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Abstract

This paper provides a unifying axiomatic account of the interpretation of re-
cursive types that incorporates both domain-theoretic and realizability models as
concrete instances. Our approach is to view such models as full subcategories of
categorical models of intuitionistic set theory. It is shown that the existence of so-
lutions to recursive domain equations depends upon the strength of the set theory.
We observe that the internal set theory of an elementary topos is not strong enough
to guarantee their existence. In contrast, as our first main result, we establish
that solutions to recursive domain equations do exist when the category of sets is a
model of full intuitionistic Zermelo-Fraenkel set theory. We then apply this result
to obtain a denotational interpretation of FPC, a recursively typed lambda-calculus
with call-by-value operational semantics. By exploiting the intuitionistic logic of
the ambient model of intuitionistic set theory, we analyse the relationship between
operational and denotational semantics. We first prove an “internal” computational
adequacy theorem: the model always believes that the operational and denotational
notions of termination agree. This allows us to identify, as our second main result,
a necessary and sufficient condition for genuine “external” computational adequacy
to hold, i.e. for the operational and denotational notions of termination to coincide
in the real world. The condition is formulated as a simple property of the internal
logic, related to the logical notion of 1-consistency. We provide useful sufficient
conditions for establishing that the logical property holds in practice. Finally, we
outline how the methods of the paper may be applied to concrete models of FPC.
In doing so, we obtain computational adequacy results for an extensive range of
realizability and domain-theoretic models.
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1 Introduction

In his work on algebraic compactness, Freyd [9, 10] identified the categorical structure
required to model recursive types. Many examples of algebraically compact categories
are known. Domain theory provides the classical example of the category of ωcpos [3].
More generally, axiomatic domain theory has successfully abstracted the particularities
of domains to provide a host of “neo-classical” models [3, 6]. A very different type of
model is given by game-theoretic semantics [25]. Finally, there are a variety of models
based on realizability [11, 28, 29, 30, 21, 22, 35]. What has been missing hitherto is a
single unifying treatment accounting for the existence of all these types of model. In this
paper, we provide the axiomatic basis for such a treatment. In a follow-up paper [44], we
shall demonstrate how the various types of model are incorporated within our axiomatic
framework.

Categories that model recursive types have nontrivial fixed-point operators and thus,
by a simple argument using classical logic, cannot be full subcategories of the category
of sets. In [38], Dana Scott showed that such categories can nonetheless live as full
subcategories of models of intuitionistic set theory, an observation that led to the sub-
sequent development of synthetic domain theory [36, 14, 28, 46, 22, 40, 35, 27, 7]. In
this paper, we exploit this idea to obtain algebraically compact categories in a uniform
way. Roughly speaking, we start off with a category S of intuitionistic sets that satisfies
one simple axiom, Axiom 1 of Section 2. From any such category S, we extract a full
subcategory of predomains, P ⊂ � S, whose associated category of partial maps, pP,
is algebraically compact.

This approach directly follows [40], where it is shown that a model of the simply-
typed language PCF [32] can be similarly extracted from any elementary topos S, with
natural numbers object, satisfying a stronger Axiom N. The additional goal of the
present paper is to show the algebraic compactness of pP. This is a nontrivial task.

In fact, we immediately encounter a problem. As our first result, Proposition 2.7, we
show that there exists an elementary topos satisfying Axiom N for which the derived
category pP is not algebraically compact. Thus some modification to the above method
of constructing P is necessary in order to interpret recursive types. This is not, at first
sight, surprising. Axiom N is designed merely to guarantee that P models the recursive
definition of functions. Thus there is no a priori reason to expect recursive types to
have interpretations in pP.

However, we identify the difficulty as stemming from a perhaps unexpected source.
The problem is that elementary toposes, although models of intuitionistic higher-order
logic, are not, in general, models of a sufficiently powerful set theory. Thus, instead
of working with an arbitrary elementary topos, we shall require that S have enough
structure to model full Intuitionistic Zermelo-Fraenkel (IZF) set theory, see e.g. [37].
Technically, this is implemented by asking for S to be given as the full subcategory of
small objects in a category C with class(ic) structure and universal object, in the sense
of [41, 43] (developed from [19]). As our first main result, Theorem 1, we prove that,
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with such a category S, the derived category pP is algebraically compact whenever
Axiom 1 holds. Thus, with enough set-theoretic power to back it up, Axiom 1 is, after
all, sufficient for the solution of recursive domain equations.

As an application of Theorem 1, we give an interpretation of FPC, a recursively-typed
λ-calculus with call-by-value operational semantics, in pP. As our second main result,
Theorem 2, we obtain necessary and sufficient conditions for this interpretation to be
computationally adequate, i.e. for the denotational and operational notions of program
termination to agree. Our approach to computational adequacy makes extensive use of
the intuitionistic set theory of the ambient category C. The method of attack is to first
prove an “internal” computational adequacy result: the model always believes itself to
be computationally adequate, Proposition 12.2. Next we identify a logical property that
characterizes the circumstances in which the “internal” belief of computational adequacy
coincides with “external” reality. The logical property is a simple one, closely related
to the proof-theoretic notion of 1-consistency [12, Def. 1.3.6]. We also provide useful
sufficient conditions for verifying that the logical property holds in models that occur in
practice.

Our approach to computational adequacy is based on a similar characterization
of computational adequacy for the simply-typed language PCF in [40]. However, the
present paper extends the results of op. cit. in two significant ways. Firstly, we assume
the weaker Axiom 2 rather than Axiom N, see Section 2. This is important in the
applications of our results in Section 15. Second, the extension of the proof of “internal”
computational adequacy to include recursive types involves a substantial amount of
nontrivial work.

The paper naturally divides into two halves. The first half entirely concerns algebraic
compactness, and is centred around Theorem 1. In Sections 2 and 3 we present the
necessary background material to formulate Theorem 1. The proof of the theorem then
occupies a large chunk of the paper, Sections 4–9. To help orientate the reader, a detailed
outline of the proof structure is given in Section 3.

In the second half of the paper, we address the question of computational adequacy
fror FPC. Section 10 presents a brief overview of the FPC language and its operational
semantics. In Section 11, we apply Theorem 1 to obtain a denotational interpretation
of FPC in pP. The proof of “internal” computational adequacy is given in Sections 12
and 13. Finally, our main computational adequacy result, Theorem 2, is stated and
proved in Section 14.

The main applications of the results of this paper are to establish computational
adequacy for axiomatically given classes of models of FPC, including domain-theoretic
and realizability models. In Section 15, we briefly outline our results in this direction.
Full details will appear in a follow-up paper [44],

The research in the present paper constitutes a development of the techniques of
synthetic domain theory. Nevertheless, our applications to axiomatically given classes
of models demonstrate that our results should be viewed equally much as a contribution
to the field of axiomatic domain theory [9, 10, 39, 4, 3, 5, 6]. It is the author’s view
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that embedding categories of predomains within models of intuitionistic set theory is the
correct approach to obtaining an axiomatic account of domain-theoretic constructions
that applies uniformly across the different types of model. At present, it is the only
known approach.

2 Classes, sets and predomains

As discussed in the introduction, our work will involve both elementary toposes and
also categorical models of Intuitionistic Zermelo-Fraenkel (IZF) set theory [37]. Both
types of model arise as instances of regular categories with class(ic) structure, as defined
in [41, 43]. We briefly recount the main features of this notion, using, as far as posible,
set-theoretic intuition. For the category-theoretic details see op. cit.

In a regular category,1 C, with class structure, the objects are to be thought of as
classes and the morphisms as functions between classes. There is a distinguished full
subcategory, S, of small objects, which is to be thought of as the subcategory of sets.
More generally, there is a distinguished collection of morphisms, the small maps, where
intuitively f : X � Y is small if, for every y in the class Y , its fibre f−1(y), which is a
subclass of the class X, is actually a set. Smallness interacts with the regular structure
on C as follows. If X� � Y is mono and Y is small then X is small, i.e. every subclass
of a set is a set. This expresses the Separation axiom of set theory. Dually, if X �� Y
is epi (n.b. class structure implies that every epi is regular) and X is small then Y is
small, i.e. the image of a function from a set to a class is itself a set. This expresses the
Replacement axiom of set theory. The other important structure on C is that, for every
class X, there is another class PSX the small powerobject of X, which is intuitively the
class of all subsets of X. The object PSX comes with an associated membership relation
�X

� � PSX × X, for which the composite

γX = �X
� � PSX × X

π1� PSX (1)

is a small map. It is also required that if X is small then so is PSX. This expresses the
Powerset axiom of set theory. It follows that the full subcategory S is an elementary
topos. Further, C has finite coproducts and S is closed under finite limits and coproducts
in C. We shall make liberal use of the internal logic of C, which is intuitionistic first-
order logic, with the predicates on X being arbitrary subobjects of X. We write C |= ϕ
to mean that statement ϕ holds in the internal logic of C. The object Ω = PS1 (where
1 is the terminal object in C), which is the subobject classifier in S, is also a subobject
classifier in C. Thus Ω can be thought of as the set of all internal propositions in C.

As we shall make heavy use of indexed families in C, we summarise the legitimate
constructions on them in the context of class structure. As usual, we consider I-indexed

1A regular category is a category with finite limits in which every morphism has a stable factorization
as a regular epi followed by a mono.
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families as being given by morphisms X � I, although we shall often use the conve-
nient notation {Xi}i : I for them. Given such an internal family X � I, the object X
itself provides a dependent sum

∑
i : I Xi. However, a dependent product

∏
i : I Xi is only

guaranteed to exist in the case that I is a small object. If, in addition to I being small,
X � I is a small map then

∏
i : I Xi is itself a small object. In the case of a constant

family {X}y : Y (given by a projection X ×Y � Y ), dependent product specialises to
function space. Thus the above remarks imply that the internal function space Y X (for
which we also write X → Y ) exists whenever X is a small object, and that Y X is itself
small if both X and Y are small.

An important fact about the class structure is that it is preserved by slicing, i.e. for
every object I of C, the slice category C/I also has class structure, see [41, Theorem 2]
In practical terms, this means we can often derive a parametrized version of a result,
with a free parameter in I, from an unparametrized external result about C.

Henceforth in this paper, let C be a regular category with class structure, and let
S be its full subcategory of small objects. We also assume that C has a small natural
numbers object (nno) N. This implements the Infinity axiom of set theory. Further,
we assume that all the assumed structure is specified, i.e. we have chosen finite limits,
chosen image factorizations, etc. Henceforth whenever we impose additional structure
on C we again assume, without further comment, that the structure is specified.

In spite of the motivating references to set theory, the assumed structure on C and S
does not yet provide the full power of IZF set theory. For example, given any elementary
topos with nno, S, one can obtain class structure by putting C = S and stipulating that
every map be small. At present, the two-tiered structure serves only to allow the topos
S to live within the environs of a possibly larger surrounding universe of classes. This
facility will play a crucial rôle from Section 3 onwards, but it is introduced at this stage
merely to permit a unified presentation of the material.

Before starting on the technical work proper, we summarize a few stylistic and
notational conventions that we use. The results in the paper include external results
about the category C (and derivatives of it) and internal results derived within the
internal logic of C. We try to be as clear as possible about where the divisions between
external and internal reasoning lie, but at the same time we try to avoid being overly
pedantic. The problem of maintaining a rigorous, though readable, separation between
internal and external reasoning is a thorny one, especially in a paper of this length. It is
to be hoped that the following conventions are sufficient to help the reader through the
paper. When reasoning internally, we write x :X in order to identify an object X as the
type of an expression x. On the other hand, we write x ∈ X ′ if X ′ is understood as being
a subobject X ′� � X where x :X and x lies within the subobject. We also write x ∈ y
if x :X and y :PSX and (y, x) lies in the subobject �X

� � PSX×X. We make various
notational distinctions between external structure and internal structure, e.g. L is an
external functor on C, whereas, in Section 9, L is the corresponding internal functor on
an internal category. Similarly, we write f : X � Y for a morphism in the category
C, and we write f : Y X (and f : X → Y ) to type f internally as an element of the object
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Y X . However, the reader should be warned that, we use these conventions quite flexibly.
In particular, we often, e.g., work with some assumed i : I and then continue to use the
notation for external structure. Formally, this should be understood as moving to the
slice category C/I and referring to external structure on that category.

The remaining goal of this section is to isolate a full subcategory of S to act as
a category of predomains. This will require imposing further axioms on C. Many
axiomatizations have been suggested for this purpose, see e.g. [36, 14, 28, 46, 22, 40,
35, 27]. Here, we follow [22, 40].

As first proposed in [36], the definition of predomain is predicated on a notion of
partiality. To implement this, we require a distinguished subobject Σ� � Ω. As
Σ is a subobject of Ω, it classifies a collection of subobjects in C, namely those whose
characteristic map to Ω factors through Σ� � Ω. We call such subobjects Σ-subobjects,
and we write (X �p) for the Σ-subobject (X �p)� � X determined by p : X � Σ.

Intuitively, the object Σ is intended to correspond to the subobject of those propo-
sitions in Ω that express the termination of programs. Because there exist terminating
programs, and because programs can be run under sequential composition, it makes
sense to require that Σ contains the true proposition, �, and that Σ-subobjects are
closed under composition. This implies, in particular, that Σ is closed under finite con-
junction in Ω. Taken together, these requirements state that Σ is a dominance in the
sense of [36].

The dominance Σ determines a lifting functor on C. For an object X, we say
(internally in C) that e :PSX is subterminal if

∀x, x′ : X. x ∈ e ∧ x′ ∈ e → x = x′.

We say that e is Σ-subterminal if it is subterminal and also

(∃x :X. x ∈ e) ∈ Σ,

i.e. the proposition stating that e is inhabited is a Σ-proposition. Using the internal
logic of C, define

LX = {e :PSX | e is Σ-subterminal}.
The L operation extends to a functor L : C → C, where, on f : X � Y , the morphism
action Lf : LX � LY is defined by

(Lf)(e) = {f(x) | x ∈ e}.

Further, the endofuctor L carries a monad structure. The unit is singleton {·} :
X � LX, and the multiplication is union

⋃
: LLX � LX.

As in [18], the endofunctor L has a final coalgebra, τ : F � LF (necessarily an
isomorphism), defined by:

F = {c : ΣN | ∀n :N. c(n + 1) → c(n)}
τ(c) = {(n �→ c(n + 1)) | c(0)}.
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Because F is small and the L functor preserves subset inclusions, there exists a smallest
subalgebra, σ : LI � I, of τ−1, defined internally in C as the intersection of all
subalgebras of τ−1. It is a consequence of [41, Theorem 5] that σ : LI � I is an initial
algebra for the endofunctor L on C. By construction, the unique algebra homomorphism,
ι : I � F, from σ to τ−1 is mono. It is not epi (unless C is inconsistent), because
∞ = (n �→ �) is a point in F that is not in the image of ι. Henceforth, we shall
ignore the explicit constructions of I and F given above, and instead work purely with
their universal properties as (carriers of) the initial L-algebra and final L-coalgebra
respectively.

One can view I as the object obtained from the initial object 0 by freely iterating the
L functor. In the sequel, I will play the rôle of a generic “ω-chain” in C, and I� � F
will exhibits F as its “chain-completion”. This intuition plays a fundamental rôle in
developing a basic notion of “chain completeness” used to define a full subcategory
of predomains within S, see [22]. On the other hand, one must be careful with this
intuition, as we do not (yet) have axioms that ensure that I is even inhabited.

Proposition 2.1 For any object X, the following are equivalent.

1. The map Xι : XF � XI is an isomorphism.

2. C |= ∀f : XI. ∃!f ′ : XF. ∀i : I. f(i) = f ′(ι(i)).

Definition 2.2 (Complete object) An object X is said to be complete if either of
the equivalent conditions of Proposition 2.1 hold.

Examples in [27] show that complete objects do not themselves form a suitable category
of predomains as they are not necessarily closed under lifting. Following [22], we avoid
this problem usng the property of well-completeness.

Definition 2.3 (Well-complete object) An object X is well-complete if LX is com-
plete.

The results below, which are standard, state the basic properties of well-completeness.
In them, we write 2 for the object 1 + 1, which we view as a subobject of Ω via
[⊥,�] : 2� � Ω, where ⊥ is falsum. We sometimes refer to 2 as the object of logi-
cally decidable propositions, because for any proposition p we have p ∈ 2 if and only if
C |= p ∨ ¬p.

Proposition 2.4

1. If 2 is well-complete then so are 1 and 0.

2. If N is well-complete then so is 2.

The converse implications do not hold in general, see [27].
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Proposition 2.5 If 1 is well-complete then:

1. X is well-complete if and only if

C |= ∀p : ΣF. ∀f : X(I�p◦ι). ∃ !f ′ :X(F�p). ∀i : (I�p ◦ ι). f ′(ι(i)) = f(i).

2. X well-complete implies X complete.

3. X well-complete implies LX well-complete.

4. For any internal family {Xi}i : I with I small,

C |= (∀i : I. Xi is well-complete) → (
∏
i : I

Xi) is well-complete.

Two special cases:

If X, Y are well-complete then so is X × Y .

If X is small and Y is well-complete then Y X is well-complete.

5. Given two morphisms f, g : X � Y with X, Y well-complete then, for any equal-
izer e : E� � X of f and g, the object E is well-complete.

6. For any internal family {Xi
� � X}i : I of subobjects of a well-complete object X,

let (
⋂

i : I Xi)� � X be the intersection. Then:

C |= (∀i : I. Xi well-complete) → (
⋂
i : I

Xi) well-complete.

7. Given a subobject X ′� � X and f : Y � X where X, X ′ and Y are all
well-complete, then f−1X ′ is well-complete, where

f−1X ′ = {y : Y | f(y) ∈ X ′} .

8. 0 is well-complete if and only if ⊥ ∈ Σ.

9. 2 is well-complete if and only if X, Y well-complete implies X + Y well-complete.

10. N is well-complete if and only if 2 is well-complete and also

C |= ∀P : 2N. (∃n :N. P (n)) ∈ Σ .

The proofs of statements (1)–(5) and (9) are routine, and essentially contained in,
e.g., [22, 35, 7]. Statements (4) and (6) make use of the fact that well-completeness
can be expressed in the internal logic of C, e.g. using (1). Statements (6) and (7) follow
easily from (4) and (5). Proofs of (8) and (10) are given in [40].
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Definition 2.6 (Predomain) A predomain is small well-complete object.

We write P for the full subcategory of predomains. Thus we have full subcategory in-
clusions P ⊂ � S ⊂ � C. For P to be well behaved, we need axioms to ensure that
basic objects are predomains. As all the obects we consider for this purpose are already
small, the axioms are formulated in terms of well-completeness alone. We use a single
format for all axioms.

Axiom X The object X is well-complete.

In this paper, we shall instantiate this format in three instances only: Axiom 1, which,
by Proposition 2.5(4), implies that P is cartesian closed; Axiom 2 which, by Propo-
sition 2.5(9), implies that, P has finite coproducts (inherited from C); and Axiom N
which implies that P has all the structure required by a model of PCF, see [40]. The
implications between these three axioms are given by Proposition 2.4.

It is worth remarking that one consequence of Axiom 1 is that the implication
(∀p : Ω. p ∨ ¬p) → Σ = {�} holds in C. Axiom 1 is, in fact, consistent with C being a
model of classical set theory, but only if the dominance is trivial. Thus, if Axiom 1 holds
and ⊥ ∈ Σ then the internal logic of C has to be non-classical (if it is consistent). Other
consequences of Axiom 1 are: Σ is well-complete, by Proposition 2.5(3) because Σ ∼= L1;
and any Σ-subobject of a well-complete object is well-complete, by Proposition 2.5(5).

Our goal, in this paper, is to address the interpretation of recursive types in P.
This requires that recursive domain equations have solutions up to isomorphism in an
associated category pP of partial maps, which we now define.

For objects X, Y of C, a Σ-partial map is a partial map from X to Y whose domain
X ′� � X is a Σ-subobject of X. Because Σ is a dominance, Σ-partial maps are closed
under composition. As the only partial maps we are interested in are Σ-partial, we
henceforth drop the Σ. We write pC for the category of partial maps between objects of
C, and we write pP for the full subcateory of pC on predomains. We write f : X ⇀ Y
for a partial map from X to Y .

For later convenience, it is useful to establish notation for dealing with possibly
undefined mathematical expressions resulting from the application of partial maps. We
write e ↓ to mean that such an expression is defined. We use equality, =, between
possibly undefined expressions for strict equality, i.e. e = e′ means that both e and e′

are defined and they are equal. We also write � for Kleene equality, i.e. e � e′ means
that whenever either of e or e′ is defined then so is the other and e = e′. We write
X ⇀ Y for the object of partial maps from X to Y , which is easily defined in the
internal logic. The object X ⇀ Y is isomorphic to the exponential (LY )X . Thus, by
Proposition 2.5(4), if Axiom 1 holds then, for X small and Y a predomain, X ⇀ Y is
a predomain.

The first new result of this paper shows that, in the context of the assumed structure
on C, Axiom N is not sufficient to allow recursive domain equations to be solved in pP.
The statement makes use of the fact, already discussed, that any elementary topos S
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arises as the full subcategory of small objects in a category with class structure, by
taking C = S.

Proposition 2.7 There is an elementary topos satisfying Axiom N in which there exists
a predomain Υ such that no solution X to the isomorphism X ∼= X ⇀ Υ exists in pP.

PROOF (Outline). Let ω be the set of ordinals ≤ ω, with their usual ordering endowed
with the Scott topology. The Grothendieck topos H, from [7], is the topos of sheaves
over the canonical Grothendieck topology on the monoid of continuous endofunctions on
ω. Let H�ω be the full subcategory of H on those sheaves A for which the set A(ω) has
cardinality strictly less than �ω (where �0 = ℵ0, �i+1 = 2�i and �ω = supi<ω �i). This
is an elementary topos with nno. As in [7], the category ωcpo�ω

of ω-cpos of cardinality
< �ω fully embeds in H�ω by a functor y : ωcpo�ω

→ H�ω . Define Σ = y(S), where
S is Sierpinski space. Then, as in [7], Axiom N is satisfied. Moreover, writing P�ω for
the full subcategory of predomains in H�ω , we have that y factors through the inclusion
P�ω → H�ω (cf. [7]). Finally, define Υ = y(Z) where Z is the ωcpo (the well-known
countably-based L-domain that is not bifinite) drawn in [47, Example 9.6.15(c)]. The
Σ-partial-function space ⇀ coincides with the ω-continuous partial-function space on
objects of ωcpo�ω

in P�ω . Now suppose that a solution X to X ∼= X ⇀ Υ exists in
pP�ω

. Let D0 = y(0), where 0 is the empty ω-cpo. Then D0 is a zero object in pP�ω
.

Define a sequence of predomains by Di+1 = Di ⇀ Υ. Then, by induction, Di is a retract
of Di+1 in P�ω and each Di is also a retract of X (using the iso X ∼= X ⇀ Υ). However,
analogously to [47, Example 9.6.15(c)]), for each Di, the set Di+2(ω) has cardinality at
least �i. As there is a monomorphism from each Di to X, the set X(ω) must have
cardinality at least �ω, but this contradicts X being an object of H�ω . Thus no such
object X exists. �

The above counterexample is not as strong as one would like, as one can in fact show
that every closed FPC type (see Section 10) does have a solution in pP�ω

. Indeed, P�ω

includes the category of countably-based bifinite domains. What the example above
does show, is that the open type µX. (X ⇀ Y ), cannot be interpreted parametrically
in Y , and hence does not give an endofuctor on pP�ω

. This suggests that one might,
in general, restrict the notion of predomain to give a smaller better behaved category.
However, this does not appear to be the way to proceed at the level of generality we
are working at. Indeed, we conjecture that there exist elementary toposes satisfying
Axiom N, for which even closed FPC types have no interpretation in pP.

3 Algebraic compactness

As indicated in the introduction, we address the interpretation of recursive types by
strengthening the assumptions on our ambient category of classes C. A universal object
is an object U such that, for every object X, there exists a mono X� � U . Thus U
can be thought of as an object that collects the elements of all classes together within
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one universal class. In set-theoretic terms, U is simply the class of all sets (and atoms if
permitted). In [41, 43] it is shown how the existence of a universal object implies that C
contains an internal model of IZF set theory (with Replacement rather than Collection).

Henceforth we require that C have a universal object. For the purposes of this paper,
a vital consequence of the universal object is that the categories S, P and pP all live as
internal categories within C. In fact, the need to obtain S as the externalization of an
internal category was one of the main motivations for the development of [41, 43]. This
property does not hold for the categories of classes axiomatized in [19].

As usual, an internal category, K, in C is given by an object (i.e. a class), |K|,
of K-objects, and an internal family, {K(A, B)}A,B : |K|, of K-morphisms indexed by do-
main and codomain, satisfying the expected axioms for identities and composition, see
e.g. [17]. We say that an internal category K in C is locally small if the internal family

{K(A, B)}A,B : |K| � |K| × |K|

is a small map in C. It is small if, in addition, |K| is small. As expected, small implies
locally small, but not vice versa.

As the definitions above suggest, class structure provides a good framework for
addressing size issues in internal categories. For example, we call an internal category K
small-complete if there is a map limK : DiagramsK � ConesK in C, where DiagramsK
is the class of all small diagrams in K and ConesK is the class of all small cones, and
limK maps each small diagram to a limiting cone for it. N.b. K is not required to be
small.

An internal functor, F , from an internal category K to another L is given by a
morphism

F : |K| � |L|,
expressing the action on objects, together with a family of maps

{FA,B : K(A, B) � L(FA, FB)}A,B : |K|

that preserve identities and composition, again see [17].
We briefly exhibit S as an internal category in C, before turning attention to P and

pP, which are the categories of interest to us. The internal category S is defined by

|S| = PSU S(A, B) = BA,

where the family {BA}A,B :PSU is formally defined as an exponential of small objects
in the slice category C/(PSU × PSU). Identities and composition are defined in the
obvious way. By the remarks on smallness and indexed products in Section 2, S is a
small-complete locally small internal category in C. N.b. it is not a small internal
category as neither |S| nor

∑
A,B : |S| B

A is small.
We next justify the claim that the internal category S is an “internalization” of

the external category S within C. This result is a consequence of dependent products
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∏
i : I Xi existing for small I, together with PSU being the carrier of a “generic” small

map in C. Specifically, any map g : I � PSX in C is realized as an internal family
f : X � I, with f small, by taking the pullback below, where γU is as in (1).

X � �U

I

f

�

g
� PSU

γU

�

(2)

Conversely, it is shown in [41, Theorem 8] that, for any small map f : X � I in
C, there exists a canonical (though not unique) g : I � PSU fitting into a pullback
diagram of the form above. In other words, any I-indexed family of small sets in C
determines a corresponding map I � |S|, and vice versa.

The above correpondence is more properly expressed using the theory of fibrations.
Define a fibration Fam(S) → C as follows. The objects of Fam(S) are the small maps
in C. The morphisms between small maps are just those of the arrow category C→.
Then the codomain functor Fam(S) → C is a fibration (it is the full subfibration of the
codomain fibration C→ � C on those objects of C→ that are small maps). Observe
that the fibre over 1 is isomorphic to S itself. Recall, from [17, §7.3], the definition of
the externalization of an internal category K in C as a split fibration Ext(K) → C.2

Proposition 3.1 The fibration Fam(S) → C is equivalent to the externalization,
Ext(S) → C, of the internal category S.

This is a consequence of the discussion in the previous paragraph.
We next construe both P and pP as internal categories P and pP respectively. First

we define P by

|P| = {A : PS U | A is well-complete} P(A, B) = BA .

Thus P is an internal full subcategory of S, and hence locally small. The internal
category pP is defined by

|pP| = |P| pP(A, B) = A ⇀ B ,

with the obvious identities and composition. Again, pP is locally small (because
A ⇀ B ∼= (LB)A).

Again, we demonstrate that these are reasonable definitions, by exhibiting the ex-
ternalizations of P and pP. Define Fam(P) to be the full subcategory of Fam(S) whose
objects are those small maps X � I in C satisfying

C |= ∀i : I. Xi is a predomain.
2Warning: our notation differs from [17], where Fam(K) is used for the externalization of K. In our

case, Fam(S) → C is not in general a split fibration.
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Define Fam(pP) to have the same objects as Fam(P), but with a morphism from
X � I to Y � J given by a morphism f : I � J together with an I-indexed
family of partial maps {gi :Xi ⇀ Yf(i)}i : I . Identities and composition are obvious. The
codomain functors Fam(P) → C and Fam(pP) → C are both fibrations. The result
below is a consequence of Proposition 3.1.

Proposition 3.2

1. The fibration Fam(P) → C is equivalent to Ext(P) → C.

2. The fibration Fam(pP) → C is equivalent to Ext(pP) → C.

By the proposition above, fibred structure on P and pP lifts to internal structure on
the internal categories P and pP. For example, assuming Axiom 1, the L-monad on P
determines an internal monad (L, {·},

⋃
) on P. Also, Proposition 2.5 can be interpreted

as an internal proposition about the internal category pP. Statements (4) and (5) of the
proposition together imply that, in the presence of Axiom 1, it holds that the internal
category P is small-complete, with limits inherited from S. The internal category pP is
not small-complete. Nevertheless, one can derive internal functors:

pP × pP
×� pP (3)

pPop × pP
⇀� pP (4)

pP × pP
+� pP , (5)

where (4) requires Axiom 1, and (5) requires Axiom 2. N.b. although × extends product
on P, it is a monoidal rather than cartesian product on pP; whereas + is a genuine binary
coproduct functor on pP.

Our goal is to prove the algebraic compactness, in the sense of Freyd [9, 10], of the
internal category pP. We recall this notion for ordinary categories. Given an endofunctor
F on an arbitrary category K, a bifree algebra is an initial F -algebra a : FA � A for
which a−1 is also a final F -coalgebra (by Lambek’s Lemma, an initial algebra is always
an isomorphism). A category K is said to be algebraically compact if every endofunctor
on it has a bifree algebra. See [9, 10] for further details.

The correct formulation of algebraic compactness for an internal category K in C
is slightly subtle because there need not be any object of all K-endofunctors in C to
allow an internal universal quantification. Instead, we make an external quantification
over internal families of internal functors. Technically, this ensures that the definition
is stable under the formation of slice categories of C. This property is indispensable as
it allows one to derive parametrized algebraic compactness in the sense of [3].

Given internal categories K and L in C, and an object I of C, an I-indexed family
of internal functors from K to L is given by a pair of maps

I × |K| � |L|
I × {K(A, B)}A,B : |K| � {L(A′, B′)}A′,B′ : |L|
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satisfying the obvious properties. (Equivalently, an I-indexed family of internal functors
is just an internal functor from K to L when lifted to internal categories in the slice
category C/I.) We use the convenient notation {Fi : K → L}i : I for an I-indexed family
of functors.

Definition 3.3 (Algebraic compactness) An internal category K is said to be alge-
braically compact if, for every internal family {Fi : K → K}i : I in C of internal endofunc-
tors, there exists a morphism A(−) : I � |K|, and a family {ai : K(FiAi, Ai)}i : I such
that

C |= ∀i : I. ai is a bifree Fi-algebra.

Moreover, the above data must be preserved by reindexing: i.e., for f : J � I in C, let
B(−) : J � |K| and {bj : K(Ff(j)Bj , Bj)}j : J be determined, as above, by the J-indexed
family {Ff(j) : K → K}j : J , then it must hold that B(−) = A(−) ◦ f and b(−) = a(−) ◦ f .

Proposition 3.4 (Parametrized algebraic compactness) Suppose that K and L are
internal categories with K algebraically compact, and suppose that F : L × K → K
is an internal functor. Viewing F as indexed over |L|, let A(−) : |L| � |K| and
{aB : K(F (B, AB), AB)}B : |L| be the data given by algebraic compactness. Then there
exists a unique internal functor F † : L → K such that F †B = AB and aB : F (B, F †B) ∼=
F †B is natural in B.

Proposition 3.5 If K, L and L′ are internal categories, with K algebraically compact,
and F : L′ × K → K and G : L → L′ are internal functors, then it holds that

(F ◦ (G × IdK))† = F † ◦ G : L → K.

Proposition 3.4 is self proving. Proposition 3.5, which establishes an equality between
functors, follows directly from the construction of F †.

We briefly pause to consider the external meaning of the algebraic compactness of
an internal category. Recall, from [17, Proposition 7.3.8], that the internal endofunctors
on an internal category K are in one-to-one correspondence with fibred endofunctors
on its externalization Ext(K) → C. Thus, if the internal category K is algebraically
compact then every fibred endofunctor on the externalization Ext(K) → C has a fibred
bifree algebra (i.e. it has a bifree algebra, and this is preserved by reindexing). However,
Definition 3.3 is stronger than this property. It is equivalent to: every fibred endofunctor
on every slice of the fibration Ext(K) → C has a specified bifree algebra; and specified
bifree algebras are strictly preserved by reindexing. One can imagine possible weaker
definitions with the strictness requirement relaxed. Nonetheless, strictness is useful in
practice (for example, to obtain the equality in Proposition 3.5). Moreover, we are
indeed able to achieve the full requirements of Definition 3.3 in the first main result of
the paper, which we now state.

Theorem 1 If Axiom 1 holds then pP is algebraically compact.
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By Proposition 3.2 and the remarks above, this theorem implies the fibred algebraic
compactness of every slice fibration of Fam(pP) → C.

The proof of Theorem 1 occupies Sections 4–9. The strategy is to establish a version
of the limit-colimit coincidence of classical domain theory (see, e.g. [45]), and apply
it to pP. However, a major complication arises. In many models of our setting, the
limit-colimit coincidence is false if formulated using diagrams indexed by the natural
numbers N, see [27] for a counterexample. We solve this problem by developing a
nontrivial variant, under which diagrams are indexed by the carrier I of the initial-
algebra structure for L.

First, in Section 4, we develop a theory of strict maps between pointed objects, using
algebras of the L-monad. Crucial to the proof of Theorem 1 is the identification of a
novel notion of (multi)strict dependent family. The major part of Section 4 is devoted
to establishing the basic properties of such families.

Next, in Section 5, we develop two basic operations: a “minimum” map min :
I × I � I, which provides a semilattice structure on I; and a “limit-finding” map⊔

: XI � X, for any complete object X. With these at our disposal, we formulate
and prove our version of the limit-colimit coincidence in Section 6.

In Section 7, we apply the limit-colimit coincidence to show that any suitable internal
category K is algebraically compact. An important aspect of suitability is that the class
of objects |K| and the hom-classes K(A, B) must all be pointed. This allows I-indexed
diagrams, of the form required by the limit-colimit coincidence, to be constructed, using
the initial algebra property of I, and making essential use of the properties of strict de-
pendent families developed in Section 4. The required bifree algebras are then obtained
as bilimits of the constructed diagrams. Section 8 establishes various well-behavedness
properties of this method of constructing bifree algebras.

Finally, in Section 9, we show that pP is indeed a suitable category and hence
algebraically compact. This concludes the proof of Theorem 1.

It is worth contrasting Theorem 1 and Proposition 2.7. Using Freyd’s reduction of
recursive types to algebraic compactness [9, 3], Theorem 1 does guarantee that, for any
predomain Y , a solution X to X ∼= X ⇀ Y exists in pP. Indeed, one can solve arbitrary
recursive domain equations in pP. In the light of Proposition 2.7, we emphasise the
consequences of a universal object that enable this result to be established. Firstly, the
universal object allows pP be viewed as an internal category. Secondly, and crucially,
the initial-algebra property of I holds in the category of classes, and hence is applicable
to the object |pP|. When carried out in the internal set theory of a category of classes
with universal object, the proof that the initial-algebra property holds uses the full
IZF axioms of Replacement and Separation. These two principles together are not
compatible with the category of sets being an arbitrary elementary topos. Put in more
technical terms, it is not possible to embed an arbitrary elementary topos as the full
subcategory of small objects in a category of classes with universal object. Indeed, the
counterexample used to prove Proposition 2.7 is one elementary topos that has no such
embedding.
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Although in this paper we use models of IZF set theory to achieve algebraic com-
pactness, many other set theories and type theories appear rich enough to carry out
the proofs in this paper. One such theory is the Extended Calculus of Constructions
(ECC) [23], as used, for example, in [35]. However, it appears that one does not need
the full impredicativity of ECC. In fact, it seems likely that, with appropriate reformu-
lations, the development of this paper could be carried out in the (predicative) context
of Martin-Löf’s Type Theory [26], making crucial use of universes and so-called “large”
elimination rules for inductive types (in particular I). Similarly, it appears that a pred-
icative set theory could be used rather than IZF, for example, Aczel’s CZF [1]. Such
possibilities suggest that it is the conceptual strength of IZF that we are exploiting in
this paper, rather than its proof-theoretic strength.

Nevertheless, there are two reasons for being content with the formulation in this
paper. Firstly, the categorical description of the models, given by the axioms for class
structure [41, 43], is very simple. Secondly, and more importantly, the theory, as pre-
sented here, is sufficiently general to incorporate an extensive range of domain-theoretic
and realizability models, see Section 15.

4 Pointed objects and multistrict maps

As crucial preparation for the proof of Theorem 1, we use the lifting monad to implement
a notion of pointed object, and of strict map between pointed objects. For us, a pointed
object (X, α) is simply an Eilenberg-Moore algebra for the monad (L, {·},

⋃
). In other

words, α : LX � X must satisfy the unit and multiplication laws:

α({x}) = x for all x :X, (6)

α(
⋃

E) = α({α(e) | e ∈ E}) for all E : L2X. (7)

If ⊥ ∈ Σ then one can think of α(∅) as the identified “point” of X, but the notion
of pointed object also makes sense without the assumption that ⊥ ∈ Σ. A strict map
h : (X, α) � (Y, β) between pointed objects is simply an algebra homorphism, i.e. a
morphism h : X � Y such that h ◦ α = β ◦ Lh, which is equivalently stated as:

h(α(e)) = β({h(x) | x ∈ e}) for all e : LX.

Thus the category of ponted objects and strict maps is just the Eilenberg-Moore category
for the L monad on C. In the sequel, we make free use of limits of pointed objects,
which are created by the forgetful functor to C. Sometimes we suppress the pointed
structure, writing X instead of (X, α), when it is clear from the context.

Equation (7) above equivalently says that α is a strict map from (LX,
⋃

), which is
always pointed, to (X, α). The proposition below shows that strict maps between lifted
objects (with pointed structure

⋃
) have a natural characterization, which to some extent

justifies the “pointed” and “strict” terminologies. In the statement of this proposition,
and henceforth, we write e↓ for the Σ-property ∃x :X. x ∈ e, for e : LX.
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Proposition 4.1 The following are equivalent for any map f : LX � LY .

1. f is strict.

2. C |= ∀e : LX. f(e)↓ → e↓.

PROOF. To show (1) implies (2), suppose f is strict, i.e for all E : L2X, we have
f(

⋃
E) =

⋃
{f(e) | e ∈ E}. Take any e : LX, and suppose f(e) ↓, i.e. there f(e) = {y}

for some y : Y . We must show that e↓. Note that {e} and {e | e↓} are both elements of
L2X, with

⋃
{e} =

⋃
{e | e↓}. Thus we have:

{y} =
⋃

{f(e)}

= f(
⋃

{e}) as f strict

= f(
⋃

{e | e↓})

=
⋃

{f(e) | e↓} as f strict.

So y ∈ {f(e) | e↓}. Thus indeed e↓.
Conversely, suppose that (2) holds, and take any E : L2X. We must show that

f(
⋃

E) =
⋃
{f(e) | e ∈ E}. For the left-to-right inclusion, suppose y ∈ f(

⋃
E). By (2),

there exists x ∈
⋃

E. Thus f(
⋃

E) = {y} and E = {{x}}. So indeed,
⋃
{f(e) | e ∈

E} = f({x}) = f(
⋃

E). For the converse inclusion, suppose y ∈
⋃
{f(e) | e ∈ E}. Then

E = {e} for some e with f(e) = {y}. By (2), there exists x such that e = {x}. Thus
again,

⋃
{f(e) | e ∈ E} = f({x}) = f(

⋃
E). �

Definition 4.2 (k-strict map) Given pointed objects (X1, α1), . . . , (Xk, αk) and (Y, β),
a k-strict map is a morphism h : X1×· · ·×Xk

� Y such that, for each i with 1 ≤ i ≤ k,
it holds in C that

∀x1 : X1, . . . , xi−1 : Xi−1, xi+1 : Xi+1, . . . , xk : Xk.

xi �→ h(x1, . . . , xk) is a strict map from (Xi, αi) to (Y, β).

We use bistrict for the case k = 2, and multistrict if we leave k implicit.

The above definition, exploits the internal logic of C to formulate k-strictness in the
natural way. Nevertheless, we remark that the definition also has a simple category-
theoretic formulation using the (double-)strength of the L monad, see, e.g., the definition
of bimorphism in [16].

Proposition 4.3 For pointed objects (X1, α1), . . . , (Xk, αk) and (Y, β), where k ≥ 1,
any k-strict map h : X1 ×· · ·×Xk

� Y is a strict map from (X1, α1)×· · ·× (Xk, αk)
to (Y, β).
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This result is a special case of Proposition 4.8, which is proved below. In fact, the above
proposition holds, more generally, for all relevant monads in the sense of [16].

The initial algebra I of the endofunctor L on C carries a pointed structure φ =
σ ◦

⋃
◦ Lσ−1 : LI � I. The pointed structure on I interacts nicely with the initial

algebra property. Define a “successor” function s = σ ◦ {·} : I � I.

Proposition 4.4 Suppose that (X, α) is a pointed object and that f : X � X is any
(not necessarily strict) morphism. Then, for every k ≥ 1, there exists a unique k-strict
map h : Ik � X such that the diagram below commutes.

k︷ ︸︸ ︷
I × · · · × I

h � X

I × · · · × I

s × · · · × s

� h � X

f

�

The case k = 1 is proved as [19, Theorem A.5], and we henceforth assume this case. We
do not prove the generalization to k ≥ 2 at this point, as it follows from Proposition 4.9
below.

We now embark on the main technical contribution of this section, the generalization
of the notions of strictness and multistrictness to dependent families. The definitions
and results are fundamental to our proof of Theorem 1. However, the development may
also be of independent interest. It exposes a subtle interplay between dependent types
and algebras for the L monad, which appears to depend heavily on properties of L that
are peculiar to lifting monads. It might be an interesting mathematical project to obtain
a more abstract account of the theory that follows.

Definition 4.5 (Strict family) Given an internal family {(Yx, βx)}x : X of pointed ob-
jects, where (X, α) is pointed, we say that {yx :Yx}x : X is a strict family if, for all e : LX,

yα(e) = βα(e)({yx | x ∈ e}). (8)

To see that this definition makes sense, we must show that {yx | x ∈ e} is a Σ-subterminal
subset of L(Yα(e)). It is Σ-subterminal because e is. Moreover, given x ∈ e, we have
e = {x}, whence α(e) = x by (6). Thus indeed yx ∈ Yα(e).

Observe that, for a constant family {(Y, β)}x : X , a strict family {yx : Y }x : X is just a
strict map x �→ yx from X to Y .

Strict families compose in the natural way.

Lemma 4.6 Given families {(Yx, βx)}x : X and {(Zx y, γx y)}x : X, y : Yx of pointed objects,
where (X, α) is pointed, suppose that {yx : Yx}x : X is a strict family and {zx y : Zx y}y∈Yx

is a strict family for every x : X. Then {zx yx : Zx yx}x : X is a strict family.
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PROOF. Suppose {yx : Yx}x : X is a strict family, and {zx y : Zx y}y : Yx is a strict family
for all x :X. For any e : LX, define be = βα(e)({yx | x ∈ e}). Then:

zα(e) yα(e)
= zα(e) be

as y(−) is strict

= γα(e) be
({zα(e) y | y ∈ {yx | x ∈ e}}) as zα(e) (−) is strict

= γα(e) yα(e)
({zα(e) yx

| x ∈ e}) as y(−) is strict

= γα(e) yα(e)
({zx yx | x ∈ e}) as x ∈ e implies x = α(e).

�

Definition 4.7 (k-strict family) Given a family of pointed objects,

{(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
,

where (X1, α1), . . . , (Xk, αk) are pointed, then {yx1...xk
: Yx1...xk

}x1 : X1,...,xk : Xk
is a k-

strict family if, for each i with 1 ≤ i ≤ k, it holds in C that

∀x1, . . . , xi−1, xi+1, . . . , xk. {yx1...xk
: Yx1...xk

}xi : Xi is a strict family.

Again, for a constant family {(Y, β)}x1,...,xk
, a k-strict family {yx1...xk

: Y }x1,...,xk
is just

a k-strict map (x1, . . . , xk) �→ yx1...xk
from X1 × · · · × Xk to Y .

The two propositions below, which are the main results of this section, generalize
Propositions 4.3 and 4.4 above to apply to k-strict families.

Proposition 4.8 If {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
and (X1, α1), . . . , (Xk, αk) are as

in Definition 4.7, and {yx1...xk
: Yx1...xk

}x1 : X1, ..., xk : Xk
is a k-strict family then

{yx1...xk
: Yx1...xk

}(x1,...,xk) : X1×···×Xk
is a strict family.

By instantiating {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
as a constant family, Proposition 4.3

is easily seen to follow as a special case.
PROOF. We prove the case k = 2, from which the full result easily follows. Sup-
pose then that {y(x1, x2) : Yx1 x2}x1,x2 is bistrict. The algebra structure on X1 × X2 is
γ : L(X1 × X2) � X1 × X2 defined by γ(e) = (a1, a2) where

a1 = α1({x1 | (x1, x2) ∈ e})
a2 = α2({x2 | (x1, x2) ∈ e}).

We must show that y(a1, a2) = βa1a2({y(x1, x2) | (x1, x2) ∈ e}). But

y(a1, a2) = y(α1({x1 | (x1, x2) ∈ e}), a2) def. of a1

= βa1a2({y(x1, a2) | (x1, x2) ∈ e}) bistrictness
= βa1a2({y(x1, α2({x′

2 | (x′
1, x

′
2) ∈ e})) | (x1, x2) ∈ e}) def. of a2

= βa1a2({βx1a2({y(x1, x
′
2) | (x′

1, x
′
2) ∈ e}) | (x1, x2) ∈ e}) bistrictness.
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To see that this is equal to βa1a2({y(x1, x2) | (x1, x2) ∈ e}), it suffices to verify

{βx1a2({y(x1, x
′
2) | (x′

1, x
′
2) ∈ e}) | (x1, x2) ∈ e} = {y(x1, x2) | (x1, x2) ∈ e}.

If (x1, x2) ∈ e then e = {(x1, x2)}, and a2 = x2 by (6). Thus the r.h.s. above is equal
to {y(x1, x2)} and the l.h.s. is equal to {βx1x2({y(x1, x2)})} = {y(x1, x2)}, by (6). Thus
the equation holds if (x1, x2) ∈ e. It follows that each side is a subset of the other.
Hence the equation holds. �

Proposition 4.9 For internal families

{(Yi1...ik , βi1...ik)}i1 : I,...,ik : I,

{fi1...ik :Yi1...ik → Ysi1...sik}i1 : I,...,ik : I,

of pointed objects and arbitrary functions respectively, there exists a unique k-strict
family y(−)...(−) :

∏
i1 : I · · ·

∏
ik : I Yi1...ik satisfying

ysi1...sik = fi1...ik(yi1...ik) . (9)

Again, by taking {(Yi1...ik , βi1...ik)}i1,...,ik and {fi1...ik : Yi1...ik → Ysi1...sik}i1,...,ik as con-
stant families, Proposition 4.4 follows.

The remainder of the section is devoted to the proof of Proposition 4.9.

Lemma 4.10 Given an internal family {(Yx, βx)}x : X of pointed objects, with (X, α)
pointed, then (

∑
x : X Yx, γ) is pointed, where γ : L(

∑
x : X Yx) � ∑

x : X Yx is defined
by γ(e) = (γ1(e), γ2(e)), where

γ1(e) = α{x | (x, y) ∈ e}
γ2(e) = βγ1(e){y | (γ1(e), y) ∈ e}.

Moreover the projection π1 : (
∑

x : X Yx, γ) � (X, α) is strict.

PROOF. To see that γ is well-defined, one establishes: first, that γ1(e) is well-defined,
because {x | (x, y) ∈ e} is a Σ-subterminal subset of X; and, second, that γ2(e) is
well-defined, because {y | (γ1(e), y) ∈ e} is a Σ-subterminal subset of Yγ1(e). In each
case, the Σ-subterminal property follows from the same property of e. Note also that
the strictness of the projection π1 is immediate from the definition of γ1(e). Thus it
remains only to show that γ satisfies the unit law, (6), and multiplication law, (7).

For the unit law, γ1({(x, y)}) = x, by (6) for α; whence γ2({(x, y)}) = y, by (6) for
βx. Thus indeed γ({(x, y)}) = (x, y).

For the multiplication law, take any E : L2(
∑

x : X Yx). We must show that γ(
⋃

E) =
γ({γ(e) | e ∈ E}). For the first components, define E1 : L2X by

E1 = {{x | (x, y) ∈ e} | e ∈ E}.
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Then we have:

γ1({γ(e) | e ∈ E}) = α({x | (x, y) ∈ {γ(e) | e ∈ E}}) def. of γ1

= α({γ1(e) | e ∈ E}) def. of γ

= α({α({x | (x, y) ∈ e}) | e ∈ E} def. of γ1

= α({α(e1) | e1 ∈ E1}) def. of E1

= α(
⋃

E1) by (7) for α

= α{x | (x, y) ∈
⋃

E} def. of E1

= γ1(
⋃

E) def. of γ1.

So the first components agree. Write a for this value, and observe that

e ∈ E implies γ1(e) = a, (10)

(x, y) ∈
⋃

E implies x = a, (11)

where the latter property is by (6) for α.
To show that the second components agree, define E2 : L2(Ya) by

E2 = {{y | (a, y) ∈ e} | e ∈ E},

where the Σ-subterminal property of {y | (a, y) ∈ e} holds by (11). Then:

γ2({γ(e) | e ∈ E}) = βa({y | (a, y) ∈ {γ(e) | e ∈ E}}) def. of γ2

= βa({γ2(e) | e ∈ E}) by (10)
= βa({βa({y | (a, y) ∈ e)}) | e ∈ E) def. of γ2

= βa({βa(e2) | e2 ∈ E2}) def. of E2

= βa(
⋃

E2) by (7) for βa

= βa({y | (a, y) ∈
⋃

E}) def. of E2

= γ2(
⋃

E) def. of γ2.

�

Lemma 4.11 Given {(Yx, βx)}x : X and (X, α) as in Definition 4.5, the following are
equivalent for any {yx : Yx}x : X .

1. y(−) is a strict family.

2. The map x �→ (x, yx) : (X, α) � (
∑

x : X Yx, γ) is strict, where γ is as in
Lemma 4.10.
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PROOF. For any e : LX, we have, by the definition of γ in Lemma 4.10, that

γ1({(x, yx) | x ∈ e}) = α(e)

and

γ2({(x, yx) | x ∈ e}) = βα(e)({yα(e) | α(e) ∈ e}) def. of γ2

= βα(e)({yx | x ∈ e}) as x ∈ e implies x = α(e).

It follows immediately that yα(e) = βα(e)({yx | x ∈ e}) if and only if (α(e), yαe) =
γ({(x, yx) | x ∈ e}); i.e. statements (1) and (2) are equivalent. �

We remark that Lemma 4.11 does not extend to give a characterisation of k-strict
families in terms of ordinary k-strictness. Indeed, given a k-strict family

{yx1...xk
: Yx1...xk

}x1 : X1,...,xk : Xk

it is not necessarily the case that the map

(x1, . . . , xk) �→ (x1, . . . , xk, y) : X1 × · · · × Xk
�

∑
(x1,...,xk) : X1×···×Xk

Yx1...xk

is k-strict. Intuitively, one needs to replace X1 × · · · × Xk here with a tensor product
X1 ⊗ · · · ⊗ Xk. But such an approach leads to indexing problems, because Yx1...xk

is
indexed over the product X1 × · · · ×Xk. Instead, Lemma 4.13 below provides a correct
characterization of multistrict families.

Lemma 4.12 Given {(Yx, βx)}x : X and (X, α) as in Definition 4.5 with X small, define∏
x : X

◦
Yx = {y(−) :

∏
x : X

Yx | y(−) is a strict family}.

Then (
∏◦

x : X Yx , π◦) is pointed, with π◦ : L(
∏◦

x : X Yx) � ∏◦
x : X Yx defined by:

(π◦(e))x = βx({yx | y(−) ∈ e}) for e :
∏
x : X

◦
Yx and x :X.

PROOF. First we show that (π◦(e))(−) is indeed a strict family, i.e. that (π◦(e))α(e1) =
βα(e1)({(π◦(e))(x) | x ∈ e1}), for e1 : LX. Because x ∈ e1 implies x = α(e1), we have that

E′ = {{yx | x ∈ e1} | y(−) ∈ e} E′′ = {{yx | y(−) ∈ e} | x ∈ e1}

are both in L2(Yα(e1)) . Moreover
⋃

E′ =
⋃

E′′. Then:

(π◦(e))α(e1) = βα(e1)({yα(e1) | y(−) ∈ e}) def. of π◦(e)

= βα(e1)({βα(e1)({yx | x ∈ e1}) | y(−) ∈ e}) as y(−) strict
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= βα(e1)({βα(e1)(e
′) | e′ ∈ E′}) def. of E′

= βα(e1)(
⋃

E′) by (7) for βα(e1)

= βα(e1)(
⋃

E′′) as
⋃

E′ =
⋃

E′′

= βα(e1)({βα(e1)(e
′′) | e′′ ∈ E′′}) by (7) for βα(e1)

= βα(e1)({βα(e1)({yx | y(−) ∈ e}) | x ∈ e1}) def. of E′′

= βα(e1)({βx({yx | y(−) ∈ e}) | x ∈ e1}) as x ∈ e1 implies x = α(e1)

= βα(e1)({(π◦(e))(x) | x ∈ e1}) def. of π◦(e).

For the unit law, (6), one must show (π◦({y(−)}))x = yx, which is easy.
For the multiplication law, (7), we must show that (π◦({π◦(e) | e ∈ E}))x =

(π◦(
⋃

E))x for x :X and E : L2(
∏◦

x : Y Yx). Define Ex : L2(Yx) by

Ex = {{yx | y(−) ∈ e} | e ∈ E}.

Then indeed,

(π◦({π◦(e) | e ∈ E}))x = βx({(π◦(e))x | e ∈ E})}) def. of π◦

= βx({βx({yx | y(−) ∈ e}) | e ∈ E})}) def. of π◦

= βx({βx(ex) | ex ∈ Ex})}) def. of Ex

= βx(
⋃

Ex) by (7) for βx

= βx({yx | y(−) ∈
⋃

E}) def. of Ex

= (π◦(
⋃

E))x def. of π◦.

�
Henceforth (e.g. in statements 2 and 3 of the lemma below), the algebra structure of

an object of the form
∏◦

x : X Yx is always taken to be as above. Also, when {(Y, β)}x : X

is a constant family, we write X � Y for
∏◦

x : X Y . Thus Lemma 4.12 shows that the
object X � Y , of all strict functions from X to Y , is pointed.

Lemma 4.13 Given {(Yx1...xk
, βx1...xk

)}x1 : X1,...,xk : Xk
and (X1, α1), . . . , (Xk, αk) as in

Definition 4.7 with X1, . . . , Xk small, then, for k ≥ 1, the following are equivalent.

1. y(−)...(−) :
∏

x1 : X1
· · ·

∏
xk : Xk

Yx1...xk
, is a k-strict family.

2. {yx1 ... xk−1 (−)}x1 : X1, ..., xk−1 : Xk−1
:
∏

x1 : X1
· · ·

∏
xk−1 : Xk−1

(
∏◦

xk : Xk
Yx1...xk

) is a
(k − 1)-strict family.

3. y(−)...(−) ∈
∏◦

x1 : X1
. . .

∏◦
xk : Xk

Yx1...xk
.
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PROOF. Statement (1) holds if and only if, for each i with 1 ≤ i ≤ k,

yxα(ei)x′ = βxα(ei)x′({yxxi x′ | xi ∈ ei}) , (12)

where ei : L(Xi), and x and x′ are vectors of elements x1 . . . xi−1 and xi+1 . . . xk respec-
tively, with each xj :Xj .

Similarly, statement (2) holds if and only if:

yxα(ek) = βxα(ek)({yxxk
| xk ∈ ek}) , (13)

i.e. each yx (−) is a strict family; and also, for each i with 1 ≤ i ≤ k − 1,

yxα(ei)x′′ (−) = π◦
xα(ei)x′′({yxxi x′′ (−) | xi ∈ ei}) , (14)

where x′′ is a vector of elements xi+1 . . . xk−1, and π◦
xα(ei)x′′ is the algebra on∏◦

xk : Xk
Yxα(ei)x′′ xk

.
However, equation (13) is exactly the i = k case of equation (12). Further,

(π◦
xα(ei)x′′({yxxi x′′ (−) | xi ∈ ei}))xk

= βxα(ei)x′′ xk
({yxxi x′′ xk

| xi ∈ ei}),

by the definition of π◦. So, for i < k, (13) holds if and only if (12) holds. Therefore
statement (1) is indeed equivalent to statement (2).

The equivalence of statements (1) and (3) is proved by a straightforward k-fold
iterated application of the equivalence between statements (1) and (2). �

Lemma 4.14 Suppose that (X, α) is pointed, f, g : I � X are strict and f ◦ s = g ◦ s
then f = g.

PROOF. One easily shows that the assumptions imply that σ : LI � I restricts to a
subalgebra σ′ : LI′ � I′ where I′ = {i : I | f(i) = g(i)}. Then, because σ is the initial
L-algebra, I′ = I. �
PROOF of Proposition 4.9. By induction on k.

When k = 1, consider the map

g =
∑
j : I

Yj
(j,z) �→(sj, fj(z))�

∑
j : I

Yj .

We establish that strict families y(−) satisfying ysi = fi(yi) are in one-to-one correspon-
dence with strict h : I � ∑

j : I Yj satisfying g ◦ h = h ◦ s. Thus, by the k = 1 case of
Proposition 4.4, there is indeed a unique such family.

Given any strict h : I � ∑
j : I Yj satisfying g ◦ h = h ◦ s, the composite π1 ◦

h : I � I is strict, by Lemma 4.10, and also π1 ◦ h ◦ s = π1 ◦ g ◦ h = s ◦ π1 ◦ h, by the
definition of g. So, by the k = 1 case of Proposition 4.4, π1 ◦ h = idI. Hence, any such
h is of the form j �→ (j, yj) where, by Lemma 4.11, y(−) is a strict family. Moreover,
the equation ysi = fi(yi) follows from g ◦ h = h ◦ s, by the definintion of g. Conversely,
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given a strict family y(−) satisfying ysi = fi(yi), the map h : j �→ (j, yj) is strict, by
Lemma 4.11, and satisfies g ◦ h = h ◦ s.

When k > 1, applying the induction hypothesis, let

{yi1 ... ik−1 (−)}i1,...,ik−1
:

∏
i1 : I

· · ·
∏

ik−1 : I

(
∏
ik : I

◦
Yi1...ik)

be the unique (k − 1)-strict family satisfying

(j �→ ysi1 ... sik−1 j) = gi1...ik−1
(j �→ yi1 ... ik−1 j) , (15)

where the family
gi1...ik−1

: (
∏
j : I

◦
Yi1...ik−1j) → (

∏
j : I

◦
Ysi1 ... sik−1 j)




i1,...,ik−1

,

is defined as follows.
Given z(−) :

∏◦
j : I Yi1...ik−1j , consider the composite below,

h = I
σ−1

� LI
L(j �→(sj, fi1...ik−1j(zj)))� L(

∑
j : I

Ysi1 ... sik−1 j)
γ�

∑
j : I

Ysi1 ... sik−1 j ,

where γ is the pointed structure on
∑

j : I Ysi1 ... sik−1 j from Lemma 4.10. Each component
in the above composite is strict (the first is an isomorphism, the second is a lifted map,
the third is an algebra structure map). Hence h is itself strict. Consider π1 ◦h : I � I.
We have:

π1 ◦ h = π1 ◦ γ ◦ L(j �→ (sj, fi1...ikj(zj))) ◦ σ−1

= φ ◦ L(π1) ◦ L(j �→ (sj, fi1...ikj(zj))) ◦ σ−1 as π1 is strict

= φ ◦ L(s) ◦ σ−1

= (σ ◦
⋃

◦ Lσ−1) ◦ L(σ ◦ {·}) ◦ σ−1 defns. of φ and s

= σ ◦ (
⋃

◦L{·}) ◦ σ−1 = idI as
⋃

◦L{·} = idLI.

Thus, for any j : I, we have h(j) = (j, wz(−) j) where wz(−) j : Ysi1 ... sik−1 j . As h is strict,
we have by Lemma 4.11, that (j �→ wz(−) j) :

∏
j : I Ysi1 ... sik−1 j is a strict family. So

define gi1...ik−1
(z(−)) = (j �→ wz(−) j).

Observe that

h ◦ s = γ ◦ L(j �→ (sj, fi1...ik−1j(zj))) ◦ σ−1 ◦ σ ◦ {·}
= γ ◦ L(j �→ (sj, fi1...ik−1j(zj))) ◦ {·}
= γ ◦ {·} ◦ (j �→ (sj, fi1...ik−1j(zj)))
= (j �→ (sj, fi1...ik−1j(zj))).
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Thus
(gi1...ik−1

(z(−)))(sj) = fi1...ik−1j(zj). (16)

We must show that y(−)...(−) is the unique k-strict family satisfying (9). As
{yi1...ik−1(−)}i1,...,ik−1

:
∏

i1 : I · · ·
∏

ik−1 : I (
∏◦

ik+1 : I Yi1...ikik+1
) is (k − 1)-strict, we have, by

Lemma 4.13, that y(−)...(−) :
∏

i1 : I · · ·
∏

ik : I Yi1...ik is k-strict. To see that (9) holds, we
have

ysi1 ... sik = (gi1...ik(yi1 ... ik−1 (−)))(sik) by (15)

= fi1...ik(yi1...ik) by (16).

It remains to show that y(−)...(−) is unique. Suppose that y′(−)...(−) is any k-strict
family satisfying (9′) (where we write (9′) to mean (9) with y replaced by y′). By
Lemma 4.13, {y′i1...ik−1(−)}i1,...,ik−1

:
∏

i1 : I · · ·
∏

ik−1 : I(
∏◦

ik : I Yi1...ik) is a (k−1)-strict fam-
ily. It suffices to show that {y′i1...ik−1(−)}i1,...,ik−1

satisfies (15′). As both j �→ y′si1 ... sik−1 j

and gi1...ik−1
(j �→ y′i1 ... ik−1 j) are strict, it suffices, by Lemma 4.14, to verify that

y′si1 ... sik−1 sik
= (gi1...ik−1

(j �→ y′i1 ... ik−1 j))(sik) for all ik : I.

But this follows by

y′si1 ... sik−1 sik
= fi1...ik(y′i1...ik

) by (9′)

= (gi1...ik−1
(y′i1 ... ik−1 (−)))(sik) by (16).

�

5 The min and
⊔

operations

In this section, we define a binary “minimum” operation, min, on I, and use it to
characterize a “limit-finding” operator,

⊔X , on any complete object. Both operations
will be used extensively in the sequel.

Using Proposition 4.4, define min : I × I � I to be the unique bistrict map such
that min(si, sj) = s(min(i, j)).

Lemma 5.1 min is a binary semilattice structure on I, i.e.

min(i, i) = i (17)
min(i, j) = min(j, i) (18)

min(i,min(j, k)) = min(min(i, j), k). (19)

PROOF. For (17), the map i �→ min(i, i) is strict, by Proposition 4.3, and satisfies
min(si, si) = s(min(i, i)). Thus (i �→ min(i, i)) = idI, by the k = 1 case of Proposi-
tion 4.4.

27



For (18), the maps (i, j) �→ min(i, j) and (i, j) �→ min(j, i) are bistrict and satisfy
min(si, sj) = s(min(i, j)) and min(sj, si) = s(min(j, i)) respectively. So, by the k = 2
case of Proposition 4.4, they are equal.

For (19), the maps (i, j, k) �→ min(i,min(j, k)) and (i, j, k) �→ min(min(i, j), k) are
3-strict and respectively satisfy min(si,min(sj, sk)) = s(min(i,min(j, k)) and
min(min(si, sj), sk) = s(min(min(i, j), k)). So, by the k = 3 case of Proposition 4.4,
they are equal. �

Our first application of min is to characterize the unique “limit-finding” operator⊔X : XI � X, on any complete object X. To manipulate expressions involving⊔X , we often omit the superscript X, and we use the convenient notation
⊔

j xj for⊔
(j �→ xj).

Proposition 5.2 If X is complete then:

1. There exists a unique map
⊔X : XI � X satisfying

xi =
⊔
j

xmin(i,j) for all x(−) : X
I and i : I. (20)

2.
⊔X satisfies ⊔

i

x = x, for all x :X (21)

⊔
i

xi =
⊔
i

xsi, for all x(−) : X
I (22)

⊔
i

(
⊔
j

xij) =
⊔
i

xii for all x(−)(−) : X
I×I. (23)

3. For any f : X � Y , where Y is complete,

f(
⊔
i

X
xi) =

⊔
i

Y
f(xi) for all x(−) : X

I. (24)

4. A subobject Z� � X is complete if and only if⊔
i

X
zi ∈ Z for all z(−) :Z

I.

The properties in statement (2) are those of a formal lub operator [6]. Statement (3)
expresses that all functions between complete sets are “continuous” in a natural sense.
Property (4) will be useful in Section 13.

To prove Proposition 5.2, it is convenient to develop additional properties of the ini-
tial L-algebra (I, σ) and final L-coalgebra (F, τ), relating to the canonical map ι : I � F.
Define ∞ :F to be the point given by the unique coalgebra homomorphism ∞ : 1 � F
from {·} : 1 � L1 to τ (this agrees with the explicit definition ∞ = (n �→ �) in Sec-
tion 2).
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Lemma 5.3 There exists a morphism s′ : F � F satisfying:

s′(ι(i)) = ι(s(i)) for all i : I (25)
s′(∞) = ∞ (26)

PROOF. Define s′ = τ−1 ◦ {·}. Then, by the definition of ι, we have
s′ ◦ ι = τ−1 ◦ {·} ◦ ι = τ−1 ◦ Lι ◦ {·} = ι ◦ σ ◦ {·} = ι ◦ s. Similarly, by the definition of
∞ we have, s′ ◦∞ = τ−1 ◦ {·} ◦ ∞ = τ−1 ◦ L∞◦ {·} = τ−1 ◦ τ ◦∞ = ∞. �

Lemma 5.4 There exists a morphism min′ : I × F � I satisfying:

min′(i, ι(j)) = min(i, j) for all i, j : I (27)
min′(i,∞) = i for all i : I (28)

PROOF. Just as σ ◦
⋃
◦Lσ−1 is a pointed structure on I, so is τ−1 ◦

⋃
◦Lτ a pointed

structure on F. Consider the pointed object F � I of strict functions, defined in the
text following Lemma 4.12. For any strict f : F → I, the composite σ ◦ Lf ◦ τ is strict,
as all its components are. Thus we have a morphism

σ ◦ L(−) ◦ τ : (F � I) � (F � I).

Let min′′ : I � (F � I) be the unique strict morphism such that min′′(s(i)) =
σ◦L(min′′(i))◦τ , as given by Proposition 4.4. Define min′ : I×F � I by min′(i, j′) =
min′′(i)(j′). By Lemma 4.13, min′ is bistrict. Moreover, for any i : I,

min′′(s(i)) ◦ s′ = σ ◦ L(min′′(i)) ◦ {·} = σ ◦ {·} ◦ min′′(i) = s ◦ min′′(i).

Thus min′(s(i), s′(j′)) = s(min′(i, j′)).
As ι : I � F is strict, we have that (i, j) �→ min′(i, ι(j)) : I × I � I is bistrict

and satisfies min′(s(i), ι(s(j))) = min′(s(i), s′(ι(j))) = s(min′(i, j′)). Thus, by the char-
acterizing property of min, indeed min′(i, ι(j)) = min(i, j).

For equation (28), we have that i �→ min′(i,∞) : I � I is strict, and satisfies
min′(s(i),∞) = min′(s(i), s′(∞)) = s(min′(i,∞)). By Proposition 4.4, the identity is
the only such map. Thus indeed min′(i,∞) = i. �
PROOF of Proposition 5.2. For statement (1), we first define

⊔X . Given x(−) : XI,
there exists, by the definition of completeness, a unique x′

(−) : X
F satisfying x′

ι(i) = xi,
for all x : I. Define

⊔
i xi = x′∞.

To show (20), take any i : I. Consider xmin(i,−) : XI. Then x′
j′ = xmin′(i,j′) defines

x′
(−) : X

F satisfying x′
ι(j) = xmin(i,j), by (27). Thus indeed

⊔
j

xmin(i,j) = x′
∞ = xmin′(i,∞) = xi ,

with the last equality given by (28).
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For uniqueness, suppose that
⊔′ : XI � I satisfies

⊔′
j xmin(i,j) = xi. Define

x′
(−) : X

F by x′
i′ =

⊔′
j xmin′(j,i′). Then

x′
ι(i) =

⊔
j

′
xmin′(j,ι(i)) =

⊔
j

′
xmin(j,i) = xi.

So, by the completeness of X, we have that x′
(−) is the unique element of XF satisfying

x′
ι(i) = xi. So, by the definitions of

⊔
and x′

(−),⊔
i

xi = x′
∞ =

⊔
i

′
xmin′(i,∞) =

⊔
i

′
xi.

For statement (2), equation (21) holds because the constant function kx =
(i �→ x) : XI extends to k′

x = (i′ �→ x) : XF, so
⊔

i x = k′
x(∞) = x.

For (22), given x(−) : XI, let x′
(−) : XF be the unique family such that x′

ι(i) = xi.
Then x′

s′(−) : XF extends xs(−) : XI, because, by (25), we have xι(s(i)) = x′
ι(s(i)) = x′

s′(ι(i)).
Thus, by (26), we have

⊔
i xs(i) = x′

s′(∞) = x′∞ =
⊔

i xi.
For (23), consider x(−)(−) : XI×I. For any i : I, define yi (−) : XF as the unique family

satisfying yi ι(j) = xij . Thus
⊔

j xij = yi∞. Also, for each j′ :F, define z(−) j′ : XF as the
unique family satisfying zι(i) j′ = yij′ . Then

⊔
i(

⊔
j xij) =

⊔
i yi∞ = z∞∞. On the other

hand, consider i′ �→ zi′ i′ : XF. This satisfies zι(i) ι(i) = yi ι(i) = xii. So
⊔

i xii = z∞∞.
Thus indeed

⊔
i(

⊔
j xij) =

⊔
i xii.

For statement (3), consider any x(−) : XI. By the completeness of X, let x′
(−) : X

F be
the unique such that xι(i) = xi. Then, by the completeness of Y , we have that f(x′

(−))

is the unique y′(−) : Y F satisfying yι(i) = f(xi). So by the definitions of
⊔X and

⊔Y , we

have f(
⊔X

i xi) = f(x′∞) =
⊔Y

i f(xi) as required.
Finally, for statement (4), we have a subobject m : Z� � X. First, suppose⊔X

i zi ∈ Z for all z(−) : ZI. Consider any z(−) : ZI. By the assumption, we can define
z′(−) : Z

F by z′i′ =
⊔X

j zmin′(j,i′). This satisfies z′ι(i) = zi for all i. It is the unique such
because, as X is complete and m is mono, z′(−) is determined by m(z′(−)) : XF being
unique such that m(z′ι(i)) = m(zi) for all i. Thus Z is indeed complete. Conversely,
suppose that Z is complete and consider any z(−) : ZI. Let z′(−) : Z

F be the unique
function such that z′ι(i) = zi for all i. As X is complete, we have that m(z′(−)) : XF is

the unique map satisfying m(z′ι(i)) = m(zi) for all i. Thus, by the definition of
⊔X , we

have
⊔X

i (m(zi)) = m(z′∞), i.e. indeed
⊔X

i zi ∈ Z. �

6 The limit-colimit coincidence

One of the main tools in the proof of Theorem 1 will be a variant of the limit-colimit
coincidence of domain theory. The standard domain-theoretic version of this coincidence
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uses N-indexed diagrams of embedding-projection (e-p) pairs, see e.g. [45]. In our setting,
there is no obvious notion of e-p pair to use. A similar issue was addressed by Plotkin,
who developed a generalized notion of e-p pair to establish a limit-colimit coincidence
in the context of axiomatic domain theory [34]. However, as motivated in Section 3,
we have to depart from the standard theorem in another significant way: our diagrams
must be indexed by I not N. Miraculously, the use of I as an indexing object enables
us to do away with the notion of e-p pair entirely. Instead we prove a limit-colimit
coincidence for arbitrary diagrams satisfying two simple equational properties.

Let K be an internal category in C. For this entire section, we reason internally in
C about K. As we do not require K to be locally small, we refer to {K(A, B)}A,B∈|K| as
the family of hom-classes.

An I-bichain in K is given by families,

A(−) : |K|I x(−)(−) :
∏
i : I

∏
j : I

K(Ai, Aj),

satisfying the equations

xii = idAi (29)
xjk ◦ xij = xmin(i,j,k) k ◦ xi min(i,j,k). (30)

Here min(i, j, k) means min(i,min(j, k)) (equivalently min(min(i, j), k), by Lemma 5.1),
using the min operation from Section 4.

Henceforth, we shall use the semilattice properties of min, given by Lemma 5.1,
without further reference, and we shall make free use of evident derived operations such
as min(i, j, k) above. We shall also use an internal partial order on I, derived from the
semilattice structure in the standard way:

i � j iff i = min(i, j).

Equations (29) and (30) for an I-bichain have useful consequences relating x(−)(−) to
the partial order � on I.

Lemma 6.1 For any i, j, k : I,

if i � j or k � j then xjk ◦ xij = xik. (31)

In particular, if i � j then xji ◦ xij = idAi.

PROOF. Suppose i � j. Then:

xjk ◦ xij = xmin(i,j,k) k ◦ xi min(i,j,k) by (30)

= xmin(i,k) k ◦ xi min(i,k) as i � j

= xi k ◦ xi i by (30)
= xi k by (29).
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The equation xji ◦ xij = idAi follows, by (29). The argument for k � j is similar. �
Thus if i � j then xij and xji form a section-retraction pair. The limit-colimit co-
incidence relates the colimit of the diagram of sections to the limit of the diagram of
retractions.

Given an I-bichain, (A(−), x(−)(−)), we write (xij)i�j for the evident partially-ordered
diagram of shape (I,�), consisting entirely of sections. As usual, a cocone for (xij)i�j is
given by an object B of K together with c(−) :

∏
i : I K(Ai, B) such that, for all i � j : I,

it holds that ci = cj ◦ xij . A mediating morphism from (B, c(−)) to another cocone
(B′, c′(−)) is a morphism b : B � B′ in K such that, for all i : I, it holds that c′i = b◦ ci.
The cocone (B, c(−)) is colimiting if, for any cocone (B′, c′(−)), there exists a unique
mediating morphism from (B, c(−)) to (B′, c′(−)).

Dually, we write (xij)i	j for the evident partially-ordered diagram of shape (I,�),
consisting of retractions. The notion of cone, l(−) :

∏
i : I K(B, Ai), and limit are defined

in the obvious way.

Proposition 6.2 (Limit-colimit coincidence)
If K is an internal category in which all hom-classes are complete then, for any I-bichain
(A(−), x(−)(−)) in K, the following statements are equivalent.

1. B is a limiting object for (xij)i	j.

2. There exists a cone l(−) :
∏

i : I K(B, Ai) for (xij)i	j, and also a cocone c(−) :∏
i : I K(Ai, B) for (xij)i�j such that:

lj ◦ ci = xij for all i, j : I (32)⊔
i

(ci ◦ li) = idB. (33)

3. B is a colimiting object for (xij)i�j.

Moreover, if (2) holds then l(−) is a limiting cone and c(−) is a colimiting cone. Fur-
thermore, (32) and (33) together imply that each of l(−) and c(−) determines the other.

In view of the proposition, we shall henceforth refer to (B, l(−), c(−)) satisfying (32)
and (33) as a bilimit of the I-bichain (A(−), x(−)(−)).

The remainder of the section is devoted to the proof of Proposition 6.2. Accordingly,
assume hom-classes in K are complete and that (A(−), x(−)(−)) is an I-bichain in K.

Lemma 6.3 If l(−) is any cone for (xij)i	j then lj =
⊔

i(xij ◦ li). Similarly, if c(−) is
a cocone for (xij)i�j then cj =

⊔
i(ci ◦ xji).
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PROOF. The proofs of both equalities are similar, so we just show the equality for lj .
As lj is a cone, we have i � j implies lj = xij ◦ li. So:

lj =
⊔
i

lmin(i,j) by (20)

=
⊔
i

(x i min(i,j) ◦ li) as l(−) is a cone

=
⊔
i

⊔
i′

(x i min(i′,j) ◦ li) by (23)

=
⊔
i

(xij ◦ li) by (20).

�

Lemma 6.4 If l(−) and c(−) are a cone and cocone satisfying (32) then, for any cone
l′(−), it holds that

⊔
i(ci ◦ l′i) is a mediating morphism from l′(−) to l(−).

PROOF. We must show that l′j = lj ◦
⊔

i(ci ◦ l′i). But, by (24), (32) and Lemma 6.3,

lj ◦
⊔
i

(ci ◦ l′i) =
⊔
i

lj ◦ ci ◦ l′i =
⊔
i

xij ◦ l′i = l′j .

�
PROOF of Proposition 6.2. To prove that (1) implies (2), suppose that l(−) is a
limiting cone for (xjk)j	k. For any i : I, consider the family of morphisms

{xij : Ai → Aj}j : I.

By (31), this is a cone for (xjk)j	k. Therefore, as l(−) is limiting, there is a unique
morphism ci : Ai → B such that, for all j, it holds that xij = lj◦ci. This establishes (32).
We must show that c(−) is a cocone for e(−) and that (33) holds.

For the cocone, we must show that i � j implies that ci = cj ◦ xij ; for which, by the
defining property of ci, it suffices to show that, i � j implies that xik = lk ◦ cj ◦ xij for
all k. But this holds because, by (31) and (32),

xik = xjk ◦ xij = lk ◦ cj ◦ xij .

Equation (33) now follows from Lemma 6.4, because the morphism
⊔

i(ci ◦ li) mediates
from the cone l(−) to itself and idB is the unique mediating morphism. Thus

⊔
i(ci◦ li) =

idB. This proves that 1 implies 2.
To prove that (2) implies (1), consider any cone l(−) and cocone c(−) satisfying (32)

and (33). We show that l(−) is limiting for (xjk)j	k. Accordingly, let l′(−) be any other
cone. By Lemma 6.4, we have that

⊔
i(ci ◦ l′i) mediates from l′(−) to l(−). We must show
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that it is the unique mediating morphism. Suppose then that y also mediates between
the two cones, i.e. for all i : I, it holds that l′i = li ◦ y. Then indeed, using (33) and (24),

y = (
⊔
i

ci ◦ li) ◦ y =
⊔
i

(ci ◦ li ◦ y) =
⊔
i

ci ◦ l′i.

We have thus shown that statement (1) is equivalent to statement (2). The equivalence
of statements (2) and (3) follows by duality.

To complete the proof, we show that (32) and (33) imply that each of l(−) and
c(−) determines the other. To see that l(−) determines c(−), suppose that we have c(−)

and c′(−), both satisfying (32) and (33) with respect to l(−). We have shown that l(−)

is limiting, and that, for i : I, the family {xij : Ai → Aj}j : I is a cone for (xjk)j	k.
Then, by (32), ci and c′i are both the unique morphism ci : Ai → B from the cone
{xij : Ai → Aj}j : I to the limiting cone l(−). Thus indeed ci = c′i. The argument that
c(−) determines l(−) is dual. �

7 Conditions for algebraic compactness

In this section we define a notion of suitable internal category—one satisfying conditions
that are sufficient for algebraic compactness to hold. These conditions are convenient
for establishing the algebraic compactness of specific internal categories, e.g. pP.

Definition 7.1 (Suitable category) A suitable category is given by an internal cat-
egory K together with a pointed structure (|K|, α), on the class of objects, and a
family of pointed structures {(K(A, B), βA,B)}A,B : |K|, on the hom-classes, satisfying:
for all A, B, C : |K|, the hom-class K(A, B) is complete and the composition function
K(B, C) × K(A, B) → K(A, C) is bistrict; {idA : K(A, A)}A : |K| is a strict family; and
every I-bichain in K has a specified bilimit.

In this definition, by having a specified bilimit we mean that bilimits are given by a
morphism BichainsK � BiconesK in C, where BichainsK is the class of I-bichains in
K and BiconesK is the class of cone/cocone tuples (B, l(−), c(−)) for I-bichains.

Proposition 7.2 If K and L are suitable then so are Kop and K × L.

PROOF. The result for Kop is straightforward, using the duality inherent in the notions
of I-bichains and I-bilimits. For K× L, the required pointed structures are the products
of those of K and L, and the specified bilimits are obtained by pairing the specified
bilimits in K and L. �

The next result is the reason for introducing the notion of suitable category.

Proposition 7.3 Every suitable internal category is algebraically compact.
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The remainder of the section is devoted to the proof of Proposition 7.3, We first show
how to construct a bifree algebra for a single internal functor, and then, subsequently,
derive the full power of Definition 3.3 for families of internal functors. Accordingly, let
F be an endofunctor on a suitable category K.

Because (|K|, α) is pointed, there is, by Proposition 4.4, a unique strict map F (−)0 :
I � |K| such that F (F i0) = F si0. Here the notation is chosen to convey the idea
that one should think of F i0 as the i-th iterate of F applied to a zero object 0 in K.
However, this intuition is subject to two caveats: firstly i comes from I rather than from
N, so the notion of iterate is non-standard; secondly, we have not required that K have
a zero object (although the existence of one follows from Proposition 7.3, once proven).

As each (K(A, B), βA,B) is pointed, there exists, by Proposition 4.9, a unique bistrict
family x(−)(−) :

∏
i : I

∏
j : I K(F i0, F j0) satisfying

x si sj = F (xij) . (34)

Lemma 7.4 (F (−)0, x(−)(−)) is an I-bichain.

PROOF. For equation (29), define yi = xii. As x(−)(−) is bistrict, it follows from
Proposition 4.8 that y(−) :

∏
i : I K(F i0, F i0) is a strict family. By the k = 1 case

of Proposition 4.9, y(−) is thus the unique strict family satisfying ysi = F (yi). As
F (−)0 : I � |K| is strict and {idA : K(A, A)}A : |K| is a strict family, the composite
idF (−)0 :

∏
i : I K(F i0, F i0) is also a strict family. Clearly this satisfies idF s(i)0 = F (idF i0).

Thus indeed xii = yi = idF s(i)0.
For equation (30), define y(−) (−) (−), z(−) (−) (−) :

∏
i : I

∏
j : I

∏
k : I K(F i0, F k0) by

yijk = xjk ◦ xij and zijk = xmin(i,j,k) k ◦ xi min(i,j,k). We show below that y(−) (−) (−)

and z(−) (−) (−) are 3-strict and satisfy ys(i) s(j) s(k) = F (yijk) and zs(i) s(j) s(k) = F (zijk).
Hence, by the k = 3 case of Proposition 4.9, yijk = zijk. Thus indeed xjk ◦ xij =
xmin(i,j,k) k ◦ xi min(i,j,k).

We first show that y(−) (−) (−) is 3-strict. Fix j, k and consider the family
y(−) j k :

∏
i : I K(F i0, F k0). Then x(−) j is a strict family, because x(−) (−) is bistrict;

and {xjk ◦ (−) : K(F i0, F j0) → K(F i0, F k0)}i : I is a family of strict maps, because
composition in K is bistrict. So the composite xjk ◦ x(−) j = y(−) j k is a strict fam-
ily. By a similar argument, yi j (−) is a strict family, for all i, j. Lastly, fix i, k and
consider yi (−) k. We have that x(−) k and xi (−) are strict families, so the pairing
(x(−) k, xi (−)) :

∏
j : I(K(F j0, F k0)×K(F i0, F j0)) is a strict family. Also, composition in

K gives a family of bistrict functions {K(F j0, F k0) × K(F i0, F j0) → K(F i0, F k0)}j : I,
each of which is strict by Proposition 4.3. Therefore the composite family x(−) k◦xi (−) =
yi (−) k is strict. Thus y(−) (−) (−) is indeed 3-strict.

To prove the 3-strictness of z(−) (−) (−), we show that each of xmin(i,j,k) k and xi min(i,j,k)

is 3-strict, whence, by the strictness of composition, the composite xmin(i,j,k) k◦xi min(i,j,k) =
zijk is indeed 3-strict. We just give the argument for xmin(i,j,k) k as that for xi min(i,j,k)

is similar. The strictness of xmin(i,j,k) k in i (for fixed j, k) is obvious by the 3-strictness
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of min and the bistrictness of x(−) (−). Strictness in j is by the same argument. For
strictness in k, fix i, j. Consider the family {xmin(i,j,k1) k2

}k1 : I, k2 : I. This is obviously
bistrict. By Proposition 4.8, {xmin(i,j,k1) k2

}(k1,k2) : I×I is thus a strict family. Hence, by
composing with the strict k �→ (k, k), the family xmin(i,j,k) k is strict in k.

To show ys(i) s(j) s(k) = F (yijk), we have

ys(i) s(j) s(k) = xs(j) s(k) ◦ xs(i) s(j) def. of y(−) (−) (−)

= F (xjk) ◦ F (xij) by (34)
= F (xjk ◦ xij) F an internal functor
= F (yijk) def. of y(−) (−) (−).

Finally, to show zs(i) s(j) s(k) = F (zijk), we have

zs(i) s(j) s(k) = xmin(s(i),s(j),s(k)) s(k) ◦ xs(i) min(s(i),s(j),s(k)) def. of z(−) (−) (−)

= xs(min(i,j,k)) s(k) ◦ xs(i) s(min(i,j,k)) def. of min

= F (xmin(i,j,k) k) ◦ F (xi min(i,j,k)) by (34)

= F (xmin(i,j,k) k ◦ xi min(i,j,k)) F an internal functor

= F (zijk) def. of z(−) (−) (−).

�
Now we are in a position to construct the bifree algebra for F . Accordingly, let

(B, l(−), c(−)) be the specified bilimit of (F (−)0, x(−)(−)). Define morphisms: FB
b� B

and B
b′� FB in K by

b =
⊔
i

(csi ◦ Fli) b′ =
⊔
i

(Fci ◦ lsi) (35)

Lemma 7.5 b is an isomorphism with inverse b′.

PROOF. Using equations (22)–(24), (29), (32) and (33), we have:

b ◦ b′ = (
⊔
i

csi ◦ Fli) ◦ (
⊔
j

Fcj ◦ lsj) =
⊔
i

⊔
j

csi ◦ Fli ◦ Fcj ◦ lsj

=
⊔
i

csi ◦ Fli ◦ Fci ◦ lsi =
⊔
i

csi ◦ F (li ◦ ci) ◦ lsi

=
⊔
i

csi ◦ lsi =
⊔
i

ci ◦ li = idB

b′ ◦ b =
⊔
i

F ci ◦ lsi ◦ csi ◦ Fli =
⊔
i

F (ci ◦ li) = F (
⊔
i

ci ◦ li) = idFB.

�

36



We next show that b is the desired bifree F -algebra, by showing that it satisfies a
condition equivalent to bifreeness. Suppose that FA

a� A is an isomorphism in K.
Applying Proposition 4.4, define z(−) : I → K(A, A) to be the unique strict function
such that the diagram below commutes.

I
z(−) � K(A, A)

I

s

�

z(−)

� K(A, A)

a ◦ F (−) ◦ a−1

�

We say that a is special F -invariant if
⊔

i zi = idA.
The notion of special-invariant object was first introduced for cpo-enriched categories

in [8]. A generalisation to an axiomatic setting appears in [39], from where the following
result is taken. For completeness, we include a proof.

Lemma 7.6 For any isomorphism FA
a� A, the following are equivalent:

1. FA
a� A is special F -invariant.

2. FA
a� A is an initial F -algebra.

3. A
a−1

� FA is a final F -coalgebra.

PROOF. Given any F -algebra, c : FC � C, define yc
(−) : I � K(A, C) to be the

unique strict map satisfying yc
s(i) = c◦F (yc

i )◦a−1, given by Proposition 4.4. In particular,
ya

i = zi. Then
⊔

i y
c
i is an algebra homomorphism from (A, a) to (C, c) because, using

(22),

(
⊔
i

yc
i ) ◦ a = (

⊔
i

yc
s(i) ) ◦ a = c ◦ F (

⊔
i

yc
i ) ◦ a−1 ◦ a = c ◦ F (

⊔
i

yc
i ).

Thus,
⊔

i zi is an algebra homomorphism from a to a. So when a is the initial algebra,⊔
i zi = idA. Thus indeed (2) implies (1).

For the converse, we must show that the homomorphism
⊔

i y
c
i constructed above is

unique. Accordingly, let x : A � C in K be any homomorphism, i.e. c ◦ Fx = x ◦ a.
Then, by an easy calculation, the right-hand square below commutes. The left-hand
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square commutes by the definition of z(−).

I
z(−) � K(A, A)

x ◦ (−) � K(A, C)

I

s

�

z(−)

� K(A, A)

a ◦ F (−) ◦ a−1

�

x ◦ (−)
� K(A, C)

c ◦ F (−) ◦ a−1

�

By the bistrictness of composition K(A, C) × K(A, A) → K(A, C), the map x ◦ (−) is
strict. Hence x ◦ z(−) : I � K(A, C) is a strict map satisfying the defining property of
yc
(−), by whose uniqueness yc

i = x ◦ zi. Thus indeed, as a is special F -invariant,

x = x ◦
⊔
i

zi =
⊔
i

(x ◦ zi) =
⊔
i

yc
i .

The equivalence of statements (1) and (3) follows by duality. �

Lemma 7.7 The isomorphism FB
b� B is special F -invariant.

PROOF. Consider the diagram below.

I
c(−) ◦ l(−) � K(B, B)

I

s

� c(−) ◦ l(−) � K(B, B)

b ◦ F (−) ◦ b′

�

By (33), we have that
⊔

i ci ◦ li = idB. Thus, for b to be special F -invariant, it suffices
to show that c(−) ◦ l(−) is strict and makes the diagram above commute.

For strictness, the family {ci : K(Ai, B)}i : I is obtained as the composite of
{idAi : K(Ai, Ai)}i : I with the family {ci ◦(−) :K(Ai, Ai) � K(Ai, B)}i : I. The former is
a strict family because K is suitable, the latter is a family of strict functions because com-
position in K is bistrict. Thus the composite {ci :K(Ai, B)}i : I is a strict family. By a sim-
ilar argument {li : K(B, Ai)}i : I is a strict family. Thus {(ci, li) : K(Ai, B) × K(B, Ai)}i : I

is also a strict family. By composing this with the family {K(Ai, B) × K(B, Ai) →
K(B, B)}i : I of composition functions, each of which is strict by Proposition 4.3, we ob-
tain that {ci◦li : K(B, B)}i : I is a strict family. In other words, c(−)◦l(−) : I � K(B, B)
is a strict map.

For commutativity, we have:

b ◦ F (ci ◦ li) ◦ b′
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= (
⊔
j

csj ◦ Flj) ◦ F (ci ◦ li) ◦ (
⊔
j

Fcj ◦ lsj)

=
⊔
j

csj ◦ F (lj ◦ ci) ◦ F (li ◦ cj) ◦ lsj by Proposition 5.2

=
⊔
j

csj ◦ Fxij ◦ Fxji ◦ lsj by (32)

=
⊔
j

csj ◦ xsi sj ◦ xsj si ◦ lsj by (34)

=
⊔
j

(csj ◦ xsi sj) ◦
⊔
j

(xsj si ◦ lsj) by Proposition 5.2

=
⊔
j

(cj ◦ xsi j) ◦
⊔
j

(xj si ◦ lj) by (22)

= csi ◦ lsi by Lemma 6.3.

Thus b is indeed special F -invariant. �
At this point, we have, by Lemmas 7.6 and 7.7, that b is a bifree algebra. Thus we

have constructed a bifree algebra for the given internal functor F .
To complete the proof of Proposition 7.3, we must construct bifree algebras for

internal families of internal endofunctors, and we must show that these are preserved
by reindexing, as in Definition 3.3. The construction part is given by a straightforward
relativization of the proof above. Let {Fi : K → K}i : I be an internal family of internal
functors on K. Then this gives rise to a single internal functor on the internal category
I∗(K) in the slice C/I, obtained from K by reindexing. However, the definition of
suitable category is plainly preserved by reindexing, thus I∗(K) is a suitable internal
category in C/I. The construction given above, when carried out in C/I, thus produces
a bifree algebra for the endofunctor {Fi : K → K}i : I on I∗(K). This unwinds to give a
family {ai : K(FiAi, Ai)}i : I of bifree algebras in K, as required by Definition 3.3.

It remains to show that the constructed families of bifree algebras are preserved by
reindexing. For this, we use the following observation. Given a family {Fi : K → K}i : I ,
where I is an arbitrary index object, the family {ai : K(FiAi, Ai)}i : I constructed above
has the following internal characterization. For each i : I, the morphism ai : K(FiAi, Ai)
is uniquely determined by its construction using the specified bilimit of the I-bichain
(F (−)

i 0, xi(−)(−)). Moreover the I-bichain is determined by Fi. Thus, internally in
C. it holds that, for all i : I, the morphism ai equals a map determined uniquely by
Fi and the suitability structure on K. This characterization is trivially preserved by
reindexing. Thus the constructed families of bifree algebras are preserved by reindexing.
This completes the proof of Proposition 7.3.
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8 Properties of suitable categories

In this section we establish useful properties of the process of constructing bifree algebras
in suitable categories, making use of the constructions of Section 7. The results in this
section will be used heavily in Section 12.

The suitablility of a category K is witnessed by the following data in C: the pointed
structure (|K|, αK), the family {(K(A, B), βK

A,B)}A,B : |K| of pointed structures, and the
bilimit-finding morphism bilimK : BichainsK � BiconesK. We henceforth consider a
suitable categoriy as being given by a 4-tuple specifying this data,

(K, αK, {βK
A,B)}A,B : |K|, bilimK),

although we shall normally elide the additional structure, just writing K.
The data (K, αK, {βK

A,B)}A,B : |K|, bilimK) determines the construction of bifree alge-
bras in the proof of Proposition 7.3. For any internal functor F : K → K, we refer to
the bifree algebra, FA

a� A, constructed for it as the canonical bifree algebra for
F . Also, given a functor G : L × K → K, where L is any internal category, we write
G† : L → K for the functor, constructed by Proposition 3.4, that finds canonical bifree
algebras parametrically.

Any internal functor F : K → L, between arbitrary internal categories, preserves
I-bichains, i.e. if (A(−), x(−)(−)) is an I-bichain in L then (FA(−), Fx(−)(−)) is an I-
bichain in L. Similarly, it preserves cones and cocones, hence bicones. Furthermore,
by (32) and (33), when hom-classes in K and L are complete, F preserves bilimits of
bichains: i.e. if (B, l(−), c(−)) is a bilimit for (A(−), x(−)(−)) then (FB, F l(−), F c(−)) is a
bilimit for (FA(−), Fx(−)(−)). On the other hand, when K and L are suitable, there is no
reason for F to map specified bilimits to specified bilimits. It is useful to identify a strict
notion of functor between suitable categories that does preserve all specified structure
up to equality.

Definition 8.1 (Suitable functor) An internal functor F : K → L, between suitable
categories, is suitable if: F : (|K|, αK) � L(|L|, αL) is strict;
FAB : (K(A, B), βK

AB) � (L(FA, FB), βL
FA FB) is strict, for all A, B : |K|; and the dia-

gram below commutes in C,

BichainsK
F � BichainsL

BiconesK

bilimK

�

F
� BiconesL ,

bilimL

�

using the preservation of bicones and bichains discussed above.
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The benefit of requiring suitable functors to preserve structure up to equality is that
it allows one to avoid coherence conditions that would otherwise arise when comparing,
e.g., bifree algebras, between suitable categories. The lemmas below develop several
such results.

Lemma 8.2 (Uniformity) Suppose K and K′ are suitable internal categories, and
there is a commuting diagram of internal functors,

K
F � K

K′

H

�

G
� K′ ,

H

�

with H suitable. Let FA
a� A be the canonical bifree algebra of F , and let GB

b� B
be the canonical bifree algebra of G. Then B = HA and b = Ha.

PROOF. By following through the explicit construction of bifree algebras given in
Section 7. Specifically, one verifies easily that G(−)0 : I � |L| is given by H ◦ F (−)0
and that the associated bichain xG

ij is equal to H(xF
ij). The canonical bifree algebra of

F is given as the bilimit of (F (−)0, xF
(−)(−)), with the algebra map FA

a� A defined

(as b) in (35). The canonical bifree algebra GB
b� B of G is defined similarly, with

B the the bilimit of (G(−)0, xG
(−)(−)). That B = HA follows from H preserving specified

bilimits. That b = Ha follows from the definition of these maps using (35). �

Lemma 8.3 (Parametrized uniformity) Suppose K and K′ are suitable internal cat-
egories, and there is a commuting diagram of internal functors,

L × K
F � K

L′ × K′

J × H

�

G
� K′ ,

H

�

with H suitable. Then G† ◦ J = H ◦ F † : L → K.

PROOF. It is enough to prove the result in the case L′ = L and with J the identity
functor, as the general case then follows by an easy application of Proposition 3.5.
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Accordingly, suppose we have internal functors F : L × K → K and G : L × K′ → K′ and
suitable H : K → K′. We must show that G† = H ◦ F †. For any object C of L, write
aC for the canonical bifree algebra of F (C,−) : K → K, and bC for the canonical bifree
algebra of G(C,−) : K′ → K′. By Lemma 8.3, bC = H(aC). Thus H ◦ F † satisfies the
characterizing property of G†, as stated in Proposition 3.4. Thus indeed G† = H ◦ F †.
�

Canonical bifree algebras are also preserved by taking opposite categories.

Lemma 8.4 If F : K → K is an internal endofunctor on a suitable internal cate-
gory, with canonical bifree algebra FA

a� A, then the canonical bifree algebra for

F op : Kop → Kop is F opA
a−1

� A.

PROOF. By the construction of bifree algebras in Section 7 and the definition of the
suitability structure on Kop , see Proposition 7.2. �

Lemma 8.5 Suppose that G : L × K → K is an internal functor where K is suit-
able. Write Gop : Lop × Kop → Kop for the evident opposite functor. Then (G†)op =
(Gop)† : Lop → Kop.

PROOF. For any object B of L, let aB : G(B, AB) � AB be the canonical bifree
algebra of G(B,−) : K → K. Thus G† : L → K is the unique functor with G†(B) = AB

such that aB gives the components of a natural transformation from G((−), A(−)) : L →
K to G†. By Lemma 8.4, the canonical bifree algebra of Gop(B,−) : Kop → Kop is
a−1

B : Gop(B, AB) � AB in Kop . Thus (Gop)† : Kop → Kop is the unique functor with
(Gop)†(B) = AB such that a−1

B is a natural transformation from Gop((−), A(−)) : Kop →
Kop to (Gop)†. This property is also satisied by (G†)op : Kop → Kop . Thus indeed
(G†)op = (Gop)†. �

To solve recursive domain equations involving functors of mixed variance, it is con-
venient to replace such functors with derived covariant functors on internal categories
of the form Kop ×K. For notational convenience, we shall write K̂ as an abbreviation for
Kop × K. If K is suitable category then, by Proposition 7.2, so is K̂. Given an internal
functor F : K → L we write F̂ for the internal functor (F op × F ) : K̂ → L̂. If F is a
suitable functor then so is F̂ .

We shall be interested in internal functors F : K̂ × · · · × K̂ → K̂ that satisfy an
important symmetry condition, cf. [3]. Write § : (K̂)op → K̂ for the internal functor
defined by

§(A, B) = (B, A) §(f, g) = (g, f). (36)

Lemma 8.6 The functor § : K̂op → K̂ is suitable.

PROOF. Immediate from the definitions of the suitability structure on opposite and
product categories. �
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Definition 8.7 (Symmetric functor) An internal functor F : K̂k → K̂ is said to be
symmetric if the diagram below commutes.

(K̂op)k F op
� K̂op

K̂k

§k

�

F
� K̂

§
�

Note that § ◦ § is the identity functor of K̂. Thus, if we write F = 〈F−, F+〉 for the
components of a symmetric functor then each of F− and F+ determines the other, e.g.
we have F− = § ◦ F+ ◦ §k. Trivially, for any G : K → K, it holds that Ĝ : K̂ → K̂ is
symmetric.

Suppose that K is suitable and F : K̂k×K̂ → K̂ is a symmetric internal functor. Then
F † : K̂k → K̂ maps any object B of K̂k to the canonical bifree algebra of the internal
endofunctor F ( B,−) : K̂ → K̂. Just from the fact that F † parametrically finds bifree
algebras, it follows that F † is naturally isomorphic to a symmetric functor, see [3, §6.4].
However, better than this, by the properties established above, we have:

Lemma 8.8 For any symmetric internal functor F : K̂k × K̂ → K̂, where K is suitable,
the bifree-algebra finding functor F † : K̂k → K̂ is symmetric.

PROOF. By the symmetry of F , the left-hand diagram below commutes.

(K̂op)k × K̂op F op
� K̂op (K̂op)k (F op)†� K̂op

K̂k × K̂

§k × §
�

F
� K̂

§
�

K̂k

§k

�

F †
� K̂

§
�

Also § : K̂op → K̂ is a suitable functor, so the right-hand diagram commutes, by Lemma 8.3.
Moreover, by Lemma 8.5, (F op)† = (F †)op . Thus the right-hand diagram expresses the
symmetry of F †. �

9 Suitability of pP

We complete the proof of Theorem 1 by establishing the result below.

Proposition 9.1 If Axiom 1 holds then the internal category pP is suitable.
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The entire section is devoted to the proof of this proposition.
In this section, for the first time in the proof of Theorem 1, we invoke Axiom 1. As

we use it extensively, we assume Axiom 1 for the entirety of the section.
The lemma below, which gives a surprisingly useful interpolation condition for es-

tablishing well-completeness, is taken from [40], where an outline proof is given. For
completeness, we include a full proof here.

Lemma 9.2 An object X of C is well-complete if

C |= ∃p : Σ. (X inhabited → p) ∧ (p → X well-complete) ,

where “X inhabited” means ∃x : X. �.

PROOF. Suppose that X satisfies the condition. We use Proposition 2.5(1) to show
that X is well-complete. Reasoning in C, we have p : Σ such that X inhabited → p
and p → X well-complete. Take any functions q : F → Σ and f : (I�q ◦ ι) → X. We
must show that there exists a unique f ′ : (F�q) → X satisfying f ′(ι(i)) = f(i) for all
i : (I�q ◦ ι).

Define h : (I � q) → Σ by h(i) = p. Then, given any i : (I � q ◦ ι), we have f(i) : X, so
X is inhabited, whence p holds. Therefore h(i) = �, for all i : (I�q ◦ ι). By Axiom 1, Σ
is well-complete, so there exists a unique h′ : (F�q) → Σ satisfying h′(ι(i)) = h(i) for all
i : (I�q). Clearly this equation is satisfied by both h′ : i′ �→ p and h′ : i′ �→ �. Therefore,
given i′ : (F � q), we have p = h′(i′) = �. This shows that F � q inhabited implies that p
holds.

Consider any i′ : (F�q). Given i′, we have that p holds, so X is well-complete. Define
gi′ : (F�q) → X to be the unique function such that gi′(ι(i)) = f(i). The notation is
chosen to emphasise that the definition of gi′ depends on the existence of i′.

At last, define f ′ : (F�q) → X by f ′(i′) = gi′(i′). We must show that this is the
unique function satisfying f ′(ι(i)) = f(i) for all i : (I � q ◦ ι). To see that the equation
holds, take any i : (I � q ◦ ι). Then indeed f ′(ι(i)) = gι(i)(ι(i)) = f(i). For uniqueness,
suppose that f ′′ : (F�q) → X satisfies f ′′(ι(i)) = f(i), for all i : (I�q ◦ ι). Then, for any
i′ : (F�q), we have f ′′ = gi′ , by the uniqueness of gi′ . Thus indeed f ′′(i′) = gi′(i′) = f ′(i′).
�

By relativizing the above lemma to the slice category C/PSU (where U is the uni-
versal object of C), it can be used internally to establish the well-completeness of any
X :PSU .

Lemma 9.3 The morphism
⋃

: L(PSU) � PSU restricts to a morphism⋃
: L|pP| � |pP|, giving a pointed structure (|pP|,

⋃
).

PROOF. We first show that
⋃

restricts to give a morphism L|pP| � |pP|, i.e. if
e is a Σ-subterminal subset of U whose only element, if it exists, is a predomain then⋃

e is a predomain. Suppose then that e is Σ-subterminal and X ∈ e implies X is a
predomain.
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Trivially
⋃

e is small. We use Lemma 9.2 to show that
⋃

e is well-complete, taking
p to be the proposition “e inhabited”, which is in Σ because e is Σ-subterminal. The
condition “(

⋃
e) inhabited → p” holds trivially. To show that “p →

⋃
e well-complete”

holds, suppose e is inhabited. Then, because e is subterminal, e = {X} for some
predomain X. Thus

⋃
e = X which is a predomain, hence well-complete.

It remains to show that
⋃

: L|pP| � |pP| satisfies equations (6) and (7) for being
an Eilenberg-Moore algebra. The unit law (6) is trivial. For the multiplication law,
(7), we must show that

⋃
(
⋃

E) =
⋃

({
⋃

(e) | e ∈ E}) for any E : L2|pP|. To show⋃
(
⋃

E) ⊆
⋃

({
⋃

(e) | e ∈ E}), suppose x : U is such that x ∈
⋃

(
⋃

E). Then there
exist X, e such that x ∈ X ∈ e ∈ E. Thus x ∈

⋃
(e), whence x ∈

⋃
({

⋃
(e) | e ∈ E}).

Conversely, if x ∈
⋃

({
⋃

(e) | e ∈ E}), then there exists e ∈ E with x ∈
⋃

(e), whence
there exists X such that x ∈ X ∈ e. Thus indeed x ∈

⋃
(
⋃

E). �

Lemma 9.4 For A, B : |pP|, it holds that pP(A, B) is pointed and complete.

PROOF. We have pP(A, B) = A ⇀ B ∼= LBA. The latter object is pointed because
B is and pointed objects are closed under internal powers (as a special case of internal
products). As Axiom 1 holds, we have that LBA is complete by the cartesian closure of
P and its closure under lifting L. �

It is convenient to have an explicit description of the pointed structure on A ⇀ B.
This is given by βAB : L(A ⇀ B) → (A ⇀ B) defined by

βAB(e)(x) = y iff there exists f ∈ e with f(x) = y .

N.b. here we use = to mean strict equality, see Section 2.

Lemma 9.5 The composition map pP(B, C) × pP(A, B) � pP(A, C) is bistrict, for
all A, B, C : |pP|.

PROOF. To show strictness in the first argument, take any e : L(B ⇀ C) and f :A ⇀ B.
We must show that βBC(e) ◦ f = βAC({g ◦ f | g ∈ e}). But, for any x : A, we indeed
have:

(βBC(e) ◦ f)(x) = z iff there exists g ∈ e such that g(f(x)) = z

iff βAC({g ◦ f | g ∈ e})(x) = z .

For strictness in the second argument, take any g : B ⇀ C and e : L(A ⇀ B). A similar
argument, shows that g ◦ βAB(e) = βAC({g ◦ f | f ∈ e}) as required. �

Lemma 9.6 {idA}A : |pP| is a strict family.

PROOF. Because Axiom 1 holds, (|pP|,
⋃

) is pointed, by Lemma 9.3. We must show
equation (8), i.e. that id⋃

e = β⋃
e

⋃
e({idA | A ∈ e}), for all e : L|pP|. Take any e : L|pP|
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and x ∈
⋃

e. Then e = {A} for some A with x ∈ A. So β⋃
e

⋃
e({idA | A ∈ e})(x) =

idA(x) as required. �
It remains to establish that standard I-bichains in pP have specified bilimits. For

this, it is convenient to relate pP to the internal category P defined in Section 3. Recall
that Axiom 1 implies that P carries a monad (L, {·},

⋃
) internalizing L. Moreover,

internally in C, the internal Kleisli category PL is isomorphic to pP. Thus there is an
internal full and faithful comparison functor K : pP → PL, where PL is the internal
Eilenberg-Moore category for the monad. As for any monadic functor, the internal
forgetful functor U : PL → P creates limits. Thus PL is internally small-complete,
because P is.

To obtain bilimits for I-bichains in pP, it suffices, by the limit-colimit coincidence,
to construct limits for the diagrams (xij)i	j derived from I-bichains. We show that
arbitrary diagrams of shape (I,�) in pP have limits.

Lemma 9.7 The comparison functor K : pP → PL creates (up to isomorphism) limits
for diagrams of shape (I,�).

PROOF. Suppose we have a diagram (xij : Ai ⇀ Aj)i	j in pP. Its image under K :
pP → PL is a diagram (xij : LAi → LAj)i	j , whose limit in PL has underlying set:

B = {ã(−) :
∏
i : I

LAi | ∀ i, j : I. i � j implies ãj = xij(ãi)} .

By Axiom 1, the dominance Σ is complete. Thus we can define a subobject

B′ = {ã(−) : B |
⊔
i

Σ
(ãi ↓)},

where we write ãi ↓ for the Σ-property ∃a : Ai. a ∈ ãi, as in Proposition 4.1.
Define f : B → LB′ and g : LB′ → B by:

f(ã(−)) = {ã(−) |
⊔
i

Σ
(ãi ↓)} (g(̃b))i =

⋃
{ãi | ã(−) ∈ b̃}

We show that f and g are mutual inverses.
For the identity g◦f = idB, we have (g(f(ã(−))))i =

⋃
{ãi |

⊔Σ
j (ãj ↓)}. So we must

show that ãi =
⋃
{ãi |

⊔Σ
j (ãj ↓)}. We establish subset inclusions in each direction.

Clearly ãi ⊇
⋃
{ãi |

⊔Σ
j (ãj ↓)}. For the converse, it suffices to show that, for all i : I,

if ãi ↓ then
⊔Σ

j (ãj ↓). By the definition of B, we have that i � j implies ãi = xji(ãj),
where xji is strict. Thus, by Proposition 4.1, if i � j and ãi ↓ then ãj ↓; i.e. i � j implies
ãi ↓ = ãi ↓ ∧ ãj ↓ in Σ. Now take any i : I. Then

ãi ↓ =
⊔
j

Σ
(ãmin(i,j) ↓) by (20)
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=
⊔
j

Σ
(ãmin(i,j) ↓ ∧ ãj ↓) as min(i, j) � j

=
⊔
j

Σ
(ãmin(i,j) ↓) ∧

⊔
j

Σ
(ãj ↓) by (23) and (24)

= ãi ↓ ∧
⊔
j

Σ
(ãj ↓) by (20).

But this equality states that ãi ↓ implies
⊔Σ

j (ãj ↓), as required.
To show that f ◦ g = idLB′ , for any b̃ :LB′, we have that

f(g(̃b)) = { {
⋃

{ãi | ã(−) ∈ b̃}}i : I |
⊔
i

Σ
( (

⋃
{ãi | ã(−) ∈ b̃})↓) }. (37)

Given any b̃ : LB′, suppose that ã(−) ∈ b̃. Then
⋃
{ãi | ã(−) ∈ b̃} = ãi and also

⊔Σ
i (ãi ↓)

because ã(−) : B′. So, by (37), it is clear that b̃ ⊆ f(g(̃b)).
For the converse inclusion, suppose ã(−) ∈ f(g(̃b)). Then, by (37), we have: ãi =⋃

{ã′i | ã′(−) ∈ b̃}. It follows that, ãi ↓ implies b̃ ↓, for all i : I. In other words, ãi ↓ =

ãi ↓ ∧ b̃↓ in Σ. It also follows that ã′(−) ∈ b̃ implies ã′i = ãi for all i : I. Thus b̃↓ implies

ã(−) ∈ b̃. But indeed b̃↓ because:

b̃↓ = b̃↓ ∧
⊔
i

Σ
(ãi ↓) because ã(−) : B

′

=
⊔
i

Σ
(̃b↓ ∧ ãi ↓) by (24)

=
⊔
i

Σ
(ãi ↓) as ãi ↓ = ãi ↓ ∧ b̃↓

= � because ã(−) : B
′.

So indeed f(g(̃b)) ⊆ b̃, and hence f ◦ g = idLB′ .
Next we show that g is strict, i.e. is a morphism in PL. The pointed structure on B

is β : LB → B defined by
β(̃b)i =

⋃
{ãi | ã(−) ∈ b̃} .

Given E : L2B, we show that g(
⋃

E) = β({g(̃b) | b̃ ∈ E}) by:

β({g(̃b) | b̃ ∈ E})i =
⋃

{g(̃b)i | b̃ ∈ E} def. of β

=
⋃

{
⋃

{ãi | ã(−) ∈ b̃} | b̃ ∈ E} def. of g

=
⋃

{ãi | ã(−) ∈
⋃

E}
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= g(
⋃

E)i def. of g.

Thus g is indeed strict.
As U : PL → P is a monadic functor, it reflects isomorphisms. Thus g is an iso-

morphism in PL (with f , which is therefore strict, its inverse). It follows that the cone
(πi◦g : LB′ → LAi)i:I is limiting for (xij : LAi → LAj)i	j , in PL. Because K : pP → PL

is full and faithful, the above cone is the image of a limiting cone q(−) :
∏

i:I B′ ⇀ Ai

for the diagram (xij : Ai ⇀ Aj)i	j in pP. �

Corollary 9.8 The internal category pP has limits for (I,�) diagrams.

PROOF. Immediate from Lemma 9.7, because PL is small-complete. �
It follows fom the proof above that there is a morphism in C mapping I-opchains in

pP to their limiting cones. Indeed, this follows by unwinding the proof, which constructs
the limit-finding morphism from that for PL, which is, in turn, obtained from that for
P, which exists by the internal version of Proposition 2.5. Moreover, the morphism
mapping I-opchains to their limiting cones determines a morphism mapping I-bichains
to their bilimits, because l(−) determines c(−) in Proposition 6.2. The lemma below
summarises this.

Lemma 9.9 Every I-bichain in pP has a bilimit and the operation mapping I-bichains
to bilimits is given by a morphism in C.

Taken together, Lemmas 9.3–9.9 prove Proposition 9.1, and hence Theorem 1.
We remark that a similar proof to the above can also be used to establish the

suitability, and hence algebraic compactness, of the internal Eilenberg-Moore category,
PL. For this result, the analogue of Lemma 9.3 is slightly more complicated, because of
the need to incorporate algebra structures on objects. On the other hand, Lemma 9.7
disappears, because PL is small-complete.

10 The language FPC

In this section, we give a brief overview of Plotkin’s call-by-value recursively typed
λ-calculus, FPC, introduced in [33]. For full details see [3].

We use X, Y, . . . to range over type variables, and σ, τ, . . . to range over types, which
are given by:

σ ::= X | σ + τ | σ × τ | σ → τ | µX.σ.

Here the prefix µX binds X. We use Θ, . . . to range over finite sequences of distinct
type variables. We write Θ � σ to mean that all free type variables in σ appear in Θ.
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Γ, x : σ � x : σ

Γ � t : σ

Γ � inl(t) : σ + τ

Γ � t : τ

Γ � inr(t) : σ + τ

Γ � s : σ1 + σ2 Γ, x1 : σ1 � t1 : τ Γ, x2 : σ2 � t2 : τ

Γ � case(s) of x1.t1 or x2.t2 : τ

Γ � s : σ Γ � t : τ

Γ � (s, t) : σ × τ

Γ � t : σ × τ

Γ � fst(t) : σ

Γ � t : σ × τ

Γ � snd(t) : τ

Γ, x : σ � t : τ

Γ � λx. t : σ → τ

Γ � t : σ → τ Γ � s : σ

Γ � t(s) : τ

Γ � t : σ[µX.σ/X]

Γ � intro(t) : µX.σ

Γ � t : µX.σ

Γ � elim(t) : σ[µX.σ/X]

Figure 1: Typing rules for FPC.

t � v

inl(t) � inl(v)

t � v

inr(t) � inr(v)

s � inl(v1) t1[v1/x1] � v

case(s) of x1.t1 or x2.t2 � v

s � inr(v2) t2[v2/x2] � v

case(s) of x1.t1 or x2.t2 � v

t1 � v1 t2 � v2

(t1, t2) � (v1, v2)

t � (v1, v2)

fst(t) � v1

t � (v1, v2)

snd(t) � v2

λx. t � λx. t

t � λx. t′ s � v′ t′[v′/x] � v

t(s) � v

t � v

intro(t) � intro(v)

t � intro(v)

elim(t) � v

Figure 2: Evaluation rules for FPC.
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We use x, y, . . . to range over term variables, and s, t, . . . to range over terms, which
are given by:

t ::= x | inl(t) | inr(t) | case(s) of x1.t1 or x2.t2 | (s, t) | fst(t) | snd(t) |
λx. t | s(t) | intro(t) | elim(t).

We use Γ, . . . to range over sequences of the form x1 : σ1, . . . , xk : σk with all xi distinct
and all σi closed. For closed types σ, we write Γ � t : σ to mean that t is a well-formed
term of type σ relative to Γ, where the rules for deriving such typing assertions are given
in Fig. 1. We view a term as uniquely determining its typing derivation. In order to
achieve this formally, one should properly include type information in the terms inl(t),
inr(t), intro(t) and λx. t, see [3]. We consider such type information as being there
implicitly, but to ease clutter we never write it.

To define a call-by-value operational semantics for FPC, we first specify the values,
closed terms v, . . . of the form:

v ::= inl(v) | inr(v) | (v1, v2) | λx. t | intro(v).

The call-by-value evaluation relation t � v between closed terms t and values v is defined
in Fig. 2. Importantly, if � t : σ and t � v then � v : σ. We say that a closed term t
converges, notation t⇓, if there exists (a necessarily unique) v such that t � v.

In Section 14, we shall need to do some simple programming in FPC. To facilitate
this, we define various useful datatypes and operations upon them.

Basic datatypes, including a type of natural numbers, are encoded by:

empty = µX. X

unit = empty → empty

bool = unit + unit

nat = µX. unit + X .

The standard operations on such datatypes are easily defined: a canonical element ∗ of
unit; the truth values tt and ff in bool along with an associated if . . . then . . . else . . .
construction; numerals n : nat, for each n ∈ N, successor and predecessor functions
succ, pred : nat → nat, and an equality predicate of type nat×nat → bool. Crucially,
FPC also supports the recursive definition of functions. Given a term Γ, f : σ →
τ, x : σ � t : τ , write rec f =λx. t for the term δ(intro(δ)), where

δ = λw. (λz. λx. t [ z (intro(z)) / f ] ) (elim(w)) .

Then, by giving w the type µX. (X → (σ → τ)), one derives that

Γ � rec f =λx. t : σ → τ .

Moreover, rec f =λx. t enjoys the following operational behaviour:

rec f =λx. t � λx. t [ rec f =λx. t / f ] .

Thus rec f =λx. t indeed implements the recursive definition of functions.
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11 The interpretation of FPC

In this Section, we apply Theorem 1 to obtain an interpretation of FPC, in the category
pP. It is convenient to first define an interpretation in the internal category pP and then
to extract from that the interpretation in pP. Moreover, although the interpretation
in pP could be obtained using Theorem 1 alone, having developed the technology, it
is convenient to make direct use of the properties of suitable categories established in
Sections 7 and 8.

To interpret FPC in pP, we need pP to be closed under +, so henceforth, for the
remainder of the paper, we assume Axiom 2.

To define the interpretation in pP, we first interpret types. To apply algebraic
compactness it is necessary to interpret open types as internal functors. Moreover,
because of the bivariance of ⇀, they must be interpreted as internal functors on the
internal category pPop×pP, for which we write p̂P, as in Section 8. The functors will
all be symmetric in the sense of Definition 8.7. Indeed, an open type σ is interpreted,
relative to any Θ = X1, . . . , Xk such that Θ � σ, as a symmetric internal functor,

([Θ � σ]) : p̂P
k → p̂P .

The interpretation is defined by induction on the structure of σ. To give the definition,
we write A for an object ((A−

1 , A+
1 ), . . . , (A−

k , A+
k )) of p̂P

k
.

([X1, . . . , Xk � Xi])+ A = A+
i

([Θ � σ1 + σ2])+ A = ([Θ � σ1])+ A + ([Θ � σ2])+ A

([Θ � σ1 × σ2])+ A = ([Θ � σ1])+ A × ([Θ � σ2])+ A

([Θ � σ1 → σ2])+ A = ([Θ � σ1])− A ⇀ ([Θ � σ2])+ A

([Θ � µX.σ′]) = ([Θ, X � σ′])† ,

using the internal functors on pP identified in Section 3. Note that, where the above
clauses only define the ([Θ � σ])+ components, the ([Θ � σ])− components are deter-
mined by symmetry. Also, where the definition is specified on objects, it is extended
to morphisms in the obvious way, using the action of the internal functors appearing
in the definition. For non-recursive types σ, the symmetry of ([Θ � σ]) is immediate by
construction. For recursive types, it holds by Lemma 8.8.

The interpretation of types satisfies a substitution lemma, cf. [3, Lemma 8.4.4]. How-
ever, because of the direct interpretation of recursive types using (·)†, we can strengthen
the isomorphism of loc. cit. to an equality.

Lemma 11.1 For open types Θ � τ1 , . . . , Θ � τk and X1, . . . , Xk � σ,

([ Θ � σ[τ/ X] ]) = ([ X � σ ]) ◦ 〈([Θ � τ1]), . . . , ([Θ � τk])〉 .
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PROOF. A straightforward induction on types, using Proposition 3.5 in the case for
recursive types. �

For closed types, the functor ([� σ]) : 1 → p̂P, where 1 is the terminal internal
category, corresponds, by symmetry, to an object in p̂P of the form (A, A). We write
([σ]) for the corresponding object A of pP.

For a closed recursive type, µX.σ, we have that ([� µX.σ]), i.e. the object
(([µX.σ]), ([µX.σ])), carries the canonical bifree algebra structure for the symmetric func-
tor ([X � σ]) : p̂P → p̂P. The bifree algebra is an isomorphism,

(εµX.σ, ιµX.σ) : ([X � σ]) (([µX.σ]), ([µX.σ])) � (([µX.σ]), ([µX.σ])) ,

in p̂P. By Lemma 11.1, this gives

(εµX.σ, ιµX.σ) : ([� σ[µX.σ/X]]) � (([µX.σ]), ([µX.σ])) ,

which unpacks to give isomorphisms in pP

ιµX.σ : ([σ[µX.σ/X]]) � ([µX.σ]) (38)
εµX.σ : ([µX.σ]) � ([σ[µX.σ/X]]) . (39)

Moreover, as ([X � σ]) is symmetric and § is a suitable functor, it follows from Lem-
mas 8.2 and 8.4 that ιµX.σ = εµX.σ

−1.
To interpret the terms of FPC in pP, a context Γ = x1 : σ1, . . . , xk : σk is interpreted

as the object ([Γ]) = ([σ1]) × · · · × ([σk]) of pP. A term Γ � t : σ is interpreted as a
morphism ([t])Γ from ([Γ]) to ([σ]) in pP, i.e. as a point ([t])Γ : 1 � pP(([Γ]), ([σ])) in C,
or equivalently as an internal partial function ([t])Γ : ([Γ]) ⇀ ([σ]). As is standard, the
definition of ([t])Γ is by induction on the structure of t. To give the definition, we use
evident notation for application of partial functions, and we use Kleene equality �, see
Section 2. Moreover, we extend the pairing and injection functions to act strictly on
possibly undefined expressions; i.e. the result is defined (if and) only if all arguments are
defined. Then, internally in C, we understand ([t])Γ : ([Γ]) ⇀ ([σ]) to be the least-defined3

partial function satisfying, for d : ([Γ]):

([xi])Γ(d1, . . . , dk) = di

([inl(t)])Γ(d) � inl(([t])Γ(d))

([inr(t)])Γ(d) � inr(([t])Γ(d))

([case(s) of x1.t1 or x2.t2])Γ(d) � [[t1]]Γ,x1 : σ1(d, c) if [[s]]Γ(d) = inl(c)

([case(s) of x1.t1 or x2.t2])Γ(d) � [[t2]]Γ,x2 : σ2(d, c) if [[s]]Γ(d) = inr(c)
3The qualification “least-defined” is inserted to ensure that ([case(s) of x1.t1 or x2.t2])Γ(�d) is defined

only if [[s]]Γ(�d) = inl(c) or [[s]]Γ(�d) = inr(c). This could alternatively be achieved by using a more complex

single clause to define ([case(s) of x1.t1 or x2.t2])Γ(�d).
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([(s, t)])Γ(d) � (([s])Γ(d), ([t])Γ(d))

([fst(t)])Γ(d) � π1(([t])Γ(d))

([snd(t)])Γ(d) � π2(([t])Γ(d))

([λx. t])Γ(d) = (c �→ ([t])Γ,x : σ(d, c))

([s(t)])Γ(d) � ([s])Γ(d)(([t])Γ(d))

([intro(t)])Γ(d) � ιµX.σ(([t])Γ(d))

([elim(t)])Γ(d) � εµX.σ(([t])Γ(d)).

Here we are assuming that the types of subterms are as in the typing rules of Fig. 1.
Note that the above definition defines ([t])Γ by an external induction on the structure of
t as the internal partial function determined by the above internal (Kleene) equalities.
When Γ is empty (i.e. t is closed), we simply write ([t]) for ([t])Γ.

Having now obtained the internal interpretation of FPC, in the internal category
pP, we extract an external “real world” interpretation in the category pP. A closed
type σ is interpreted as an object [[σ]] of pP, by defining [[σ]] as the pullback below.

[[σ]] � �U

1
�

([σ])
� |pP|� � PSU ,

γU

�

(40)

where γU is as in (1) from Section 2. The object [[σ]] is indeed a predomain by the
definition of |pP| as a subobject of PSU . Similarly, a context Γ is interpreted as an
object [[Γ]], by replacing σ with Γ in the diagram above. We interpret a term
Γ � t : σ as a morphism [[t]]Γ : [[Γ]] ⇀ [[σ]] in pP, by transposing ([t])Γ : pP(([Γ]), ([σ])), i.e.
([t])Γ : ([Γ]) ⇀ ([σ]), in the evident way. When Γ is empty, we write simply [[t]] :1 ⇀ [[σ]].

We remark that there is another way of viewing the above external interpretation
of FPC. As for any internal category, the internal structure of pP, used to define
the internal interpretation of FPC, corresponds to external structure on the fibration
Ext(pP) → C, see Section 3. By the definition of externalization[17, §7.3], the fibre
Ext(pP)1 over the terminal object 1 is given by a category whose objects are points
A : 1 � |pP|. Then, by Proposition 3.2(2), there is an equivalence of categories
I : Ext(pP)1 → pP (essentially defined using the pullback (40) above) and
J : pP → Ext(pP)1. The various internal functors on pP, e.g. those given in (3)–(5),
directly correspond to functors on Ext(pP)1 and hence, via I and J , determine functors:

pP × pP
×′
� pP

pPop × pP
⇀′
� pP
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pP × pP
+′
� pP .

Using these functors, one can inductively define an external interpretation of types

[[Θ � σ]] : (pPop × pP)k → pPop × pP,

using clauses analogous to those of the internal definition. Importantly, in the case for
recursive types

[[Θ � µX.σ′]] = [[Θ, X � σ′]]†
′
,

the operation (·)†′ , determined by (·)† on pP, finds external bifree algebras for each
functor X �→ [[Θ, X � σ′]]( A, X) (this follows by unwinding the external meaning of
Proposition 3.4). In an exactly analogous way, one can also define an interpretation in
pP of FPC terms t, by induction on the structure of t, using the above interpretation
of types. Because we have used the internal structure of pP to determine the external
structure on pP applied in these definitions, the above inductive method of interpreting
terms in pP gives rise to the same interpretation [[t]]Γ : [[Γ]] ⇀ [[σ]] as defined above.
Thus we have shown that [[t]]Γ : [[Γ]] ⇀ [[σ]] can be given a direct inductive definition in
terms of external structure on pP, as long as the external structure on pP is determined
via I and J from the internal structure of pP. This observation will be important in
[44].

The external interpretation of FPC we have given is not as pleasant as one might
like. For example, the interpretation of closed types satisfies,

[[σ]] +′ [[τ ]] = [[σ + τ ]] ∼= [[σ]] + [[τ ]]
[[σ]] ×′ [[τ ]] = [[σ × τ ]] ∼= [[σ]] × [[τ ]]
[[σ]] ⇀′ [[τ ]] = [[σ → τ ]] ∼= [[σ]] ⇀ [[τ ]] ,

where the operations on the right are the original specified structure on pP. Because
the operations +′,×′, ⇀′ are obtained by externalizing the internal interpretation, there
is no reason at all for the isomorphisms to be equalities. In some ways, it would be more
natural to use a different external interpretation under which the isomorphisms and
equalities above are swapped (it is not hard to define such an interpretation). For us,
the benefit of working with the external interpretation given above is that, by its very
definition, it is directly related to the internal interpretation. In a follow-up paper [44], a
general coherence theorem is proved, which shows that the properties of interpretations
of FPC are anyway independent of such isomorphic choices.

The major remaining goal in this paper is to study a fundamental relationship be-
tween denotational and operational semantics. For a closed term t : σ, we write [[t]]↓ to
mean that the partial map [[t]] : 1 ⇀ [[σ]] is total.

Definition 11.2 (Computational adequacy) We say that the interpretation of FPC
in pP is computationally adequate if, for all closed terms t : σ, it holds that t ⇓ if and
only if [[t]]↓.

54



Computational adequacy is equivalent to the soundness of denotational equality in pP
relative to the natural notion of operational equivalence between terms of FPC.

As our second main result, Theorem 2 below, we shall establish necessary and suffi-
cient conditions for computational adequacy to hold. In order to achieve this, it is useful
to first consider a notion computational adequacy formulated within the internal logic
of C.

12 Internal computational adequacy

Assuming Axiom 2, we have interpreted FPC in the internal category pP. The main
result of this section, Proposition 12.2, is that computational adequacy always holds for
this interpretation, when expressed internally in C. The proof of this result is rather
long. The main proof structure is given in this section, but the verification of several
details is left to Section 13.

First we have to formulate the internal notion of computational adeqacy. As with
Definition 11.2 above, this will relate the denotational and operational notions of conver-
gence. However, the formulation will use the internal logic of C. On the denotational
side we naturally use the interpretation of FPC in the internal category pP. On the
operational side, it is necessary to formalize the operational semantics of FPC in the
internal logic. To facilitate this, we use a Gödel numbering of the syntax of FPC and
its operational semantics. The formalization of such a Gödel numbering in the internal
logic of C would ordinarily be straightforward. However, our formulation will have one
further twist. Rather than using the natural numbers object N of C for the encoding,
it turns out to be useful to instead use a natural numbers object in the category, P, of
predomains. Of course, if Axiom N holds then N is itself a natural numbers object in P.
But, for the sake of applications, see Section 15.2, it is better not to assume Axiom N
in general. The use of a natural numbers object in P represents an improvement over
the conference version of the paper, [42], in which Axiom N is assumed.

First we have to show that the category P has a natural numbers object. By Theo-
rem 1, every fibred endofunctor on pP has a bifree algebra. In particular 1 + (−) :
pP → pP has a bifree algebra [0c, sc] : 1 + Nc ⇀ Nc. But isomorphisms in pP are
total, and coproducts in P and pP agree, thus [0c, sc] : 1 + Nc

� Nc is a map in P.

Proposition 12.1 1
0c� Nc

�sc Nc is a natural numbers object in P.

PROOF. We show that [0c, sc] : 1+Nc
� Nc is an initial algebra for the endofunctor

1 + (−) : P → P. Let f : 1 + X � X be any algebra for 1 + (−). Then f is also an
algebra for the functor 1+(−) : pP → pP. So, by the initiality of the algebra [0c, sc] in
pP, there exists a unique partial map g : Nc ⇀ X such that g◦ [0c, sc] = f ◦(1+g). It
suffices to show that g is total. Define Z = {n′ : Nc | g(n′)↓}. Then Z is well-complete
because it is a Σ-subobject of the well-complete Nc. As f and [0c, sc] are total, one
shows easily that 0c ∈ Z and also sc(n′) ∈ Z for all n′ ∈ Z. Thus Z carries a subalgebra
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of [0c, sc] : 1 + Nc
� Nc. As [0c, sc] is an initial algebra in pP and Z is a predomain,

it follows that the inclusion Z� � Nc is an isomorphism in pP and hence in P. Thus
Z = Nc, i.e. g is indeed total. � We have that P is a cartesian-closed category
with natural numbers object Nc. It follows that we can represent every k-ary primitive
recursive function by a morphism (Nc)k � Nc, see [20, Part III] for details. Similarly,
any k-ary primitive recursive predicate is represented by a morphism (Nc)k � 2. We
use such operations and predicates freely, tagging them (e.g. +c, <c, etc.) to emphasise
that they are associated with Nc rather than with N.

We refer to Nc as the object of computational natural numbers in C. One has to take
care when reasoning about elements of Nc internally in C as induction is not always
valid. (The validity of full induction is equivalent to Axioms N.) Nevertheless, as Nc is
a natural numbers object in P it holds that, for any well-complete subobject Z� � Nc

we have

C |= 0c ∈ Z ∧ (∀n :Nc. n ∈ Z → sc(n) ∈ Z) → ∀n :Nc. n ∈ Z , (41)

i.e. induction holds for well-complete predicates. By Axiom 2, we have, in particular,
that induction holds for logically decidable predicates. Combined with the previous
discussion on primitive recursive functions, one therefore obtains that Nc is an internal
model of Intuitionistic Primitive Recursive Arithmetic (IPRA) in C.4 In what follows,
we shall use IPRA very informally, making only the occasional remark when further
justification of an argument seems useful. The reader is referred to [12] for a rigorous
definition of (classical) primitive recursive arithmetic and a thorough exploration of its
properties.

Having IPRA at our disposal, the task of Gödel numbering, using Nc as the object
of natural numbers, is routine. The precise choice of encoding is unimportant. What
does matter is that types and terms are represented in a natural way using primitive
recursive operations. We write Tσ

� � Nc and Vσ
� � Nc for the subobjects of (Gödel

numbers of) closed terms and values of type σ respectively. The encoding should be
chosen so that these are primitive recursive subobjects. For the operational semantics,
we encode the proof system of Fig. 2 in such a way that the relation “Π is a derivation
of t � v”, for which we write Π � t � v, is a primitive recursive ternary relation on
Gödel numbers. In the internal logic of C, we write: t � v for ∃Π:Nc. (Π � t � v); and
t ⇓ for ∃ v : Nc. (t � v). For convenience, we are here using the same notation for the
formalized relations, expressed using Gödel numbers, as for the original external relations
on terms. It will always be clear from the context which relation is meant. E.g. whenever
an operational relation is expressed in the internal logic of C, as in Proposition 12.2(2)
below, the formalized relation on Gödel numbers is the one intended. We remark that
the basic properties of the operational semantics are all provable internally C using
only the methods of IPRA. Such results include: if t : σ and t � v then v : σ; and:

4Actually much stronger properties hold of Nc. But being a model of IPRA is sufficient for our
purposes.
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if t � v and t � v′ then v = v′. In both cases these are proved by quantifier-free
inductions over primitive recursive predicates obtained by universally abstracting the
existentially quantified variables in the hypotheses of the implications. We shall freely
use such results about the formalized syntax without further comment.

The main result of this section establishes the equivalence of operational and deno-
tational notions of convergence, as interpreted within C. For the denotational notion,
given a closed term t : σ, we write ([t])↓ for the internal statement in C that ([t]) : 1 ⇀ ([σ])
is a total function.

Proposition 12.2 (Internal computational adequacy) For closed t : σ:

1. t⇓ implies C |= ([t])↓.

2. C |= ([t])↓→ t⇓.

Proposition 12.2(1) is proved by induction on derivations of the evaluation relation for
t. Specifically, one proves that t � v implies C |= ([t]) = ([v]). As it is easily shown
that C |= ([v]) ↓, for all values v, the result follows. See [3, Appendix C], for such an
argument in detail. The interesting point concerning Proposition 12.2(1) is that it is
not straightforward to internalize the above argument to obtain C |= t⇓→ ([t])↓. The
fundamental obstacle here is that ([t]) is defined by an external induction on the structure
of terms t, so it is apparently not possible to formulate an induction hypotheses that
can be established by an internal induction on derivations of t � v.

For the proof of Proposition 12.2(2), we adapt the approach of [33, 3] to our setting.
The strategy is to define binary relations relating closed terms to their internal denota-
tions. A closed term t : σ has a denotation ([t]) : pP(1, ([σ])). However, values v : σ enjoy
the extra property that ([v])↓, i.e. that ([v]) : P(1, ([σ])), using the hom-set inclusion given
by

P(A, B) = {f : pP(A, B) | f is total}� � pP(A, B) ,

which holds for any A, B : |P| (equivalently A, B : |pP|). For each closed type σ, we define
a binary relation in C,

�σ
� � P(1, ([σ])) × Vσ.

Moreover, given any relation �� � P(1, A)×Vσ, where A : |P|, we define an associated
relation �� � pP(1, A) × Vσ by:

e � t iff e↓ implies ∃v :Vσ. t � v and e � v , (42)

making use of the operational semantics as formalized in C. Thus, in particular, each
relation �σ above determines an associated

�σ
� � pP(1, ([σ])) × Tσ .
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The relations �σ are defined so that the following equivalences hold in C.

d �σ+τ inl(v) iff d = inl(c) where c �σ v (43)
d �σ+τ inr(v) iff d = inr(c) where c �τ v (44)

(c, d) �σ×τ (u, v) iff c �σ u and d �τ v (45)
f �σ→τ λx. t iff ∀ d : P(1, ([σ])), ∀ v : Tσ. d �σ v → f(d) �τ t[v/x] (46)

d �µX.σ intro(v) iff εµX.σ(d) �σ[µX.σ/X] v (47)

Here, the clause for µX.σ involves the isomorphism (39), which, because it is an isomor-
phism in pP, is also an isomorphism in P.

Once relations have been defined satisfying the equivalences above, the lemma below
can be established.

Lemma 12.3 If x1 : τ1, . . . , xk : τk � t : σ then

C |= ∀ d1 : P(1, ([τ1])), . . . , dk : P(1, ([τk])), ∀ v1 :Vτ1 , . . . , vk :Vτk
.

d1 �τ1 v1 ∧ . . . ∧ dk �τk
vk → ([t])Γ(d) �σ t[v/x],

where we write Γ for x1 : τ1, . . . , xk : τk and d for the vector d1, . . . , dk, etc.

A similar lemma is proved as [3, Lemma 9.2.18]. The only difference in our case is that
a statement has to be established in the internal logic of C.
PROOF. By induction on the structure of t. We consider a single case.

Suppose t is (case(s) of y1.t1 or y2.t2), where we have Γ � s : σ1 + σ2 and
Γ, y1 : σ1 � t1 : σ and Γ, y2 : σ2 � t2 : σ. Internally in C, consider any d and v such that
di �τi vi for each i with 1 ≤ i ≤ k. We must show that the relation ([t])Γ(d) �σ t[v/x]
holds. Accordingly, suppose that ([t])Γ(d)↓. Then, by the definition of
([case(s) of x1.t1 or x2.t2])Γ(d) either: (i), it holds that ([t])Γ(d) = ([t1])Γ, y1 : σ1(d, c),
where ([s])Γ(d) = inl(c); or, (ii), it holds that ([t])Γ(d) = ([t2])Γ, y2 : σ2(d, c), where ([s])Γ(d) =
inr(c).

In case (i), we must show that there exists v :Vσ such that t[v/x] � v and
([t1])Γ, y1 : σ1(d, c) �σ v. However, ([s])Γ(d) = inl(c), so, by the induction hypothesis for
s, we have that inl(c) �σ1+σ2 s[v/x]. Thus there exists v′ such that s[v/x] � v′ and
inr(c) �σ1+σ2 v′. As v′ is a value of type σ1 + σ2, it is of the form inl(v′′) or inr(v′′).
As inl(c) �σ1+σ2 v′, we have, by (43) and (44), that v′ is inl(v′′) where c �σ1 v′′. Thus,
by the induction hypothesis for t1, we have that ([t1])Γ, : y1σ1(d, c) �σ t1[v, v′′ / x, y1], i.e.
([t])Γ(d) �σ t1[v, v′′ / x, y1]. As ([t])Γ(d) ↓, there exists v such that t1[v, v′′ / x, y1] � v
and ([t])Γ(d) �σ v. Moreover, we have s[v/x] � inl(v′′) and t1[v, v′′ / x, y1] � v, so
(case(s) of y1.t1 or y2.t2)[v/x] � v, i.e. t[v/x] � v. Thus v is the required element of
Vσ.

Case (ii) is dealt with in a similar way. �

58



Proposition 12.2(2) follows easily from Lemma 12.3. Take any closed term t : σ.
Then, by Lemma 12.3, it holds that C |= ([t]) �σ t. Hence, by (42), we have
C |= ([t])↓→ (∃v :Vσ. t �v ∧ ([t]) �σ v). So indeed C |= ([t])↓→ t⇓.

It remains to define the �σ relations. Because they are recursively specified, this
takes a considerable amount of work. Although it seems possible to apply Pitts’ method
of defining relations [31], doing so would require the development of further machinery.
Because we already have the technology of suitable categories at our disposal, it seems
easier to adapt the techniques of [33, 3].

For each closed σ, we define an internal category Rσ. Internally in C, objects are
pairs R = (|R|,�R) satisfying:

1. |R| : PSU is a predomain.

2. �R is a binary relation between P(1, |R|) and Vσ.

3. For all v :Vσ, the set {d : P(1, |R|) | d � v} is well-complete.

Thus |Rσ| is easily defined as a subobject of
∑

A : |P| PS (P(1, A) × Vσ) in C. Internally
in C, a morphism f : Rσ(R, S) is given by a morphism f : pP(|R|, |S|) such that

∀v :Vσ. ∀d : P(1, |R|). d �R v → f(d) �S v ,

using (42) to define �S from �S . Thus Rσ(R, S) is defined as a subobject of pP(|R|, |S|).
The identities and composition are inherited from pP. Note that there is an evident
forgetful internal functor Uσ : Rσ → pP.

The purpose of the Rσ categories is that we can use them to obtain a non-standard
interpretation of types under which each closed type σ gets interpreted as an object
{[σ]} : |Rσ|. Thus {[σ]} will be a pair (A,�). Moreover, the definition of {[σ]} will ensure
that A = ([σ]), and that � is the required relation �σ. The method of defining the
non-standard interpretation of types is similar to that used to obtain their ordinary
(internal) interpretation.

Proposition 12.4 For each closed σ, the internal category Rσ is suitable, and the for-
getful Uσ : Rσ → pP is suitable functor.

The proof of this proposition is postponed until Section 13.
Next we define useful functors on the Rσ categories, the first three of which act as

relational “liftings” of the type constructors on pP. For closed σ, τ and µX.σ′, we define

+σ,τ : Rσ × Rτ → Rσ+τ

×σ,τ : Rσ × Rτ → Rσ×τ

⇀σ,τ : Rop
σ × Rτ → Rσ→τ ,

IµX.σ′ : Rσ′[µX.σ′/X] → RµX.σ′ ,
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to have the following actions on objects,

|R +σ,τ S| = |R| + |S|
|R ×σ,τ S| = |R| × |S|
|R ⇀σ,τ S| = |R| ⇀ |S|
|IµX.σ′R| = |R|

d � (R +σ,τ S) inl(v) iff d = inl(c) where c �R v

d � (R +σ,τ S) inr(v) iff d = inr(c) where c �S v

(c, d) � (R×σ,τ S) (u, v) iff c �R u and d �S v

f � (R ⇀σ,τ S) λx. t iff ∀ d : P(1, |R|), v : Tσ. d �R v → f(d) �S t[v/x]

d � (IµX.σR) intro(v) iff d �R v .

Lemma 12.5 For objects R, S and R′ of Rσ, Rτ and Rσ′[µX.σ′/X] respectively, it is
indeed the case that R +σ,τ S, R ×σ,τ S, R ⇀σ,τ S and IµX.σ′R′ are objects of Rσ+τ ,
Rσ×τ , Rσ→τ and RµX.σ′ respectively.

The proof of this lemma is given in Section 13. Having now obtained the actions on
objects, the corresponding actions on morphisms are easily defined.

To define the non-standard interpretation of types, we again interpret open types as
functors. Moreover, because of the bivariance of ⇀σ,τ , we use the internal categories
R̂σ = Rop

σ ×Rσ. By Propositions 12.4 and 7.2, R̂σ is suitable. Moreover, the induced
forgetful Ûσ : R̂σ → p̂P is a suitable functor.

Given an open type Θ � σ, where Θ = X1, . . . , Xk, and closed types τ1, . . . , τk, we
interpret σ relative to τ = τ1, . . . , τk as a symmetric internal functor

{[Θ � σ]}	τ : R̂τ1 × · · · × R̂τk
→ R̂σ[	τ/Θ] ,

where we write σ[τ/Θ] for σ[τ1, . . . , τk/X1, . . . , Xk]. The interpretation is defined by
induction on the structure of σ. To give the definition, we write R for an object
((R−

1 , R+
1 ), . . . , (R−

k , R+
k )) of R̂τ1 × · · · × R̂τk

.

{[Θ � Xi]}+
	τ

R = R+
i

{[Θ � σ1 + σ2]}+
	τ

R = {[Θ � σ1]}+
	τ

R +σ1[	t/Θ], σ2[	t/Θ] {[Θ � σ2]}+
	τ

R

{[Θ � σ1 × σ2]}+
	τ

R = {[Θ � σ1]}+
	τ

R ×σ1[	t/Θ], σ2[	t/Θ] {[Θ � σ2]}+
	τ

R

{[Θ � σ1 → σ2]}+
	τ

R = {[Θ � σ1]}−	τ R ⇀σ1[	t/Θ], σ2[	t/Θ] {[Θ � σ2]}+
	τ

R

{[Θ � µX.σ′]}	τ = ( ÎµX.σ′ ◦ {[Θ, X � σ′]}	τ, µX.σ′ )† .

The remarks made after the definition of the standard interpretation of types apply
mutatis mutandis to the non-standard interpretation. Again, a substitution lemma
holds.
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Lemma 12.6 For open types Θ � σ′
1 , . . . , Θ � σ′

l and Θ′ � σ, where Θ = X1, . . . , Xk

and Θ′ = Y1, . . . , Yl, and for closed types τ1, . . . , τk,

{[ Θ � σ[σ′/Y ] ]}	τ = {[ Θ′ � σ ]}σ′
1[	τ/Θ],...,σ′

l[	τ/Θ] ◦ ({[Θ � σ1]}	τ , . . . , ([Θ � σl])	τ ) .

PROOF. As before, a straightforward induction on types, using Proposition 3.5 for
recursive types. �

The next lemma states the relationship between the non-standard interpretation of
types and the standard interpretation.

Lemma 12.7 For any open type Θ � σ, where Θ = X1, . . . , Xk, and closed types
τ1, . . . , τk, the diagram below commutes.

R̂τ1 × · · · × R̂τk

{[Θ � σ]}	τ� R̂σ[	τ/Θ]

p̂P × · · · × p̂P

Ûτ1 × · · · × Ûτk

�

([Θ � σ])
� p̂P .

Ûσ[	τ/Θ]

�

PROOF. By induction on the structure of σ. For non-recursive types the property is
immediate from the definition of {[Θ � σ]}	τ in terms of functors that are relational liftings
of the corresponding functors on pP. For a recursive type, Θ � µX.σ, the commutativity
of the diagram is a direct application of Lemma 8.3, using the suitability of the functor

̂UµX.σ[	τ/Θ]. �
For closed types, the symmetric functor {[� σ]} : 1 → Rσ, where 1 is the terminal

internal category, corresponds to an object in Rσ of the form ({[σ]}, {[σ]}), where, by
Lemma 12.7, {[σ]} is of the form (([σ]),�σ). This, at last, defines the required relation
�σ.

It remains to show that the �σ relations satisfy the equivalences (43)–(47). For, (43)–
(46), this is immediate from the definition of the {[Θ � σ]}	τ functors, as we have

(([σ + τ ]),�σ+τ ) = (([σ]),�σ) +σ,τ (([τ ]),�τ )
(([σ × τ ]),�σ×τ ) = (([σ]),�σ) ×σ,τ (([τ ]),�τ )

(([σ ⇀ τ ]),�σ⇀τ ) = (([σ]),�σ) ⇀σ,τ (([τ ]),�τ ) ,

which is just a restatement of (43)–(46). Finally, for (47), we have that the object
({[µX.σ]}, {[µX.σ]}) of R̂µX.σ carries the canonical bifree algebra for the symmetric func-
tor ÎµX.σ ◦ {[X � σ]}µX.σ : R̂µX.σ → R̂µX.σ. By Lemma 12.7 and the definition of IµX.σ,
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the diagram below commutes.

R̂µX.σ
{[X � σ]}µX.σ� ̂Rσ[µX.σ/X]

ÎµX.σ� R̂µX.σ

p̂P

ÛµX.σ

�

([X � σ])
� p̂P

̂Uσ[µX.σ/X]

�

Id
p̂P

� p̂P .

ÛµX.σ

�

Thus, by Lemma 8.2, the canonical bifree algebra for ÎµX.σ ◦ {[X � σ]}µX.σ is:

(εµX.σ, ιµX.σ) : IµX.σ {[X � σ]}µX.σ ({[µX.σ]}, {[µX.σ]}) � ({[µX.σ]}, {[µX.σ]}) ,

in RµX.σ. By Lemma 12.6, this is

(εµX.σ, ιµX.σ) : (IµX.σ {[σ[µX.σ/X]]}, IµX.σ {[σ[µX.σ/X]]}) � ({[µX.σ]}, {[µX.σ]}) ,

which unpacks to

ιµX.σ : IµX.σ {[σ[µX.σ/X]]} � {[µX.σ]} (48)
εµX.σ : {[µX.σ]} � IµX.σ {[σ[µX.σ/X]]} . (49)

Take any d : P(1, ([µX.σ])). As ιµX.σ and εµX.σ are mutual inverses, we have that
εµX.σ(d)↓ and ιµX.σ(εµX.σ(d)) = d. Thus, for any v :Vσ[µX.σ/X],

d �µX.σ intro(v) iff εµX.σ(d) � (IµX.σ{[σ[µX.σ/X]]}) intro(v) by (48) and (49)

iff εµX.σ(d) �σ[µX.σ/X] v def. of IµX.σ.

Thus we have established (47). So the �σ relations indeed satisfy all the required
equivalences. This completes the proof of Proposition 12.2, modulo the proofs postponed
to the next section.

13 Properties of Rσ

In this purely technical section, we give the promised proofs of Lemma 12.5 and Propo-
sition 12.4.

First a necessary preliminary lemma, which should be compared to Proposition 2.5(10).
The difference is that the lemma below is a consequence of Axiom 2.

Lemma 13.1 C |= ∀P : 2Nc . (∃n :Nc. P (n)) ∈ Σ.
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PROOF. Define d : 2Nc � 1 + 2Nc by

d(P ) =
{

inl(∗) if P (0c)
inr(λn :Nc. P (sc(n))) if ¬(P (0c))

We have that [0c, sc] : 1 + Nc
� Nc is a bifree algebra for the endofunctor

1 + (−) : pP → pP. Using the final coalgebra property of this, there exists a unique
h : 2Nc ⇀ Nc in pP such that the diagram below commutes.

1 + 2Nc
id + h

⇀ 1 + Nc

2Nc

d

�

h
⇀ Nc

[0c, sc]

�

(50)

Our first goal is to establish that

C |= ∀n :Nc. ∀P :2Nc . h(P ) = n ↔ (P (n) ∧ ∀m <c n. ¬P (m)) , (51)

where h(P ) = n is, of course, strict equality. This will be proved by induction on n.
However, in order for such an induction to be justified, we must first show that the
subobject

{n :Nc | ∀P :2Nc . h(P ) = n ↔ (P (n) ∧ ∀m <c n. ¬P (m))}� � Nc (52)

is well-complete, see the remarks around (41).
To establish that (52) is well-complete it suffices, by Proposition 2.5(6), to show, for

each P :2Nc , that the subobjects

{n :Nc | h(P ) = n → (P (n) ∧ ∀m <c n. ¬P (m))}� � Nc (53)
{n :Nc | (P (n) ∧ ∀m <c n. ¬P (m)) → h(P ) = n}� � Nc (54)

are both well-complete. First, we consider (53). On the assumption that, h(P ) ↓, we
have h(P ) :Nc and so

(h(P ) = n → (P (n) ∧ ∀m <c n. ¬P (m))) ∈ 2 ,

whence (53) is a logically decidable subobject of a well-complete object, and hence
well-complete. But

{n :Nc | h(P ) = n → (P (n) ∧ ∀m <c n. ¬P (m))}
=

⋂
x∈{∗|h(P )↓}

{n :Nc | h(P ) = n → (P (n) ∧ ∀m <c n. ¬P (m))} ,
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where {∗ | h(P ) ↓} is the evident subobject of 1. We have shown that right-hand side
is an intersection of well-complete subobjects of Nc. Thus, by Proposition 2.5(6), we
have that (53) is indeed well-complete. To show that (54) is well-complete, observe that
(P (n) ∧ ∀m <c n.¬P (m)) ∈ 2 and (h(P ) = n) ∈ Σ. However, given any p :2 and q : Σ,
we have (p → q) ∈ Σ, by a trivial case analysis on p. Therefore,

((P (n) ∧ ∀m <c n. ¬P (m)) → h(P ) = n) ∈ Σ .

Thus (54) is a Σ-subobject of a well-complete object, and hence well-complete. This
completes the proof that (52) is well-complete.

We now prove (51) by induction on n. When n = 0c, we have h(P ) = 0c iff (by (50))
d(P ) = inl(∗), iff (by def. d) P (0c), iff P (n) ∧ ∀m <c n. ¬P (m). When n = sc(n′), we
have h(P ) = sc(n′) iff (by (50)) d(P ) = inr(P ′), where h(P ′) = n′, iff (by def. d) ¬(P (0c))
and h(P ′) = n′, where P ′ = λm : Nc. P (sc(m)), iff (by induction hypothesis) ¬(P (0c))
and P ′(n′) ∧ ∀m <c n′. ¬P ′(m), iff (as P ′(m) = P (sc(m))) P (n) ∧ ∀m <c n. ¬P (m).
This establishes (51).

We now use (51) to show that

C |= (∃n :Nc. P (n)) ↔ h(P )↓ . (55)

For the left-to-right implication, as P is a logically decidable predicate, we can prove by
induction on n :Nc that

C |= P (n) → ∃m <c n. (P (m) ∧ ∀m′ <c m. ¬P (m′)) .

Now, reasoning in C, assume ∃n :Nc. P (n). It follows from the implication above that
∃n : Nc. (P (n) ∧ ∀m <c n. ¬P (m)). Thus, by the right-to-left implication of (52),
∃n : Nc. h(P ) = n, i.e. h(P ) ↓. For the converse implication of (55), suppose h(P ) ↓.
Then h(P ) = n for some n. So, by the left-to-right implication of (52), P (n). Thus
indeed ∃n :Nc. P (n).

We have established (55). The lemma follows, because (h(P )↓) ∈ Σ. �
For our purposes, the crucial consequence of Lemma 13.1 is that, for t : Tσ and v : Vσ,
we have (t � v) ∈ Σ and (t ⇓) ∈ Σ. Indeed, the relation Π � t � v is a primitive
recursive ternary relation, thus (Π � t � v) : 2, for all Π, t, v :Nc. So, by Lemma 13.1,
(∃Π:Nc. (Π � t � v)) ∈ Σ, i.e. (t � v) ∈ Σ. Also using a primitive recursive bijection
Nc × Nc

∼= Nc, it follows from Lemma 13.1 that (∃(Π, v) : Nc. (Π � t � v)) ∈ Σ, i.e.
(t⇓) ∈ Σ.

We next introduce some convenient notation. Given an object A : |P|, a relation
�� � P(1, A) × Vσ, and v :Vσ, define

A�� v = {d : P(1, A) | d � v} .

Thus, (A,�) is an object of Rσ if and only if A�� v is well-complete for every v. Analo-
gously, given t : Tσ define

A��t = {e : pP(1, A) | e � t} .
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Lemma 13.2 If (A,�) is an object of Rσ then, for any t : Tσ, the subobject A��t of A
is well-complete.

PROOF. To show that A��t is well-complete well-completeness, we apply Lemma 9.2,
using the statement t ⇓ as the interpolant. By the remarks after Lemma 13.1, t ⇓ is
indeed a Σ proposition.

To show that A ��t inhabited implies t ⇓, suppose that A ��t is inhabited. Thus
there exists e : pP(1, A) such that e � t. Then, by (42), there exists v such that t � v.
Thus indeed t⇓.

To show that t⇓ implies A��t is well-complete, suppose that t⇓. Then there exists
a unique v such that t � v. Therefore

A��t = {e : pP(1, A) | e↓→ e � v} by (42)
∼= L {d : P(1, A) | d � v}
= L (A�� v).

Thus A��t is well-complete by the closure of well-complete objects under L.
We have established that the interpolation condition of Lemma 9.2 holds. Thus, by

the lemma, A��t is indeed well-complete. �
We now give the postponed proof of Lemma 12.5. Actually, in the case of +σ,τ ,

×σ,τ and IµX.σ′ , the lemma is easily verified, so we just prove the result for the ⇀σ,τ

operation.

Lemma 13.3 For objects R and S of Rσ and Rτ respectively, it holds that R ⇀σ,τ S is
an object of Rσ→τ .

PROOF. We must show that for λx. t : Vσ→τ the set (|R| ⇀ |S|) ��R⇀S λx. t is well-
complete. However,

(|R| ⇀ |S|)��R⇀S λx. t =
⋂

d�R v

{f : P(1, |R| ⇀ |S|) | f(d) �S t[v/x]} .

thus, by Proposition 2.5(6), it is enough to establish, for each d : P(1, |R|) and v : Vσ

with d �R v, that the subobject {f : P(1, |R| ⇀ |S|) | f(d) �S t[v/x]} is well-complete.
However, this subobject is obtained as h−1(|S|��S t[v/x]) where h is the map

P(1, |R| ⇀ |S|)
f �→ f(d)

� pP(1, |S|) .

By Lemma 13.2, |S|��S t[v/x] is also well-complete. Thus indeed, by Proposition 2.5(7),
{f :P(1, |R| ⇀ |S|) | f(d) �S t[v/x]} is well-complete too. �

Finally, we turn to the proof of Proposition 12.4. We must prove that Rσ is a suitable
category, and that Uσ : Rσ → pP is a suitable functor.
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Lemma 13.4 The object |Rσ| carries a pointed structure
∨

: L|Rσ| � |Rσ| such that
the diagram below commutes.

L|Rσ|
L Uσ� L|pP|

|Rσ|

∨
� Uσ � |pP|

⋃
�

(56)

PROOF. Formally |Rσ| =
∑

A : |P| WA where

WA = {� :PS(P(1, |R|) × Vσ) | for all v :Vσ, A�� v is well-complete} .

Given any A : |P|, we exhibit a pointed structure wA : L(WA) � WA.
For e : L(WA) define �e :PS(P(1, |R|) × Vσ) by

d �e v iff for all � ∈ e, we have d � v .

Using Proposition 2.5(6), it is easily shown that �e ∈ WA. We show that wA : e �→ �e

satisfies the unit and multiplication laws, (6) and (7). The former is straightforward.
For the latter, consider any E : L2(WA). We must show that wA(

⋃
E) =

wA({wA(e) | e ∈ E}), i.e. that

d �⋃
E v iff d � {�e | e∈E} v . (57)

Accordingly, suppose that d �⋃
E v. Then, for all � ∈ e ∈ E we have that d � v.

Consider any � ∈ {�e | e ∈ E}. We must show that d � v. But � = �e for some e ∈ E.
We require that d �e v. But indeed, for all � ∈ e, we have d � v.

Conversely, suppose that d � {�e | e∈E} v. To show that d �⋃
E v, consider any

� ∈ e ∈ E. We must show that d � v. As � ∈ e ∈ E, we have e = {�} and E = {e}.
Thus {�e′ | e′ ∈ E} = {�e} = {�}. But d � {�e′ | e′∈E} v, i.e. d �{�} e. Thus indeed
d � v. This establishes (57).

We have shown that each A : |P| carries a pointed structure wA : L(WA) � WA. By
Lemma 9.3, |P| = |pP| carries the pointed structure

⋃
: L|pP| � |pP|. So, Lemma 4.10

now provides the required pointed structure
∨

: L|Rσ| � |Rσ| making diagram (56)
commute. �

Lemma 13.5 For all R, S : |Rσ|, it holds thst Rσ(R, S) is complete.

PROOF. We use Proposition 5.2.4 on Rσ(R, S) as a subobject of pP(|R|, |S|). Take
any f(−) : (Rσ(R, S))I. By proposition 5.2.4, it suffices to show that, for all d : P(1, |R|)
and v :Vσ, it holds that d �R v implies (

⊔
i fi)(d) �S v. Suppose then that d �R v. As

f(−) : (Rσ(R, S))I, we have that fi(d) �S v, for all i : I. But then f(−)(d) is an I-chain
in |S| ��S v, which is, by Lemma 13.2, a complete subobject of pP(1, |S|). Thus, by the
other dirsction of Proposition 5.2.4,

⊔
i(fi(d)) ∈ |S|��S v, i.e.

⊔
i(fi(d)) �S v. However,⊔

i(fi(d)) = (
⊔

i fi)(d), by (24). Thus indeed (
⊔

i fi)(d) �S v. �
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Lemma 13.6 For all R, S : |Rσ|, it holds that Rσ(R, S) is pointed, composition in Rσ is
bistrict, and the forgetful URS : Rσ(R, S) → pP(|R|, |S|) is strict.

PROOF. We show that the pointed structure on pP(|R|, |S|), see the explicit description
after Lemma 9.4, restricts to a map β′

RS : L (Rσ(R, S)) � Rσ(R, S).
For e : L (Rσ(R, S)) define β′

RS(e) to be the unique partial function g : |R| ⇀ |S| such
that g(x) = y if and only if there exists f ∈ e such that f(x) = y. We must show that
g is in Rσ(R, S), i.e. that d �R v implies g(d) �S v. Suppose then that d �R v and
g(d)↓. Then e = {f} with f : Rσ(R, S) and f(d)↓. But then f(d) �S v, i.e. g(d) �S v
as required.

As β′
RS is a restriction of an algebra for the L-monad, it is itself an algebra for

the monad. Thus Rσ(R, S) is indeed pointed. Moreover, by construction, the forgetful
URS : Rσ(R, S) → pP(|R|, |S|) is strict. The bistrictness of composition is shown exactly
as in Lemma 9.5. �

Lemma 13.7 {idR}R : |Rσ
is a strict family.

PROOF. By Lemma 13.4, |Rσ| has pointed structure
∨

: L|Rσ| � |Rσ| We must
show equation (8), i.e. that id∨

e = β′∨
e

∨
e({idR | R ∈ e}), for all e : L|Rσ|. Take any

e : L|Rσ| and x : |
∨

e|. Then e = {R} for some R with x : |R|. So
∨

e = R, whence
β′∨

e
∨

e({idR | R ∈ e})(x) = idR(x) as required. �

Lemma 13.8 The functor Uσ : Rσ → pP creates bilimits of I-bichains.

PROOF. Let (R(−), x(−)(−)) be an I-bichain in Rσ. Then, writing (Ai,�i) for Ri, we
have that (A(−), x(−)(−)) is an I-bichain in pP. Let (B, l(−), c(−)) be its bilimit, and let
S be (B,�), where �� � P(1, B) × Vσ is defined by

d � v iff ∀i : I. li(d) �i v .

We show below that (S, l(−), c(−)) is a bilimit for (R(−), x(−)(−)) in Rσ. The lemma then
follows, as, by construction, (S, l(−), c(−)) is created by Uσ.

First we show that S is indeed an object of Rσ. For this we need each B �� v to be
well-complete. However, for each v :Vσ,

B �� v =
⋂
i : I

{d : P(1, B) | li(d) �i v} =
⋂
i : I

l−1
i (Ai ��i v) .

Thus B �� v is indeed a predomain by Lemma 13.2 and Proposition 2.5(6–7).
To show that (S, l(−), c(−)) is a bilimit in Rσ it suffices to show that each li : pP(B, Ai)

indeed gives a morphism li : Rσ(S, Ri), and that each ci : pP(Ai, B) indeed gives a mor-
phism ci : Rσ(Ri, S), because, if this is so, then the defining properties, (32) and (33), of
a bilimit are inherited from pP. In the case of li, it is immediate from the definition of
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� that li : Rσ(S, Ri). To show ci :Rσ(Ri, S), we must prove that, for any d : P(1, Ai) and
v :Vσ, it hold that d �i v implies ci(d) � v. As li ◦ ci = idAi , we have that ci(d)↓. So

ci(d) � v iff ci(d) � v

iff ∀j : I. lj(ci(d)) �j v def. of �
iff ∀j : I. xij(d) �j v by (32) for (B, l(−), c(−)).

However, xij : Rσ(Ri, Rj). Therefore d �i v implies that xij(d) �j v, for all j : I. Thus
indeed, d �i v implies ci(d) � v. �

Taken together, Lemmas 13.4–13.8 provide a complete proof of Proposition 12.4.

14 External computational adequacy

Having proved internal computational adequacy, it is now possible to derive the second
main result of the paper, a complete characterization of computational adequacy for the
external interpretation of FPC, given in Section 11. Unsurpringly, the characterization
depends upon relating properties of the computational natural numbers Nc in C to
properties of the real world natural numbers N.

We have remarked that, using the natural numbers object Nc of P, one can define a
standard encoding of any k-ary primitive recursive function as a morphism Nc

k � Nc,
and of every k-ary primitive recursive predicate as a morphism Nc

k � 2. In this
section, it is necessary to be a little more precise about these encodings. Accordingly,
we briefly review the details.

We think of a k-ary primitive recursive function φr : Nk → N, as being specified by
“function letters” r in the term language of IPRA, see [12, §1.4]. This language simply
provides a term structure suitable for generating the primitive recursive functions via
projection, composition, primitive recursion, etc. For example, given terms r1 and r2

determining primitive recursive functions φr1 : Nk → N and φr2 : Nk+2 → N, we can form
a term Rr1r2 representing the function φRr1r2 : Nk+1 → N, defined from φr1 and φr2 by
primitive recursion:

φRr1r2(i1, . . . , ik, 0) = φr1(i1, . . . , ik)
φRr1r2(i1, . . . , ik, j + 1) = φr2(i1, . . . , ik, j, φRr1r2(i1, . . . , ik, j))

The interpretation of primitive recusive functions over Nc is defined by a straightforward
induction on the structure of IPRA terms r. To each term r representing a k-ary
function, we associate a morphism fr : Nc

k � Nc. For example, the morphisms
fr1 : Nc

k � Nc and fr2 : Nc
k+2 � Nc determine fRr1r2 : Nc

k+1 � Nc as the
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unique morphism fitting into the diagram below.

Nc
k + Nc

k× Nc
id + (id × id, fRr1r2)� Nc

k + Nc
k× Nc × Nc

Nc
k × Nc

[(id, 0c), (id × sc)]

�

fRr1r2

� Nc

[fr1 , fr2 ]

�

There is indeed a unique such morphism, because Nc is a natural numbers object in a
cartesian closed category. The important property of the representation is that, for any
r, and all (i1, . . . , ik) ∈ Nk,

fr ◦ (i1, . . . , ik) = φr(i1, . . . , ik), (58)

where we write (·) : N → C(1,Nc) for the evident function associating a “numeral” to
each natural number.

Any term r representing a k-ary primitive recursive function, represents a k-ary
primitive recursive predicate Φr, defined by Φr(i) iff φr(i)  = 0. By composing φr with
the map n �→ (n  = 0c) : Nc

� 2, we represent Φr as a morphism Pr : Nc
k � 2.

This satisfies, for all (i1, . . . , ik) ∈ Nk,

Pr ◦ (i1, . . . , ik, j) =
{

� if Φr(i1, . . . , ik, j)
⊥ if not Φr(i1, . . . , ik, j)

(59)

Our characterization of computational adequacy involves the logical notion of 1-
consistency, see e.g. [12, Def. 1.3.6], formulated for the computational natural numbers
Nc.

Definition 14.1 (Computational Σ0
1-sentence) A computational Σ0

1-sentence is a
sentence, in the internal logic of C, of the form ∃n : Nc. Pr(n), where r represents a
unary primitive recursive predicate.

The adjective “computational” is included to emphasise that Nc is being used as the
object of quantification rather than N. If Axiom N holds then the computational Σ0

1-
sentences are just the ordinary Σ0

1-sentences.

Definition 14.2 (Computational 1-consistency) We say that C is computationally
1-consistent if, for every computational Σ0

1-sentence ∃n : Nc. Pr(n), C |= ∃n : Nc. Pr(n)
implies there exists i ∈ N such that Φr(i) holds.

In other words, C is computationally 1-consistent if the internal truth of computational
Σ0

1-sentences in C coincides with their external truth (n.b. it always holds, for such sen-
tences, that external truth implies internal truth). The ordinary notion of 1-consistency,
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is defined in the same way, but using Σ0
1-sentences over N in place of computational

Σ0
1-sentences. Using the canonical map N � Nc, it can be shown that, in gen-

eral, computational 1-consistency implies ordinary 1-consistency. Thus computational
1-consistency is a stronger property than ordinary 1-consistency. However, when Ax-
iom N holds, the two notions agree.

Theorem 2 (External computational adequacy) The following are equivalent.

1. The interpretation of FPC in pP is computationally adequate.

2. C is computationally 1-consistent.

PROOF. First we show that computational 1-consistency implies computational ad-
equacy. By the definition of the external interpretation in terms of the internal one,
it holds that [[t]] ↓ if and only if C |= ([t]) ↓. Therefore, it is immediate from Proposi-
tion 12.2(1) that t ⇓ implies [[t]] ↓ To establish computational adequacy, we must show
that also [[t]] ↓ implies t ⇓. Accordingly, suppose that [[t]] ↓. Then C |= ([t]) ↓. So, by
Proposition 12.2(2), C |= t ⇓. However, as in the remarks after Lemma 13.1, we have
t⇓ is of the form ∃(Π, v) :Nc. (Π � t � v), which is a computational Σ0

1-sentence. Thus,
if C is computationally 1-consistent then indeed it holds that t⇓.

To prove that computational adequacy implies computational 1-consistency, follow-
ing [40, §6], we encode computational Σ0

1-sentences as termination properties of FPC
programs. First, we encode primitive recursive functions and predicates as FPC pro-
grams. This is routine, but we anyway outline the approach in order to justify that the
relevant properties can be established of the encoding.

To each term r, representing a k-ary primitive recursive function, we associate a
closed FPC term tr : natk → nat. The definition of tr is by induction on the structure
of r. For example, given FPC terms tr1 : natk → nat and tr2 : natk+2 → nat, then one
defines a term tRr1r2 : natk+1 → nat by

tRr1r2 = rec f =λ(x1, . . . , xk, y). if y = 0 then tr1(x1, . . . , xk)
else tr2(x1, . . . , xk, pred(y), f(x1, . . . , xk, pred(y))) ,

using obvious abbreviations. The FPC terms tr, defined in this way, represent the
associated primitive recursive functions φr in the sense that, for all i1, . . . , ik ∈ N,

tr(i1, . . . , ik) � φr(i1, . . . , ik) .

Using the evident isomorphism γ : N � pP(1, ([nat])), we claim that

C |= ∀(n1, . . . , nk) : Nc
k. ([tr])(γ(n1), . . . , γ(nk)) = γ(fr(n1, . . . , nk)) , (60)

where fr : Nc
k � Nc is as above. Property (60) is proved by induction on the structure

of r. For example, the case for primitive recursion uses the fact that ([rec f =λx. t]) =
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([λx. t[rec f =λx. t/x]]), which is easily shown. This implies that ([tRr1r2 ]) gives rise to a
partial map fitting into the defining diagram for fRr1r2 (modulo γ). However, the total
map fRr1r2 is itself the only partial map fitting into this diagram. Thus ([tRr1r2 ]) and
fRr1r2 coincide.

Next, consider any primitive recursive (unary) predicate Pr. Using the encoding of
primitive recursive functions above, one esily encodes Pr as a closed term t′r : nat → bool
satisfying:

t′r(i) � tt if and only if Φ(i). (61)

Also, by (60), t′r satisfies

C |= ∀n : Nc. (([t′r])(γ(n)) = ([tt])) ↔ Pr(n) . (62)

We now encode the computational Σ0
1-property ∃n : Nc. Pr(n) as a search program

in FPC. Consider the closed term sr : nat → unit where sr is:

rec f =λx. if t′r(x) then ∗ else f(succ(x)) .

Intuitively, sr(i) searches for a number j ≥ i such that Φ(j), returning the canonical
element ∗ : unit if it finds such a j. By a straightforward induction on derivations in
the operational semantics, it follows from (61) that:

if sr(0)⇓ then there exists i such that Φr(i). (63)

We now show that also:

C |= (∃n : Nc. Pr(n)) → ([sr(0)])↓ . (64)

To prove this, we show by internal induction on n that

C |= ∀n :Nc. ∀m :Nc. Pr(n +c m) → ([sr])(γ(n))↓ , (65)

from which (64) easily follows. By the discussion around (41), to justify the use of
induction, we must show that

{m :Nc | ∀n :Nc. Pr(n +c m) → ([sr])(γ(n))↓}� � Nc (66)

is well-complete. However, for each m, n,, we have that (Pr(n)) ∈ 2 and (([sr])(γ(n)) ↓
) ∈ Σ, so (Pr(n) → ([sr])(γ(n)) ↓) ∈ Σ. Thus (66) is an intersection of well-complete
subobjects, hence, by Proposition 2.5(6), well-complete. It remains to carry out the
induction to establish (65). The argument is lengthy but routine. It uses (62), and also
basic semantic equivalences, such as ([rec f =λx. t]) = ([λx. t[rec f =λx. t/x]]), and also,
crucially, ([sr(succ(x))])x : nat(γ(n)) � ([sr])(γ(n +c 1)), which is used in the induction
step in order to apply the induction hypothesis.

Finally, we show that computational adequacy implies 1-consistency. Suppose that
the interpretation is computationally adequate and that C |= ∃n : Nc. Pr(n). Then,
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by (64), C |= ([sr(0)]) ↓, i.e. [[sr(0)]] ↓. Thus, by computational adequacy, sr(0) ⇓.
Therefore, by (63), there indeed exists i such that Φr(i). �

We say that C is trivial if any of the following equivalent conditions holds: C |= ⊥,
i.e. the internal logic is inconsistent; 0 ∼= 1; or C is equivalent to the terminal category.
By the results of [41, 43], the existence of a nontrivial C is equivalent to the consistency
of IZF. Nontriviality implies many good properties of C, e.g. all the computational
numerals in C(1,Nc) are distinct.

Obviously, computational adequacy is possible only when C is nontrivial. However,
as in [40, Corollary 1], a consequence of Theorem 2 is that there exist nontrivial C,
satisfying Axiom 2 (or even Axiom N), for which the interpretation of FPC in pP
is not computationally adequate. Indeed, this follows from the completeness theorem
for IZF with respect to categories with class structure [41, 43], together with Gödel’s
incompleteness theorem for IZF with respect to true Π0

1-sentences. Such categories C are
pathologies. Instead, the main force of Theorem 2 is in the converse implication, which
reduces computational adequacy to computational 1-consistency, which is a very weak
condition. Indeed, we end the section with two results that are useful for demonstrating
that computational 1-consistency holds for categories C that arise in practice.

We say that Nc is standard if the numeral map (·) : N → C(1,Nc) is a bijection. If
Nc is standard then C is clearly nontrivial.

Proposition 14.3 If Nc is standard then C is computationally 1-consistent.

PROOF. Suppose that Nc is standard, and suppose that C |= ∃n : Nc. Pr(n). Using
h : 2Nc ⇀ Nc defined in (50), we have, by (55), that C |= h(Pr) ↓. Therefore the
composite

h(Pr) = 1
Pr� 2Nc

h
⇀ Nc

is total. Thus, by the standardness assumption h(Pr) = i : 1 � Nc for some i ∈ N.
Moreover, by (51), it holds that C |= Pr(h(Pr)), i.e. that C |= Pr(i). Suppose, for
contradiction, that Φr(i) is not true. Then, by (58), C |= ¬Pr(i), contradicting the
consistency of C. Thus indeed P (n) is true. �

Proposition 14.4 If a countably infinite copower of 1 exists in P then C is computa-
tionally 1-consistent if it is nontrivial.

PROOF. Suppose that P has a countably infinite copower
∐

i∈N
1. Then, straight-

forwardly,
∐

i∈N
1 is a natural numbers object, hence Nc

∼=
∐

i∈N
1. Thus Nc is a

countable copower of 1. For each number i ∈ N, we write i : 1 � Nc for the asso-
ciated injection. Morover, we assign these injections in such a way that 0 = 0c and
such that i + 1 = sc(i). (This is possible, by the proof that

∐
i∈N

1 is a natural num-
bers object.) Because P is cartesian closed, finite product preserves colimits. Therefore
{(i1, . . . , ik) : 1 � Nc

k}(i1,...,ik)∈Nk is a coproduct diagram in P. By the coproduct
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property, for every function φ : Nk → N there exists a unique morphism gφ : Nc
k � Nc

in P satisfying
gφ ◦ (i1, . . . , ik) = φ(i1, . . . , ik) .

It is therefore immediate from (58) that fr = gφr . Thus φr = φr′ implies fr = fr′ .
Similarly, it follows for (unary) primitive recursive predicates that Pr : Nc

� 2 and
Pr′ : Nc

� 2 are equal whenever, for all i ∈ N it holds that Φr(i) iff Φr′(i).
We now establish computational 1-consistency. Suppose C |= ∃n : Nc. Pr(n). As-

sume, for contradiction, that, for all i, it is not the case that Φr(i). Thus, as shown
above, we have that Pr : Nc

� 2 is equal to the morphism x �→ ⊥. But trivially
C |= ¬∃n :Nc.⊥, i.e. C |= ¬∃n :Nc. Pr(n), which implies the inconsistency of the inter-
nal logic. So, if C is nontrivial then there indeed exists i such that Φr(i). �

15 Applications

In this section, we give a brief outline of two applications of the results of this paper
to derive computational adequacy for classes of concrete models of FPC. In contrast
to previous approaches to computational adequacy for recursive types [33, 3, 25], the
models we consider are not required to be order-enriched. Full details of the results
outlined in this section will appear in [44].

Both applications follow the same general pattern. First, using standard techniques,
we fully embed a concrete model of FPC into a topos S. In order to apply the results
of this paper, we further need the topos itself to arise as the full subcategory of small
objects within a category C with class structure and universal object. The specific
toposes we consider will either be Grothendieck toposes, see e.g. [24], or realizability
toposes [13, 15]. There are various results relating such toposes to categories with class
structure in [19, Ch. IV], which can be massaged into an appropriate form to obtain
embedding results sufficient for our needs.5 However, it is cleaner to use a new and
more general embedding theorem, which guarantees directly that every Grothendieck
topos and every realizability topos arises as the full subcategory of small objects within
a category with class structure and universal object. This result will appear in [2].

15.1 Realizability models

A realizability model is specified by a partial combinatory algebra (A, ·), which deter-
mines a category Mod(A) of modest sets over A, see e.g. [22, §2–3]. In many such
categories, one can find a dominance Σ, often conveniently determined by a divergence
D ⊂ A (see [22, Def. 4.1]), such that Axiom 2 holds. Numerous examples are presented
in [21, 22]. Furthermore, by [22, Theorem 7.5], Axiom 2 implies Axiom N in this setting.

5This requires the application of [41, Theorem 7] to an initial ZF-algebra, in the sense of [19],
constructed using an inaccessible cardinal. See [42] for further explanation.

73



As is well-known, there is a full embedding Mod(A) ⊂ � RT(A) of modest sets
into the realizability topos over A [13, 15]. By the results of [2], we have, in turn, a full
embedding RT(A) ⊂ � RC(A), exhibiting RT(A) as the category of small objects in
a category RC(A) with class structure and universal object. Then Σ is a dominance in
RC(A) and RC(A) inherits Axiom N from Mod(A). Thus the results of this paper
can be applied to obtain a category of predomains P ⊂ � RC(A) in which FPC can
be interpreted. Moreover, it can be shown that the interpretation of FPC lives within
the subcategory Mod(A) ⊂ � RC(A).

If A is nontrivial then the category RC(A) is computationally 1-consistent (equiva-
lently 1-consistent) by Proposition 14.3, because it holds that the numerals RC(A)(1,N) ∼=
Mod(A)(1,N) are standard. Thus, by Theorem 2, the interpretation of FPC in Mod(A)
is computationally adequate. This gives the first proof of computational adequacy for
an interpretation of FPC in the realizability models of [11, 28, 29, 30, 21, 22].

15.2 Models of axiomatic domain theory

In [3, Def. 8.3.1], an axiomatization of a general categorical notion of model for FPC is
given. Moreover, as Theorem 9.2.19 of op. cit., computational adequacy is proved for
any nontrivial model satisfying two further conditions: (i) the model is domain-theoretic,
i.e. it has an associated cpo-enrichment; and (ii) it is absolute, a condition which relates
the partiality structure on the model to the cpo-enrichment. By applying the results of
this paper, we obtain computational adequacy for a much wider class of models.

The class of models we work with is given by models of FPC, as in [3, Def. 8.3.1],
that have an inductive fixed-point object in the sense of [5, Def. 1.11]. This class includes
the domain-theoretic models of [4, 3], and, more generally, all KADT models, as in [5,
Def. 1.12]. Let C be any model in this class.

As C is a model of FPC, it has, in particular, a dominance Σ, an associated lifting
functor L, and finite coproducts. It can be proved that the latter are disjoint and stable
(for disjointness see [3, Prop. 5.3.12]). The Yoneda functor thus gives a full embedding
y : C ⊂ � Sh(C, fc) where Sh(C, fc) is the category of sheaves for the finite coproduct
topology fc on C. Moreover, it holds that y(Σ) is a dominance. Also, using the inductive
fixed-point object in C, it can be proved that every object in the image of C under y is
well-complete, cf. [5, Theorem 3.4.2]. As y preserves finite coproducts, it follows that
Axiom 2 holds in Sh(C, fc). (N.b. Axiom N need not hold in Sh(C, fc), cf. [27, §4].)
Also, the category of well-complete objects is a full reflective subcategory of Sh(C, fc),
cf. [5, Theorem 2.15].

By the results of [2], Sh(C, fc) arises as the full subcategory of small objects in a
category ShC(C, fc) with class structure and universal object. Then y(Σ) is a dominance
in ShC(C, fc) and also ShC(C, fc) inherits Axiom 2 from Sh(C, fc). Thus the results of
this paper can be applied to obtain a category of predomains P ⊂ � ShC(C, fc) in
which FPC can be interpreted. Furthemore, it can be shown that the interpretation of
FPC lives within the subcategory C ⊂ � ShC(C, fc).
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Because well-complete objects form a full reflective subcategory of Sh(C, fc), it holds
that there exists a countable copower of 1 in P. Hence, by Proposition 14.4 and Theo-
rem 2, the interpretation of FPC in any nontrivial C is computationally adequate. As a
special case, we obtain that the interpretation of FPC in any nontrivial domain-theoretic
model (in the sense of [3, §8.5.1]) is computationally adequate. Thus it turns out that
the absoluteness condition for computational adequacy in [4, 3] is unnecessary. More
generally, we have a computational adequacy result that applies to the wider classes of
enriched models considered in [6, 5], where the enrichment need not be an order enrich-
ment. In particular, we obtain computational adequacy for all nontrivial KADT models
in the sense of [5, Def. 1.12].
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