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Abstract. We try to understand the relationship between the
K(π, 1)-property of the complexified regular orbit space of a finite
reflection group and the flat structure on the orbit space via the
uniformization equation attached to the flat structure.

1. Introduction

Let W be a finite reflection group of a real vector space V . If W
is crystallographic, then the quotient space V ∗//W appears in several
contexts in geometry: i) in Lie theory as the quotient space of a simple
Lie algebra by the adjoint Lie group action [Ch1,2] and ii) in com-
plex geometry as the base space of the universal unfolding of a simple
singularity [Br1]. Having these backgrounds, V ∗//W carries some dis-
tinguished geometric properties and structures, which, fortunately and
also amusingly, can be described only in terms of the reflection group
regardless whether W is crystallographic or not. We recall two of them:

1. The complexified regular orbit space (V ∗//W )reg
C is a K(π, 1)-

space (Brieskorn [Br3], Deligne [De]). In other words, π1((V
∗//W )reg

C )
is an Artin group (i.e. a generalized braid group [B-S][De]) and the
universal covering space of (V ∗//W )reg

C is contractible (c.f. also [Sa]).
2. The quotient space V ∗//W carries a flat structure (Saito [S3][S6])1.

This means roughly that the tangent bundle of V ∗//W carries a flat
metric J together with some additional structures. Nowadays, a flat
structure without a primitive form is also called a Frobenius manifold
structure with gravitational descendent (Dubrovin [Du], Manin [Ma1,2]).

Apparently, these two geometries on V ∗//W are of a quite different
nature, one topological and the other differential geometric. Never-
theless, there is already a remarkable relationship between them on a
combinatorial level: the polyhedron dual to the system of real reflection

The present article is a revised version of §5, §6, §7 of the lecture note “Geometry
of finite reflection groups” delivered by the author at RIMS (1999). The author is
grateful to Claus Hertling for a discussion which helped to clarify the formulation.
He also thanks Susumu Tanabe for his kind help finding the references [A][S2] .

1The original construction of the flat structure on V ∗//W was given in [S3].
The description of the gravitational descendent was modified in [S6] to obtain the
system of uniformization equations. The present article follows the latter style.
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hyperplanes of W (which is the key in [Br2][De] to determine the topol-
ogy of the complex regular orbit space) is reconstructed by a use of the
formal group action exp(tD) :=the integral of the primitive vector field
D on (V ∗//W )R (which is a basic ingredient of the flat structure) [S8].

Inspired by the observation, the present article aims to construct
a more direct relationship between the two geometries. The working
hypothesis is that a bridge between them is given by the topological
behavior of the map (which, for brevity, we call the period map) obtained
from solutions of the uniformization equation MW,s [S6] on V ∗//W
constructed from the flat structure for a special s (see 6.1 Remark). 2

Here we begin a program to examine this hypothesis. In the first half
§2-4, we describe the uniformization equation. After fixing notation for
finite reflection groups in §2, we give a detailed exposition of the flat
structure in §3 and the uniformization equation MW,s in §4. Although
they are already known [S6], we renew and clarify several arguments
and make them accessible for our purpose. (c.f. also [He][Sab][Ta]).

In the latter half (§5, 6), we begin to analyze the period map. In
§5, solutions of the uniformization equation for the parameter s =
1/2 are partly given by primitive Abelian integrals on a certain family
of plane curves parameterized by V ∗//W . Although this fact is easy
[S6], the attached period map is not studied from the view point of
the primitive form, although some information is available in classical
works [Th][Mu][Ko]. We examine examples of type A1, A2, A3 and B2.

In §6, first, we describe the monodromy group Γ(W ) in term of Cox-
eter diagram. Then we give a possible formulation of the period domain
and the inverse map to the period map, and pose some conjectures. §6
is quite incomplete. It requires more work to verify or to modify the
conjectures, which is beyond the scope of the present article.

2A historical note: Before the theory of the primitive form and the flat structure
reached its present form, the author suggested in [S2] to study the uniformiza-
tion of the regular orbits (V ∗//W )reg

C by the horizontal sections of logarithmic flat
torsion-free connections on the logarithmic tangent bundle on V ∗//W . The torsion-
free condition implies the existence of a primitive function, whose derivatives give
a system of fundamental solutions. The primitive function for type A1 is the log-
arithm. For type A2, it is given by the elliptic integral of the first kind which
gives the universal covering (up to center) of the regular orbit space. For type
A3, the space of all logarithmic flat torsion-free connections decomposes into two
one-parameter families [S2,§3]. The first family gives the uniformization equation
MW,s of the present article. The meaning of the second family is unknown: for
example, what is the Fourier-Laplace transform of the second family? (c.f. [A])

We note also that there is related work on certain integrable systems defined
on the quotient space V ∗//W ([Gi] [Tak]). However the relationship with the flat
structure still needs to be worked out.
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2. Finite reflection group

This section gives a short summary of basic results on finite reflection
groups used in the present article (see also [B]). Experienced readers
are recommended to look only at the notation in 2.9 and skip to §3.

2.1. Reflection. Let V and V ∗ be a real vector space and its dual.
An element α ∈ GL(V ) ' GL(V ∗) is a reflection if there exist a hyper-
plane Hα in V ∗ and a non-zero vector fα ∈ V ∗ such that α|Hα = idHα

and α(fα) = −fα. The Hα is called the reflection hyperplane of α.
One has α(x) = x− fα(x)eα for x ∈ V and α(x∗) = x∗ − eα(x∗)fα for
x∗ ∈ V ∗, where eα ∈ V is a defining form of Hα with 〈eα, fα〉 = 2.

2.2. Finite reflection group W . We shall mean by a finite reflection
group W a finite group generated by reflections acting irreducibly on a
real vector space V . Put R(W ) := {α ∈ W | a reflection}. There exist,
unique up to a constant factor, W -invariant symmetric bilinear forms
I and I∗ on V and V ∗, respectively.3 One has fα = 2I(eα, ·)/I(eα, eα)
and eα = 2I∗(fα, ·)/I∗(fα, fα). A connected component C of V ∗ \
∪α∈R(W )Hα is called a chamber. A hyperplane Hα (α ∈ R(W )) is
called a wall of a chamber C, if Hα ∩ C̄ contains an open subset of Hα.

2.3. Coxeter group representation of W .
We may present a finite reflection group as a Coxeter group [Co1].
A Coxeter matrix M := (m(α, β))α,β∈Π is a symmetric matrix with

index set Π s.t. m(α, α) = 1 (α ∈ Π) and m(α, β) ∈ Z≥2∪{∞} (α 6= β
∈ Π). The group W (M) generated by letters aα (α ∈ Π) and defined by
fundamental relations: (aαaβ)m(α,β) = 1 (α, β ∈ Π) is called a Coxeter
group. The pair (W (M), {aα | α ∈ Π}) is called a Coxeter system.

Theorem. Let W be a finite reflection group acting on V and let C be
a chamber of the W -action. Then the following 1.- 5. hold.

1. The pair (W, Π(C)) is a Coxeter system, where we put

(2.3.1) Π(C) := {α ∈ R(W ) | Hα is a wall of the chamber C}
and the Coxeter matrix is given by m(α, β) := the order of αβ in W .
2. W acts on the set of chambers simply and transitively. Hence,

the Coxeter matrix does not depend on the choice of a chamber.
3. The closure C̄ of a chamber is a fundamental domain for the

action of W on V . That is: there is a homeomorphism: C̄ ' V ∗/W .
4. Fix the sign of the vector eα for α ∈ Π(C) in the manner:

(2.3.2) C = {x ∈ V ∗ | 〈eα, x〉 > 0 for α ∈ Π(C)}.
Then the off-diagonals of the matrix (I(eα, eβ))α,β∈Π(C) are non-positive.
5. ΠW := {eα|α ∈ Π(C)} forms a basis of V . The coefficients of eβ =∑

α∈Π cαeα for β ∈ R(W ) are either all non-negative or non-positive.
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2.4. Classification.
We recall the classification of finite Coxeter groups ([B, ch.VI,§4]).
To a Coxeter matrix M , one attaches a Coxeter graph Γ, whose

vertices are indexed by the set Π and two vertices α and β are connected
by an edge iff m(α, β) ≥ 3. The edge is labeled by m(α, β) (omitted if
m(α, β) = 3). The graph is called simply-laced if all labels are 3.

The following is the list of graphs associated to finite Coxeter groups.

···Dl

El
4F4

6G2
5 (l = 2, 3 or 4)Hl

···

···

Bl

(l ≥ 1)Al

(l ≥ 4)

(l = 6, 7 or 8)

(l ≥ 2)··· 4

I2(p) p (p ≥ 7).

···

Note. 1. Different Coxeter diagrams define non-isomorphic groups, i.e.
the same group is not attached to different Coxeter matrices.

2. The group W is called crystallographic if it preserves a full-lattice
in V . This condition rules out the groups of type Hl and I2(p).

3. The irreducibility of W implies the indecomposability of the Cox-
eter matrix M and, hence, the connectedness of the graph Γ.

2.5. Polynomial invariants.
Let S(V ) = R⊕ V ⊕ S(V )2 ⊕ S(V )3 ⊕ · · · be the symmetric tensor

algebra of V . The action of g ∈ W on V induces the action on S(V ).
Define the set of invariants:

(2.5.1) S(V )W := {P ∈ S(V ) | g(P ) = P for ∀g ∈ W}.
Obviously, S(V )W is a graded subalgebra of S(V ).

Theorem. (Chevalley [Ch 2]). Let W be a finite reflection group act-
ing irreducibly on a real vector space V of rank l. Then S(V )W , as an
R-algebra, is generated by l algebraically independent homogeneous ele-
ments, say P1, · · · , Pl.The set of degrees d1 = deg(P1), · · · , dl = deg(Pl)
(with multiplicity) is independent of a choice of the generators.

Note. The ring S(V ), viewed as a S(V )W -module, is free of rank #W ,
and dim(S(V )/S(V )S(V )W

+ ) = #W , where S(V )W
+ is the maximal

ideal of S(V )W of all positively graded elements (c.f. (2.6.1) i)).

2.6. Poincare series.
The S(V )W is a graded subring of S(V ), i.e. S(V )W = ⊕d∈Z≥0

S(V )W
d

for S(V )W
d = S(V )d ∩ S(V )W . The Poincare series: PS(V )W (t) :=



ORBIFOLD OF A FINITE REFLECTION GROUP 5

∑∞
d=0 dimR(S(V )W

d ) td is calculated in two different ways : i) Using

S(V )W ' R[P1] ⊗ · · · ⊗ R[Pl], one has PS(V )W (t) =
∏l

i=1 PR[Pi](t) =∏l
i=1

1
(1−tdi )

(this expression reproves the uniqueness of the d1, · · · , dl),

and ii) since dimR(S(V )W
d ) = tr( 1

#W

∑
w∈W w|S(V )d) for d ∈ Z≥0 and∑∞

d=0 tr(w|S(V )d)t
d = 1

det(1−tw)
(use the extension of V to VC), one has

PS(V )W (t) = 1
#W

∑
w∈W

1
det(1−tw)

. Comparing the values and deriva-

tives at t=1 of the two expressions of PS(V )W (t), one obtains:

(2.6.1) i) #W = d1 · · · dl and ii) #R(W ) =
∑l

i=1(di − 1).

2.7. Anti-invariants.
An element P ∈ S(V ) is called an anti-invariant if g ·P = det(g)−1P

for all g ∈ W . The set of all anti-invariant shall be denoted by S(V )−W .

Put δW :=
∏

α∈R(W ) eα. Let ∂(P1,··· ,Pl)
∂(X1,··· ,Xl)

be the Jacobian for generator

system P1, · · · , Pl and X1, · · · , Xl of the algebras S(V )W and S(V ),
respectively. It is easy to see that δW and the Jacobian are anti-
invariants. Using (2.6.1) ii), we further show an important lemma.

Lemma. 1. Any anti-invariant is divisible by δW : S(V )−W = S(V )W δW .

2. One has ∂(P1,··· ,Pl)
∂(X1,··· ,Xl)

= c δW for a nonzero constant c ∈ R.

2.8. Coxeter elements and exponents.
A Coxeter element is a product c := Πα∈Π(C)α for a linear ordering

of elements of Π(C). Its conjugacy class depends neither on C nor on
the ordering (for Γ is a tree [B,Ch.V,no6.2.]). The order h of c is called

the Coxeter number. Put det(λ1 − c) =
∏l

i=1(λ − exp(2π
√−1mi/h))

for some integers m1, · · · ,ml, called the exponents of W , such that

(2.8.1) 0 < m1 ≤ m2 ≤ · · · ≤ ml < h.

Here, 0 is not an exponent (i.e. 1 cannot be an eigenvalue of c), since I
is nondegenerate. So exp(2π

√−1mi/h) and exp(2π
√−1(ml−i+1)/h))

should be complex conjugate to each other. Thus, we have

(2.8.2) mi + ml−i+1 = h and
∑l

i=1 mi = 1
2
lh.

In the rest of this §, we assume l ≥ 2 (i.e. W is not of type A1) although
the resulting formula (2.8.3) is valid even that case.

Since the Coxeter graph Γ is a tree, one can find a unique decompo-
sition Π(C) = Π1∪Π2 such that any two elements in Πi mutually com-
mute for i = 1, 2 (ie. 〈eα, fβ〉 = 0 for α 6= β ∈ Πi). Put ci :=

∏
α∈Πi

α
and c = c1c2. The mutual commutativity of elements in Πi implies that
ci(x) = x−∑

α∈Πi
eα(x)fα and that ci is an involution, i.e. c2

i = 1.
We state a key lemma on the eigenvectors of the Coxeter elements

(Kostant [K1] and Coleman [C]), which we shall use in §3-6 crucially.
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Lemma. There exists a real 2 dimensional subspace U of V ∗ satisfying:
i) U is invariant under the actions of c1 and c2, and {c1|U,c2|U}

forms a Coxeter system for the dihedral group W (I2(h)) acting on U .
ii) U ∩C = R>0 ·ζ1 +R>0 ·ζ2 is a chamber of the group 〈c1|U,c2|U〉 =

W (I2(h)) , where ζj is a cj-fixed vector in
⋂

α∈Πj
Hα∩

⋂
α∈Π\Πj

{eα > 0}.
The lemma implies in particular that no reflection hyperplane of W

intersects the open cone R>0 · ζ1 + R>0 · ζ2.

Corollary. 1. Any reflection hyperplane of W intersects U only along
one of the h lines which are W (I2(h)) orbits of Rζ1 or Rζ2. If a
reflection hyperplane Hα contains the line Rζi, then α ∈ Πi.

2. Let W be a finite reflection group of rank l and Coxeternumber h.

(2.8.3) i) m1 = 1, ml = h− 1 and ii) #R(W ) = 1
2
lh

3. The eigenvectors of the action c|U belonging to the eigenvalues
exp(2π

√−1/h) and exp(−2π
√−1/h), respectively, do not belong to

any complexified reflection hyperplane Hα,C := Hα ⊗C for α ∈ R(W ).
Recall that d1, · · · , dl are the degrees of a generator system of S(V )W .

A study of the Jacobian J shows dj − 1 ≡ mj mod h (1 ≤ j ≤ l) for
renewed index. This together with (2.6.1) ii), (2.8.2) and (2.8.3) implies

(2.8.4) di = mi + 1 for i = 1, · · · , l.

Recall the W -invariant bilinear forms I and I∗ on V and V ∗ such that
I(x, y) = I∗(I(x), I(y)). The associated quadratic form

(2.8.5) P1 := I∗(x, x)/2h =
∑l

ij=1 XiXjI
∗(xi, xj)/2h

(here x =
∑l

i=1 Xixi, and xi and Xi are dual basis of V ∗ and V ) gives
an invariant in S(V )W of lowest degree d = 2 (unique up to constant
since W -action is irreducible). This fact together with (2.8.4) implies

Corollary. 4. The multiplicity of the smallest exponent (= 1) is equal
to 1. Hence, that of the largest exponent (= h− 1) is also equal to 1.

Remark. l and h cannot be simultaneously odd due to the second for-
mula (2.8.2). More precisely (see 6.2 Assertion 1. for a proof): l is
odd ⇒ #Π1 6= #Π2 ⇔ h is even and 1

2
h is an exponent ⇒ h is even.

Here, the two arrows are trivial. The converse of the first arrow does
not hold for type Dl (even l). The converse of the second arrow does
not hold for types Bl and Cl (even l), E6, E8, F4, H4 and I2(p) (even p).

2.9. The quotient variety V ∗//W and the discriminant DW .
The categorical quotient variety of V ∗ by the action of W is given by

(2.9.1) SW := V ∗//W := Spec(S(V )W ).

It has origin 0 defined by the maximal ideal S(V )W
+ (recall 2.5).
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Let K be either R or C.The set of K-rational points of SW is given by

(2.9.2) SW,K := Homalg
R (S(V )W , K)

where Homalg
R (∗, ∗) means the set of all R-algebra homomorphisms.

Put V ∗
C := V ∗⊗R C. The action of W on V ∗ = V ∗

R extends complex
linearly to V ∗

C. For any point x ∈ V ∗
K , the evaluation homomorphism:

P ∈ S(V )W 7→ P (x) ∈ K induces the W -invariant morphism:

(2.9.3) πK : V ∗
K → SW,K .

Put V ∗
K/W :={W -orbits on V ∗

K}, where a W -orbit on V ∗
K means a

subset of V ∗
K of the form Wx for some x ∈ V ∗

K . An element P ∈ S(V )W

is naturally considered as a function on V ∗
K/W since it is constant on

each orbit. Since for x, y ∈ VK one has Wx = Wy if and only if
P (x) = P (y) for all P ∈ S(V )W , the morphism πK (2.9.3) induces an
injection V ∗

K/W → SW,K for K = R or C. In fact, the πC induces
a homeomorphism: V ∗

C/W ' SW,C, but πR induces an embedding
V ∗

R/W ⊂ SW,R onto a closed semi-algebraic set. Choosing a generator
system P1, · · · , Pl of S(V )W (with deg(P1) ≤ · · · ≤ deg(Pl)), one has a
bijection SW,K ' K l and the πK is given by (P1, · · · , Pl) : V ∗

K → K l.
The square δ2

W of the anti-invariant δW (2.7) is an invariant. We call
it the discriminant of W and denote by ∆W . The discriminant divisor
is defined by ∆W = 0. The discriminant locus in SW,C is given by

(2.9.4) DW,C := {t ∈ SW,C | ∆W (t) = 0}.
2.7 Lemma 2. implies i) the critical values of the morphism π lie in the
discriminant DW and ii) (πC)−1DW,C =

⋃
α∈R(W ) Hα,C. Therefore,

Fact. 1. Any W -fixed point in VC lies in a reflection hyperplane.
2. The complement of the discriminant locus SW,C\DW,C is the space

of regular (i.e. isotropy free) orbits of the W -action on VC.

Let us express the discriminant ∆W as a polynomial in (P1, · · · , Pl).
Since deg(∆W ) = hl (definition of δW and (2.8.3) ii)) and deg(Pl) = h
((2.8.3) i) and (2.8.4)), ∆W is a polynomial in Pl of degree at most l:

(2.9.5) ∆W = A0P
l
l + A1P

l−1
l + · · ·+ Al

where Ai is a polynomial in P1, · · · , Pl−1 of degree hi. Since ∆W (ξ) 6= 0
and P1(ξ) = · · · = Pl−1(ξ) = 0 for an eigenvector ξ of a Coxeter element
belonging to exp(2π

√−1/h) (use 2.8 Cor.3, 4 and (2.8.4)), one obtains
the next goal of this section and the starting point of the present article:

Lemma. 1. A0 is non-zero. Hence, ∆W is normalized to a monic
polynomial of degree l in Pl and DW has multiplicity l at the origin.

2. The eigenspace of a Coxeter element belonging to the eigenvalue
exp(2π

√−1/h) is mapped by πC to a line P1 = · · · = Pl−1 = 0 in SW,C.
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3. Flat structure

We describe the flat structure, the Frobenius manifold structure and
the associated flat coordinates on the variety SW in detail. The setting
and the notation are the same as in §2, that is: W is a finite reflection
group of a real vector space V and SW is the quotient variety V ∗//W
(recall 2.9). The flat structure is obtained by Fourier transform of the
Levi-Civita connection for the W -invariant form I ([S3], [S6]).

3.1. Logarithmic forms and logarithmic vector fields.
We recall ([S4]) the definition and the basic properties of the mod-

ules of logarithmic forms and vector fields for the variety SW with the
divisor DW = {∆W = 0} (see 2.9). In the sequel, we shall use coordi-
nates P1, · · · , Pl of SW satisfying the degree conditions (2.8.1)-(2.8.5)
by choosing a generator system of the invariants ring S(V )W .

Let DerSW
and Ω1

SW
be the modules of R-derivations of S(V )W and

of 1-forms on SW over R, respectively. They are S(V )W -free modules
of rank l generated by the derivations ∂/∂Pi and by the differentials
dPi (i = 1, · · ·, l), respectively. The logarithmic modules are defined by

(3.1.1)
DerSW

(− log ∆) := {X ∈ DerSW
| X∆W ∈ ∆W S(V )W}

Ω1
SW

(log ∆) := {ω ∈ 1
∆W

Ω1
SW

| dω ∈ 1
∆W

Ω2
SW
}

where d is the exterior differentiation and Ω2
SW

= Ω1
SW

∧ Ω1
SW

. It is
easy to see that DerSW

(− log ∆) is closed under the bracket product
and that dΩ1

SW
(log ∆) ⊂ Ω1

SW
(log ∆) ∧ Ω1

SW
(log ∆).

The natural pairing 〈 · , · 〉 between DerSW
and Ω1

SW
induces the

S(V )W -perfect-pairing: DerSW
(− log ∆) × Ω1

SW
(log ∆) → S(V )W (i.e.

they are S(V )W -dual to each other) ([S4,(1.6) Lemma ii)]).
By identifying the (co-)tangent spaces TxV

∗ or T ∗
xV ∗ at each point

x ∈ V ∗ with V ∗ or with the dual space V , respectively, the W -invariant
forms I∗ and I on V ∗ and V (recall 2.2) induce the S(V )W -bilinear
forms: I∗ : DerSW

×DerSW
→ 1

∆
S(V )W and I : Ω1

SW
×Ω1

SW
→ S(V )W ,

I∗( ∂
∂Pi

, ∂
∂Pj

) = Σpq
∂Xp

∂Pi

∂Xq

∂Pj
I∗( ∂

∂Xp
, ∂

∂Xq
) and I(dPi, dPj) = Σpq

∂Pi

∂Xp

∂Pj

∂Xq

I(dXp, dXq), where X1, · · · , Xl is a linear coordinate system of V .
We now have the following important lemma.

Lemma. The pairings I∗ and I induce S(V )W -perfect pairings:

(3.1.2)
I∗ : DerSW

×DerSW
(− log ∆) → S(V )W

I : Ω1
SW
× Ω1

SW
(log ∆) → S(V )W

This is equivalent to say that one has S(V )W -isomorphisms

(3.1.3)
I∗ : DerSW

' Ω1
SW

(log ∆)
I : Ω1

SW
' DerSW

(− log ∆),
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which make the following diagram commutative:

(3.1.4)
DerSW

(− log ∆) ⊂ DerSW

↑ I ↓ I∗

Ω1
SW

⊂ Ω1
SW

(log ∆)

Proof. We prove only the isomorphism I : Ω1
SW

' DerSW
(− log ∆)

since the other isomorphism I∗ is obtained by taking its S(V )W -dual.
Recall δW such that δ2

W = ∆W 2.7. For any ω ∈ Ω1
SW

, I(ω, dδ) ∈
S(V ) is W -anti-invariant, it is divisible by δ (2.7 Lemma 1). Thus,
I(ω, d∆W ) = 2δW I(ω, dδW ) is divisible by δ2

W , implying I(ω) belongs
to DerSW

(− log ∆). To prove that the images I(dPi) i = 1, · · · , l form
an S(V )W -free basis of DerSW

(− log ∆), it is sufficient to show that the
determinant of their coefficients matrix w.r.t. the basis ∂

∂Pi
i = 1, · · · , l

is a unit multiple of ∆W (due to a theorem [S4,(1.7)Theorem ii)]). This
is true due to 2.7 Lemma2:

(3.1.5)
det ((I(dPi)(Pj))ij) = det ((I(dPi, dPj))ij)

= det
(
( ∂Pi

∂Xp
)ip · (I(Xp, Xq))pq · ( ∂Pj

∂Xq
)jq

)
= cδ2 = c∆W . ¤

Recalling (2.8.5), we have the following definition of Euler operator:

(3.1.6) E := I(dP1) =
∑l

i=1
mi+1

h
Pi

∂
∂Pi

,

3.2. The primitive vector field D and the invariants S(V )W,τ .
We fix a particular vector field: the primitive vector field D ([S3,(2.2)]).

The D is transversal to the discriminant locus (see Note below). This
fact gives the quite important and key role to D in the sequel.

The DerSW
is naturally a graded module since S(V )W is a graded

algebra such that deg(δP ) = deg(δ) + deg(P ) for any homogeneous
δ ∈ DerSW

and P ∈ S(V )W . Due to the maximality deg(Pl) > deg(Pi)
for i = 1, · · · , l − 1 (c.f. 2.8 Corollary 4.), the lowest graded piece of
DerSW

is a vector space of dimension 1 spanned by ∂
∂Pl

. We fix a base

(3.2.1) D := ∂
∂Pl

with the normalization DPl = 1

and call it the primitive vector field or the primitive derivation (see 3.10
for the name). The D is unique, up to a scaling factor, independent of
coordinates. We introduce the subring of S(V )W of D-invariants:

(3.2.2) S(V )W,τ := {P ∈ S(V )W | DP = 0}.
One has S(V )W,τ = R[P1, · · · , Pl−1] and S(V )W = S(V )W,τ [Pl].

Note. The 1-parameter group action exp(tD) on SW is denoted by τt

[S8, (3.1)]. This justifies the notation (3.2.2) since S(V )W,τ = {P ∈
S(V )W | P ◦τt = P ∀t}. The τ -action is transversal to the discriminant
locus DW ([S8, (3.4) Lemma 6], recall also 2.9 Lemma 2.).
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We, further, introduce the “descent” modules of DerSW
and Ω1

SW
:

(3.2.3)
G := {δ ∈ DerSW

| [D, δ] = 0}
F := {ω ∈ Ω1

SW
| LDω = 0}

where LD is the Lie derivative given by 〈LDω, δ〉 = D〈ω, δ〉−〈ω, [D, δ]〉.
These G and F are S(V )W,τ -free modules of rank l with free dual basis

∂
∂P1

, · · · , ∂
∂Pl

and dP1, · · · , dPl, respectively. One has the expressions:

(3.2.4)
DerSW

= G ⊗S(V )W,τ S(V )W ,
Ω1

SW
= F ⊗S(V )W,τ S(V )W .

The G is closed under the bracket product and acts naturally on S(V )W

as derivations. In fact, G is an Abelian extension of DerS(V )W,τ :

(3.2.5) 0 → S(V )W,τD → G → DerS(V )W,τ → 0.

Combining (3.2.4) with (3.1.3), one gets the “descent expressions”:

(3.2.6)
DerSW

(− log ∆) = I(F)⊗S(V )W,τ S(V )W ,
Ω1

SW
(log ∆) = I∗(G)⊗S(V )W,τ S(V )W .

Note. The inclusion: S(V )W,τ ⊂ S(V )W induces the projection

(3.2.7) πW : SW → Spec(S(V )W,τ )

forgetting the last coordinate Pl. By “descent”, we mean that some
geometric structure on SW is a pull-back of that on Spec(S(V )W,τ ).
We do not use explicitly the morphism πW until §5 .

3.3. Metrics J and J∗.
We introduce non-degenerate symmetric bilinear forms J and J∗ on

the tangent and cotangent bundle of SW , respectively. In fact, instead
of introducing S(V )W -bilinear forms on DerSW

and Ω1
SW

, we introduce

their descent S(V )W,τ -bilinear forms on the descent modules G and F .

Definition. The Lie derivative LDI defines a S(V )W,τ -bilinear form:

(3.3.1) J∗ : F × F → S(V )W,τ , ω1 × ω2 → DI(ω1, ω2).

Lemma. The form J∗ is nondegenerate everywhere on SW . That is:
det(J∗(dPi, dPj)ij=1,··· ,l is a non zero constant.

Proof. One has an expression (recall 2.7 Lemma 2 and (2.9.5)):

det ((I(dPi, dPj))ij) = ∆ = A0P
l
l + A1P

l−1
l + · · ·+ Al

where Ai ∈ S(V )W,τ . On the other hand, since deg(I∗(dPi, dPj)) =
mi+mj < 2h (= 2 deg(Pl)) (recall (2.8.4), (2.8.1)), each entry I∗(dPi, dPj)
(as an element of S(V )W ) contains Pl at most linearly. Comparing these
two facts, one obtains det ((DI(dPi, dPj))ij) = A0. But it was shown
in 2.9 Lemma 1. that A0 6= 0. ¤
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The degree of the ij-entries of the matrix expression of J∗ is given by

(3.3.2) deg(J∗(dPi, dPj)) = mi + mj − h.

So, if mi +mj−h < 0 then the entry vanishes. In view of the duality of
the exponents (2.8.2), the matrix is a “skew lower triangular” matrix.

Since J∗ is S(V )W,τ -nondegenerate, it induces S(V )W,τ -isomorphism

J∗ : F ' F∗ = G, J∗(dPi) := J∗(dPi, d·) =
∑l

j=1 J∗(dPi, dPj)
∂

∂Pj
.

By this isomorphism, J∗ induces a S(V )W,τ -symmetric-bilinear form on
the dual module G, which we shall denote by J . That is:

(3.3.3) J : G × G → S(V )W,τ , J(δ1, δ2) := J∗((J∗)−1δ1, (J
∗)−1δ2).

Again, J is a nondegenerate form on G. Due to (3.1.6), one has

(3.3.4) J∗(dP1) = D and J(D) = dP1.

Note. The form J is identified with the residue pairing from a view
point of the primitive form theory [S3] (c.f. (5.2.10)).

We shall show that the metric J is flat, i.e. the curvature for J is
zero. This fact is a part of the flat structure on SW given in 3.8 and
3.9. The following subsections 3.4 - 3.7 are devoted to the preparation.

3.4. Relationship between I and J.
The nondegeneracy of J∗ implies the following quite important de-

composition lemma, which leads to a reconstruction of I from J .

Lemma. One has a direct sum decomposition as S(V )W,τ -module:

(3.4.1) DerSW
= G ⊕DerSW

(− log ∆).

Proof. We prove a more precise formula: for k ∈ Z≥0, one has

(3.4.2) S(V )W
≤k G = G ⊕ S(V )W

≤k−1I(F),

where S(V )W
≤k := {P ∈ S(V )W | Dk+1P = 0} (k ∈ Z≥−1) is the module

of polynomials in Pl of coefficients in S(V )W,τ of degree ≤ k.

Recall (3.1.3) that I(dPi) =
∑l

i=1 I(dPi, dPj)
∂

∂Pj
(i = 1, · · · , l) form

S(V )W -basis of DerSW
(− log ∆). Furthermore, the coefficient I(dPi, dPj)

is at most linear in Pl and [D, I(dPi)] (i = 1, · · · , l) are linearly inde-
pendent over S(V )W,τ (non-degeneracy of J∗).

We prove G ∩ DerSW
(− log ∆) = {0}: if δ =

∑l
i=1 eiI(dPi) ∈ G

for ei ∈ S(V )W
≤k then we prove ei = 0 by induction on k. The case

k = −1 is true by definition S(V )W
≤−1 = 0. Suppose k ≥ 0. By

assumption δ ∈ G, one has 0 = ad(D)k+1δ =
∑l

i=1

∑k+1
j=0 C(k + 1, j)

(Djei)(ad(D)k+1−jI(dPi)) where all terms except for j = k vanishes.

So, we obtain (k + 1)
∑l

i=1(D
kei)[D, I(dPi)] = 0. Then the linear
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independence of [D, I(dPi)] implies the vanishing of the coefficients
Dkei. So, ei ∈ S(V )W

≤k−1 and the induction applies.
The LHS of (3.4.2) includes RHS since I(dPi) is at most linear in Pl.

We prove the opposite inclusion relation by an induction on k. Case
k = 0 is clear (note S(V )W

≤−1 = {0} and S(V )W
≤0 = S(V )W,τ ). Let

δ =
∑l

i=1 fi
∂

∂Pi
∈ S(V )W

≤kG for k > 0, where the coefficient of P k
l in fi

is denoted by f
(k)
i . One can find gj ∈ S(V )W,τ (j = 1, · · · , l) such that

f
(k)
i =

∑l
j=1 J∗(dPi, dPj)gj. Then δ − P k−1

l

∑l
j=1 I(dPj)gj belongs to

S(V )W
≤k−1G, so that one applies the induction hypothesis. ¤

The next corollaries shall be used in §4 to lift G to the normalization
of the discriminant DW . First, note that the ideal (∂∆) := DerSW

·∆
in S(V )W contains the ideal (∆) since E∆ = hl∆.

Corollary. 1. The expression G ' DerSW
/DerSW

(− log ∆) gives on G
a S(V )W -module structure of homological dimension ≤ 1.

2. The correspondence δ ∈ G 7→ δ∆ induces a S(V )W -isomorphism:

(3.4.3) G ' (∂∆)/(∆).

Proof. 1. Trivial. 2. Surjectivity: Due to the decomposition (3.4.1),
one has DerSW

·∆ = G ·∆ + (∆), which implies the surjectivity.
Injectivity: Suppose δ ∈ G is mapped to 0. This means δ∆ ∈ (∆)

and δ ∈ DerSW
(− log ∆). The direct sum (3.4.1) implies δ = 0. ¤

Denote by Pl∗ the multiplication of Pl ∈ S(V )W on G. Define

(3.4.4) w : G → DerSW
(− log ∆), w(δ) := Plδ − Pl ∗ δ ∈ I(F).

So, the decomposition (3.4.2) of the element Plδ for δ ∈ G is given by

(3.4.5) Plδ = Pl ∗ δ + w(δ).

Assertion. i) w(δ) is the unique element in DerSW
(− log(∆)) with

(3.4.6) [D, w(δ)] = δ.

ii) The w maps S(V )W,τ -free basis of G to S(V )W -free basis of DerSW
(− log(∆))

(e.g. w(D) = E, c.f. (3.1.6) and (3.3.4)).

Proof. i) The w(δ) obviously satisfies (3.4.6). If w1, w2 ∈ DerSW
(− log ∆)

satisfies [D, w1] = [D, w2]. Then w1 − w2 ∈ G and is 0 by (3.4.1).
ii) Due to i), one has w(J∗(dPi)) = I(dPi). ¤

Lemma. For ω ∈ F and for δ1, δ2 ∈ G, one has the formulae

(3.4.7) I(ω) = w(J∗(ω)) and J(δ1, δ2) = I∗(w(δ1), δ2)

For a S(V )W,τ -basis δ1, · · · , δl and its J-dual basis δ∗1, · · · , δ∗l , one has

(3.4.8) I =
∑l

i=1 δi ⊗ w(δ∗i ).
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Proof. By definition of J∗ (3.3.1), one has J∗(ω) = LDI(ω) = [D, I(ω)].
Then applying the characterization (3.4.6), one gets the first formula
of (3.4.7). Using this, the second formula of (3.4.7) is calculated as:
I∗(w(δ1), δ2) = I∗(w(J∗Jδ1), δ2) = I∗(IJδ1, δ2) = J(δ1, δ2).

The coupling of the first tensor factor of RHS of (3.4.8) with ω ∈ F
is given by

∑l
i=1 δi(ω) ·w(δ∗i ) = w(

∑l
i=1 δi(ω) · δ∗i ) = w(J∗(ω)) = I(ω),

which is equal to the coupling of ω ∈ F with LHS of (3.4.8). ¤
3.5. The Levi-Civita connection ∇ on DerSW

.
The Levi-Civita connection attached to the metric I∗ 3 induces a

connection ∇ on DerSW
which is singular along the discriminant. We

describe the singularity of ∇ in terms of logarithmic vector fields.

First we list up the properties, which should be satisfied by ∇.
i) ∇ : DerSW

×DerSW
→ DerSW

(∗∆) (= the localization of DerSW
by

∆) is a covariant differentiation. That is: ∇δ1δ2 for δ1, δ2 ∈ DerSW
is

S(V )W -linear in δ1 and additive in δ2 satisfying the Leibniz rule:

(3.5.1) ∇δ1(Pδ2) = (δ1P )δ2 + P (∇δ1δ2) (P ∈ S(V )W ).

ii) ∇ preserves I∗: ∇I∗ = 0. That is: for δ1, δ2, δ3 ∈ DerSW
one has

(3.5.2) δ1I
∗(δ2, δ3) = I∗(∇δ1δ2, δ3) + I∗(δ2,∇δ1δ3).

iii) ∇ is torsion free. That is: for δ1, δ2 ∈ DerSW
one has

(3.5.3) ∇δ1δ2 −∇δ2δ1 = [δ1, δ2].

The ∇ is determined uniquely by i),ii) and iii) by the formula:

(3.5.4)
2I∗(∇δ1δ2, δ3) = +δ1I

∗(δ2, δ3) + δ2I
∗(δ3, δ1)− δ3I

∗(δ1, δ2)
−I∗(δ1, [δ2, δ3]) + I∗(δ2, [δ3, δ1]) + I∗(δ3, [δ1, δ2])

for δ1, δ2, δ3 ∈ DerSW
. Conversely, the (3.5.4) defines a connection ∇

satisfying i), ii) and iii): the Levi-Civita connection attached to I∗.
Using properties of logarithmic vector fields in 3.1, one checks that

RHS of (3.5.4) belongs to S(V )W if two of δ1, δ2 and δ3 are logarithmic.
This means that the domain and the range of ∇ can be chosen as

∇ :





DerSW
×DerSW

(− log(∆)) → DerSW
,

DerSW
(− log(∆))×DerSW

→ DerSW
,

DerSW
(− log(∆))×DerSW

(− log(∆))
→ DerSW

(− log(∆)).

(3.5.5)

For short, we say that the connection ∇ has logarithmic singularities.
In particular, the second line implies that the connection form for ∇
belongs to End(DerSW

) ⊗ Ω1
SW

(log(∆)), i.e. the connection form for

3 There is an unfortunate disagreement on the notation I and I∗ between [S3]
and [S6]. We employed notation of [S6] since it agree with that of root systems.



14 KYOJI SAITO

∇ as the connection on the tangent bundle of SW has the logarithmic
pole along the discriminant. We shall not use this fact explicitly.
iv) ∇ is integrable: ∇2 = 0. That is: for δ1, δ2, δ3 ∈ DerSW

(3.5.6) ∇δ1∇δ2δ3 −∇δ2∇δ1δ3 = ∇[δ1,δ2]δ3.

(Proof. This can be seen by extending the domain and range of ∇
to DerV (∗∆) =

∑l
i=1 S(V )∆

∂
∂Xi

(such extension exists as the metric

connection on DerV ). Then RHS of (3.5.4) vanishes by the substitution
of δ1, δ2, δ3 by ∂

∂Xi
, ∂

∂Xj
and by ∂

∂Xk
. This implies ∇ ∂

∂Xi
= 0 for i =

1, · · · , l. Expressing DerSW
⊂ ∑l

i=1 S(V )∆
∂

∂Xi
, we obtain the result.)

3.6. Key Lemma.
We want to show that the action of ∇D is invertible on DerSW

. This
is achieved by showing an isomorphism∇D : DerSW

(− log ∆) ' DerSW

and taking its inverse map in 3.8. For this end, we give a key lemma:

Lemma. 1. The ∇δ for δ ∈ G maps I(F) into G⊕I(F). Furthermore,
∇D induces an S(V )W,τ -isomorphism:

(3.6.1) ∇D : I(F) ' G.

2. The image of the basis I(dPi) ∈ I(F) (i = 1, · · · , l) is given by

(3.6.2)
∇DI(dPi)

=
∑l

j=1

(
h+mi−mj

2h
J∗(dPi, dPj) +

∑l−1
k=1

mk+1
2h

(DAk
ij)Pk

)
∂

∂Pj
.

Here DAk
ij is an element of S(V )W,τ given by

(3.6.3) DAk
ij =

∑l
p,q=1(JipJjq − JjpJiq)

∂
∂Pq

Jpk

with Jij := J∗(dPi, dPj) and J ij := J( ∂
∂Pi

, ∂
∂Pj

). One has

(3.6.4) ∇DE = 1
h
D.

Proof. 1. Let δ ∈ G. Because of (3.5.5), we know that ∇δ(I(F)) ⊂
DerSW

. In view of (3.2.6), it is sufficient to prove I∗(∇δ(I(F)), I(F)) ⊂
S(V )W

≤1 in order to prove ∇δ(I(F)) ⊂ G ⊕ I(F) = G ⊗S(V )W,τ S(V )W
≤1.

So, for U, V ∈ S(V )W , by using (3.5.4), we calculate

2I(∇δI(dU), I(dV ))
= +δI(dU, dV ) + I(dU)δV − I(dV )δU

−I∗(δ, [I(dU), I(dV )]) + [I(dV ), δ]U + [δ, I(dU)]V

Developing the last two brackets, one cancels the second and the third
terms in the RHS. By eliminating I and I∗ in the LHS, one obtains:

(3.6.5) 2 〈∇δI(dU), dV 〉 = δI(dU, dV )− I∗(δ, [I(dU), I(dV )]).
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In particular, for U = Pi and V = Pj, one obtains

((3.6.5)∗) 2 〈∇δI(dPi), dPj〉 = δI(dPi, dPj)−
∑l

k=1 Ak
ij · δPk

where Ak
ij shall be defined in the formula (3.6.6) and the above formula

is calculated since one has I(δ, [I(dPi), I(dPj)]) =
∑l

k=1 Ak
ij · δPk.

Since the module of logarithmic vector fields are closed under bracket
product 3.1, there exists Ak

ij ∈ S(V )W for i, j, k = 1, · · · , l such that

(3.6.6) [I(dPi), I(dPj)] =
∑l

k=1 Ak
ijI(dPk).

Since the degree in Pl of the coefficients in LHS is at most 2, the Ak
ij

in the RHS has degrees in Pl at most 1 (recall (3.4.2)). Thus the RHS
of (3.6.5)∗ has degree in Pl at most 1. This proves the first half of 1.

In order to prove∇D(I(F)) ⊂ G, we show 〈∇D(I(F)),F〉 ⊂ S(V )W,τ .
Substitute δ by D in (3.6.5)∗, and one has

(*) 2 〈∇DI(dPi), dPj〉 = J∗(dPi, dPj) − Al
ij.

Therefore, we have only to show Al
ij ∈ S(V )W,τ for i, j = 1, · · · , l.

Apply the both hand side of (3.6.6) to the invariant P1 of lowest de-
gree (2.8.5). Recalling (3.1.6), the LHS gives h[I(dPi), I(dPj)]P1 =
I(dPi)((mj + 1)Pj) − I(dPj)((mi + 1)Pi) = (mj −mi)I(dPi, dPj) and

the RHS gives h
∑l

k=1 Ak
ij(mk + 1)Pk. So, one gets an equality:

(**) (mj −mi)I(dPi, dPj) =
∑l

k=1 Ak
ij(mk + 1)Pk.

Apply D2 to (∗∗). Since LHS vanishes and D2Ak
ij = 0, one obtains

0 = DAl
ij(ml + 1). That is: Al

ij ∈ S(V )W,τ and ∇D(I(dPi)) ∈ G.
2. Apply D once to (∗∗) and noting ml +1 = h, one has the equality:

(3.6.7) Al
ij =

mj−mi

h
J∗(dPi, dPj)−

∑l−1
k=1

mk+1
h

(DAk
ij)Pk.

Combining (3.6.7) with (∗), one obtains the formula (3.6.2).
Since ∇D is a S(V )W,τ -homomorphism, in order to show the isomor-

phy (3.6.1), it is sufficient to show the non-degeneracy of the matrix
M = (Mij)

l
ij=1, where Mij is the coefficient of ∂

∂Pj
of the RHS of (3.6.2).

First, one notes that the weighted degree of Mij is mi +mj −h (3.3.2).

So, det(M) should be of degree
∑l

i=j=1(mi + mj − h) = 0, and hence,

det(M) is a constant. Thus, the positive degree entries of M has no
contributions to det(M) and, hence, one may calculate the determi-

nant modulo the maximal ideal S(V )W,τ
+ in S(V )W,τ . So, the second

term in (3.6.2) (containing the positive weighted factor Pk) can be ig-

nored. Also, J∗(dPi, dPj) ≡ 0 modulo S(V )W,τ
+ , if mi + mj 6= h. The

remaining are only ij-entries of the matrix (
h+mi−mj

2h
J∗(dPi, dPj)) for
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mi +mj = h. Then the factor
h+mi−mj

2h
in the ij-entry is mi

h
. Therefore,

det(M) = (
∏l

i=1
mi

h
) det ((J∗(dPi, dPj))ij) 6= 0 (c.f. 3.3 Lemma).

Finally, let us prove (3.6.3). Take the pairing of the vector field
(3.6.6) with a form dPp for a 1 ≤ p ≤ l. So, we obtain:

I(dPi, dI(dPj, dPp))− I(dPj, dI(dPi, dPp)) =
∑l

k=1 Ak
ijI(dPk, dPp).

This is of degree at most 2 in Pl. Apply D2 and one obtains

(3.6.8)
∑l

q=1 Jiq
∂

∂Pq
Jjp −

∑l
q=1 Jjq

∂
∂Pq

Jip =
∑l

k=1(DAk
ij)Jkp

Multiply Jpm and sum for p = 1, · · · , l. Since
∑l

p=1 JjpJ
pm = δm

j (Kro-

necker’s delta), one replaces
∑l

p=1(
∂

∂Pq
Jjp)J

pm by −∑l
p=1 Jjp(

∂
∂Pq

Jpm).

Finally, replacing the index m by k, one gets (3.6.3). The (3.6.4) is
obtained by substituting i = 1 in (3.6.2) and applying (3.1.6). ¤
Note. These Ak

ij and DAk
ij depend on a choice of the coordinate system

P1, · · · , Pl. In particular, DAk
ij = 0 if all Jij are constant (c.f. (3.6.3)).

This occurs if P1, · · · , Pl is a flat coordinate system (c.f. 3.11).

3.7. Star product ∗, connection ∇/ and exponent N .
As consequences of 3.6 Lemma, we introduce some structures on G.

They shall form building blocks of the flat structure in 3.9.

1. Star product ∗ and Connection ∇/.
One has a bilinear map: G × G → G ⊕ ∇−1

D G by letting δ1, δ2 7→
∇δ1∇−1

D δ2 (use 3.6 Lemma 1). Then, by decomposing the image into
the direct summands as:

(3.7.1) ∇δ1∇−1
D δ2 = δ1 ∗ δ2 +∇−1

D ∇/δ1δ2,

we introduce two binary operations:

∗ : G × G → G,(3.7.2)

∇/ : G × G → G.(3.7.3)

We give two direct consequences of the definition. A complete list of
properties of ∗ and ∇/ (and of N defined below) shall be given in 3.9.

i) The ∗ is S(V )W,τ -bilinear and, so, is regarded as a distributive
product structure on G. The primitive vector field D is the (left) unit.

(3.7.4) D ∗ δ = δ.

Using (3.2.4), we extend the ∗ to a S(V )W -algebra structure on DerSW
.

ii) The ∇/δ1δ2 is a covariant differentiation of δ2 by δ1. One has

(3.7.5) ∇/Dδ ≡ 0 for δ ∈ G.

By the extension (3.2.4), one may regard ∇/ as a connection on DerSW
.
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2. Exponent map N .
Recall the principal part w(δ) of Plδ for δ ∈ G (see (3.4.4) and

(3.4.5)). We introduce a S(V )W,τ -endomorphism N of G by the com-
position:

(3.7.6) N : G → G , N(δ) := ∇D(w(δ)).

and call it the exponent map (in analogy with Fuchsian type equations).
By a use of N , the decomposition formula (3.4.5) is rewritten as

(3.7.7) Pl δ = Pl ∗ δ + ∇−1
D N(δ).

iii) The exponent map N is independent of choices of Pl and D.

Proof. One has to check that the changes D 7→ cD and Pl 7→ c−1Pl + g
for c = const. 6= 0 and g ∈ S(V )W,τ may not cause a change of N . ¤
Lemma. The eigenvalues of the exponent map N are mi

h
i = 1, · · · , l.

Proof. Combining (3.7.6) with (3.4.7) and (3.6.2), one calculates:

N(J∗(dPi)) = ∇D(w(J∗(dPi))) = ∇DI(dPi) = mi

h
J∗(dPi)

+
∑l

j=1

(
h−mj−mi

2h
J∗(dPi, dPj) +

∑l−1
k=1

mk+1
2h

(DAk
ij)Pk

)
∂

∂Pj
.

Coefficients of ∂
∂Pj

in the RHS consist only of positively graded terms

(since the degree of J∗(dPi, dPj) equals to 0 if and only if mj + mi = h
(3.3.2)). This implies that N−diag[mi

h
]li=1 is nilpotent: the eigenvalues

of N coincide with that of the diagonal matrix diag[mi

h
]li=1. ¤

3.8. Fourier transformation (gravitational descendent).
We transform the S(V )W,τ [Pl]-free-module DerSW

to a S(V )W,τ [D−1]-
free-module. This is a formal Fourier-Laplace transformation (called
the gravitational descendent in the topological field theory).

Theorem. 1. The covariant derivative ∇D with respect to the primi-
tive vector field D induces a S(V )W,τ -isomorphism

(3.8.1) ∇D : DerSW
(− log ∆)

∼−→ DerSW
.

Therefore, ∇−1
D is a well-defined S(V )W,τ -endomorphism of DerSW

.
2. The correspondence

∑
k(∇D)−kδk 7→

∑
k D−k ⊗ δk (δk ∈ G and is

= 0 except for finite number of k ∈ Z≥0) gives isomorphisms:

(3.8.2)
DerSW

' Z[D−1]⊗ G and
DerSW

(− log ∆) ' D−1Z[D−1]⊗ G
as S(V )W,τ [D−1]-modules, where Z[D−1] is the polynomial ring with the
indeterminate D−1 which commutes with the elements of S(V )W,τ .

3. The left-multiplication of Pl and the covariant differentiation ∇δ

with respect to δ ∈ G on the RHS of (3.8.2) are given as follows.
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(3.8.3) Pl(D
−k ⊗ δ) = D−k ⊗ (Pl ∗ δ) + D−k−1 ⊗ (N(δ) + kδ)

(3.8.4) ∇δ1(D
−k−1 ⊗ δ2) = D−k ⊗ (δ1 ∗ δ2) + D−k−1 ⊗∇/δ1δ2.

The D−kZ[D−1]⊗ G for k ∈ Z≥0 is a S(V )W -free module of rank l.

Proof. 1. and 2. Let us prove by induction on k ∈ Z>0 the following:

A(k): There exists a sequence G0, · · · ,Gk of S(V )W,τ -free submodules
of DerSW

of rank l such that S(V )W
≤iG = G0⊕· · ·⊕Gi, S(V )W

≤i−1I(F)
= G1 ⊕ · · · ⊕ Gi and ∇D : Gi ' Gi−1 for i = 1, · · · , k.

A(1) is proven by (3.6.1). Assume A(k) for k ≥ 1. Put Gk+1 :=
{δ ∈ S(V )W

≤kI(F) | ∇D(δ) ∈ Gk}. In the following i)-iv), we prove that
G0, · · · ,Gk,Gk+1 satisfies the conditions for A(k+1).

i) (G1⊕· · ·⊕Gk)∩Gk+1 = {0}. Suppose δ were non-trivial element of
LHS. Then, by induction hypothesis, ∇Dδ ∈ G0 ⊕ · · · ⊕ Gk−1 and 6= 0.
This contradicts to the facts ∇Dδ ∈ Gk ∩ G0 ⊕ · · · ⊕ Gk−1 = {0}.

ii) G1 ⊕ · · · ⊕ Gk and Gk+1 generates S(V )W
≤kI(F). Let δ be any

element of S(V )W
≤kI(F). Using (3.4.2) and 3.6 Lemma, one observes

∇Dδ ∈ S(V )W
≤kG. By the induction hypothesis, one can find δ′ ∈

G1 ⊕ · · · ⊕ Gk so that ∇D(δ − δ′) ∈ Gk. This means δ − δ′ ∈ Gk+1.
iii) The above i) and ii) implies: S(V )W

≤kI(F) = G1⊕ · · ·⊕Gk⊕Gk+1

and then, by a use of (3.4.2), S(V )W
≤k+1G = G0 ⊕ · · · ⊕ Gk ⊕ Gk+1.

iv) ∇D : Gk+1 → Gk is bijective. We prove this in two steps:
a) to construct a S(V )W,τ -isomorphism wk : Gk → Gk+1,
b) to show that ∇D · wk is an S(V )W,τ -isomorphism of Gk.
a) For δi ∈ Gi 0 ≤ i ≤ k , put wi(δi) := the projection of Pl δi ∈

S(V )W
≤i+1G to the component Gi+1 (w.r.t. the decomposition in iii)).

In view of (3.4.2), wi is a S(V )W,τ -isomorphism: Gi ' Gi+1.
b) By the induction hypothesis, one has the isomorphism: ∇i

D : Gi '
G0 = G for 0 ≤ i ≤ k. By a use of this isomorphism, let us show that
wi(∇−i

D (δ)) = Pl∇−i
D (δ)−∇−i

D (Pl∗δ) for δ ∈ G by induction on 0 ≤ i ≤ k
(ie. one has to show that the RHS belongs to Gi+1). For the pur-
pose, it is sufficient to show a formula: ∇D

(
Pl∇−i

D (δ)−∇−i
D (Pl ∗ δ)

)
=

∇−i
D ((N + i)(δ)) for 0 ≤ i ≤ k. But this is shown by induction

on i, where the case i = 0 is the formula (3.7.7). Then for i ≥ 1,
∇D

(
Pl∇−i

D (δ)−∇−i
D (Pl ∗ δ)

)
= ∇−i

D (δ) + Pl∇−i+1
D (δ)−∇−i+1

D (Pl ∗ δ) =

∇−i
D ((N + i)(δ)). On the other hand, N is an endomorphism of G

whose eigenvalues are non-negative rational numbers (3.7 Lemma). So,
∇D ·wi = ad(∇i

D)(N + i) is an invertible endomorphism of Gi. In par-
ticular, the case for i = k proves the isomorphism in iv). Thus A(k)
for k ∈ Z>0 is proven. This, in particular, implies the isomorphism
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(3.8.1). Then, as a consequence, the subspaces Gk are unique since
G0 = G, G1 = I(F) and Gk−1 = ∇D(Gk) for k ∈ Z>0.

3. For the case k = 0, use (3.7.7) and (3.7.1). Then, a successive
applications of∇−1

D with the rule: [∇D, Pl] = 1 and [∇D,∇δ] = 0 for δ ∈
G (use the definitions (3.2.1) and (3.2.3) of D and G, respectively, and
the integrality (3.5.6) of∇) implies the formulae (3.8.3) and (3.8.4). ¤

Note. 1. The formula (3.6.4) implies E = 1
h
D−1⊗D. Since E = w(D)

(3.4 Assertion ii)), this means N(D) = 1
h
D. That is:

Fact. The D is an eigenvector of N of the eigenvalue 1
h
.

2. (3.8.3) and (3.8.4) decompose into two left-multiplicative formulae:

(3.8.3)∗ Pl D−k = D−kPl + kD−k−1 for k ∈ Z
Pl δ = Pl ∗ δ + D−1 ⊗N(δ) for δ ∈ G

(3.8.4)∗ ∇δD
−k = D−k∇δ for k ∈ Z and δ ∈ G

∇δ1δ2 = D ⊗ (δ1 ∗ δ2) +∇/δ1δ2 for δ1, δ2 ∈ G.

3. Filtration D−kZ[D−1]⊗ G for k ∈ Z is identified with the Hodge
filtration attached to the universal unfolding of simple singularities [S3]
(c.f. §5). They can be also interpreted as the sequence of modules of
vector fields having higher order contact with the discriminant [Te][Yo].

3.9. Flat structure.
Recall that SW := Spec(S(V )W ) is the quotient variety of a vector

space V by a finite reflection group W (with a W -invariant symmetric
bilinear form I∗ on V ). On SW , we have introduced several structures
and objects such as D,E, J, Pl∗, w, ∗,∇/ and N (3.1-3.7). In this para-
graph, we clarify the relationships among them and reduce them to
some basic ones. Regarded as a differential geometric structure on SW ,
we call them altogether the flat structure on SW (see [S3] and [S6]).
First, we recall once again the above mentioned structures and objects.

1. The primitive vector field D on SW (3.2.1). Using D, we reduce
the coefficient S(V )W to the subring S(V )W,τ (3.2.2) and the tangent
sheaf DerSW

of SW to a Lie algebra G (3.2.3) S(V )W,τ -free of rank l.
2. The Euler vector field E (3.1.6) attached to the graded ring struc-

ture on S(V )W . It is normalized as LE(D) = −D and LE(I) = − 2
h
I.

3. The nondegenerate symmetric bilinear form J (3.3.3) on G, defined
as the dual form of J∗ := LD(I) (3.3.1).

4. The S(V )W = S(V )W,τ [Pl]-module structure on G (3.4.3) and the
attached section w : G → DerSW

(− log ∆) (3.4.4).
5. The graded S(V )W,τ -algebra structure ∗ on G (3.7.2).
6. The covariant differentiation ∇/ : G × G → G (3.7.3).
7. The exponent map N := ∇Dw ∈ EndS(V )W,τ (G) (3.7.6).
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We shall show in the next theorem the following reductions:
a) The 4. and 5. are unified and strengthened to a S(V )W -algebra

structure on G (Theorem I.1 and (3.9.7)).
b) The section w is given by E∗ (Theorem I.6).
c) The ∇/ is the Levi-Civita connection of J (Theorem I.3).
d) The map N is given by −∇/E + 1+h

h
idG (Theorem I.9).

Thus, after these reductions, w,∇/ and N become superfluous, and what
remains as the basic ingredients of the flat structure are the vector fields
D and E, a flat metric J and the S(V )W -algebra structure ∗.
Theorem. (Flat structure.) One has the relations I.1-I.9 among D, E,
J, Pl∗, w, ∗,∇/ and N (where, δ, δ1, δ2, δ3 are arbitrary elements in G).

I.1. The product ∗ and the S(V )W -module structure Pl∗ on G together
define a commutative and associative algebra structure over S(V )W .

I.2. The primitive vector field D is a) the unit element of the algebra,
b) horizontal w.r.t. ∇/, i.e. ∇/D = 0 and c) an eigenvector for N .

I.3. The ∇/ is the Levi-Civita connection for the metric J , which is
integrable. That is: the J is a flat metric and the ∇/ has the properties

i) the torsion freeness of ∇/: ∇/δ1δ2 −∇/δ2δ1 = [δ1, δ2],
ii) the horizontality of J with respect to connection ∇/: ∇/J = 0,
iii) the integrability of ∇/: ∇/δ1∇/δ2 −∇/δ2∇/δ1 = ∇/[δ1,δ2].

I.4. The ∇/∗ is a symmetric (3,1)-tensor. That is:

(3.9.1) T (δ1, δ2, δ3) := ∇/δ1(δ2 ∗ δ3)− (∇/δ1δ2) ∗ δ3 − δ2 ∗ (∇/δ1δ3)

is a symmetric S(V )W,τ -tri-linear form in δ1, δ2, δ3 (values in G).
I.5. The product ∗ is self-adjoint with respect to J . That is:

(3.9.2) J(δ1, δ2 ∗ δ3) = J(δ1 ∗ δ2, δ3).

I.6. Let us extend the domain of the product ∗ from G to DerSW
by a

use of (3.2.4) S(V )W -linearly. Then the section w is given by

(3.9.3) w(δ) = E ∗ δ.

I.7. Let us extend the domain of ∇/ from G to DerSW
by a use of

(3.2.4) and Leibniz rule. Then the exponent map N is given by

(3.9.4) N(δ) = −∇/δE + 1+h
h

δ.

I.8. The N is horizontal with respect to the connection ∇/. That is:

(3.9.5) ∇/N = 0.

I.9. Let N∗ be the adjoint action of N with respect to J (i.e. J(N(δ1), δ2) =
J(δ1, N

∗(δ2))). Then, one has the duality formula:

(3.9.6) N + N∗ = 1.
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Proof. A guiding principle of the proof: We develop in powers of D−1

the properties of the connection ∇ using (3.8.3) and (3.8.4). The term-
wise equality (due to the uniqueness (3.8.2)) yields the seeked results.

a) Consider the torsion-free condition of ∇: for δ1, δ2 ∈ G
∇δ1(D

−1 ⊗ δ2)−∇δ2(D
−1 ⊗ δ1) = D−1 ⊗ [δ1, δ2].

By a use of (3.8.4), the LHS is δ1 ∗ δ2 − δ2 ∗ δ1 +
(∇/δ1δ2 −∇/δ2δ1

)
D−1.

The constant term implies the commutativity of ∗ (I.1). This and
the left-unitness (3.7.4) imply D is the unit of the ∗-algebra (I.2 a)).

The linear term implies the torsion-freeness of ∇/ (I.3. i)). This and
∇/DG = 0 (3.7.5) imply that the horizontality of D (I.2 b)).

That D is an eigenvector of N is shown in 3.8 Note 1. Fact. (I.2 c)).

b) Consider the integrability condition of ∇: for δ1, δ2, δ3 ∈ G
(∇δ1∇δ2 −∇δ2∇δ1) δ3D

−2 = ∇[δ1,δ2]δ3D
−2

By a use of (3.8.4), the LHS becomes

δ1 ∗ (δ2 ∗ δ3)− δ2 ∗ (δ1 ∗ δ3) +
(∇/δ1(δ2 ∗ δ3)−∇/δ2(δ1 ∗ δ3)

+δ1 ∗ ∇/δ2δ3 − δ2 ∗ ∇/δ1δ3

)
D−1 +

(∇/δ1∇/δ2δ3 −∇/δ2∇/δ1δ3

)
D−2.

The RHS is [δ1, δ2] ∗ δ3D
−1 +∇/[δ1,δ2]δ3D

−2.
The constant terms imply the associativity of ∗ (I.1).
The quadratic terms imply integrability of ∇/ (I.3. iii)).
The linear terms imply a relation: for δ1, δ2, δ3 ∈ G

1) ∇/δ1(δ2 ∗ δ3)−∇/δ2(δ1 ∗ δ3) + δ1 ∗ ∇/δ2δ3 − δ2 ∗ ∇/δ1δ3 = [δ1, δ2] ∗ δ3.

This means T (δ1, δ2, δ3) = T (δ2, δ1, δ3), where T (δ1, δ2, δ3) is the tensor
(3.9.1). Since T (δ1, δ2, δ3) = T (δ1, δ3, δ2) by definition, I.4 is shown.

c) Recall the Leibniz rule for ∇: for δ1, δ2 ∈ G
∇δ1(Pl∇−1

D δ2) = (δ1Pl)∇−1
D δ2 + Pl∇δ1∇−1

D δ2.

By a use of (3.8.3), the LHS and RHS are developed in

δ1 ∗(Pl ∗δ2)+
(∇/δ1(Pl ∗δ2)+δ1 ∗(N +1)(δ2)

)
D−1 +∇/δ1(N +1)(δ2)D

−2,

Pl∗(δ1∗δ2)+
(
(δ1Pl)δ2+N(δ1∗δ2)+Pl∗(∇/δ1δ2)

)
D−1+(N+1)(∇/δ1δ2)D

−2,

respectively. The constant terms give the equality:

(3.9.7) Pl ∗ (δ1 ∗ δ2) = δ1 ∗ (Pl ∗ δ2).

This means that the S(V )W -module structure on G was in fact a S(V )W -
algebra structure. We note that the following are equivalent:

i) The multiplication Pl∗ defines a S(V )W -algebra structure on G.
ii) There exists an element [Pl] ∈ G such that Pl ∗ δ = [Pl] ∗ δ.
iii) The section w is given by w(δ) = E ∗ δ for δ ∈ G.
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(Proof. i) ⇒ ii): Substitute δ2 by D and put [Pl] := Pl ∗ D. ii) ⇒
i): Due to the associativity of ∗. ii) ⇒ iii): E ∗ δ = w(D) ∗ δ =
(PlD−Pl ∗D)∗δ = Plδ−Pl ∗δ = w(δ). iii) ⇒ ii): Pl ∗δ = Plδ−w(δ) =
Plδ − E ∗ δ = Plδ − (PlD − Pl ∗D) ∗ δ) = (Pl ∗D) ∗ δ. ¤)

Therefore, the I.6 (3.9.3) is also shown.
The quadratic terms imply the horizontality of N (I.7. (3.9.5)).
The linear terms give an equality:

2)
N(δ1 ∗ δ2)− δ1 ∗ (N + 1)(δ2)

= ∇/δ1(Pl ∗ δ2)− (δ1Pl)δ2 − Pl ∗ (∇/δ1δ2).

Specializing this for δ2 = D and noting the fact ∇/D = 0, one obtains

N(δ) = −(δPl)D +∇/δ([Pl]) + δ ∗ (1 + N)(D) = −∇/δE + (1 + 1
h
)δ.

This proves (3.9.4). Using (3.9.4), the equality 2) is rewritten as:

3)
T (δ1, δ2, [Pl]) = 1

h
δ1 ∗ δ2 + N(δ1 ∗ δ2)− δ1 ∗N(δ2)− δ2 ∗N(δ1)

= −δ1 ∗ δ2 −∇/δ1∗δ2E + δ1 ∗ ∇/δ2E + δ2 ∗ ∇/δ1E.

Using the symmetry T (δ1, δ2, [Pl]) = T ([Pl], δ1, δ2) (I.4), this reduces to
the homogeneity of ∗-produce: [E, δ1∗δ2]−δ2∗[E, δ1]−δ1∗[E, δ2]=δ1∗δ2.

d) For δ1, δ2 ∈ G, using w (3.4.4) and applying (3.4.7), one has

4) I∗(w(δ1), w(δ2))=I∗(Plδ1−Pl∗δ1, w(δ2))=PlJ(δ1, δ2)−J(Pl∗δ1, δ2).

Apply D to BHS of 4). Using (3.7.6) and (3.4.7), the LHS is equal to

I∗(∇Dw(δ1), w(δ2)) + I∗(w(δ1),∇Dw(δ2))
= I∗(N(δ1), w(δ2)) + I∗(w(δ1), N(δ2)) = J(N(δ1), δ2) + J(δ1, N(δ2)).

The RHS is equal to J(δ1, δ2). This implies the duality (3.9.6).

e) We show the horizontality of J (I.3.ii)). Let us apply δ ∈ G to the
both hand sides of 4) in d). Using (3.7.7), (3.7.1), (3.9.5) and apply 4)
again for ∇/δδ1 and δ2,...etc., LHS is calculated as

δI∗(w(δ1), w(δ2)) = I∗(∇δ∇−1
D N(δ1), w(δ2)) + I∗(w(δ1),∇δ∇−1

D N(δ2))

= I∗(δ ∗N(δ1) +∇−1
D (∇/δN(δ1)), w(δ2))

+ I∗(w(δ1), δ ∗N(δ2) +∇−1
D (∇/δN(δ2)))

= J(δ ∗N(δ1), δ2) + I∗(∇−1
D (N(∇/δδ1), w(δ2))

+ J(δ1, δ ∗N(δ2)) + I∗(w(δ1),∇−1
D (N(∇/δδ2))

= J(δ ∗N(δ1), δ2) + I∗(w(∇/δδ1), w(δ2))

+ J(δ1, δ ∗N(δ2)) + I∗(w(δ1), w(∇/δδ2))

= J(δ ∗N(δ1), δ2) + PlJ(∇/δδ1, δ2)− J(∇/δδ1, Pl ∗ δ2)

+ J(δ1, δ ∗N(δ2)) + PlJ(δ1,∇/δδ2)− J(Pl ∗ δ1,∇/δδ2).
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The RHS is given by PlδJ(δ1, δ2) + (δPl)J(δ1, δ2)− δJ(Pl ∗ δ1, δ2).
The leading terms in Pl in BHS give the horizontality of J (I.3. ii)).
The remaining terms: (δPl)J(δ1, δ2)−δJ(Pl∗δ1, δ2) = J(δ∗N(δ1), δ2)−
J(∇/δδ1, Pl ∗ δ2) + J(δ1, δ ∗N(δ2))− J(Pl ∗ δ1,∇/δδ2) is reduced to 2).

f) We show the self-adjointness of the ∗-product (I.5.(3.9.2)). We
have only to prove the special case when δ3 = D (and δ1, δ2 ∈ G):

(3.9.8) J(δ1, δ2) = J(δ1 ∗ δ2, D),

since, by a use of (3.9.8), the LHS and RHS of (3.9.2) are equal to
J(δ1 ∗ (δ2 ∗ δ3), D) and J((δ1 ∗ δ2) ∗ δ3, D), respectively, and then, the
associativity of the ∗-product implies the equality and hence (3.9.2).

First, we show a formula (see 3.10 1. for a meaning): for δ ∈ G:

(3.9.9) δ = ∇δ∇−1
D D

Proof. This is the torsion-freeness of ∇. According to (3.7.1), the RHS
is equal to δ ∗ D +∇−1

D ∇/δD. The first term is equal to δ, since D is
the unit. The second term vanishes due to the horizontality of D. ¤

We return to a proof of (3.9.8). Using (3.9.9) and (3.4.7), one has

J(δ1, δ2) = I∗(∇δ1∇−1
D D, w(δ2))

= δ1I
∗(∇−1

D D, w(δ2))− I∗(∇−1
D D,∇δ1w(δ2))

Since ∇−1
D D = hE = hw(D) where 1

h
is the eigenvalue of N on D

(recall 3.8 Note 1.), one calculates further (again using (3.4.7))
1
h
J(δ1, δ2) = δ1J(D, w(δ2))− J(D,∇δ1w(δ2))

= J(∇/δ1D, w(δ2)) + J(D,∇/δ1w(δ2))− J(D,∇δ1w(δ2))
= J(D,∇/δ1w(δ2)−∇δ1w(δ2))

where the first term in the second line vanishes due to the horizontality
of D. Here the form J in the RHS is extended S(V )W -linearly (3.2.4).
Using the expression w(δ) = Plδ − Pl ∗ δ (3.4.4) and (3.7.1), one has

∇/δ1w(δ2) = δ1Pl · δ2 + Pl∇/δ1δ2 −∇/δ1(Pl ∗ δ2)

and ∇δ1w(δ2) = δ1Pl · δ2 + Pl(∇D(δ1 ∗ δ2) +∇/δ1δ2)
−(∇D(δ1 ∗ (Pl ∗ δ2)) +∇/δ1(Pl ∗ δ2))

(In fact, these calculations should be justified. See §4 ). So, we obtain

∇/δ1w(δ2)−∇δ1w(δ2) = −Pl∇D(δ1 ∗ δ2) +∇D(δ1 ∗ (Pl ∗ δ2))
= −∇D(Pl(δ1 ∗ δ2)− Pl ∗ (δ1 ∗ δ2)) + δ1 ∗ δ2

= −∇D(w(δ1 ∗ δ2)) + δ1 ∗ δ2

= −N(δ1 ∗ δ2) + δ1 ∗ δ2 = (1−N)(δ1 ∗ δ2).

Substituting this in the previous formula, one obtains
1
h
J(δ1, δ2) = J(D, (1−N)(δ1 ∗ δ2)) = J((1−N∗)(D), δ1 ∗ δ2)
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Recalling the duality (3.9.6) and the fact that 1
h

is the eigenvalue of N

for the vector D (3.8 Note 1.), one has (1 − N∗)(D) = N(D) = 1
h
D.

Multiplying h on BHS, we obtain (3.9.8). ¤
Remark. 1. The S(V )W -algebra on G defines the normalization: D̃W =
Spec(G) → DW = Spec(S(V )W /(∆) of the discriminant (c.f. §4 ).

2. The (3.9.8) together with the facts w(D) = E = I(dP1) implies

(3.9.10) J(δ1, δ2) = δ1 ∗ δ2 (P1).

3. The ∗, Pl∗,∇/, N and the metric J on the module G are sufficient
to recover the S(V )W -module DerSW

with the connection ∇ and the
metric I through (3.8.2), (3.8.3), (3.8.4) and (3.4.8).

3.10. Relations to primitive forms and Frobenius manifold.
We discuss some relations of the flat structure in 3.9 to primitive

forms and to Frobenius manifold structure.

1. Primitive form. Since the ∇ is the Levi-Civita connection and
torsion free, we have confused the module H(0) := DerSW

of operands
(sections of a bundle) with the algebra DerSW

of operators (covariant
differentiation). In order to separate two roles, we introduce a sequence:

H(−k) := ∇−k
D DerSW

' D−kZ[D−1]⊗ G
of the modules of the operands (recall (3.8.2)) for k ∈ Z≥0, on which
one has the action of the covariant differentiations:

∇ : DerSW
×H(−k−1) → H(−k),

∇ : DerSW
(− log(∆2))×H(−k) → H(−k).

Then the formula (3.9.9) (based on the torsion-freeness of ∇, used at
several crucial steps of proof of Theorem) implies the following key fact:

Assertion. The covariant differentiation of the element ζ(−1) := ∇−1
D D

(i.e. the correspondence: δ 7→ ∇δζ
(−1)) induces a bijection between the

Lie algebra DerSW
of operators and the module H(0) of operands. More

generally, the covariant differentiation of the element ζ(−k) := ∇−k
D D

(k ∈ Z≥0) induces an isomorphism of S(V )W -modules:

∗) ∇ζ(−k−1) : DerSW
' H(−k).

Such ζ(−k) (satisfying some additional conditions corresponding to
(3.8.3), (3.8.4) and orthogonality, see [S6]) is called a primitive form.

The isomorphism ∗) has meanings in two directions:
1. Through the correspondence, cohomological structures on H(0)

(such as the polarization I, Hodge filtration) and the algebra structure
on DerSW

(such as the Lie algebra str., integrable system) are combined
together in one object. This amalgamation creates some rich structures
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such as the flat structure in 3.9, the Frobenius structure and the flat
coordinates (discussed in the following).

2. The module H(−k) (the Hodge filter) is obtained by covariant dif-
ferentiation of a single element ζ(−k−1). That is: the data of the module
H(−k) are condensed in the single element ζ(−k−1), the primitive form,
and by differentiating the primitive form, they are resolved again. This
view point is an origin of the word “primitive form”. In fact, before
the primitive form was introduced, one had studied the “primitive (i.e.
potential) function” as a solution of second order uniformization equa-
tion such that its derivatives give the system of solutions of a torsion
free connection [S2].

In the present paper, reversing the history, we start from the flat
structure, and then we shall reconstruct the uniformization equations in
§4, whose solutions (i.e. the primitive functions) are partially obtained
by the period integral of the primitive form §5.

2. Frobenius manifold. A tuple (M, ◦, e, E, g) of a manifold M
with a metric g, two global vector fields e and E on M and a ring struc-
ture ◦ on the tangent bundle of M , subject to some axioms, is called a
Frobenius manifold ([Do],[Ma, 0.4.1, I.1.3],[He, def 9.1],[Sab],[Ta]). As
an immediate consequence of 3.9 Theorem, we show the next.

Theorem. The tuple (SW , ∗, D, E, J) form a Frobenius manifold.

Proof. In view that ∇/ is the Levi-Civita connection of J I.3, we check
the the axioms 1) - 5) for a Frobenius manifold [He def 9.1] as follows.

1) The ∗ is self-adjoint with respect J . This is shown in (3.9.2).
2) The tensor ∇/∗ is symmetric. This is shown in I.4.
3) The metric J is flat, i.e. ∇/2 = 0. This is shown in I.3. iii).
4) The D is horizontal, i.e. ∇/D = 0. This is shown in I.2.b).
5) The ∗ is homogeneous of degree 1 and the J is homogeneous w.r.t.

the Euler vector field E, respectively. The first half follows from the
defining formula (3.7.1) in view of the normalizations (2.8.5), (3.1.6)
and (3.2.1) (see also the formula at the end of c) of the proof of 3.9
Theorem). Alternatively, one shows as follows: since D∗ = 1 one has
0 = deg(D∗) = deg(D)+deg(∗) = −1+deg(∗). The J is homogeneous
since J∗ is homogeneous by definition (3.3.1). One calculates: deg(J) =
− deg(J∗) = − deg(LDI) = −(deg(D) + deg(I)) = 1 + 2

h
. ¤

3.11. Flat coordinates.
We introduce coordinates of SW whose differentials are horizontal

sections of the dual connection ∇/∗. We call them flat coordinates.
The dual connection ∇/∗ : F → F⊗F (3.2.3) is defined by δ〈δ′, ω〉 =

〈∇/δδ
′, ω〉 + 〈δ,∇/∗δω〉 for δ, δ′ ∈ G and ω ∈ F . Let us denote by ∧∇/∗
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the composition of ∇/∗ with the wedge product F ⊗F → F ∧ F . The
torsion freeness of ∇/ I.3. i) implies ∧∇/∗(ω) = dω for ω ∈ F , since

∧∇/∗(ω) =
∑l

i=1 dPi ∧∇/∗∂
∂Pi

(ω) =
∑l

ij=1 dPi ∧ dPj〈 ∂
∂Pj

,∇/∗∂
∂Pi

(ω)〉
=

∑l
ij=1 dPi ∧ dPj(

∂
∂Pi
〈 ∂

∂Pj
, ω〉 − 〈∇/ ∂

∂Pi

∂
∂Pj

, ω〉)
= dω −∑l

ij=1 dPi ∧ dPj〈∇/ ∂
∂Pi

∂
∂Pj

, ω〉 = dω.

The same formula holds for ω ∈ OSW
⊗S(V )W F where OSW

is the sheaf
of local (w.r.t. the classical topology on SW,K) analytic functions on
SW,K where K is either R or C (recall (2.9.2)). Thus, a local analytic
horizontal section ω ∈ ker(∇/∗) is a closed form: dω = 0 and there is a
local analytic function u such that ω = du, where u satisfies the second
order differential equation:

(3.11.1) ∇/∗du = 0.

The space of global analytic solutions (including constants) on SW,K

of the equation has rank l + 1, since ∇/∗ is integrable and non-singular
on SW,K and SW,K is simply connected. A solution, say u, is, in fact, a
polynomial: develop u in a Taylor series u =

∑
d∈Z≥0

ud for ud ∈ S(V )W
d

at the origin. Since ∇/ is homogeneous and continuous w.r.t. the adic
topology on the space of power serieses on SW at the origin, each graded
piece ud is again a solution of (3.11.1). Since the solution space is finite
dimensional, the expansion of u should be a finite sum (i.e. u is a
polynomial). These imply the part i) of the next lemma.

Lemma. Consider the space of the polynomial solutions of (3.11.1):

(3.11.2) Ω := {u ∈ S(V )W | ∇/∗du = 0}.
Then i) the Ω is a graded vector space of rank l + 1 with the splitting:
Ω = R·1⊕Ω+ for Ω+ := Ω∩S(V )W

+ , ii) Ω+ generates freely the algebra
S(V )W over R, and iii) one has the bijections:

(3.11.3)
SW,K ' Homalin

R (Ω, K)
' HomR(Ω+, K).

Here, Homalin
R is the set of all R-linear maps bringing 1 ∈ Ω to 1 ∈ K

(“alin” stands for “affine linear”), and HomR is the set of all R-linear
maps. By this bijection, we regard SW the linear flat space dual to Ω+.

Proof. ii) Let 1, Q1, · · · , Ql ∈ S(V )W be homogeneous R-basis of Ω
with deg(Q1) ≤ · · · ≤ deg(Ql). The differentials dQ1, · · · , dQl span
ker(∇/∗) over R. As a general fact, one has S(V )W,τ ⊗R ker(∇/∗) = F .
Since dPi (for coordinates P1, ..., Pl of SW ) are S(V )W,τ -basis of F , the

determinant(∂(Q1,··· ,Ql)
∂(P1,··· ,Pl)

) is a unit on SW , and is a non-zero constant.
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Then, one sees that deg(Qi) = deg(Pi) (i = 1, ..., l) and that each
homogeneous block of the Jacobi matrix is constant invertible. Then
the ring homomorphism: R[Q1, ..., Ql] → S(V )W is an isomorphism.

iii) The map SW,K → Homalin
R (Ω, K) is defined by the correspondence

ϕ 7→ ϕ|Ω for ϕ ∈ Homalg
R (S(V )W , K). Since Ω generates the ring of

invariants S(V )W , the map is injective. Conversely, since Q1, · · · , Ql

are algebraically independent (2.5 Theorem), the map is surjective. ¤
The (3.11.1) is explicitly given by the system of second order equations

(3.11.4) (δ1δ2 −∇/δ1δ2)u = 0 for δ1, δ2 ∈ G.

Elements of Ω are called flat invariants. Homogeneous basis Q1, · · · , Ql

of Ω+ are called a system of flat coordinates of SW . They are unique
up to a weighted linear transformation. The flat coordinates for all
finite reflection groups except for types E7 and E8 are calculated in
[S-Y-S]. The flat coordinates for type E7 is calculated in [Ya]. The flat
coordinates for type E8 is calculated in [Ka][No][No].

A translation ξ ∈ Ω∗
+ := Homlin

K (Ω/K · 1, K) of the affine space
SW extends naturally to a derivation of S(Ω+) ' S(V )W . So, one
has the embedding Ω∗

+ ⊂ DerSW
with the characterization: Ω∗

+ =
{δ ∈ G | ∇/δ = 0} (Proof. For an element δ ∈ G, one has: ∇/δ = 0
⇔ 〈∇/ξδ, ω〉 = 0 for ∀ξ ∈ G and ∀ω ∈ Ω ⇔ ξ〈δ, ω〉 − 〈δ,∇/∗ξω〉 = 0 for
∀ξ ∈ G and ∀ω ∈ Ω ⇔ 〈δ, ω〉 is a constant for ∀ω ∈ Ω ⇔ δ ∈ Ω∗

+. ¤)
Therefore, we shall sometimes call an element of Ω∗

+ (regarded as an
element of DerSW

) flat tangent vector of SW (e.g. D is a flat tangent).
Here are some immediate uses of the flat coordinates.
1. The quadratic form P1 (2.8.5) is a flat invariant.

This follows from (3.3.4) and 3.9 Theorem I.2.b) as below.

(δ1δ2 −∇/δ1δ2)P1 = δ1J
∗(J(δ2), dP1)− J∗(J(∇/δ1δ2)), dP1)

= δ1J(δ2, D)− J(∇/δ1δ2, D) = J(δ2,∇/δ1D) = 0.

2. Let Ω∗
+ = ⊕Ω∗

d be the graded decomposition of Ω∗
+. Then,

a) The piece Ω∗
d is a vector space of rank #{1 ≤ i ≤ l | d = −mi+1

h
}.

b) If d1 + d2 + 1 + 2
h

= 0 then J |Ω∗d1
×Ω∗d2

is the duality between the

two pieces. If d1 + d2 + 1 + 2
h
6= 0 then J |Ω∗d1

×Ω∗d2
= 0.

c) The N is constant on each piece: N |Ω∗d= (d + 1+h
h

)idΩ∗d.
3. The star product ∗ is calculated by an explicit formula:

(3.11.5)
∂

∂Qi
∗

(
h−mj

h
J∗(dQj)

)
=

∑l
k=1

(
∂

∂Qi
I(dQj, dQk)− Ai

jk

)
∂

∂Qk

Here, the coefficients Ai
jk is given by (3.6.6) by replacing P1, · · · , Pl by

the flat Q1, · · · , Ql. Note Ai
jk ∈ S(V )W,τ (i.e. DAi

jk = 0 for (3.6.3)).
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4. Flat potential. Put J3(δ1, δ2, δ3) := J(δ1 ∗ δ2, δ3) for δ1, δ2 and
δ3 ∈ G. Then a) J3 is a symmetric tensor in the three variables, and
b) there exists a polynomial F ∈ §(V )W such that

(3.11.6) δ1δ2δ3F = J(δ1, δ2, δ3)

for δ1, δ2 and δ3 ∈ Ω∗
+.

Proof. Due to the commutativity and associativity of ∗ and the self-
adjointness of ∗ (3.9.2), J3 is a symmetric tensor on G over S(V )W,τ .
Therefore, we have only to show the following

Fact. The 4-forms δ0J3(δ1, δ2, δ3) in δ0, · · · , δ3 ∈ Ω∗
+ is symmetric.

Put J4(δ0, δ1, δ2, δ3) := δ0J3(δ1, δ2, δ3). Let us specialize (3.9.1) to flat
tangent vectors δ1, δ2, δ3 ∈ Ω∗

+. Then one obtains ∇/δ1(δ2 ∗ δ3). This
implies that ∇/δ1(δ2∗δ3) is a symmetric cubic form on Ω∗

+. On the other
hand, by using the metric property I.3. ii) of ∇/ the definition of J4

is rewritten as: J4(δ0, δ1, δ2, δ3) = J(∇/δ0(δ1 ∗ δ2), δ3). This expression
is now symmetric w.r.t. the letters {0, 1, 2}. Since it was already
symmetric w.r.t. the letters {1, 2, 3}, altogether, J4 is symmetric w.r.t.
all letters {0, 1, 2, 3}. ¤

3.12. Dimensions.
Before ending this section, we clarify that some data, such as E, ∇/,

N and exponents, are absolutely defined independent of scaling factors.
Recall that in the study of the flat structure on the variety SW (ex-

cept for type A1), there were two ambiguities of scaling factors for
1. a choice of an invariant form I in 2.2, and
2. a choice of a primitive derivation D in (3.2.1).

Let us call an object X has dimension (α, β) if the scale changes I∗ 7→
λI∗ and D 7→ µD induce the scale change X 7→ λαµβX (in case of
type A1, one has λµ = 1 and, hence, only the difference α − β has a
meaning).

The following table is easy to calculate.

object α β deg object α β deg
I∗ 1 0 2

h
E 0 0 0

D 0 1 −1 ∇/ 0 0 0
I −1 0 − 2

h
∗ 0 −1 1

J 1 −1 1 + 2
h

N 0 0 0
J∗ −1 1 −1− 2

h
∆2 0 −l l

Pl 0 −1 1 P1 1 0 2
h

Pl∗ 0 −1 1 J3 1 −2 2 + 2
h

[Pl] 0 0 0 F 1 −1 2 + 2
h

The table shows that E, ∇/, N and exponents are absolutely defined.
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4. Uniformization equations

Following [S6,§5], we introduce the system of uniformizing equation
MW,s on SW attached to the flat structure in 3.9. It is a system of sec-
ond order holonomic system such that the first order derivatives of its
solution gives the system of the solutions of the Levi-Civita connection
∇ in §3 on the lattice H(s). The MW,s has new features:

i) the equation contains a spectral parameter s shifting exponents,
ii) the equation is a DSW

-module instead of a ESW
-module,

iii) the homogeneity condition is omitted from the equation to allow
non-constant solutions for the invariant cycles.

Compared with [S6,§5], we skipped a construction of the integral
lattice on the local system of the solutions and the monodromy group
action on it for the case of crystallographic reflection group (for details
of them, see [ibd]). Explicit equations MW,s and some solutions for
types A1, A2 and A3 were discussed in [S2] (see footnote 2.).

4.1. S(V )W -modules H(s)
W for s ∈ C.

Let {DC} := {Ds | s ∈ C} be a group isomorphic to the complex
number field C with the multiplicative rule: DsDt = Ds+t. Let Z·{DC}
be its group ring, which contains the Laurent algebra Z[D,D−1]. Put

(4.1.1) HW := Z · {DC} ⊗Z G,

where one recalls (3.2.3) for the S(V )W,τ -module G. The HW has nat-
ural S(V )W,τ -module structure by a commutation rule

(4.1.2) f ·Ds −Ds · f = 0 for f ∈ S(V )W,τ and s ∈ C.

Further, the HW is equipped with a S(V )W = S(V )W,τ [Pl]-module
structure and a covariant differentiation action ∇δ for δ ∈ G as follows:
i) the multiplication of Pl is defined by the formula (3.8.3) and (3.8.3)*,
ii) the action∇δ for δ ∈ G is defined by the formula (3.8.4) and (3.8.4)*,
where we replace k ∈ Z≥0 by a complex number s ∈ C. It is a routine to
check that the S(V ∗)W -module structure does not depend on a choice
of Pl, and the ∇-action satisfies the Leibniz rule and the integrability
condition (i.e. ∇2 = 0).

For any s ∈ C, let us introduce the submodule of HW :

(4.1.3) H(s)
W := DsZ[D−1]⊗Z G.

The H(s)
W is a S(V )W -submodule (i.e. closed under the left multiplica-

tion of Pl) easily seen from (3.8.3) and (3.8.3)*. Thus, by definition,
one has an increasing sequence of the S(V )W -modules:

(4.1.4) · · · ⊂ H(s−2)
W ⊂ H(s−1)

W ⊂ H(s)
W ⊂ H(s+1)

W ⊂ H(s+2)
W ⊂ · · · ,
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and a short exact sequence of S(V )W -modules:

(4.1.5) 0 → H(s−1)
W → H(s)

W → G → 0,

where G is equipped with S(V )W -module structure by the action of Pl∗
(3.9 Theorem I.1). One observes ∆2H(s)

W ⊂ H(s−1)
W since ∆2G = 0 due

to the 3.4 Corollary. An explicit formula can be given as follows.

(4.1.6)
∆2(Ds ⊗ ∂j) =

∑l
i=1 bji(PlD

s ⊗ ∂i −Ds ⊗ Pl ∗ ∂i)

=
∑l

i=1 bjiD
s−1 ⊗ (N − s)∂i).

Here ∂i = ∂
∂Pi

and (bji) is the adjoint matrix of (Plδij−aij) with w(∂i) =

Pl∂i − Pl ∗ ∂i =
∑l

j=1(Plδij − aij)∂j so that
∑l

i=1 bjiw(∂i) = ∆2∂j.

Note. The modules H(−i)
W for i ∈ Z≥0 in 3.10 are identified with the

above defined one through (3.8.2). But the identification changes ac-
cording to a choice of a primitive form (c.f. (4.3.1)).

The covariant differentiation by δ ∈ G defines a map ∇δ : H(s)
W →

H(s+1)
W (use (3.8.4) and (3.8.4)*). Since DerSW

= S(V )W⊗G, the action

extends to a covariant differentiation ∇ : DerSW
× H(s)

W → H(s+1)
W .

Particularly, ∇D induces a S(V )W,τ -bijection:

(4.1.7) ∇D : H(s)
W ' H(s+1)

W , Ds ⊗ δ 7→ Ds+1 ⊗ δ.

Note. The power action∇t
D : H(s)

W → H(s+t)
W for t ∈ C can be defined by

letting ∇t
D(Ds⊗δ) := Ds+t⊗δ satisfying the relation [∇t

D, Pl] = t∇t−1
D .

4.2. Polarization element Is.
We introduce the polarization element Is ∈ HW ⊗S(V )W HW (the

tensor of left S(V )W -modules) for s ∈ C by the next three formulae:

(4.2.1)
Is :=

∑l
i=1(D

s ⊗ δi)⊗ (PlD
−s ⊗ δ∗i −D−s ⊗ Pl ∗ δ∗i )

=
∑l

i=1(D
s ⊗ δi)⊗ (D−s ⊗ w(δ∗i ) + sD−s−1 ⊗ δ∗i )

=
∑l

i=1(D
s ⊗ δi)⊗ (D−s−1 ⊗ (N + s)(δ∗i )),

where i) δ1, · · · , δl are S(V )W,τ -free basis of G and δ∗1, · · · , δ∗l are their
dual basis w.r.t. J so that the definition does not depend on the basis,
and ii) the equivalence of the three definitions follows from (3.8.3)*.

Note. Through the embedding DerSW
⊂ HW (3.8.2), the polarization

I (3.4.8) is identified with the above defined I0.

Lemma. 1. For any s ∈ C, one has the formula:

(4.2.2) Is = tI−s and Is = −tI−s−1,

where the transposition tIs of the polarization Is is defined by transpos-
ing the tensor factors in the definition (4.2.1).
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2. Let the covariant differentiation ∇δ for δ ∈ G act on the tensor
HW ⊗S(V )W HW naturally (by the Leibniz rule). Then one has

(4.2.3) ∇Is = 0.

Proof. First, we note the following general formula:

∗) ∑l
i=1 f(Aδi)⊗S(V )W,τ g(δ∗i ) =

∑l
i=1 f(δi)⊗S(V )W,τ g(A∗δ∗i )

where f , g are S(V )W,τ -homomorphisms defined on G, A and A∗ are
S(V )W,τ -endomorphism on G and its adjoint w.r.t. J , and δ1, · · · , δl

and δ∗1, · · · , δ∗l are S(V )W,τ -free basis of G and the dual basis w.r.t. J .
1. Take the first line of (4.2.1). The multiplication of Pl in the first

term can be transposed to that in the left side of the tensor. The left
action Pl∗ in the second term can be transposed to the left due to ∗)
and the self adjointness of Pl∗ ((3.9.2) and II.6. i)). So, one obtains

Is =
∑l

i=1(D
s ⊗ δi)⊗ (PlD

−s ⊗ δ∗i −D−s ⊗ Pl ∗ δ∗i )
=

∑l
i=1

(
PlD

s ⊗ δi −Ds ⊗ (Pl ∗ δi)
)⊗ (D−s ⊗ δ∗i ) = tI−s

This proves the first formula in (4.2.2).
Let us employ the third line of (4.2.1). Use the fact that (N + s)∗ =

N∗ + s = −N + s + 1 ((3.9.6)), and apply ∗) so that one obtains:

Is =
∑l

i=1(D
s ⊗ δi)⊗ (D−s−1 ⊗ (N + s)(δ∗i ))

=
∑l

i=1(D
s ⊗ (−N + s + 1)δi)⊗ (D−s−1 ⊗ δ∗i )

= −∑l
i=1(D

−u−1 ⊗ (N + u)δi)⊗ (Du ⊗ δ∗i ) h for − u := s + 1
= −tIu = −tI−s−1.

This proves the second formula in (4.2.2).
2. Let δi (i = 1, · · · , l) be flat basis (i.e. ∇/δi = 0) of G. Then

the dual basis δ∗i and their N -images N(δi), N(δ∗i ) are also flat. The
covariant differentiation of Is vanishes using the duality (3.9.6) again.

∇δIs

=
∑l

i=1∇δ(D
s ⊗ δi)⊗ (PlD

−s ⊗ δ∗i −D−s ⊗ Pl ∗ δ∗i )
+

∑l
i=1

(
Ds ⊗ δi

)⊗∇δ

(
D−s−1 ⊗ (N + s)(δ∗i )

)
=

∑l
i=1(D

s+1 ⊗ (δ ∗ δi) + Ds ⊗∇/δδi)⊗ (PlD
−s ⊗ δ∗i −D−s ⊗ Pl ∗ δ∗i )

+
∑l

i=1

(
Ds ⊗ δi

)⊗ (
D−s ⊗ (δ ∗ (N + s)δ∗i ) + D−s−1 ⊗∇/δ(N + s)δ∗i )

)
=

∑l
i=1

(
PlD

s+1 ⊗ (δ ∗ δi)−Ds+1 ⊗ (Pl ∗ δ ∗ δi)
)⊗ (

D−s ⊗ δ∗i
)

+
∑l

i=1

(
Ds ⊗ (δ ∗ (N + s))∗δi

)⊗ (
D−s ⊗ δ∗i

)
=

∑l
i=1

(
Ds ⊗ (N − s− 1)(δ ∗ δi)

)⊗ (
D−s ⊗ δ∗i

)
+

∑l
i=1

(
Ds ⊗ (N∗ + s)(δ ∗ δi)

)⊗ (
D−s ⊗ δ∗i

)
=

∑l
i=1

(
Ds ⊗ (N + N∗ − 1)(δ ∗ δi)

)⊗ (
D−s ⊗ δ∗i

)
= 0.

These complete a proof of Lemma. ¤
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Combining the two formulae (4.2.2), one obtains the semi-periodicity
Is+1 = −Is. On the other hand, the formulae (4.2.2) imply, I0 = tI0

and I− 1
2

= −tI− 1
2
. Therefore, we obtain the next corollary.

Corollary. 1. One has Is+n = (−1)nIs for s ∈ C and n ∈ Z.
2. The polarization Is is a symmetric form for an integer s ∈ Z and

is a skew symmetric form for a half integer s ∈ 1
2
Z \ Z.

4.3. Connection ∇(s) and uniformization equation.
Put ζ(s−1) := Ds−1 ⊗D ∈ HW for s ∈ C (c.f. 3.10 Assertion.). The

covariant differentiation of ζ(s−1) induces an S(V )W -homomorphism:

(4.3.1) ϕ(s) : DerSW
→ H(s)

W , δ 7→ ∇δζ
(s−1).

Lemma. If s 6∈ {exponents}+ Z≥0, then ϕ(s) is an isomorphism.

Proof. By induction on n ∈ Z≥0, we prove that ϕ(s) induces isomorphy:

S(V )W
≤n ⊗S(V )W,τ G ' Ds ⊗ G ⊕Ds−1 ⊗ G ⊕ · · · ⊕Ds−n ⊗ G.

For n = 0, one has ∇δ(D
s−1 ⊗ D) = Ds ⊗ δ for δ ∈ G and hence

ϕ(s) : G ' Ds ⊗ G. Applying (3.8.3) n-times for n > 0, one obtains

P n
l (Ds ⊗ δ) = Ds ⊗ (Pl∗)nδ

+ Ds−1 ⊗ ((Pl∗)n−1(N − s) + · · · )δ
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +
+ Ds−n ⊗ (N − s + n− 1) · · · (N − s + 1)(N − s)δ

where (N − s+ n− 1) · · · (N − s+ 1)(N − s) is an isomorphism of G to
itself since each factor is invertible by the assumption on s ∈ C. ¤
Note. The isomorphism for s = 0 is the identification (3.8.2). In gen-

eral, for any s ∈ C, H(s)
W is a finitely generated S(V )W -module of

homological dimension ≤ 1. (Proof. For a large n ∈ Z≥0, ϕ(s−n) is an
isomorphism due to Lemma above. Then one obtains the statement on

H(s−n+i)
W by induction on i ≥ 0, applying (4.1.5) and 3.4 Corollary 1.)

One has an embedding ϕ(s) : H(s+n)
W /∆2n-torsions ⊂ 1

∆2n DerSW
for

s 6∈ {exp.} + Z≥0 and n ∈ Z≥0. In the sequel, we study this “generic
part” as a logarithmic connection along the discriminant DW .

Let ∇(s) be the one parameter family of connection on DerSW
satis-

fying ϕ(s)∇(s)
δ δ′ = ∇δ(ϕ

(s)δ′). It is a logarithmic flat torsion free con-
nection on the logarithmic tangent bundle of SW , i.e. one has (3.5.5),
(3.5.6) and (3.5.3) replacing ∇ by ∇(s). In fact ∇(s) depends on s
only linearly shifting the exponent. Let us consider the dual connec-
tion: ∇(s)∗ : DerSW

×Ω1
SW

→ Ω1
SW

(log(∆)) defined on Ω1
SW

by the rule

δ〈δ′, ω〉 = 〈∇(s)
δ δ′, ω〉+ 〈δ′,∇(s)∗

δ ω〉 for the natural S(V )W -pairing 〈∗〉.
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Lemma. A local analytic 1-form ω on SW is horizontal w.r.t. ∇(s)∗

(i.e. ∇(s)∗ω = 0) iff there exists a local analytic function u satisfying
i) ω = du (the primitivity), and ii) the system of equations

P (δ1, δ2)u = 0 and Qs(δ1, δ2)u = 0 for δ1, δ2 ∈ G,(4.3.2)

where

P (δ1, δ2) := δ1δ2 − (δ1 ∗ δ2)D −∇/δ1δ2(4.3.3)

Qs(δ1, δ2) := δ1w(δ2)− w(∇/δ1δ2)− δ1 ∗ (N − s)δ2.(4.3.4)

Proof. We still denote by 〈·, ·〉 the extension of the natural pairing
between the module DerSW

and the module Ω1an
SW

of local analytic 1-
forms (which takes values in the ring of local analytic functions). We
denote by 〈〈·, ·〉〉 the pairing between HW and Ω1an

SW
via ϕ(s) (4.3.1) so

that 〈δ, ω〉 = 〈〈Ds ⊗ δ, ω〉〉 for δ ∈ G.
The horizontal section ω ∈ Ω1an

SW
of ∇(s)∗ is a closed form, since

dω =
∑l

ij=1 dPi ∧ dPj ∂i

〈
∂j, ω

〉

=
∑l

ij=1 dPi ∧ dPj

〈〈∇∂i
∇∂j

Ds−1 ⊗D, ω〉〉

+
∑l

ij=1 dPi ∧ dPj

〈
∂j,∇(s)∗

∂i
ω
〉

= 0

where the second line vanishes since∇∂i
∇∂j

Ds−1⊗D is symmetric w.r.t.
the indices i and j, and the third line vanishes due to the horizontality:

∇(s)∗
∂i

ω = 0 of ω.

That ω is horizontal implies ∇(s)∗ω is perpendicular to DerSW
. So,

0 = 〈δ′,∇(s)∗
δ ω〉 − 〈δ ∗ δ′,∇(s)∗

D ω〉
= δ〈δ′, ω〉 − 〈〈∇δ(D

s ⊗ δ′), ω〉〉 − 〈δ ∗ δ′,∇(s)∗
D ω〉

= δ〈δ′, ω〉 − 〈〈Ds+1 ⊗ (δ ∗ δ′) + Ds ⊗∇/δ′δ, ω〉〉
−〈〈Ds ⊗ (δ ∗ δ′),∇(s)∗

D ω〉〉
= δ〈δ′, ω〉 −D〈〈Ds ⊗ (δ ∗ δ′), ω〉〉 − 〈∇/δ′δ, ω〉
= δ〈δ′, ω〉 −D〈δ ∗ δ′, ω〉 − 〈∇/δ′δ, ω〉

This yields (4.3.3). One obtains (4.3.4) as follows.

0 = 〈w(δ),∇(s)∗
δ′ ω〉

= δ′〈w(δ), ω〉 − 〈〈∇δ′(PlD
s ⊗ δ −Ds ⊗ (Pl ∗ δ)), ω〉〉

= δ′〈w(δ), ω〉 − 〈〈∇δ′(D
s−1 ⊗ (N(δ)− sδ)), ω〉〉

= δ′〈w(δ), ω〉 − 〈〈Ds ⊗ (δ′ ∗ (N − s)δ)), ω〉〉
−〈〈Ds−1 ⊗ (∇/δ′(N − s)δ), ω〉〉.

The last term is modified as: Ds−1 ⊗ (∇/δ′(N − s)δ) = Ds−1 ⊗ ((N −
s)∇/δ′δ) = Pl(D

s ⊗∇/δ′δ)−Ds ⊗ (Pl ∗ ∇/δ′δ) = ϕ(s)(w(∇/δ′δ)). ¤
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Remark. 1. One can prove that ζ(s−1) satisfies the following equations
by similar calculations as in the proof of the lemma (c.f. [S6,§5]).

(4.3.5)
i) P (δ1, δ2) ζ(s−1) = 0 for δ1, δ2 ∈ G
ii) Qs(δ1, δ2) ζ(s−1) = 0 for δ1, δ2 ∈ G
iii) (E − (1/h− s)) ζ(s−1) = 0.

2. We remark that the equations (4.3.4) includes in particular

(4.3.6) Qs(δ,D) = δ(E − (1/h− s)) for δ ∈ G.

3. For each fixed s ∈ C, one may regard (4.3.2) as a family of ordi-
nary differential equations in the indeterminate Pl parameterized by
Spec(S(V )W,τ ) where the monodromy is preserved by the deformation
on the complement of the bifurcation locus in Spec(S(V )W,τ ).

4.4. The characteristic variety of MW,s.
We call (4.3.2) the one-parameter family of system of uniformization

equations of type W . The system is holonomic since the characteristic
variety is the conormal bundle of the discriminant. The homogeneity
condition iii) is deleted from (4.3.5), and the space of local solutions
of the system has rank l + 1. This gives a quite important freedom in
a study of the system when 0 is an exponent and there is a nilpotent
monodromy (see 4.5 Example). We refer to [S-K-K] for terminologies.

Let DSW
be the algebra of polynomial coefficients differential op-

erators on SW (= the enveloping algebra of DerSW
over S(V )W =

the algebra generated by Pi and ∂j (1 ≤ i, j ≤ l) with the com-
mutation relations [∂i, Pj] = δi

j (Kronecker’s delta)). Let DSW ,≤d be

the S(V )W submodule of differential operators of degree (i.e. the
total degree w.r.t. ∂1, · · · , ∂l) less or equal than d ∈ Z. Then the
grDSW

:= ⊕∞d=0DSW ,≤d/DSW ,≤d−1 is a commutative graded algebra iso-
morphic to S(V )W [ξ1, · · · , ξl] (where ξi stands for the image of ∂i), and
is the coordinate ring for the cotangent space T ∗

SW
of SW .

Let IW,s := Σδ1,δ2∈GP (δ1, δ2) + Σδ1,δ2∈GQs(δ1, δ2) be the left ideal of
DSW

generated by P (δ1, δ2) and Qs(δ1, δ2) for δ1, δ2 ∈ G. Put

(4.4.1) MW,s := DSW
/IW,s

and call it also the one parameter family of the system of uniformization
equations of type W , confusing with the system (4.3.2).

The characteristic variety of MW,s is the subvariety of the cotangent
space T ∗

SW
defined by the ideal σ(IW,s) in S(V )W [ξ1, · · · , ξl] generated

by the principal symbols of all elements of IW,s, where the principal
symbol σ(X) for X ∈ DSW

with deg(X) = d is, as usual, defined as
the degree d-part of X, associating to ∂i the commutative variable ξi.
Recall that a left DSW

-module is called holonomic if its characteristic
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variety is a Lagrangian subvariety, and is simple holonomic if all, except
for the zero section of the cotangent space, of irreducible components
of its characteristic variety are simple.

Theorem. For each fixed s ∈ C, the MW,s is a simple regular holo-
nomic system, whose characteristic variety is the union of the conormal
bundle N∗(DW ) of the discriminant DW and the zero section T ∗

SW
(0)

of the cotangent bundle T ∗
SW

of the multiplicity l + 1.

Proof. The conormal bundle N∗(DW ) of the DW is defined as the
Zariski closure in T ∗

SW
of the conormal bundle N∗(DW \ Sing(DW ))

of the smooth part DW \ Sing(DW ), where the conormal bundle of a
smooth subvariety X ⊂ SW is the subvariety of T ∗

SW
|X consisting of the

covectors perpendicular to the subbundle TX of TSW
|X at each point of

X. Conormal bundle is always a middle dimensional subvariety of the
cotangent bundle T ∗

SW
, and is a Lagrangian subvariety.

For the proof of the theorem, we prepare two lemmas, whose proofs
use the flat structure 3.9 on SW . The first lemma states about the
involutivity of the generator systems of the ideal IW,s.

Lemma. Let P be an element of IW,s of degree m ∈ Z≥0. Then m ≥ 2
and there exists elements Rij (ij = 1, · · · , l − 1) and Si (i = 1, · · · , l)
of DSW

of degrees less or equal than m− 2 such that

(4.4.2) P =
∑

1≤i≤j≤l−1 RijP (∂i, ∂j) +
∑

1≤i≤l SiQs(∂i).

Proof. The P (δ1, δ2) is a S(V )W,τ -symmetric bilinear form in δ1, δ2 ∈ G
and P (D, δ) = 0 due to 3.9 Theorem I.1, I.2 and I.3. Put

(4.3.4)∗ Qs(δ) := Qs(D, δ) = Dw(δ)− (N − s)δ.

Then, by a use of 2) in the proof of 3.9 Theorem, the bilinear operator
Qs(δ1, δ2) is reduced to a single variable operator Qs(δ ∗ δ2) :

(4.3.4) ∗ ∗ Qs(δ1, δ2) = Qs(δ1 ∗ δ2) + PlP (δ1, δ2)− P (δ1, Pl ∗ δ2).

Due to the symmetric S(V )W,τ -bilinearities of P (δ1, δ2) and the reduc-
tion (4.3.4)**, the ideal IW,s is generated by P (∂i, ∂j) (1 ≤ i ≤ j ≤ l−1)
and Qs(∂i) (1 ≤ i ≤ l). We show that the generator system is involu-
tive: the symbol ideal σ(IW,s) is generated by the symbols of them.

For a P ∈ IW,s, let P =
∑

1≤i≤j≤l−1 RijP (∂i, ∂j)+
∑

1≤i≤l SiQs(∂i) be
an expression. Consider the maximal degree of the coefficients of the
expression: d := max{deg(Rij)(1 ≤ i ≤ j ≤ l− 1), deg(Si)(1 ≤ i ≤ l)}.
Of course deg(P ) ≤ d + 2. We want to show that if d + 2 > deg(P ),
then there exists a new expression for P such that the maximal degree
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d′ of the new coefficients is strictly less than d. For the purpose, we
consider two relations among the generators of the ideal IW,s:

∗) δP (δ′, δ′′)− δ′P (δ, δ′′) + D (P (δ, δ′ ∗ δ′′)− P (δ′, δ ∗ δ′′))
+P (δ,∇/δ′δ

′′)− P (δ′,∇/δδ
′′) = 0,

∗∗) δQs(δ
′)−DQs(δ ∗ δ′)−Qs(∇/δδ

′)
−EP (δ, δ′)− δP (Pl ∗D, δ′) + DP (Pl ∗D, δ ∗ δ′)
−P ([Pl ∗D, δ], δ′)− P (δ,∇/Pl∗Dδ′)
+P (δ, (N + s− 1)δ′) + P (Pl ∗D,∇/δδ

′) = 0

for δ, δ′, δ′′ ∈ G. The proof of them is easily reduced to 3.9 Theorem.
We return to an expression (4.4.2) of an element P of the ideal IW,s.

If d := max{deg(Rij), deg(Si)} > deg(P )− 2, then one has
∑l−1

ij=1 σd(Rij)σ(P (∂i, ∂j)) +
∑l

i=1 σd(Si)σ(Qs(∂i)) = 0,

where σd(X) means the homogeneous of degree d part of X ∈ DSW ,≤d.
Subtracting a suitable linear combination of the above elements ∗) and
∗∗), we obtain new coefficients R′

ij and S ′i such that σd(R
′
ij) = rijξ

d
D

and σd(S
′
i) = siξ

d
D for rij, si ∈ S(V )W . The new symbols satisfy the

relation
∑l−1

ij=1 rijσ(P (∂i, ∂j)) +
∑l

i=1 siσ(Qs(∂i)) = 0. Because of the
algebraic independence of ξ1, · · · , ξl, this implies rij = si = 0. So,
σd(R

′
ij) = σd(S

′
i) = 0, i.e. the degrees of R′

ij and S ′i are less than d. ¤
Corollary. The symbol ideal σ(IW,s) is generated by principal symbols:

(4.4.3)
σ(P (∂i, ∂j)) = ξiξj − ξD(ξi ∗ ξj) (1 ≤ i, j ≤ l − 1),
σ(Qs(∂i)) = ξD(Plξi − Pl ∗ ξi) (1 ≤ i ≤ l),

where the ∗-product on ξi is defined by the identification ξi ↔ ∂i ∈ G,
and we put ξD := σ(D). This induces a S(V )W -algebra isomorphism:

(4.4.4) G ' OCh(MW,s)∩{ξD=1}

The next lemma determines the symbol ideal geometrically.

Lemma. Let (ξ1, · · · , ξl) and I(N∗(DW )) be ideals in S(V )W [ξ1, · · · , ξl]
defining the zero section of the cotangent bundle T ∗

SW
and the conormal

bundle of the discriminant, respectively. Then one has:

(4.4.5) I(N∗(DW )) ∩ (ξ1, · · · , ξl)
2 = σ(IW,s) .

Proof. We first show the inclusion⊃. Clearly, σ(P (δ1, δ2)) and σ(Qs(δ))
belong to (ξ1, · · · , ξl)

2 (see (4.4.3)). To show that the symbols vanish
on the conormal bundle N∗(DW ), it is sufficient to show

δ1(∆) δ2(∆)− (δ1 ∗ δ2)(∆) D(∆), Plδ(∆)− Pl ∗ δ(∆) ∈ (∆)

for δ1, δ2, δ ∈ G, since the conormal vectors at the smooth points of the
discriminant are given by constant multiple of the differential d∆ =
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∑
i ∂i∆dPi. The second formula is obvious since the difference Plδ −

Pl ∗ δ = w(δ) is a logarithmic vector field (c.f. (3.4.4) and (3.1.1)).
The first formula: it is enough to show the formula for δ1 = δ ∈ G

and δ2 = δU := ∇DI(dU) for U ∈ S(V )W
≤1. Recalling (3.6.5), one has

2δU(∆) = 2〈∇DI(dU), d∆〉 = DI(dU, d∆)− I(D, [I(dU), I(d∆)]).

Recall (3.7.1) whose first term is the ∗-product and second term belongs
to DerSW

(− log(∆). Therefore, using the formula (3.6.5) again, one has

2(δ ∗ δU)(∆) mod (∆) = 2〈∇δ∇−1
D δU , d∆〉

= 2〈∇δI(dU), d∆〉
= δI(dU, d∆)− I(δ, [I(dU), I(d∆)]).

So, 2δ(∆) δU(∆)− 2(δ ∗ δU)(∆) D(∆) mod (∆)

= δ(∆) (DI(dU, d∆)− I(D, [I(dU), I(d∆)]))

+ D(∆) (δI(dU, d∆)− I(δ, [I(dU), I(d∆)]))

= XI(dU, d∆)− I(X, [I(dU), I(d∆)]))

where X := δ(∆)D − D(∆)δ. By definition, X∆ = 0 and hence X
is a logarithmic vector field. Then, each of the last two terms is zero
modulo the ideal (∆) as follows. The first term: using I (3.1.3), one
has I(dU, d∆) ∈ (∆) and then X(∆) = (∆). The second term: put

X = I(ω) for some ω =
∑l

i=1 FidPi ∈ Ω1
SW

(3.1.3). Then

I∗(X, [I(dU), I(d∆)]) = 〈[I(dU), I(d∆)], ω〉
=

∑l
i=1 Fi〈[I(dU), I(d∆)], dPi〉

=
∑l

i=1 Fi (I(dU)(I(d∆, dPi))− I(d∆, I(dU, dPi))) .

Using (3.1.3), one checks that each term belongs to the ideal (∆).
Let us prove now the opposite inclusion: any homogeneous element

X of degree d ≥ 2 w.r.t.(ξ) in the LHS of (4.4.3) belongs to the RHS.
First, by a successive application of the first relations of (4.4.3), we may
reduce X to such element that any monomial in ξ1, · · · , ξl contains
(at least) d − 1th power of ξD. So, put X = ξd−1

D Y , where Y is a
linear form in (ξ). If the coefficients of the linear form Y contains the
variable Pl, then by successive applications of the second relations of
(4.4.3), we may reduce that the coefficients of Y belongs to S(V )W,τ .
So, X = ξd−1

D Y for Y = σ(δ) with δ ∈ G. The fact X ∈ I(N∗
DW

) means

(D(∆))d−1δ(∆) ∈ (∆). Since D(∆) is coprime to the discriminant ∆,
this implies δ(∆) ∈ (∆). This is possible only when δ = 0 due to the
splitting (3.4.1) (c.f. (3.4.3)). These end the proof of Lemma. ¤

As a consequence, one has an exact sequence: 0 → O(T ∗
SW

)⊕OSW
→

gr(MW,s) → ON∗(DW ) → 0. These complete a proof of Theorem. ¤
Remark. The conormal bundle N∗(DW )\{zero section of T ∗

SW
} is smooth.
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4.5. Duality between the solutions Sol(MW,s) and Sol(MW,−s).
We consider the solution sheaf Sol(MW,s) := Ext0DSW

(MW,s,OSW
).

Due to Theorem in the previous subsection, its restriction to SW \DW is
a local system of rank l+1 containing the constant function sheaf. The
exterior differentiation induces an exact sequence at each x ∈ SW \DW

(4.5.1) 0 → CSW ,x → Sol(MW,s)x
d→ T ∗

SW ,x → 0.

Assertion 1. One has the following splitting of the local system:

(4.5.2) Sol(MW,s) =

{
CSW

⊕ Sol(M̃W,s) if 1/h− s 6= 0

CSW
λ⊕ Sol(M̃W,S) if 1/h− s = 0,

where M̃W,s := MW,s/DSW
(E − (1/h − s)) is the equation for ζ(s−1)

(recall (4.3.5)) and λ is a solution of the equation MW,s with Eλ = 1.

Proof. Let u be a (local) solution of MW,s. In view of (4.3.6) one has
(E − (1/h − s))u = c for c ∈ C. If 1/h − s 6= 0, then put u′ := u +

c/(1/h−s) and one has (E−(1/h−s))u′ = 0. That is: u′ ∈ Sol(M̃W,s).
If 1/h− s = 0, then one always has a solution with c 6= 0. ¤
Remark. The same proof of (4.4.5) shows the formula:

I(N∗(DW )) = (σ(P (∂i, ∂j)), σ(w(∂i)) (1 ≤ i, j ≤ l)) = σ(I(M̃W,s)).

Example. We illustrate the difference of MW,s and M̃W,s by the exam-
ple of type A1. Since l = 1, S(V )W is generated by a single element
P1 := 1

2
X2 with I(dP1, dP1) = 2P1. Put z := P1 and D = d

dz
. Then,

MA1,s : d
dz

(z d
dz
− (1

2
− s))u = 0 and M̃A1,s : (z d

dz
− (1

2
− s))u = 0.

Therefore, the solutions are given by

Sol(MA1,s) : u =

{
c z

1
2
−s + d (c, d ∈ C) for s 6= 1

2
,

c log(z) + d (c, d ∈ C) for s = 1
2
,

Sol(M̃A1,s) : u =

{
c z

1
2
−s (c ∈ C) for s 6= 1

2
,

c 2π
√−1 (c ∈ C) for s = 1

2
.

Remark. We shall see (5.3 Example) that the non-constant solution λ
of MW,s in (4.5.2) for type A1 is given by the indefinite integral of the

primitive form dz
z

of type A1 and the constant solution 2π
√−1 of M̃W,s

is its period (a similar description by a use of p-function holds for type
A3, and presumably for type D4). We introduced the system MW,s in
order to include such log-type function λ (=an indefinite integral of a
primitive form) in the construction of the period map. The relationship
between λ and its period goes much deeper. E.g. the transcendentality
of 2π

√−1 is shown by a use exponential function = the inverse of log
function for type A1. How about the p-functions for types A3 and D4?
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Assertion 2. One has a left DSW
-homomorphism:

(4.5.3) MW,s+1 →MW,s

by the right multiplication of D. It induces a homomorphism:

(4.5.4) D : Sol(MW,s) → Sol(MW,s+1).

The kernel of this homomorphism is a vector subspace spanned by the
flat coordinates of degree s and by the constant function 1SW

.

Proof. In order to show the well definedness of (4.5.3) and (4.5.4), it is
sufficient to prove the relations:

P (δ1, δ2)D = DP (δ1, δ2),
Qs+1(δ1, δ2)D = DQs(δ1, δ2).

The verifications are left to the reader. The kernel of (4.5.4) is given
by solutions of the system of the equations (4.3.3), (4.3.4)* and D. It
is easy to see that the system is reduced to the system of equations:

(δ1δ2 −∇/δ1δ2)u = 0, ((N − s)δ)u = 0 and Du = 0.

This is the equation for a flat coordinate of degree s (if s 6= 0). ¤
Assertion 3. The polarization I ∈ DerSW

⊗DerSW
(3.4.8) induces a

pairing between the two solution systems for s and −s:

(4.5.5)
I : Sol(MW,s)/CSW

× Sol(MW,−s)/CSW
→ CSW

du× dv 7→ I(du, dv) =
∑l

i=1 δiu · w(δ∗i )v

which is nondegenerate at every point of SW \DW . One has:

(4.5.6) I(dDu, dv) = −I(du, dDv)

for u ∈ Sol(MW,s−1) and v ∈ Sol(MW,−s).
Proof. Combining the homomorphism ϕ(s) (4.3.1) , one obtains

Is = ϕ(s) ⊗ ϕ(−s)(I) = ϕ(−s) ⊗ ϕ(s)(I).
Then the horizontality of Is (4.2.3) implies further

∇(s) ⊗∇(−s)(I) = ∇(−s) ⊗∇(s)(I) = 0.

This implies the value I(du, dv) is a constant and (4.5.5) is defined.
Recall det(I(dPi, dPj)) = ∆ (3.1.5) so that I is nondegenerate on SW \
DW . So, the exact sequence (4.5.1) implies the nondegeneracy of the
pairing (4.5.5). We show (4.5.6) by recalling (4.3.4)* and (3.9.6):

I(du, dDv) =
∑l

i=1 δiu · w(δ∗i )Dv =
∑l

i=1 δiu · ((N + s− 1)δ∗i )v
=

∑l
i=1((N + s− 1)∗δi)u · δ∗i v = −∑l

i=1((N − s)δi)u · δ∗i v
= −∑l

i=1 w(δi)Du · δ∗i v = −I(dDu, dv). ¤
Remark. The nondeneracy does not hold for the pairing on Sol(M̃W,s)×
Sol(M̃W,−s) when s ∈ {exponents} − Z≥0 due to the splitting (4.5.2).
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We are interested in the case when the application Dn : Sol(MW,s) →
Sol(MW,s+n) for n ∈ Z≥0 and s ∈ C brings a solution space to its dual
space, that is the case −s = s+n, since then we obtain a bilinear form:

(4.5.7)
I : Sol(MW,s)/CSW

× Sol(MW,s)/CSW
→ CSW

du× dv 7→ I(du, dDnv).
So, s = −n

2
∈ 1

2
Z≤0. According to the parity of n, there are two cases:

Case i) s = 0,−1,−2, · · · . In this case (4.5.7) is a nondegenerate
symmetric bilinear form as follows: applying the operator D, one has a
sequence of isomorphism (for {exponents}∩Z = ∅) of the local systems:

· · · ∼→ Sol(MW,−2)/CSW

∼→ Sol(MW,−1)/CSW

∼→ Sol(MW,0)/CSW∼→ Sol(MW,1)/CSW

∼→ Sol(MW,2)/CSW

∼→ · · ·
which is equivariant with the inner product (4.5.7) (up to sign). One

has the isomorphism: Sol(MW,0)/CSW
' Sol(M̃W,0) ' V ∗

C where
(4.5.7) is identified with the Killing form I on V . For any covector

X ∈ VC, let X(n) := DnX ∈ Sol(M̃W,n)/CSW
for n ∈ Z so that

I(X(n), Y (n)) = In(X(n), Y (−n)) = (−1)nI(X,Y ) for X, Y ∈ VC. In
fact, these spaces are identified with the middle homology group

Case ii) s = −1/2,−3/2,−5/2, · · · . In this case (4.5.7) is a skew-
symmetric bilinear form which may degenerate as follows: applying the
operator D, one has a sequence of homomorphism of the local systems:

· · · ∼→ Sol(MW,− 5
2
)/CSW

∼→ Sol(MW,− 3
2
)/CSW

∼→ Sol(MW,− 1
2
)/CSW

→ Sol(MW, 1
2
)/CSW

∼→ Sol(MW, 3
2
)/CSW

∼→ · · ·
which is equivariant with the inner product (4.5.7) (up to sign). The
homomorphisms are isomorphic except at the middle step:

Sol(MW,− 1
2
)/CSW

→ Sol(MW, 1
2
)/CSW

.

The rank of the kernel of this step is equal to the multiplicity of expo-
nent h

2
due to Assertion 2. So, it is non-degenerate iff h

2
6∈ {m1, · · · ,ml}.

Recall 2.8 Remark i) a criterion for this condition in terms of the Cox-
eter graph. We shall investigate these cases more in details in §6.

Fix a base point, say ∗, of the universal covering space (SW,C\DW,C)∼

and branches at ∗ of the functions in Sol(MW,s). Then the analytic
continuation of the evaluation homomorphism induces a map

(4.5.8) (SW,C \DW,C)∼ → HomC(Sol(MW,s)∗,C)

which we shall call the period map of type W and weight s. By choosing
a basis u1, · · · , ul and 1 of Sol(MW,s), the period map is given by the
l-tuple (u1, · · · , ul) of functions and the jacobian is calculated by

(4.5.9)
∂(u1, · · · , ul)

∂(P1, · · · , Pl)
= c∆

−s− 1
2

W for some c ∈ C \ {0}.
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5. Period integrals for primitive forms

The connection ∇(s) for s = n/2 (n ∈ Z≥0) is realized as the Gauss-
Manin connection for a universal unfolding of a simple singularity of
dimension n if W is a Weyl group of a Lie algebra. Then the solutions

of the uniformization equation M(s)
W are realized by the period integrals

of the primitive form of the unfolding. Thus the period map is defined.

5.1. Universal unfoldings of simple singularities.
We recall briefly the description of universal unfoldings of simple

singularities due to Brieskorn [Br1] (see [Sl] for non-simply-laced cases).
A simply-laced simple singularity of dimension n (n ∈ Z≥1) is the

singular point of a hypersurface of dimension n defined by the equation
(5.1.1) in coordinates (x, y, z3, · · · , zn+1). The type, in LHS of Table, is
given by the dual graph Γ of the exceptional divisors of the minimal res-
olution of the singularity for n = 2 (c.f. 2.4). We note that the equation
is a weighted homogeneous polynomial of weight (wx, wy,

1
2
, · · · , 1

2
: 1)

for suitable weights wx, wy ∈ Q>0 for x and y such that wx+wy = 1
2
+ 1

h
.

(5.1.1)

Al : xl+1 − y2 + z2
3 + · · ·+ z2

n+1

Dl : xl−1 − xy2 + z2
3 + · · ·+ z2

n+1

E6 : x4 + y3 + z2
3 + · · ·+ z2

n+1

E7 : x3y + y3 + z2
3 + · · ·+ z2

n+1

E8 : x5 + z3 + z2
3 + · · ·+ z2

n+1

Let G be a group acting linearly on the two variables x, y such that the
G-action leaves the equation for a simple singularity (5.1.1) invariant
and the induced G-action on the dual graph Γ is faithful. The sim-
ple singularity with the G-action is called a simple singularity of non
simply-laced type Γ/G, where Γ/G is given in the next table ([Ar2][Sl]).

(5.1.2)

Γ/G Γ G The action of a generator of G
Bl A2l−1 Z/2Z : (x, y) 7→ (−x, y)
Cl Dl+1 Z/2Z : (x, y) 7→ (x,−y)
F4 E6 Z/2Z : (x, y) 7→ (−x, y)
G2 D4 Z/3Z : (x, y) 7→ 1

2
(x + y,−3x + y)

Let g, h and W be a simple Lie algebra over C, a Cartan subalgebra
of g and its Weyl group, respectively. The ring S(g∗)ad(g) of invariant
polynomials on g by the adjoint group action is isomorphic to S(h∗)W

(Chevalley), and one obtains the flat adjoint quotient morphism: g →
h//W ' SW , whose fiber over 0 is the nilpotent variety N(g) of g.
For a subregular element x ∈ N(g), consider an affine subspace X of g
which is transversal at x to the adjoint group orbit of x in g (e.g. put
X := x + zg(y) where y ∈ N such that 〈x, y, [x, y]〉 form a sl2 triplet).
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Theorem. (Brieskorn [Br1][Sl]) Let ϕ2 : X → SW be the restriction
of the adjoint quotient map to the slice X as defined above. Then the
fiber X0 := ϕ−1

2 (0) is the corresponding simple singularity of dimension
n = 2 and ϕ2 is its semi-universal unfolding. If g is of a non-simply-
laced type, then there is a G-action on X such that ϕ2 is G-invariant
and the G-action on X0 defines the singularity of non-simply-laced type.

We collect some facts on the universal unfolding ϕ2 : X → SW , which
we shall use in 5.2 as a building (or supporting) data for a primitive
form. Their proofs are either referred to or easy and omitted.

i) The ϕ2 is a weighted homogeneous polynomial map of the weights
(wx, wy, 1/2, d1/h, · · · , dl−1/h : d1/h, · · · , dl/h) (see 2.5 for di, [Br1]).

ii) The composition πW ◦ϕ2 with πW (3.2.7) is a submersion. Hence
the fiber product Z := X×Spec(S(h∗)W,τ )SW ' C3×SW is a smooth affine
variety with projections p : Z → SW and π̂W : Z → X. We realize X as
a hypersurface in Z: define F2(x, y, z3, P1, ···, Pl) := Pl◦p−Pl◦ϕ2◦π̂W .
Then, a) π̂W identifies the hypersurface {F2 = 0} in Z with X.

b) ϕ2 is given by the restriction of the projection p :Z→SW to X.
iii) Let OC := OZ/(F2, ∂xF2, ∂yF2, ∂z3F2) be the ring of polynomial

functions on the critical set C of ϕ2. Then, δ 7→ δF2 |C induces a
S(V )W,τ -isomorphism: G ' OC (' OG

C for non-simply-laced case).
iv) Put r := wx + wy + (n− 1)1

2
= 1

h
+ n

2
and s := max{di/h− dj/h |

i, j = 1, · · · , l} = deg(Pl)−deg(P1). Then one has [S1]: 2r + s = n+1
(duality) and s < 1 (a characterization of a simple singularity).

5.2. The primitive form ζFn.
We introduce the primitive form attached to the universal unfolding

of a simple singularity. By a use of the covariant differentiation of the
primitive form, the module of relative abelian differentials of the family
is identified with the module of vector fields on SW . This identifies the
flat structure studied in§3 with that defined by the primitive form[S5-7].

Let n ∈ Z≥1. Consider a weighted homogeneous polynomial

(5.2.1) Fn(x, y, z3, · · · , zn+1, P1, · · · , Pl)

of total degree 1 defined on the space Zn := Cn+1×SW with the weight
(wx, wy, 1/2, · · · , 1/2, d1/h, · · · , dl/h). We call Fn a universal unfolding
of a simple singularity of dimension n, if it satisfies the i), ii) and iii):
i) The restriction Fn |P1=···=Pl=0 is a polynomial given in (5.1.1).
ii) Put OCn := OZn/(Fn, ∂xFn, ∂yFn, ∂z1Fn, · · ·, ∂zn+1Fn). Then, one has
a S(V )W,τ -isomorphism: G ' OCn by the correspondence δ 7→ δFn |Cn .
iii) The constant factor of Fn is normalized to: ∂

∂Pl
Fn = 1.

Under the data i), ii) and iii), the universal unfolding morphism

(5.2.2) ϕn : Xn → SW
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is defined by the restriction ϕn := pn|Xn of the projection pn : Zn →SW

to the hypersurface Xn := {Fn = 0} ⊂ Zn. The ϕn defines a flat family
of n-dim. affine variety parameterized by SW , where the 0-fiber X0 :=
ϕ−1

n (0) is the simple singularity of dimension n. It is well-known (Mil-
nor) that over the complement of the discriminant SW \DW , ϕn defines
a locally trivial fibration whose fiber, called a Milnor fiber, is homo-
topic to a bouquet of l-copies of n-dimensional spheres. In case of non-
simply-laced type, the G-action (5.1.2) extends to Zn leaving Fn invari-
ant such that the map in ii) induces G ' OG

Cn
. So, ϕn is G-invariant.

Introduce the module of Abelian differentials of deg n relative to ϕn:

(5.2.3) H(0)
Fn

:= Ωn+l+1
Zn

/dFn ∧ dP1 ∧ · · · ∧ dPl ∧ dΩn−1
Zn

where Ωp
Zn

is the module of polynomial coefficient p-forms on Zn. In

fact, an element ω ∈ H(0)
Fn

defines a n-form (modulo closed forms)

(5.2.4) Rest[ω] := Res
[

ω
Fn,P1−t1,··· ,Pl−tl

]

on each fiber Xt := ϕ−1
n (t) for t = (t1, · · · , tl) ∈ SW,C, and hence the

de-Rham cohomology class Rest[ω] ∈ Hn(Xt, Ω
∗
Xt

) (see [Ha,§4] for a
definition of the residue symbol Res). So, we denote ω also by Res[ω].

Remark. A justification to call H(0)
Fn

the module of abelian differentials
is the following fact (which is an easy result of a study on the family
ϕ1, but, since we shall not use it, we do not give a proof of it) for the
case n = 1 when the Milnor fiber Xt is a punctured curve.

Fact. Let ζ1, · · · , ζl be homogeneous S(V )W -free basis of H(0)
F1

such

that deg(ζi) = −1
2

+ mi

h
(i = 1, · · · , l). Then Rest[ζi] for 0 < mi < h

2

form basis of abelian differential of the first kind on X̄t, Rest[ζi] for
h
2

< mi < h form basis of abelian differential of the second kind on X̄t,

and Rest[ζi] for mi = h
2

form basis of abelian differential of the third
kind having poles on the punctures on X̄t.

We recall some structures a)-f) equipped on the module H(0)
Fn

as a lat-
tice in Rnq∗(Ω·

Xn/T [D, D−1]) (see [S7,§2(2.6.2)] for details and proofs).

a) The S(V )W -module structure on H(0)
Fn

free of rank l.

b) A decreasing filtration: H(0)
Fn
⊃ H(−1)

Fn
⊃ H(−2)

Fn
⊃ · · · by free

S(V )W -modules of rank l (which we call the Hodge filtration).

c) the Gauss-Manin connection: ∇ : DerSW
×H(−k−1)

Fn
→ H(−k)

Fn
such

that ∇D : H(−k−1)
Fn

→ H(−k)
Fn

is an S(V )W,τ -isomorphism.

d) The S(V )W,τ [D−1]-module structure on H(0)
Fn

by putting D−1 :=

∇−1
D , so that one has H(−k)

Fn
= D−kH(0)

Fn
(k ∈ Z≥0).

e) The identification of graded pieces of the filtration with the module
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of Kähler differentials of degree n + 1 on Xn relative to ϕn:

H(−k)
Fn

/H(−k−1)
Fn

Dk

' H(0)
Fn

/H(−1)
Fn

' Ωn+1
Xn/SW

:= Ωn+1
Xn

/Ω1
SW
∧ Ωn

Xn
.

f) The higher residue pairing:

KFn =
∑∞

i=0 K
(i)
Fn

D−i : H(0)
Fn
×H(0)

Fn
→ S(h∗)W,τ [D−1] ,

which is a S(V )W,τ [D−1]-sesqui-linear form compatible (in a suitable
sense) with a)-e),whose leading term is given by the residue pairing:

K
(0)
Fn

(ω1, ω2) = Res
[ω1·(ω2/dP1∧···∧dPl∧dx∧dy∧dz3∧···∧dzn+1)

∂xFn, ∂yFn, ∂z3Fn,··· , ∂zn+1Fn

]

inducing a perfect selfdual-pairing on the piece Ωn+1
Xn/SW

' H(0)
Fn

/H(−1)
Fn

.

We now consider the most basic element among all Abelian differentials:

(5.2.5) ζFn := Res[dP1 ∧ · · · ∧ dPl ∧ dx ∧ dy ∧ dz3 ∧ · · · ∧ dzn+1],

which is the element in H(0)
Fn

of lowest degree. Using notation 5.1 iv),

∗) deg(ζFn) =
∑l

i=1
di

h
+wx+wy + n−1

2
−1−∑l

i=1
di

h
= r−1 = 1

h
+ n−2

2
.

Denote by ζ
(−k)
Fn

:=∇−k
D ζFn∈H(−k)

Fn
the element shifted k-times by D−1.

Under these setting and notation, we have theorems ([S5-7]).

Theorem. The element ζFn is a primitive form for the family Fn.

Proof. This means that ζFn satisfies the following properties 0)-iv).

0) One has the bijection: G ' Ωn+1
Xn/SW

, δ 7→ ∇δζ
(−1) mod H(−1)

Fn
.

i) ζFn is homogeneous: ∇E ζ
(0)
Fn

= (r − 1) ζ
(0)
Fn

.

ii) Orthogonality: K
(k)
Fn

(∇δζ
(−1)
Fn

,∇δ̄ζ
(−1)
Fn

) = 0 for δ, δ̄ ∈ G and k ≥ 1.

iii) K
(k)
Fn

(∇δ∇δ′ζ
(−2)
Fn

,∇δ′′ζ
(−1)
Fn

) = 0 for δ, δ′, δ′′ ∈ G and k ≥ 2.

iv) K
(k)
Fn

(Pl∇δζ
(−1)
Fn

,∇δ′ζ
(−1)
Fn

) = 0 for δ, δ′ ∈ G and k ≥ 2.
Let us briefly veryfy the conditions. The 0) follows directly from the
next formula of covariant differentiation of ζFn , and i) follows from ∗).
∗∗) ∇δζ

(−1) = Res[ δFn dP1 ∧ · · · ∧ dPl ∧ dx ∧ dy ∧ dz3 ∧ · · · dzn+1].
The remaining ii), iii) and iv) are verified by degree check as follows.

One has deg(K
(k)
Fn

) = −n−1−k and deg(ζ
(0)
Fn

) = r. One may assume

δ, δ′, δ′′ ∈ G is ∂
∂Pi

(i = 1, ···, l). Then deg(∇δ∇−1
D ) = deg Pl−deg Pi ≤ s.

Recalling the duality 2r + s = n + 1 and the characterization s < 1
(see 5.1 iv)), and taking the range of k in account, one calculate

deg(K
(k)
Fn

(∇δζ
(−1)
Fn

,∇δ′ζ
(−1)
Fn

))
≤ (−n− 1− k) + (s + r) + (s + r) = s− k < 0,

deg(K
(k)
Fn

(∇δ∇δ′ζ
(−2)
Fn

,∇δ′′ζ
(−1)
Fn

))
≤ (−n− 1− k) + (2s + r) + (s + r) = 2s− k < 0,

deg(K
(k)
Fn

(Pl∇δζ
(−1)
Fn

,∇δ′ζ
(−1)
Fn

))
≤ (−n− 1− k) + (1 + s + r) + (s + r) = s + 1− k < 0.

The negativity of degrees implies that these elements are zero. ¤
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Let us state some immediate consequences of Theorem.
The 0) and ii) of the condition for a primitive form implies that one

has a S(V )W,τ [D−1]-module isomorphism:

(5.2.6) G ⊗ Z[D−1] ' H(0)
Fn

.

defined by the correspondence
∑

i≥0 δi ⊗D−i 7→ ∑
i≥0∇δi

D−iζ
(−1)
Fn

.

Note. The formula (5.2.6) implies that the choice of a primitive form
defines a splitting of the Hodge filtration (in the sense in b)) into an

orthogonal sum of graded pieces g⊗D−k ' H(−k)
Fn

/H(−k−1)
Fn

. In analogy
with the classical Hodge theory, where a choice of a Kähler metric
defines an orthogonal splitting of the Hodge filtration, we may call
(5.2.6) a Hodge decomposition. Note that we have not yet discussed on
the S(V )W - and DerSW

- module structures on the modules in (5.2.6).

The iii) and iv) implies that the multiplication of Pl and the covariant
differentiation by an element δ ∈ G in the RHS of (5.2.6) is given by
two terms in the LHS. Let us write down explicitly the actions:

Pl(D
−k ⊗ δ) = D−k ⊗ (Pl ∗n δ) + D−k−1 ⊗ (Nn(δ) + kδ),(5.2.7)

∇δ1(D
−k−1 ⊗ δ2) = D−k ⊗ (δ1 ∗n δ2) + D−k−1 ⊗∇/n δ1δ2.(5.2.8)

where ∗n : G × G → G is a S(V )W,τ -bilinear map, Nn : G → G is a
S(V )W,τ -endomorphism and ∇/n : G × G → G is a covariant differenti-
ation over S(V )W,τ .

1. The ∗n-product is induced from the ring structure in OCn:

(5.2.9) (δ1 ∗n δ2)Fn ≡ δ1Fn · δ2Fn in OCn

using the identification G ' OCn.
2. Using the identification: G ' Ωn+1

Xn/SW
, the flat metric J is given

by the first residue pairing K(0). That is: for δ1, δ2 ∈ G, one has

(5.2.10) J(δ1, δ2) = c · Res
[ δ1Fn δ2Fn ζFn

∂xFn,∂yFn,∂z3Fn,··· ,∂zn+1Fn

]

3. The intersection form on the homology group Hn(Xt,Z) of a Mil-
nor fiber Xt is now calculated by the flat metric (i.e. the residue pair-
ing) and by the period of primitive forms:

(5.2.11) 〈γ, γ′〉 = (−1)
n
2−k

(2π)n

∑n
i=1 δi

∫
γ
ζ

(k−1)
Fn

· w(δi∗)
∫

γ′ ζ
(n
2
−k−1)

Fn

where δ1, · · · , δl and δ1∗, · · · , δl∗ are S(V )W,τ -dual basis of G w.r.t. the
inner product JFn [S6 §3].

4. Let W be the Weyl group of the Lie algebra g corresponding to
the simple singularity Fn. The identification of the primitive form ζFn

with the ζ
(−n/2)
W = D−n/2 ⊗D in HW 4.3 induces an isomorphism

(5.2.12) H(k)
Fn
' H(k−n/2)

W



46 KYOJI SAITO

compatible with the structures a)-f) up to the shift by n
2
. In particular,

one has ∗n = ∗, Nn = N + n
2

and ∇/Fn
= ∇/.

We first show the result for n = 2, where Brieskorn [Br1] has identi-
fied the intersection form on H2(Xt,Z) with the Killing form (up to a
constant) of the corresponding Lie algebra g. For general n, the result is
reduced to an unpublished result [S5,§5-6]: Let Fn+z2

n+2+z2
n+3 = Fn+2.

The correspondence ω ∈ H(k)
Fn
7→ ∇D(ω ∧ dzn+2 ∧ dzn+3) ∈ H(k+1)

Fn+2
for

k ≤ −1 and n ≥ 1 defines a bijection: ρ : H(k)
Fn

' H(k+1)
Fn+2

, which is

compatible with the structures i)-iv) and ρ(ζ
(k)
Fn

) = ζ
(k+1)
Fn+2

.

Remark. Another direct proof of the theorem for n = 1 without using
the result of [S5] may conjecturely be given by the following approach.

Let g be a semi-simple algebra over C. Let θ be an involution of g
inducing the eigenspace decomposition g = k+p. The restriction of the
adjoint quotient morphism to the subspace p induces a flat morphism
whose fiber over 0 is the nilpotent variety N(p) (c.f. [K-R]). Then one
wants to study again the restriction of the morphism on the subspace
X of p which is transversal to singularity of N(p). This was studied in
details by Sekiguchi [Se], whose result is not so simple as in Brieskorn’s
theorem. One reason is that N(p) may no longer be irreducible, and the
other reason is that the singularity N(p)sing may not be irreducible and
each component may have different codimension in N(p). Nevertheless,
we expect Brieskorn type theorem for the real split case as follows.
Conjecture: if θ is the involution associated to a real split form of g,
then the restriction of the adjoint quotient morphism to a transversal
slice at a point of a subregular nilpotent orbit in N(p) gives a real form
of the universal unfolding of a simple singularity of dimension 1.

5.3. Period integral and period map.
As a consequence of 5.1 and 5.2, we can express the solutions of the

equation M̃W,−n/2 for n ∈ Z≥0 by the integrals of the primitive form
for the family ϕn. Namely, let γ(t) be a horizontal section Rnϕn∗(ZX)
where t runs in the universal covering (SW,C\DW )∼. Then the integral∫

γ(t)
Rest[ζ

(k)
Fn

] as a function on (SW,C\DW )∼ is a solutionofM̃W,k−n/2 for

δ
∫

γ(t)
Rest[ζ

(k)
Fn

]=
∫

γ(t)
∇δRest[ζ

(k)
Fn

] (δ∈DerSW
). We regard

∫
γ(t)

Rest[ζ
(k)
Fn

]

defines further, at each point t, a linear functional on the flat tangent

vector space Ω∗
+: δ∈Ω∗

+ 7→δ
∫

γ(t)
Rest[ζ

(k)
Fn

]. This defines the period map

t ∈(SW,C\DW )∼ 7→ ∫
Rest[ζ

(k)
Fn

] ∈ Hom(Rnϕn∗(ZX), Ω+C). Applying D
on Ω, we obtain the projection to the first factor Hom(Rnϕn∗(ZX),C).

A description of the period map for n = 2 is achieved by [Br1][Lo] and

[Y]. Namely, the simultaneous resolution X̃→h of the family X2→SW is
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constructed in terms of Lie theory in [Br1], where the Kostant-Kirillov
form on the (co-)adjoint orbit is identified with the primitive form [Y].
This implies that h is the period domain and the inverse to the period
map is nothing but the quotient morphism h → h/W ' SW . (For
details, see the references. For an analytic treatment, see [Lo]).

We describe now the period map and its inverse for n = 1 of type
A1,A2,A3 or B2 (where the projection to the first factor suffices). The
types A1 and A2 are classical. The type A3 is taken from [S2], and B2

is a consequence of A3 (which recover the classical well-known results).

Example. 1. A1 : F := xy − t. The primitive form is given by the differ-
ential ζ =dx/x. The base γ ∈ H1(Xt,Z) is invariant (under the monodromy
action) and the period integral

∫
γ ζ = 2π

√−1 is a constant independent of

t. The indefinite integral u =
∫ t
1 ζ and 1 form basis of Sol(MA1,− 1

2
). The

period domain of u is the plane C with the translation action by 2π
√−1Z.

The inverse map is given by the exponential function t = exp(u).
2. A2 : F := y2 − (4x3 − g2x− g3) with ∆A2 = g2

3 − 1
27g3

2. The primitive
form is given by the elliptic integral of the first kind ζ = dx/

√
4x2 − g2x− g3.

The Milnor fiber Xg is a punctured (at ∞) elliptic curve. The integrals
ui =

∫
γi

ζ (i = 1, 2) over (oriented) basis γ1, γ2 ∈ H1(Xg,Z) and 1 give
basis of Sol(MA2,− 1

2
). The period domain of (u1, u2) is H̃ := {(u1, u2) ∈

C2 | =(u1/u2) > 0} with the modular group Γ(A2) = SL(2,Z) action. The
inverse map H̃ → Sa2 \DA2 to the period map is given by g2 := 60E4(u1, u2)
and g3 := 140E6(u1, u2) where E2i :=

∑
(m,n)∈Z2\{(0,0)}(nu1+mu2)−2i is the

elliptic Eisenstein series. The discriminant ∆A2 , given by η(τ)24u−12
2 , gen-

erates the ideal of cusp forms, where η(τ) = exp(2π
√−1τ/24)Π∞n=1(1− qn)

is the Dedekind η-function, τ = u1/u2 and q = exp(2π
√−1τ)).

3. A3 : F := s2 − (t4 + x2t
2 + x3t + x4). The primitive form is given by

the hyperelliptic integral of the lowest degree ζ = dt/
√

t4 + x2t2 + x3t + x4.
The Milnor fiber Xx is a two distinct punctured elliptic curve. Let γ1, γ2 and
γ be the basis of H1(Xx,Z) such that γ1, γ2 form (oriented) basis of the first
homology group of the compactified elliptic curve and γ is the (monodromy)
invariant cycle presented by a closed path in Xt turning once around one
of the punctures. Then the integrals

∫
γi

ζ (i = 1, 2) are the periods on
X̄x but

∫
γ ζ is realized by an integral over an interval connecting the two

punctures on Xx. In order to get a description of the third integral and
the inverse map, we proceed the following reduction to A2 [S2,Theorem]:
regarding the polynomial t4 + x2t

2 + x3t + x4 as a binary quartic form, the
invariants of weight 4 and 6 are given by L(x) :=16x4 + 4

3x2
2 and −1

9M(x) :=
− 8

27x3
2−4x2

3+
32
3 x2x4. The two punctures on the elliptic curve Xx correspond

to the two points p(x) := (z = −2
3x2, w = 2x3) and ∞ on the elliptic curve

w2 = 4z3 − L(x)z + 1
9M(x). The correspondence x ∈ SA3 7→ (p(x), g2 =
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L(x), g3 = −1
9M(x)) gives a biregular morphism from SA3 to the total space

of Weierstrass family of (affine) elliptic curves: w2 = 4z3 − g2z − g3 such
that ∆A3=−27

16∆A2 . Consider the associated elliptic integrals:

ui =
∫
γi

dz/
√

4z3 − Lz + 1
9M (i = 1, 2) & v =

∫ p(x)
∞ dz/

√
4z3 − Lz + 1

9M .

Theorem. ([S2, Theorem])
1. The v, u1, u2 and 1 form basis of Sol(MA3,− 1

2
).

2. The period domain of (v, u1, u2) and the modular group are given by

B(A3) = {(v, u1, u2) ∈ C3 | =(u1/u2) > 0, v 6= mu1 + nu2∀m, n ∈ Z},
Γ(A3) = SL(2,Z) |× Z2.

3. The inverse map B(A3) → SA3 \DA3 is given by the following system:

−2
3x2 = p(v, u1, u2) = v−2 +

∑′{(v −mu1 − nm2)−2 − (nu1 + mu2)−2},
−x3 = −1

2p′(v, u1, u2) = v−3 +
∑′(v −mu1 − nm2)−3,

L = 16x4 + 4
3x2

2 = 60E4(u1, u2).

4. B2 : F := s2 − (t4 + x2t
2 + x4). This is a subfamily of A3 fixed by the

Z/2-action (s, t) 7→ (s,−t) with ∆B2 = x4(x4 − x2
2/4). The cycles vanishing

along x4 = 0 defines the short root and the cycles vanishing along x4−x2
2/4 =

0 defines the long root of type B2, respectively. The primitive form is given
by the classical Legendre-Jacobi form of elliptic integral dt/

√
t4 + x2t2 + x4.

Let us use the same reduction and notation as in the previous example A3.
Because of the Z2-symmetry, the difference, in the elliptic curve, of the two
punctures on Xx is a two-torsion element, and, hence, the point p(x) in the
elliptic curve w2 = 4z3−g2z−g3 is a branching point of the double cover to
the z-plane (i.e. −2

3x2 is a solution of the cubic equation 4z3−g2z−g3 = 0).
Then we can choose a base γ1 of the homology group such that 2v = u1. As
immediate consequences of this description, we obtain:
Theorem. 1. The u1, u2 and 1 form basis of Sol(MB2,− 1

2
).

2. The period domain and the modular group acting on it are given by

B(B2) = {(v, u1, u2) ∈ B(A3) | 2v = u1} ' {(u1, u2) ∈ C2 | =(u1/u2) ≥ 0},
Γ(B2) = Γ0(2) := {

[
a b
c d

]
∈ SL(2,Z) | b ≡ 0 mod 2}.

3. The inverse map B(B2) → SB2 \DB2 is given by the following system:

−2
3x2 = p(1

2u1, u1, u2) and 16x4 + 4
3x2

2 = 60E4(u1, u2).

4. There are two orbits of cusps on the boundary of B(B2). Each factor x4 =
3
16(20E4(u1, u2)−p2(1

2u1, u1, u2)) and 4x4−x2
2 = 15E4(u1, u2)−3p2(1

2u1, u1, u2)
of the discriminant vanishes on each orbit of cusps, respectively, but vanishes
nowhere on the period domain. Therefore, the factor is (up to a constant
factor) given by η(τ)8u−4

2 and η(− 1
2τ )8u−4

1 = 24η(2τ)8u−4
2 , respectively, and

the discriminant ∆B2 = x4(x4 − x2
2/4) generates the ideal of cusp forms.

5. The flat coordinates are given by x2 = −2
3p and x4− 1

8x2
2 = 15

32(4E4−p2).
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6. Inverse maps from the Period domain

We try to understand the inverse map to the period map for n=1.
There are some partial results for the types A1, A2, A3 and B2 (recall
5.3 Example). However, we are still unsure how to give a general
conjectural description of the ring of inverse functions and of the flat
structures in 3.9 in terms of the inverse functions on the period domain.

We first study in 6.1 an abstract group Γ(M) attached to a Coxeter
matrix M , which shall play the role of the modular group in 6.3 by
letting it act on the symplectic vector space introduced in 6.2. The
period domain for the period map and its inverse map are conjecturely
described in 6.4 and 6.5. The goal of this section is 6.6 Conjecture 6,
which states that certain power root (prescribed in 6.1) of the discrim-
inant is automorphic with the character ϑW on Γ(W ) given in 6.1.

6.1. Group Γ(M).
Let M = (m(α, β))α,β∈Π be a Coxeter matrix (2.3). We introduce a

group Γ(M) attached to M by the relations (6.1.1), (6.1.2) and (6.1.3).

Generators: γα for α ∈ Π

Relations: 1. For the pair α, β ∈ Π such that m(α, β) = 2

(6.1.1) γαγβ = γβγα.

2. For the pair α, β ∈ Π such that m(α, β) ≥ 3

(6.1.2) γαγβγα · · ·︸ ︷︷ ︸
m(α,β)

= γβγαγβ · · ·︸ ︷︷ ︸
m(α,β)

3. Let Γ′ be any irreducible finite type subdiagram of the Coxeter
graph Γ of M , and let h′ be the Coxeter number of Γ′. Suppose there
does not exist an exponent of Γ′ which is equal to h′/2, then

(6.1.3) (Πα∈Γ′ γα)〈h
′〉 = 1

for any order of the product (see Remark 1. below), where

(6.1.4) 〈h′〉 :=





2h′ if h′ is odd,

h′ if h′ is even and h′/2 is even,
h′
2

if h′ is even and h′/2 is odd.

Remark. 1. Different orders in the product in (6.1.3) define conjugate
elements due to (6.1.1) [B,Ch.v,§6,1.Lemme 1.].

2. In the above Relations 3., the condition that there does not exist
an exponent of Γ′ equal to the half of its Coxeter number h′ is equivalent
to that the symplectic form I ′odd attached to Γ′ (see 6.2 Assertion 1.)
is nondegerate (c.f. 2.8 Remark and 6.3 Assertion 4.).
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By definition, we have some obvious homomorphisms and characters.
i) The correspondence γα 7→ −1 (α ∈ Π) induces a character

(6.1.5) θM : Γ(M) → {±1}.
Proof. We need to verify that 〈h′〉#(Γ′) is an even number for any
irreducible finite type Coxeter graph Γ′ without an exponent equal to
the half-Coxeter number. In view of (6.1.4), we have to check only the
third case in the formula. According to the classification, one check
that this occurs only for the types E8, H4 and I2(p) for p = 2 · odd. In
all cases, #(Γ′) is an even number (c.f. also 6.2 Assertion 1.). ¤

ii) Put k(M) :=gcd{〈h′〉#(Γ′)/2 | Γ′: irreducible finite type subdia-
grams of M s.t. h′/2 is not an exponent of Γ′ (h′:the Coxeter # of Γ′)}.
The correspondence γα 7→ exp(π

√−1
k(M)

) (α ∈ Π) induces a character

(6.1.6) ϑM : Γ(M) → C×

such that ϑ
k(M)
M = θM and ϑ

2k(M)
M = 1. If the graph Γ of M does not

contain I2(p) for p=2 · odd, then k(M) is an even number. Except for
k(A1) =∞, k(A2) = k(A3) = 6, k(B2) = k(C2) = 4, k(D4) = 6, k(G2) = 3
and k(I2(p))=〈p〉, one has k(W )=2 for all finite Coxeter group W .

iii) The Artin groupA(M)is defined by the relations(6.1.1)and(6.1.2)
on the generator system gα (α ∈ Π) [B-S]. Then, the correspondence
gα 7→ γα for α ∈ Π induces a homomorphism from A(M) onto Γ(M):

(6.1.7) γ : A(M) → Γ(M).

iv) Suppose the Coxeter graph of M contains neither E8, H4 nor
I2(p) for p = 2 · odd (crystallographic groups except E8 and G2 satisfy
the assumption). Then the correspondence γα 7→ σα (α ∈ Π) induces a
homomorphism σ from Γ(M) onto the Coxeter group with the diagram:

(6.1.8)
Γ(M)

σ→ W (M)
↓ θM ↓ det
{±1} = {±1}.

(Proof. Except for the third case of (6.1.4), all defining relations of
Γ(M) are satisfied in W (M) (recall 2.8).)

Let us call the kernel of σ the principal congruence subgroup of Γ(M).

Remark. Our original intension, explained at the introduction, was to
use the flat structure to understand the Artin group A(M). By the use
of the flat structure, we arrived at a group Γ(M) which lies between
A(M) and W (M). Except for the first few types A2, B2, G2 or I2(p),
the group Γ(M) is close to the group W (M) and we are only at the first
stage (after W (M)) to understand the Artin group. It is interesting to
construct Eilenberg-MacLane space for the group Γ(M) (c.f. [D-S]).
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6.2. Symplectic space (F̃ , Ĩodd).
We construct a symplectic vector space on which Γ(M) acts sym-

plectic linearly. First, we recall the orthogonal representation of the
Coxeter group W (M) ([B, Ch.V,§4, theor.1]). Consider vector spaces

F := ⊕α∈ΠReα

equipped with the symmetric bilinear form I defined by

I(eα, eβ) = −2 cos(π/m(α, β))/dαdβ,

where dα∈R\{0} (α∈Π) are arbitrary scaling constants (we regard that
the pair (F, I) is determined by M independent of the scaling constants
and the basis eα moves in F according to the scaling). A cobasis is
introduced by e∨α := 2eα/I(eα, eα) for α ∈ Π. Then the Coxeter group
W (M) acts freely on F by letting a generator aα ∈ W (M) act on it by
reflections σα : u 7→ u− I(u, e∨α)eα so that I(σ(u), σ(v)) = I(u, v).

¿From now on, we assume that the Coxeter graph (2.4) associated to
M is a tree. Up to order, Π decomposes uniquely into a disjoint union:

(6.2.1) Π = Π1 ∪ Π2,

such that each Πi is discrete, i.e. eα for α ∈ Πi are mutually orthogonal
to each other. We introduce a skew symmetric form Iodd on V .

(6.2.2) Iodd(eα, eβ) :=





I(eα, eβ) if α ∈ Π1 and β ∈ Π2,

−I(eα, eβ) if α ∈ Π2 and β ∈ Π1,

0 if α, β ∈ Π1 or α, β ∈ Π2.

Note that the Iodd does not depend on the scaling factors but only on
(F, I) and (6.2.1). Interchanges of Πi (i = 1, 2) induces a sign change
Iodd 7→ −Iodd. In the sequel, we fix a decomposition (6.2.1) once for all.

Example. Let W be a finite reflection group acting on (V, I) as in §2.
By the choice of a chamber C, one obtains a Coxeter system (W, Π(C))
with the basis ΠW (2.3 Theo.5.), whose associated graph is a tree (2.4).
Thus the above (6.2.2) defines the form Iodd,C depending on C, where
one has Iodd,C(x, y) = Iodd,wC(wx, wy) for w ∈ W . Accordingly, many of

our later constructions (such as the symplectic space F̃ , the realization
ρ of Γ(M) in the symplectic group, the lattice Q̃, the period domain B̃,
etc) depend on the choice of a chamber. However, they are conjugate
to each other in suitable sense by the W -action. So, once for all, we
choose and fix one chamber and denote the associated form by Iodd.
We shall not mention explicitly the dependence on the chamber.

In general, Iodd may not be nonsingular. A more precise formula is:
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Assertion 1. Let the notation be as above. One has

rank(Iodd) = 2 min{#Π1, #Π2},(6.2.3)

corank(Iodd) = |#Π1 −#Π2| = rank(ker(c + 1)).(6.2.4)

Here c := Πα∈Πσα is a Coxeter element in a generalized sense. In case
W (M) is a finite reflection group, the number (6.2.4) is equal to

(6.2.5) #{1 ≤ i ≤ l | mi = h/2}.
Proof. Put ker(Iodd) := {ξ ∈ F | Iodd(ξ, x) = 0 ∀x ∈ F} and ReΠi

:=∑
α∈Πi

Reα (i = 1, 2). We may assume #Π1 ≥ #Π2 without loss of
generality. For a proof of (6.2.3) and (6.2.4), it is sufficient to prove

ker(Iodd) = ReΠ1 ∩ (ReΠ2)
⊥ = ker(c + 1).

The inclusion ker(Iodd) ⊃ ReΠ1 ∩ (ReΠ2)
⊥ is obvious. We show the

converse (i.e. ξ =
∑

β∈Π2
cβeβ and I(ξ, eα) = 0 for all α ∈ Π1 implies

ξ = 0) by induction on #Π2. From the inequality #Π2 ≤ #Π1, one
sees that there is a vertex α ∈ Π1 which is connected with only one
vertex, say β, of Π2. Then I(ξ, eα) = 0 implies that the coefficient cβ

vanishes. The diagram Π\{α, β} may decompose into components but
for each component Γ, one still has #(Π2∩Γ) ≤ #(Π1∩Γ) so that one
can proceed further by induction to show ξ = 0.

Let us show ker(c+1) ⊂ ker(Iodd). Choose the Coxeter element to be
c = c1c2 for ci =

∏
α∈Πi

σα. Let ξ ∈ ker(c + 1). Then cξ = −ξ implies
c1ξ + c2ξ = 0 (*). Let ξ = ξ1 + ξ2 with ξi ∈ ReΠi

(i = 1, 2) so that
ciξi = −ξi (i = 1, 2) and c1ξ2 − ξ2 ∈ ReΠ1 , c2ξ1 − ξ1 ∈ ReΠ2 . Then the
condition (*) implies (c1ξ2− ξ2)+ (c2ξ1− ξ1) = 0 and hence c1ξ2− ξ2 =
−(c2ξ1 − ξ1) = 0. These imply that I(ξ2, eα) = 0 for all α ∈ Π1 and
I(ξ1, eα) = 0 for all α ∈ Π2. Thus Iodd(ξ1, eα) = Iodd(ξ2, eα) = 0 for all
α ∈ Π, i.e. ξ ∈ ker(Iodd). Conversely, suppose ξ ∈ ReΠ1 ∩ (ReΠ2)

⊥.
Then c1ξ = −ξ and c2ξ = ξ and hence cξ = −ξ.
The (6.2.5) follows from the definition of the exponents 2.8. ¤

Assertion 1. implies that the form Iodd is non-degenerate ⇔ #Π1 =
#Π2 ⇔ there is no eigenvalue −1 of the Coxeter element. In fact,
corank(Iodd) is positive for types Al, Bl, Cl with l =even, Dl with
l ≥ 4, E7 and H3 (recall the remark at the end of 2.8).

The nonsingular-hull (F̃ ,Ĩodd) of (F,Iodd) is the smallest nonsingular
symplectic vector space containing (F, Iodd) (unique up to isomorphism).
The explicit model of the nonsingular-hull is constructed as follows.

Assertion 2. Consider the vector space

(6.2.6) F̃ := F ⊕ ker(Iodd)
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equipped with the skew symmetric form:

(6.2.7) Ĩodd(x1 ⊕ y1, x2 ⊕ y2) := Iodd(x1, x2) + I(x1, y2)− I(x2, y1).

Then, Ĩodd is nondegenerate, and (F̃ , Ĩodd) is the nonsingular-hull.

Proof. Without loss of generality, we assume #Π1 ≥ #Π2. We saw in
the proof of Assertion 1 that kerIodd =ReΠ1 ∩ (ReΠ2)

⊥. Let us see that
F̃ = ReΠ1 ⊕ (ReΠ2 ⊕ kerIodd)

is a holonomic decomposition. That is: i) ReΠ1 and ReΠ2 ⊕kerIodd are
totally isotropic w.r.t. Ĩodd (proof: each of the spaces ReΠ1 , ReΠ2 and
kerIodd ⊂ ReΠ1 are totally isotropic. Then I | ReΠ2 × kerIodd = 0 im-
plies the statement). ii) The coupling I | ReΠ1×(ReΠ2⊕kerIodd) is non-
degenerate (proof: it suffices to show I|kerIodd is non-degenerate, which
follows since it is a restriction of the positive definite form I|ReΠ1). ¤
6.3. Symplectic linear representations of Γ(M).

For each α ∈ Π, we consider two transvections

(6.3.1) s±α : u ∈ F̃ 7→ u∓ Ĩodd(e
∨
α, u)eα ∈ F̃ .

One can directly show: i) Ĩodd(s
±
α (u), s±α (v)) = Ĩodd(u, v), ii) s+

αs−α = 1,
and therefore the transvections belong to the symplectic group:

s±α ∈ Sp(F̃ , Ĩodd) := {g ∈ GL(F̃ ) | Ĩodd ◦ g = Ĩodd}.
Lemma. The correspondences γα 7→s±α (α∈Π) induce representations:

(6.3.2) ρ± : Γ(M) → Sp(F̃ , Ĩodd).

Note. ρ+ and ρ− are different and ρ− 6= (ρ+)−1 (except for type A1).

Proof. We prove that the system sα := s+
α (α ∈ Π) satisfy the relations

(6.1.1), (6.1.2) and (6.1.3). The other case is proven similarly.
We normalize the basis eα for α ∈ Π as I(eα, eα) = 2 and e∨α = eα.

Then one has I(eα, eβ) = −2 cos(π/m(α, β)) for α, β ∈ Π

and sα(u) = u− Iodd(eα, u)eα for u ∈ F̃ .
If m(α, β) = 2, then Ĩodd(eα, eβ) = 0 and one has sαsβ(u) = sβsα(u) =

u− Ĩodd(e
∨
α, u)eα − Ĩodd(e

∨
β , u)eβ. This proves (6.1.1).

For a proof of (6.1.2) and (6.1.3), we prepare two Assertions. The
first one studied the case of two vertices in a slightly generalized form.

Let h and m be a pair of integers with h ≥ 3 and gcd(h,m) = 1.
Consider a two dimensional vector space Re1 + Re2 together with a
symplectic form Iodd with Iodd(e1, e2) = −λ for λ := 2 cos(πm/h). Let

A :=

[
1 λ
0 1

]
and B :=

[
1 0
−λ 1

]

be the matrix expression of the transvections s1 and s2 on Re1 + Re2.



54 KYOJI SAITO

Assertion 3. Put e := exp(π
√−1m/h). Then, one has

(6.3.3)

[
1 1
e−1 e

]−1

AB

[
1 1
e−1 e

]
=

[ −e2 0
0 −e−2

]

(6.3.4)

[
1 1
−e −e−1

]−1

BA

[
1 1
−e −e−1

]
=

[ −e2 0
0 −e−2

]

order(AB) = order(BA) = 〈h〉.(6.3.5)

ABA · · ·︸ ︷︷ ︸
h

= BAB · · ·︸ ︷︷ ︸
h

=





1 if h is even and h/2 is odd,

−1 if h is even and h/2 is even,

(−1)(h−1)/2

[
0 −1

1 0

]
if h is odd.

(6.3.6)

Proof. For (6.3.3) and (6.3.4), we calculate eigenvectors of AB and BA:

AB

[
1
e∓1

]
= −e±2

[
1
e∓1

]
and BA

[
1
−e±1

]
= −e±2

[
1
−e±1

]
.

The (6.3.5) is an immediate consequence of (6.3.3) and (6.3.4). If h
is even, use (6.3.3) and (6.3.4) to calculate (AB)h/2 = (BA)h/2 =
diag[−(−1)h/2,−(−1)h/2] where we applied eh = −1. This gives the
first two formulae of (6.3.6). If h is odd, put h = 2n + 1. Then,

ABA · · ·︸ ︷︷ ︸
2n+1

=

[
1 1
e−1 e

] [ −e2 0
0 −e−2

]n [
1 1
e−1 e

]−1

A

= (−1)n

e−e−1

[
0 e−1 − e
e− e−1 e−2 − e2

] [
1 e + e−1

0 1

]

= (−1)n

[
0 −1
1 0

]
.

BAB · · ·︸ ︷︷ ︸
2n+1

= B

[
1 1
e−1 e

] [ −e2 0
0 −e−2

]n [
1 1
e−1 e

]−1

= (−1)n

e−e−1

[
1 0

−e− e−1 1

] [
0 e−1 − e

e− e−1 e−2 − e2

]

= (−1)n

[
0 −1
1 0

]
.

Comparing two expressions, we obtains the last formula of (6.3.6). ¤
The (6.3.6) proves (6.1.2). For a proof of (6.1.3), we prepare second

Assertion which reduces the general problem to the case of two vertices.

Assertion 4. Let Γ′ be an irreducible finite type subdiagram of the
Coxeter graph of M with the Coxeter number h′. Put V ′ := Σα∈Γ′Reα.
Then i) order((Πα∈Γ′sα)|V ′) = 〈h′〉 except for 2〈h′〉 if Γ′ is of type
A4k+1, and ii) order(Πα∈Γ′sα) = 〈h′〉 if h′/2 is not an exponent of Γ′

and = ∞ if h′/2 is an exponent of Γ′ (recall (6.1.4) for 〈h〉).
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Proof. Since Γ′ is a tree, we decompose its vertices into a disjoint union
Γ′1 q Γ′2 such that each Γ′i is totally disconnected. Put c = c1c2 for
ci := Πα∈Γ′isα and V ′ = V ′

1 ⊕ V ′
2 for V ′

i := Σα∈Γ′iReα for i = 1, 2. Since

Iodd(eα, eβ) = 0 for α, β ∈ Γ′i, one has ci(u) = u−∑
α∈Γ′i

Ĩodd(e
∨
α, u)eα.

Since (c1−c2)(eβ) = −∑
α∈Γ′1

Iodd(e
∨
α, eβ)eα +

∑
α∈Γ′2

Iodd(e
∨
α, eβ)eα =

2eβ −
∑

α∈Γ′ I(e∨α, eβ)eα, the matrix expression of 2− c1 + c2 w.r.t. the
basis eα (α ∈ Γ′) is the Cartan matrix of type Γ′, which is up to a
multiplication of a diagonal matrix (I(eα, eα))α∈Γ′ symmetric. Due the
classical result on Cartan matrices (e.g. [B,chV,§6.2]) (or, it is easy to
see directly), the eigenvalues are 2 − 2 cos(πm′

i/h
′) where m′

i are the
exponents for Γ′. Let e = e1 + e2 with ei ∈ V ′

i be an eigenvector ( 6= 0)
of c1−c2 belonging to an eigenvalue λ = 2 cos(πm′

i/h
′). Combining the

equalities: c1(e1) = e1, c2(e2) = e2 and (c1 − c2)(e1 + e2) = λ(e1 + e2),
one has c1e2 = e2 + λe1 and c2e1 = e1 − λe2 and, hence, e1 − e2 is an
eigenvector of c1 − c2 belonging to the eigenvalue −λ. If we assume
λ 6= 0 (i.e. 2m′

i 6= h′), then e1 6= 0 6= e2 and Vλ := Re1 + Re2 has rank
2. Then, c1 and c2 act on the space Vλ as transvections of the vectors
e1 and e2 with respect to the skew symmetric form [ 0

λ
−λ
0

]. We saw in
Assertion 3. that the order of c|Vλ is equal to 〈h′/ gcd(h′,m′

i)〉.
Put λi :=2 cos(πm′

i/h
′) for 0<m′

i <h′/2. One has the decomposition:

V ′ = ker(I ′odd)⊕ Vλ1 ⊕ · · · ⊕ Vλm ,

where I ′odd := Iodd|V ′ so that i) ker(I ′odd) is the fixed point subspace of
V ′ by the action of c, and ii) the action of c preserves the splitting.

i) Since the smallest exponent is m′
1 = 1 (recall (2.8.3)), one has

order(c|Vλ1) = 〈h′〉. The order 〈h′/ gcd(h′,m′
i)〉 of another factor c|Vλi

is not a divisor of 〈h′〉, only when h′ is 2×odd and gcd(h′,m′
i) = 2.

This occurs only when Γ′ is of type A4k+1 (k ≥ 2).
ii) If ker(I ′odd)={0}, then F̃ =V ′⊕V ′⊥ so that order(c|V ′)=order(c).

Assume ker(I ′odd) = V ′
1 ∩ V ′⊥

2 6= {0}. Then for x ∈ ∩iV
⊥
λi
\ (ker(I ′odd))

⊥

one has cnx− x = n(
∑

α∈Γ′1
Iodd(e

∨
α, x)eα) 6= 0 for n 6= 0. ¤

Assertion 4. proves (6.1.3) and, hence, Lemma is proven. ¤
We state another consequence (on odd roots) of Assertion 3.

Corollary. Let m(α, β) ∈ Z≥3 be odd. Then sαβ := sαsβsα · · · (m-
factors) is of order 4. It acts transitively on the set {±eα,±eβ}.
Proof. Use the third line of the formula (6.3.6). ¤
Conjecture 1. The homomorphisms (6.3.2) are injective.

Assertion 5. Conjecture 1. is true for Coxeter matrices with l ≤ 2.

Proof. This is trivial for types A1 and A1 × A1. Thus, we prove for
type I2(m) (m≥3) (including A2, B2, C2, H2 and G2). It is achieved by
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a use of the fundamental domain on the complex upper-half-plane.

Assertion 6. Let ρ̄ : Γ(I2(m)) → PSp(FI2(m)) = Sp(FI2(m))/{±1} be
the projectivization of ρ = ρ+ for m ≥ 3. Then the image of ρ̄ is iso-
morphic to the group 〈s̄α, s̄β | i) (s̄αs̄β)m/2 =1 if m is even or (s̄αs̄β)m =
1 if m is odd, and ii) s̄αs̄β s̄α · · ·= s̄β s̄αs̄β · · · (m-factors in both sides)〉.
Proof. It is obvious that the images s̄α and s̄β in PSp(FI2(m)) of sα and
sβ for Π = {α, β} satisfy the relations i) and ii) due to Assertion 3.

Let ω1 = 〈eα, z〉 and ω2 = 〈eβ, z〉 be homogeneous coordinates of
P(HomR(F,C)). Consider the action of Γ(I2(m)) on a connected com-
ponent H of P(HomR(F,C)) \P(F ∗), which is isomorphic to the com-
plex upper half plane H with respect to the inhomogeneous coordinate
τ := ω1/ω2. Define a subset of H:

F := {τ ∈ H | − cos(π/m) ≤ <(τ) < cos(π/m), |τ | > 1}
∪ {e

√−1θ | π/2 ≤ θ ≤ π(1− 1/m)}.
Then, the fundamental domain of the action is either F if m is odd or
F ∪ F ′ if m is even where F ′ is the image of F by the transformation
τ 7→ −1/τ . (In fact, the two vertices e and−e−1 of F are the fixed point
of the action of s̄αs̄β and s̄β s̄α, respectively, and the cusps

√−1∞ and
0 are fixed point by the actions of s̄α and s̄β, respectively.) ¤

We return to a proof of Assertion 5. Let us “lift” the fundamen-
tal relations in PSp(FI2(m)) to the elements in Sp(FI2(m)). Then, due
to Assertion 3, one has sαsβsα · · · = sβsαsβ · · · (m-times) for all m,
(sαsβ)m/2 = 1 if m is even and m/2 is odd, (sαsβ)m/2 = −1 if m is even
and m/2 is even and (sαsβ)m = −1 if m is odd. Then, by killing the
sign factor, one obtains (6.1.2) and (6.1.3) as the fundamental relations
for the image of Γ(I2(m)) in Sp(F̃I2(m)). So, Assertion 5. is proven. ¤
Example. There are three cases when I2(p) is crystallographic.

Γ(I2(3)) = Γ(A2) = Γ0(1) := SL2(Z),

Γ(I2(4)) = Γ(B2) = Γ0(2) := {[a
c

b
d
] ∈ SL2(Z) | b ≡ 0 mod 2},

Γ(I2(6)) = Γ(G2) = Γ0(3) := {[a
c

b
d
] ∈ SL2(Z) | b ≡ 0 mod 3}.

Remark. Let Z be a central element of the Artin group A(W ). Then
ρ(Z)|V is either 1 or −1. Proof. Put z := ρ(Z). The relation gαZ =
Zgα for α ∈ Π implies sα(z(u)) = z(u − Ĩodd(e

∨
α, u)eα) for u ∈ Ṽ .

This implies Ĩodd(e
∨
α, z(u))eα = Ĩodd(e

∨
α, u)z(eα). Choosing u such that

Ĩodd(e
∨
α, u) 6= 0, one observes that z(eα) = cαeα for some constant cα.

Substituting u by eβ for β ∈ Π and assuming z(eβ) = cβeβ for some

constant cβ, one has cβ Ĩodd(e
∨
α, eβ) = cαĨodd(e

∨
α, eβ). Since the graph for

Π is connected, cα = ε is independent of α ∈ Π and ε ∈ {±1}.



ORBIFOLD OF A FINITE REFLECTION GROUP 57

6.4. Period domain B(W ).
Suppose W is crystallographic. That is: there is a finite root system

w.r.t. (F, I) whose Weyl group coincides with W (see [B,chap.VI,§2,no5
and §4] for details). Then, for a suitable choice of the scaling constants
dα (α ∈ Π) in 6.2, the matrix (I(e∨α, eβ))α,β∈Π, so called the Cartan ma-
trix, is integral. In fact, up to an overall constant factor on the scaling
constants, there are one or two choices according as M is simply laced or
not. Choose one such scaling and consider the set R := ∪α∈ΠW eα and
a lattice Q := Σα∈ΠZeα in V . Then R forms a root system with simple
basis {eα | α ∈ Π}, W = W (R) is the Weyl group and Q = Q(R) is
the root lattice of the root system. By a choice of an over all constant
factor on the scaling constants, I | Q × Q is integral valued. We
normalize min{I(eα, eα) | α ∈ Π} = 2. We shall sometimes denote
Γ(R) instead of Γ(M) or Γ(W ) (here recall that the action of Γ(R) on
Q(R) depends on a choice of a chamber (5.2 Example)). The group

(6.4.1) Q̃ := Q⊕ (Q ∩ ker(Iodd))

is a full sublattice in F̃ and Ĩodd | Q̃× Q̃ is an integral symplectic form.
Problem. Let t̃ be a point in the chamber C and t be its image in
SW . Show that the first homology lattice H1(Xt,Z) of the Milnor fiber
of ϕ1 is canonically isomorphic to the lattice (Q, Iodd,C) (use [S8]).

Recall the flat vector space Ω+ (3.11.2) attached to the reflection
group W . Due to 1., the period map attached to the primitive form
ζF1 (recall 5.3) is a holomorphic local submersion given by

PW : t ∈ (SW \DW )∼ 7→ ∫
Rest[ζ

(0)
F1

] ∈ Hom(Q, Ω+C).

The projection to the first factor is given by local covering map

〈D,PW 〉 : t ∈ (SW \DW )∼ 7→ ∫
Rest[ζ

(0)
F1

] ∈ Hom(Q,C).

Conjecture 2. The period map PW is a global immersion of (SW \
DW )∼/ker(ρ ◦ γ) into a locally closed submanifold B(W ) of an open
cone B̃(W ) in Hom(Q, Ω+C). Determine B(W ) and B̃(W ) explicitly
without using period integral but only in terms of the reflection group.

These problems are somehow asking for analogues of the Riemann’s
relations and Schottkey’s relations for the classical periods of Abelian
integrals on compact Riemann surfaces. Here the period domain is
“homogenized” (i.e. admits C×-action) due to the flat structure on Ω.

6.5. Inverse functions on B(W ).
We observed in 5.3 Example that for types A2, A3 and B2 the inverse

map from the period domain B(W ) (to be exact, from its projection to
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the first factor) to SW\DW is described by a system of elliptic Eisenstein
series (including some specializations of the p-function).

There are four more types D4, B3, C3 and G2, where the similar con-
siderations work to construct the inverse map. Namely, the Milnor
fibers for types D4, C3 and G2 are elliptic curves with 3 punctures ei-
ther without symmetry, with Z/2-symmetry or with Z/3-symmetry,
respectively. The Milnor fiber for type B3 is a double cover of a once
punctured elliptic curve.

Problem Work out explicitly the inversion problem for the period
maps of types D4, B3, C3 and G2.

Beyond these examples, the genus of Milnor fiber increases (without
a “reduction” to an elliptic curve). Then the indefinite integral

∫∞2

∞1
ζ

becomes multi-valued by the periods
∫

γ
ζ for γ ∈ H1(X̄t,Z), where

the periods are dense in the 1-dimensional complex plane. Then, it
is already a problem to find a reasonable formulation for the period
map and the inverse map. We need to introduce a concept of a regu-
lar function on the period domain B(W ) (with a suitable polynomial
growth condition on the boundary) which is automorphic for the group
Γ(W ), and also a concept of pull-back to a function on (V ∗//W )C. For
instance, one may consider either a single indefinite integral

∫ p

∞ and its
(multi-valued-)inverse function as in the classical p-function theory, or
a system of derivatives δi

∫ p

∞ ζ of the periods to obtain the Jacobian
variety as in the classical Abel-Jacobi theory? (See also a related work
[Ko][Mu][To]).

Conjecture 3. There exists a ring C[E] of regular functions on B(W )
which are automorphic for the group Γ(W ). Any element of C[E] is
a pull-back of a polynomial function in S(V )W to the period domain.
This correspondence induces a natural isomorphism:

(6.5.1) C[E] ' S(V )W ⊗C.

The isomorphism implies that the Spec(C[E]) carries the flat struc-
ture studied in §3. Then we may naturally ask how to describe the
flat structure in terms of C[E]. In particular, C[E] is generated by
algebraically independent homogeneous elements, say E4, · · · , E2h of
degree 2d1 = 4, · · · , 2dl = 2h such that J(dE2di

, dE2dj
) = const, which

we may call flat automorphic forms or primitive automorphic forms.

Conjecture 4. Let W be crystallographic, which is not of type G2.
Then there exists an extension C[E] ⊂ C[Ẽ] by a ring of regular func-
tions on B(W ) which are automorphic for the principal congruence sub-
group of Γ(W ) (c.f. 6.1iv)) such that the commutative diagram holds:
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(6.5.5)
C[E] ' S(V )W ⊗C
∩ ∩

C[Ẽ] ' S(V )⊗C.

We remark that, by definition, Spec(C[Ẽ]) carries a linear space struc-
ture with a flat metric, which is isomorphic to the pair (V ∗, I∗).

6.6. Power root of the Discriminant ∆W .
We turn our attention to the discriminant ∆W and its power root.

After a choice of the primitive vector field D in (3.2.1), the discrimi-
nant was normalized to be a monic polynomial of degree l in Pl (c.f.
2.9 Lemma 1.). However, in the sequel, we disregard tentatively the
constant factors and proceeds the caluculations up to constant factor.

Recall the anti-invariants δW ∈ S(V ) in 2.7 and the disriminant
∆W = δ2

W ∈ S(V )W in 2.9. Let us denote by the same notation the

corresponding elements in C[Ẽ] (resp. C[E]) in RHS of (6.5.5). Owing
to Conjectures 3 and 4, we have Jacobian expressions of ∆W and δW

as below. Namely, let Ẽ1, · · · , Ẽl be a system of generator of C[Ẽ]
corresponding to a linear coordinate system of V , and let e1, · · · , el ∈ Π
be the linear coordinate system on B̃(W ). Then by a use of (4.5.9), up
to a constant factor c, one has

dE4 ∧ · · · ∧ dE2h = c ∆W de1 ∧ · · · ∧ del,(6.6.1)

dẼ1 ∧ · · · ∧ dẼl = c δW de1 ∧ · · · ∧ del.(6.6.2)

One should define the meaning of “boundary components” of B(W )
and “cusp forms” in C[E] or in C[Ẽ] such that the discriminant ∆W

(resp. δW ) generates the ideal of cusp forms in C[E] (resp. C[Ẽ]). The
discriminant, as a function on B(W ), vanishes nowhere. The δW is a
square root of ∆W , and is anti-invariant with respect to θW :

(6.6.3) γ∗δW = θW (γ) δW .

Here we recall (6.1.5) for the definition of the character θ, and recall
the commutative diagram (6.1.8).

Conjecture 5. Does δW have a suitable infinite product expression?

Remark. The conjectures and problems in 6.5 and 6.6 seem to have
close relations with odd the root system: Rodd := ∪α∈ΠW

Γ(W )eα.
For instance, as a generalization of Eisenstein series, one may con-
sider, for d ∈ Z≥2, the sum of partial fractions such as

∑
e∈Rodd

e−2d,∑
e∈Rodd,s

e−2d,
∑

e∈Rodd,l
e−2d or a sum of suitable combinations e−2d

s −
e−2d

l for es ∈ Rodd,s and el ∈ Rodd,l and also e ∈ Γ(W ) ·(ker(Iodd)∩Q) in
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case whenIodd is degenerate on the period domain. There are support-
ing examples that the boundary component and the infinite product
might reasonably be described in terms of the odd root system. In
spite of the examples, it is still unclear to the author what are natural
formulation of the partial fractional sums fitting to our setting and we
leave them as an open problem.

Example. 1. Type A2. We have the expression B(A2) = {(u1, u2) ∈
C2 | Im(u1ū2 − ū1u2) > 0} where (u1, u2) are the homogeneous linear
coordinates of the period domain. The ring C[E] is the ring of auto-
morphic forms for the full modular group Γ0(1), and is generated by the
classical Eisenstein series E4 and E6 (e.g. [Ko,p111]). The ring C[Ẽ]
is the ring of automorphic forms for the principal congruence subgroup
Γ(2) of level 2. All conjectures are positively solved for type A2.

The discriminant ∆W (in homogeneous form) is given by

∆A2(u1, u2) = η(τ)24u−12
2 ,

where τ := u1/u2 and η(τ) is the Dedekind eta-function (e.g. [Ko,p121]).
It generates the ideal of cusp forms in the ring C[E]. The generator
δA2 of the anti-invariants with respect to the character θA2 is given by

δA2(u1, u2) = η(τ)12u−6
2 ,

(for this proof and for a finer statement see Assertion 7. below).

2. Type B2. We have seen that the discriminant for the family ϕB2

decomposes into irreducible components corresponding to short and
long roots (5.3 Example 4), and, hence, it is given by

∆B2 = η(τ)8η(2τ)8u−8
2 .

Then one can show by a similar calculation as in type A2 that

δB2 = η(τ)4η(2τ)4u−4
2 .

is an anti-invariant with respect to the character θB2 on Γ(B2)=Γ0(2).

3. Type G2. Since the discriminant for the family ϕG2 decomposes
into components corresponding to short and long roots, one may apriori
describe the discriminant (up to a constant factor) to be of the form

∆G2 = η(τ)6η(3τ)6u−6
2 .

Then one can show by a similar calculation as in type A2 that

δG2 = η(τ)3η(3τ)3u−3
2

is an anti-invariant with respect to the character θG2 on Γ(G2) = Γ0(3).

Throughout the examples, we observe further the following. Recall
the integer k(W ) and the character ϑW of the group Γ(W ) (see 6.1 ii)).
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Assertion 7. For type A2, B2 and G2, consider the k(W )th power root,
say λW , of δW . Since k(A2) = 6, k(B2) = 4 and k(G2) = 3, up to a
constant factor, they are explicitly given by

λA2 := η2(τ)u−1
2 , λB2 := η(τ)η(2τ)u−1

2 and λG2 := η(τ)η(3τ)u−1
2 .

Then, λW is an automorphic form for Γ(W ) with the character ϑW .
That is: g∗(λW ) = ϑW (g)λW for g ∈ Γ(W ).

Proof. We have only to verify that λW is equivariant with the character
ϑW . The verification of this fact is achieved by an elementary but
slightly subtle use of the transformation formula for the eta-function,
where we use the sign conventions in [Kob, p121].

Put W1 := WA2 , W2 := WB2 and W3 := WG2 . Then, the modular
group Γ(Wp) is given by Γ0(p) for p = 1, 2 and 3, and is generated

by sα : (u1, u2) 7→ (u1, u2)

[
1 0
1 1

]
and s−1

β : (u1, u2)

[
1 p
0 1

]
(recall

6.3 Example). On the other hand, the explicit formula (in the above
examples) says that λWp = η(τ)η(pτ)u−1

2 (p = 1, 2, 3).
Further more, one observes directly k(Wp) = 12

1+p
(p = 1, 2, 3).

Therefore, by putting ζ := exp(π
√−1/12), the character ϑWp is given

by ϑWp(sα) = ϑWp(sβ) = ζp+1
(the notation here is incoherent with that in 6.3). So,

s∗α(λWp) := η(τ + 1) η(pτ + p) u−1
2

= ζη(τ) ζpη(pτ) u−1
2 = ζp+1λWp ,

s∗−1
β (λWp) := η(τ/(pτ + 1)) η(pτ/(pτ + 1)) (pu1 + u2)

−1

=
√

−(pτ+1)/τ√−1
η(−p− 1/τ) ζη(−1/(pτ + 1)) (pu1 + u2)

−1

=
√

−(pτ+1)/τ√−1
τ√−1

pτ+1√−1
ζ−pη(τ) ζη(pτ + 1) (pτ + 1)−1u−1

2

= ζ−p+2
√

1√−1
η(τ) η(pτ) u−1

2

= ζ−p−1η(τ) η(pτ) u−1
2 = ζ−p−1λWp . ¤

We observe also the following nearly trivial remark, which is still
interesting since the form Iodd is degenerate for the type A3.

Fact. A k(A3)th power root λA3 := η(τ)2u−1
2 of δA3 is automorphic for

Γ(A3) with the character ϑA3 (here, recall k(A3)=k(A2)=6).
Proof. This is shown by a reduction to A2. Recall 5.3 Ex.3. for the
setting. The morphism SA3 \DA3 → SA2 \DA2 induces an equality
∆A3 = c∆A2 and a homomorphism A(A3) → A(A2) bringing the gen-
erators a1, a2, a3 of A(A3) to b1, b2, b1 of A(A2)=〈b1, b2 | b1b2b1 =b2b1b2〉
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([S2,Theorem III]) so that the characters ϑA3 and ϑA2 commutes with
the homomorphism Γ(A3) → Γ(A2). This implies the result. ¤

This fact encourages us to ask the next question:

Conjecture 6. Let W be a crystallographic finite reflection group.
Is the k(W )th power root of δW , say λW (up to a constant factor), an
automorphic form for the group Γ(W ) with the character ϑW? Can one
find an infinite product expression forλW compatible with Conjecture 4?

In view of the fact that k(D4)=6 is the last largest power (among all
finite crystallographic group) and that the period map for D4 can still
be described by elliptic integrals, it is interesting to have an exact and
explicit expression of λD4 as a distinguished Jacobi form on B̃(D4).

A concluding Remark.
Except for the discussed types A1, A2, A3, B2, B3, C2, C3, D4 and G2,

in all further cases, the character ϑW takes values in Z4={±1,±√−1}.
However, we have no information on the primitive automorphic forms
for them at this stage, since they are beyond elliptic integrals. Actually,
Conjecture 6 seems not be understandable only from the geometry of
the family ϕW : XW → SW . Instead, the conjecture seems reasonably
understandable if one finds a suitable “mirror object” to the family ϕW

such that it gives arise a suitable construction of the inversion maps and
the flat structure on SW . Perhaps, finding such mirror object (based on
odd root systems?) may be the main question and goal of the present
section and hence the main problem of the the present article.
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