
NEVANLINNA, SIEGEL, AND CREMER

YÛSUKE OKUYAMA

Abstract. We study an irrationally indifferent cycle of points or circles of a
rational function, which is either Siegel or Cremer by definition. We invent a

new argument from the viewpoint of the Nevanlinna theory. Using this argu-

ment, we give a clear interpretation of some Diophantine quantity associated
with an irrationally indifferent cycle. This quantity turns out to be Nevanlinna-
theoretical. As a consequence, we show that an irrationally indifferent cycle is

Cremer if this Nevanlinna-theoretical quantity does not vanish.

1. Introduction

Let f be a rational function of degree ≥ 2 and fk := f◦k for k ∈ N. The Fatou
set F (f) is defined by the set of all points of Ĉ at which {fn}n∈N is normal in the
Montel sense, and the Julia set J(f) is defined by the complement of F (f) in Ĉ.
Both F (f) and J(f) are completely invariant, that is, their image and preimage
by f equal themselves. F (f) is open by definition, so J(f) is closed. Furthermore
J(f) is non-empty and perfect.

We call a connected component of F (f) a Fatou component. Every Fatou com-
ponent is mapped to a Fatou one properly by f . A Fatou component D is cyclic
if for some n ∈ N, fn(D) = D. Then the least such n is called the period, and
g := gD := fn|D is the first return map on D. On the other hand, a Fatou compo-
nent is preperiodic if it is not cyclic but for some n ∈ N, fn(D) is cyclic.

The classification of cyclic Fatou components is known: (g, D) is an attractive
basin if {gn}∞n=1 converges to a point in D locally uniformly on D. The parabolic
basin is similar, but {gn}∞n=1 converges to a point in the boundary of D locally
uniformly on D. When g is a proper selfmap of D of degree ≥ 2, (g, D) is one of
them. When g is a univalent selfmap of D, (g, D) is called a singular domain since
people before doubted whether this case actually occurred. In this case, (g, D) is
conformally conjugate to an irrational rotation on either a disk or an annulus, and
called a Siegel disk or an Herman ring respectively. Hence the singular domain is
also called the rotation one. For the details, see [11], [2], [4], [10].

Our main interest is an irrationally indifferent cycle of points or circles.

Definition 1.1 (irrationally indifferent cycle of points or circles). A point z0 in
Ĉ is periodic if for some p ∈ N, fp(z0) = z0. The least such p is the period of z0,
{fn(z0)}p

n=1 is a cycle of points, and λ := (fp)′(z0) is the multiplier of it. This
cycle of points is irrationally indifferent if λ = e2πiα for some α ∈ R−Q.
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2 YÛSUKE OKUYAMA

A topological circle S ⊂ Ĉ is periodic if for some p ∈ N, fp(S) = S and fp|S :
S → S is an orientation-preserving homeomorphism. The least such p is the period
of S, {fn(S)}p

n=1 is a cycle of circles, and λ := e2πiα is the multiplier of it, where
α ∈ R/Z is the rotation number (cf. [6]) of a S1-homeomorphism φ which is
topologically conjugate to fp|S. This cycle of circles is irrationally indifferent if α
is irrational.

It is known that if irrationally indifferent cycles of points or circles intersect F (f),
then they are contained in some rotation domains, which are Fatou components.

Definition 1.2 (Siegel and Cremer cycles). An irrationally indifferent cycle of
points or circles is a Siegel cycle if it is contained in F (f). Otherwise it is a Cremer
cycle.

We study an unsolved problem with a long history: Given an irrationally indif-
ferent cycle of points or circles, how can we judge whether it is contained in the
Fatou set or not?

The following answers the problem in one direction.

Theorem 1.1 (Siegel[17] (1942), Rüssmann, Brjuno[3] (1972), Yoccoz[20] (1996)).
Let λ = e2πiα (α ∈ R − Q), f(z) = λz + · · · be an analytic germ at the origin,
and {pn/qn}∞n=0 be the sequence of irreducible approximating fractions of α derived
from its continued fraction expansion.

If α satisfies one of the following Diophantine conditions:

(Si) sup
n≥0

log qn+1

log qn
< ∞,

a weaker one:

(Rü)
∑

n≥0

log qn+1 log log qn+1

qn
< ∞,

and the weakest one:

(Br)
∑

n≥0

log qn+1

qn
< ∞,

then f is analytically linearizable at the origin, that is, the Schröder equation:

h ◦ f = Rλ ◦ h,

where Rλ(z) = λz is the linear term of f , holds for some analytic local coordinate
h(z) = z + · · · around the origin.

Corollary 1.1. An irrationally indifferent cycle of points of a rational function is
Siegel if its multiplier satisfies the condition (Br).

In the reverse direction,

Theorem 1.2 (Yoccoz[20] (1996), Okuyama[12] (2001)). Let P be a quadratic
polynomial. An irrationally indifferent cycles of points (of arbitrary period) of P is
Cremer if its multiplier does not satisfy (Br).

Only for quadratic polynomials, the complete answer of the problem is known.
The classical Cremer Theorem is a partial answer in the reverse direction.
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Theorem 1.3 (Cremer[5] (1932)). Let f be a rational function of degree d ≥ 2,
and O be an irrationally indifferent cycle of points of period p and of multiplier λ.
O is Cremer if λ satisfies

(Cr) lim sup
n→∞

1
dpn

log
1

|λn − 1| = ∞.

It naturally arises:

Fundamental Question. How can we notice such complicate Diophantine condi-
tions as (Si), (Rü), (Br) and (Cr)? What on earth are they?

We shall answer this Fundamental Question for the condition (Cr) and (Ok)
below. The left hand side of them turns out to be Nevanlinna-theoretical. From
this, it immediately follows that irrationally indifferent cycles of points or circles
are Cremer if this Nevanlinna-theoretical quantity does not vanish:

Main Theorem 1 (Criterion for Cremer). Let f be a rational function of degree
d ≥ 2, and O be an irrationally indifferent cycle of points or circles of period p and
of multiplier λ. If

(Ok) lim sup
n→∞

1
dpn

log
1

|λn − 1| > 0,

then O is Cremer.

In Section 2, we shall study the Nevanlinna theory. We define the pointwise
proximity function, the mean proximity and the Valiron exceptionality, and prove
the Fundamental Equality for the Valiron exceptionality. This Fundamental Equal-
ity shows that the dynamics of a rational function is homogeneous on the whole
Riemann sphere. In Section 3, by the Fundamental Equality, we shall prove the
Vanishing Theorem, which states that the Valiron exceptionality vanishes for a ra-
tional function with non-empty Fatou set. In Section 4, we shall obtain the Natural
Equality: the left hand side of (Ok) exactly equals the Valiron exceptionality. Main
Theorem 1 is straightforward from both the Vanishing Theorem and the Natural
Equality.

First of all, our method of studying this problem answers the Fundamental Ques-
tion, and then naturally establishes a criterion for Cremer. Hence we find that our
method is natural.

ACKNOWLEDGEMENT. The author would like to express his gratitude to
Professors Masahiko Taniguchi and Toshiyuki Sugawa for many valuable discussions
and advices. He also thanks to Professors Mitsuhiro Shishikura, Kevin M. Pilgrim
and Erik Bedford for very useful comments.

2. Nevanlinna theory

Let [p, q] be the chordal distance between p, q ∈ Ĉ such that [0,∞] = 1. For
rational functions f and g, we define the pointwise proximity function:

w(g, f) := log
1

[g, f ]
,

and the mean proximity:

m(g, f) :=
∫

Ĉ
w(g, f)dσ,

where σ is the spherical area measure on Ĉ such that σ(Ĉ) = 1.
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Definition 2.1 ([18], cf. [8]). Let F = {fk}∞k=1 be a sequence of rational functions
such that dk := deg fk ↑ ∞ as k → ∞. For a rational function g, we define the
Valiron exceptionality:

VE(g;F) := lim sup
k→∞

m(g, fk)
dk

.

g is Valiron exceptional for F if VE(g;F) > 0.

Example 1. In the case that F = {zk} and g ≡ 0, it holds that VE(g;F) > 0.
Hence g is Valiron exceptional for F .

Main Theorem 2 (Fundamental Equality). Let f be a rational function of degree
d ≥ 2. Then for every positive continuous function φ 6≡ 0 on Ĉ,

VE(IdĈ; {fk}) = lim sup
k→∞

∫
Ĉ φ · w(IdĈ, f

k)dσ

dk · ∫Ĉ φdσ
.

Proof. Let M(Ĉ) be the set of all Radon measures on Ĉ. For rational functions f
and g, we define the root measure

(f − g)∗δ0 :=
∑

fζ=gζ

δζ ∈M(Ĉ),

taking into account the multiplicities of roots, where δζ ∈M(Ĉ) is the Dirac measure
at ζ ∈ Ĉ. For a rational function f and µ ∈M(Ĉ), the pullback measure f∗µ ∈M(Ĉ)
is defined as

f∗µ(U) =
∫

Ĉ
((f − z)∗δ0)(U)dµ(z),

where U is a Borel set in Ĉ. For µ ∈ M(Ĉ), we consider the chordal logarithmic
potential

Pµ(z) :=
∫

Ĉ
log

1
[w, z]

dµ(w)

on Ĉ.

Lemma 2.1 (Riesz decomposition). For rational functions f and g,

w(f, g) = P(f−g)∗δ0 − Pf∗σ − Pg∗σ + m(f, g).

Proof. By a Möbius conjugation, we assume f(∞) 6= g(∞), f ′(∞) 6= 0, and
g′(∞) 6= 0 without loss of generality. Since w(f, g) is δ-subharmonic on C, it
has the Riesz decomposition (cf. [13]):

w(f, g) = P(f−g)∗δ0 − Pf∗σ − Pg∗σ + cf,g,

where cf,g is harmonic on C. Since cf,g = O(1) as z →∞, cf,g is a constant by the
Liouville theorem. Since the σ-mean of P(f−g)∗δ0 − Pf∗σ − Pg∗σ on Ĉ vanishes, it
follows that cf,g = m(f, g). ¤

Let φ be a continuous function on Ĉ. By Lemma 2.1, we have
1
dk

∫

Ĉ
φ · w(IdĈ, f

k)dσ

=
1
dk

∫

Ĉ
φ · (P(fk−IdĈ)

∗δ0 − P(fk)∗σ − Pσ)dσ +
m(IdĈ, f

k)
dk

∫

Ĉ
φdσ,(*)
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and by the Fubini theorem, the first term of (*) equals
∫

Ĉ

(∫

Ĉ
φ(z) log

1
[w, z]

dσ(z)
)

d
(fk − IdĈ)

∗δ0 − (fk)∗σ − σ

dk
(w).

Theorem 2.1 ([7] and [9]). Both (fk − IdĈ)
∗δ0/dk and (fk)∗σ/dk converge to the

same element of M(Ĉ) as k →∞ weakly.

Remark 2.1. The limit measure µf in Theorem 2.1 is said to be balanced since
f∗µf/d = µf . It has many interesting dynamical properties.

From Theorem 2.1, we have that the first term of (*) converges to 0 as k →∞.
It completes the proof of Main Theorem 2. ¤

3. The Fatou and Julia strategy

We are able to calculate the Valiron exceptionalities through the Fatou and Julia
strategy.

Main Theorem 3 (Vanishing Theorem). Let f be a rational function of degree
≥ 2 such that F (f) 6= ∅. Then VE(IdĈ; {fk}) = 0.

Proof. It follows from deg f ≥ 2 that there exists a Fatou component either non-
cyclic or non-singular. Hence there exist a positive continuous function φ 6≡ 0 and
r ∈ (0, 1) such that for every k ∈ N,

inf{[z, w]; z ∈ suppφ,w ∈ fk(suppφ)} > r.

From this, it follows that
∫

Ĉ
φ · w(IdĈ, f

k)dσ ≤ log
1
r
·
∫

Ĉ
φdσ,

which concludes that VE(IdĈ; {fk}) = 0 from the Fundamental Equality. ¤

4. Siegel and Cremer cycles

Let f be a rational function of degree d ≥ 2. From now on, cycles and Fatou
components are always of f .

For a rotation domain D, there exists, by definition, a conformal map h from
D onto either D or an annulus and λ = e2πiα (α ∈ R − Q) such that for the first
return map g = gD,

(1) h ◦ g = Rλ ◦ h

on D. Here Rλ(z) = λz as Section 1. h is called a linearizing map of D and λ the
rotation number.

Notation. A ³ B means A/C < B < CA for some implicit constant C.

Remark 4.1. Our method of studying multipliers of irrationally indifferent cycles of
circles dispenses with such quasiconformal surgeries as in [14].

The left hand side of (Ok) in Main Theorem 1 turns out to be the Valiron
exceptionality.
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Main Theorem 4 (Natural Equality). Let O be an irrationally indifferent cycle
of points or circles of period p and of multiplier λ. If O is Siegel, then

(2) lim sup
k→∞

1
dpk

log
1

|λk − 1| = VE(IdĈ; {fpk}).

Proof. Let C be a connected component of O. Then there exists a rotation domain
D such that D ⊃ C. Let h be a linearizing map of D and g = fp|D the first return
map. Clearly the rotation number of D equals the multiplier λ of O.

By a Möbius conjugation, we assume D ⊂ C without loss of generality. There
exists a positive continuous function φ 6≡ 0 such that suppφ ⊂ D and h(suppφ) 63 0.
Since

⋃
k∈N gk(suppφ) is compact in D, we have:

[gk(z), z] ³ |gk(z)− z| ³ |h ◦ gk(z)− h(z)| = |λk − 1| · |h(z)|,
where the implicit constants are independent of k ∈ N and z ∈ suppφ. Hence

∫
Ĉ φ · w(IdĈ, f

pk)dσ

dpk · ∫Ĉ φdσ
=

1
dpk

log
1

|λk − 1| +

∫
Ĉ φ · log 1

|h|dσ

dpk · ∫Ĉ φdσ
+ O(d−pk)

as k →∞. It easily follows from h(suppφ) 63 0 that the second term tends to 0 as
k →∞. Hence the proof is completed by the Fundamental Equality. ¤

Now the proof of Main Theorem 1 is straightforward:

Proof of Main Theorem 1. If O is Siegel, then F (f) 6= ∅. Hence from the Vanishing
Theorem,

VE(IdĈ; {fpk}) ≤ VE(IdĈ; {fk}) = 0.

It contradicts (Ok) by the Natural Equality. ¤
Remark 4.2. The Natural Equality in Main Theorem 4 is the very answer to the
Fundamental Question in Section 1 for the condition (Ok). As we have just seen in
the above, Main Theorem 1 is straightforward from this Natural Equality and the
Vanishing Theorem.

In the case of polynomials, Pierre Tortrat showed in [19] a similar result to Main
Theorem 1 by using a potential theoretical argument.

We also obtain a priori bounds of the rotation numbers of rotation domains.

Main Theorem 5. The rotation numbers of no rotation domains satisfy (Ok).

Proof. A rotation domain contains Siegel cycles of circles whose multipliers equal
its rotation number. Hence they do not satisfy (Ok) by Main Theorem 1. ¤
Remark 4.3. When the rotation domain is an Herman ring, by quasiconformal
surgery of it (cf. [14], [15] and [16]), we obtain a rational function f̃ whose degree
is less than that of f and which has a Siegel disk with the same rotation number
as the original Herman ring of f . Hence by applying Main Theorem 5 to f̃ rather
than f , a stronger conclusion than Main Theorem 5 follows.

Finally, we note that Cremer cycles of circles do not always satisfy (Ok). A
normalized cubic critical Blaschke product, e.g.,

fθ(z) := eiθz2 1− 1
3z

z − 1
3

,

where θ is chosen such that S1 is an irrationally indifferent cycle of circles of period
one, is never Siegel since there exists a critical point on S1. Other example is:
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Main Theorem 6 (Jordan boundaries of rotation domains). Let O be an irra-
tionally indifferent cycle of circles which are the boundary of a cycle C of rotation
domains. Then the multiplier of O does not satisfy (Ok).

Proof. Let D be a connected component of C and h its linearizing map. The
Carathéodory theory (or the Ahlfors-Beurling extremal length method [1]) says
that h extends to a homeomorphism from D to h(D). Hence by the equation (1),
the multiplier of O equals the rotation number of C. By Main Theorem 5, it does
not satisfy (Ok). ¤
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