THE SECOND MAIN THEOREM FOR SMALL FUNCTIONS AND
RELATED PROBLEMS

KATSUTOSHI YAMANOI

ABSTRACT. We shall establish the following three results in more general forms.

(1) The second main theorem for small functions. Let f be a mero-
morphic function on the complex plane C. Let ai,...,aq be distinct mero-
morphic functions on C. Assume that a; are small with respect to f; i.e.,
T(r,a) < o(T(r, f)) ||- Then the inequality

q
(a=2-a)T(r, /) <Y N(r,ai, ) + o(T(r, /) |l
i=1
holds for all € > 0 (Corollary 1). Here as usual in Nevanlinna theory, the
terms T'(r, f) and N(r,ai, f) denote for the characteristic function and the
truncated counting function, respectively.
(2) Application to functional equations. Let f¢ be the field of mero-

morphic functions on C. For a function ¥ : Ryo — R, put ﬁg = {a €
Re; T(r,a) < O(¥(r)) ||}, which is a subfield of &¢. Then the following
holds: Let F(z,y) € Rg [z, y] be a polynomial in two variables over ﬁg. As-
sume that the curve F(xz,y) = 0 over ﬁg has genus greater than one. If
(1, C2 € Re satisfy the functional equation F(¢1,{2) = 0, then both ¢; and (2
are contained in ﬁg (Corollary 2).

(3) Height inequality for curves over function fields. Let k be a function
field of one variable over C. Let X be a smooth projective curve over k, let
D C X be a reduced divisor, let L be an ample line bundle on X and let
e > 0. Then we have

hi i (D) (P) < NUL(D, P) + di(P) + ehy 1(P) + O:(1)
for all P € X (k)\D (Theorem 5). Here the notations are introduced in [V1],
[V3] (see also section 9).

Our proof uses Ahlfors’ theory of covering surfaces and the geometry of
the moduli space of g-pointed stable curves of genus 0.

1. INTRODUCTION

1.1. Results. One of the most interesting results in Value distribution theory is the
Defect Relation obtained by R. Nevanlinna: If f is a non-constant meromorphic
function on C, then for arbitrary collection of distinct ai,--- ,a, € P!, the following
defect relation holds

q

(1.1.1) > (6(ai, £) + 0(ai, £)) < 2.

i=1
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Here, as usual in Nevanlinna theory, the terms d(as, f), 0(a;, f) are defined by

. N(r,ai, f)
5(al,f)—lgﬂgg}f{1‘w}’

.. N(r,ai, f) — N(r,as, f)
o ) =it { Hste el
hence satisfy 0 < d(as, f), 0(as, f) < 1 (for the definitions of the terms T'(r, f),
N(r,a;, f) and N(r,a;, f), see [N2], [H] and the following subsections).

Nevanlinna asked whether inequality (1.1.1) is still true when we replace constants
a; to arbitrary collection of distinct small functions a; with respect to f (cf. [N1]).
Here we say a meromorphic function a on C is a small function with respect to f if
a satisfies the condition T'(r,a) < o(T(r, f)) ||, that is,

T(r,a) <o(T(r,f)) whenr - occandr ¢ FE

for an exceptional set £ C R with fE dloglogr < co. Nevanlinna pointed out that
the case ¢ = 3 for this question is valid, because we may reduce the problem to the
case that a1, a2, as are all constants by using Mobius transform. But for the case
q > 3, this method doesn’t work.

Later, N. Steinmetz [St] and C. Osgood [O] proved

a
> dai, f) <2
i=1
for distinct small functions a;. They used differential polynomials for f and a; (1 <
i < gq), so it may be regarded as a generalization of Nevanlinna’s original proof
of (1.1.1). Though Nevanlinna used only the first order derivative of f, Steinmetz
and Osgood used higher order derivatives of f. Hence the truncation level of the
counting function is greater than one in general. See also C. Chuang [C] and G. Frank-
G. Weissenborn [FW].
But it is hopped that the generalization of (1.1.1) for small functions is true with
the form including the term 6(as, f) (cf. [D]).
In this paper, we give a solution for this problem by the following theorem.

Theorem 1. Let Y and B be two Riemann surfaces with proper, surjective holomor-
phic maps 7y : Y — C and np : B — C. Assume that 7y factors through ©p, i.e.,
there exists a proper, surjective holomorphic map w:Y — B such that 7y =t om.
Let f be a meromorphic function onY. Let ai,--- ,aq be distinct meromorphic func-
tions on B. Assume that f # a;om fori=1,...,q. Then for all € > 0, there exists
a positive constant C'(g) > 0 such that

(1.12) (¢—2—-&)T(r, f) < Zﬁ(n ai o7, f) + Nrammy ()

+C(e) (Z T(r,ai) + Nram =5 (7‘)) +o(T(r, 1)) |l



Remarks 1.1.3. (1) The term Nyam ry () is called the ramification counting function
for my. In the case Y = C and 7y = idc, we have Niamry (r) = 0. Similarly for
Nram g (7). o

(2) We can also define the terms T'(r, f), T(r,a;) and N(r,a; o, f) for algebroid
functions f, a1,...aq by the similar way for meromorphic functions on C. See the
following subsections.

As an immediate corollary, applying the theorem to the case that ¥ = B = C,
my = wp = idc and all a; are small functions with respect to f, we have the following.

Corollary 1. Let f be a meromorphic function on C and let ay,--- ,aq be distinct
meromorphic functions on C. Assume that a; are small functions with respect to f
fori=1,...,q. Then we have the second main theorem:

(@=2=)T(r,f) <> N(r,ai, f) +o(T(r,f)) || forall >0,
=1

and the defect relation:
q

Z (5(0”«'7 f) + e(aiv .f)) <2
i=1

A special case of this corollary that f is a transcendental meromorphic function
and a; are rational functions was proved in [Y2]. The present paper is a development
of the previous one.

We shall prove two other results. The first one is a corollary of the above theorem.
This is suggested by A. Eremenko [E]. Let Ry and Kp are the fields of meromorphic
functions on Y and B, respectively. For a function ¥ : Rs¢g — R, we define the subset
ﬁﬁ of Rg by

Ry = {a € &p; T(r.a) <O@W(r)) || }.
Here, as before, the symbol || means that the inequality holds when r — co and r ¢ E
for some exceptional set £ C Rso with fE dloglogr < co. Then this R}g is a subfield
of Rp. For instance, if ¢ is a bounded function, then R}g is the field of constant
functions, i.e., ﬁﬁ =C.

Let F(x,y) € RTE [z,y] be a polynomial in two variables with coefficients in ﬁ}é.
For general z € B, we denote by F.(z,y) € C[z, y] the polynomial obtained by taking
the values at z of the meromorphic functions in the coefficients of F(x,y).
Corollary 2. Let Y, B and w be the same as Theorem 1 and let ¢ : Rso — R. Let
F(z,y) € ﬁ}g [z, y] be a polynomial such that the equation F.(z,y) = 0 defines a curve
of genus greater than one for general z € B. Assume that (1,(2 € Ry satisfy the
functional equation F((1,(2) = 0, where we consider R}g as a subfield of Ry by the
natural inclusion defined by w. Then we have

T(r,Gi) < O (P(r) + Neamny (1) + Neam = (r)) ||
fori=1,2.
If we apply this corollary to the case that Y = B = C, ny = 7w = idc and ¢

is a bounded function, then we conclude that T'(r,{;) < O(1) || for ¢« = 1,2. Hence,
both ¢; and (2 are constant functions. This is equivalent to a result of E. Picard:



A holomorphic map f: C — X, where X is a curve of genus greater than one, is a
constant map.
The next result is an algebraic analogue of the above theorem.

Theorem 2. Let ¢ > 3 be a positive integer. For all € > 0, there exists a positive
constant C(q,e) > 0 with the following property: Let Y and B be compact Riemann
surfaces with a proper, surjective holomorphic map m :Y — B. Let f be a rational
function on Y. Let ai,---,aq be distinct rational functions on B. Assume that
f#aiom foralli=1,...,q. Then we have

(1.14) (¢—2-e)degf < > Mlaiom,f,Y)+2g(Y)

1<i<q

1<i

+ C(q,e)degm < m_a<xq(deg a;) + g(B) + 1) .

Here we put 7i(a; o, f,Y) = card{z € Y; f(2) = a; on(z)} and denote by g(-)
genus of curves. Using this theorem, we can prove the Height inequality for curves over
function fields, which is a geometric analogue of a conjectural Diophantine inequality
in Number theory ([V1], [V3]). Since the formulation of this Height inequality requires
some notations, we postpone stating it until section 9 (cf. Theorem 5). A proof of
Theorem 2 is similar to that of Theorem 1. But we don’t need Nevanlinna theory
in this case. The following scheme for the proof of Theorem 1 also works for that of
Theorem 2, if we replace ” B(R)” by ” B”. We also note that the inequality (1.1.4) is
an analogue of unintegrated version of (1.1.2).

1.2. Rough outline of proof of Theorem 1. We use Ahlfors’ theory of covering surfaces
(cf. [A], [N2], [H]) and the geometry of the moduli space of g-pointed stable curves
of genus 0 (cf. [Kn]), especially properties around the degenerate locus whose point
corresponds to a degenerate, nodal curve.

We first divide P! by a non-simple curve v such that P!\ is finite disjoint union
of sufficiently small Jordan domains Dy (1 < k < K), i.e., ]P’l\'y = Ui<k<r Dy. This
division of P! gives the division of (P')? in the form of open subsets

Diy x -+ x Dy, 1<k<K for 1<i<gq.
Then this division and the holomorphic map
a=ay X Xag: B— (P!
give the division of the open set
B(R) =75' {z €C; |2| < R})
by the open subsets
F(k) = F(k1,- -+ ,kq) = B(R)yNa "(Dy, x -+ x Dg,).

Note that on each F(k), the move of a; is bounded in P!. Hence the situation
becomes closer to the case that a; are all constants. We apply Ahlfors’ theory of
covering surfaces to the subcovering f : 7! (F(k)) — P' and Jordan domains Dy,
(1 <4 < q) on P'. Then we obtain unintegrated version of (1.1.2) for each domain
F (k). By adding over all k, we get unintegrated version of (1.1.2) for B(R). Using the



Schwarz inequality, we conclude the inequality (1.1.2). This is a very rough plan of
our proof (we use the moduli space of g-pointed stable curves of genus 0 instead of the
above space (P')?). There are some problems to work out above process correctly.
The major problem comes from the degenerating points z € B where two distinct
functions a; and a; degenerate into the same value a;(z) = a;(z); the problem is how
to separate the functions a; and a; at the degenerating points z in relevant way. To
motivate the rest of this introduction, we only remark the following two points, which
are closely related.

(1) If z € F(k1,--- ,kq) is a degenerating point such that a;(z) = a;(z), then we
have Dy, = Dy;. Hence we can’t apply usual method of Ahlfors’ theory; we need
to modify it. The idea of the modification is roughly as follows. We use Ahlfors’
theory in two steps (in several steps in general). First, we apply Ahlfors’ theory to
the subcovering

font(F(k)) — P
Secondly, we apply Ahlfors’ theory to the covering

T2 1Dyt (FR) — P
a; — a;
Note that we choose the function A(w) = =% so as to separate the functions a;
j—ai

and aj, i.e., A(a;) = 0 and A(a;) = 1. Combining these two steps, we get rid of
the above degenerating point z. Hence, we can say that our idea is the systematic
use of the functions of the form A(f) to reduce the problem of degenerate cases to
that of non-degenerate cases. In this paper, we use a system of contraction maps (cf.
subsection 1.5) instead of the functions of the form A.

(2) Let & = C(as, - ,aq) be the subfield of Az generated over C by the meromor-
phic functions a1, ..., aq. In general, the transcendental degree of the field extension
£/C has high dimension, which requires us to use higher dimensional algebraic ge-
ometry. The most natural way to control the degeneration such as a;(z) = a;(z) in
relevant way is to consider the moduli space of g-pointed stable curves of genus 0,
denoted by %o,q. Roughly speaking, this space is a quotient of (Pl)q by the diagonal
action of Aut(P'). For generic z € B, the points a1(2),--- ,aq(2) € P' are distinct.
We consider these points as g-marked points of P!. Since the space Zo,q is the classi-
fication space of g-marked points of stable curves of genus 0, we have the classification
map

cly:B— ]041-

This map is a modification of the above map a. When we consider the degenerating
point z € B, then the image cl,(2) is contained in the degenerate locus 2, C .Zo.q.
And what is important is that we may consider the points a1(2), - ,aq(2) as dis-
tinct marked points of degenerate, nodal curve instead of considering as non-distinct
points of P'. Hence in this sense, we can say that the values a1(z),...,a,(z) are also
separated at the degenerating points z. This is one reason for why we employ the
space A o,q.

Next we prepare some notations and formulate Theorem 4 from which we derive
both Theorem 1 and Theorem 2. And we shall discuss farther details of the proofs of
our theorems.



Remark 1.2.1. When we consider the special case that f is a transcendental mero-
morphic function on C and a; are distinct rational functions on C, the proof becomes
simpler than that of the general case. One reason for this is that the field £ is con-
tained in the field of rational functions on C, hence the transcendental degree of the
field extension K/C is equal to or less than one. Especially, we don’t need Algebraic
geometry nor the moduli space of stable curves. This case was treated in [Y2]. In the
present paper, we freely use the language of Algebraic geometry.

1.3. Notations. In this paper, we assume that all domains on Riemann surfaces have
piecewise analytic (or empty) boundaries. We also assume that all curves on a Rie-
mann surface are piecewise analytic.

Let % be a Riemann surface. We say that F' is a finite domain of # when F' is a
compactly contained, connected domain of .% and F is bordered by a finite disjoint
union of Jordan curves. Then F' is compact if and only if .% is compact and F = .%.
We denote by F the closure of F' and by F the boundary of F.

Take a triangulation of F by a finite number of triangles, where F may be a
bordered surface. We define the characteristic p(F) of F by

—[number of interior vertices] + [number of interior edges] — [number of triangles].

Then it is well known that this definition is independent of the choice of the triangu-
lation. This characteristic is normalized such that p(disc) = —1 as usual in Ahlfors’
theory. We also put p* (F) = max{0, p(F)}.

Let  be an open subset of .%. We denote by C(Q2) the set of connected components
of Q.

Let f and a be meromorphic functions on . Assume that f # a. Put

n(a, f,Q) = card({z € @ f(z) = a(2)}).

Let M be a smooth complex algebraic variety and let w be a smooth (1,1) form
on M. Let g : % — M be a holomorphic map. We put

A(g,Q,w) = / g w.
Q
Let v be a Jordan arc on .# and let was be a Kéhler form on M. We denote by

g(g777wM)

the length of the curve g|, : v — M with respect to the associated Kéhler metric of

WM .
Let Z C M be a Zariski closed subset such that g(#) ¢ supp Z. We put

n(g, Z,Q) = Z ord; g* Z,
zeEQ

and
—_ . * 1
n(g, Z,Q) = Z min{1,ord, " Z} = card (2 Nsuppg™ " (2)).
zeQ
Let .#’ be a Riemann surface and let 7w : .’ — .% be a proper, surjective holo-
morphic map. We denote by ram 7 the ramification divisor of 7, which is a divisor



on .#'. Put
disc(m, Q) = Z ordg (ram ).

zer—1(Q)

1.4. Nevanlinna theory. Let Y be a Riemann surface with a proper, surjective holo-
morphic map 7 : Y — C. Let M be a smooth projective variety. Let g : Y — M be
a holomorphic map. Let Z C M be a Zariski closed subset such that g(Y) ¢ supp Z
and let w be a smooth (1,1)-form on M. For r > 1, we put

1 "n(g, Z,Y(t
1

— 1 [malg, Z,Y(t
N(r,g,Z)zdegW/1 (g ; ®) 4,

_ 1 [TAlgY(t),w)
T(r,g,w) = degﬂ/l ; dt

and

Neamn(r) = — / dise(m, C(t)) gy,
degm J; t

Here C(t) = {z € C; |2| < t} and Y (¢) = 7 *(C(2)).
Let E be a line bundle on M. Let ||-||1 and || - ||2 be two Hermitian metrics on E.
Let wy and w2 be the curvature forms of || - ||1 and || - ||2, respectively. Then we have

T(r,g,w1) =T(r,g,w2) + O(1) whenr — oo (cf. [NO, p.180]).
So we define T'(r, g, E) up to bounded function by
T(T, g, E) = T(h g, LU1) + 0(1)

Let f and a be meromorphic functions on Y such that f # a. Then we put

Moo f) = gor [ 0L O

We denote by wp: the Fubini-Study form on the projective line P'; i.e.,

1 v—1
= ——— ——dwAdw.
Wp1 (1+ "U_}|2)2 o w w

We define the spherical characteristic function by

1 " dt
T =T - [ & .
(7'7 f) (T7 f: w]P’l) deg - /1 t Y f Wp1

Then it is well known that this function T'(r, f) is equal to the usual characteristic
function up to bounded term in 7 (cf. Shimizu-Ahlfors theorem).



1.5. Moduli space of stable curves. Our basic references are [Kn], [Ke], [FP] and [M].

Definition 1.5.1. A g-pointed stable curve of genus 0 (or simply g-pointed stable
curve) is a connected reduced curve C of genus 0 with distinct ¢ marked points
(s1,...,8q) provided:

Each irreducible component of C' is isomorphic to the projective line P!,

C is a tree of P* with at worst ordinary double points.

s; is a smooth point of C for i =1, -+ ,q.

Each irreducible component of C has at least three special points, which are
either the marked points or the nodes where the component meets the other
components.

Let C = (C,s1,-+-,84) and C" = (C', 51, -+, sy) be two g-pointed stable curves.
We say that C and C’ are isomorphic if there exists an isomorphism 7 : C — C’ such
that 7(s;) = s; foralli =1,...,q.

‘We use the following notations.

Mo,q : the moduli space of g-pointed stable curves of genus 0 ( .#o,4 is a smooth
projective variety).
U o,q Ja Mo, : the universal curve, where %, is a smooth projective variety
and w, is a flat morphism.
o1, ,04 ¢ the universal sections of w,, where o;(#o,q) No;j(Mo,) = O for
i _ o
9, + the divisor on % o,q determined by > 7, 0i(A#0,q).
%, : afiber w, '(z) over T € Mo, q.
K@M/]qu : the line bundle on % o,4 associated to the relative dualizing sheaf
of the morphism @, : %o,y — M o.q-
Ky ¢ the line bundle Kz =z (7). (degKq4
wq ¢ a fixed Kéhler form on % ,,.
ng ¢ a fixed Kihler form on .Z 4.
Kqt the curvature form of a fixed Hermitian metric on Kj.
(¢) : theset {1,---,q}.
I =I%: theset {(1,4,k,1);1<i<j<k<l<gqg}
F =77 theset {(4,5,k);1 <i<j<k<q}
Remark 1.5.2. By definition, the family w, : %o,y — .#0,4 with the distinct g-
sections o1, ..., 04 has the following properties:
(1) For a point & € .#o,4, the g-pointed fiber Cy = (Gu,01(x), -+ ,04(x)) is a ¢-
pointed stable curve.
(2) Let C = (C, 51, ,8q) be a g-pointed stable curve. Then there exists the unique
point & € .#o,4 such that C and C, are isomorphic.
The complex structure of .# 4 is naturally defined by using a similar statement for
families of ¢-pointed stable curves. But in this paper, we only describe the complex
structure of .#o,q, which is a Zariski open subset of .#o,q (see below).

G =q—2)

Space Mo,q: Two pairs s = (s1,-- ,8¢) and s’ = (s}, -+, s;) of g-points on P are
said to be isomorphic if and only if there exists an isomorphism 7 of P! such that
s; =1(s;) for alli=1,...,q. We denote by .#; , the space of ¢-distinct points on P*



modulo isomorphism. Then .4 4 is isomorphic to

P, =P"\{0,1,00} x --- x P'\{0, 1, 00} \ [diagonals].

q—3 factors

Here note that an isomorphism of P! is determined by its action on three distinct
points. Then .# 4 gives a compactification of .#o 4 by the natural inclusion .# 4 C
]o,q because ¢-distinct points on P! naturally determine a g-pointed stable curve
whose underlying space is non-singular. Put 2 = Zo,q\///o,q, which is a divisor on
Mo, and called the degenerate locus.
Remarks 1.5.3. (1) We have 4, = {x € Ho,y; Co ~P'}.

(2) For i =1,...,q, we define the holomorphic maps p; : £, — P' as follows. For
i=1,...,q — 3, let p; be the obvious map coming from the projection to the i-th
factor. Put pg—2 =0, pq—1 =1 and p; = co. Put

Toi:idqupi:@qeﬁqle’l.

Then p; is a section of the first projection &, x P' — 2. Put %,q = wy ' (Mo,q)-
For i = 1,...,q, let o} : Mo,y — ,q be the restriction of o;. Then there exist
isomorphisms ¢ : Mo, — P, and V' : U, — P, x P' fit into the following
commutative diagram.

Yoy —L—r Py x P

(1.5.4) qu llst.proj
Mo,q T’ Py

Here ¢ oo; =p, 0t fori=1,...,q.

Dual graph Ty: Let € Mo, be a point. Then (%, 01(z), - ,04(x)) is a ¢-
pointed stable curve. Let I'; be the associated graph, that is, each element v of the
set of vertices vert(I'y) corresponds to the irreducible component C, of 4, and two
vertices v and v’ are adjacent if and only if C, and C, meet transversally at the node
v(v,v") € €. Then T, is a tree.

Classification maps cla and cl(sq): Let m: F' — F be a proper, surjective holo-
morphic map of Riemann surfaces %' and .%. Let f be a meromorphic function
on Z' and ai,...,a, be distinct meromorphic functions on .#. Then we have the
classification maps

lo — l(f.a) =
32%///0,(1, F' = U 0,q

fit into the following commutative diagram of holomorphic maps.

7z cl(s,a) Zo,
(1.5.5) ”l lwq

F s oy,
clg



These classification maps are defined by the following. Put
U={z¢€.Z; ai(z), - ,aq(z) are all distinct} C .Z.
We first define the restrictions
calv 2 U — Mog,  lifa)le-1(0y 7N U) = Y.q.
For z € U, let cla(2) € #o,q be the unique point such that two g-pointed stable curves
(P! a1(2),...,aq(2)), (), 01(cla(2)), ..., 0q(cla(2)))

are isomorphic (cf. Remark 1.5.2). Then there exists an isomorphism 7 : P! — Celu(2)
such that

(1.5.6) T (ai(2)) = 0i(cla(z)) forall i=1,...,q.
For y € 7~ 1(U), put
(1.5.7) (F) = i (¥) € Gy
Next, we define the holomorphic maps
cly: F — Mo, clifa) : F' = U,

by the unique extension of cl, [y and cl(f,a) [x-1(s), respectively.

Remark 1.5.8. In view of (1.5.4), we may write

(159 povod(s) = Ui —tale) LoD owlE) g )

for z € U and

W510)  souf ocgay = [t ) Sn

for y € 771 (U). Here s : P, x P — P! is the second projection. These equations
(1.5.9) and (1.5.10) easily follow from the fact that two pairs of (g + 1)-points on P*

(F(y),a1(2), ..., aq(2))
and
(st oclira)(y),protpocla(z),...,pg-3 09 0cla(2),0,1,00)
are isomorphic for z € U and y € 7~ (U).
Contraction map ¢q: For a = (4, j, k) € _#, we denote by o = ga,(f) the morphism
Yo :WUoq— P

uniquely characterized by the following:

® 0,00, =0,pn00;=1and py00r =00 (on .#o,),
e the restriction a|s, : €: — P! is an isomorphism for all = € .4 .

10



To obtain this ¢, observe the following. By forgetting all markings except i, j, k, we
get the following commutative diagram of holomorphic maps (cf. [M, p.93]).

’
— s —
%O,q ? %0,3

wa lm

R s R
///qu —_— //fo,g

Note that .#o3 ~ pt and %3 ~ P'. We normalize the three universal sections of
ws as 0, 1 and co. Then s’ 00; =0, s’ 0o0; =1 and s’ oo, = c0. Put p, = '

Contraction map ¢g: By forgetting the marking o4, we have the morphism 7 :
Mo,q — Moq-1. There is an isomorphism v : #o,q — % o0,q—1 fits into the following
commutative diagram of holomorphic maps (cf. [M, p.93]).

]O,q L @O,qfl
(1.5.11) qu lwq,l
zo,qfl

p— ///0,q71

For | < q, put 744 = 7410 --- 07 : Mogq — Moy Put 744 = idz, . For

B8 = (i,j,k,1) € &, we define ¢p : .#o,, — P' by the composition of the following
morphisms
w(l—l)
o _ -
.ﬂo,q —>q’l %O,Z —>Ll %0’171 (—>’]’k) ]Pl.

1.6. Outline of proofs. The proof of Theorem 2 is similar to that of Theorem 1 (ac-
tually easier). So we only consider the case of Theorem 1. We first formulate the
following.

Theorem 3. Let Y, B and w be the same as Theorem 1. Consider the following
commutative diagram of holomorphic maps.

y —9 @M

(1.6.1) dl |

B —— Mog

Assume the non-degeneracy condition that g(Y') ¢ supp P4 U wgl(supp Zy). Then
for all £ > 0, there exists a positive constant C(e) > 0 such that

(1.6.2) T(r,g,kq) < N(r,9,24) + Neamny (1) +T(r, g, wq)
+ C(e) (T'(r,b,mq) + Nram = (1)) + o(T'(r, g,wq)) |-

Remark 1.6.3. Consider the case B = C and 7 = id¢c. A consequence of the
general second fundamental conjecture is that the inequality

(164) T(T>g7 KWO,Q(QQ)) S N(T>g7 _@q)+Nrame (T)+8T(T7gawq)+O(T(r7gaWQ)) ||
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holds for all € > 0 and for all suitably non-degenerate g. Here Kz, . is the canonical

line bundle on %,4. Since we have

T(T’gv K@(qu(-@q» = T(Tvgv Hq) + T(T, b, KZO ) + 0(1)7

»q

the inequality (1.6.2) is a weak form of (1.6.4).

In Section 2, we derive Theorem 1 from Theorem 3, applying to the case that
g = cl(f,q) and b = cl,. Using the Schwarz inequality, we prove Theorem 3 from the
following Theorem 4 in the same section.
Definition 1.6.5. (1) A ¢-hol-quintet is an object (%, %, r, g,b) where # and Z are
Riemann surfaces with proper, surjective holomorphic map 7 : # — %, and ¢g and b
are holomorphic maps fit into the following commutative diagram.

g _
g — %O,q

nl lwq
A Mo

We say that a g-hol-quintet (%, 2, r, g,b) is non-degenerate if b(Z) ¢ supp 2, and
if the meromorphic functions ¢, o g on .# are non-constant for all a« € _¢.

(2) A specified g-hol-quintet is an object (F#,%,m,g,b, F, R) where (¥,%,w,g,b)
is a q-hol-quintet, R C Z is a finite domain and F = 7~ *(R). We say that a specified
g-hol-quintet is non-degenerate if the g-hol-quintet (%, %, , g, b) is non-degenerate.
Theorem 4. Let g > 3 be a positive integer. For all € > 0, there exists a positive
constant C'(q,€) > 0 with the following property: Let (#,%,m,g,b, F,R) be a non-
degenerate specified g-hol-quintet. Then we have

(1.6.6)
Alg, Fy kq) <7i(g, Zq, F') + disc(mr, R) + eA(g, F, wq)

+ C(q,e) degm (A(b, R,mq) + (b, Z3, R) + pT (R) + £(g, OF,wy)) .

The most important part of this paper is a proof of Theorem 4. The proof naturally
divides into the following three steps.

Step 1: We prove the local version of our theorem, which roughly says as follows:
For each point = € .#y,,, there exists an open neighborhood V, of x such that if
a non-degenerate specified g-hol-quintet satisfies the condition b(R) C V;, then our
theorem is valid. For the precise statement, see Lemma 6. To prove this, we use one
lemma from [Y2], which is an application of Ahlfors’ theory (cf. Lemma 3). For each
vertex v € I'y, we attach a contraction morphism ¢,y : Zo,q — P' ((v) € #). This
contraction map ¢(,) has the properties that the restriction to the component C, is
an isomorphism and that the restrictions to the other components C,/ are constant
maps. Applying Lemma 3 to v = ¢(yy0g and ¢ = ¢(,/y0g, where v and v’ are adjacent
vertices, we obtain some sort of ”difference” of usual Ahlfors’ second main theorem.
Adding these ”difference”’s over all the edges of 'y, we obtain (a modification of)
usual Ahlfors’ second main theorem. Applying Rouché’s theorem (Lemma 4), we
get the local version of our theorem. This method is similar to that of [Y2]. Major
differences are that instead of the tree constructed in [Y2, Section 8], we use the
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tree I'y, and instead of the combinatorial lemma [Y2, Lemma 4], we use a geometric
lemma (cf. Lemma 5).

Step 2: By a non-simple curve ~, we divide P' into a finite number of Jordan
domains Dy, (1 < k < K). This division of P! gives the division of (P*)” in the form
of the open subsets

(1.6.7) [ Dx. 1<ki<K
€S

Put ® =[[,c, i : Moq — (P')”. We consider the connected components of the
pull-back of the open subsets (1.6.7) by the composition of the morphisms

R i) ]O,q g (]P)l)<7

to get the finite domains R’ C R, which divide R into finite set {R'} of disjoint
finite domains. Using the facts that .4, is compact and that & is an injection (cf.
Lemma 7), we conclude that if the Jordan domains Dy, are small enough, then for all
R’ € {R'} there exists a point © € .#0 4 such that b(R') C V.

Step 3: Applying the local version of the theorem for each finite domain R’ and
adding over all these finite domains, we get our theorem. Here we need to estimate
extra error terms coming from

e the lengths £(g, 0’7 '(R'),wy), where @7~ (R’) are the parts of the bound-
aries of 77! (R’) which lie in the interior of F,

e the sum of p™(R') over R’ € {R'}.
See Lemma 8 for these estimates. Here we only remark the idea of a method of
the first estimate. Take a slightly small Jordan domain Dj, C Dy for each k. We
define finite domains R’ C R’ by the same manner for R’ from the Jordan domains
Dj,. Then using so-called length-area principle, if the areas A(g, 7 '(R"),w,) are
sufficiently large, we can find finite domains R with R C R C R’ such that the
lengths £(g,d' 7 *(R),w,) are small enough. We replace {R'} by {R}. This is the
idea of the estimate.

The paper is organized as follows. In section 2, after some algebraic preparation,
we derive Theorem 1 from Theorem 3 and Theorem 3 from Theorem 4. The proof
of Theorem 4 begins from section 3. The section 3 is a preliminary including some
lemmas from [Y2]. In this section, we also review Ahlfors’ theory, which will be used
in the proof. In section 4 and 5, we prove Lemma 6 and 8, respectively. The proof
of Theorem 4 ends at section 6. In section 7, we prove Corollary 2 from rather sharp
estimate. In section 8, we prove Theorem 2 from Theorem 4. This proof is similar
to that of Theorem 1. In section 9, we introduce some notations from [V1] and [V3],
and prove the height inequality for curves over function fields.

The author thanks Professor A. Eremenko for stimulating discussions, especially
for suggesting Corollary 2. I also thank Professors H. Fujimoto, J. Noguchi and
M. Taniguchi for many valuable comments on this paper. Finally I thank my col-
leagues A. Takahashi, S. Yasuda and K. Ueda for valuable discussions about moduli
space of stable curves.

This paper is an expanded and largely rewritten version of [Y1].
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2. DERIVATIONS OF THEOREM 1 FROM THEOREM 3
AND THEOREM 3 FROM THEOREM 4

2.1. Algebraic lemma. We denote by .Z the hyperplane section bundle on P!, which
is the unique line bundle of degree one.
Lemma 1. There exist a line bundle M on .M o,q and a divisor Z on %o, such that
wq(supp Z) C supp Z; and

(¢ — 2)90?1,2,3)3 =Kq+w,M+[2].
Here [2] is the associated line bundle for the divisor Z.

Proof. Put P = (q — 2)¢(1,23Z — Kq. For x € Mo,q, the restriction ¢(123)l¢, :
%, — P! is an isomorphism. Since deg(K,|«,) = ¢ — 2, we know that the restriction
Ply, is the trivial line bundle. Since w; ' (#0,q) — #o,q is a P'-bundle, we conclude
that there exists a line bundle Mo on .#j 4 such that the restriction P|w71(/ﬂ(J ) is

. q “0,q
isomorphic to wy Mo. Let M be an extension of My to .#o,,. Put P =P— wyM.
Then P'|W71(/”0 ) is the trivial line bundle. Hence there exists a divisor = on %4

q “70,q

such that w,(supp Z) C supp Z; and P’ = [E]. This proves our lemma. [

2.2. Theorem 3 implies Theorem 1. Let f, a1,...,aq be the functions in Theorem 1.
We apply Theorem 3 to the case g = cl(f,,) and b = cl,. The non-degeneracy condition
of Theorem 3 easily follows from the assumption that f # a;om fori =1,...,q. Then
we get

(2.2.1) T(r,clis,a), kq) < N(r,clifa)s Dg) + Nramny (1) + €T(r, cl(f,0), wq)
+ 06 (T(T, C1a7 ntI) + Nram B (T)) +o (T(r7 Cl(fﬂ%“‘])) H
for all € > 0. o
Let R be the field of meromorphic functions on B. Let W C .#o,q be the
Zariski closure of the image cl,(B) and let C(WW) be the rational function field of
W. Then cl, defines the natural injection ¢ : C(W) — £ by the pullback of the
rational functions on W. Let C(a1,---,aq) C R be the subfield generated by the

meromorphic functions a1, ..., aq. Then by the definition of cl,, we have «(C(W)) C
C(ay,- - ,aq) (cf. (1.5.9)). Hence we have

(2.2.2) T(r,cla,ng) <O | > T(r,a:)

1<i<q

Similarly, using the field Ry of meromorphic functions on Y, we have

(2.2.3) T(r,cl.a),wq) SO | T(r, f)+ > T(ryai) | (cf. (1.5.10)).

1<i<q

Claim. The following inequalities hold

(2.2.4) N(r,clpa),Zs) < Y. N(raiom f)+0 | > T(ra)],

1<i<q 1<i<q
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(2.2.5) (¢=2)T(r, f) S T(r,clay, ka) +O | D T(r,a:)

1<i<q
Proof. We first prove (2.2.4). Put
U={z € B; ai(z),...,aq(2) are all distinct}.
Then by the definition of the classification maps, we have clo(U) C Ao q. For z € U
and y € 7' (2), we have cl(;.q)(y) € Z, if and only if f(y) = a;(z) for some i € (q)
(cf. (1.5.6), (1.5.7)). Hence we have
{yeY; clirayy) € 2y C{y €Y; fly) = aiom(y) for some i € (¢)} Un (B\U).
This implies that
(cl(ra), 2, Y (r) < Y wlaiom, f,Y(r)) +degm > 7lai,ay, B(r))
1<i<q 1<i#j<q

and

N(r,clif.a), Zq) < Z N(r,a;om, f) + Z N(r,ai,a;).

1<i<gq 1<i#j<q
Since we have
N(r,a;,a;) <O E T(rya:) |,
1<i#j<q 1<i<q

we get (2.2.4).
Next we prove (2.2.5). Since wp1 is the curvature form of the Fubini-Study metric
on .Z, Lemma 1 implies the inequality

(2.2.6) (¢—2)T(r,¢,2,3) ©cligay) =T(r,cl(t,0), Kq)
+ T (r,cla, M)+ T(r,cl(1,0), [E]) + O(1).
Since for z € 71 (U), two pairs of 4-points on P*
(f(2),a1 0m(2),a2 o m(2),a3 0 w(2)), (P(1,2,3) °cl(t,q)(2),0,1,00)
are isomorphic (cf. (1.5.6), (1.5.7)), we have

f(z) —a1om(z) az ow(z) — ag o w(z)
f(z) —asom(z) azom(z) —a1om(z)’

©(1,2,3) © cl(r,0)(2) =

Hence we get

(2.2.7) T(r,pa2s 0ca) =T, )+ 0| Y. T(ra:)

1<i<q

By @y (supp E) C supp 25 and clo(B) ¢ supp 25, we have

T(r,clif.a), [E]) < O(T(r,cla, [25]) <O | D T(roas) | (cf. (2.2.2)).

1<i<q
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Hence using (2.2.6), (2.2.7) and the inequality

T(r,cle, M) <O Z T(r,a:) |,

1<i<q

we get our inequality (2.2.5) and conclude the proof of our claim. O
Using (2.2.1), (2.2.2), (2.2.3) and the above claim, we get our Theorem 1.

2.3. Theorem 4 implies Theorem 3. We shall apply Theorem 4 to the specified g-hol-
quintet A\; = (Y, B, m,g,b,Yi(r), Bi(r)) for i =1, ..., u,, where {B;(r)};7, = C(B(r))
is the set of connected components of B(r).

First, consider the case that \; are degenerate, i.e., there exists « € _# such
that ¢ 0 g = c is constant. Then the image g(Y’) is contained in the divisor E =
pil(c) C %o, Put Eo = ENw, "' (Mo,g). Then the restriction of w, on Ey gives an
isomorphism Eo — .#y,4. Since we are assuming that g(Y) ¢ w, '(25), we obtain
T(r,g,kq) < O(T(r,b,m4)). This proves Theorem 3 in the case \; are degenerate.

Next we consider the case that \; are non-degenerate. First, apply Theorem 4

to each \;, next take the summation over ¢« = 1,...,u, and finally integrate the
inequality. Then putting
r ryu Lt B;(t
L(r) = — / Ug: Y o) gy gy = L / = p (Bil) g
degmy Jy t degmp J; t
we get

(23.1) T(r,g,rq) < N(r,9, Zq) + Neamny (1) = Nram, (1) 4+ €T(7, g, wq)
+ O (T(r,b,ng) + N(r,b, Z;) + J(r) + deg wL(r))

for all ¢ > 0. Here we note that ram 7y = 7*(ram7g) + ram 7, hence we have

(2.3.2) disc(my, C(r)) = degwdisc(wp, C(r)) + disc(w, B(r))
e (v, B()
1 " disc(m, B(t
Niam = — Niam = : .
) = N, (1) = g [ 0y
Claim: The following inequalities hold
(2.3.3) J(r) < Nram =g (1),
(2.3.4) L(r) <o(T(r,g,wq)) ||

Proof of Claim. We first prove (2.3.3). By Hurwitz’s formula, we have
p(Bi(r)) = deg(ms|p,()p(C(r)) + disc(ms|5, (), C(r)).
Since p(C(r)) = —1 and p(B;(r)) > —1, we have
pt(Bi(r) < disc(mB| B, (r), C(1)).
Hence we have 3", p*(B;(r)) < disc(ng, C(r)) and (2.3.3).

i=1
Next we prove (2.3.4). In this proof, we denote the covering map 7y : ¥ — C

by p to avoid the confusion with the ratio of the circumference 7. Put g*w, =
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ngdp A dp, where G is a C*°-function on Y\{z € Y; p'(2) = 0} with G > 0.
Then we have

L(r) = L(g,0Y (1), wq) = / Gr dargp
oY (r)

and
A(r) == A(g,Y (r),wq) :/ dt/ G°t dargp.
0 aY (¢)

Put e = degp. Using the Schwarz inequality, for 7 > 1 we have

eL(r):/ Z(t)@ :/ / Gt dargp@
1 t 1 Joav e t

1 1

r 3 . 3
< // da]rgpﬂ // G*t? dargpﬂ
1 Joav(t) i 1 JoY(¢) t

= (2melogr)? (A(r) — A(1))2

[V

1 d
< 2 3 —
(27 re 10g7)2 ( T(’I )) 5

where we put T'(r) = T'(r,g,wq). Take ro > 1 such that T'(ro) > 1. Let E be the
subset of [rg, 00) such that

L(r) > T(r)? log T(r).

1 1)
dloglogr = dr < 2w - dr
E g rlogr 5 L(r)?

o0 L7(r) _2r
s / T(r) (g T2 " ~ log T(ro)

Then we have

Hence outside the set E such that fE dloglogr < oo, we have
L(r) < T(r)% log T(r) = o(T(r)),

which proves our claim. [
Since we have

N(r,b, 23) < O (T(r,b,m4)) ,

the equation (2.3.1) and the above claim imply Theorem 3.

3. PRELIMINARY FOR THE PROOF OF THEOREM 4

Proofs of lemmas in this section can be found in [Y2].
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3.1. Topology. Let .# be a Riemann surface. Let Q and G be two open subsets in
F. We define two subsets Z(G,Q2), P(G,Q) of the set of connected components of
G N Q by the following manner. Let G’ be a connected component of G N (2, then G’
is contained in Z(G, Q) if and only if G’ is compactly contained in Q, otherwise G’ is
contained in P(G, ). Then a connected component G’ in Z(G, Q) is also a connected
component of G.

Let ¢ be a non-constant meromorphic function on Q C %, where Q is a domain
of Z. Let E be a domain in P*. We consider the following condition for ¢ : Q — P!
and F;

(3.1.1) Let a € Q be a branch point of ¢. Then ((a) & OF.
Lemma 2 ([Y2, Lemma 1]). Assume that a finite number of disjoint simple closed
curves v; (i =1,---p) divide P! into connected domains D1, - - - ,Dpt1. Let ¢ be a

non-constant meromorphic function on Q, where Q is a finite domain of a Riemann
surface F. Assume that the condition (3.1.1) is satisfied for ¢ and D; (1 <i<p+1).
Put A= T(¢H (D), Q), B= UM P(CTH(D:), Q). Then we have

P =D p(A)+ ) p(B).
AcA BeB

3.2. Review of Ahlfors’ theory. Recall that we denote by wp1 the Fubini-Study form
on the projective line P'. Let Qo be a finite domain of P*. Let . be a Riemann
surface, let Q C . be a finite domain and let ¢ be a non-constant meromorphic
function on Q. Assume that ¢(Q2) C Qo. Then we may consider ¢ : @ — Qg as a
covering surface in the sense of [N2, p.323].

We call ¢71(Q0) N the relative boundary and £(¢, ¢ (Q0) NONQ, wp1) the length
of the relative boundary.

Let D C Qo be a domain which is bounded by a finite number of Jordan curves.
We call
_ ARG CTHD) N wp)

Jp wer

the mean sheet number of { over D. We call So, the mean sheet number of (. In
the following two theorems, we denote by S and L the mean sheet number and the
length of the relative boundary of the covering ¢ : Q — Qo, respectively.

Covering Theorem 1. ([N2, p.328]) There exists a positive constant h = h(2q) > 0
which is independent of D, € and ¢ such that

Sp

L.

(3.2.1) 1S = Sp| < "
fD wWp1

Consider ¢ as the covering map of the closed surfaces ¢ : Q@ — Qo. Put
_ 06, ¢H(9%), w )
length of 9Q with respect to the Fubini-Study metric"

Covering Theorem 2°. ([N2, p.331, Remark]) Assume that 9 consists of ana-
lytic Jordan curves. Then there exists a positive constant h = h(€o) > 0 which is
independent of Q and ¢ such that

(3.2.2) 1S — S(0)| < hL.

S(690)

18



Note that an analytic Jordan curve is regular in the sense of [N2, p.326] (cf. [H,
Lemma 5.1]). The Main Theorem ([N2, p.332]) of Ahlfors’ theory was used to prove
the following.

Lemma 3 ([Y2, Lemma 2]). Let ET be a Jordan domain in P' or P! itself. Let
E1,..., By, Eo be Jordan domains in P*. Assume that the closures E; of E;’s (j =
1,---,p,00) are mutually disjoint. Then there is a positive constant h > 0 which only
depends on En,--- , Ep, Es with the following property: Let Q0 be a finite domain of
a Riemann surface F and v, ¢ be two non-constant meromorphic functions on Q.
Assume that

(3.2.3) ¢ (ufl(Pl\ET) N ﬁ) C Fu
and that ¢ and Ej satisfy the condition (3.1.1) for j=1,--- ,p, 0.

Put
¢'=1(w Y(E"),Q), ¢" =P '(E"),Q),

G =T(¢ ' (E),Q), G =P(C(E;),Q) forj =1, ,p,
and Gt = T(CH(Ex), QN v~ (EY)). Then we have the following inequality.

(3:24) () + D p@+ D pHE) =D D p(6)

Geg! GegP j=1 Gegjf.

=D @) = Y (@)= (p— DA Qwpr) — hUC, 00, wp),

i=1 Geg? Gegl,

where 9(¢,v) is the number of connected components G in G' such that ((G) C Eeo.

Remarks 3.2.5. (1) Since we have f]pl wpt = 1, the term A((, 2, wp1) is equal to the
mean sheet number of the covering ¢ : Q — P'. Also, since P! is compact, the term
£(¢, 09, wp1) is equal to the length of the relative boundary of the covering (.

(2) Consider the case Ef = P'. Then the condition (3.2.3) is satisfied automati-
cally. If Q is non-compact, then G' = @ and G = {Q}, hence ¥(¢,v) = 0. On the
other hand, if Q is compact, then G = {2} and GT = . Since ¢ is non-constant, we
have {(Q) ¢ Eo and ¥({,v) = 0. Hence we have ¥(¢,v) = 0, in both cases. Since we
have p(Q) < p™ (), we get

(326) Pt =D > @ => > pHG@) - Y pG)

i=tgegl i=1cegl Gegl,

> (p - 1)A(<7 Q7W]P’1) - h£(<7 ang]?l)'

Here we can write GL, as I({fl(Eoo), Q).

3.3. Rouché’s theorem. We denote by dist(x,y) the distance of z,y € P! with respect
to the Fubini-Study metric on P*.
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Lemma 4 ([Y2, Lemma 3]). Let E C P* be a Jordan domain and let b be a point in
E. Then there is a positive constant C = C(E,b) > 0 with the following property: Let
Q be a finite domain in a Riemann surface F and let { be a meromorphic function
on F such that ((Q) = E and ((0) = OE. Then for a meromorphic function o on
F such that dist(a(2),b) < C for z € Q, there exists a point z € Q with ((2) = a(z).

4. LOCAL VALUE DISTRIBUTION

4.1. Notations. In this section, we work around a neighborhood of a point = € ]o,q.
This point = will be fixed in this section. We denote by edge(T';) the set of edges of
Iy, ie.,

edge(T'z) = {{v,v'}; v and v are adjacent vertices of I';. }.
Then edge(T';) is an empty set if and only if + € 4,4 Let v and v’ be distinct
vertices of I'y. A path joining two vertices v and v’ is a sequence of disjoint vertices

/
UV ="70,V1, " ,Ur =V,

where v;_1 and v; are adjacent for ¢ = 1,...,r. Since I'; is a tree, for every distinct
vertices v and v’, there exists the unique path which join v and v’.

4.1.1. Take a vertex v € vert(I'z). Recall that C, is the irreducible component of
% corresponding to v € vert(I';). Put

P ={i € (q); oi(z) € Cp} (?marked points” is abbreviated to m),

P} = {v' € vert(I'y); v’ is adjacent with v} ("nodes” is abbreviated to n).

Note that we have Uyevert(r,)Po’ = (¢) and P)" N P} = 0 for v # v' because marked
points are smooth points of 4. Hence for each i € (g), there exists the unique vertex
v € vert(I'y) such that o;(z) € Cy. Put P = (¢) [[ vert(I'z), P, = P" [[ Py € P and
d, = card P,,.

4.1.2. Define ¢ : P, — C, by the following rule. If 7 € P.*, then ¢(7) = o,(z); on
the other hand, if 7 € P}, then ¢(7) = C, N C;. Then ¢ is an injection, and the
image ¢(P,) is the set of the special points of C,, which are either marked points or
nodes. Hence P, can be identified with the special points of C by ¢, so d, > 3 (cf.
Definition 1.5.1).

4.1.3. Definition of @,y. For v € vert(I'y), there exists (v) € ¢ with the following
property: The restriction ¢y|c, : Co — P! is an isomorphism and the restrictions
@wle,, : Cor — P! are constant maps for all v’ € vert(I'z)\{v}. To see this, observe
the following. When ¢ = 3, our assertion is trivial because %0,3 ~ pt and 70,3 ~ PL.
Hence in the following, we consider the case ¢ > 4. By forgetting a marking o
(4 € (¢)), we have the following commutative diagram of holomorphic maps.

e

_ A
Uo,g ——— Yo,q-1

wa _lwq_l

J— cj
//o,q I //fo,qfl
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Here ¢jj o 0; = o} oc¢; for i € (g)\{j}, where o} are the universal sections of w1
which are assumed to be labeled by the set (¢)\{j}. Let

¢ = Cjle, 1 Go — Goym) = wya(c5(2))
be the restriction on the fiber %,. Put
Q = {v' € vert(T.); Glo,, : Cor — P' is not constant}

and let C' = U, ¢qC, be the curve obtained by collapsing the components C,s for
v' € Q. Then we know (cf. [Ke, p.547]) that

(4.1.1) Q = {v' € vert(T'z); card (P, N (P\{j})) >3}
and that
(4.1.2) the induced map C' — 6, (») from ¢; is an isomorphism.

Now we may take j € (¢g) such that the number of special points on C, other than
oj(x) is at least three. (If there exists j° € (q) with o;/(z) ¢ Cy, then put j = j'.
Otherwise, take arbitrary j € (q), where note that ¢ > 4.) Then by (4.1.1), we have
v € Q. Hence by (4.1.2), the restriction ¢j|c, : Co — %, (x) is an injection. Taking
such j inductively, we may take a € _# such that the restriction o : Cy — P! is
an injection, hence an isomorphism. Here note that ¢, is the map which forgets all
the markings except those elements of a. Using (4.1.2) inductively, we conclude that
@alc,, are constant maps for all v* € vert(I'z)\{v}. Put (v) = a, which will be fixed
for each v € vert(I'y).

4.14. Forwv € vert(I'z) and 7 € Py, put wy(7) = @y o5(7) € P'. Then w, : P, — P*
is an injection.

4.1.5. Definitions of 7, and t,. For v € vert(I';), we define the map 7, : (¢) — P, by
the following rule. Take i € (q). If i € P, then put 7,(i) =i € P,. Otherwise, take
the vertex v" € vert(I';)\{v} with i € P/} and the unique path

UV = Vo, V1, ,Vr :vl
joining v and v’. Put %,(i) = v1 € P,. Then we have
(4.1.3) Wy (T4 (1)) = @y 0 oi(x) for all i € (¢) and v € vert(I'y).

There exists a section ¢y, : P, — (q) of 7 : (¢) — P,. This t, is defined by the
following rule. For i € P, put ¢,(i) = i € (g). For a vertex v’ € P, take a maximal
path

(4.1.4) v, v, v1, -, Op

starting from the edge {v,v'}, i.e., there exists no path extending (4.1.4). Then we
have card P;}. = 1 (otherwise we can extend the path). By d., > 3, there exists
i € PJ”. Put ,(v') = i. Then this ¢, is a section of 7, which will be fixed for each
v € vert(I'y).

If v and v’ are adjacent vertices of I',,, we have
(4.1.5) #or(Lo(v")) # v (as elements of P,/),

which easily follows from the geometric meaning of the above objects.
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4.1.6. For v € vert(I'y) and 7 € Py, put Bu,r = @) 0 0y (r) : Mo,q — P'. Then
we have B,,-(z) = wy(T) € P, which follows from (4.1.3) and the fact that ¢, is a
section of 7.

4.2. Geometric lemma. Recall that .Z is the hyper-plane section bundle on P*.
Lemma 5. There exists a Zariski open neighborhood U, C Mo, of © such that

(4.2.1) > (do —2)¢ L =Kq onwy (Uy).

vevert(I'y)

Proof. Put M = i, (do — 2)90, L — Kq. For y € Mo, let My, be the
restriction of M on %,. Note that C, are isomorphic to P! for all v € vert(I';) and
that the degrees of the restrictions K¢|c, and ((dv — 2)¢7,,L)|c, are both equal
to dy — 2 (cf. [M, p.202]). Hence M,|c, are the trivial line bundles on C, for all
v € vert(I'y). Hence M, is the trivial line bundle on %, , which follows from the fact
that I'; is a tree.

Since wq is a flat morphism, by the theorem of semi-continuity [Ha|, there exists
a non-empty affine open neighborhood U, of x such that

(4.2.2) dim H°(€,, M,) <1, dim H(%,, M, ") <1

for all y € U,. Put

Z ={y € Uy,; dimH’(%,, M,) = 1}.
Again by the theorem of semi-continuity, we know that Z is a Zariski closed subset
of U,. Take a point y from U,\ %2, which is a non-empty Zariski open subset of U,.
Then %, is isomorphic to P!, hence the condition (4.2.2) implies that M, is the trivial
line bundle on €. Hence U,\Z; C Z. This implies that Z = U,.

Now by the theorem of Grauert [Ha], we have a section s € H°(w, ' (Us), M) such
that the restriction s|, is equal to the section 1 of the trivial line bundle M,, where
we note that U, is affine. Let D be the divisor on w;l(Uz) defined by s = 0. Since
W, is a projective morphism, wy(supp D) is a Zariski closed subset of U, which does
not contain z. Hence by replacing U, by U, \wq(supp D), we may assume that s is a
nowhere vanishing section on w;l(Uz). This implies that the restriction M|_

-1
q (Ux)
is the trivial line bundle, which proves our lemma. [

4.3. Local version of the theorem.

Lemma 6. Let A be a countable set of non-degenerate g-hol-quintets. Then for all
x € Mo,q, there exist an open neighborhood Vy = Vz(A) of © and a positive constant
he = hz(A) > 0 with the following property: Let (#,%,m,g,b) € A be a g-hol-quintet
contained in A. Let R C Z be a finite domain such that b(R) C V. Put F = n~*(R).
Then we have the following inequality

A(g, F, kq) <T(9,%q, F) + disc(m, R) + deg mp" (R)
+ hol(g,0F, wq) + hy degm 1(b, 25, R).

Proof. For (#,%,m,g,b) € A and o € ¢Z, put

(4.3.1)

Ja = Pa 0y,
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which is a non-constant meromorphic function on #. For v € vert(I'y) and 7 € P,
since we have wy () # wy(7') for 7 # 7', we may take a Jordan domain E¥ C P!
such that

e wy(7) € E7,

e EYNEY, =0 for T #17,

e go: F — P and E? satisfy the condition (3.1.1) for all v € vert(T'y), 7 € P,
o€ ¢ and (F,%2,7,9,b) € A, ie, if a € .F is a branch point of g, for some
(#,%,m,9,b) € A and a € _#, then go(a) &€ OFE7 for all v € vert(I'y) and
T € P,.

Here in the third condition, we note that the ramification points of the coverings

{ga : F — Pl}aE/,(,?,%’,fr,g,b)EA

are countable, because A is countable.
For each {v,v'} € edge(I's), put

D= o (BNED) Nk (BB,

which is a compact subset of %¢,q. Then we have w, ' (z) N D = (. Hence the image
g (b) C Mo,q is a compact subset which does not contain the point x. Hence, we
conclude that there exists an open neighborhood V,, . of x such that wq_l(Vv,U/)ﬂD =
@, that is,

(4.3.2) Py (P, (PNEY ) Ny ' (Vior)) C B

Let V, C ]mq be an open neighborhood of x such that

o V, C U, (cf. Lemma 5),
o V. CV,, forall {v,0'} € edge(I'),
dist(wy (7), Bo,r (y)) < C(EY, wy(7)) for all y € V,, v € vert(l'y) and 7 € P,
(the constant C is defined in Lemma 4), where we note that 3, - (x) = wy(7),
@y 00i(Ve) C EZ () for all v € vert(I';) and i € (g), where we note that
Py 0 0i(x) = wo(Tu(i)) € EZ (5 (cf. (4.1.3)).

We denote by v, the unique vertex of I'; such that o1(x) € Cy,. For each vertex
v € vert I'z\{v,}, take the unique path joining v, and v

Vo = V0,V1, ", Ur—1,VUr = V.

We denote this vertex v.—1 by v~ which is uniquely determined from the vertex v.
Take A = (%, %,7,g,b) € A and a finite domain R C Z such that b(R) C V. Put
F = 7"(R). For a vertex v € vert(T;) and 7 € P,, put

Gu.r =T(90) (B, F), - Gorr = Pla) (B7), F).
For the vertex v,, we apply Lemma 3 (cf. (3.2.6)) to the case that
y:y, Q:HEC(F), C:U:g(vo)h‘h

E' =P, {E;}jm1,...0 = {E }orern U{E"Yicpp 1), Boo = BY°.
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Adding over all H € C(F) and using the fact ZieP’”\{l} YcegP ot (@) >0, we

obtain the following: There exists a positive constant h,, > 0 which does not depend
on the choices of A € A and R such that

Bw): Y. p'(H)

HeC(F)

D N DG R DR ()} I D (6

veP? \Gegl Gegh i€P gegl

Vo,V Vo,V Vo,

> (dvy = 2)A(G(vyy, Frwpr) — ho, (g (v, OF, wpr).
For a vertex v € vert I';\{v,}, we put
s 3 3 _
Gy = I(g (E,-), F gt (B ).
By (4.3.2), we may apply Lemma 3 to the case that
gz:ya Q=H GC(F)> C:g(v)lH7 v :g<v*)‘H7 ET = E:)]7>

{Ej}j:I ,,,,, p = {E’Z’}U’GP{}\{U*} U {Ezy}iGPl"? Fe = E;}*-
Adding over all H € C(F) and using the fact Y_,c pm Y gegr £ (G) > 0, we obtain

the following: There exists a positive constant h, > 0 which does not depend on the
choices of A € A and R such that

IE(v): Z V(Geoy s Go—y o) + Z p(G) + Z PH(G)

HeC(F) Gegfﬁ . Gegqi

,v

- > SNoop@+ D @ =D D p@ - p(G)

vepPp\{v=} \ Geg! Gegh i€PP gegl | Gegl
> (dv — 2)A(gvy, Fwpr) — hol(g(vy, OF, wp1).

Now, using the inequality IE(v,) for the vertex v, and the inequalities IE(v) for
vertices v # v,, we add the inequalities IE(v) over all v € vert(I';). Then we obtain

(“33) Y - Y Y Y w6)

HeC(F) vevert(I'y) i€ P Gegi i
+ > > gl gw-ylm) = Y p(G)
vevert(I'y)\{vo} \HEC(F) Gegl
> 37 (dv— 2)Algqy, Fwp) — B'b(g, OF, w,).
vevert Iy

Here we note the following two facts:
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e There exists a positive constant A’ > 0 which does not depend on the choices
of A € A and R such that

Z hvé(gh})a 6F, wﬂ”l) S hlé(ga aFa WQ)'

vevert(Ty)

e For a vertex v # v,, the term

Yo op@+ D> TG

Geg!_ GegP_
vT,v v LU

appears in the left hand side of IE(v), while the term

- > p@) - > pH©)

Geg!_ GegP_
v v=

appears in the left hand side of IE(v™) because v € P and v # (v7)~.
Hence these terms are canceled when we add inequalities over all v € vert(I'y).

Claim. The following inequalities hold

(434) Z ﬁ(g(v)leg(v*)'H) - Z p(G) < QngWﬁ(bvﬁlaRL
HeC(F) Gegl
(4.3.5) - > > > p(G) <7lg, Py, F) + qdeg m(h, 2y, R),
vevert(I'z) i€P]" Gegl |
(4.3.6) > pT(H) < disc(w, R) + deg mp™ (R).
HEC(F)

Proof of (4.3.4). For H € C(F) and for {v,v'} € edge(T'y), let ¥’ (v',v, H) denote
the number of connected components G in I(g<_v1> (E,,), H) such that g, (G) C EY.
Then we have

0 (v,v7, H) = 0(ge) |, 90 1)
Note that
— Z p(G) < card Gl < Z ¥ (v, v, H).

Gegl HEC(F)

Hence to prove (4.3.4), it suffices to prove

(4.3.7) > (v, H) < degnn(b, 25, R)
HeC(F)

for {v,v'} € edge(l'y). Take G € I(g(v% (E)), H) such that g,/ (G) C E?'. Then by
the definition of V., we may apply Lemma 4 to the case that

‘g = H’ E= E’l’l))’v Q= G7 C :g<u)(: @(v) 09)7 a = ﬁv,v’ obom.
We conclude that there exists z € G such that

(438) P(v) o g(Z) = P(v) © Ty (v') obo 7'1'(2) (nOte that ﬁv,v’ = P(v) o UL1,(U/))‘
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We shall prove b o 7(z) € supp 25 by a contradiction. Suppose b o m(z) & supp Z5.
Then (4.3.8) implies

(439) @(v’) ¢} g(z) = @(1/) o Ty (v) obo 7T(Z),

which follows from the fact that the restrictions ¢,

%, and @ |z, give isomor-

phisms €, — P' for y € .#0,,\%;. By the assumption g.,,(G) C EY, we have
(4.3.10) 0w og(z) € BY.

On the other hand, we have

(4.3.11) Py 00wy 0bom(z) & EY .

To see this, we note that ¢y 0 0, (v (@) = Wy (Fur (Lo (V")) (cf. (4.1.3)). By the
definition of V., we have ¢,/ 00, vy (y) € E;’L,(LUW», hence @1y 00,, (v (y) & EY
ony € Vg (cf. (4.1.5)). Since bom(z) € V,, we get (4.3.11). These (4.3.9), (4.3.10)
and (4.3.11) give a contradiction. Hence we have b o m(z) € supp 2. This proves
(4.3.7) and (4.3.4). O

Proof of (4.3.5). We have —p(G) < 1 for G € G} ;, hence

- Z Z Z p(G) < Z Z card G ;.

vevert(Iy) i€P™ GEQ{) i vevert(I'y) i€P*

For G € gii, by the definition of V,, we may apply Lemma 4 to the case that
E=E], Q=G, (=909, a=guyoo;obom
to conclude that there exists z € G such that
V) 0 9g(2) = Py ooiobom(z).

This implies that either g(z) = 0; 0bom(z) or bow(z) € supp Z; is valid. (Note that
©(v)|%, is an isomorphism for y € .#0,,\Z;.) Hence for i = P;", we have

card G, ; < (g, Zq.i, F) + deg (b, 23, R),
where we put 9@y = 0i(Mo,q) C %o.,q. Since Dy = Yoicicqg Pasis Pai N Dg,ir = 0 for
i #17, Upevert(ry) P = (g) and P)" N P} = for v # v, we obtain

Z Z card giyi <n(g, %, F) + qdeg (b, 23, R).

vevert(Ly) i€P™

This proves (4.3.5). O
Proof of (4.3.6). For H € C(F'), the restriction 7|z : H — R is a proper map.
Hence, by Hurwitz’s formula, we have

p(H) = (deg 7lu)p(R) + disc(r|, R).
We also have p(R) < p(H). Hence we get
p*(H) < (degm|m)p" (R) + disc(r|u, R)
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and
o pTH)<pt(R) Y degmlm+ Y disc(n|u, R)
HeC(F) HeC(F) HEC(F)
= pT(R)deg 7 + disc(m, R).
This proves (4.3.6) and conclude our proof of claim. O
Now note that the Fubini-Study form wp: is the curvature form of the Fubini-Study

metric on the hyper-plane section bundle .. Hence by Lemma 5, the restriction of
the (1,1)-form

Z (dv - 2)‘»0’(‘1;)50[?1 — Kgq

vevert(I'y)
on w, '(U;) is a curvature form of the trivial line bundle. Hence, there exists a
C*°-function ¢ on w, ' (U,) such that
> (dv = 2pluywer — kg =ddY  on @, (Us).
vevert(Iy)

Note that there exists a positive constant h” > 0 which does not depend on the
choices of A € A and R such that

|A(g, F, dd°)| = ' /F g*ddcw‘ -

/ g*dw‘ < h"0(g, OF ,wy),
OF

because the image g(F) is contained in the compact set w, ' (V;). Hence we get

(4.3.12) D (de —2)A(gp), Fywpr) > A(g, F, kq) — h"0(g, 0F, wg).

vevert 'y
Put h; = max{h’ + h”,2card(vert(I'y)) + ¢ — 2}, which is a positive constant inde-
pendent of the choices of A € A and R. Using (4.3.3), (4.3.4), (4.3.5), (4.3.6) and
(4.3.12), we get Lemma 6. [

5. LEMMAS FOR DIVISION AND SUMMATION

5.1. Algebraic lemma. Put ® =[], , b: s Mo,y — (P,
Lemma 7. ® gives an injection.

Proof. We prove by induction on q.
For ¢ = 3, our lemma is trivial because ]0,3 ~ pt.
Suppose our lemma is valid for all ¢’ with ¢’ < ¢, where ¢ > 3. We shall prove
our lemma for ¢ + 1. Our lemma is equivalent to saying that for distinct points
x,y € Mogr1, there exists i € £ such that ¢i(z) # ¢i(y). In the case that
To+1(z) and 7441 (y) are distinct points in .#¢ 4, our lemma follows from the induction
hypothesis. Here 741 : A 0,q+1 — M 0,4 is the morphism obtained by forgetting the
marking og41.

On the other case, put z = 74+1(x). Using the isomorphism tg41 : Ao q41 — Y 0.4,
the fiber 7', (2) is isomorphic to % (cf. (1.5.11)).

We first consider the case that tq+1(x) is a smooth point of €,. Let v € vert(T')
be the unique vertex such that tq41(z) € Cy. Then since ¢,)|c, : Co — P! is an
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@0y (tq+1(y)) as desired. (By definition, we may take i € #9" with ¢; = @y 0tg41.

Next we consider the case that tq41(z) is not a smooth point of %,. Then tq11(z
is a node. And there are adjacent vertices v and v’ such that tg+1(z) = C, N C,y.
If 9oy (tq+1()) # ) (tg+1(y)), the proof is done. If ) (tg+1()) = oy (ta+1(y)),
then we can easily see that ¢,y (Lq+1(2)) # ©(ory (Ler1(y )), which proves our lemma
for ¢ + 1. O

isomorphism and ¢,y|c,, is constant for v* € vert(I'z)\{v}, we have @,y (tg+1(x)) #
)
)

5.2. Estimates for summation. Let X = (%#,%,7,q,b, F,R) be a specified g-hol-
quintet. For i € ., put

bi=¢iob: Z— P
and
S\ = {i € #;b; is non-constant}.
Definition 5.2.1. We call .#, the type of the specified g-hol-quintet A.

Let 4 C .79 be a subset. Let ® = {Di};cs be an -tuple of Jordan domains
D; C P'. Let ® = {D;j},_ ; be another such tuple. We say that ' is compactly
contained in ® if all D} are compactly contained in D;. We also write ®’' C D if
D, C D;foralliec.#. Let\= (F#,2,7,4g,b, F, R) be a specified q-hol-quintet of
type .#. We consider the following condition for {bi};c and {Di},. »

(5.2.2) bilg : R — P" and D; satisfy the condition (3.1.1) for all i € 7.
Put Ro = RN (N, by "(Ds)) and Fo =7 " (Ro).

Lemma 8. (1) Let 5 C 99 be a subset. Suppose D' = {Di},c.s is compactly
contained in ® = {Di},. 7. Then for all ¢ > 0, there exists a positive constant

w1 = pa(e, 7,9, D') with the following property: Let (¥#,%,7,g,b, F, R) be a specified
g-hol-quintet of type & such that the inequality

(523) A(ga FD’7wq) > prdegm (A(b7 R, Uq) + Z(g7 oF, WQ))

holds. Then there exists an .7 -tuple of Jordan domains D" = {Di'},c s such that
D' C D" CD and that the following inequality holds

Z(gaaFﬁ”v('UQ) S EA(gv FQ”qu) + 8(978}7" WQ)'

Moreover, we may take D" such that (b:),. ; and D" satisfy the condition (5.2.2).
(2) Let .7, ®' and D be the same as (1). Then there exists a positive constant

p2 = p2(,0,9") > 0 with the following property: Let (#,2,7,9,b, F,R) be a

specified g-hol-quintet of type . Let ®" be an I - tuple of Jordan domains such that

(5.2.4) D' CcD'CD.
Suppose that (bi),c ; and D" satisfy the condition (5.2.2). Then we have

> pH(G) < pT(R) + p2 (A(b, R,mq) + (g, 0F, wy)) -
GEC(RB//)
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Proof of (1). For each i € .#, we fix a biholomorphic identification x; : D; = A.
Put Di(r) = x; '(A(r)) for 0 < r < 1. Here we put A(r) = {z € C; |2| < r} and
A = A(1). Let ro < 1 be a constant such that D] C D;(ro) for all i € .#.

By replacing D; by D;(s) and A by A(s) for ro < s < 1, we may assume that x;
gives a biholomorphic map between neighborhoods of D; and A. In particular, we
may assume that dD; is analytic for all i € .&.

Let A = (#,%,m,g,b, F, R) be a specified g-hol-quintet of type .#. For i € .#, put

& :bi0ﬂ|fzf—>]P’1,

F'=¢ ' (D)NF

and

Gi = Xi 0 il - Y = A
For 0 < r <1, put

2 (r) = € (@Di(r)) N F.
Let wg be the Euclidean form on A C C, which is a Kéhler form. Put S; =
A&, Fywp1) and L; = £(&;,0F,wp1), which are the mean sheet number and the
length of the relative boundary of & : F — P!, respectively.

Claim 1: There exists a positive constant Q; which does not depend on the choice
of A such that

(5.2.5) UGy yi(r),wr) < Q1(Si + Li) for i€, relro,l].

Proof of Claim 1. In this proof, we denote by Q any positive constant which is
independent of i € ., 7 € [ro, 1] and the choice of A.
For 0 <7 <1, put Fi(r) = & ' (Di(r)) N F and

§i(r) = &ilmigy Fi(r) — Di(r).

Define the map ¢, : D;(r) — D; by

Di(r)sz—x; " <Xl—(z)> €D;.
r
Let S;,» be the mean sheet number and L;, be the length of the relative boundary
of the covering &;(r) : Fi(r) — D;(r). Let S;, be the mean sheet number and L; .

be the length of the relative boundary of the covering 1, o &(r) : Fi(r) — D;. Since
we have

1 * * . 7
(5.2.6) é’lﬁr (w]pl ID_L) < Wwp1 |m < Q. (W]pl |D_1) for i€ 4, re [7"0, 1],

we have
(5.2.7) (& (r),vi(r),wp1) < QU(Yr 0 &i(T),vi(r),wpr) for i€ j, r € [ro, 1].

Here we note that v;(r) C OF(r). Since v, o &(r)(v:(r)) C dD;, using Covering
theorem 2’ (cf. (3.2.2)), we get

(5.2.8) Ly 0 &i(r),vi(r),wp1) < Q(Si, + Li,) for i€ I, 1€ [ro,1].
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Here we note that 0D; is analytic for i € 5 by the assumption made in the beginning
of the proof of this lemma. By (5.2.6), we have

S;,r S QSi,T7 L’Ii,T S QL'L,T fOI‘ 1 € ja T e [T07 1}7

hence combining with (5.2.7) and (5.2.8), we have
0&i(r),7i(r),wp) < Q(Sir + Liyy) for i€ .7, r€ [ro,1].
Since we have xjwr < Qupi|5- and x; 0 &i(r) = Q|Fi7(r), we have
£(Gi,yi(r),wr) < QU&(r),Yi(r), wpr),
hence
(i, vi(r),wr) < OQ(Sir + Liyy) for i€ .7, r€[ro,1].

We have S;,» < Q(S; + L;) for ro < r <1 by Covering theorem 1 (cf. (3.2.1)). Using
Li, < L;, we obtain

0(Ciyvi(r),wr) < Q(S; + L;) for i€ I, re [ro, 1].

This proves our claim. [J
We take a positive constant Q2 which does not depend on the choice of A and
satisfies the following estimates

(5.2.9) > Si=degm Y A(bi, R,wp1) < Qz degmA(b, R, ny),
icd =4
and
(5.2.10) S L= U(&, 0F,wpr) < Qal(g, OF,wg) < Qs degml(g, OF, wy).
icd iesd

(We note the trivial estimate 1 < deg.)
Take a positive constant € > 0 and put

2Q: Q2
e2(1—ro)’
which is a positive constant independent of the choice of A.
To state the second claim, we introduce some notations. We shall also denote the
restriction (;|pg by (;. Take a subset I C .# with the following properties:

e If i € I and Z;/ € I are distinct, then |¢;| # |¢i/| on Fs.
e For all i € .# there exists ¢’ € I such that |(;| = [(i/| on Fo.
For i € I and r € [0, 1], put
Qi ={z € Fo; |Gi(2)| > |¢(2)| forall i' € I\{i}},
Qi(r) ={z € U; |G(2)| <r},
3r) = T N ir)

p1 =

and
gl(r) :E(gv’%("n)v"'@)v AZ(T) :A(gvﬂi(r)va)'
For r € [0, 1], put
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and

Ur) =Y ti(r), A(r) = Ag, Fo(r),wa)-

il
Then by the above definitions, we have
(5.2.11) A(r) =" Ai(r), €(g,0Fs(r),wq) < (g, 0F,wy) + £(r).
iel
Define the subset E(e) C [ro,1] by
r € E(e) <= L(r) > eA(r).

Claim 2: Suppose that the inequality (5.2.3) holds for A\. Then the set [ro, 1]\ E(e)
is not a null set.
Proof of Claim 2. For i € I, put

* V_l 7N
9" (wa)lg; = —5—GidGi A dGi,

where G is a C* function on Q;\{z € Q;;¢/(z) = 0} with G; > 0. Then for r € (0, 1],
we have

Li(r) = VGirdarg ¢

Fi(r)

and

AZ(T) = / Gltd arg Cl dt.
0 Fi(t)

Using (5.2.5), (5.2.11) and the Schwarz inequality, we have

or)* = (Z mm)

iel

2
= (Z VGirdarg Q)
iel i)

< (Z Aim rdarg(i> <Z . Gﬁdarg@)

= (Z E(Q,’%(r),wE)> (Z ;;Az(r)> (for a.e. r € [ro, 1])

< QY (S + L) AGr)

i€l
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for a.e. r € [ro,1]. Now, suppose that the set [ro, 1]\E(e) is a null set. Then using
(5.2.3), (5.2.9) and (5.2.10), we have

1—7r9= / dr
E(¢e)

s Z(Si Lo E(e) (d%A(r)) é(i)zdr

iel
Q1Y e (Si+Li) [t/ d 1
< = —A
- e? /m (dr (T)) A(r)? dr
< Q2 i (Si+ Li)
- e2A(ro)
Q19>
~ €2A(ro)
Q192 A(g, Fior,wyq)
- 22m A(ro)
< 1-— To ’
- 2
which is a contradiction. This proves our claim. 0O
Note that the set

{r € [ro,1]; (b:);cs and D(r) do not satisfy the condition (5.2.2)}

degﬂ— (A(b7 R: nq) + 6(97 6F7 WQ))

is a finite set, so a null set. Hence by Claim 2, if (5.2.3) holds for A, we may take
r € [ro,1] such that (b;),. ; and D(r) satisfy the condition (5.2.2), and that the
following inequality holds
L(r) < eA(r).
Using (5.2.11), we have
(g,0Fp (), wq) < L(r) + £(g,0F, wq)
eA(r) + (g, 0F, wq)

= E‘/4(.95 FD(’I‘)?“’"Z) +‘€(978F‘7 WQ)'

<
<

Put ®” = D(r), which proves (1) of our Lemma.

Proof of (2). Let A = (¥#,%,7,4g,b, F, R) be a specified g-hol-quintet of type 7,
and let ©” be an .#-tuple of Jordan domains which satisfies (5.2.4). We also assume
the condition (5.2.2) for (b;),. ; and ®". In this proof, we denote by Q any positive

constant which only depends on ®, ®’ and 7 , and does not depend on the choices
of XA and ®”. We shall prove

(5.2.12) Yo H(G) < pt(R) + QAW R,mg) + £g, OF, wy)),
GeC(Rg11)

which proves our lemma.
For a subset I C ., put

R' =R (b YD), F'=="(R").
iel
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IfI;é/, takeiejwithigl, and put
Zir =207 (DY), R, Zi; =Z(b;'(P'\D}),R"), Pir="P0b; (D)), R").
By Lemma 2 applying to Q = H € C(R"), ¢ = b; and v1 = 8D (cf. (5.2.2)), we have

(5.2.13) S ooz Y e+ Y s+ Y ot

HecC(RY) HeZ; | HEI; I HEP; 1

Let Sp; be the mean sheet number of b; : R — P! over D; C P*. Then we have

> ptH)= Y p(H) <card(Zig) < Spr (cf. (5.2.4)).

HET; | HET; 1
Using Covering theorem 1 (cf. (3.2.1)), we get
(5.2.14) ST optH) = > p(H) < Q(A(bi, Rywpr) + £(bi, OR, wpr)) .

HEZ; | HEeZ; |

Similarly, we have
(5.2.15) — Y p(H) < card(Z{ ;) < Spi\p; < Q(A(bi, R, wp1) + (bi, OR, we1 )

HET] ;
where SIP’l\DT- is the mean sheet number of b; : R — P! over Pl\E c P. Put
I' = TU{i}. Since we have Z; ; UP; 1 = C(R"), using (5.2.13), (5.2.14) and (5.2.15),
we get

Z p+(H) < Z p+(H) + Q(A<bi7R7w]P’1) +€(bi7aR>wP1))'
HeC(RI") HeC(RT)

Using this estimate inductively, we have

Y. PTH) S PR+ QY (Albi, Rywe) + £(bi, OR, wpn)),

HeC(Rgn) i€sd
where we note that R® = R and RY = Rg . Using the inequalities
Z (A(b’u R, w]}’l) + é(b’u 8R7 wp1 )) <Q (A(b’ R, nQ) + é(b7 8R7 774))
i€s
and
é(b7 8R7 nq) S Qé(gv 8F7 WQ)ﬂ
we obtain (5.2.12), which proves (2). O

6. CONCLUSION OF THE PROOF OF THEOREM 4

6.1. Weak version of the theorem. We first prove the following.

Claim: Let & C 7 be a subset. Let A be a countable set of non-degenerate
specified g-hol-quintets of type .#. Then for all € > 0, there exists a positive constant
C =C(e, ¥, ) such that
( ) A(gaFv/iQ) Sﬁ(g,.@q,F)+diSC(TI',R)+€A(g,F,wq)

6.1.1
+Cdegm (A(b, R,nq) +7(b, Zy, R) + p" (R) + U9, 0F, wy))
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for all (#,%,7,9,b,F,R) € A.
Proof of Claim. Recall that we denote by dist(z,y) the distance between z,y € P!
with respect to the Kéhler metric associated to the Kahler form wp1. Put

A,:{(97%77{-’g’b); (97%77T7g’b’F’R)€A}7

which is a countable set of non-degenerate q-hol-quintets. For a point = € .#,, and
for » > 0, put

Wa(r) ={y € Moq; dist(¢i(2), ¢i(y)) <r forallie 7}

By Lemma 7, we may take 7, > 0 such that Wy(r,) C Vi(A’) (cf. Lemma 6).
Consider the open covering

T U ().

xEZO,q

Since .40 4 is compact, we may take a finite set S of points € .#o , such that the
open sets Wy (&) for these x € S give a covering of .#¢,4. Let 79 be the minimum
of 2z for x € S. Then for all y € .#o,q, there exists x € S such that

(6.1.2) W, (r0) € Walre) € Va(A)).

Next, take a line v on P which has the following property (P):

P'\7 is a finite disjoint union of Jordan domains D (7) (1 < a < 7)
such that sup, ,cp_ () dist(z,y) < ro.

Let € be an arbitrary positive constant. Take a positive integer J such that J > i,
and take small deformations ~1,...,vs of v with the following properties:

e Each ; (1 < j < J) also satisfies the property (P),
e Ny Ny=0for1<j<k<l<J.

Then for each integer j with 1 < j < J, we may take a small closed neighborhood J;
of ; with the following property (P’):

P'\§; is a finite disjoint union of Jordan domains D1 (6;), ..., D=(d;)
where each Dq(d;) (1 < a < T) is compactly contained in D (7;).

We also assume that
(6.1.3) 5jﬂ5kﬂ5l:@ for1<j<k<li<J.

Put 7 = {1,---,}’. For g = (Bi)ies € T and 1 < j < J, put Dp; =
{Dp,(v)}ies and Dp; = {Dg,(05)},c.7» which are J-tuples of Jordan domains.
Then D} ; is compactly contained in D ;.

We take a positive constant h such that

hy(A'y<h forally €S (cf. Lemma 6),

(6.1.4) kg < hwg on Uogq,
1 <h.
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Note that h is independent of the choice of . We also take a positive constant p such
that

6.1.5)  p>mle, s, Dp,05,), 1> pa(F,D5,;,95,) (cf. Lemma 8)

forall 3€ T and 1 <5 < J.
Take (#,%,m,g,b, F, R) € A. We consider the covering

fi:biOTr|F:F—>P1 fOI"iEj.
Since we have
> A9, 671 (65), we) < 2A(g, Frw,)  (by (6.1.3))
=1
for all i € & , we have
J A
D> A9, (6),wa) < 25¢A(g, Fowg) (2 = card ).
i=licsg
Hence there exists 7 (1 < 7 < J) such that
_ 2
(616) Z A(gagz 1(51)’(")4) S TA(ga F7 wq) S 28%14(97 FvwlI)'
ies
For the rest of this proof, we fix this j.

Subclaim: For 3 € T, there exists an j—tuple of Jordan domains @g which satisfies
Dj,; C D C Dp,; and the following inequality

(6.1.7)  Alg, Foy,rq) <79, Zg, Foy) + disc(r, Rory)

+degmp ™ (R) + hudegm (A(b, R, ng) + £(g, OF, wy))
+ EhA(ga F@gan) + hf(g,aF,qu) + hdegWﬁ(b7 ‘%17 R@g)

Proof of Subclaim. We first consider the case
Alg, For, swq) < pdegm (A(b, R, 1) + £(g, OF, wq)) -
Put ©j = D% ;. Then using (6.1.4), we have
A(9: For, kq) < hA(g, Fory,wq) < hudegm (A(b, R,nq) + £(g,0F, wq)) -

Since all terms in the right hand side of (6.1.7) are not negative, we obtain our claim
in this case.
Next we consider the case

A(g, Fglﬁ,j’w‘z) > pdegm (A(b> R, nq) + 6(978F7 Wq)) -

Let D be the -tuple of Jordan domains obtained in Lemma 8 (1) (cf. (6.1.5)).
By the property (P) of ~;, we see that b(R@g) C Wy(z)(ro) for z € Rgy. Hence by
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(6.1.2), we have b(R@g) C V, for some z € S. Hence we may apply Lemma 6 for
each connected component G € C(Rg/ﬁ/) to get

Alg, 7 (@), kq) <T(9, P4, (G)) + disc(m, G) + deg mp™ (G)
+ hi(g,0m 1 (G),wg) + hdeg 7 (b, 25, G).

Adding over all G € C(Rgg) and using the estimates of Lemma 8 (1) and (2), we

obtain our assertion. [
Since we have F' = {J;cp Foy U Uies & ' (6;) and Foun F@g/ =0 for 5 # 3, we
have

Alg, Firg) < ) Alg, Foyorig) + 1y Alg, &71(65),wq)

(6.1.8) e ies
<> Ay, Fory, kq) +2xheA(g, Fywg)  (cf. (6.1.6)).
BeT

Adding the inequalities (6.1.7) over all 8 € T and using the above inequality (6.1.8),
we get

A(g, F\ kq) <T(g, D, F) + disc(m, R) + (23 + 1)he A(g, F', wq)
+ 7 degmpT (R) + hu1” deg wA(b, R, 1)
+ 7" (udegm + 1)€(g, OF, wq) + hdeg (b, 25, R).

Here we used the fact card7 = 77”. Note that the constants h, u, s and 7 are
independent of the choice of A € A. Using the facts that ¢ > 0 is arbitrary and
that the constant (2s¢ 4+ 1)h is independent of the choice of €, we see that the term
(25¢ 4+ 1)he is also arbitrary positive number. This proves our claim. O

6.2. End of proof. We prove our theorem by a contradiction. Suppose our theorem
is not correct. Then there exist ¢ > 3 and € > 0 with the following property: For all
positive integer k, there exists a non-degenerate specified g-hol-quintet

A = (ﬂkvgkvﬂ-kvgkabkyFk;Rk)
such that
(6.2.1)  A(gk, Fr,kq) > 1(gk, Dq, Fi.) + disc(mk, Ri) + €A(gk, Fi,wq)
+ kdegﬂ-k (A(bkleﬂnlI) +ﬁ(bk> %17Rk) + p+(Rk) +€(gk7aFk7WQ)) .

Put A = {\1, A2,...}. Replacing A by its subset, we may assume that the types of
Ar are all the same .# C .#. Using the above claim and (6.2.1), we conclude that

kQr < Cle, 7, A)Qx,
for all positive integer k, where we put
Qi = deg i (A(br, Ric,ng) + 7(bie, Zg, Rie) + p* (Rie) + £(gne, OFx, wq)) -

But this is a contradiction, since we have QQr > 0. Hence we obtain our theorem.
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7. PROOF OF COROLLARY 2

7.1. Generalization of Theorem 1. Let Y, B, m and 9 be the same as Corollary 2.
Then we may consider Rp as a subfield of Ry by the natural inclusion defined by
m:Y — B.

Corollary 3. Let F(x) € ﬁlg[x] be a polynomial in one variable with coefficients
n Rﬁ. Assume that F(x) = 0 has no multiple solutions. Take ( € Ry such that
F(¢) #0. Then for all € > 0, there exists a positive constant C(g) > 0 such that

(degF —-2- S)T(T7 C) < N(ﬂ 07 F(C)) + Niam Yy (7”)
+ C(&)(Nram = (1) + (1)) + o(T(r, ) |,

where we consider F({) as a meromorphic function on'Y.

Remark 7.1.1. If we put F(z) = (z — a1)--- (z — ag) for distinct a1, ...,a, € 8Y,
then the above corollary implies Theorem 1. This is because we have

(7.1.2) N(r,0,F(¢) =>_ N(r,a;om¢)+O(r)) ||.

i=1

Note that the condition F(¢) # 0 is equivalent to ( #a;om foralli =1,...,q.
Proof of Corollary 3. Let@ be an algebraic closure of Rc. We consider the fields
&Y% and Ry as subfields of Rc. Let £ C R be the splitting field of F(z) over &%.
Then £ is a finite separable extension of .ﬁjé. Hence there is a primitive element

/
™

a € £ ie, £ = 8%@). Let B B be the Riemann surface defined by «, i.e.,
R}g, = £. Then there exist a1,...,0q,0 € .ﬁ%, such that
(7.1.3) F)=0z—a1) - (x—ay)

where ¢ = deg F(z). Let G(x) € &%[z] be the irreducible polynomial such that
G(a) = 0. Since the ramification points of 7’ are either the poles of the coefficients
of G or the zeros of the discriminant of GG, we have

(7,1.4) Nramﬂ'B/ (7') < Nramrg (T) + O(w(T’)) H7
where g = mg o7 (cf. (2.3.2)).
Next let Y/ ™5 Y be the Riemann surface such that Ry’ = Ry («), where we
consider Ry as a subfield of &c. By the similar reason for (7.1.4), we have
(7.1.5) Nramﬂ'y/ (7') < Nram ©y (T) + O(’Lb(?“)) ||

Since Rg/ is a subfield of Ky, there exists a proper, surjective holomorphic map
#:Y' — B’. Apply Theorem 1 to the case that Y = Y', B = B, a; = «; and
f=Con”. Then we get

q
(@=2-)T(r,¢) <Y N(rai 0w, ¢on") + Neammy, (7)
i=1

+ O:(Nramnpy, (1) + 90(r)) + o(T(r,¢)) ||
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for all ¢ > 0. Here note that T'(r,{) = T(r,{ o) + O(1) and that a1, ...,a, are
distinct because F'(x) = 0 has no multiple solutions. By (7.1.2) and (7.1.3), we have

N(r,aiof,Con”) = N(r,0,F(Con")) + O@(r)) |

q
=1

= N(r,0,F(Q) + O(s(r)) |-
Hence using (7.1.4) and (7.1.5), we conclude our proof. [

7.2. Geometric version of the corollary.

Corollary 4. Let X and M be smooth projective varieties over C. Letp: X — M
be a surjective morphism such that a fiber p~*(x) is a smooth projective curve for a
general x € M. Let Lx and Ly be ample line bundles on X and M, respectively.
Let Kx/n be the relative canonical bundle on X. LetY, B and m be the same as
Theorem 1. Consider the following commutative diagram of holomorphic maps.

y —< . X

TFJ( JP

B T M
Assume that the image 3(B) is Zariski dense in M. Then for all € > 0, there exists
a positive constant C' = C(g) > 0 such that

T(T7 <7 KX/]M) < Nram Ty (7") + ST(T: C, LX)
+C @) (T(r, 8, L) + Neamrp (1)) + o(T(r, ¢, Lx)) |]-
Proof. Suppose that the Zariski closure W of the image ¢(Y) is not equal to X.

Then the field extension C(W)/C(M) defined by p|w : W — M is a finite extension.
Hence we have

T(r,vo) <O(T(r,B,Lm))
for all v € C(W). Hence we get

T(T7 47 KX/M) < O(T(T7 67 LM))

This prove our corollary in the case W # X.

Next we consider the case W = X. By blowing-up, we can assume that there exists
a generically finite map o : X — P! x M over M. Let My C M be an affine open subset
such that the restriction ag = a|x, : Xo — P! x My is finite, where Xo = p~*(Mp).
Put Ey = ram(ap) C Xo, i.e., the ramification divisor of ag. Let Hy C P' x M,
be the reduced divisor supported by ao(supp Fo), i.e., Ho = ao(supp Eo)rea- Put
Go = a(Ho)red- By the ramification formula, we have

(721) KXO/MO(GO) = ag(waMo/Mo(Ho)).

Here Kp1y g/, Which is a line bundle on P! x My, is the relative canonical bundle
of the second projection P! x My — My. Let H C P! x M be the natural extension
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of Hy. Then by (7.2.1), we can extend the divisor Gy to a divisor G on X such that
KX/M(G) =a" (KrPl xM/M(H)):

where Kp1, /0 is the relative canonical bundle of the second projection P! x M —
M. Hence we have

(7.2.2) T(r, ¢, Kx/m(G)) = T(r,a o, Kpr gy (H)) + O(1).
Put ¢(r) =T (r,8,Lm) + O(1).
Claim: For all € > 0, the following inequality holds
T(’f’, ao(, K]P’1><M/M(H)) < N(Tv ao(, H) + Nramﬂ'y (T) + ET(Tv ¢ LX)
+ Oz (Neam s (1) +1(r)) + o(T(r,¢, Lx)) |-

Proof of Claim. Let e be the generic point of M in the sense of Scheme theory.
Let P! be the generic fiber of the second projection p’ : P* x M — M. Then P} is
the projective line over the function field C(M) of M. Let H. C P! be the restriction
of H. By a coordinate change of the first factor of P' x M, if necessary, we may
assume that the divisor (co) C P is not a component of H.. Hence we may take a
polynomial F(x) € C(M)[z] such that H. is defined by F(z) = 0.

First, we consider F(z) as a rational function on P! x M. Let (F)o C P! x M be
the divisor of zeros of F(x). Then we have

N(nO,FoaoC) < N(r,ao(, (F)o),

where Floao( is a non-constant meromorphic function on Y because of the assumption
W = X. Note that we have

N(r,ao(, (F)o) < N(r,ao¢, H)+O((r))
because of p’ (supp((F)o — H)) # M. Hence we get
(7.2.3) N(r,0,Foao() < N(r,ao(, H)+ O((r)).

Next, let F(z) be the polynomial over &% obtained from F(z) by the natural
inclusion C(M) C ﬁ}g defined by 8. Let & : P! x M — P! be the first projection, and
putg::noaoC:YH]P)l. Then we have

Foaol=F().
Hence, using (7.2.3), we get
(7:2.4) N(r,0,F({)) < N(r,a0 ¢, H) + O(&(r)).
We apply Corollary 3 to obtain
(7.2.5) (degF —2 —&)T(r,¢) < N(r,0, () + Neamxy (1)
+ Oc(Nram s (r) + 9(r)) + o(T(r, Q) ||

for all € > 0. Here we note that F'(z) has no multiple solutions because H is a reduced
divisor.
Now since we have ((degF — Z)H*Eg)']pi ~ (K]plX]\/j/M(H))hpi, we get

(7.2.6) (degF - 2)T(r, é,g) =T(r,ao(, KlP’lel/]M(H)) + O((r)).
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Note that we have T(r,¢, ) = T(r,{) + O(1), because the Fubini-Study form wp:
is the curvature form of the Fubini-Study metric on .. Hence combining (7.2.4),
(7.2.5) and (7.2.6), we get

T(T7 « o Cv K]P’l XILI/]VI(H)) S N(ﬁ @ o Cv H) + Nram‘/fy (T) + ET(?”, 6)
+ Oc(Nram =5 (1) + (7)) + o(T(r, ) ||
for all € > 0. Using
T(T, é) < O(T(Tv C7 LX)):

we obtain our claim. [
Since we have p(supp((a*H)rea — G)) # M, we obtain

N(Tv o Cv H) = N(n C’ (a*H)YCd) = N(Tv C7 G) + O(w(T))

Here we also use the assumption W = X to ensure ((Y') ¢ supp G. Hence combining
with (7.2.2) and the above claim, we get

T(r,¢{, Kx/m(G)) < N(r,¢,G) + Nramry (1) + €T(r,(, Lx)
+ Oc(Nram =g (1) + 4(r)) + o(T'(r, ¢, Lx)) ||
for all ¢ > 0. Using N(r,¢,G) < T(r, ¢, [G]) + O(1) and
T(r, ¢, Kx/m(G)) = T(r,¢, Kx/m) +T(r, ¢, [G]) + O(1),
we get our corollary. (Recall that [G] is the associated line bundle for G.) O

7.3. Proof of Corollary 2. We use the notations in Corollary 2. Let £ C ﬁv}g be the
smallest subfield containing both C and all the coefficients of F(z,y). Then £ is a
finitely generated field over C. Hence there exists a smooth projective variety M over
C such that the rational function field C(M) of M is isomorphic to £. We denote by
e the generic point of M in the sense of Scheme theory. In the following, we fix one
isomorphism ¢ : C(M) = £. Then we have the holomorphic map 3 : B — M such
that v o 3 = ¢(v) for all v € C(M). Note that [ has Zariski dense image and satisfies

(7.3.1) T(r,B,La) < O®(r)) ||

for an ample line bundle Ly on M. Let F(x,y) € C(M)[z,y] be the polynomial
obtained by F(z,y) and the isomorphism (™' : £ — C(M). Let Q be the quotient
field of the ring C(M)[z,y]/F(z,y). We may take a smooth projective variety X and
a surjective morphism p : X — M such that the rational function field C(M)(X.) of
the generic fiber X, of p (in the sense of Scheme theory) is isomorphic to Q. Note
that X, is a smooth projective curve over the field C(M). Then the rational function
field C(X) of X is also isomorphic to (. Since the meromorphic functions ¢; and
C2 on Y satisfy the functional equation F({1,¢2) = 0, we get the holomorphic map
¢:Y — X such that z o = {1 and y o ( = (2, where we consider z and y as rational
functions on X. Then § and ( fit into the commutative diagram in Corollary 4. By
the assumption that F,(z,y) = 0 defines a curve of genus > 1 for general z € B, we
see that the curve X. has genus > 1. Hence the canonical bundle Kx_ is ample. Let
Lx be an ample line bundle on X.
Claim: T(r,{, Lx) < O(T(r,¢, Kx/nm) + (7)) |-
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Proof of Claim. There exists a positive integer m such that mKx, — Lx|x, is very
ample. Hence we may take an effective divisor H on X such that [H|x. ] = mKx, —
Lx|x, and ¢(Y) ¢ supp H. Since the restriction Kx,|x, is isomorphic to Kx,, we
see that the restriction (mKx,n — Lx — [H])|x, is the trivial bundle on X.. Hence
there exists a divisor G on X such that p(supp G) # M and mK x,n —Lx —[H] = [G].
Since we have

7T(T7 C? [HD < 0(1)
and

=T(r,¢,[G]) <O@(r)) | (cf. (7.3.1)),

we get our claim. [
Now, applying Corollary 4 and using the above claim, we get

T(r,¢, Lx) < Oc(Nramry (1) + Neam s (r) +9(r)) + €T (r, ¢, Lx) + o(T'(r, ¢, Lx)) ||
for all € > 0. Letting ¢ < 1, we get

(7.3.2) T(r,¢, Lx) < O(Nramry (1) + Neam = (r) + (7)) |-
Using x o ( = (1 and y o { = (2, we obtain
(7.3.3) T(r,¢i) <O(T(r, ¢, Lx)), T(r,¢) < O(T(r,(, Lx)).

By (7.3.2) and (7.3.3), we get our corollary. [

8. PROOF OF THEOREM 2

In this section, we prove Theorem 2. We fix a positive integer ¢ > 3. Let € > 0 be
a positive constant, and let

(8.0.4) Y, B, 7, f, a1, -+ ,aq
be the objects in Theorem 2, which will be also fixed in the following. Consider the
specified g-hol-quintet A = (Y, B, 7, cl(s,q),cla, Y, B) defined by (8.0.4).

Put ¢ = maxi<i<qdega;. Since for (4,4, k) € # and for general z € Y, two pairs
of 4-points on P*

(f(Z), aj o 7|'(Z)7 a; o 71'(2:), ag © 7['(2;))7 (@(i,j,k) o Cl(f,a) (Z)7 07 17 OO)

are isomorphic (cf. (1.5.6), (1.5.7)), we have
f(z) —aiom(2) ajom(z) — ar o m(z)
f(z) —arom(z) ajom(z) —a;om(z)’

Pk © Cliga) (2) =
Hence we get
(8.0.5) | deg (i, j,k) © Cl(f,a)) — deg f| < 76 deg .
Also, since for (i, j,k,1) € .# and for general z € B, two pairs of 4-points on P*
(ai(2), ai(2),a;(2), ax(2)),  (Pskp) ©cla(2),0,1,00)
are isomorphic, we have

ai(z) — ai(2) a;(2) — ax(2)
ai(z) — ax(2) a;j(2) — ai(2)

¢(i,j,k,l) o Cla(z) =



Hence we get
(806) deg((ﬁ(i,j,k,l) e} Cla) § 86.

First, we consider the case that A is non-degenerate. By the assumption that a;
are distinct, we conclude that

(8.0.7) cla(B) ¢ supp Z5.

Hence we may apply Theorem 4 for the non-degenerate specified g-hol-quintet A.
Denoting by Ci(g,¢) the constant C(g,e) obtained in Theorem 4, we get

(8.0.8)  deg(cls,a)) Kq <T(cl(f,0), Zg,Y) + disc(m, B) + eA(cl(f,q), Y, wq)
+Ci(g,) degm(A(cla, B, mq) +7(cla, 25, B) + p (B)).

Here we note that A(cl(y,q), Y, kq) = deg(cl(s,qa))" Kq, and that
4(cl(f,q),0Y,wq) = 0 because Y is compact. By the Riemann-Roch theorem and the
Hurwitz theorem, we have

(8.0.9) p(B) =2g(B) — 2, disc(m, B) = (29(Y) —2) — degm(29(B) — 2),
=)
pt(B) <2¢(B), disc(m, B) <2g(Y) + 2degn.
Hence by (8.0.8), we get
(8.0.10)  deg(cl(y,a)) Kq < T(clif,a), Zg, Y) +29(Y) + €A(clf,a), Y, wq)
+ C2(q, €) deg m(A(cla, B,ng) + n(cla, 24, B) + g(B) + 1),
where we put C2(q,¢) = 2max{Ci(q,¢),2}.

Claim. There exist positive constants Q1,..., Qs which are independent of the
choices of € > 0 and of the objects in (8.0.4) such that
(8.0.11) Alcla, B, mq) < Q19,
(8.0.12) 7i(cla, %, B) < Q29,
(8.0.13) A(cl(s,a), Y, wq) < Qa(deg f + d degm),
q
(8.0.14) n(cl(f.a), 2, Y) <Y _T(aiom, f,Y) + Qsd deg,
i=1
(8.0.15) (g —2)deg f < deg(cl(s,a)) " Kq + Qs deg .

Proof of (8.0.11). For i € .#, let pr; : (P')” — P! be the projection to the i-th
factor. Put

Z = Zpr:iﬂ,

i€s
which is an ample line bundle on (P*)”. By Lemma 7, the line bundle ®*.% is an
ample line bundle on .#¢ 4. Hence there exists a curvature form w’ of ®*.% that is a
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positive (1,1)-form. Hence there exists a positive constant Q7 such that n, < Qw'.
Using (8.0.6), we have

A(cla, B,ng) < Q1 A(cly, B,w') = Q) deg(® o cl,)* Z
=Q1 Y deg(¢; ocla) < 8Q'(card .&)6.

€S

Put Q1 = 8Q card .# to conclude the proof of (8.0.11). o
Proof of (8.0.12). There exists a positive integer Q5 such that Q50*.% — [25] is
an ample line bundle. Hence using (8.0.6), we get

f(cla, 24, B) < deg(cla)* 2, < Q5 deg(® o cl,)*Z < 8Q%(card .#)4.

Put Q2 = 8Q%5 card . to conclude the proof of (8.0.12). o
Proof of (8.0.13). Using the isomorphism tq11 : M o,q+1 — % 0,q (cf. (1.5.11)) and
Lemma 7 for %0,q+1, we see that the line bundle

P= Y @2+ (¢iow) ¥
agc g4 €549

is an ample line bundle on @o,q. Hence there exists a positive constant Q% such that
we < Q5w"” where w” is a curvature form of P that is a positive (1,1)-form. Using
(8.0.5) and (8.0.6), we get

A(cl,a), Y wq) < Q5A(cl 4.0y, Y, w") = Q3 deg(cly,a)) P

= Q5 D deg(¢aoclsay)+ Y deg(ioclyom)

aE 71 i€sa
< (Qscard £+ 7Q5card Z9 + 8Q5 card #79)(deg f + d deg ).

Put Qs = Q3 card #7+7Q5 card _Z 7+8Q3 card .#7 to conclude the proof of (8.0.13).
Proof of (8.0.14). (cf. proof of (2.2.4)) Put

U={z¢€B; ai(z),...,aq(z) are all distinct}.

Then by the definition of the classification map, we have clo(U) C Ao,q. For z € U
and y € 7' (2), we have cl(s,)(y) € Z, if and only if f(y) = ai(z) for some i € (q)
(cf. (1.5.6) and (1.5.7)) . Hence we have

{yeY; dia(y) € 2} C{yeY; f(y) =aion(y) for some i € (¢)} Un ' (B\U).
This implies that
n(cl(t,0), Zq,Y) < Z n(aiom, f,Y)+ degm Z n(ai, a;, B).
1<i<q 1<i#j<q
Since we have
ﬁ(ah aj, B) < 24,
we get (8.0.14). (Put Q4 =2¢(¢—1).)
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Proof of (8.0.15). (cf. proof of (2.2.5)) By Lemma 1, we have

(8.0.16) (g — 2)deg(¢(1,2,3) © cl(s,0))
= deg(cl(s,a)) " Kq + degmdeg(cla)” M + deg(clis,a))" (),
where M and = are obtained in the lemma. By wgq(supp Z) C supp 25, there exists

a positive integer Q5 such that the divisor Q5w; 2 — = is effective. Hence by (8.0.7)
and by the proof of (8.0.12), we have

(8.0.17) deg(cl(s,a))"(E) < Q5 deg mdeg(cla)™(25) < Q2Q50 deg .
Since g*.,? is ample, there exists a positive constant Q% such that the line bundle
5§®* ¥ — M is ample. Using (8.0.6), we get
(8.0.18) deg(cly)* M < Q% deg(® o cl,)*Z < 8Q% (card #)6.
Using (8.0.5), (8.0.16), (8.0.17) and (8.0.18) and putting
Qs = Q2Q5 + 8Q5 card I + 7(q — 2),

we get our inequality (8.0.15) and conclude the proof of the claim. O
Now using (8.0.10) and the above claim, we get

(¢—2)deg f < mlasom f,Y)+2g(Y)

+eQzdeg f + (eQs + Q1 + Qs)d deg
+ Cz(q, 6) degﬂ((Q1 + Q2)5 + g(B) + 1).
Put
C3(g,e) = max{eQs + Qa + Q5 + C2(q,¢)(Q1 + Q2),C2(g, )}
Replacing ¢ by é and putting C(q,¢) = Cs(q, &), we get our theorem in the case
that X\ is non-degenerate.

Next we consider the case that X is degenerate, i.e., there exists some o € ¢ such
that ¢q o cl(sq) is constant. Then by (8.0.5), we conclude that

deg f < 7ddegm.

Hence replacing C(q, ) by max{C(q,¢),7(qg—2)}, we also get the theorem in the case
that X is degenerate. Here note that all terms in the right hand side of (1.1.4) are
non-negative. This conclude the proof of our theorem.

9. HEIGHT INEQUALITY FOR CURVES OVER FUNCTION FIELDS

9.1. Notations. General references for this section are [L], [V1] and [V3]. Let k be a
function field, i.e., a rational function field of a compact Riemann surface B. This
B is uniquely determined by &k (up to isomorphism), and called the model of k. We
consider B as a smooth projective curve over C. Let S C B be a finite set of points
which will be fixed throughout.

Let X be a smooth projective curve over k, and let D C X be an effective divisor.
Let L be a line bundle on X. Following P. Vojta [V3], we define the functions

hLJC(P)? ng,l.%‘(Dvp)v dk(P)
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for P € X (k) as follows.
First, take a model of X over B, i.e., a smooth variety X projective over B such
that the generic fiber (in the sense of Scheme theory) is isomorphic to X over k. Then

for each P € X (k) = X(k) by taking the normalization of the Zariski closure of P in
X, we can associate the following commutative diagram.

fp

Y — X

ﬁl lp

B B

Here Y is the model of k(P).
Let ® C X be an extension of D C X, and let £ be an extension of L to X. Put

1

hg,k(P) = degﬂ deg fp£
and
1 X _
NA(®, P) = g > min(l,ord, f5®) (P € X(k)\D).
zeY\nm—1(S)

If we replace the models X, ® and £ by other models X', ®’ and £, we have
hek(P) = her k(P) +0(1), Np3(D, P) = Niy(D', P) + O(1),
where O(1) are bounded terms independent of P € X (k). Then we define the func-
tions hz x(P) and N{'§(D, P) by
hL,k(P) = hgyk(P) + 0(1)
and
Np3(D,P) = N3, P)+0(1) (P € X(R\D),
which are functions modulo bounded terms O(1). Finally, put

_29(Y)

d(P) " degm

disc(m, B)

= Jer +0(1) (ct (8.0.9)).

The following facts are easy consequences of the above definitions.
(1) N,E};(D, P) < hipy,x(P) 4+ O(1), where [D] is the associated line bundle.
(i) 7(fp,D,Y) < degm(N{'4(D,P) + card S).
(iii) Let Py be the projective line over k. In the follgwing, we always take P* x B
as a model of P}, over B. Then a point P € Py (k) corresponds to the rational

function fp on Y obtained by the composition
1st proj

fp Y B P x BRI pt

Let .%. be the hyper plane section bundle on P4. Then we have

ton F
ha, x(P) = %g’:f +0(1).
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(iv) Let k' C k be a finite extension of k. Put e = [k’ : k] and X' = X ®j k.
Let B’ be the model of k. Let b: B’ — B and b: X’ — X be the natural
maps. Put D' = b*D, L' = b*L and S’ = b~*(S). Then using the natural

identification X'(k) = X (k), we have

hiw (P) = ehp 1 (P) + O(1), N}

e (D', P) = eN{U(D, P) + O(1),

and

Here Oy /(1) is a bounded term depend on k and k', and independent of

P e X(k).
By these properties and Theorem 2, we obtain the following.

Lemma 9. Let D C P} be a reduced divisor and let € > 0. Then we have

(9.1.1) hicy () 4(P) < NUF(D, P) + di(P) + ehzi (P) + Oc(1)

for all P € Pr(k)\D. Here O-(1) denotes a bounded term depend on ¢, and indepen-
dent of P € PL(k).

Proof. Let k' C k be a finite extension of k such that the divisor D’ C P}, has the
form D’ = (P1)+- - -+(P,) by k'-rational points P; € P}, (k') fori = 1,...,q. Here and
the following, we use the notations in (iii) and (iv) above. Each P; corresponds to the
rational function fp, on B’, where we note that k'(P;) = k’. By the assumption that
D is reduced, P; are distinct, hence fp, are distinct. Take a point P € P}, (k)\D' =
P} (k)\D. Let Y’ be the model of k¥'(P) and 7’ : Y’ — B’ be the natural map. Then
P corresponds to the rational function fp on Y’'. Because P ¢ supp D’, we have
fp #+ fpi on’ fori=1,...,q. Apply Theorem 2 to get

(g—2—e)deg fo < S Ti(fr, o, fr, Y') + 29(Y") + O.(1) deg .

Here we note that the functions fp, and the Riemann surface B’ are fixed because
the divisor D and the Riemann surface B are fixed. Hence by the above (ii) and (iii),
we get

hic,, (0w (P) < Nig (D', P) + dis (P) + ehgy, 10 (P) + O:(1).
k:/

Here we use the facts that Kp1 = —2.%, [D'] = ¢% and
k/

Zﬁ(fpi om, fpzyl) < ﬁ(fP>®/>Y/) + O(l) degﬂ-:

i=1

where ©' C P! x B’ is the Zariski closure of D’ C P;, and fp : Y’ — P! x B’ is the
associated holomorphic map for P. Using the above (iv), we conclude our proof. [
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9.2. Height inequality. The following theorem proves the conjecture [V3, Conjecture
2.3] for the case of curves over function fields.

Theorem 5. Let k be a function field. Let X be a smooth projective curve over k,
let D be a reduced divisor on X, let L be an ample line bundle on X and let € > 0.
Then we have

(9.2.1) hicx ()1 (P) < N{S(D, P) + di(P) + ehri(P) + O(1)
for all P € X(k)\D.

Proof. Let o : X — P}, be a finite surjective map over k. Put E = (ram(a))red -

X. Note that we may choose a such that supp D N supp £ = (), hence we assume
it. Let H C P; be the reduced divisor supported by a(supp D U supp E). Then
there exists an effective divisor G C X such that (a*(H)) = D+ E+ G. By the
ramification formula, we have

(9.2.2) Kx(D+E +G) = a* (Kp (H)).

Then by Lemma 9 and the above property (i) of the previous subsection, we have

hiy(p+E+G)K(P) = hicy ),k ((P))
< N (H, a(P)) + di(a(P)) + ehag, 1 (a(P)) + O-(1)
= N{'3(D + E + G, P) + di(a(P)) + eha=z, 1 (P) + Oc(1)
< NYUD + E + G, P) + di(P) + eChy x(P) + 0:(1)
< N{UD, P) + hipia u(P) + di(P) + eChi(P) + O(1),

for all P € X(k)\(D + E + G). Here C is a positive integer such that the line
bundle CL — a*.%), is ample, hence C' is independent of P and ¢. For the points
P ¢ supp(E + G), the values hg, (p)(P) are bounded because supp(£ + G) consists
of finite points. Hence, replacing € by &, we get

hicx (0),x(P) < N{'5(D, P) + di(P) + €hy 1 (P) + O:(1)
for all P € X (k)\D. This proves our theorem. [
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