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Abstract

We construct representations of the Cuntz algebra O3 from real
cubic transformations on closed intervals. By intertwining relations of
transformations, we have those of operators of representations of O2

and O3. By these relations, we show that such representations are
unitarily equivalent to barycentric representations.

1 Introduction

We study representations of the Cuntz algebra ON naturally arising from
dynamical systems with non injective transformations. In [6], we show that
a representation of O2 arising from a real quadratic transformation x2 − 2
on a closed interval [−2, 2] is equivalent to one of GP representation in [5] by
using intertwining relations of operators corresponding to semiconjugacies
of dynamical systems. This means that representations of ON arising from
non linear transformations are not always hard to treat.

In this paper, we consider a real cubic transformation T3 on a closed
interval [−1, 1] defined by

T3(x) ≡ 4x3 − 3x (x ∈ [−1, 1]). (1.1)

Put a representation (L2[−1, 1], πt) of O3 by

(πt(si)φ) (x) ≡ mi(x)φ(T3(x)) (i = 1, 2, 3) (1.2)

for φ ∈ L2[−1, 1] where mi(x) ≡ χDi(x)
√
|12x2 − 3|, χDi the characteristic

function on Di, i = 1, 2, 3, D1 = [−1,−1/2], D2 = [−1/2, 1/2], D3 = [1/2, 1]
and s1, s2, s3 are generators of O3. Put N = {1, 2, 3, . . .}.
∗e-mail : kawamura@kurims.kyoto-u.ac.jp.
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Theorem 1.1 The representation (L2[−1, 1], πt) in (1.2) is unitarily equiv-
alent to the following representation (l2(N), π

′
) of O3:

1√
3

3∑
i=1

e2π
√
−1τijπ

′
(sj)en ≡ e3(n−1)+i (i = 1, 2, 3, n ∈ N)

where
τij ≡

(i− 1)(j − 1)
3

(i, j = 1, 2, 3). (1.3)

Specially, (L2[−1, 1], πt) is irreducible.

Ω(x) =
1√
π

1
(1− x2)1/4

is unique positive normalized eigen function of πt(s1) + πt(s2) + πt(s3) with
eigen value

√
3.

In § 2, we review the representation theory of the Cuntz algebra. In § 3,
we show intertwining relations between cubic transformations and piecewise
linear transformations by the cosine function. In § 4, we show Theorem 1.1
by using of the intertwining relation derived in § 3. In § 5, we compare these
results with those in [6] and discuss about remaining problems.

2 Representations of ON
For N ≥ 2, let ON be the Cuntz algebra([3]), that is, it is a C∗-algebra
which is universally generated by generators s1, . . . , sN satisfying

s∗i sj = δijI (i, j = 1, . . . , N),
N∑
i=1

sis
∗
i = I. (2.1)

In this paper, any representation means a unital ∗-representation. By sim-
plicity and uniqueness of ON , it is sufficient to define operators S1, . . . , SN
on an infinite dimensional Hilbert space which satisfy (2.1) in order to con-
struct a representation of ON .

2.1 The barycentric representation of ON
In order to characterize the representation in (1.2), we introduce a represen-
tation of ON which is defined by an eigen equation.
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Definition 2.1 (H, π,Ω) is a barycentric representation of ON if (H, π)
is a cyclic representation of ON with a cyclic vector Ω which satisfies the
following condition:

1√
N
π(s1 + · · ·+ sN )Ω = Ω.

Proposition 2.2 Let (H, π,Ω) be a barycentric representation of ON .

(i) The representation (H, π) exists uniquely up to unitary equivalences.

(ii) (H, π) is irreducible.

Proof. See Lemma A.3 (i),(ii),(iii).

The barycentric representation of ON is the GP representation by the pa-
rameter

(
1√
N
, . . . , 1√

N

)
([5]). The naming of “barycentric” is that a repre-

sentation of ON on a simplex ∆N−1 which is equivalent to the barycentric
representation, is naturally defined by using the barycenter of ∆N−1([8]).

Proposition 2.3 The representation (l2(N), π
′
, e1) in Theorem 1.1 is the

barycentric representation of O3.

Proof. See Corollary A.4.

2.2 Isometries arising from transformations on measure spaces

We give a method of construction of representation of ON from a branch-
ing function system over a measure space([2, 6, 7]). We introduce an easy
method to construct partial isometries from maps on a measure space.

Let (X,µ) be a measure space and Y ⊂ X a measurable subset of X.

Definition 2.4 (i) RN (Y,X) is the set of measurable maps on Y defined
by

RN (Y,X) ≡
{
f : Y → X

∣∣∣∣∣ f is injective and
there exists Φf and Φf > 0 a.e. Y

}

where Φf is the Radon-Nikodým derivative of µ ◦ f with respect to µ
on Y .

(ii) RNloc(X) ≡
⋃
Y⊂X RN (Y,X) where Y is taken from all measurable

subsets of X.
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For f, g ∈ RNloc(X), we denote the domain and the range of f by D(f) and
R(f), respectively and (f ◦ g)(x) ≡ f(g(x)) when D(f) ⊃ R(g).

Lemma 2.5 (i) If f ∈ RNloc(X), then f−1 ∈ RNloc(X).

(ii) For f, g ∈ RNloc(X), f ◦ g ∈ RNloc(X) when D(f) ⊃ R(g).

(iii) For f, g ∈ RNloc(X), Φf◦g = Φg · ((Φf ) ◦ g).

Proof. These are easily checked by direct computation and property of
Radon-Nikodým derivative.

Note that RNloc(X) is a groupoid by Lemma 2.5 (ii).

Definition 2.6 For f ∈ RNloc(X), define an operator S(f) : L2(X,µ) →
L2(X,µ) by

(S(f)φ)(x) ≡


{
Φf

(
f−1(x)

)}−1/2
φ(f−1(x)) (when x ∈ R(f) ),

0 (otherwise)
(2.2)

for φ ∈ L2(X,µ) and x ∈ X.

We simply denote
S(f) = LfMΦ

−1/2
f

(2.3)

where Mg is the multiplication operator of g ∈ L∞(X,µ) and Lf is defined
by

(Lfφ)(x) ≡ χR(f)(x)φ(f−1(x)) (x ∈ X)

and χY is the characteristic function on Y ⊂ X.

Lemma 2.7 (i) For f ∈ RNloc(X), S(f) is a partial isometry on L2(X,µ)
with the initial projection MχD(f)

and the range projection MχR(f)
.

(ii) For f ∈ RNloc(X), S(f)∗ = S(f−1).

(iii) S(idY ) = MχY .

(iv) For f, g ∈ RNloc(X), LfLg = Lf◦g when D(f) ⊃ R(g).

(v) For f ∈ RNloc(X) and g ∈ L∞(X), LfMg = MχR(f)
Mg◦f−1Lf .
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Proof. (i), (iv) and (v) follow by simple computation. (ii) Since R(f−1) =
D(f), D(f−1) = R(f) and the property of Radon-Nikodým derivative, it
follows. (iii) Since ΦidY = χY , it follows.

Let PIso(L2(X,µ)) be the groupoid of partial isometries on L2(X,µ)
by usual product of operators.

Lemma 2.8 A map S : RNloc(X) → PIso(L2(X,µ)) defined in (2.2) is a
groupoid homomorphism, that is,

S(f)S(g) = S(f ◦ g) (2.4)

when f, g ∈ RNloc(X) and D(f) ⊃ R(g).

Proof. By Lemma 2.5 (iii) and Lemma 2.7 (iv),(v),

S(f)S(g) = LfMΦ
−1/2
f

LgMΦ
−1/2
g

= Lf◦gM((Φf )◦g)−1/2M
Φ
−1/2
g

= S(f ◦ g).

Remark that f ◦ g in rhs of (2.4) is only the composition of two transforma-
tions f and g but not special product of them. By Lemma 2.8, we see that
a map S realizes the iteration of transformations on a measure space as the
product of operators on a Hilbert space naturally.

The notion of branching function system was introduced in [2] in order
to construct a representation of ON from a family of maps.

Let N ≥ 2.

Definition 2.9 (i) f = {fi}Ni=1 is a branching function system over (X,µ)
if fi ∈ RNloc(X) and D(fi) = X, put Ri ≡ R(fi), then µ(Ri∩Rj) = 0,
i 6= j and µ

(
X \

⋃N
i=1Ri

)
= 0.

(ii) F is the coding map of a branching function system f = {fi}Ni=1 on
(X,µ) if (F ◦ fi)(x) = x for a.e. x ∈ X and i = 1, . . . , N .

Proposition 2.10 For a branching function system f = {fi}Ni=1 on (X,µ),

πf (si) ≡ S(fi) (i = 1, . . . , N),

defines a representation (L2(X,µ), πf ) of ON .

Proof. It is straightforward to show that S(f1), . . . , S(fN ) satisfy (2.1) by
Lemma 2.7, Lemma 2.8 and Definition 2.9.
We show several examples of branching function system associated with
1-dimensioanl dynamical systems in [8].
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Lemma 2.11 Let (Y, ν) be another measure space. Assume that ϕ from
X to Y is a measurable bijection a.e. X and Y and its Radon-Nikodým
derivative Φϕ is positive a.e. X.

(i) An operator Uϕ : L2(X,µ) → L2(Y, ν) defined by Uϕ ≡ LϕMΦ
1/2
ϕ

is a
unitary.

(ii) For f ∈ RNloc(X), ϕ ◦ f ◦ϕ−1 ∈ RNloc(Y ) and UϕS(f)U∗ϕ = S(ϕ ◦ f ◦
ϕ−1).

(iii) If f = {fi}Ni=1 is a branching function system over (X,µ), then {ϕ ◦
fi ◦ ϕ−1}Ni=1 is a branching function system over (Y, ν), too.

Proof. These are easily proved by direct computation.

Proposition 2.12 Let f = {fi}Ni=1 and g = {gi}Ni=1 be branching function
systems over measure spaces (X,µ) and (Y, ν), respectively. Assume that
there is a map ϕ from X to Y which satisfies the assumption in Lemma
2.11 and map identities gi = ϕ ◦ fi ◦ ϕ−1 for i = 1, . . . , N hold. Then
(L2(X,µ), πf ) and (L2(Y, ν), πg) are unitarily equivalent.

Proof. By Lemma 2.11 (ii), we can show S(gi) = UϕS(fi)U∗ϕ for i =
1, . . . , N . These relations induce a unitary equivalence between πf and πg
in Proposition 2.10 immediately.

3 The cosine function as intertwining map for cu-
bic transformations

In order to show an intertwining relation of T3 in (1.1), we prepare other
transformations.

On a closed interval [−1, 1], we consider transformations V3, C : [−1, 1]→
[−1, 1] by

V3(x) ≡



3x+ 2
(
−1 ≤ x ≤ −1

3

)
,

−3x
(
−1

3 ≤ x ≤
1
3

)
,

3x− 2
(

1
3 ≤ x ≤ 1

)
,

C(x) ≡ cosπx.
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We denote T ≡ T3 and V ≡ V3 here. Then the following intertwining
relation holds:

C ◦ V = T ◦ C. (3.1)

Remark that C is not injective. We can not say that T and V are conjugate.
C is a semiconjugacy between V and T ([4]).

We divide the interval [−1, 1] by the following families of subintervals
of [−1, 1]:(

D
′
i

)3

i=1
≡

([
−1,−1

3

]
,
[
−1

3 ,
1
3

]
,
[

1
3 , 1
])
,

(Di)
3
i=1 ≡

([
−1,−1

2

]
,
[
−1

2 ,
1
2

] [
1
2 , 1
])
,

(
R
′
i

)6

i=1
≡

([
−1,−2

3

]
,
[
−2

3 ,−
1
3

]
,
[
−1

3 , 0
]
,
[
0, 1

3

]
,
[

1
3 ,

2
3

]
,
[

2
3 , 1
])
,

(Ri)
6
i=1 ≡

([
−1,−

√
3

2

]
,
[
−
√

3
2 ,−

1
2

]
,
[
−1

2 , 0
]
,
[
0, 1

2

]
,
[

1
2 ,
√

3
2

]
,
[√

3
2 , 1

])
,

(P−, P+) ≡ ([−1, 0], [0, 1]).

The relations between these divisions are followings:(
D
′
i

)3

i=1
=

(
R
′
1 ∪R

′
2, R

′
3 ∪R

′
4, R

′
5 ∪R

′
6

)
,

(P−, P+) =
(
R
′
1 ∪R

′
2 ∪R

′
3, R

′
4 ∪R

′
5 ∪R

′
6

)
.
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T3(x)

11
2−1

2

√
3

2

−
√

3
2

−1

0

︸︷︷︸
R1

︸ ︷︷ ︸
R2

︸ ︷︷ ︸
R3

︸ ︷︷ ︸
R4

︸ ︷︷ ︸
R5

︸︷︷︸
R6︸ ︷︷ ︸

D1

︸ ︷︷ ︸
D2

︸ ︷︷ ︸
D3

P+

︸
︷︷

︸

P−

︸
︷︷

︸
V3(x)

12
3

1
3−1

3−2
3−1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

︸ ︷︷ ︸
R
′
1

︸ ︷︷ ︸
R
′
2

︸ ︷︷ ︸
R
′
3

︸ ︷︷ ︸
R
′
4

︸ ︷︷ ︸
R
′
5

︸ ︷︷ ︸
R
′
6︸ ︷︷ ︸

D
′
1

︸ ︷︷ ︸
D
′
2

︸ ︷︷ ︸
D
′
3

P+

︸
︷︷

︸

P−

︸
︷︷

︸

C(x)

�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
LL

1
1
20−1

2−1

1

−1
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The images of transformations T, V,C on these divisions are followings:(
T (Ri)

)6

i=1
= (P−, P+, P+, P−, P−, P+),

(
C(R

′
i)
)6

i=1
= (D1, D2, D3, D3, D2, D1),

(
V (R

′
i)
)6

i=1
= (P+, P−, P−, P+, P+, P−).

For these divisions, we have the following six relations by (3.1):

C|P+ ◦ V |D′1 = T |D1 ◦ C|P− ,

C|P− ◦ V |D′1 = T |D2 ◦ C|P− ,

C|P− ◦ V |D′2 = T |D3 ◦ C|P− ,

C|P+ ◦ V |D′2 = T |D3 ◦ C|P+ ,

C|P+ ◦ V |D′3 = T |D2 ◦ C|P+ ,

C|P− ◦ V |D′3 = T |D1 ◦ C|P+ .

Note that restrictions C|P± , V |
D
′
i

and T |Di , i = 1, 2, 3 are injective. Let

c± ≡ (C|P±)−1, vi ≡ (V |
D
′
i
)−1, ti ≡ (T |Di)−1 (3.2)

for i = 1, 2, 3. Then

c− ◦ t1 = v1 ◦ c+,

c− ◦ t2 = v1 ◦ c−,

c− ◦ t3 = v2 ◦ c−,

c+ ◦ t3 = v2 ◦ c+,

c+ ◦ t2 = v3 ◦ c+,

c+ ◦ t1 = v3 ◦ c−.

From these, we have the following relations:

v1 =


c− ◦ t1 ◦ c−1

+ (on P+),

c− ◦ t2 ◦ c−1
− (on P−),

v2 =


c+ ◦ t3 ◦ c−1

+ (on P+),

c− ◦ t3 ◦ c−1
− (on P−),

v3 =


c+ ◦ t2 ◦ c−1

+ (on P+),

c+ ◦ t1 ◦ c−1
− (on P−).

(3.3)
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4 Representations of O3 arising from dynamical
systems

We show intertwining relations of operators in this section.

4.1 Intertwining relations of operators

By (3.2), c ≡ {c+, c−} is a branching function system over [−1, 1] for N = 2
and both t ≡ {t1, t2, t3} and v ≡ {v1, v2, v3} are those over [−1, 1] for N =
3. Hence operators {S(c±)} gives a representation of O2 on L2[−1, 1] and
{S(ti)}3i=1, {S(vi)}3i=1 give those of O3 on L2[−1, 1], too.

Then πt(si) = S(ti) for i = 1, 2, 3 where πt is the representation of O3

on L2[−1, 1] in (1.2) and

(S(v1)φ)(x) = 31/2χ[−1,−1/3](x)φ(3x+ 2),

(S(v2)φ)(x) = 31/2χ[−1/3,1/3](x)φ(−3x),

(S(v3)φ)(x) = 31/2χ[1/3,1](x)φ(3x− 2),
(S(c+)φ)(x) =

√
π sinπ|x|χ[0,1](x)φ(cosπx),

(S(c−)φ)(x) =
√
π sinπ|x|χ[−1,0](x)φ(cosπx),

(4.1)

for φ ∈ L2[−1, 1] and x ∈ [−1, 1].
By Lemma 2.8 and (3.3), we have the following operator relations:

S(v1) = S(c−)S(t1)S(c+)∗ + S(c−)S(t2)S(c−)∗,

S(v2) = S(c+)S(t3)S(c+)∗ + S(c−)S(t3)S(c−)∗,

S(v3) = S(c+)S(t2)S(c+)∗ + S(c+)S(t1)S(c−)∗.

(4.2)

Note that (4.2) is a relation of representations πc, πt, πv and it is derived
from (3.1) essentially. We explain these relations in § 5. Let

A1 ≡
3∑
i=1

S(vi), A2 ≡
3∑
i=1

S(ti), B ≡ S(c+) + S(c−).

Then we have the following intertwining relations of operators:

B∗A1 = A2B
∗. (4.3)
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Let 1 be the constant function of [−1, 1] with value 1. Note A11 =
√

31.
Let Ω0 ≡ B∗1. By (4.3),

A2Ω0 = A2B
∗1 = B∗A11 =

√
3B∗1 =

√
3Ω0.

Hence Ω0 is an eigen function of A2 with eigen value
√

3.

Lemma 4.1 The operator S(t1)+S(t2)+S(t3) has an eigen vector (S(c+)∗+
S(c−)∗)1 with eigen value

√
3.

Let Ω be the normalization of Ω0. Then

Ω(x) =
1√
π

1
(1− x2)1/4

(x ∈ [−1, 1]).

Theorem 4.2 (L2[−1, 1], πt,Ω) is the barycentric representation.

Proof. By Lemma 4.1, it is sufficient to show the cyclicity of (L2[−1, 1], πt).
By (1.2), πt(sI)Ω = MχDI

3k/2Ω. Hence K ≡ {χDI · Ω : I ∈ {1, 2, 3}k, k ≥
1} ⊂ πt(O3)Ω. Since Ω(x) > 0 for any x ∈ (0, 1), L2[−1, 1] = Lin < K > ⊂
πt(O3)Ω. Therefore (L2[−1, 1], πt) is cyclic. Hence (L2[−1, 1], πt,Ω) is the
barycentric representation.

Proof of Theorem 1.1. By Proposition 2.3, (l2(N), π
′
) in Theorem 1.1

is equivalent to the barycentric representation. By Proposition 2.2 (i) and
Theorem 4.2, the statement in Theorem 1.1 follows.

4.2 Generalization

We generalize our result slightly. Assume a, b ∈ R, a < b. Let

ϕ(a,b) : [−1, 1]→ [a, b]; ϕ(a,b)(x) ≡ b− a
2

x+
a+ b

2
.

Put T (a,b)
3 ≡ ϕ(a,b) ◦ T3 ◦ (ϕ(a,b))−1, V

(a,b)
3 ≡ ϕ(a,b) ◦ V3 ◦ (ϕ(a,b))−1. Then

V
(a,b)

3 (x) = 2α
∣∣∣∣ 1αx− β

∣∣∣∣+ α(β − 1),

T
(a,b)
3 (x) =

4
α2
x3 − 12β

α
x2 + 3(4β2 − 1)x− 4αβ(β2 − 1) (4.4)
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where α = b−a
2 , β = b+a

b−a . For example, T (−1,1)
3 (x) = T3(x), T (−2,2)

3 (x) =

x3 − 3x and T
(0,1)
3 (x) = x(4x− 3)2.

By Proposition 2.12, for any a, b ∈ R, a < b, the representation
(L2[a, b], π(a,b)

t ) of O3 arising from T
(a,b)
3 is given by

(π(a,b)
t (si)φ)(x) = m

(a,b)
i (x)φ(T (a,b)(x)) (φ ∈ L2[a, b])

where

m
(a,b)
i (x) ≡ χ

D
(a,b)
i

(x) ·
√∣∣∣∣12

α2
x2 − 24β

α
x+ 3(4β2 − 1)

∣∣∣∣
and D

(a,b)
1 = [a, 3a+b

4 ], D(a,b)
2 = [3a+b

4 , a+3b
4 ], D(a,b)

3 = [a+3b
4 , b]. Put

Ω(a,b)(x) ≡ 1√
π

1
{(3b− a− 2x)(b− 3a+ 2x)}1/4

.

Then (L2[a, b], π(a,b)
t ,Ω(a,b)) is the barycentric representation of O3.

5 Discussion

Our results in this paper is similar to those in [6]. Although, the intertwining
relations (4.2) are more complicated than the former. Their abstractions are
followings: Put Rep(ON ,H) the set of all unital ∗-representations of ON on
a Hilbert space H for N ≥ 2. By [6], there is a map

ζ(2) : Rep(O2,H)× Rep(O2,H)→ Rep(O2,H); (π
′
, π) 7→ ζ

(2)

π
′ (π)

defined by
ζ

(2)

π′
(π)(s1) = π

′
(s1)π(s1)π

′
(s1)∗ + π

′
(s1)π(s2)π

′
(s2)∗,

ζ
(2)

π′
(π)(s2) = π

′
(s2)π(s1)π

′
(s1)∗ + π

′
(s2)π(s2)π

′
(s2)∗.

On the other hand, by (4.2), there is a map

ζ(3) : Rep(O3,H)× Rep(O2,H)→ Rep(O3,H); (π
′
, π) 7→ ζ

(3)

π
′ (π)

defined by

ζ
(3)

π′
(π)(t1) = π

′
(s1)π(t1)π

′
(s2)∗ + π

′
(s1)π(t2)π

′
(s1)∗,

ζ
(3)

π′
(π)(t2) = π

′
(s2)π(t3)π

′
(s2)∗ + π

′
(s1)π(t3)π

′
(s1)∗,

ζ
(3)

π′
(π)(t3) = π

′
(s2)π(t2)π

′
(s2)∗ + π

′
(s2)π(t1)π

′
(s1)∗
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where {s1, s2} and {t1, t2, t3} are generators of O2 and O3, respectively. Ap-
parently, ζ(3) is not a simple generalization of ζ(2). In fact, we can not
guess the case of N = 4, 5, 6, . . . for ON . Note that ζ(2) and ζ(3) are de-
rived by intertwining relations of a quadratic transformation and a cubic
transformation on a closed interval, respectively.

We can not yet make clear mechanism when “nice” intertwining re-
lations occur. For example, we can not make representation theory from
general cubic transformations a1x

3 + a2x
2 + a3x+ a4 except T (a,b)

3 in (4.4).

Acknowledgement: We would like to thank Cho Chien-Hong for the idea
of the map T3(x) = 4x3 − 3x by improving our results in [6].

Appendix A Proof of Proposition 2.2

Results in Proposition 2.2 are included in [5]. The barycentric representation
is a kind of GP representation in [5]. Here we show the proof of Proposition
2.2 for convenience.

A.1 The standard representation of ON
We introduce the standard representation of ON in order to prove Proposi-
tion 2.2. Let l2(N) be the Hilbert space with the canonical basis {en : n ∈
N}, N = {1, 2, 3, . . .}, and make the following representation (l2(N), πS) of
the Cuntz algebra ON which is called the standard representation of ON ([1]):

πS(si)en ≡ eN(n−1)+i (i = 1, . . . , N, n ∈ N). (A.1)

From this, we have πS(si)∗eN(n−1)+j = δijen for i, j = 1, . . . , N and n ∈ N.
Note that this is a permutative representation of ON by [2]. By (A.1),

πS(s1)e1 = e1. (A.2)

Lemma A.1 (l2(N), πS) is irreducible.

Proof. By Theorem 2.7 in [2], this representation is irreducible.

Proposition A.2 For N ≥ 2, put

ΛN ≡ {1, . . . , N} ∪
⋃
k≥1

(
{1, . . . , N}k × {2, . . . , N}

)
.
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Let (H, π) be a representation of ON . Assume that

there is a unit cyclic vector Ω ∈ H such that π(s1)Ω = Ω. (A.3)

Then the followings hold:

(i) {π(sI)Ω : I ∈ ΛN} is an orthonormal family in H.

(ii) The representation of ON which satisfies the condition (A.3) is unique
up to unitary equivalences.

Proof. (i) We denote |I| the length of I ∈ ΛN . Put I, J ∈ ΛN .
If |I| = |J |, then < π(sI)Ω|π(sJ)Ω >= δI,J .
Assume that |I| > |J |. Put I = (i1, . . . , ik+l) and J = (j1, . . . , jk),

k, l ≥ 1. Then

< π(sI)Ω|π(sJ)Ω >= δI1,J < π(sI2)Ω|Ω >= δI1,J < π(sI2)Ω|π(sl1)Ω >

where we use π(sl1)Ω = Ω and I1 = (i1, . . . , ik) and I2 = (ik+1, . . . , ik+l). By
choice of I, I2 6= (1, . . . , 1). Hence < π(sI2)Ω|π(sl1)Ω >= δI2,J0 = 0 where
J0 ≡ (1, . . . , 1︸ ︷︷ ︸

l

). Therefore < π(sI)Ω|π(sJ)Ω >= 0. From this, we obtain

< π(sI)Ω|π(sJ)Ω >= δI,J for each I, J ∈ ΛN .
(ii) Put {1, . . . , N}∗ ≡

⋃
k≥0{1, . . . , N}k. Let (H, π,Ω) be a represen-

tation which satisfies (A.3). Because Ω is a cyclic vector, the linear span
of {π(sIs∗J)Ω : I, J ∈ {1, . . . , N}∗} is dense in H. Because π(s1)Ω = Ω,
{π(sIs∗J)Ω : I, J ∈ {1, . . . , N}∗} = {π(sI)Ω : I ∈ ΛN}. Hence {π(sI)Ω : I ∈
ΛN} is a complete orthonormal basis of H by (i). In this way, we know that
any representation which satisfies the condition (A.3) always has such basis.
Therefore we have a natural unitary between any two such representations.
The uniqueness is proved.

By this, we call the standard representation the representation which
satisfies the condition (A.3), too.

A.2 The barycentric representation of ON
Recall Definition 2.1.

Lemma A.3 Let N ≥ 2.

(i) The barycentric representation of ON exists.
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(ii) The barycentric representation of ON is unique up to unitary equiva-
lences.

(iii) The barycentric representation of ON is irreducible.

(iv) The barycentric representation of ON is not equivalent to the standard
representation.

(v) The GNS representation of ON of the following state ρ

ρ(sJs∗J ′ ) =
1

N (|J |+|J ′ |)/2
(J, J

′ ∈ {1, . . . , N}k, k ≥ 0} (A.4)

is equivalent to the barycentric representation where we define sJ = I
when J = ∅. Specially, ρ is pure.

Proof. (i) Put g = (gij) ∈ U(N) by

gij ≡
1√
N
e2π
√
−1τij (i, j = 1, . . . , N). (A.5)

where τij ≡ 1
N (i − 1)(j − 1) for i, j = 1, . . . , N . Then specially, g1j = 1√

N

for i = 1, . . . , N . Let (l2(N), πS) be the standard representation of ON in
(A.1). Put π

′ ≡ πS ◦ αg where α is an action of U(N) on ON defined by
αg(si) ≡

∑N
j=1 gjisj for i = 1, . . . , N .

Since (l2(N), πS) is an irreducible representation of ON , (l2(N), π
′
) is

too. Specially, (l2(N), π
′
) is cyclic. Because αg∗(s1) = 1√

N
(s1 + · · ·+ sN ),

1√
N
π
′
(s1 + · · ·+ sN )e1 = (π ◦ αg) (αg∗(s1)) e1 = πS(s1)e1 = e1.

Hence (l2(N), π
′
, e1) is a barycentric representation of ON .

(ii) Assume that (Hi, πi,Ωi) is a barycentric representation of ON for
i = 1, 2. By the similar argument in (i), (Hi, πi ◦ αg∗) is the standard rep-
resentation of ON with respect to g ∈ U(N) in (i) for i = 1, 2. By unique-
ness of the standard representation, (H1, π1 ◦ αg∗) ∼ (H2, π2 ◦ αg∗). Hence
(H1, π1) ∼ (H2, π2). Therefore the barycentric representation is unique up
to unitary equivalences.

(iii) By (ii), the barycentric representation is equivalent to the action
of the standard representation by suitable g ∈ U(N). Since the standard
representation is irreducible, the barycentric representation is too.

(iv) Let (H, π,Ω) and (H′ , π′ ,Ω′) be the standard representation and
the barycentric representation of ON , respectively. Assume that (H, π) and
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(H′ , π′) are unitarily equivalent. Then we can identify (H′ , π′) = (H, π). By
assumption,

< Ω|Ω′ >=< π(s1)Ω|π(N−1/2(s1 + · · ·+ sN ))Ω
′
>= N−1/2 < Ω|Ω′ > .

Hence < Ω|Ω′ >= 0. By cyclicity, there is J = (j1, . . . , jk) ∈ {1, . . . , N}k,
k ≥ 1, such that < Ω|π(sJ)Ω

′
>6= 0. However,

< Ω|π(sJ)Ω
′
>=< π(s1)kΩ|π(sJ)Ω

′
>=

(
k∏
l=1

δ1,jl

)
< Ω|Ω′ >= 0.

This is contradiction. Therefore (H, π) and (H′ , π′) are not unitarily equiv-
alent.

(v) Let (H, π,Ω) be the barycentric representation. Put ρ(x) ≡<
Ω|π(x)Ω > for x ∈ ON . Then ρ satisfies the condition (A.4). Since the
uniqueness of the GNS-representation and (H, π) is irreducible, the state-
ment holds.

Corollary A.4 The representation (l2(N), π
′
, e1) of O3 in Theorem 1.1 is

the barycentric representation.

Proof. By the proof of Lemma A.3 (i), it follows when N = 3.
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