3 6 — eV —1ub -o(h) € S—D. Hence My €T

[«<] Suppose that My € I'. Then similar argument as Lemma 4 implies that each [e;, e;] is mapped
by My to [es(i),es(j)] (mod2H(Xy(n),Z)). Therefore, as the proof of Lemma 4, we have

My (i) = f(4) for any 7 € {1,...,6} .

Since My € T', we obtain M;(6) = 6 by Lemma 3 and the following argument. Hence f(6) = 6. This
completes the proof. 1

Since ¢ absorb the C*-action on Image(P), composite map ¢o P induces a map C*\(S-D)" — Hs.
The aim of this subsection is to show the injectivity of the map.

Lemma 23 The map C*\(S—D)* — Hy is injective.

Proof. Suppose that h,h’ are elements of (S—D)" satisfying ¢ o P(h) = wo P(h'). Then there exist
A, A € C* such that

Aio(h)=FopoP(h) and  XN-.o(h)=FoypoP(h)
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are valid. Then, if we denote ¢ o P(h) by 7, we have
a(A-h)=0a(N 1) and  poP(A-h)=¢o P\ -A)=1. (40)
The first equality of (40) implies the existence of M € T satisfying P(A"-h’) = P(A-h)M. Therefore,
(KM™'E~Yor=@(PA-h)M) =P\ -h))=r1.

Hence, by Fact 21 there exist f € Aut(Xa()\,h)) such that M; = M where M; is an element
of Aut(Hy(X,(rn),Z),( , )) induced by f. And using A;(A-h) (j € {1,...,4}) as a basis of
H1(Xo(xh), Z), via (10) with t = o(A-h), M is regarded as an element of Sp(4,Z). Since My = M € T,
Lemma 22 implies that f(oo) = oco. Hence there exists A" € C* satisfying \” - o(A-h) = o(A - h)
such that f coincides with an element of Aut(X,(,.5)) defined by (z,y) — ((A")*z,(A")%y). Therefore,
A - h'is on the C*-orbit of A - h. That is, A’ is on the C*-orbit of A. 1

7 Triviality of the bundle (S-D)" — Hj.

The aim of this section is to prove the triviality of the bundle ¢ : Image(P) — H3, that is, to prove
the Theorem 1 mentioned later. Before proving the theorem, as a preparation, we show some lemmas
as follows.

Lemma 24 Suppose that T is any element of H3 and U is a sufficiently small neighborhood of T in
H}. Then there exist exactly two maps FO . v = (S=D)" (i = 1,2) satisfying

oo FY = Fly and woPoFW =idy .
Proof. Here we use the following well-known facts (cf. [Fre]).

(i) Since Sp(4,Z) acts on Hy discontinuously, for any subgroup G C Sp(4,Z), and for any element
T € Hy, there exists a neighborhood U of 7 in Hy such that

if M € stabg(7), then Mo U = U,

if M € G —stabg(7), then (Mo U)NU = 0. (41)

Moreover, each element 7’ € U satisfies stabg(7') C stabg(7).

(ii) For each 7, stabg,(4,z)(7) is finite set including £1. Moreover, {7 € Hz|stabg,z)(7) # {£1}}
is proper analytic subset of Hj.

Now we take 7 € Hj. Since o is covering map, there exists a neighborhood Up(;) of F(r)in S—D
such that, each connected component of U_I(UF(T)) is isomorphic to Up(;) by o:

U|(the component) ° (the component) — Ugp ;)

Then the conditions of the lemma implies that F, must be the composition (|, )~" o (F|r), where

he o™ (F(r)n(poP)7H(r),

Up is a connected component of 0" (Up(,)) containing h ,

U’ is a neighborhood of 7 in Hj satisfying F(U’) C Up,) - (42)
In this case, moreover, it must satisfy that

Fr(r) € o (F(r) N (g0 P)7(r) (43)

for any 7 € U’. By the way, it can be easily seen from (ii) that for any 7 € Hj, #stabp(r') =
#o7HF(r))N (¢ o P)~L(r) holds, and that {r' € H}|stabr(7') = {£1}} is open dense subset of Hj.
Therefore, if we note (43), for each 7 € H3, there exist at most two local sections F; satisfying the
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conditions of the lemma.From now on, we show that there exists just two local sections F satisfying
the conditions. Suppose U, be a neighborhood of 7 in H satisfying F(U,) C Ur(r) and the condition
(41) with U = U,, G = T. Then we take h, Uy, U’ satisfying (42). Moreover, suppose that U’ C U,
and that

o0 Po(alu,) ™ o (Flu, (1) C U ()
holds. Then by Lemma 7, for each 7/ € U’ there exists M € T' such that
poPol(oly,) o (Flu)r')=Mor. (45)
Then, the conditions

Mort'eMoU CMolU,, and
Mot =poPo (O’|Uh)_1 o(Fly,)(t") € po Po (O’|Uh)_1 o (Fly, ) (U C U,

imply that (MoU,)NU, # @, hence, by (41) with U = U; and G = TI', we conclude that M € stabr(7).

If stabp(7) = {1}, then M = +1, which implies that o Po (o, )"t o(F|u, )(r') = 7'. Therefore,
po Po(a|y,)  o(Fly) = idy.

On the other hand, suppose that stabp(7) # {£I}. In this case we assume moreover that U’ is
connected and that, not only U, but also U’ satisfies the condition (41) with U = U’ and G =T.
Furthermore, we assume that stabp(7’) = {£I}. Since M € stabr(r), then (41) with U = U’ and
G = I implies that

poPo(oly,) to(Flu)r)=Mor e MoU' =U", (46)
that is,
poPo(oly,)™ o (Flu,)(U) C T (47)

holds. Here we denote by M’ an element of I' satisfying M’o(Mo7’) = 7. Note that, since stabr(7') =
{£I}, we have M’ = £M~! ¢ stabp(r). From now on, we write 1) := ¢ o Po (U|M/(Uh))_1 o (Flu)
for short. Then the conditions M’ € stabp(r), (41) with U = U’ and G = T, and (47) imply
YUY C M'oU' = U’ and the conditions (46) and M'o(Mo7') = 7/ imply ¢(7') = M'o(Mot') = 7'.
The following arguments are devoted to proving that v = idyr. We write U” := {7” € U’| stabp(7") =
{x1}} for short. Since we assume that U’ is connected, U” is also connected, open dense subset by (ii).
Therefore, since U’ is Hausdorff space, v : U’ — U’ is continuous, and U” is dense in U’, we have only
to show that ¢|yn» = idyn. Moreover, since 7/ € U”, 1(7') = 7’/ and U"” is connected, we have only to
show that the fixed point set of o|pw: {7" € U"|)(7") = 7"} is open and closed subset of U”. By the
way, since U” is Hausdorff space, and ¢|yn : U” — U" is continuous, the set {7" € U"|y)(r") = 7"} is
closed subset of U”. Therefore, we have only to show that the set {r” € U"|{)(7") = 7"} is open subset
of U”. Suppose 7" € U" satisfies ¥)(7") = 7. Then by the argument in the case stabp(r) = {£I},
there exists a neighborhood U” of 7" in U” such that (7") = 7" for any 7" € U™. Therefore,
{r" € U"|{p(r") = 7"} is open subset of U”. Hence We conclude that ¢ = idyr. 1

(Bl 0
0 D)
I'y(1). Then there exists a permutation i,j,k,l,m of 1,2,3,4,5 such that the following 1,2 hold.

Lemma 25 Suppose that 7 € Hy is diagonal matriz: T = ( , and M is any element of

1 T12

1. For 113 € C satisfying |m12| € 1, we write 7 := ( ) Then we have

T2 T2
a,(MoT)=C+C'rig + C,1i + O(T1)) (v =Fk,l,m)

where C,C",C,Cy, Cy, are independent to 19 and Cy,Cy,C,, are different from each other.
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2. a;(MoT), aj(Mor), C are different from each other.

Proof. First we note that

T T > 22n dn,ﬂs’ el dn,ﬂs' el
’195 ( 1 12 ) = nzz:o (Qn)' dTirlL 1 (Tl) dT272L 2 (T2)T122 = ’19 / l/(Tl)’ﬂEI EII(T2) —|— O(T12) (48)

for e # (1111) and

d"0y  d"Oy, . o

1 T12 T > 22n 3
- ) o) 49
CON ( T ) 2\/_—17;0(2n+1)! drp (") g ()2 2\/— (11)O1(72)T12 + O(712) ,(49)

2

where O1(7) := Poo(7)Y01(7)10(7) for 7 € H. On the other hand, (18), (61), and (23) imply that for
any 7 € Hy, for any M = é g ) € Sp(4,Z) and for any distinct 7,5 € {1,...,5} it satisfies that

ai(Mor)—a;(Mor) = sign(i— j)0ip(M o 7)19”1(11[ o 7)9;,, (M oT)
= ®(M;i,j)det(CT + D)9} 1(”k)79M—1(ij1)79?\/1—1(ijm) )
where {k,l,m} is complement of {7,5} in {1,...,5}, and
®(M;i,j) := sign(i — j)k(M)°
x exp[2my/—1(¢(M, M~ (ijk)) + (M, M~ (ijl)) + (M, M~ (ijm)))] .
Here we note that ®(M;i,j) is non-zero constant, which depends M, 4, j but is independent to 7.
Furthermore, for any M € Sp(4,Z), the function

Hy>7+——det(Cr+ D) e C

is holomorphic, and has no zeros on Hy. Therefore, to prove the lemma, we have only to show that,
for any M € Sp(4,Z), there exists a permutation ¢, j,k,l,m of 1,2,3,4,5 satisfying the following (50),

| (55).

19]2\/1—1(ijk)19]2\/1—1(ijl)192 (ijm)(T(0)) # 0, (50)
D=1 i1) Var=1 i1y Paa—=1 (iam) (T(0)) # 0, (51)
19]2\/[—1(jli)19]2\/1—1(jlk)19]2\/1 1(m)(T(0)) # 0, (52)
19]2\/1—1(kli)19]2\/1—1(klj)19M—1(klm) = Cp.mis + O(113) (53)
19]2\/[—1(kmi)19]2\/[—1(kmj)ﬁ?\/[—l(kml) = Clriy + 0(mi2) (54)
D311 (1miy Pt () =1 by = CTiz + O(712) (55)

where C] ,C],C} are non-zero constants, which depend on 7(,7 but are independent to 75, and

1 0

7(0) := 0 = | Now let us check that those conditions hold for any M € Sp(4,Z). In the
2
following, we write W¥(ry,72) = Q’Tﬁ(ﬂl(rl)(al(rg) for short. Checks are divided into six cases as

follows.
Case 1. Suppose that M(1) = 6. In this case, {M~1(1),...,M~1(5)} = {2,3,4,5,6}. By (48),
(49) it can be easily seen that

193427934579346 = (79017910)2(7'1)19‘110(7'2)‘112(7'1a7'2)7'122 + O(112) »
793,52793,5419%56 = (79017910)2(71)7930(72)‘1’2(71772)7122 + 0(7{12) )
79421521942153 156 = (Yo 11910)2(7-1)1931(7-2)11;2(7-1,7-2)7-122 + 0(7'142) )

’9%637936419365(7'(0)) = 7980(7'1)9%(7'2) )
79%3479 3579236(7'(0)) = 19%4379 4579246(7'(0)) = 79%5379 5479256(7'(0)) = (79 19(2)0)( 1)0 %(7'2) >
7912”621936419365(7-(0)) = 79421621946319465(7-(0)) = 79?6219 6319564(7'(0)) = (’910 00)( 1) %(7'2) .
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Here we note that Poo(7)P01(7)P10(7) # 0 for any 7 € H. Therefore, taking
{k,I,m} = {M(3),M(4),M(5)} and {i,j}={M(2),M(6)},

conditions (50)-(55) are satisfied.
Case 2. Suppose that M(2) = 6. In this case, {M~!(1),...,M~(5)} = {1,3,4,5,6}. By (48),
(49) it can be easily seen that

19%6379 6419165(7'(0)
19%3479 3579136(7(0)) = 79%4319%4519146(7-(0)) = 79%5379 5479156( (0)) = (793079(2)1)(7'1)@%(72) >
7912”611936419365(7-(0)) = 1942161194216319465(7-(0)) = 19?6119 319564( (0)) = (79411019(2)1)(7'1)@%(7'2) .

Therefore, taking {k,I,m} = {M(3),M(4),M(5)} and {i,j} = {M(1),M(6)}, conditions (50)-(55)
are satisfied.

Case 3. Suppose that M(3) = 6. In this case, {M~1(1),...,M~1(5)} = {1,2,4,5,6}. By (48),
(49) it can be easily seen that

79%2419%2519%26 = 79 (7'1)(19007910)2(7'2)‘112(7'177'2)7'122 + 0(7'142) )

79%6219%6419%65 = 1931(7'1)(79007910)2(7'2)‘1’2(7'1a7'2)7'122 + 0(7'142) )

19%6179 265 7930(71)(19007910)2(72)‘1’2(71,72)7122 + 0(7142) )

194511945279456(7'( ) = @%(71)1981(7-2) )

79%4219 4519146(7'(0)) = 19%4119 4519246(7'(0)) = 194216119421621942165(7'(0)) = 0?(71)(19301931)(@) )
79%521915419156(7-(0)) = 19%517925479256(7'(0)) = 19%611926219264(7-(0)) = @%(Tl)(ﬂ%oﬂgl)(72) .

Therefore, taking {k,l,m} = {M(1), M(2), M(6)} and {¢,5} = {M(4),M(5)}, conditions (50)-(55)
are satisfied.

Case 4. Suppose that M(4) = 6. In this case, {M~1(1),...,M~1(5)} = {1,2,3,5,6}. By (48),
(49) it can be easily seen that

19%2379 2579126 = 19‘110(7-1)(19011910)2(7-2)\112( )7'122 + 0(7{12) )

79%6219%6319%65 = 1931(7'1)(79017910)2(7'2)‘112( )7'122 + 0(7'142) )

19%611936319365 = 1930("'1)(79011910)2(7'2)‘112( )7'122 + 0(7'{12) )

19:235179 5279356(7'(0)) = @%(71)1980(7-2) )

Diaq 0 3519136(7'(0)) = 953,93 3519236(7'(0)) = 03’6119%621912365(7-(0)) = 9%(7'1)(19(2)07931)(7'2) )
19%5279 379156(7(0)) = 7935179 379256(7(0)) = 19%6119 279563( (0)) = G%(Tl)(ﬂélloﬁgo)(ﬁ) .

Therefore, taking {k,l,m} = {M(1), M(2), M(6)} and {¢,7} = {M(3),M(5)}, conditions (50)-(55)
are satisfied.

Case 5. Suppose that M(5) = 6. In this case, {M~1(1),...,M~1(5)} = {1,2,3,4,6}. By (48),
(49) it can be easily seen that

19%2319 2479126 = 194110(7'1)(79007901)2(7'2) 2( )7'12 + O( 2) 5

79%6219 319164 = 1981("'1)(79001901)2(7'2) 2( )7'12 + O( 2)

79%611926319264 = 1930(7'1)(79007901) (7'2)‘1’2( 2)7'12 +O( 12) )

793,41793,4279%46(7(0)) = O%(Tl)ﬂ?O(Tﬁ )

79%3219%3419%36(7-(0)) = 19%311933479336(7(0)) = 19?)6119?’)6219%64(7-(0)) = G%(Tl)(ﬂfoﬂgl)(ﬁ) )
19%4219 319146("'(0)) = 19%4 319246("'(0)) = 04216119421621942163(7—(0)) = O%(Tl)(ﬁfoﬁgo)(m) .
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Therefore, taking {k,l,m} = {M(1), M(2), M(6)} and {¢,5} = {M(3),M(4)}, conditions (50)-(55)
are satisfied.
Case 6. Suppose that M(6) = 6. In this case, {M~'(1),...,M~(5)} = {1,2,3,4,5}. By (48),

(49) it can be easily seen that

79%41193,4279%45 = (19001901)2(7-1)79110(72)W2(T17T2)T122 + 0(7{12) ;

79?)5179%52193,54 = (79007901)2(71)7930( )‘1’2(71772)7122 + 0(7142) )

194215119421521942153 = (19001901)2(7'1)1931(7'2)‘1’2(7'177'2)7'122 + 0(7'{12) )

79%2379%2479%25(7(0)) = 19(150(7'1)@%(7'2) >

79%3219%3479%35(7'(0)) = 79%4219%4379%45(7'(0)) = ’9%5219%5319%54(7'(0)) = (793019%0)(7'1)@%(7'2) )

79%317933479335(7(0)) = 79%417934379345(7(0)) = 79%517935379354(7(0)) = (793179%0)(7'1)@%(72) .
Therefore, taking {k,I,m} = {M(3),M(4),M(5)} and {i,5} = {M(1),M(2)}, conditions (50)-(55)
are satisfied. The proof is completed. |

T

[ &)

Theorem 1 There exists a holomorphic map F : Hy — (S—D)" such that
Uoﬁ:F|H; and LpoPoﬁ:ing.

Proof. First we take a local section given in Lemma 24. Then using analytic continuation we
have a section over Hj, which may be multi-valued. Again by Lemma 24, this section is at most
two-valued. In the following we show that the section is in fact single valued. Since Hg is simply
1 0

€ Hy, and M € Sp(4,Z), there
0 T2

connected, it suffices to show that for any diagonal 7 =

exists a neighborhood U of M o7 in Hy such that the local section given in Lemma 24 on neighborhood
of a point of U — A can be analytically continuated to single-valued section on U — A. Here we note
that, for sufficiently small ¢ > 0,

,7_/ ,7_/
Ur(e) 1= { ( Hy )

is a subset of Hq, and it satisfies that

UT(e)ﬂA::{(g/ 3,)

We fix this e. Then M o U;(e) is a neighborhood of M o 7 in Hj, and the equality

!
(MoUs(e))N A := {M 0 ( n 0 )
0 =

TllaT2laT{2 € C? |Tll - T1| <eg, |Té - T2| < e and |T112| < 6}

1,74 €C, |1 — 1| <eand |1y — 1| < e} .

1,74 €C, |1 — 1| <eand |t — | < E} .

!

holds. Here we take 7, € C satisfying 0 < |7{,| < ¢, and denote 7’ := ( ) 7' is an element

!
of U,(e) — A. Note that 71((M o U,(¢)) — A, M o7’) = Z and it is generated by an element having
(0,120 — Mo7'(f) e (MoU,(c))— A (56)
1 2m/—16
as its representative, where 7/(0) := Tl T12€
p ( ) ( T{2627r\/jlﬂ )
that the monodromy transformation given by the path

[0,1] 3 0 — (t2(M 0 7'(8)),...,t5(M o7'(6))) € S—D ,
where t3,...,15 are regarded as functions on Hy by (20), is identity in Aut(H(X:,Z),(, )) where

t=(t2(Mor'),...,t5(M o7’")). This means that, from analytic continuation of the local section FA’](V?OT,

) . By Lemma 25, it can be easily seen

along the path (56), multi-valuedness doesn’t occure. Hence, analytic continuation of FA’]E/?OT, gives a

single-valued section of the bundle (S—D)" ¢oF H3 on (M oU,(¢))— A. Therefore, from F,, the aimed
section [’ is obtained. ]
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8 The factor of automorphy j.

In section 6 we have checked that the monodromy covering (S—D)” is total space of a C*-bundle in
the strict sense. Moreover, Theorem 1 implies that the following isomorphism as C*-bundles:

~

C* x H; = (5-D)*, (A7) X-F(7).

Under this isomorphism, the monodromy group action on (S—D)" induces I'-action on C* x Hj.
The aim of this section is to describe the I'-action. Since the monodromy group action on (S—D)*
commutes to the C*-action on the space, I'-action on C* x Hj also commutes to the C*-action on
C* x H3. Therefore we can apply Diagram-1 to the bundle C* x H3, where X := H3, G :=I'. And
the factor of automorphy j appeared in Diagram-1 is now given to satisfy the following equality:

F(Mor)=j(M,r)-4(F(r)) (reH; M=pH)eT).
Taking the images of both sides of the equality by o, we have
F(Mort)=j(M,r) F(1) (reH},MeT).
Hence
J(M,7)* = x(M)det(CT 4+ D)* = (juor(M,7)det(CT + D))* (€ H;,MeT).
More exactly, the following theorem holds.

Theorem 2 On trivialization of (S—D)" 2ok H3 using the global section F given in the Theorem 1,
the following equality holds:

J(M, 1) = jrio1(M,7)det(Ct + D) (reH;,Mel). (57)

Since p(7v;) (7 = 1,2,3,4) generate I', to prove the theorem needs only to check (57) for the generators.
If M = p(7:), the left hand side of (57) is obtained by investigating the behavior of values of ay,..., a5
when 7 go through a path in H3 with 7 as initial point and p(;) o7 as end point. On the other hand,
the right hand side of (57) is obtained by simple computations using (61). Before proving the theorem,
as a preparation, we give some lemmas.

Lemma 26 Suppose that (eq,...,e5) = (—v/3,—1/v/3,0,1/v/3,/3). Then period matriz given by the

curve X (e) with the basis Ay, Ay, B1, By € Hi(X(e),Z) as in the Figure-1, is % ( ? ; .

Proof. This curve has automorphism ¢ : (z,y) r (M2 =8/-1 ), which induces an automor-

\/g—a? ’ (\/g_x)s y
phism ¢, of Hi(X(e),Z). Using the basis Ay, Ay, By, B, mentioned above, ¢, is expressed as follows:

o o0 -1 -1
0O 0 0 -1
(x(A1), ex(A2), 0x(B1), ¢x(B2)) = (A1, A2, By, Ba) 1 0 0 o0
-1 1 0 0

Since period matrix given from X (e) with Ay, Ay, By, By coincides with the one given from X (e) with
©x( A1), 0x(A2), p«(B1), ¢«(B2). Therefore T satisfies the following equalities.

-1
1 0 1 T12 -1 -1 - (Bl
1 1 T12 T2 0 -1 o T12 T2
-1
0 1 1 T12 0 1 i 1 T12
-1 0 T12 T2 -1 0 o T12 T2 ’

where the second equalityis given by using ¢ o ¢ 0 ¢ instead of ¢. As a solution of the equalities, we

. _ /=1 2 1
obtain that 7 = \/5(1 2). |

oy
()
N——

23



Lemma 27 Suppose that e1,...,e5 € R, e; < --- < e5. And suppose that Ay, Ay, By, By are basis of
Hy(X(e),Z), which are given as in the Figure-1. Then for the period matriz T given from X (e) with
A1, Aq, By, By, all elements 11,72, T2 are in /—1R .

Proof. First note that the period matrix 7 of a compact Riemann surface X with positive genus
¢ depends on the choice of symplectic basis Aq,...,A,, By ..., B, of H1(X,Z), but is independent to
the choice of basis wr, . . .,w, of g-dimentional C-vector space I'( X, Q% ). Here we use y~'(z —e3)'~'dz
(i =1,2) as basis of I'( X (e), Qk(e)), and we denote that n;; := fAJ y~(z—e3) " ldz (1e{1,2}, j€
{1,2,3,4}, Ag = Bl, A4 = BQ) ) then

-1
r= M1 T2 s Th4 _ 1 N22T3 — 2723 N22Th4 — 274
21 722 723 724 T1M22 — N2 1723 — 72113 Th1724 — ThaT21

Since Ay, Ag, By, By are taken as in the Figure-1, the period 77 is an element of Ry. In fact,

€2 dx
=2
m /61 VT — e1\/T — e9\/T — e3\/T — e4/T — €5

where in the above integrand, if e; < z < ey, then /2 —e1 € Ry, Vz —¢€; € V—1IR (for Vj €
{2,3,4,5}). Hence m11 € Ry. Similar argument implies that 712,721,722 € R_, m3 € V/—1R4 and
4,723,724 € —\/—_1R+ = V/—1R_. Therefore n17m22 — mam21 € R_, mams — mams € V—-1R_,
MiM2a — Mano1 € V—1R_ and n9amia — m2mea € V—1R. Therefore 7,75 € /—1R,; and 73 €
V/—1R. Moreover, by theorem of Weil, the element 72 is not equal to zero. Hence (1,72, 712) €

(V-1R3) X (vV=1R4) X (V=1R))I((V-1R4) X (vV—1R4) X (v/=1R_)). On the other hand,

F:={(e1,...,e5) € R’ | e1 < --- < e5} is connected subset of R, and the map

Foer— (Tl,TQ,le) € 03 (58)

is continuous. Therefore, the image of the map is connected subset of C2. By the way, lemma 26
implies that the intersection of (v/—1R4) X (v/—1Ry) X (v/—1R4) and the image of the map (58) is
not empty. Hence, the image of the map (58) is contained in (v/=1R4) X (vV—1R4) x (vV=1Ry). The
proof is completed. |

Lemma 28 Suppose that (g := exp(27y/—1/8). Then

Jnot(p(n),7) =Gy Juor(p(12),7) = V1 -1 — T2+ 2712,
Jno(p(73),7) = (s J1101(p(74),7) = (V1 — T2,

where \/1 — 11 — T3 + 2712 and \/1 — 1o are both lie in the fourth quadrant.

Proof. It can be easily obtained from theorem TFTC that the values of ji101(p(7%),7) for
k = 1,3,4 are as above. So now we have only to show the equality for k¥ = 2. Since p(y2) =
~CotBy=CyTA191Cy~By~C, using (64), we can easily see that the following equality holds.

k(p(72),7) = K(TCotBy CytARYCy By Cy, )
= F{(_CQ, (+B2_C2+A12+02_B2_Cl) 0] T)H(+B2, (_02+A12+C'2_B2_C'1) le] T)
XH(_CQ, (+A12+02_B2_Cl) o} T)H(+A12, (+02_B2_Cl) e} T)
Xk(TCq,(TB27C1) o 7)k("Bg, "Cy o T)k(Cy,T) .
By theorem TFTC, first we have
K}(+B2,(_C'2+4412+CQ_B2_01) o} T) = K/(+4412, (+CQ_B2_CI) 0] T) = K,(_BQ, _Cl 0] T) =1 s
K(TC1,T)=V1—m7 where v/1 — 71 lies in the fourth quadrant.
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Moreover, since

I 1 1 T12
By, ™Cq{ =
S P ( Ti2 Tiy — (1= 71)(1 - 72) ) ’

the inequality \S(M) > 0 holds, and

1—71

2 _ (1 — Tl)(l — TQ)

-
Cy,(TBy~ 14 12
K(*Cy,(TBy™Cr)oT) = ¢+ T

,  which lies in the first quadrant.

Since

1
(+A12+C2_B2_Cl) oOT = (

2 2
T1IT2 — Tig Ti2 — T1T2 + Ti9
2 9
(1—=71)12 + 7,

2
Tig —TiTe +T{y 71+ T2 — 272 —1

the inequality %(%) > 0 holds, and

1T+ 1 —212 -1

(1 -7 + 74

K(TCq, (tA12TCy™ By C) o) = ¢1 — ,  which lies in the fourth quadrant.

Since

- — 1 T T Tk — 7T

(TBy™CoT A1y Cy™ By Cr) ot = 1 12+ Tip — TIT2
2 2 2 )

-1 — 7172+ (T2 + 1) T2+ Tig — T1T2 T2+ T{, — T1T2

the inequality ( T4 7y~ iTa )2) > 0 holds, and

—r1—7172+(T12+1

T2 + 7'122 — T1T2
-1 —7nTe + (112 +1)2

K(Cy, (YBy™Cy A1 Cy™By ™ Cr) o) = ¢1 -

which lies in the fourth quadrant. Especially, if 7 = v/—1, 712 = 0, and |r| < 1, then

(_Cla ),\1 (+027 By Cl 07' = (g

K(TCq, (YA121Cy™ By Ch) o 1) \/ 1 =, Y V-1=¢G"',

_ _ o 1—v-14m7n
Cy,(tBy~Cyt A1, TCy™ By C = =<1/1—+v—=1
Fé( 2,( 2 Lo A1 Lo Do 1)07') ¢1_T1(1+\/_—1)

where /1 — y/—1 lies in the fourth quadrant. Hence, for the 7, we have that x(p(7y2),7) < 1/1 — /=1,
which lies in the fourth quadrant. On the other hand, theorem TFTC implies that x(p(y2),7) =
k(p(72))V/1 + 212 — 71 — T2, where K(p(7y2)) = (§ for some integer n independent to 7, and the value
V1+ 273 — 71 — 72 lies in the forth quadrant. Hence x(p(72)) = 1, and the proof is completed. |

Proof of theorem 2

We denote that p(v,) = ( Ay

C, D, ) for any p € {1,2,3,4}. Moreover, we use the following

notations.

A’[u,t = (1 o t)I-I_ tp(‘)’#) K€ {1727374} , 0511,

a(p,i,§,1) := exp(—=mv/—11/2) det(tC, 7 + 13 (a; (M 0 7)) — (M, 0 7)) |
-3

F(u,t) := exp(—mv/—1t/4) <\/det(tCMT(M) + I)) . F(A]u,t o 7(1)

where in the definition of F(,u,t), the value \/det(tCMT(“) +I)is1ift =0. For p € {1,2,3,4}, ()
is an element of H, which is chosen later to satisfy the following condition.
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Condition 29 For any pairs (1,j) satisfying 1 < i < j <5 and (i,7) # (g, + 1), if t runs trough
[0,1], the following three hold.

1. The value a(p,t,j,t) remains on a neighborhood of the non-zero value a(u,1, j,0).
2. The ratio o(p,p, p + 1,t)/a(p, 1, j,t) remains on a neighborhood of zero.
3. ap, by o+ 1,1) starts a(p, p, p + 1,0) and rotates 1/2-times around zero.

Note that, the C-block and D-block of M, ; are tC, and I, respectively. For any u, F(u, 1) equals
to v, (F(r)) or (=1) - v,(F(r™)). To prove the theorem, we have only to show that F(u,1) =
’)/M(F(T(“‘))) for any p. So now we investigate behaviors of a(y, 1, j,t) and F(u, t) when ¢ run through
[0,1]. For each p € {1,2,3,4}, we take 7(#¥) € H3, by which it is easy to investigate the behavior of
a(u,1,7,t) when the real parameter ¢ runs from 0 to 1. Suppose that, for each p € {1,2,3,4}, all
elements of 7(#) are taken from \/—_1R+. We write 71 = /—1t1, 7o = /—1tq, T12 = \/—1t12 Where 11,
ta, t12 are elements of R.

When p = 1, we take ¢, sufficiently large.

When p = 3, we take ¢y sufficiently large.

To investigate the behavior of a(p,1,7,t), we use the Fourier expansion of the ten theta constants
¥.. The expansion is written as follows:

1 2 2
9. ( )_ eXp[7r /_ ( E/,,_tE/ _I_ o't //)] X Z (_1)Eutnq111+sin1q;2+s;n2T2n1n2+gén1+51n2 :
neZ?

where ¢f := exp[r/—1m2], ¢ = exp[nV/—1mz], " := exp[ry/—171122] for any z € C. That is,

Yoooo(7) = 142 Z fh ‘|'(I2 )+ 2 Z ‘]11f}2 2n1n2_|_ _2”1”2)7

0<n€eZ ni,na=1
s 2 2
ooor(T) = 142 D (qF (=1 ) +2 Y (—1) g (r T
0<n€eZ ny,me=1
s 2
dooro(r) = 142 Y (10 +a5)+2 Y (—D)MaligR e i
0<n€eZ n1,ma=1
s 2 2
190011(7') = 14+2 Z (—l)n(qiﬂ-l—qg?)-l—? Z (_1)n1+n2q?1q;2(r2n1n2 _|_,,,—2n1n2)7
0<n€Z ny,me=1
190100(7_) _ q; Z q7212(n2+1)_|_2 Z q?fq;2(n2+l)(’l'nl(2n2+l)—I-T_n1(2n2+1)) ’
_TL2€Z 0<TL1€Z,0STL2€Z
Jor10(7) = qzi Z q;2(n2+1)+2 Z (_1)7L1qﬁq;2(”2+1)(7‘n1(2n2+1)_I_T—n1(2n2+1)) 7
_7L2€Z 0<n1€Z,0§n2€Z
191000(7_) _ qli Z q?1(n1+1)+2 Z q?1(n1+1)q;g(r(2n1+1)n2 ‘|‘7°_(2n1+1)n2) ’
|1 E€EZ 0<n1€Z,0<n2€Z
Yi001(7) = ‘11% > gt 4o > (—1)m2 g () 25 (G t)ny | = @uatt)nzy |
_7’L1€Z 0<TL1€Z,0<7Z2€Z
,191100(7_) — 2q1 q2 % Z qnl ’I’L1+1 TL (n2+1)(r2n1n2+n1+n2 + T—inng—nl —7L2—1) ,
n1,n2= =0
o0
191111(7_) — _2q1% qé,r% Z (_1)7L1+n2qf1 (n1+1)q7212(n2+1)(,r2n1n2+n1-I-ng _ T—2n1n2—n1—n2—1) .

1,72 =0

Then o;(7) — a;(7) are written as follows.
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a(T) —ai(r) € 64q1%q§r‘1(r+1+(q1,q2))2,
as(r) — ar(r) € 1667 g5 (1+ (a1,)) »
as(r)—an(r) € 1667g7(1+ (a1,0)) ,
as(r)—ai(r) € 4giqir (r+ 1+ (@1,)),
as(r) - az(r) € 166765 (1+ (a1,)) ,
as(r) = ax(r) € 1667gZ(1+ (a1,02)) ,
as(T) —ay(T) € 4‘11%‘]2%7“ (r+1+(q1,92))°,
as(r) = aa(r) € 64g7qir™ (1 =1+ (q1,42))?
as(r) - as(r) € 4qPg2r (1 -1+ (g1,02))" ,
as(17) —aq(t) € 44} q% (1—7‘-|—(q1,q2)) .

On the other hand, to consider the cases u = 2 and 4, we use the Jacobi transform of 7, that is,

o= ( ;1 (:2 ) := Jor = —r~1. For any real, symmetric, 2 X 2 matrix S, the transformation
12 02

g 2 ) is, by theorem TFTC, written as follows:

formula of a; — a; under the action of (

aj(( é ? ) oT)— ai(( é ? ) o7)= —det(c - 3)379J (ijk) (o S)ﬁj (i51) (o S)ﬂg(ijm)(o- —s).(59)

Especially, using the above formula with $ = 0, the differences a; — a; can be written as follows.

ay(t) —ani(r) = —(det0)*33(0)0335(0)05y5(0) € —(deto)® -4 Pé(l + (p1,p2))

05(r) — an(r) = —(det o) Py 5(0)Ps(0) € —(deto)® - 4pf (1 + (p1.p2)

au(7) —an(r) = —(det 0 Was(0)15(0)W3a4(0) € ~(deto)? - 4p3 (1 + (p1,p2))

05(7) —aa(r) = —(det o) #45(0)s(0)as(0) € ~(det0)? -4pF (1 + (p1.p2))

03(7) — aa(r) = —(det o) Pay(0)F(0)04(0) € ~(det 0)? - Gapp3 (1 + (pl,m)) :

ay(r) = az(r) = —(det 0)*W3a5(0)0p3(0)p5(0) € —(det o)’ - 16p1p% (147" 4 (p1,p2))*

05(7) — ax(r) = —(det o) By (0)h4(0)as(0) € ~(det0)® - 16p1pis(1+ 7 + (p1,p2))?

ay(1) —a3(1) = —(deta)’9is5(0)dp3(0)0345(0) € —(det o)’ - 16P1P2%3(1 — s~ 4 (p1,p2))?,

as(1) —az(1) = —(det o) i35(0)0124(0)0345(0) € —(det )’ - 16P1P2%3(1 — s 4 (p1,p2))?
as(T) —aq(1) = —(deta)?Ii34(0)d5(0)0345(0) € —(det o)’ - 64}711)%32(1 — 5724 (p1,p))*,

where p? := exp[ry/—1012], p§ = exp[r\/—1o2z], s* = exp[r\/—1o12z] for any 2 € C. If 7 =

t12 Uiy U
When u = 2 suppose that uy = ug = 1 — uy3(=: u), and u is sufficiently large.
When pu = 4, suppose that u; = —uy9 and that us is sufficiently large.

t t
\/—_1( b 712 ) as above, thencr_\/—l( vt ),Where ur,uy € Ry, w1z € R_.

9 Relation to Siegel modular forms.

It is obvious, but remarkable fact that by the theorem, and by the expressions of ¢; as functions on H3,
the C*-bundle (S—D)" — Hj with T-action is naturally extended to a bundle on Hy with T-action.
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That is, by the theorem, j is naturally regarded as defined not only on H3, but also on Hy. Similarly,
by the definition, functions ¢; on H3 are naturally regarded as holomorphic functions on Hy. Note that
J(M,-) is, as function on Hy, holomorphic and has no zeros on Hy. This means that the C*-bundle
(5—D)" — H3 with T'-action is naturally extended to a bundle on Hy with T'-action.

I' is generated by four elements p(v;) (¢ € {1,...,4}). By (25), (26) and the definition of y in
Lemma 8, it can be easily seen that x(p(7:)) = \/_ for any ¢ € {1,...,4}.

On the other hand, it is well known (cf. [Ig2]) that

O(M o 1) = sign(M)det(CT + D)°O(7) ( for any 7 € Hy, any M € Sp(4,Z)) (60)

where sign(M) = —1 (resp. 1) when the image of M € Sp(4,Z) under the homomorphism b :
Sp(4,Z) — Sg in (68) is odd (resp. even) permutation.

Remark 30 (cf. for example, [Fre]) It is well-known that {T € H9|O(7) = 0} = A = Hy — HJ,
and © has simple zero at each generic point of A.

Since each p(7;) is mapped to (i,7+1) by the homomorphism Sp(4,Z) — Se, it satisfy that y(p(v:))* =
sign(p(7;))(= —1) for any i € {1,...,4}, hence y(M)? = sign(M) for any M € T'. Therefore, we have

J(M,7)* = sign(M)det(CT 4+ D)® - det(C'T + D) for any 7 € Hy, any M € T'.

A Appendix.

A.1 Notation.

Suppose Z,Q, R, C be the sets of integer, rational, real, complex numbers, respectivly. Ry := {z|z €
R,tz > 0}, v—-1Ry := {/—1z|z € R, £2 > 0}. If R = Z,R or C, for any positive integers m, n, we
write

My, o(R) := {M|M is m x n matrix with coeffitients in R}, M,(R):= M, ,(R) .

We denote n X n identity matrix by I,,. We write transpose of matrix M by ‘M. For any positive
integer g, we define

Sp(29,Z) == {M € Mqyy(Z)|MJM = J} where J = ( 1? _019 ) .
9

A B

We usually write M € Sp(2g,Z) as M = ( oD

) where A, B,C, D € My,(Z). Moreover,
H, := {r € M,(C)|r =", S(r) is positive definite} , H:=H,.

For any M = ( é g ) € 5p(29,Z), T€ Hy,and e = (¢' ") = (e} ... ehel ...e)) € Z%9, we define

Mor:=(AT+B)(CT+ D), Moe:=eM ™ +((C'D) (A'B)o) ,

where (C'D)g (resp. (A'B)g) is 1 X g matrix whose i-th element is (¢,7) element of C*'D (resp. A'B)
for each i. Moreover, A := {M o1|M € Sp(4,Z), 7 € Hy, 7 is diagonal matrix}. Hj := Hy— A.
For any positive integers g, n, we define I'y(n) := {M € Sp(2¢,Z)|M — Iy, € Myy(nZ)} . Note that
Iy(1) = Sp(29,2).
Suppose that a group G acts on a set X. Then for any = € X, stabg(z) := {¢ € Glg(z) = z}.
For any positive integer n, S, denotes the n-th symmetric group.
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A.2 Theta constants and their transformation formula.

The aim of this section is to review transformation formula of theta constants according to [R-F].
(Notations are slightly modified.) In this article we use theta constants with characteristics, which is

defined as follows. For any e = (&'e”) = (e]...chef...e))) € Z*9 and 7 € H, we define

1ot

Zexp[n'\/_(n—l— —)ri(n + )—|—27r\/_( : E].

5)
. 2772

If there is no fear of confusion, we write ¥J.(7) as 9. for short.

For M = é g ) € Sp(29,Z), T € Hy, e = (e'¢”) € Z¥, it is well known that the following

equality holds:

Dntoe(M o 7) = k(M) exp(nv/—1¢(M,e))\/det(CT + D). (1) (61)

where
1
&(M,e):= Z{—e’tDBtE’ + 2e"'C B’ — e"'C A%" + 2(e"'D — "'C){A'B)o} . (62)

k(M)? is a constant, which depends on M, but is independent to ¢ and 7. It is known that x(M)® =1
for any M € Sp(2g,Z). Note that, by (61), x(M)\/det(CT + D) has no ambiguity. We write that
K(M, 1) := k(M)\/det(CT + D).

Next we review some property of k. Suppose I, be g X g identity matrix. And suppose F;; be
g X g matrix whose (7,7) element is 1 and all other elements are 0. Then for any 7,5 € {1,...,g} with
1 # 7, we define

t4. . [ Lo F Eii 0 tp . (1 EEi
i 0 1, £ E; ’ v 0 1, ’
I 0 I, —2F; 0
. g - 9 i

Note that TC;=C; = +B;~B; = tA;,~A;; = D? = I,
Fact 31 (cf. [R-F] p89) Sp(2g,Z) is generated by the following g(2g + 3) matrices:
A, B, 0L D (4,5 € {1,...,9),1 # 7).
Fact 32 (cf. [R-F] p90) It satisfy that
k(E4:)% = k(EB)? = k(¥Cy)? =1, K(D;)?=-1. (63)

Fact 33 For any My, M, € Sp(2g,Z), the following equality holds:

K(MyMy,T) = K( My, My o T)k(My,T)(—1)" exp[ry/—1¢( My, My 0 0)] . (64)
where

= %(CatDa)ot[(AB,tBa)o - (_(CltDl)OtBQ + (AltBl)OtA2 + (Azth)o)] , (65)

Ar Dyg
Cr Dy
(M2M1)00 — My o (Myo0). Therefore, [---] is an element of (2Z)? and z is an integer.

My := MMy, M, = ( ) for k € {1,2,3}. Note that [---] in (65) is the right half of
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A.3 More on Sp(4,Z).

In this section we explain the following well-known fact.

Fact 34 There exists a homomorphism b := Sp(4,Z) — Se such that
1 — T9(2) - Sp(4,Z) = Sg — 1 (66)
is exact, where ¢ is natural inclusion.

The isomorphism b is given by an action of Sp(4,Z) over the six odd theta characteristics of genus
two:

OTC := {(0101), (0111), (1011), (1010), (1110), (1101)} . (67)

Since explicit description of the isomorphism is needed in the article, here we show the proof of the
fact according to [Ig2], [Koe].
Proof. We define Sp(4,Z)-action on {0,1}* as

{0,1}* 5 e —— &€ {0,1}* where £ = M o e mod (2Z)*,

for each M € Sp(4,Z). Then OTC is stable under the action. Therefore, if we call the elements of
OTC simply as 1,...,6 as in the order written in (67), each M € Sp(4,Z) is regarded as an element
of Sg. Thus we have a homomorphism

b:Sp(4,Z) — Ss . (68)

Since the images of (13), (37) under the map (68) obviously generate Sg, (68) is surjective. On the
other hand, it can be easily seen that Image(+) C Kernel(b). Therefore (66) with (68) give

Sp(4,Z)/T3(2) — S¢ — 1 (exact).

Then , by the fact that [Sp(4,Z) : T'2(2)] = 720 = #5S¢ (cf. [Koe]), we obtain the exactness of (66).
1

A.4 Coding.

In this section, suppose that g = 2. It is well known (cf. for example [R-F] p22 or [Krz] p336) that
for each even theta characteristic a, there exist three odd theta characteristics p, g, r satisfying

ptg+r=a mod (2Z)* . (69)
Note that, in the above equality,
e p,q,r are different from each other.
e The complement {s,t,u} of {p,q,7} in OTC also satisfy s + ¢ + u = a mod(2Z)*.
e For the a, there is no solution other than {p, ¢,r} and {s,¢,u}.

Therefore, we denote a by symbols pgr or stu: a = pgr = stu. Note that, For any permutation p’, ¢’, 7’
of p, g, r, the equality p'q¢'r’ = pgr holds. For example, since

(0100) (0101) + (1011) 4 (1010) = “17 + “3” 4 “4”

(0111) + (1110) + (1101) = “2” + “5” 4 “6”

we write, as symbols,

(0100) = 134 = 143 = 314 = 341 = 413 = 431 = 256 = 265 = 526 = 562 = 625 = 652 .

30



Those expression for all even theta characteristics are written in the following table.

(0000) = 135 = 246 (0001) = 145 = 236 (0100) = 134 = 256 (1111) = 345 = 126
(0010) = 235 = 146 (0011) = 245 = 136 (0110) = 234 = 156 (70)
(1000) = 124 = 356 (1001) = 123 = 456 (1100) = 125 = 346

As for theta constants, we use these expressions. For example, 9134(7) := Pg100(7), etc.
For any M € Sp(4,Z) and for any z,y,2 € Z*, the equality

Mo(z+y+z)=Moz+Moy+ Moz mod(?Z)4 (71)

holds. We apply this fact to the above notations. For example, M(134) := M o (0100). We note that
M(ijk) = M(i)M(j)M (k) for three distinct ¢,7,k € {1,...,6}.
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