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Abstract. We shall establish the following three results in more general forms.
(1) The second main theorem for small functions. Let f be a mero-

morphic function on the complex plane C. Let a1, . . . , aq be distinct mero-
morphic functions on C. Assume that ai are small with respect to f ; i.e.,
T (r, a) < o(T (r, f)) ||. Then the inequality

(q − 2− ε)T (r, f) ≤
q∑
i=1

N(r, ai, f) + o(T (r, f)) ||

holds for all ε > 0 (Corollary 1). Here as usual in Nevanlinna theory, the

terms T (r, f) and N(r, ai, f) denote for the characteristic function and the
truncated counting function, respectively.

(2) Application to functional equations. Let KC be the field of mero-

morphic functions on C. For a function ψ : R>0 → R, put Kψ
C

= {a ∈
KC; T (r, a) ≤ O(ψ(r)) ||}, which is a subfield of KC. Then the following

holds: Let F (x, y) ∈ Kψ
C

[x, y] be a polynomial in two variables over Kψ
C

. As-

sume that the curve F (x, y) = 0 over Kψ
C

has genus greater than one. If
ζ1, ζ2 ∈ KC satisfy the functional equation F (ζ1, ζ2) = 0, then both ζ1 and ζ2
are contained in Kψ

C
(Corollary 2).

(3) Height inequality for curves over function fields. Let k be a function
field of one variable over C. Let X be a smooth projective curve over k, let
D ⊂ X be a reduced divisor, let L be an ample line bundle on X and let
ε > 0. Then we have

hk,KX (D)(P ) ≤ N(1)
k,S(D,P ) + dk(P ) + εhk,L(P ) +Oε(1)

for all P ∈ X(k)\D (Theorem 5). Here the notations are introduced in [V1],
[V3] (see also section 9).

Our proof uses Ahlfors’ theory of covering surfaces and the geometry of
the moduli space of q-pointed stable curves of genus 0.

1. Introduction

1.1. Results. One of the most interesting results in Value distribution theory is the
Defect Relation obtained by R. Nevanlinna: If f is a non-constant meromorphic
function on C, then for arbitrary collection of distinct a1, · · · , aq ∈ P1, the following
defect relation holds

(1.1.1)

q∑
i=1

(δ(ai, f) + θ(ai, f)) ≤ 2.
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Here, as usual in Nevanlinna theory, the terms δ(ai, f), θ(ai, f) are defined by

δ(ai, f) = lim inf
r→∞

{
1− N(r, ai, f)

T (r, f)

}
,

θ(ai, f) = lim inf
r→∞

{
N(r, ai, f)−N(r, ai, f)

T (r, f)

}
,

hence satisfy 0 ≤ δ(ai, f), θ(ai, f) ≤ 1 (for the definitions of the terms T (r, f),

N(r, ai, f) and N(r, ai, f), see [N2], [H] and the following subsections).
Nevanlinna asked whether inequality (1.1.1) is still true when we replace constants

ai to arbitrary collection of distinct small functions ai with respect to f (cf. [N1]).
Here we say a meromorphic function a on C is a small function with respect to f if
a satisfies the condition T (r, a) < o(T (r, f)) ||, that is,

T (r, a) < o(T (r, f)) when r →∞ and r 6∈ E

for an exceptional set E ⊂ R>0 with
∫
E
d log log r <∞. Nevanlinna pointed out that

the case q = 3 for this question is valid, because we may reduce the problem to the
case that a1, a2, a3 are all constants by using Möbius transform. But for the case
q > 3, this method doesn’t work.

Later, N. Steinmetz [St] and C. Osgood [O] proved

q∑
i=1

δ(ai, f) ≤ 2

for distinct small functions ai. They used differential polynomials for f and ai (1 ≤
i ≤ q), so it may be regarded as a generalization of Nevanlinna’s original proof
of (1.1.1). Though Nevanlinna used only the first order derivative of f , Steinmetz
and Osgood used higher order derivatives of f . Hence the truncation level of the
counting function is greater than one in general. See also C. Chuang [C] and G. Frank-
G. Weissenborn [FW].

But it is hopped that the generalization of (1.1.1) for small functions is true with
the form including the term θ(ai, f) (cf. [D]).

In this paper, we give a solution for this problem by the following theorem.

Theorem 1. Let Y and B be two Riemann surfaces with proper, surjective holomor-
phic maps πY : Y → C and πB : B → C. Assume that πY factors through πB, i.e.,
there exists a proper, surjective holomorphic map π : Y → B such that πY = πB ◦ π.
Let f be a meromorphic function on Y . Let a1, · · · , aq be distinct meromorphic func-
tions on B. Assume that f 6= ai ◦ π for i = 1, . . . , q. Then for all ε > 0, there exists
a positive constant C(ε) > 0 such that

(1.1.2) (q − 2− ε)T (r, f) ≤
q∑
i=1

N(r, ai ◦ π, f) +NramπY (r)

+ C(ε)

(
q∑
i=1

T (r, ai) +NramπB (r)

)
+ o (T (r, f)) ||.
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Remarks 1.1.3. (1) The term NramπY (r) is called the ramification counting function
for πY . In the case Y = C and πY = idC, we have NramπY (r) = 0. Similarly for
NramπB (r).

(2) We can also define the terms T (r, f), T (r, ai) and N(r, ai ◦ π, f) for algebroid
functions f , a1, . . . aq by the similar way for meromorphic functions on C. See the
following subsections.

As an immediate corollary, applying the theorem to the case that Y = B = C,
πY = πB = idC and all ai are small functions with respect to f , we have the following.

Corollary 1. Let f be a meromorphic function on C and let a1, · · · , aq be distinct
meromorphic functions on C. Assume that ai are small functions with respect to f
for i = 1, . . . , q. Then we have the second main theorem:

(q − 2− ε)T (r, f) ≤
q∑
i=1

N(r, ai, f) + o (T (r, f)) || for all ε > 0,

and the defect relation:
q∑
i=1

(δ(ai, f) + θ(ai, f)) ≤ 2.

A special case of this corollary that f is a transcendental meromorphic function
and ai are rational functions was proved in [Y2]. The present paper is a development
of the previous one.

We shall prove two other results. The first one is a corollary of the above theorem.
This is suggested by A. Eremenko [E]. Let KY and KB are the fields of meromorphic
functions on Y and B, respectively. For a function ψ : R>0 → R, we define the subset
KψB of KB by

KψB = {a ∈ KB ; T (r, a) ≤ O(ψ(r)) || }.
Here, as before, the symbol || means that the inequality holds when r →∞ and r 6∈ E
for some exceptional set E ⊂ R>0 with

∫
E
d log log r <∞. Then this KψB is a subfield

of KB . For instance, if ψ is a bounded function, then KψB is the field of constant

functions, i.e., KψB = C.

Let F (x, y) ∈ KψB [x, y] be a polynomial in two variables with coefficients in KψB .
For general z ∈ B, we denote by Fz(x, y) ∈ C[x, y] the polynomial obtained by taking
the values at z of the meromorphic functions in the coefficients of F (x, y).

Corollary 2. Let Y , B and π be the same as Theorem 1 and let ψ : R>0 → R. Let
F (x, y) ∈ KψB [x, y] be a polynomial such that the equation Fz(x, y) = 0 defines a curve
of genus greater than one for general z ∈ B. Assume that ζ1, ζ2 ∈ KY satisfy the
functional equation F (ζ1, ζ2) = 0, where we consider KψB as a subfield of KY by the
natural inclusion defined by π. Then we have

T (r, ζi) ≤ O (ψ(r) +NramπY (r) +NramπB (r)) ||

for i = 1, 2.

If we apply this corollary to the case that Y = B = C, πY = πB = idC and ψ
is a bounded function, then we conclude that T (r, ζi) < O(1) || for i = 1, 2. Hence,
both ζ1 and ζ2 are constant functions. This is equivalent to a result of E. Picard:
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A holomorphic map f : C → X, where X is a curve of genus greater than one, is a
constant map.

The next result is an algebraic analogue of the above theorem.

Theorem 2. Let q ≥ 3 be a positive integer. For all ε > 0, there exists a positive
constant C(q, ε) > 0 with the following property: Let Y and B be compact Riemann
surfaces with a proper, surjective holomorphic map π : Y → B. Let f be a rational
function on Y . Let a1, · · · , aq be distinct rational functions on B. Assume that
f 6= ai ◦ π for all i = 1, . . . , q. Then we have

(1.1.4) (q − 2− ε) deg f ≤
∑

1≤i≤q

n(ai ◦ π, f, Y ) + 2g(Y )

+ C(q, ε) deg π

(
max

1≤i≤q
(deg ai) + g(B) + 1

)
.

Here we put n(ai ◦ π, f, Y ) = card{z ∈ Y ; f(z) = ai ◦ π(z)} and denote by g(·)
genus of curves. Using this theorem, we can prove the Height inequality for curves over
function fields, which is a geometric analogue of a conjectural Diophantine inequality
in Number theory ([V1], [V3]). Since the formulation of this Height inequality requires
some notations, we postpone stating it until section 9 (cf. Theorem 5). A proof of
Theorem 2 is similar to that of Theorem 1. But we don’t need Nevanlinna theory
in this case. The following scheme for the proof of Theorem 1 also works for that of
Theorem 2, if we replace ”B(R)” by ”B”. We also note that the inequality (1.1.4) is
an analogue of unintegrated version of (1.1.2).

1.2. Rough outline of proof of Theorem 1. We use Ahlfors’ theory of covering surfaces
(cf. [A], [N2], [H]) and the geometry of the moduli space of q-pointed stable curves
of genus 0 (cf. [Kn]), especially properties around the degenerate locus whose point
corresponds to a degenerate, nodal curve.

We first divide P1 by a non-simple curve γ such that P1\γ is finite disjoint union
of sufficiently small Jordan domains Dk (1 ≤ k ≤ K), i.e., P1\γ = ∪1≤k≤KDk. This
division of P1 gives the division of (P1)q in the form of open subsets

Dk1 × · · · ×Dkq , 1 ≤ ki ≤ K for 1 ≤ i ≤ q.
Then this division and the holomorphic map

a = a1 × · · · × aq : B → (P1)q

give the division of the open set

B(R) = π−1
B ({z ∈ C; |z| < R})

by the open subsets

F (k) = F (k1, · · · , kq) = B(R) ∩ a−1(Dk1 × · · · ×Dkq ).

Note that on each F (k), the move of ai is bounded in P
1. Hence the situation

becomes closer to the case that ai are all constants. We apply Ahlfors’ theory of
covering surfaces to the subcovering f : π−1 (F (k)) → P

1 and Jordan domains Dki
(1 ≤ i ≤ q) on P1. Then we obtain unintegrated version of (1.1.2) for each domain
F (k). By adding over all k, we get unintegrated version of (1.1.2) for B(R). Using the
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Schwarz inequality, we conclude the inequality (1.1.2). This is a very rough plan of
our proof (we use the moduli space of q-pointed stable curves of genus 0 instead of the
above space (P1)q). There are some problems to work out above process correctly.
The major problem comes from the degenerating points z ∈ B where two distinct
functions ai and aj degenerate into the same value ai(z) = aj(z); the problem is how
to separate the functions ai and aj at the degenerating points z in relevant way. To
motivate the rest of this introduction, we only remark the following two points, which
are closely related.

(1) If z ∈ F (k1, · · · , kq) is a degenerating point such that ai(z) = aj(z), then we
have Dki = Dkj . Hence we can’t apply usual method of Ahlfors’ theory; we need
to modify it. The idea of the modification is roughly as follows. We use Ahlfors’
theory in two steps (in several steps in general). First, we apply Ahlfors’ theory to
the subcovering

f : π−1 (F (k))→ P
1.

Secondly, we apply Ahlfors’ theory to the covering

f − ai
aj − ai

: f−1(Dki) ∩ π
−1 (F (k))→ P

1.

Note that we choose the function λ(w) = w−ai
aj−ai

so as to separate the functions ai

and aj , i.e., λ(ai) ≡ 0 and λ(aj) ≡ 1. Combining these two steps, we get rid of
the above degenerating point z. Hence, we can say that our idea is the systematic
use of the functions of the form λ(f) to reduce the problem of degenerate cases to
that of non-degenerate cases. In this paper, we use a system of contraction maps (cf.
subsection 1.5) instead of the functions of the form λ.

(2) Let K = C(a1, · · · , aq) be the subfield of KB generated over C by the meromor-
phic functions a1, . . . , aq. In general, the transcendental degree of the field extension
K/C has high dimension, which requires us to use higher dimensional algebraic ge-
ometry. The most natural way to control the degeneration such as ai(z) = aj(z) in
relevant way is to consider the moduli space of q-pointed stable curves of genus 0,
denoted by M 0,q. Roughly speaking, this space is a quotient of (P1)q by the diagonal
action of Aut(P1). For generic z ∈ B, the points a1(z), · · · , aq(z) ∈ P1 are distinct.

We consider these points as q-marked points of P1. Since the space M 0,q is the classi-
fication space of q-marked points of stable curves of genus 0, we have the classification
map

cla : B →M 0,q.

This map is a modification of the above map a. When we consider the degenerating
point z ∈ B, then the image cla(z) is contained in the degenerate locus Zq ⊂M 0,q.
And what is important is that we may consider the points a1(z), · · · , aq(z) as dis-
tinct marked points of degenerate, nodal curve instead of considering as non-distinct
points of P1. Hence in this sense, we can say that the values a1(z), . . . , aq(z) are also
separated at the degenerating points z. This is one reason for why we employ the
space M 0,q.

Next we prepare some notations and formulate Theorem 4 from which we derive
both Theorem 1 and Theorem 2. And we shall discuss farther details of the proofs of
our theorems.
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Remark 1.2.1. When we consider the special case that f is a transcendental mero-
morphic function on C and ai are distinct rational functions on C, the proof becomes
simpler than that of the general case. One reason for this is that the field K is con-
tained in the field of rational functions on C, hence the transcendental degree of the
field extension K/C is equal to or less than one. Especially, we don’t need Algebraic
geometry nor the moduli space of stable curves. This case was treated in [Y2]. In the
present paper, we freely use the language of Algebraic geometry.

1.3. Notations. In this paper, we assume that all domains on Riemann surfaces have
piecewise analytic (or empty) boundaries. We also assume that all curves on a Rie-
mann surface are piecewise analytic.

Let F be a Riemann surface. We say that F is a finite domain of F when F is a
compactly contained, connected domain of F and F is bordered by a finite disjoint
union of Jordan curves. Then F is compact if and only if F is compact and F = F .
We denote by F the closure of F and by ∂F the boundary of F .

Take a triangulation of F by a finite number of triangles, where F may be a
bordered surface. We define the characteristic ρ(F ) of F by

−[number of interior vertices] + [number of interior edges]− [number of triangles].

Then it is well known that this definition is independent of the choice of the triangu-
lation. This characteristic is normalized such that ρ(disc) = −1 as usual in Ahlfors’
theory. We also put ρ+(F ) = max{0, ρ(F )}.

Let Ω be an open subset of F . We denote by C(Ω) the set of connected components
of Ω.

Let f and a be meromorphic functions on Ω. Assume that f 6= a. Put

n(a, f,Ω) = card
(
{z ∈ Ω; f(z) = a(z)}

)
.

Let M be a smooth complex algebraic variety and let ω be a smooth (1,1) form
on M . Let g : F →M be a holomorphic map. We put

A(g,Ω, ω) =

∫
Ω

g∗ω.

Let γ be a Jordan arc on F and let ωM be a Kähler form on M . We denote by

`(g, γ, ωM )

the length of the curve g|γ : γ → M with respect to the associated Kähler metric of
ωM .

Let Z ⊂M be a Zariski closed subset such that g(F ) 6⊂ suppZ. We put

n(g, Z,Ω) =
∑
x∈Ω

ordx g
∗Z,

and

n(g, Z,Ω) =
∑
x∈Ω

min{1, ordx g
∗Z} = card

(
Ω ∩ supp g−1(Z)

)
.

Let F ′ be a Riemann surface and let π : F ′ → F be a proper, surjective holo-
morphic map. We denote by ramπ the ramification divisor of π, which is a divisor
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on F ′. Put

disc(π,Ω) =
∑

x∈π−1(Ω)

ordx(ramπ).

1.4. Nevanlinna theory. Let Y be a Riemann surface with a proper, surjective holo-
morphic map π : Y → C. Let M be a smooth projective variety. Let g : Y → M be
a holomorphic map. Let Z ⊂M be a Zariski closed subset such that g(Y ) 6⊂ suppZ
and let ω be a smooth (1,1)-form on M . For r > 1, we put

N(r, g, Z) =
1

deg π

∫ r

1

n(g, Z, Y (t))

t
dt,

N(r, g, Z) =
1

deg π

∫ r

1

n(g, Z, Y (t))

t
dt,

T (r, g, ω) =
1

deg π

∫ r

1

A(g, Y (t), ω)

t
dt

and

Nramπ(r) =
1

deg π

∫ r

1

disc(π,C(t))

t
dt.

Here C(t) = {z ∈ C; |z| < t} and Y (t) = π−1(C(t)).
Let E be a line bundle on M . Let || · ||1 and || · ||2 be two Hermitian metrics on E.

Let ω1 and ω2 be the curvature forms of || · ||1 and || · ||2, respectively. Then we have

T (r, g, ω1) = T (r, g, ω2) +O(1) when r →∞ (cf. [NO, p.180]).

So we define T (r, g, E) up to bounded function by

T (r, g, E) = T (r, g, ω1) +O(1).

Let f and a be meromorphic functions on Y such that f 6= a. Then we put

N(r, a, f) =
1

deg π

∫ r

1

n(a, f, Y (t))

t
dt.

We denote by ωP1 the Fubini-Study form on the projective line P1; i.e.,

ωP1 =
1

(1 + |w|2)2

√
−1

2π
dw ∧ dw.

We define the spherical characteristic function by

T (r, f) = T (r, f, ωP1) =
1

deg π

∫ r

1

dt

t

∫
Y (t)

f∗ωP1 .

Then it is well known that this function T (r, f) is equal to the usual characteristic
function up to bounded term in r (cf. Shimizu-Ahlfors theorem).
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1.5. Moduli space of stable curves. Our basic references are [Kn], [Ke], [FP] and [M].

Definition 1.5.1. A q-pointed stable curve of genus 0 (or simply q-pointed stable
curve) is a connected reduced curve C of genus 0 with distinct q marked points
(s1, . . . , sq) provided:

• Each irreducible component of C is isomorphic to the projective line P1.
• C is a tree of P1 with at worst ordinary double points.
• si is a smooth point of C for i = 1, · · · , q.
• Each irreducible component of C has at least three special points, which are

either the marked points or the nodes where the component meets the other
components.

Let C = (C, s1, · · · , sq) and C′ = (C′, s′1, · · · , s′q) be two q-pointed stable curves.
We say that C and C′ are isomorphic if there exists an isomorphism τ : C → C′ such
that τ(si) = s′i for all i = 1, . . . , q.

We use the following notations.

M 0,q : the moduli space of q-pointed stable curves of genus 0 ( M 0,q is a smooth
projective variety).

U 0,q
$q→ M 0,q : the universal curve, where U 0,q is a smooth projective variety

and $q is a flat morphism.

σ1, · · · , σq : the universal sections of $q, where σi(M 0,q) ∩ σj(M 0,q) = ∅ for
i 6= j.

Dq : the divisor on U 0,q determined by
∑q
i=1 σi(M 0,q).

Cx : a fiber $−1
q (x) over x ∈M 0,q.

KU 0,q/M0,q
: the line bundle on U 0,q associated to the relative dualizing sheaf

of the morphism $q : U 0,q →M 0,q.
Kq : the line bundle KU 0,q/M0,q

(Dq). (degKq|Cx = q − 2)

ωq : a fixed Kähler form on U 0,q.

ηq : a fixed Kähler form on M 0,q.
κq: the curvature form of a fixed Hermitian metric on Kq.
(q) : the set {1, · · · , q}.
I = I q : the set {(i, j, k, l); 1 ≤ i < j < k < l ≤ q}.
J = J q : the set {(i, j, k); 1 ≤ i < j < k ≤ q}.

Remark 1.5.2. By definition, the family $q : U 0,q → M 0,q with the distinct q-
sections σ1, . . . , σq has the following properties:

(1) For a point x ∈ M 0,q, the q-pointed fiber Cx = (Cx, σ1(x), · · · , σq(x)) is a q-
pointed stable curve.
(2) Let C = (C, s1, · · · , sq) be a q-pointed stable curve. Then there exists the unique

point x ∈M 0,q such that C and Cx are isomorphic.

The complex structure of M 0,q is naturally defined by using a similar statement for
families of q-pointed stable curves. But in this paper, we only describe the complex
structure of M0,q, which is a Zariski open subset of M 0,q (see below).

Space M0,q: Two pairs s = (s1, · · · , sq) and s′ = (s′1, · · · , s′q) of q-points on P1 are

said to be isomorphic if and only if there exists an isomorphism τ of P1 such that
s′i = τ(si) for all i = 1, . . . , q. We denote by M0,q the space of q-distinct points on P1

8



modulo isomorphism. Then M0,q is isomorphic to

Pq = P
1\{0, 1,∞}× · · · × P1\{0, 1,∞}︸ ︷︷ ︸

q−3 factors

\[diagonals].

Here note that an isomorphism of P1 is determined by its action on three distinct
points. Then M 0,q gives a compactification of M0,q by the natural inclusion M0,q ⊂
M 0,q because q-distinct points on P1 naturally determine a q-pointed stable curve

whose underlying space is non-singular. Put Zq = M 0,q\M0,q, which is a divisor on

M 0,q and called the degenerate locus.

Remarks 1.5.3. (1) We have M0,q = {x ∈M 0,q; Cx ' P1}.
(2) For i = 1, . . . , q, we define the holomorphic maps pi : Pq → P

1 as follows. For
i = 1, . . . , q − 3, let pi be the obvious map coming from the projection to the i-th
factor. Put pq−2 ≡ 0, pq−1 ≡ 1 and pq ≡ ∞. Put

pi = idPq × pi : Pq →Pq × P1.

Then pi is a section of the first projection Pq × P1 → Pq. Put U0,q = $−1
q (M0,q).

For i = 1, . . . , q, let σ′i : M0,q → U0,q be the restriction of σi. Then there exist
isomorphisms ψ : M0,q → Pq and ψ′ : U0,q → Pq × P1 fit into the following
commutative diagram.

(1.5.4)

U0,q
ψ′−−−−−→ Pq × P1

$q

y y1st.proj

M0,q −−−−−→
ψ

Pq

Here ψ′ ◦ σ′i = pi ◦ ψ for i = 1, . . . , q.

Dual graph Γx: Let x ∈ M 0,q be a point. Then (Cx, σ1(x), · · · , σq(x)) is a q-
pointed stable curve. Let Γx be the associated graph, that is, each element v of the
set of vertices vert(Γx) corresponds to the irreducible component Cv of Cx and two
vertices v and v′ are adjacent if and only if Cv and Cv′ meet transversally at the node
ν(v, v′) ∈ Cx. Then Γx is a tree.

Classification maps cla and cl(f,a): Let π : F ′ → F be a proper, surjective holo-
morphic map of Riemann surfaces F ′ and F . Let f be a meromorphic function
on F ′ and a1, . . . , aq be distinct meromorphic functions on F . Then we have the
classification maps

F
cla−→M 0,q, F ′

cl(f,a)−→ U 0,q

fit into the following commutative diagram of holomorphic maps.

(1.5.5)

F ′
cl(f,a)−−−−−→ U 0,q

π

y y$q
F −−−−−→

cla
M 0,q
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These classification maps are defined by the following. Put

U = {z ∈ F ; a1(z), · · · , aq(z) are all distinct} ⊂ F .

We first define the restrictions

cla|U : U →M0,q, cl(f,a) |π−1(U) : π−1(U)→ U0,q.

For z ∈ U , let cla(z) ∈M0,q be the unique point such that two q-pointed stable curves

(P1, a1(z), . . . , aq(z)), (Ccla(z), σ1(cla(z)), . . . , σq(cla(z)))

are isomorphic (cf. Remark 1.5.2). Then there exists an isomorphism τ : P1 → Ccla(z)

such that

(1.5.6) τ (ai(z)) = σi(cla(z)) for all i = 1, . . . , q.

For y ∈ π−1(U), put

(1.5.7) τ(f(y)) = cl(f,a)(y) ∈ Ccla(z).

Next, we define the holomorphic maps

cla : F →M 0,q, cl(f,a) : F ′ → U 0,q

by the unique extension of cla |U and cl(f,a) |π−1(U), respectively.

Remark 1.5.8. In view of (1.5.4), we may write

(1.5.9) pi ◦ ψ ◦ cla(z) =
ai(z)− aq−2(z)

ai(z)− aq(z)
aq−1(z)− aq(z)
aq−1(z)− aq−2(z)

(i = 1, . . . , q − 3)

for z ∈ U and

(1.5.10) s ◦ ψ′ ◦ cl(f,a)(y) =
f(y)− aq−2(z)

f(y)− aq(z)
aq−1(z)− aq(z)
aq−1(z)− aq−2(z)

for y ∈ π−1(U). Here s : Pq × P1 → P
1 is the second projection. These equations

(1.5.9) and (1.5.10) easily follow from the fact that two pairs of (q + 1)-points on P1

(f(y), a1(z), . . . , aq(z))

and

(s ◦ ψ′ ◦ cl(f,a)(y), p1 ◦ ψ ◦ cla(z), . . . , pq−3 ◦ ψ ◦ cla(z), 0, 1,∞)

are isomorphic for z ∈ U and y ∈ π−1(U).

Contraction map ϕα: For α = (i, j, k) ∈J , we denote by ϕα = ϕ
(q)
α the morphism

ϕα : U 0,q → P
1

uniquely characterized by the following:

• ϕα ◦ σi ≡ 0, ϕα ◦ σj ≡ 1 and ϕα ◦ σk ≡ ∞ (on M 0,q),
• the restriction ϕα|Cx : Cx → P

1 is an isomorphism for all x ∈M0,q.
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To obtain this ϕα, observe the following. By forgetting all markings except i, j, k, we
get the following commutative diagram of holomorphic maps (cf. [M, p.93]).

U 0,q
s′−−−−−→ U 0,3

$q

y y$3

M 0,q
s−−−−−→ M 0,3

Note that M 0,3 ' pt and U 0,3 ' P1. We normalize the three universal sections of
$3 as 0, 1 and ∞. Then s′ ◦ σi ≡ 0, s′ ◦ σj ≡ 1 and s′ ◦ σk ≡ ∞. Put ϕα = s′.

Contraction map φβ: By forgetting the marking σq, we have the morphism τq :

M 0,q →M 0,q−1. There is an isomorphism ιq : M 0,q → U 0,q−1 fits into the following
commutative diagram of holomorphic maps (cf. [M, p.93]).

(1.5.11)

M 0,q
ιq−−−−−→ U 0,q−1

τq

y y$q−1

M 0,q−1 M 0,q−1

For l < q, put τq,l = τl+1 ◦ · · · ◦ τq : M 0,q → M 0,l. Put τq,q = idM0,q
. For

β = (i, j, k, l) ∈ I , we define φβ : M 0,q → P
1 by the composition of the following

morphisms

M 0,q

τq,l→ M 0,l
ιl→ U 0,l−1

ϕ
(l−1)
(i,j,k)→ P

1.

1.6. Outline of proofs. The proof of Theorem 2 is similar to that of Theorem 1 (ac-
tually easier). So we only consider the case of Theorem 1. We first formulate the
following.

Theorem 3. Let Y , B and π be the same as Theorem 1. Consider the following
commutative diagram of holomorphic maps.

(1.6.1)

Y
g−−−−−→ U 0,q

π

y y$q
B −−−−−→

b
M 0,q

Assume the non-degeneracy condition that g(Y ) 6⊂ supp Dq ∪ $−1
q (supp Zq). Then

for all ε > 0, there exists a positive constant C(ε) > 0 such that

(1.6.2) T (r, g, κq) ≤ N(r, g,Dq) +NramπY (r) + εT (r, g, ωq)

+ C(ε) (T (r, b, ηq) +NramπB (r)) + o(T (r, g, ωq)) ||.

Remark 1.6.3. Consider the case B = C and πB = idC. A consequence of the
general second fundamental conjecture is that the inequality

(1.6.4) T (r, g,KU 0,q
(Dq)) ≤ N(r, g,Dq)+NramπY (r)+εT (r, g, ωq)+o(T (r, g, ωq)) ||

11



holds for all ε > 0 and for all suitably non-degenerate g. Here KU 0,q
is the canonical

line bundle on U 0,q. Since we have

T (r, g,KU 0,q
(Dq)) = T (r, g, κq) + T (r, b,KM0,q

) +O(1),

the inequality (1.6.2) is a weak form of (1.6.4).

In Section 2, we derive Theorem 1 from Theorem 3, applying to the case that
g = cl(f,a) and b = cla. Using the Schwarz inequality, we prove Theorem 3 from the
following Theorem 4 in the same section.

Definition 1.6.5. (1) A q-hol-quintet is an object (F ,R, π, g, b) where F and R are
Riemann surfaces with proper, surjective holomorphic map π : F → R, and g and b
are holomorphic maps fit into the following commutative diagram.

F
g−−−−−→ U 0,q

π

y y$q
R −−−−−→

b
M 0,q

We say that a q-hol-quintet (F ,R, π, g, b) is non-degenerate if b(R) 6⊂ supp Zq and
if the meromorphic functions ϕα ◦ g on F are non-constant for all α ∈J .

(2) A specified q-hol-quintet is an object (F ,R, π, g, b, F,R) where (F ,R, π, g, b)
is a q-hol-quintet, R ⊂ R is a finite domain and F = π−1(R). We say that a specified
q-hol-quintet is non-degenerate if the q-hol-quintet (F ,R, π, g, b) is non-degenerate.

Theorem 4. Let q ≥ 3 be a positive integer. For all ε > 0, there exists a positive
constant C(q, ε) > 0 with the following property: Let (F ,R, π, g, b, F,R) be a non-
degenerate specified q-hol-quintet. Then we have

A(g, F, κq) ≤n(g,Dq, F ) + disc(π,R) + εA(g, F, ωq)

+ C(q, ε) deg π
(
A(b,R, ηq) + n(b,Zq, R) + ρ+(R) + `(g, ∂F, ωq)

)
.

(1.6.6)

The most important part of this paper is a proof of Theorem 4. The proof naturally
divides into the following three steps.

Step 1: We prove the local version of our theorem, which roughly says as follows:
For each point x ∈ M 0,q, there exists an open neighborhood Vx of x such that if
a non-degenerate specified q-hol-quintet satisfies the condition b(R) ⊂ Vx, then our
theorem is valid. For the precise statement, see Lemma 6. To prove this, we use one
lemma from [Y2], which is an application of Ahlfors’ theory (cf. Lemma 3). For each

vertex v ∈ Γx, we attach a contraction morphism ϕ〈v〉 : U 0,q → P
1 (〈v〉 ∈J ). This

contraction map ϕ〈v〉 has the properties that the restriction to the component Cv is
an isomorphism and that the restrictions to the other components Cv′ are constant
maps. Applying Lemma 3 to υ = ϕ〈v〉◦g and ζ = ϕ〈v′〉◦g, where v and v′ are adjacent
vertices, we obtain some sort of ”difference” of usual Ahlfors’ second main theorem.
Adding these ”difference”s over all the edges of Γx, we obtain (a modification of)
usual Ahlfors’ second main theorem. Applying Rouché’s theorem (Lemma 4), we
get the local version of our theorem. This method is similar to that of [Y2]. Major
differences are that instead of the tree constructed in [Y2, Section 8], we use the

12



tree Γx, and instead of the combinatorial lemma [Y2, Lemma 4], we use a geometric
lemma (cf. Lemma 5).

Step 2: By a non-simple curve γ, we divide P1 into a finite number of Jordan
domains Dk (1 ≤ k ≤ K). This division of P1 gives the division of (P1)I in the form
of the open subsets

(1.6.7)
∏
i∈I

Dki , 1 ≤ ki ≤ K.

Put Φ =
∏
i∈I φi : M 0,q → (P1)I . We consider the connected components of the

pull-back of the open subsets (1.6.7) by the composition of the morphisms

R
b→M 0,q

Φ→ (P1)I

to get the finite domains R′ ⊂ R, which divide R into finite set {R′} of disjoint

finite domains. Using the facts that M 0,q is compact and that Φ is an injection (cf.
Lemma 7), we conclude that if the Jordan domains Dk are small enough, then for all

R′ ∈ {R′} there exists a point x ∈M 0,q such that b(R′) ⊂ Vx.
Step 3: Applying the local version of the theorem for each finite domain R′ and

adding over all these finite domains, we get our theorem. Here we need to estimate
extra error terms coming from

• the lengths `(g, ∂′π−1(R′), ωq), where ∂′π−1(R′) are the parts of the bound-
aries of π−1(R′) which lie in the interior of F ,

• the sum of ρ+(R′) over R′ ∈ {R′}.
See Lemma 8 for these estimates. Here we only remark the idea of a method of
the first estimate. Take a slightly small Jordan domain D′k ⊂ Dk for each k. We
define finite domains R′′ ⊂ R′ by the same manner for R′ from the Jordan domains
D′k. Then using so-called length-area principle, if the areas A(g, π−1(R′′), ωq) are

sufficiently large, we can find finite domains R̃ with R′′ ⊂ R̃ ⊂ R′ such that the

lengths `(g, ∂′π−1(R̃), ωq) are small enough. We replace {R′} by {R̂}. This is the
idea of the estimate.

The paper is organized as follows. In section 2, after some algebraic preparation,
we derive Theorem 1 from Theorem 3 and Theorem 3 from Theorem 4. The proof
of Theorem 4 begins from section 3. The section 3 is a preliminary including some
lemmas from [Y2]. In this section, we also review Ahlfors’ theory, which will be used
in the proof. In section 4 and 5, we prove Lemma 6 and 8, respectively. The proof
of Theorem 4 ends at section 6. In section 7, we prove Corollary 2 from rather sharp
estimate. In section 8, we prove Theorem 2 from Theorem 4. This proof is similar
to that of Theorem 1. In section 9, we introduce some notations from [V1] and [V3],
and prove the height inequality for curves over function fields.

The author thanks Professor A. Eremenko for stimulating discussions, especially
for suggesting Corollary 2. I also thank Professors H. Fujimoto, J. Noguchi and
M. Taniguchi for many valuable comments on this paper. Finally I thank my col-
leagues A. Takahashi, S. Yasuda and K. Ueda for valuable discussions about moduli
space of stable curves.

This paper is an expanded and largely rewritten version of [Y1].
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2. Derivations of Theorem 1 from Theorem 3

and Theorem 3 from Theorem 4

2.1. Algebraic lemma. We denote by L the hyperplane section bundle on P1, which
is the unique line bundle of degree one.

Lemma 1. There exist a line bundle M on M 0,q and a divisor Ξ on U 0,q such that
$q(supp Ξ) ⊂ supp Zq and

(q − 2)ϕ∗(1,2,3)L = Kq +$∗qM + [Ξ].

Here [Ξ] is the associated line bundle for the divisor Ξ.

Proof. Put P = (q − 2)ϕ∗(1,2,3)L −Kq. For x ∈ M0,q, the restriction ϕ(1,2,3)|Cx :

Cx → P
1 is an isomorphism. Since deg(Kq|Cx) = q − 2, we know that the restriction

P |Cx is the trivial line bundle. Since $−1
q (M0,q)→M0,q is a P1-bundle, we conclude

that there exists a line bundle M0 on M0,q such that the restriction P |
$−1
q (M0,q)

is

isomorphic to $∗qM0. Let M be an extension of M0 to M 0,q. Put P ′ = P −$∗qM .

Then P ′|
$−1
q (M0,q)

is the trivial line bundle. Hence there exists a divisor Ξ on U 0,q

such that $q(supp Ξ) ⊂ supp Zq and P ′ = [Ξ]. This proves our lemma. �

2.2. Theorem 3 implies Theorem 1. Let f , a1, . . . , aq be the functions in Theorem 1.
We apply Theorem 3 to the case g = cl(f,a) and b = cla. The non-degeneracy condition
of Theorem 3 easily follows from the assumption that f 6= ai ◦π for i = 1, . . . , q. Then
we get

(2.2.1) T (r, cl(f,a), κq) ≤ N(r, cl(f,a),Dq) +NramπY (r) + εT (r, cl(f,a), ωq)

+Oε (T (r, cla, ηq) +NramπB (r)) + o
(
T (r, cl(f,a), ωq)

)
||

for all ε > 0.
Let KB be the field of meromorphic functions on B. Let W ⊂ M 0,q be the

Zariski closure of the image cla(B) and let C(W ) be the rational function field of
W . Then cla defines the natural injection ι : C(W ) → KB by the pullback of the
rational functions on W . Let C(a1, · · · , aq) ⊂ KB be the subfield generated by the
meromorphic functions a1, . . . , aq. Then by the definition of cla, we have ι(C(W )) ⊂
C(a1, · · · , aq) (cf. (1.5.9)). Hence we have

(2.2.2) T (r, cla, ηq) ≤ O

 ∑
1≤i≤q

T (r, ai)

 .

Similarly, using the field KY of meromorphic functions on Y , we have

(2.2.3) T (r, cl(f,a), ωq) ≤ O

T (r, f) +
∑

1≤i≤q

T (r, ai)

 (cf. (1.5.10)).

Claim. The following inequalities hold

(2.2.4) N(r, cl(f,a),Dq) ≤
∑

1≤i≤q

N(r, ai ◦ π, f) +O

 ∑
1≤i≤q

T (r, ai)

 ,

14



(2.2.5) (q − 2)T (r, f) ≤ T (r, cl(f,a), κq) +O

 ∑
1≤i≤q

T (r, ai)

 .

Proof. We first prove (2.2.4). Put

U = {z ∈ B; a1(z), . . . , aq(z) are all distinct}.

Then by the definition of the classification maps, we have cla(U) ⊂M0,q. For z ∈ U
and y ∈ π−1(z), we have cl(f,a)(y) ∈ Dq if and only if f(y) = ai(z) for some i ∈ (q)
(cf. (1.5.6), (1.5.7)). Hence we have

{y ∈ Y ; cl(f,a)(y) ∈ Dq} ⊂ {y ∈ Y ; f(y) = ai ◦ π(y) for some i ∈ (q)} ∪ π−1(B\U).

This implies that

n(cl(f,a),Dq, Y (r)) ≤
∑

1≤i≤q

n(ai ◦ π, f, Y (r)) + deg π
∑

1≤i6=j≤q

n(ai, aj , B(r))

and

N(r, cl(f,a),Dq) ≤
∑

1≤i≤q

N(r, ai ◦ π, f) +
∑

1≤i6=j≤q

N(r, ai, aj).

Since we have ∑
1≤i6=j≤q

N(r, ai, aj) ≤ O

 ∑
1≤i≤q

T (r, ai)

 ,

we get (2.2.4).
Next we prove (2.2.5). Since ωP1 is the curvature form of the Fubini-Study metric

on L , Lemma 1 implies the inequality

(2.2.6) (q − 2)T (r, ϕ(1,2,3) ◦ cl(f,a)) = T (r, cl(f,a), κq)

+ T (r, cla,M) + T (r, cl(f,a), [Ξ]) +O(1).

Since for z ∈ π−1(U), two pairs of 4-points on P1

(f(z), a1 ◦ π(z), a2 ◦ π(z), a3 ◦ π(z)), (ϕ(1,2,3) ◦ cl(f,a)(z), 0, 1,∞)

are isomorphic (cf. (1.5.6), (1.5.7)), we have

ϕ(1,2,3) ◦ cl(f,a)(z) =
f(z)− a1 ◦ π(z)

f(z)− a3 ◦ π(z)

a2 ◦ π(z)− a3 ◦ π(z)

a2 ◦ π(z)− a1 ◦ π(z)
.

Hence we get

(2.2.7) T (r, ϕ(1,2,3) ◦ cl(f,a)) = T (r, f) +O

 ∑
1≤i≤q

T (r, ai)

 .

By $q(supp Ξ) ⊂ supp Zq and cla(B) 6⊂ supp Zq, we have

T (r, cl(f,a), [Ξ]) ≤ O(T (r, cla, [Zq]) ≤ O

 ∑
1≤i≤q

T (r, ai)

 (cf. (2.2.2)).
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Hence using (2.2.6), (2.2.7) and the inequality

T (r, cla,M) ≤ O

 ∑
1≤i≤q

T (r, ai)

 ,

we get our inequality (2.2.5) and conclude the proof of our claim. �
Using (2.2.1), (2.2.2), (2.2.3) and the above claim, we get our Theorem 1.

2.3. Theorem 4 implies Theorem 3. We shall apply Theorem 4 to the specified q-hol-
quintet λi = (Y,B, π, g, b, Yi(r), Bi(r)) for i = 1, . . . , ur, where {Bi(r)}uri=1 = C(B(r))
is the set of connected components of B(r).

First, consider the case that λi are degenerate, i.e., there exists α ∈ J such
that ϕα ◦ g ≡ c is constant. Then the image g(Y ) is contained in the divisor E =

ϕ∗α(c) ⊂ U 0,q. Put E0 = E ∩$−1
q (M0,q). Then the restriction of $q on E0 gives an

isomorphism E0 → M0,q. Since we are assuming that g(Y ) 6⊂ $−1
q (Zq), we obtain

T (r, g, κq) < O(T (r, b, ηq)). This proves Theorem 3 in the case λi are degenerate.
Next we consider the case that λi are non-degenerate. First, apply Theorem 4

to each λi, next take the summation over i = 1, . . . , ur and finally integrate the
inequality. Then putting

L(r) =
1

deg πY

∫ r

1

`(g, ∂Y (t), ωq)

t
dt, J(r) =

1

deg πB

∫ r

1

∑ut
i=1 ρ

+(Bi(t))

t
dt,

we get

(2.3.1) T (r, g, κq) ≤ N(r, g,Dq) +NramπY (r)−NramπB
(r) + εT (r, g, ωq)

+Oε
(
T (r, b, ηq) +N(r, b,Zq) + J(r) + deg πL(r)

)
for all ε > 0. Here we note that ramπY = π∗(ramπB) + ramπ, hence we have

(2.3.2) disc(πY ,C(r)) = deg π disc(πB ,C(r)) + disc(π,B(r))

and

NramπY (r)−NramπB
(r) =

1

deg πY

∫ r

1

disc(π,B(t))

t
dt.

Claim: The following inequalities hold

(2.3.3) J(r) ≤ NramπB (r),

(2.3.4) L(r) < o(T (r, g, ωq)) ||.

Proof of Claim. We first prove (2.3.3). By Hurwitz’s formula, we have

ρ(Bi(r)) = deg(πB |Bi(r))ρ(C(r)) + disc(πB |Bi(r),C(r)).

Since ρ(C(r)) = −1 and ρ(Bi(r)) ≥ −1, we have

ρ+(Bi(r)) ≤ disc(πB |Bi(r),C(r)).

Hence we have
∑ur
i=1 ρ

+(Bi(r)) ≤ disc(πB ,C(r)) and (2.3.3).
Next we prove (2.3.4). In this proof, we denote the covering map πY : Y → C

by p to avoid the confusion with the ratio of the circumference π. Put g∗ωq =
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√
−1
2
G2dp ∧ dp, where G is a C∞-function on Y \{z ∈ Y ; p′(z) = 0} with G ≥ 0.

Then we have

`(r) := `(g, ∂Y (r), ωq) =

∫
∂Y (r)

Gr d arg p

and

A(r) := A(g, Y (r), ωq) =

∫ r

0

dt

∫
∂Y (t)

G2t d arg p.

Put e = deg p. Using the Schwarz inequality, for r > 1 we have

eL(r) =

∫ r

1

`(t)
dt

t
=

∫ r

1

∫
∂Y (t)

Gt d arg p
dt

t

≤

(∫ r

1

∫
∂Y (t)

d arg p
dt

t

) 1
2
(∫ r

1

∫
∂Y (t)

G2t2 d arg p
dt

t

) 1
2

= (2πe log r)
1
2 (A(r)−A(1))

1
2

≤ (2πre2 log r)
1
2

(
d

dr
T (r)

) 1
2

,

where we put T (r) = T (r, g, ωq). Take r0 > 1 such that T (r0) > 1. Let E be the
subset of [r0,∞) such that

L(r) ≥ T (r)
1
2 log T (r).

Then we have ∫
E

d log log r =

∫
E

1

r log r
dr ≤ 2π

∫
E

d
dr
T (r)

L(r)2
dr

≤ 2π

∫ ∞
r0

d
dr
T (r)

T (r)(log T (r))2
dr =

2π

log T (r0)
.

Hence outside the set E such that
∫
E
d log log r <∞, we have

L(r) ≤ T (r)
1
2 log T (r) = o(T (r)),

which proves our claim. �
Since we have

N(r, b,Zq) ≤ O (T (r, b, ηq)) ,

the equation (2.3.1) and the above claim imply Theorem 3.

3. Preliminary for the proof of Theorem 4

Proofs of lemmas in this section can be found in [Y2].
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3.1. Topology. Let F be a Riemann surface. Let Ω and G be two open subsets in
F . We define two subsets I(G,Ω), P(G,Ω) of the set of connected components of
G∩Ω by the following manner. Let G′ be a connected component of G∩Ω, then G′

is contained in I(G,Ω) if and only if G′ is compactly contained in Ω, otherwise G′ is
contained in P(G,Ω). Then a connected component G′ in I(G,Ω) is also a connected
component of G.

Let ζ be a non-constant meromorphic function on Ω ⊂ F , where Ω is a domain
of F . Let E be a domain in P1. We consider the following condition for ζ : Ω→ P

1

and E;

(3.1.1) Let a ∈ Ω be a branch point of ζ. Then ζ(a) 6∈ ∂E.
Lemma 2 ([Y2, Lemma 1]). Assume that a finite number of disjoint simple closed
curves γi (i = 1, · · · p) divide P1 into connected domains D1, · · · , Dp+1. Let ζ be a

non-constant meromorphic function on Ω, where Ω is a finite domain of a Riemann
surface F . Assume that the condition (3.1.1) is satisfied for ζ and Di (1 ≤ i ≤ p+1).

Put A =
⋃p+1
i=1 I(ζ−1(Di),Ω), B =

⋃p+1
i=1 P(ζ−1(Di),Ω). Then we have

ρ+(Ω) ≥
∑
A∈A

ρ(A) +
∑
B∈B

ρ+(B).

3.2. Review of Ahlfors’ theory. Recall that we denote by ωP1 the Fubini-Study form
on the projective line P1. Let Ω0 be a finite domain of P1. Let F be a Riemann
surface, let Ω ⊂ F be a finite domain and let ζ be a non-constant meromorphic
function on Ω. Assume that ζ(Ω) ⊂ Ω0. Then we may consider ζ : Ω → Ω0 as a
covering surface in the sense of [N2, p.323].

We call ζ−1(Ω0)∩∂Ω the relative boundary and `(ζ, ζ−1(Ω0)∩∂Ω, ωP1) the length
of the relative boundary.

Let D ⊂ Ω0 be a domain which is bounded by a finite number of Jordan curves.
We call

SD =
A(ζ, ζ−1(D) ∩ Ω, ωP1)∫

D
ωP1

the mean sheet number of ζ over D. We call SΩ0 the mean sheet number of ζ. In
the following two theorems, we denote by S and L the mean sheet number and the
length of the relative boundary of the covering ζ : Ω→ Ω0, respectively.

Covering Theorem 1. ([N2, p.328]) There exists a positive constant h = h(Ω0) > 0
which is independent of D, Ω and ζ such that

(3.2.1) |S − SD| ≤
h∫

D
ωP1

L.

Consider ζ as the covering map of the closed surfaces ζ : Ω→ Ω0. Put

S(∂Ω0) =
`(ζ, ζ−1(∂Ω0), ωP1)

length of ∂Ω0 with respect to the Fubini-Study metric
.

Covering Theorem 2’. ([N2, p.331, Remark]) Assume that ∂Ω0 consists of ana-
lytic Jordan curves. Then there exists a positive constant h = h(Ω0) > 0 which is
independent of Ω and ζ such that

(3.2.2) |S − S(∂Ω0)| ≤ hL.
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Note that an analytic Jordan curve is regular in the sense of [N2, p.326] (cf. [H,
Lemma 5.1]). The Main Theorem ([N2, p.332]) of Ahlfors’ theory was used to prove
the following.

Lemma 3 ([Y2, Lemma 2]). Let E† be a Jordan domain in P
1 or P1 itself. Let

E1, . . . , Ep, E∞ be Jordan domains in P1. Assume that the closures Ej of Ej’s (j =
1, · · · , p,∞) are mutually disjoint. Then there is a positive constant h > 0 which only
depends on E1, · · · , Ep, E∞ with the following property: Let Ω be a finite domain of
a Riemann surface F and υ, ζ be two non-constant meromorphic functions on Ω.
Assume that

(3.2.3) ζ
(
υ−1(P1\E†) ∩ Ω

)
⊂ E∞

and that ζ and Ej satisfy the condition (3.1.1) for j = 1, · · · , p,∞.
Put

GI = I(υ−1(E†),Ω), GP = P(υ−1(E†),Ω),

GIj = I(ζ−1(Ej),Ω), GPj = P(ζ−1(Ej),Ω) for j = 1, · · · , p,

and GI∞ = I(ζ−1(E∞),Ω ∩ υ−1(E†)). Then we have the following inequality.

(3.2.4) ϑ(ζ, υ) +
∑
G∈GI

ρ(G) +
∑
G∈GP

ρ+(G)−
p∑
j=1

∑
G∈GIj

ρ(G)

−
p∑
j=1

∑
G∈GPj

ρ+(G)−
∑
G∈GI∞

ρ(G) ≥ (p− 1)A(ζ,Ω, ωP1)− h`(ζ, ∂Ω, ωP1),

where ϑ(ζ, υ) is the number of connected components G in GI such that ζ(G) ⊂ E∞.

Remarks 3.2.5. (1) Since we have
∫
P1
ωP1 = 1, the term A(ζ,Ω, ωP1) is equal to the

mean sheet number of the covering ζ : Ω → P
1. Also, since P1 is compact, the term

`(ζ, ∂Ω, ωP1) is equal to the length of the relative boundary of the covering ζ.
(2) Consider the case E† = P

1. Then the condition (3.2.3) is satisfied automati-
cally. If Ω is non-compact, then GI = ∅ and GP = {Ω}, hence ϑ(ζ, υ) = 0. On the
other hand, if Ω is compact, then GI = {Ω} and GP = ∅. Since ζ is non-constant, we
have ζ(Ω) 6⊂ E∞ and ϑ(ζ, υ) = 0. Hence we have ϑ(ζ, υ) = 0, in both cases. Since we
have ρ(Ω) ≤ ρ+(Ω), we get

(3.2.6) ρ+(Ω)−
p∑
j=1

∑
G∈GIj

ρ(G)−
p∑
j=1

∑
G∈GPj

ρ+(G)−
∑
G∈GI∞

ρ(G)

≥ (p− 1)A(ζ,Ω, ωP1)− h`(ζ, ∂Ω, ωP1).

Here we can write GI∞ as I(ζ−1(E∞),Ω).

3.3. Rouché’s theorem. We denote by dist(x, y) the distance of x, y ∈ P1 with respect
to the Fubini-Study metric on P1.
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Lemma 4 ([Y2, Lemma 3]). Let E ⊂ P1 be a Jordan domain and let b be a point in
E. Then there is a positive constant C = C(E, b) > 0 with the following property: Let
Ω be a finite domain in a Riemann surface F and let ζ be a meromorphic function
on F such that ζ(Ω) = E and ζ(∂Ω) = ∂E. Then for a meromorphic function α on

F such that dist(α(z), b) < C for z ∈ Ω, there exists a point z ∈ Ω with ζ(z) = α(z).

4. Local value distribution

4.1. Notations. In this section, we work around a neighborhood of a point x ∈M 0,q.
This point x will be fixed in this section. We denote by edge(Γx) the set of edges of
Γx, i.e.,

edge(Γx) =
{
{v, v′}; v and v′ are adjacent vertices of Γx

}
.

Then edge(Γx) is an empty set if and only if x ∈ M0,q. Let v and v′ be distinct
vertices of Γx. A path joining two vertices v and v′ is a sequence of disjoint vertices

v = v0, v1, · · · , vr = v′,

where vi−1 and vi are adjacent for i = 1, . . . , r. Since Γx is a tree, for every distinct
vertices v and v′, there exists the unique path which join v and v′.

4.1.1. Take a vertex v ∈ vert(Γx). Recall that Cv is the irreducible component of
Cx corresponding to v ∈ vert(Γx). Put

Pmv = {i ∈ (q); σi(x) ∈ Cv} (”marked points” is abbreviated to m),

Pnv = {v′ ∈ vert(Γx); v′ is adjacent with v} (”nodes” is abbreviated to n).

Note that we have ∪v∈vert(Γx)P
m
v = (q) and Pmv ∩Pmv′ = ∅ for v 6= v′ because marked

points are smooth points of Cx. Hence for each i ∈ (q), there exists the unique vertex
v ∈ vert(Γx) such that σi(x) ∈ Cv. Put P = (q)

∐
vert(Γx), Pv = Pmv

∐
Pnv ⊂ P and

dv = cardPv.

4.1.2. Define ς : Pv → Cv by the following rule. If τ ∈ Pmv , then ς(τ) = στ (x); on
the other hand, if τ ∈ Pnv , then ς(τ) = Cv ∩ Cτ . Then ς is an injection, and the
image ς(Pv) is the set of the special points of Cv, which are either marked points or
nodes. Hence Pv can be identified with the special points of Cv by ς, so dv ≥ 3 (cf.
Definition 1.5.1).

4.1.3. Definition of ϕ〈v〉. For v ∈ vert(Γx), there exists 〈v〉 ∈ J with the following

property: The restriction ϕ〈v〉|Cv : Cv → P
1 is an isomorphism and the restrictions

ϕ〈v〉|Cv′ : Cv′ → P
1 are constant maps for all v′ ∈ vert(Γx)\{v}. To see this, observe

the following. When q = 3, our assertion is trivial because M 0,3 ' pt and U 0,3 ' P1.
Hence in the following, we consider the case q ≥ 4. By forgetting a marking σj
(j ∈ (q)), we have the following commutative diagram of holomorphic maps.

U 0,q

c′j−−−−−→ U 0,q−1

$q

y y$q−1

M 0,q

cj−−−−−→ M 0,q−1
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Here c′j ◦ σi = σ′i ◦ cj for i ∈ (q)\{j}, where σ′i are the universal sections of $q−1

which are assumed to be labeled by the set (q)\{j}. Let

cj = c′j |Cx : Cx → Ccj(x) = $−1
q−1(cj(x))

be the restriction on the fiber Cx. Put

Q = {v′ ∈ vert(Γx); cj |Cv′ : Cv′ → P
1 is not constant}

and let C = ∪v′∈QCv′ be the curve obtained by collapsing the components Cv′ for
v′ 6∈ Q. Then we know (cf. [Ke, p.547]) that

(4.1.1) Q =
{
v′ ∈ vert(Γx); card (Pv′ ∩ (P\{j})) ≥ 3

}
and that

(4.1.2) the induced map C → Ccj(x) from cj is an isomorphism.

Now we may take j ∈ (q) such that the number of special points on Cv other than
σj(x) is at least three. (If there exists j′ ∈ (q) with σj′(x) 6∈ Cv, then put j = j′.
Otherwise, take arbitrary j ∈ (q), where note that q ≥ 4.) Then by (4.1.1), we have
v ∈ Q. Hence by (4.1.2), the restriction cj |Cv : Cv → Ccj(x) is an injection. Taking

such j inductively, we may take α ∈ J such that the restriction ϕα : Cv → P
1 is

an injection, hence an isomorphism. Here note that ϕα is the map which forgets all
the markings except those elements of α. Using (4.1.2) inductively, we conclude that
ϕα|Cv′ are constant maps for all v′ ∈ vert(Γx)\{v}. Put 〈v〉 = α, which will be fixed
for each v ∈ vert(Γx).

4.1.4. For v ∈ vert(Γx) and τ ∈ Pv, put wv(τ) = ϕ〈v〉◦ς(τ) ∈ P1. Then wv : Pv → P
1

is an injection.

4.1.5. Definitions of τ̂v and ιv. For v ∈ vert(Γx), we define the map τ̂v : (q)→ Pv by
the following rule. Take i ∈ (q). If i ∈ Pmv , then put τ̂v(i) = i ∈ Pv. Otherwise, take
the vertex v′ ∈ vert(Γx)\{v} with i ∈ Pmv′ and the unique path

v = v0, v1, · · · , vr = v′

joining v and v′. Put τ̂v(i) = v1 ∈ Pv. Then we have

(4.1.3) wv(τ̂v(i)) = ϕ〈v〉 ◦ σi(x) for all i ∈ (q) and v ∈ vert(Γx).

There exists a section ιv : Pv → (q) of τ̂v : (q) → Pv. This ιv is defined by the
following rule. For i ∈ Pmv , put ιv(i) = i ∈ (q). For a vertex v′ ∈ Pnv , take a maximal
path

(4.1.4) v, v′, v1, · · · , vr
starting from the edge {v, v′}, i.e., there exists no path extending (4.1.4). Then we
have cardPnvr = 1 (otherwise we can extend the path). By dvr ≥ 3, there exists
i ∈ Pmvr . Put ιv(v′) = i. Then this ιv is a section of τ̂v, which will be fixed for each
v ∈ vert(Γx).

If v and v′ are adjacent vertices of Γx, we have

(4.1.5) τ̂v′(ιv(v′)) 6= v (as elements of Pv′),

which easily follows from the geometric meaning of the above objects.
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4.1.6. For v ∈ vert(Γx) and τ ∈ Pv, put βv,τ = ϕ〈v〉 ◦ σιv(τ) : M 0,q → P
1. Then

we have βv,τ (x) = wv(τ) ∈ P1, which follows from (4.1.3) and the fact that ιv is a
section of τ̂v.

4.2. Geometric lemma. Recall that L is the hyper-plane section bundle on P1.

Lemma 5. There exists a Zariski open neighborhood Ux ⊂M 0,q of x such that

(4.2.1)
∑

v∈vert(Γx)

(dv − 2)ϕ∗〈v〉L = Kq on $−1
q (Ux).

Proof. Put M =
∑
v∈vert(Γx)(dv − 2)ϕ∗〈v〉L − Kq. For y ∈ M 0,q, let My be the

restriction of M on Cy. Note that Cv are isomorphic to P1 for all v ∈ vert(Γx) and
that the degrees of the restrictions Kq|Cv and ((dv − 2)ϕ∗〈v〉L )|Cv are both equal

to dv − 2 (cf. [M, p.202]). Hence Mx|Cv are the trivial line bundles on Cv for all
v ∈ vert(Γx). Hence Mx is the trivial line bundle on Cx , which follows from the fact
that Γx is a tree.

Since $q is a flat morphism, by the theorem of semi-continuity [Ha], there exists
a non-empty affine open neighborhood Ux of x such that

(4.2.2) dimH0(Cy,My) ≤ 1, dimH0(Cy,M
−1
y ) ≤ 1

for all y ∈ Ux. Put

Z = {y ∈ Ux; dimH0(Cy,My) = 1}.
Again by the theorem of semi-continuity, we know that Z is a Zariski closed subset
of Ux. Take a point y from Ux\Zq, which is a non-empty Zariski open subset of Ux.
Then Cy is isomorphic to P1, hence the condition (4.2.2) implies that My is the trivial
line bundle on Cy. Hence Ux\Zq ⊂ Z. This implies that Z = Ux.

Now by the theorem of Grauert [Ha], we have a section s ∈ H0($−1
q (Ux),M) such

that the restriction s|Cx is equal to the section 1 of the trivial line bundle Mx, where
we note that Ux is affine. Let D be the divisor on $−1

q (Ux) defined by s = 0. Since
$q is a projective morphism, $q(suppD) is a Zariski closed subset of Ux, which does
not contain x. Hence by replacing Ux by Ux\$q(suppD), we may assume that s is a
nowhere vanishing section on $−1

q (Ux). This implies that the restriction M |
$−1
q (Ux)

is the trivial line bundle, which proves our lemma. �

4.3. Local version of the theorem.

Lemma 6. Let Λ be a countable set of non-degenerate q-hol-quintets. Then for all
x ∈M 0,q, there exist an open neighborhood Vx = Vx(Λ) of x and a positive constant
hx = hx(Λ) > 0 with the following property: Let (F ,R, π, g, b) ∈ Λ be a q-hol-quintet
contained in Λ. Let R ⊂ R be a finite domain such that b(R) ⊂ Vx. Put F = π−1(R).
Then we have the following inequality

A(g, F, κq) ≤ n(g,Dq, F ) + disc(π,R) + deg πρ+(R)

+ hx`(g, ∂F, ωq) + hx deg π n(b,Zq, R).
(4.3.1)

Proof. For (F ,R, π, g, b) ∈ Λ and α ∈J , put

gα = ϕα ◦ g,
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which is a non-constant meromorphic function on F . For v ∈ vert(Γx) and τ ∈ Pv,
since we have wv(τ) 6= wv(τ ′) for τ 6= τ ′, we may take a Jordan domain Evτ ⊂ P1

such that

• wv(τ) ∈ Evτ ,

• Evτ ∩ Evτ ′ = ∅ for τ 6= τ ′,

• gα : F → P
1 and Evτ satisfy the condition (3.1.1) for all v ∈ vert(Γx), τ ∈ Pv,

α ∈J and (F ,R, π, g, b) ∈ Λ, i.e., if a ∈ F is a branch point of gα for some
(F ,R, π, g, b) ∈ Λ and α ∈ J , then gα(a) 6∈ ∂Evτ for all v ∈ vert(Γx) and
τ ∈ Pv.

Here in the third condition, we note that the ramification points of the coverings

{gα : F → P
1}α∈J ,(F ,R,π,g,b)∈Λ

are countable, because Λ is countable.
For each {v, v′} ∈ edge(Γx), put

D̂ = ϕ−1
〈v〉(P

1\Evv′) ∩ ϕ−1
〈v′〉(P

1\Ev
′
v ),

which is a compact subset of U 0,q. Then we have $−1
q (x)∩ D̂ = ∅. Hence the image

$q(D̂) ⊂ M 0,q is a compact subset which does not contain the point x. Hence, we

conclude that there exists an open neighborhood Vv,v′ of x such that $−1
q (Vv,v′)∩D̂ =

∅, that is,

(4.3.2) ϕ〈v〉(ϕ
−1
〈v′〉(P

1\Ev
′
v ) ∩$−1

q (Vv,v′)) ⊂ Evv′ .

Let Vx ⊂M 0,q be an open neighborhood of x such that

• Vx ⊂ Ux (cf. Lemma 5),

• Vx ⊂ Vv,v′ for all {v, v′} ∈ edge(Γx),

• dist(wv(τ), βv,τ (y)) < C(Evτ , wv(τ)) for all y ∈ Vx, v ∈ vert(Γx) and τ ∈ Pv
(the constant C is defined in Lemma 4), where we note that βv,τ (x) = wv(τ),

• ϕ〈v〉 ◦ σi(Vx) ⊂ Evτ̂v(i) for all v ∈ vert(Γx) and i ∈ (q), where we note that

ϕ〈v〉 ◦ σi(x) = wv(τ̂v(i)) ∈ Evτ̂v(i) (cf. (4.1.3)).

We denote by vo the unique vertex of Γx such that σ1(x) ∈ Cvo . For each vertex
v ∈ vert Γx\{vo}, take the unique path joining vo and v

vo = v0, v1, · · · , vr−1, vr = v.

We denote this vertex vr−1 by v− which is uniquely determined from the vertex v.
Take λ = (F ,R, π, g, b) ∈ Λ and a finite domain R ⊂ R such that b(R) ⊂ Vx. Put

F = π−1(R). For a vertex v ∈ vert(Γx) and τ ∈ Pv, put

GIv,τ = I(g−1
〈v〉(E

v
τ ), F ), GPv,τ = P(g−1

〈v〉(E
v
τ ), F ).

For the vertex vo, we apply Lemma 3 (cf. (3.2.6)) to the case that

F = F , Ω = H ∈ C(F ), ζ = υ = g〈vo〉|H ,

E† = P
1, {Ej}j=1,...,p = {Evov′ }v′∈Pnvo ∪ {E

vo
i }i∈Pmvo\{1}, E∞ = Evo1 .
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Adding over all H ∈ C(F ) and using the fact
∑
i∈Pmvo\{1}

∑
G∈GPvo,i

ρ+(G) ≥ 0, we

obtain the following: There exists a positive constant hvo > 0 which does not depend
on the choices of λ ∈ Λ and R such that

IE(vo):
∑

H∈C(F )

ρ+(H)

−
∑
v∈Pnvo

 ∑
G∈GIvo,v

ρ(G) +
∑

G∈GPvo,v

ρ+(G)

− ∑
i∈Pmvo

∑
G∈GIvo,i

ρ(G)

≥ (dvo − 2)A(g〈vo〉, F, ωP1)− hvo`(g〈vo〉, ∂F, ωP1).

For a vertex v ∈ vert Γx\{vo}, we put

GIv = I(g−1
〈v〉(E

v
v−), F ∩ g−1

〈v−〉(E
v−
v )).

By (4.3.2), we may apply Lemma 3 to the case that

F = F , Ω = H ∈ C(F ), ζ = g〈v〉|H , υ = g〈v−〉|H , E
† = Ev

−
v ,

{Ej}j=1,...,p = {Evv′}v′∈Pnv \{v−} ∪ {E
v
i }i∈Pmv , E∞ = Evv− .

Adding over all H ∈ C(F ) and using the fact
∑
i∈Pmv

∑
G∈GPv,i

ρ+(G) ≥ 0, we obtain

the following: There exists a positive constant hv > 0 which does not depend on the
choices of λ ∈ Λ and R such that

IE(v):
∑

H∈C(F )

ϑ(g〈v〉|H , g〈v−〉|H) +
∑

G∈GI
v−,v

ρ(G) +
∑

G∈GP
v−,v

ρ+(G)

−
∑

v′∈Pnv \{v−}

 ∑
G∈GI

v,v′

ρ(G) +
∑

G∈GP
v,v′

ρ+(G)

− ∑
i∈Pmv

∑
G∈GIv,i

ρ(G)−
∑
G∈GIv

ρ(G)

≥ (dv − 2)A(g〈v〉, F, ωP1)− hv`(g〈v〉, ∂F, ωP1).

Now, using the inequality IE(vo) for the vertex vo and the inequalities IE(v) for
vertices v 6= vo, we add the inequalities IE(v) over all v ∈ vert(Γx). Then we obtain

(4.3.3)
∑

H∈C(F )

ρ+(H)−
∑

v∈vert(Γx)

∑
i∈Pmv

∑
G∈GIv,i

ρ(G)

+
∑

v∈vert(Γx)\{vo}

 ∑
H∈C(F )

ϑ(g〈v〉|H , g〈v−〉|H)−
∑
G∈GIv

ρ(G)


≥

∑
v∈vert Γx

(dv − 2)A(g〈v〉, F, ωP1)− h′`(g, ∂F, ωq).

Here we note the following two facts:
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• There exists a positive constant h′ > 0 which does not depend on the choices
of λ ∈ Λ and R such that∑

v∈vert(Γx)

hv`(g〈v〉, ∂F, ωP1) ≤ h′`(g, ∂F, ωq).

• For a vertex v 6= vo, the term∑
G∈GI

v−,v

ρ(G) +
∑

G∈GP
v−,v

ρ+(G)

appears in the left hand side of IE(v), while the term

−
∑

G∈GI
v−,v

ρ(G)−
∑

G∈GP
v−,v

ρ+(G)

appears in the left hand side of IE(v−) because v ∈ Pnv− and v 6= (v−)−.
Hence these terms are canceled when we add inequalities over all v ∈ vert(Γx).

Claim. The following inequalities hold

(4.3.4)
∑

H∈C(F )

ϑ(g〈v〉|H , g〈v−〉|H)−
∑
G∈GIv

ρ(G) ≤ 2 deg πn(b,Zq, R),

(4.3.5) −
∑

v∈vert(Γx)

∑
i∈Pmv

∑
G∈GIv,i

ρ(G) ≤ n(g,Dq, F ) + q deg πn(b,Zq, R),

(4.3.6)
∑

H∈C(F )

ρ+(H) ≤ disc(π,R) + deg πρ+(R).

Proof of (4.3.4). For H ∈ C(F ) and for {v, v′} ∈ edge(Γx), let ϑ′(v′, v,H) denote

the number of connected components G in I(g−1
〈v〉(E

v
v′), H) such that g〈v′〉(G) ⊂ Ev

′
v .

Then we have

ϑ′(v, v−, H) = ϑ(g〈v〉|H , g〈v−〉|H).

Note that

−
∑
G∈GIv

ρ(G) ≤ cardGIv ≤
∑

H∈C(F )

ϑ′(v−, v,H).

Hence to prove (4.3.4), it suffices to prove

(4.3.7)
∑

H∈C(F )

ϑ′(v′, v,H) ≤ deg πn(b,Zq, R)

for {v, v′} ∈ edge(Γx). Take G ∈ I(g−1
〈v〉(E

v
v′), H) such that g〈v′〉(G) ⊂ Ev

′
v . Then by

the definition of Vx, we may apply Lemma 4 to the case that

F = H, E = Evv′ , Ω = G, ζ = g〈v〉(= ϕ〈v〉 ◦ g), α = βv,v′ ◦ b ◦ π.

We conclude that there exists z ∈ G such that

(4.3.8) ϕ〈v〉 ◦ g(z) = ϕ〈v〉 ◦ σιv(v′) ◦ b ◦ π(z) (note that βv,v′ = ϕ〈v〉 ◦ σιv(v′)).
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We shall prove b ◦ π(z) ∈ supp Zq by a contradiction. Suppose b ◦ π(z) 6∈ supp Zq.
Then (4.3.8) implies

(4.3.9) ϕ〈v′〉 ◦ g(z) = ϕ〈v′〉 ◦ σιv(v′) ◦ b ◦ π(z),

which follows from the fact that the restrictions ϕ〈v〉|Cy and ϕ〈v′〉|Cy give isomor-

phisms Cy → P
1 for y ∈M 0,q\Zq. By the assumption g〈v′〉(G) ⊂ Ev

′
v , we have

(4.3.10) ϕ〈v′〉 ◦ g(z) ∈ Ev
′
v .

On the other hand, we have

(4.3.11) ϕ〈v′〉 ◦ σιv(v′) ◦ b ◦ π(z) 6∈ Ev
′
v .

To see this, we note that ϕ〈v′〉 ◦ σιv(v′)(x) = wv′(τ̂v′(ιv(v′)) (cf. (4.1.3)). By the

definition of Vx, we have ϕ〈v′〉 ◦ σιv(v′)(y) ∈ Ev
′

τ̂v′ (ιv(v′)), hence ϕ〈v′〉 ◦ σιv(v′)(y) 6∈ Ev
′
v

on y ∈ Vx (cf. (4.1.5)). Since b ◦ π(z) ∈ Vx, we get (4.3.11). These (4.3.9), (4.3.10)
and (4.3.11) give a contradiction. Hence we have b ◦ π(z) ∈ supp Zq. This proves
(4.3.7) and (4.3.4). �

Proof of (4.3.5). We have −ρ(G) ≤ 1 for G ∈ GIv,i, hence

−
∑

v∈vert(Γx)

∑
i∈Pmv

∑
G∈GIv,i

ρ(G) ≤
∑

v∈vert(Γx)

∑
i∈Pmv

cardGIv,i.

For G ∈ GIv,i, by the definition of Vx, we may apply Lemma 4 to the case that

E = Evi , Ω = G, ζ = ϕ〈v〉 ◦ g, α = ϕ〈v〉 ◦ σi ◦ b ◦ π

to conclude that there exists z ∈ G such that

ϕ〈v〉 ◦ g(z) = ϕ〈v〉 ◦ σi ◦ b ◦ π(z).

This implies that either g(z) = σi ◦ b ◦ π(z) or b ◦ π(z) ∈ supp Zq is valid. (Note that

ϕ〈v〉|Cy is an isomorphism for y ∈M 0,q\Zq.) Hence for i = Pmv , we have

cardGIv,i ≤ n(g,Dq,i, F ) + deg πn(b,Zq, R),

where we put Dq,i = σi(M 0,q) ⊂ U 0,q. Since Dq =
∑

1≤i≤q Dq,i, Dq,i ∩ Dq,i′ = ∅ for

i 6= i′, ∪v∈vert(Γx)P
m
v = (q) and Pmv ∩ Pmv′ = ∅ for v 6= v′, we obtain∑

v∈vert(Γx)

∑
i∈Pmv

cardGIv,i ≤ n(g,Dq, F ) + q deg πn(b,Zq, R).

This proves (4.3.5). �
Proof of (4.3.6). For H ∈ C(F ), the restriction π|H : H → R is a proper map.

Hence, by Hurwitz’s formula, we have

ρ(H) = (deg π|H)ρ(R) + disc(π|H , R).

We also have ρ(R) ≤ ρ(H). Hence we get

ρ+(H) ≤ (deg π|H)ρ+(R) + disc(π|H , R)
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and ∑
H∈C(F )

ρ+(H) ≤ ρ+(R)
∑

H∈C(F )

deg π|H +
∑

H∈C(F )

disc(π|H , R)

= ρ+(R) deg π + disc(π,R).

This proves (4.3.6) and conclude our proof of claim. �
Now note that the Fubini-Study form ωP1 is the curvature form of the Fubini-Study

metric on the hyper-plane section bundle L . Hence by Lemma 5, the restriction of
the (1,1)-form ∑

v∈vert(Γx)

(dv − 2)ϕ∗〈v〉ωP1 − κq

on $−1
q (Ux) is a curvature form of the trivial line bundle. Hence, there exists a

C∞-function ψ on $−1
q (Ux) such that∑

v∈vert(Γx)

(dv − 2)ϕ∗〈v〉ωP1 − κq = ddcψ on $−1
q (Ux).

Note that there exists a positive constant h′′ > 0 which does not depend on the
choices of λ ∈ Λ and R such that

|A(g, F, ddcψ)| =
∣∣∣∣∫
F

g∗ddcψ

∣∣∣∣ =

∣∣∣∣∫
∂F

g∗dcψ

∣∣∣∣ ≤ h′′`(g, ∂F, ωq),
because the image g(F ) is contained in the compact set $−1

q (Vx). Hence we get

(4.3.12)
∑

v∈vert Γx

(dv − 2)A(g〈v〉, F, ωP1) ≥ A(g, F, κq)− h′′`(g, ∂F, ωq).

Put hx = max{h′ + h′′, 2 card(vert(Γx)) + q − 2}, which is a positive constant inde-
pendent of the choices of λ ∈ Λ and R. Using (4.3.3), (4.3.4), (4.3.5), (4.3.6) and
(4.3.12), we get Lemma 6. �

5. Lemmas for division and summation

5.1. Algebraic lemma. Put Φ =
∏
i∈I φi : M 0,q → (P1)I .

Lemma 7. Φ gives an injection.

Proof. We prove by induction on q.
For q = 3, our lemma is trivial because M 0,3 ' pt.
Suppose our lemma is valid for all q′ with q′ ≤ q, where q ≥ 3. We shall prove
our lemma for q + 1. Our lemma is equivalent to saying that for distinct points
x, y ∈ M 0,q+1, there exists i ∈ I q+1 such that φi(x) 6= φi(y). In the case that

τq+1(x) and τq+1(y) are distinct points in M 0,q, our lemma follows from the induction

hypothesis. Here τq+1 : M 0,q+1 →M 0,q is the morphism obtained by forgetting the
marking σq+1.

On the other case, put z = τq+1(x). Using the isomorphism ιq+1 : M 0,q+1 → U 0,q,
the fiber τ−1

q+1(z) is isomorphic to Cz (cf. (1.5.11)).
We first consider the case that ιq+1(x) is a smooth point of Cz. Let v ∈ vert(Γz)

be the unique vertex such that ιq+1(x) ∈ Cv. Then since ϕ〈v〉|Cv : Cv → P
1 is an
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isomorphism and ϕ〈v〉|Cv′ is constant for v′ ∈ vert(Γx)\{v}, we have ϕ〈v〉(ιq+1(x)) 6=
ϕ〈v〉(ιq+1(y)) as desired. (By definition, we may take i ∈ I q+1 with φi = ϕ〈v〉 ◦ ιq+1.)

Next we consider the case that ιq+1(x) is not a smooth point of Cz. Then ιq+1(x)
is a node. And there are adjacent vertices v and v′ such that ιq+1(x) = Cv ∩ Cv′ .
If ϕ〈v〉(ιq+1(x)) 6= ϕ〈v〉(ιq+1(y)), the proof is done. If ϕ〈v〉(ιq+1(x)) = ϕ〈v〉(ιq+1(y)),
then we can easily see that ϕ〈v′〉(ιq+1(x)) 6= ϕ〈v′〉(ιq+1(y)), which proves our lemma
for q + 1. �

5.2. Estimates for summation. Let λ = (F ,R, π, g, b, F,R) be a specified q-hol-
quintet. For i ∈ I , put

bi = φi ◦ b : R → P
1

and

Iλ = {i ∈ I ; bi is non-constant}.
Definition 5.2.1. We call Iλ the type of the specified q-hol-quintet λ.

Let Î ⊂ I q be a subset. Let D = {Di}i∈Î be an Î -tuple of Jordan domains

Di ⊂ P1. Let D′ = {D′i}i∈Î be another such tuple. We say that D′ is compactly

contained in D if all D′i are compactly contained in Di. We also write D′ ⊂ D if

D′i ⊂ Di for all i ∈ Î . Let λ = (F ,R, π, g, b, F,R) be a specified q-hol-quintet of

type Î . We consider the following condition for {bi}i∈Î and {Di}i∈Î

(5.2.2) bi|R : R→ P
1 and Di satisfy the condition (3.1.1) for all i ∈ Î .

Put RD = R ∩
(
∩i∈Î b−1

i (Di)
)

and FD = π−1(RD).

Lemma 8. (1) Let Î ⊂ I q be a subset. Suppose D′ = {D′i}i∈Î is compactly
contained in D = {Di}i∈Î . Then for all ε > 0, there exists a positive constant

µ1 = µ1(ε, Î ,D,D′) with the following property: Let (F ,R, π, g, b, F,R) be a specified

q-hol-quintet of type Î such that the inequality

(5.2.3) A(g, FD′ , ωq) > µ1 deg π (A(b,R, ηq) + `(g, ∂F, ωq))

holds. Then there exists an Î -tuple of Jordan domains D′′ = {D′′i }i∈Î such that

D′ ⊂ D′′ ⊂ D and that the following inequality holds

`(g, ∂FD′′ , ωq) ≤ εA(g, FD′′ , ωq) + `(g, ∂F, ωq).

Moreover, we may take D′′ such that (bi)i∈Î and D′′ satisfy the condition (5.2.2).

(2) Let Î , D′ and D be the same as (1). Then there exists a positive constant

µ2 = µ2(Î ,D,D′) > 0 with the following property: Let (F ,R, π, g, b, F,R) be a

specified q-hol-quintet of type Î . Let D′′ be an Î -tuple of Jordan domains such that

(5.2.4) D′ ⊂ D′′ ⊂ D.

Suppose that (bi)i∈Î and D′′ satisfy the condition (5.2.2). Then we have∑
G∈C(RD′′ )

ρ+(G) ≤ ρ+(R) + µ2 (A(b,R, ηq) + `(g, ∂F, ωq)) .
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Proof of (1). For each i ∈ Î , we fix a biholomorphic identification χi : Di
∼→ ∆.

Put Di(r) = χ−1
i (∆(r)) for 0 ≤ r ≤ 1. Here we put ∆(r) = {z ∈ C; |z| < r} and

∆ = ∆(1). Let r0 < 1 be a constant such that D′i ⊂ Di(r0) for all i ∈ Î .
By replacing Di by Di(s) and ∆ by ∆(s) for r0 < s < 1, we may assume that χi

gives a biholomorphic map between neighborhoods of Di and ∆. In particular, we

may assume that ∂Di is analytic for all i ∈ Î .

Let λ = (F ,R, π, g, b, F,R) be a specified q-hol-quintet of type Î . For i ∈ Î , put

ξi = bi ◦ π|F : F → P
1,

F i = ξ−1
i (Di) ∩ F

and

ζi = χi ◦ ξi|F i : F i → ∆.

For 0 < r ≤ 1, put

γi(r) = ξ−1
i (∂Di(r)) ∩ F.

Let ωE be the Euclidean form on ∆ ⊂ C, which is a Kähler form. Put Si =
A(ξi, F, ωP1) and Li = `(ξi, ∂F, ωP1), which are the mean sheet number and the
length of the relative boundary of ξi : F → P

1, respectively.
Claim 1: There exists a positive constant Q1 which does not depend on the choice

of λ such that

(5.2.5) `(ζi, γi(r), ωE) ≤ Q1(Si + Li) for i ∈ Î , r ∈ [r0, 1].

Proof of Claim 1. In this proof, we denote by Q any positive constant which is

independent of i ∈ Î , r ∈ [r0, 1] and the choice of λ.
For 0 < r ≤ 1, put F i(r) = ξ−1

i (Di(r)) ∩ F and

ξi(r) = ξi|F i(r) : F i(r)→ Di(r).

Define the map ψr : Di(r)→ Di by

Di(r) 3 z 7→ χ−1
i

(
χi(z)

r

)
∈ Di.

Let Si,r be the mean sheet number and Li,r be the length of the relative boundary

of the covering ξi(r) : F i(r) → Di(r). Let S′i,r be the mean sheet number and L′i,r
be the length of the relative boundary of the covering ψr ◦ ξi(r) : F i(r)→ Di. Since
we have

(5.2.6)
1

Qψ
∗
r (ωP1 |Di) < ωP1 |Di(r) < Qψ

∗
r (ωP1 |Di) for i ∈ Î , r ∈ [r0, 1],

we have

(5.2.7) `(ξi(r), γi(r), ωP1) ≤ Q`(ψr ◦ ξi(r), γi(r), ωP1) for i ∈ Î , r ∈ [r0, 1].

Here we note that γi(r) ⊂ ∂F i(r). Since ψr ◦ ξi(r)(γi(r)) ⊂ ∂Di, using Covering
theorem 2’ (cf. (3.2.2)), we get

(5.2.8) `(ψr ◦ ξi(r), γi(r), ωP1) ≤ Q(S′i,r + L′i,r) for i ∈ Î , r ∈ [r0, 1].

29



Here we note that ∂Di is analytic for i ∈ Î by the assumption made in the beginning
of the proof of this lemma. By (5.2.6), we have

S′i,r ≤ QSi,r, L′i,r ≤ QLi,r for i ∈ Î , r ∈ [r0, 1],

hence combining with (5.2.7) and (5.2.8), we have

`(ξi(r), γi(r), ωP1) ≤ Q(Si,r + Li,r) for i ∈ Î , r ∈ [r0, 1].

Since we have χ∗iωE ≤ QωP1 |Di and χi ◦ ξi(r) = ζi|F i(r), we have

`(ζi, γi(r), ωE) ≤ Q`(ξi(r), γi(r), ωP1),

hence

`(ζi, γi(r), ωE) ≤ Q(Si,r + Li,r) for i ∈ Î , r ∈ [r0, 1].

We have Si,r ≤ Q(Si +Li) for r0 ≤ r ≤ 1 by Covering theorem 1 (cf. (3.2.1)). Using
Li,r ≤ Li, we obtain

`(ζi, γi(r), ωE) ≤ Q(Si + Li) for i ∈ Î , r ∈ [r0, 1].

This proves our claim. �
We take a positive constant Q2 which does not depend on the choice of λ and

satisfies the following estimates

(5.2.9)
∑
i∈Î

Si = deg π
∑
i∈Î

A(bi, R, ωP1) ≤ Q2 deg πA(b,R, ηq),

and

(5.2.10)
∑
i∈Î

Li =
∑
i∈Î

`(ξi, ∂F, ωP1) ≤ Q2`(g, ∂F, ωq) ≤ Q2 deg π`(g, ∂F, ωq).

(We note the trivial estimate 1 ≤ deg π.)
Take a positive constant ε > 0 and put

µ1 =
2Q1Q2

ε2(1− r0)
,

which is a positive constant independent of the choice of λ.
To state the second claim, we introduce some notations. We shall also denote the

restriction ζi|FD by ζi. Take a subset I ⊂ Î with the following properties:

• If i ∈ I and i′ ∈ I are distinct, then |ζi| 6= |ζi′ | on FD.

• For all i ∈ Î there exists i′ ∈ I such that |ζi| = |ζi′ | on FD.

For i ∈ I and r ∈ [0, 1], put

Ωi = {z ∈ FD; |ζi(z)| > |ζi′(z)| for all i′ ∈ I\{i}},

Ωi(r) = {z ∈ Ωi; |ζi(z)| < r},
γ̂i(r) = Ωi ∩ γi(r)

and

`i(r) = `(g, γ̂i(r), ωq), Ai(r) = A(g,Ωi(r), ωq).

For r ∈ [0, 1], put

D(r) = {Di(r)}i∈Î ,
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and

`(r) =
∑
i∈I

`i(r), A(r) = A(g, FD(r), ωq).

Then by the above definitions, we have

(5.2.11) A(r) =
∑
i∈I

Ai(r), `(g, ∂FD(r), ωq) ≤ `(g, ∂F, ωq) + `(r).

Define the subset E(ε) ⊂ [r0, 1] by

r ∈ E(ε)⇐⇒ `(r) > εA(r).

Claim 2: Suppose that the inequality (5.2.3) holds for λ. Then the set [r0, 1]\E(ε)
is not a null set.

Proof of Claim 2. For i ∈ I, put

g∗(ωq)|Ωi =

√
−1

2
Gidζi ∧ dζi,

where Gi is a C∞ function on Ωi\{z ∈ Ωi; ζ
′
i(z) = 0} with Gi ≥ 0. Then for r ∈ (0, 1],

we have

`i(r) =

∫
γ̂i(r)

√
Gird arg ζi

and

Ai(r) =

∫ r

0

(∫
γ̂i(t)

Gitd arg ζi

)
dt.

Using (5.2.5), (5.2.11) and the Schwarz inequality, we have

`(r)2 =

(∑
i∈I

`i(r)

)2

=

(∑
i∈I

∫
γ̂i(r)

√
Gird arg ζi

)2

≤

(∑
i∈I

∫
γ̂i(r)

rd arg ζi

)(∑
i∈I

∫
γ̂i(r)

Gird arg ζi

)

=

(∑
i∈I

`(ζi, γ̂i(r), ωE)

)(∑
i∈I

d

dr
Ai(r)

)
(for a.e. r ∈ [r0, 1])

≤ Q1

∑
i∈I

(Si + Li)
d

dr
A(r)
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for a.e. r ∈ [r0, 1]. Now, suppose that the set [r0, 1]\E(ε) is a null set. Then using
(5.2.3), (5.2.9) and (5.2.10), we have

1− r0 =

∫
E(ε)

dr

≤ Q1

∑
i∈I

(Si + Li)

∫
E(ε)

(
d

dr
A(r)

)
1

`(r)2
dr

≤
Q1

∑
i∈I(Si + Li)

ε2

∫ 1

r0

(
d

dr
A(r)

)
1

A(r)2
dr

≤
Q1

∑
i∈Î (Si + Li)

ε2A(r0)

≤ Q1Q2

ε2A(r0)
deg π (A(b,R, ηq) + `(g, ∂F, ωq))

≤ Q1Q2

ε2µ1

A(g, FD′ , ωq)

A(r0)

≤ 1− r0

2
,

which is a contradiction. This proves our claim. �
Note that the set

{r ∈ [r0, 1]; (bi)i∈Î and D(r) do not satisfy the condition (5.2.2)}
is a finite set, so a null set. Hence by Claim 2, if (5.2.3) holds for λ, we may take
r ∈ [r0, 1] such that (bi)i∈Î and D(r) satisfy the condition (5.2.2), and that the
following inequality holds

`(r) ≤ εA(r).

Using (5.2.11), we have

`(g, ∂FD(r), ωq) ≤ `(r) + `(g, ∂F, ωq)

≤ εA(r) + `(g, ∂F, ωq)

= εA(g, FD(r), ωq) + `(g, ∂F, ωq).

Put D′′ = D(r), which proves (1) of our Lemma.

Proof of (2). Let λ = (F ,R, π, g, b, F,R) be a specified q-hol-quintet of type Î ,

and let D′′ be an Î -tuple of Jordan domains which satisfies (5.2.4). We also assume
the condition (5.2.2) for (bi)i∈Î and D′′. In this proof, we denote by Q any positive

constant which only depends on D, D′ and Î , and does not depend on the choices
of λ and D′′. We shall prove∑

G∈C(RD′′ )

ρ+(G) ≤ ρ+(R) +Q (A(b,R, ηq) + `(g, ∂F, ωq)) ,(5.2.12)

which proves our lemma.

For a subset I ⊂ Î , put

RI = R ∩
⋂
i∈I

b−1
i (D′′i ), F I = π−1(RI).
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If I 6= Î , take i ∈ Î with i 6∈ I, and put

Ii,I = I(b−1
i (D′′i ), RI), I′i,I = I(b−1

i (P1\D′′i ), RI), Pi,I = P(b−1
i (D′′i ), RI).

By Lemma 2 applying to Ω = H ∈ C(RI), ζ = bi and γ1 = ∂D′′i (cf. (5.2.2)), we have

(5.2.13)
∑

H∈C(RI )

ρ+(H) ≥
∑

H∈Ii,I

ρ(H) +
∑

H∈I′
i,I

ρ(H) +
∑

H∈Pi,I

ρ+(H).

Let SD′i be the mean sheet number of bi : R→ P
1 over D′i ⊂ P1. Then we have∑

H∈Ii,I

ρ+(H)−
∑

H∈Ii,I

ρ(H) ≤ card(Ii,I) ≤ SD′i (cf. (5.2.4)).

Using Covering theorem 1 (cf. (3.2.1)), we get

(5.2.14)
∑

H∈Ii,I

ρ+(H)−
∑

H∈Ii,I

ρ(H) < Q (A(bi, R, ωP1) + `(bi, ∂R, ωP1)) .

Similarly, we have

(5.2.15) −
∑

H∈I′
i,I

ρ(H) ≤ card(I′i,I) ≤ SP1\Di ≤ Q (A(bi, R, ωP1) + `(bi, ∂R, ωP1))

where S
P1\Di is the mean sheet number of bi : R → P

1 over P1\Di ⊂ P
1. Put

I ′ = I ∪ {i}. Since we have Ii,I ∪Pi,I = C(RI
′
), using (5.2.13), (5.2.14) and (5.2.15),

we get ∑
H∈C(RI′ )

ρ+(H) ≤
∑

H∈C(RI )

ρ+(H) +Q (A(bi, R, ωP1) + `(bi, ∂R, ωP1)) .

Using this estimate inductively, we have∑
H∈C(RD′′ )

ρ+(H) ≤ ρ+(R) +Q
∑
i∈Î

(
A(bi, R, ωP1) + `(bi, ∂R, ωP1)

)
,

where we note that R∅ = R and RÎ = RD′′ . Using the inequalities∑
i∈Î

(
A(bi, R, ωP1) + `(bi, ∂R, ωP1)

)
≤ Q (A(b,R, ηq) + `(b, ∂R, ηq))

and

`(b, ∂R, ηq) ≤ Q`(g, ∂F, ωq),
we obtain (5.2.12), which proves (2). �

6. Conclusion of the proof of Theorem 4

6.1. Weak version of the theorem. We first prove the following.

Claim: Let Î ⊂ I q be a subset. Let Λ be a countable set of non-degenerate

specified q-hol-quintets of type Î . Then for all ε > 0, there exists a positive constant

C = C(ε, Î ,Λ) such that

A(g, F, κq) ≤n(g,Dq, F ) + disc(π,R) + εA(g, F, ωq)

+ C deg π
(
A(b,R, ηq) + n(b,Zq, R) + ρ+(R) + `(g, ∂F, ωq)

)(6.1.1)

33



for all (F ,R, π, g, b, F,R) ∈ Λ.
Proof of Claim. Recall that we denote by dist(x, y) the distance between x, y ∈ P1

with respect to the Kähler metric associated to the Kähler form ωP1 . Put

Λ′ = {(F ,R, π, g, b); (F ,R, π, g, b, F,R) ∈ Λ},

which is a countable set of non-degenerate q-hol-quintets. For a point x ∈M 0,q and
for r > 0, put

Wx(r) = {y ∈M 0,q; dist(φi(x), φi(y)) < r for all i ∈ I }.

By Lemma 7, we may take rx > 0 such that Wx(rx) ⊂ Vx(Λ′) (cf. Lemma 6).
Consider the open covering

M 0,q =
⋃

x∈M0,q

Wx

(rx
2

)
.

Since M 0,q is compact, we may take a finite set S of points x ∈M 0,q such that the

open sets Wx

(
rx
2

)
for these x ∈ S give a covering of M 0,q. Let r0 be the minimum

of rx
2

for x ∈ S. Then for all y ∈M 0,q, there exists x ∈ S such that

(6.1.2) Wy(r0) ⊂Wx(rx) ⊂ Vx(Λ′).

Next, take a line γ on P1 which has the following property (P):

P
1\γ is a finite disjoint union of Jordan domains Dα(γ) (1 ≤ α ≤ k)

such that supx,y∈Dα(γ) dist(x, y) < r0.

Let ε be an arbitrary positive constant. Take a positive integer J such that J > 1
ε
,

and take small deformations γ1, . . . , γJ of γ with the following properties:

• Each γj (1 ≤ j ≤ J) also satisfies the property (P),
• γj ∩ γk ∩ γl = ∅ for 1 ≤ j < k < l ≤ J .

Then for each integer j with 1 ≤ j ≤ J , we may take a small closed neighborhood δj
of γj with the following property (P’):

P
1\δj is a finite disjoint union of Jordan domains D1(δj), . . . , Dk(δj)

where each Dα(δj) (1 ≤ α ≤ k) is compactly contained in Dα(γj).

We also assume that

(6.1.3) δj ∩ δk ∩ δl = ∅ for 1 ≤ j < k < l ≤ J.

Put T = {1, · · · ,k}Î . For β = (βi)i∈Î ∈ T and 1 ≤ j ≤ J , put Dβ,j =

{Dβi(γj)}i∈Î and D′β,j = {Dβi(δj)}i∈Î , which are Î -tuples of Jordan domains.

Then D′β,j is compactly contained in Dβ,j .
We take a positive constant h such that

hy(Λ′) < h for all y ∈ S (cf. Lemma 6),

κq < hωq on U 0,q,

1 < h.

(6.1.4)
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Note that h is independent of the choice of ε. We also take a positive constant µ such
that

(6.1.5) µ > µ1(ε, Î ,Dβ,j ,D
′
β,j), µ > µ2(Î ,Dβ,j ,D

′
β,j) (cf. Lemma 8)

for all β ∈ T and 1 ≤ j ≤ J .
Take (F ,R, π, g, b, F,R) ∈ Λ. We consider the covering

ξi = bi ◦ π|F : F → P
1 for i ∈ Î .

Since we have

J∑
j=1

A(g, ξ−1
i (δj), ωq) ≤ 2A(g, F, ωq) (by (6.1.3))

for all i ∈ Î , we have

J∑
j=1

∑
i∈Î

A(g, ξ−1
i (δj), ωq) ≤ 2κA(g, F, ωq) (κ = card Î ).

Hence there exists j (1 ≤ j ≤ J) such that

(6.1.6)
∑
i∈Î

A(g, ξ−1
i (δj), ωq) ≤

2κ

J
A(g, F, ωq) ≤ 2εκA(g, F, ωq).

For the rest of this proof, we fix this j.

Subclaim: For β ∈ T , there exists an Î -tuple of Jordan domains D′′β which satisfies
D′β,j ⊂ D′′β ⊂ Dβ,j and the following inequality

(6.1.7) A(g, FD′′
β
, κq) ≤ n(g,Dq, FD′′

β
) + disc(π,RD′′

β
)

+ deg πρ+(R) + hµ deg π (A(b,R, ηq) + `(g, ∂F, ωq))

+ εhA(g, FD′′
β
, ωq) + h`(g, ∂F, ωq) + h deg πn(b,Zq, RD′′

β
).

Proof of Subclaim. We first consider the case

A(g, FD′
β,j
, ωq) ≤ µ deg π (A(b,R, ηq) + `(g, ∂F, ωq)) .

Put D′′β = D′β,j . Then using (6.1.4), we have

A(g, FD′′
β
, κq) ≤ hA(g, FD′′

β
, ωq) ≤ hµ deg π (A(b,R, ηq) + `(g, ∂F, ωq)) .

Since all terms in the right hand side of (6.1.7) are not negative, we obtain our claim
in this case.

Next we consider the case

A(g, FD′
β,j
, ωq) > µ deg π (A(b,R, ηq) + `(g, ∂F, ωq)) .

Let D′′β be the Î -tuple of Jordan domains obtained in Lemma 8 (1) (cf. (6.1.5)).
By the property (P) of γj , we see that b(RD′′

β
) ⊂ Wb(z)(r0) for z ∈ RD′′

β
. Hence by

35



(6.1.2), we have b(RD′′
β

) ⊂ Vx for some x ∈ S. Hence we may apply Lemma 6 for

each connected component G ∈ C(RD′′
β

) to get

A(g, π−1(G), κq) ≤ n(g,Dq, π
−1(G)) + disc(π,G) + deg πρ+(G)

+ h`(g, ∂π−1(G), ωq) + h deg πn(b,Zq, G).

Adding over all G ∈ C(RD′′
β

) and using the estimates of Lemma 8 (1) and (2), we

obtain our assertion. �
Since we have F =

⋃
β∈T FD′′

β
∪
⋃
i∈Î ξ−1

i (δj) and FD′′
β
∩ FD′′

β′
= ∅ for β′ 6= β, we

have

A(g, F, κq) ≤
∑
β∈T

A(g, FD′′
β
, κq) + h

∑
i∈Î

A(g, ξ−1
i (δj), ωq)

≤
∑
β∈T

A(g, FD′′
β
, κq) + 2κhεA(g, F, ωq) (cf. (6.1.6)).

(6.1.8)

Adding the inequalities (6.1.7) over all β ∈ T and using the above inequality (6.1.8),
we get

A(g, F, κq) ≤ n(g,Dq, F ) + disc(π,R) + (2κ + 1)hεA(g, F, ωq)

+ kκ deg πρ+(R) + hµkκ deg πA(b,R, ηq)

+ hkκ(µ deg π + 1)`(g, ∂F, ωq) + h deg πn(b,Zq, R).

Here we used the fact card T = k
κ . Note that the constants h, µ, κ and k are

independent of the choice of λ ∈ Λ. Using the facts that ε > 0 is arbitrary and
that the constant (2κ + 1)h is independent of the choice of ε, we see that the term
(2κ + 1)hε is also arbitrary positive number. This proves our claim. �

6.2. End of proof. We prove our theorem by a contradiction. Suppose our theorem
is not correct. Then there exist q ≥ 3 and ε > 0 with the following property: For all
positive integer k, there exists a non-degenerate specified q-hol-quintet

λk = (Fk,Rk, πk, gk, bk, Fk, Rk)

such that

(6.2.1) A(gk, Fk, κq) > n(gk,Dq, Fk) + disc(πk, Rk) + εA(gk, Fk, ωq)

+ k deg πk
(
A(bk, Rk, ηq) + n(bk,Zq, Rk) + ρ+(Rk) + `(gk, ∂Fk, ωq)

)
.

Put Λ = {λ1, λ2, . . .}. Replacing Λ by its subset, we may assume that the types of

λk are all the same Î ⊂ I . Using the above claim and (6.2.1), we conclude that

kQk < C(ε, Î ,Λ)Qk

for all positive integer k, where we put

Qk = deg πk
(
A(bk, Rk, ηq) + n(bk,Zq, Rk) + ρ+(Rk) + `(gk, ∂Fk, ωq)

)
.

But this is a contradiction, since we have Qk ≥ 0. Hence we obtain our theorem.
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7. Proof of Corollary 2

7.1. Generalization of Theorem 1. Let Y , B, π and ψ be the same as Corollary 2.
Then we may consider KB as a subfield of KY by the natural inclusion defined by
π : Y → B.

Corollary 3. Let F (x) ∈ KψB [x] be a polynomial in one variable with coefficients

in KψB. Assume that F (x) = 0 has no multiple solutions. Take ζ ∈ KY such that
F (ζ) 6= 0. Then for all ε > 0, there exists a positive constant C(ε) > 0 such that

(degF − 2− ε)T (r, ζ) ≤ N(r, 0, F (ζ)) +NramπY (r)

+ C(ε)(NramπB (r) + ψ(r)) + o(T (r, ζ)) ||,

where we consider F (ζ) as a meromorphic function on Y .

Remark 7.1.1. If we put F (x) = (x − a1) · · · (x − aq) for distinct a1, . . . , aq ∈ KψB ,
then the above corollary implies Theorem 1. This is because we have

(7.1.2) N(r, 0, F (ζ)) =

q∑
i=1

N(r, ai ◦ π, ζ) +O(ψ(r)) ||.

Note that the condition F (ζ) 6= 0 is equivalent to ζ 6= ai ◦ π for all i = 1, . . . , q.

Proof of Corollary 3. Let KC be an algebraic closure of KC. We consider the fields
KψB and KY as subfields of KC. Let L ⊂ KC be the splitting field of F (x) over KψB .

Then L is a finite separable extension of KψB . Hence there is a primitive element

α ∈ L, i.e., L = KψB(α). Let B′
π′→ B be the Riemann surface defined by α, i.e.,

KψB′ = L. Then there exist α1, . . . , αq, β ∈ KψB′ such that

(7.1.3) F (x) = β(x− α1) · · · (x− αq)

where q = degF (x). Let G(x) ∈ KψB [x] be the irreducible polynomial such that
G(α) = 0. Since the ramification points of π′ are either the poles of the coefficients
of G or the zeros of the discriminant of G, we have

(7.1.4) NramπB′ (r) ≤ NramπB (r) +O(ψ(r)) ||,

where πB′ = πB ◦ π′ (cf. (2.3.2)).

Next let Y ′
π′′→ Y be the Riemann surface such that KY ′ = KY (α), where we

consider KY ′ as a subfield of KC. By the similar reason for (7.1.4), we have

(7.1.5) NramπY ′ (r) ≤ NramπY (r) +O(ψ(r)) ||.

Since KψB′ is a subfield of KY ′ , there exists a proper, surjective holomorphic map
π̂ : Y ′ → B′. Apply Theorem 1 to the case that Y = Y ′, B = B′, ai = αi and
f = ζ ◦ π′′. Then we get

(q − 2− ε)T (r, ζ) ≤
q∑
i=1

N(r, αi ◦ π̂, ζ ◦ π′′) +NramπY ′ (r)

+Oε(NramπB′ (r) + ψ(r)) + o(T (r, ζ)) ||
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for all ε > 0. Here note that T (r, ζ) = T (r, ζ ◦ π′′) + O(1) and that α1, . . . , αq are
distinct because F (x) = 0 has no multiple solutions. By (7.1.2) and (7.1.3), we have

q∑
i=1

N(r, αi ◦ π̂, ζ ◦ π′′) = N(r, 0, F (ζ ◦ π′′)) +O(ψ(r)) ||

= N(r, 0, F (ζ)) +O(ψ(r)) ||.

Hence using (7.1.4) and (7.1.5), we conclude our proof. �

7.2. Geometric version of the corollary.

Corollary 4. Let X and M be smooth projective varieties over C. Let p : X → M
be a surjective morphism such that a fiber p−1(x) is a smooth projective curve for a
general x ∈ M . Let LX and LM be ample line bundles on X and M , respectively.
Let KX/M be the relative canonical bundle on X. Let Y , B and π be the same as
Theorem 1. Consider the following commutative diagram of holomorphic maps.

Y
ζ−−−−−→ X

π

y yp
B −−−−−→

β
M

Assume that the image β(B) is Zariski dense in M . Then for all ε > 0, there exists
a positive constant C = C(ε) > 0 such that

T (r, ζ,KX/M ) ≤ NramπY (r) + εT (r, ζ, LX)

+ C(ε) (T (r, β, LM ) +NramπB (r)) + o(T (r, ζ, LX)) ||.

Proof. Suppose that the Zariski closure W of the image ζ(Y ) is not equal to X.
Then the field extension C(W )/C(M) defined by p|W : W →M is a finite extension.
Hence we have

T (r, v ◦ ζ) ≤ O(T (r, β, LM ))

for all v ∈ C(W ). Hence we get

T (r, ζ,KX/M ) ≤ O(T (r, β, LM )).

This prove our corollary in the case W 6= X.
Next we consider the case W = X. By blowing-up, we can assume that there exists

a generically finite map α : X → P
1×M overM . LetM0 ⊂M be an affine open subset

such that the restriction α0 = α|X0 : X0 → P
1 ×M0 is finite, where X0 = p−1(M0).

Put E0 = ram(α0) ⊂ X0, i.e., the ramification divisor of α0. Let H0 ⊂ P1 ×M0

be the reduced divisor supported by α0(suppE0), i.e., H0 = α0(suppE0)red. Put
G0 = α∗0(H0)red. By the ramification formula, we have

(7.2.1) KX0/M0(G0) = α∗0
(
KP1×M0/M0(H0)

)
.

Here KP1×M0/M0 , which is a line bundle on P1 ×M0, is the relative canonical bundle

of the second projection P1 ×M0 → M0. Let H ⊂ P1 ×M be the natural extension
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of H0. Then by (7.2.1), we can extend the divisor G0 to a divisor G on X such that

KX/M (G) = α∗
(
KP1×M/M (H)

)
,

where KP1×M/M is the relative canonical bundle of the second projection P1 ×M →
M . Hence we have

(7.2.2) T (r, ζ,KX/M (G)) = T (r, α ◦ ζ,KP1×M/M (H)) +O(1).

Put ψ(r) = T (r, β, LM ) +O(1).
Claim: For all ε > 0, the following inequality holds

T (r, α ◦ ζ,KP1×M/M (H)) ≤ N(r, α ◦ ζ,H) +NramπY (r) + εT (r, ζ, LX)

+Oε
(
NramπB (r) + ψ(r)

)
+ o(T (r, ζ, LX)) ||.

Proof of Claim. Let e be the generic point of M in the sense of Scheme theory.
Let P1

e be the generic fiber of the second projection p′ : P1 ×M → M . Then P1
e is

the projective line over the function field C(M) of M . Let He ⊂ P1
e be the restriction

of H. By a coordinate change of the first factor of P1 ×M , if necessary, we may
assume that the divisor (∞) ⊂ P1

e is not a component of He. Hence we may take a
polynomial F (x) ∈ C(M)[x] such that He is defined by F (x) = 0.

First, we consider F (x) as a rational function on P1 ×M . Let (F )0 ⊂ P1 ×M be
the divisor of zeros of F (x). Then we have

N(r, 0, F ◦ α ◦ ζ) ≤ N(r, α ◦ ζ, (F )0),

where F ◦α◦ζ is a non-constant meromorphic function on Y because of the assumption
W = X. Note that we have

N(r, α ◦ ζ, (F )0) ≤ N(r, α ◦ ζ,H) +O(ψ(r))

because of p′
(
supp((F )0 −H)

)
6= M . Hence we get

(7.2.3) N(r, 0, F ◦ α ◦ ζ) ≤ N(r, α ◦ ζ,H) +O(ψ(r)).

Next, let F̂ (x) be the polynomial over KψB obtained from F (x) by the natural

inclusion C(M) ⊂ KψB defined by β. Let κ : P1 ×M → P
1 be the first projection, and

put ζ̂ = κ ◦ α ◦ ζ : Y → P
1. Then we have

F ◦ α ◦ ζ = F̂ (ζ̂).

Hence, using (7.2.3), we get

(7.2.4) N(r, 0, F̂ (ζ̂)) ≤ N(r, α ◦ ζ,H) +O(ψ(r)).

We apply Corollary 3 to obtain

(7.2.5) (deg F̂ − 2− ε)T (r, ζ̂) ≤ N(r, 0, F̂ (ζ̂)) +NramπY (r)

+Oε(NramπB (r) + ψ(r)) + o(T (r, ζ̂)) ||

for all ε > 0. Here we note that F̂ (x) has no multiple solutions because H is a reduced
divisor.

Now since we have
(
(degF − 2)κ∗L

)
|P1e '

(
KP1×M/M (H)

)
|P1e , we get

(7.2.6) (deg F̂ − 2)T (r, ζ̂,L ) = T (r, α ◦ ζ,KP1×M/M (H)) +O(ψ(r)).
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Note that we have T (r, ζ̂,L ) = T (r, ζ̂) + O(1), because the Fubini-Study form ωP1
is the curvature form of the Fubini-Study metric on L . Hence combining (7.2.4),
(7.2.5) and (7.2.6), we get

T (r, α ◦ ζ,KP1×M/M (H)) ≤ N(r, α ◦ ζ,H) +NramπY (r) + εT (r, ζ̂)

+Oε(NramπB (r) + ψ(r)) + o(T (r, ζ̂)) ||
for all ε > 0. Using

T (r, ζ̂) ≤ O(T (r, ζ, LX)),

we obtain our claim. �
Since we have p

(
supp((α∗H)red −G)

)
6= M , we obtain

N(r, α ◦ ζ,H) = N(r, ζ, (α∗H)red) = N(r, ζ,G) +O(ψ(r)).

Here we also use the assumption W = X to ensure ζ(Y ) 6⊂ suppG. Hence combining
with (7.2.2) and the above claim, we get

T (r, ζ,KX/M (G)) ≤ N(r, ζ,G) +NramπY (r) + εT (r, ζ, LX)

+Oε(NramπB (r) + ψ(r)) + o(T (r, ζ, LX)) ||

for all ε > 0. Using N(r, ζ,G) ≤ T (r, ζ, [G]) +O(1) and

T (r, ζ,KX/M (G)) = T (r, ζ,KX/M ) + T (r, ζ, [G]) +O(1),

we get our corollary. (Recall that [G] is the associated line bundle for G.) �

7.3. Proof of Corollary 2. We use the notations in Corollary 2. Let L ⊂ KψB be the
smallest subfield containing both C and all the coefficients of F (x, y). Then L is a
finitely generated field over C. Hence there exists a smooth projective variety M over
C such that the rational function field C(M) of M is isomorphic to L. We denote by
e the generic point of M in the sense of Scheme theory. In the following, we fix one
isomorphism ι : C(M)

∼→ L. Then we have the holomorphic map β : B → M such
that v ◦ β = ι(v) for all v ∈ C(M). Note that β has Zariski dense image and satisfies

(7.3.1) T (r, β, LM ) ≤ O(ψ(r)) ||
for an ample line bundle LM on M . Let F̄ (x, y) ∈ C(M)[x, y] be the polynomial
obtained by F (x, y) and the isomorphism ι−1 : L → C(M). Let Q be the quotient
field of the ring C(M)[x, y]/F̄ (x, y). We may take a smooth projective variety X and
a surjective morphism p : X →M such that the rational function field C(M)(Xe) of
the generic fiber Xe of p (in the sense of Scheme theory) is isomorphic to Q. Note
that Xe is a smooth projective curve over the field C(M). Then the rational function
field C(X) of X is also isomorphic to Q. Since the meromorphic functions ζ1 and
ζ2 on Y satisfy the functional equation F (ζ1, ζ2) = 0, we get the holomorphic map
ζ : Y → X such that x ◦ ζ = ζ1 and y ◦ ζ = ζ2, where we consider x and y as rational
functions on X. Then β and ζ fit into the commutative diagram in Corollary 4. By
the assumption that Fz(x, y) = 0 defines a curve of genus > 1 for general z ∈ B, we
see that the curve Xe has genus > 1. Hence the canonical bundle KXe is ample. Let
LX be an ample line bundle on X.

Claim: T (r, ζ, LX) ≤ O(T (r, ζ,KX/M ) + ψ(r)) ||.
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Proof of Claim. There exists a positive integer m such that mKXe −LX |Xe is very
ample. Hence we may take an effective divisor H on X such that [H|Xe ] = mKXe −
LX |Xe and ζ(Y ) 6⊂ suppH. Since the restriction KX/M |Xe is isomorphic to KXe , we
see that the restriction (mKX/M − LX − [H])|Xe is the trivial bundle on Xe. Hence
there exists a divisor G on X such that p(suppG) 6= M and mKX/M−LX−[H] = [G].
Since we have

−T (r, ζ, [H]) ≤ O(1)

and

−T (r, ζ, [G]) ≤ O(ψ(r)) || (cf. (7.3.1)),

we get our claim. �
Now, applying Corollary 4 and using the above claim, we get

T (r, ζ, LX) ≤ Oε(NramπY (r) +NramπB (r) + ψ(r)) + εT (r, ζ, LX) + o(T (r, ζ, LX)) ||

for all ε > 0. Letting ε < 1, we get

(7.3.2) T (r, ζ, LX) ≤ O(NramπY (r) +NramπB (r) + ψ(r)) ||.

Using x ◦ ζ = ζ1 and y ◦ ζ = ζ2, we obtain

(7.3.3) T (r, ζ1) ≤ O(T (r, ζ, LX)), T (r, ζ2) ≤ O(T (r, ζ, LX)).

By (7.3.2) and (7.3.3), we get our corollary. �

8. Proof of Theorem 2

In this section, we prove Theorem 2. We fix a positive integer q ≥ 3. Let ε > 0 be
a positive constant, and let

(8.0.4) Y, B, π, f, a1, · · · , aq
be the objects in Theorem 2, which will be also fixed in the following. Consider the
specified q-hol-quintet λ = (Y,B, π, cl(f,a), cla, Y,B) defined by (8.0.4).

Put δ = max1≤i≤q deg ai. Since for (i, j, k) ∈J and for general z ∈ Y , two pairs
of 4-points on P1

(f(z), ai ◦ π(z), aj ◦ π(z), ak ◦ π(z)), (ϕ(i,j,k) ◦ cl(f,a)(z), 0, 1,∞)

are isomorphic (cf. (1.5.6), (1.5.7)), we have

ϕ(i,j,k) ◦ cl(f,a)(z) =
f(z)− ai ◦ π(z)

f(z)− ak ◦ π(z)

aj ◦ π(z)− ak ◦ π(z)

aj ◦ π(z)− ai ◦ π(z)
.

Hence we get

(8.0.5) |deg(ϕ(i,j,k) ◦ cl(f,a))− deg f | ≤ 7δ deg π.

Also, since for (i, j, k, l) ∈ I and for general z ∈ B, two pairs of 4-points on P1

(al(z), ai(z), aj(z), ak(z)), (φ(i,j,k,l) ◦ cla(z), 0, 1,∞)

are isomorphic, we have

φ(i,j,k,l) ◦ cla(z) =
al(z)− ai(z)
al(z)− ak(z)

aj(z)− ak(z)

aj(z)− ai(z)
.
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Hence we get

(8.0.6) deg(φ(i,j,k,l) ◦ cla) ≤ 8δ.

First, we consider the case that λ is non-degenerate. By the assumption that ai
are distinct, we conclude that

(8.0.7) cla(B) 6⊂ supp Zq.

Hence we may apply Theorem 4 for the non-degenerate specified q-hol-quintet λ.
Denoting by C1(q, ε) the constant C(q, ε) obtained in Theorem 4, we get

(8.0.8) deg(cl(f,a))
∗Kq ≤ n(cl(f,a),Dq, Y ) + disc(π,B) + εA(cl(f,a), Y, ωq)

+ C1(q, ε) deg π
(
A(cla, B, ηq) + n(cla,Zq, B) + ρ+(B)

)
.

Here we note that A(cl(f,a), Y, κq) = deg(cl(f,a))
∗Kq, and that

`(cl(f,a), ∂Y, ωq) = 0 because Y is compact. By the Riemann-Roch theorem and the
Hurwitz theorem, we have

(8.0.9) ρ(B) = 2g(B)− 2, disc(π,B) = (2g(Y )− 2)− deg π(2g(B)− 2),

so

ρ+(B) ≤ 2g(B), disc(π,B) ≤ 2g(Y ) + 2 deg π.

Hence by (8.0.8), we get

(8.0.10) deg(cl(f,a))
∗Kq ≤ n(cl(f,a),Dq, Y ) + 2g(Y ) + εA(cl(f,a), Y, ωq)

+ C2(q, ε) deg π
(
A(cla, B, ηq) + n(cla,Zq, B) + g(B) + 1

)
,

where we put C2(q, ε) = 2 max{C1(q, ε), 2}.
Claim. There exist positive constants Q1, . . . , Q5 which are independent of the

choices of ε > 0 and of the objects in (8.0.4) such that

(8.0.11) A(cla, B, ηq) ≤ Q1δ,

(8.0.12) n(cla,Zq, B) ≤ Q2δ,

(8.0.13) A(cl(f,a), Y, ωq) ≤ Q3(deg f + δ deg π),

(8.0.14) n(cl(f,a),Dq, Y ) ≤
q∑
i=1

n(ai ◦ π, f, Y ) +Q4δ deg π,

(8.0.15) (q − 2) deg f ≤ deg(cl(f,a))
∗Kq +Q5δ deg π.

Proof of (8.0.11). For i ∈ I , let pri : (P1)I → P
1 be the projection to the i-th

factor. Put

L =
∑
i∈I

pr∗iL ,

which is an ample line bundle on (P1)I . By Lemma 7, the line bundle Φ∗L is an

ample line bundle on M 0,q. Hence there exists a curvature form ω′ of Φ∗L that is a
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positive (1,1)-form. Hence there exists a positive constant Q′1 such that ηq < Q′1ω
′.

Using (8.0.6), we have

A(cla, B, ηq) ≤ Q′1A(cla, B, ω
′) = Q′1 deg(Φ ◦ cla)∗L

= Q′1
∑
i∈I

deg(φi ◦ cla) ≤ 8Q′1(card I )δ.

Put Q1 = 8Q′1 card I to conclude the proof of (8.0.11).

Proof of (8.0.12). There exists a positive integer Q′2 such that Q′2Φ∗L − [Zq] is
an ample line bundle. Hence using (8.0.6), we get

n(cla,Zq, B) ≤ deg(cla)∗Zq ≤ Q′2 deg(Φ ◦ cla)∗L ≤ 8Q′2(card I )δ.

Put Q2 = 8Q′2 card I to conclude the proof of (8.0.12).

Proof of (8.0.13). Using the isomorphism ιq+1 : M 0,q+1 → U 0,q (cf. (1.5.11)) and

Lemma 7 for M 0,q+1, we see that the line bundle

P =
∑
α∈J q

ϕ∗αL +
∑
i∈I q

(φi ◦$q)
∗L

is an ample line bundle on U 0,q. Hence there exists a positive constant Q′3 such that
ωq < Q′3ω

′′ where ω′′ is a curvature form of P that is a positive (1,1)-form. Using
(8.0.5) and (8.0.6), we get

A(cl(f,a), Y, ωq) ≤ Q′3A(cl(f,a), Y, ω
′′) = Q′3 deg(cl(f,a))

∗P

= Q′3

 ∑
α∈J q

deg(ϕα ◦ cl(f,a)) +
∑
i∈I q

deg(φi ◦ cla ◦π)


≤ (Q′3 card J q + 7Q′3 card J q + 8Q′3 card I q)(deg f + δ deg π).

Put Q3 = Q′3 card J q+7Q′3 card J q+8Q′3 card I q to conclude the proof of (8.0.13).
Proof of (8.0.14). (cf. proof of (2.2.4)) Put

U = {z ∈ B; a1(z), . . . , aq(z) are all distinct}.

Then by the definition of the classification map, we have cla(U) ⊂ M0,q. For z ∈ U
and y ∈ π−1(z), we have cl(f,a)(y) ∈ Dq if and only if f(y) = ai(z) for some i ∈ (q)
(cf. (1.5.6) and (1.5.7)) . Hence we have

{y ∈ Y ; cl(f,a)(y) ∈ Dq} ⊂ {y ∈ Y ; f(y) = ai ◦ π(y) for some i ∈ (q)} ∪ π−1(B\U).

This implies that

n(cl(f,a),Dq, Y ) ≤
∑

1≤i≤q

n(ai ◦ π, f, Y ) + deg π
∑

1≤i6=j≤q

n(ai, aj , B).

Since we have

n(ai, aj , B) ≤ 2δ,

we get (8.0.14). (Put Q4 = 2q(q − 1).)
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Proof of (8.0.15). (cf. proof of (2.2.5)) By Lemma 1, we have

(8.0.16) (q − 2) deg(ϕ(1,2,3) ◦ cl(f,a))

= deg(cl(f,a))
∗Kq + deg π deg(cla)∗M + deg(cl(f,a))

∗(Ξ),

where M and Ξ are obtained in the lemma. By $q(supp Ξ) ⊂ supp Zq, there exists
a positive integer Q′5 such that the divisor Q′5$

∗
qZq −Ξ is effective. Hence by (8.0.7)

and by the proof of (8.0.12), we have

(8.0.17) deg(cl(f,a))
∗(Ξ) ≤ Q′5 deg π deg(cla)∗(Zq) ≤ Q2Q

′
5δ deg π.

Since Φ∗L is ample, there exists a positive constant Q′′5 such that the line bundle
Q′′5Φ

∗L −M is ample. Using (8.0.6), we get

(8.0.18) deg(cla)∗M ≤ Q′′5 deg(Φ ◦ cla)∗L ≤ 8Q′′5 (card I )δ.

Using (8.0.5), (8.0.16), (8.0.17) and (8.0.18) and putting

Q5 = Q2Q
′
5 + 8Q′′5 card I + 7(q − 2),

we get our inequality (8.0.15) and conclude the proof of the claim. �
Now using (8.0.10) and the above claim, we get

(q − 2) deg f ≤
q∑
i=1

n(ai ◦ π, f, Y ) + 2g(Y )

+ εQ3 deg f + (εQ3 +Q4 +Q5)δ deg π

+ C2(q, ε) deg π
(
(Q1 +Q2)δ + g(B) + 1

)
.

Put
C3(q, ε) = max{εQ3 +Q4 +Q5 + C2(q, ε)(Q1 +Q2), C2(q, ε)}.

Replacing ε by ε
Q3

and putting C(q, ε) = C3(q, ε
Q3

), we get our theorem in the case

that λ is non-degenerate.
Next we consider the case that λ is degenerate, i.e., there exists some α ∈J such

that ϕα ◦ cl(f,a) is constant. Then by (8.0.5), we conclude that

deg f ≤ 7δ deg π.

Hence replacing C(q, ε) by max{C(q, ε), 7(q−2)}, we also get the theorem in the case
that λ is degenerate. Here note that all terms in the right hand side of (1.1.4) are
non-negative. This conclude the proof of our theorem.

9. Height inequality for curves over function fields

9.1. Notations. General references for this section are [L], [V1] and [V3]. Let k be a
function field, i.e., a rational function field of a compact Riemann surface B. This
B is uniquely determined by k (up to isomorphism), and called the model of k. We
consider B as a smooth projective curve over C. Let S ⊂ B be a finite set of points
which will be fixed throughout.

Let X be a smooth projective curve over k, and let D ⊂ X be an effective divisor.
Let L be a line bundle on X. Following P. Vojta [V3], we define the functions

hL,k(P ), N
(1)
k,S(D,P ), dk(P )
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for P ∈ X(k) as follows.
First, take a model of X over B, i.e., a smooth variety X projective over B such

that the generic fiber (in the sense of Scheme theory) is isomorphic to X over k. Then

for each P ∈ X(k) = X(k) by taking the normalization of the Zariski closure of P in
X, we can associate the following commutative diagram.

Y
fP−−−−−→ X

π

y yp
B B

Here Y is the model of k(P ).
Let D ⊂ X be an extension of D ⊂ X, and let L be an extension of L to X. Put

hL,k(P ) =
1

deg π
deg f∗PL

and

N
(1)
k,S(D, P ) =

1

deg π

∑
x∈Y \π−1(S)

min(1, ordx f
∗
PD) (P ∈ X(k)\D).

If we replace the models X, D and L by other models X′, D′ and L′, we have

hL,k(P ) = hL′,k(P ) +O(1), N
(1)
k,S(D, P ) = N

(1)
k,S(D′, P ) +O(1),

where O(1) are bounded terms independent of P ∈ X(k). Then we define the func-

tions hL,k(P ) and N
(1)
k,S(D,P ) by

hL,k(P ) = hL,k(P ) +O(1)

and

N
(1)
k,S(D,P ) = N

(1)
k,S(D, P ) +O(1) (P ∈ X(k)\D),

which are functions modulo bounded terms O(1). Finally, put

dk(P ) =
1

deg π
disc(π,B) =

2g(Y )

deg π
+O(1) (cf. (8.0.9)).

The following facts are easy consequences of the above definitions.

(i) N
(1)
k,S(D,P ) ≤ h[D],k(P ) +O(1), where [D] is the associated line bundle.

(ii) n(fP ,D, Y ) ≤ deg π
(
N

(1)
k,S(D, P ) + cardS

)
.

(iii) Let P1
k be the projective line over k. In the following, we always take P1 ×B

as a model of P1
k over B. Then a point P ∈ P1

k(k) corresponds to the rational

function f̂P on Y obtained by the composition

f̂P : Y
fP→ P

1 ×B 1st proj−→ P
1.

Let Lk be the hyper plane section bundle on P1
k. Then we have

hLk,k(P ) =
deg f̂P
deg π

+O(1).
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(iv) Let k′ ⊂ k be a finite extension of k. Put e = [k′ : k] and X ′ = X ⊗k k′.
Let B′ be the model of k′. Let b : B′ → B and b̂ : X ′ → X be the natural
maps. Put D′ = b̂∗D, L′ = b̂∗L and S′ = b−1(S). Then using the natural

identification X ′(k) = X(k), we have

hL′,k′(P ) = ehL,k(P ) +O(1), N
(1)

k′,S′(D
′, P ) = eN

(1)
k,S(D,P ) +O(1),

and

dk′(P ) ≤ edk(P ) +Ok,k′(1).

Here Ok,k′(1) is a bounded term depend on k and k′, and independent of

P ∈ X(k).

By these properties and Theorem 2, we obtain the following.

Lemma 9. Let D ⊂ P1
k be a reduced divisor and let ε > 0. Then we have

(9.1.1) hK
P
1
k

(D),k(P ) ≤ N (1)
k,S(D,P ) + dk(P ) + εhLk,k(P ) +Oε(1)

for all P ∈ P1
k(k)\D. Here Oε(1) denotes a bounded term depend on ε, and indepen-

dent of P ∈ P1
k(k).

Proof. Let k′ ⊂ k be a finite extension of k such that the divisor D′ ⊂ P1
k′ has the

form D′ = (P1)+· · ·+(Pq) by k′-rational points Pi ∈ P1
k′(k

′) for i = 1, . . . , q. Here and
the following, we use the notations in (iii) and (iv) above. Each Pi corresponds to the

rational function f̂Pi on B′, where we note that k′(Pi) = k′. By the assumption that

D is reduced, Pi are distinct, hence f̂Pi are distinct. Take a point P ∈ P1
k′(k)\D′ =

P
1
k(k)\D. Let Y ′ be the model of k′(P ) and π′ : Y ′ → B′ be the natural map. Then

P corresponds to the rational function f̂P on Y ′. Because P 6∈ suppD′, we have

f̂P 6= f̂Pi ◦ π′ for i = 1, . . . , q. Apply Theorem 2 to get

(q − 2− ε) deg f̂P ≤
q∑
i=1

n(f̂Pi ◦ π, f̂P , Y
′) + 2g(Y ′) +Oε(1) deg π.

Here we note that the functions f̂Pi and the Riemann surface B′ are fixed because
the divisor D and the Riemann surface B are fixed. Hence by the above (ii) and (iii),
we get

hK
P
1
k′

(D′),k′(P ) ≤ N (1)

k′,S′(D
′, P ) + dk′(P ) + εhLk′ ,k

′(P ) +Oε(1).

Here we use the facts that K
P
1
k′

= −2Lk′ , [D′] = qLk′ and

q∑
i=1

n(f̂Pi ◦ π, f̂P , Y
′) ≤ n(fP ,D

′, Y ′) +O(1) deg π,

where D′ ⊂ P1 × B′ is the Zariski closure of D′ ⊂ P1
k′ and fP : Y ′ → P

1 × B′ is the
associated holomorphic map for P . Using the above (iv), we conclude our proof. �
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9.2. Height inequality. The following theorem proves the conjecture [V3, Conjecture
2.3] for the case of curves over function fields.

Theorem 5. Let k be a function field. Let X be a smooth projective curve over k,
let D be a reduced divisor on X, let L be an ample line bundle on X and let ε > 0.
Then we have

(9.2.1) hKX (D),k(P ) ≤ N (1)
k,S(D,P ) + dk(P ) + εhL,k(P ) +Oε(1)

for all P ∈ X(k)\D.

Proof. Let α : X → P
1
k be a finite surjective map over k. Put E =

(
ram(α)

)
red
⊂

X. Note that we may choose α such that suppD ∩ suppE = ∅, hence we assume
it. Let H ⊂ P

1
k be the reduced divisor supported by α(suppD ∪ suppE). Then

there exists an effective divisor G ⊂ X such that
(
α∗(H)

)
red

= D + E + G. By the
ramification formula, we have

(9.2.2) KX(D + E +G) = α∗(K
P
1
k
(H)).

Then by Lemma 9 and the above property (i) of the previous subsection, we have

hKX (D+E+G),k(P ) = hK
P
1
k

(H),k(α(P ))

≤ N (1)
k,S(H,α(P )) + dk(α(P )) + εhLk,k(α(P )) +Oε(1)

= N
(1)
k,S(D + E +G,P ) + dk(α(P )) + εhα∗Lk,k(P ) +Oε(1)

≤ N (1)
k,S(D + E +G,P ) + dk(P ) + εChL,k(P ) +Oε(1)

≤ N (1)
k,S(D,P ) + h[E+G],k(P ) + dk(P ) + εChL,k(P ) +Oε(1),

for all P ∈ X(k)\(D + E + G). Here C is a positive integer such that the line
bundle CL − α∗Lk is ample, hence C is independent of P and ε. For the points
P ∈ supp(E +G), the values hKX (D)(P ) are bounded because supp(E +G) consists
of finite points. Hence, replacing ε by ε

C
, we get

hKX (D),k(P ) ≤ N (1)
k,S(D,P ) + dk(P ) + εhL,k(P ) +Oε(1)

for all P ∈ X(k)\D. This proves our theorem. �
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