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We construct a representation of the Cuntz algebra O, aris-
ing from a complex quadratic transformation Q(z) = 22. The
characterization of this representation is shown by orbit anal-
ysis of Q on C. We show the irreducible decomposition of this
representation and construct a complete system of orthonor-
mal functions on C associated with the action of Q5.

1. Introduction

We study representations of the Cuntz algebra Oy arising from dynamical
systems with branching(or bifurcation) in [11, 12, 13, 14]. So-called itera-
tion function systems([7]) on dynamical systems are represented as families
of isometries on Hilbert spaces so that their composition is corresponded to
the product of isometries. In this paper, we treat a representation arising
from a naive complex dynamical system.

On C, we consider a transformation

(1.1) Q(z) = 22
Put a representation (Ly(C),m) of Oy arising from @ by
(1.2) (mo(s:)9)(2) = mi(2)p(Q(2))

for ¢ € La(C) and z € C where m;(z) = 2|z| - xg,(2), 1 = 1,2, B, = {z €
C:Imz >0}, B2 ={z € C:Imz < 0}, xy is the characteristic function on
Y C C, Ly(C) is taken by a measure dug(z) = dwdy on C for z = z++/—1y,
and s1, s9 are generators of Os.

On the other hand, (Hp,7g) is the barycentric representation of O if
(Hp,mp) is a cyclic representation of Oy such that there is an eigen vector
of Tp(s1 + s2) with eigen value v/2.

e-mail:kawamura@kurims.kyoto-u.ac.jp.
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Theorem 1.1. (i) There is the following direct integral decomposition of
representation of Oo:
52}

(1.3) (L2(C),mo) = / (Hw, TBw) dn(w).

U(1)

where (Hw,fr](gw)) is a representation of Oy defined by

(14) Hy=K®Hp, TBw(si) =1R7pw(si), 7TBw(Si)d=mnp(ws;)o
for o € H,i = 1,2, w € U(1), K is a separable infinite dimensional
Hilbert space, and n is the Haar measure of U(1), the equality in (1.3)
means unitary equivalence.

(ii) Any two elements in {(Hp,mBw): w € U(1)} are mutually inequiva-
lent and (Hp, 7B w) is irreducible for each w € U(1).
(iii) This decomposition is unique up to unitary equivalences.

By Theorem 1.1, (L2(C), mp) is completely reducible and its characterization
is given by a well-known representation (Hg,ng) ([13]).

Next we show an explicit decomposition formula of Lo(C) by using this
representation and describe a complete system of orthonormal functions on
C. For this purpose, we prepare several multi-index sets.

Definition 1.2. Put {1,2}* = | J{1,2}*, {1,2}° = {0}, {1,2}* = {()}, :
k>0

gi=1,2,1=1,....k} for k > 1, and Ay = Uk21A2,k’ Aaq = {1,2},

Aok = {(G)F, € {1,2}F 1 jy =2} for k > 2. For J = (j1,...,jk) and

J = (1) € L2V, k> 1, define (J1') = S5 (= D0 — 1)

Theorem 1.3. Let (L2(C),mo) be the representation of Oz in (1.2).

Then there are families {AS?J1 ci=1,2,n € Z, J € {1,2}*} and
{ABfi)th ci=1,2,n€Z,J1,Jo € {1,2}*} of regions in C which satisfy
the followings:

C:D1UD2U{Z€CZ‘Z’=0,1}
D; = U U Afi)Jl’ Agliv)Jl - U ABS,)JLh
n€Z Je{1,2}k Jo€{1,2}F
foreach k>0, D1 ={z€ C:0< |z| <1}, Da={2z€ C:1<|z|}, such
that the followings hold:
(i) Fori,j=1,2,n€Z, Ji,Jo € {1,2}*.

(@) \ _ 2@ (4) _ (@)
Q(An,Jl) - An+1,J1’ Q(ABH,Jl,{j}UJQ) - ABn"rl,JLJQ

where {7} U J = {j,jl,...,jk} when J = (j1,..., k) € {1,2}*. Fur-
thermore /J,R(ABS,)JIJQOAB(]) ) = 0 when (i,n, J1, J2) # (j,m, J1, J2),

! /
m,J,,Jy

Ju, Jp € {1,200 and Jo, Jy € {1,2YF2 ky ko > 1.
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(ii) Put
ERAOEIHOND DI SENC L) SO}

Je{1,2}k1 Jye{1,2}k2

fori =1,2,neZ, J, € Agkl, Jg € Aoy, k1, k2 > 1, and z € C where
bn(2) = (|2|vV2"m log ) and K )J, /s the characteristic function on

n,J1,J9

AB:)J " Then {N nJ1 g ii=12,neZ Ji,Js € Ao} is a complete

orthonormal basis of Lo (C) which satisfies

mo(TN, 1 = N,

Vg (TN, =N

n—1,J1,{j}UJ2

fori,j=1,2, ne€Z, J € Ay, Jy € Ao\ {1} where Th = 2_1/2(81 + s9)
and Ty = 271/2(s1 — s2).
(iii) There are the following decompositions as representation of Oq:

Ly(C) = Ly(D1) @ La(D2), La(Dy) = €D £

J1€A2
/ £J1 w )

Lf}) Lin < {N, nlez neZ, Jye N} > (1=1,2,J1 € Ag).

1

where

(iv) For each i,5 = 1,2 and Jl,Ji € Ao, Ef;l) and E‘(]j,) are equivalent as
1

representation of Os.

v) For each i,j = 1,2, J1,J, € Ay and w,w' € U(1), £9  and /J(j,) ,
1 J1,’lU J

1,W
are equivalent if and only if w = w'.
(vi) Ef;l),w is wrreducible and equivalent to mp,, in (1.4) for w € U(1).
(vii) Decomposition in (iii) is unique up to unitary equivalences.

In § 2, we prepare representation theory of the Cuntz algebra. In §
3, we introduce representations arising from dynamical systems. In § 4, we
decompose a dynamical system (C, Q) in (1.1) into the direct product of a
shift on Z and a branching function system on an interval [0,1). It is shown
that the branching of y/z which is the inverse map of @ is represented by
representation of Os. Theorem 1.1 is shown here. In § 5, we show the
complete system of orthonormal functions on C in Theorem 1.3 (ii) which
is called the annular basis by using the representation of Q5. Theorem 1.3
is proved here. In § 6, we generalize our results to Oy and other dynamical
systems by conjugations.
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2. P-cycles and P-chains

For N > 2, let On be the Cuntz algebra([4]), that is, it is a C*-algebra
which is universally generated by generators si, ..., sy satisfying

N
(21) S;ksj:(swl (Z,]: ”N)’ 2515:21
=1

In this paper, any representation means a unital *-representation. By sim-

plicity and uniqueness of Oy, it is sufficient to define operators Sy, ..., SN

on an infinite dimensional Hilbert space which satisfy (2.1) in order to con-

struct a representation of On. Put « an action of a unitary group U(N) on

On defined by oy4(s;) = Z;VZI gjisj for i = 1,..., N. Specially we denote

Yw = Qg(w) When g(w) =w-I CU(N) forw e U(l)={z€ C: |z| =1}
Let IsoOpy be the set of all isometries in Op.

Definition 2.1. Let P € IsoOy.

(i) (H,m,Q) is a P-cycle of Oy if (H,7) is a cyclic representation of On
with cyclic unit vector Q € H such that =(P)Q = Q.

(ii) (H,m, ) is a P-chain of Oy if (H,7) is a cyclic representation of Oy
with cyclic unit vector Q € H such that {w((P*)")Q : n € N} is an
orthonormal family in H, that is, < w((P*)")Qm((P*)™)Q >= dpm
forn,m € N where N ={1,2,3,...}.

Notions of P-cycle and P-chain are generalization of generalized permutative
representation of Oy in [8, 9, 10].
Put isometries Pg, Pp ., w € U(1), in Oy by

(2.2) Ps =51, Ppaw=2"Y2w(si+s2) (welU(1)).

Example 2.2. (i) The standard representation (I2(N),mg) of Oy is de-
fined by

(2.3) ws(S1)en = €am—1, 7s(s2)en =e2, (n € N)
where {e;, } n,en is the canonical basis of Io(N)([1, 12]). Then (I3(N), 7g, e1)

is a Pg-cycle.
(ii) The barycentric representation (L2[0,1],75) of Og is defined by

(m(s1)0)(x) = Xpo,1/2)(2)(22),  (1B(s2)9)(2) = V2x[1/2,1)(2) (22 — 1)

for ¢ € L2[0,1] and x € [0, 1] where xy is the characteristic function of
a subset Y of [0,1]([13]). Then (L2[0,1],75,Q) is a Pp-cycle where
2 is the constant function on [0, 1] with value 1.

(iii) In (ii), (L2[0,1], 7B © v, ) is a Pp-cycle for w € U(1). In fact,
(7TB e} 'YE))(PB,w)Q = (7TB o 'y@)(wPBJ)Q = WB(PBJ)Q = Q.



ANNULAR BASIS OF L3(C) 5

(iv) Put R =Z xN;, N;={2(n—1)+i:n € N} for i =1,2. Then we
have a decomposition Z x N = R; LI Ry. Consider a branching function
system f = {f1, fo} on Z x N defined by

(2.4) fi:ZxN—R;; filn,m)=(n—1,2(m—1)+1)

for i = 1,2. Then fi(n,1) = (n —1,1) for each n € Z. From this, we
have ff(n,1) = (n — k,1) for k > 1 and n € Z. Put a representation
(I2(Z x N),7¢) of On by

(2.5) my(si)er = efz) (T €ZXN,i=1,2).

From this, we have ¢ (s7)e(n 1) = €my1,1) for n € Z. Hence {m;((s7)")e( 1) :
n € N} = {e(,,1) : » € N} is an orthonormal famﬂy
The tree of the representation (I2(Z x N),7s) is following:

n12\<§/2
b f

(n—1,1) (n,1) (n+1,1)

where vertices and edges mean the canonical basis {e, }rczxN of l2(Z x
N) and the action of operators my(s1),7¢(s2) on {e;}zezxN, respec-
tively. For example, if m¢(si)e, = ey for x,y € Z x N, then it is
represented as a

To—>——9 Y
where labels a,b of edges correspond to m¢(s1),m¢(s2), respectively.
(I2(Z x N), 7, e0,1) is a Ps-chain of Os.

It is easy to show that cyclicities and eigen equations in Example
2.2 follow from their definitions, respectively. mg is a permutative repre-
sentation in [3, 5, 6]. mp,, is not. mg and 7w, are generalized permu-
tative representations of Oy which correspond to those with parameters
(1,0), (2712w, 27 12w), respectively([8]).

Proposition 2.3. (i) All of Ps-cycle, Pp ,-cycle and Pp ;-chain are unique
up to unitary equivalences. We denote them by (Hg,7s,2s), (HBw: TBw, 2B.w),
(Hp,100, TR, 100, Q2B 100) for w € U(1), respectively.
(ii) All of Ps-cycle, Pp,-cycle, w € U(1), are irreducible.
(iii) Ps, P, w € U(1) are mutually inequivalent.

Proof. See Appendix B. O

We often identify an equivalence class of representations and its rep-
resentative when there is no ambiguity. Furthermore we often use a symbol
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s, TBw a8 (Hs,ms,Qs), (HBw: TBw, 2Bw). Notations of mg,7p,, in Ex-
ample 2.2 are justified by Proposition 2.3 (i). For P € IsoOy, a P-cycle and
a P-chain are neither unique nor irreducible in general.

For a representation (H, 7) of Oy and a unitary operator U on a Hilbert
space IC, we have a new representation (K®@H, UK ) of Oy which is defined
by

(2.6) (URm)(s;) =Umn(s;) (i=1,...,N).

Lemma 2.4. Let (H,7) be a representation of On and U a unitary operator
on a Hilbert space K. If there are p € Z and a complete orthonormal basis
{en : n € Z} of K such that Ue,, = ep4p for eachn € Z, then (K@H, UK T)
in (2.6) is decomposed as

[ trorwmin) w0,

U@)

(H, )@ (p=0).
Proof. When p = 0, the assertion follows clearly. Assume p # 0. Put
W a unitary from K @ H to Lo (U(1), H) by (W (e, ® ¢))(w) = ¢ - (n(w) for

n € Z,we U(l) and ¢ € H where (,(w) = w"™ for n € Z and w € U(1).
Then

WU R )(s:))W*(¢Cn) = W((Uen) @ ((s:)9)) = (m(5:)¢)Cntp-

From this, (W (U B 7)(s;)W*(¢¢n)) (w) = (7(8:)0) Cnp(w) = wPC (w) (m(s

i)9)-
Hence (W (URIT) (si)W*(6Cn)) (w) = (m(wPsi)¢)Cn(w) = (1070 )(8:)0)Cn(w)
(s VE/V )B( w) = )

for each n € Z. Therefore we have (W (UKr)(s; (moyuwr ) (8:) Y (w
for ¢ € Lo(U(1),H), w € U(1) and ¢ = 1,. definition of direct
integral decomposition, we have the assertion. O
For shortness’ sake, we often denote this type assertion by

b
/ moyur dn(w)  (p#0),

UX 7 ~ U(1)

e (p=0)
where a symbol ~ means the unitary equivalence of representations.

Proposition 2.5. (i) Let (H,n, Q) be the Pg-chain. Then there is the
following direct integral decomposition holds:

(&)
(H, ) ~ / (Hs.s 5.0) di(w)
U(1)

where Hgw = l2(N) and mg = mg 0y for w € U(1).
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(ii) Let (H,m,Q) be the Ppi-chain. Then there is the following direct in-
tegral decomposition holds:

®
(H,w)w/ (HB,w, ™B,w) dn(w)
U(1)

where Hp .y = 12(IN) and mg . = mp 0 vy for w € U(1).

Proof. By Lemma 2.4 for p = —1 and Example 2.2 (iv), 7 = U K 7g
for (Hg,ms), K =12(Z) and Ue,, = e,_1. we have (i). In the same way, by
taking m = U K np for (Hp,7p), we have (ii). O

3. Dynamical systems and representations of Oy

In order to analyze (L2(C), m) in (1.2), we prepare a method of construction
of isometries and representations of O on measure spaces([11, 12, 13, 14])
here briefly.

3.1. Representations arising from branching function systems. Let
(X,n) and (Y,v) be measure spaces and f a measurable map from X to
Y which is injective and there exists the Radon-Nikodym derivative ®; of
v o f with respect to p and ®; is non zero almost everywhere in X. We
denote the set of such maps by RN(X,Y). We simply denote RN (X) =
RN(X, X). Note that RN (X) is a semigroup with respect to composition of
transformations on (X, u). Denote Iso( Lo (X, 1)) the semigroup of isometries
on Lo(X, ).

Definition 3.1. For f € RN(X,Y), define an operator S(f) from Lo(X, 1)
to La(Y,v) by
{2 (F7 @)} o7 (@) (wheny € R(f)),

0 (otherwise)
for ¢ € Lo(X, 1) and y € Y where R(f) is the image of f.

For measure spaces (X, ) and (Y, v), we denote X x Y and X UY,
the direct product and the direct sum of (X, ) and (Y, ) as measure space,
respectively. For f € RN(X1,Y1) and g € RN(X9,Y2), f@g € RN(X1 U
X2,Y1 UY?) is defined by (f @ g)|x, = f, (fD9g)|lx, = 9.

Lemma 3.2. Let (X, y;) be measure spaces fori=1,2,3,4.

(i) For f € RN(Xy,X2), S(f) is an isometry.

(ii) For f € RN(X1,X2) and g € RN(X2,X3), go f € RN(X1,X3) and
(3.1) S(9)S(f) = S(ge f)

Specially, a map S from RN(X1) to Iso(La(X1,p1)) is a homomor-

phism between semigroups.

(5(Neo)y) =
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(iii) If f € RN(X1, X3) is bijective and f~1 € RN(Xs, X1), then

S(fTH =8
Specially, S(idx,) is the identity operator on Lo(X1, p1).
(iv) For f € RN(X1,X32) and g € RN (X3, X4),

S(fxg) =5 esl), S(feg) =SS

where we identify Lo(X; x Xj, i X pj) and La(Xj, pi) @ La(Xj, p4),
LQ(Xi U vaﬂi U /Jj) and LQ(XZ',/M) ©® LQ(X]‘,,U,]‘) fori,j = 1,2 3.4,
respectively.

Proof. About (i), (ii) and (iii), see [11].
(iv) Put a unitary U;; from Lo(X; x X, p; X p5) to Lo( Xy, pi) ® La(Xj, pj)
by Uij(¢ig;) = ¢i ® ¢ for ¢y € La(Xi,pi) and ¢; € Lo(X, ;) where
(Pidj)(x,y) = di(x)p;(y) for (x,y) € X; x X; for 4,5 = 1,2,3,4. By
Definition 3.1, (S(f x 9)é103) (2.9) = (S(£)én)(x) - (S(9)s)(y) for ¢ €
LQ(Xl,,ul), o3 € LQ(X3,H3) and (x,y) € X5 x X4. From this, U24S(f X
O3 = S(f) @ S(g). We can show S(f & g)|r,0x, ) = S(f) and S(f &
)| Lo (x3,15) = S(g) by direct computation. O

Remark that go f in rhs of (3.1) is only the composition of two transforma-
tions f and g but not special product of them. By Lemma 3.2, we see that
the map S realizes the iteration of transformations on a measure space as
the product of operators on a Hilbert space naturally.

Let N > 2.

Definition 3.3. Let (X, u) and (Y,v) be measure spaces.

(1) f={f:}}¥, is a branching function system on (X,p) if fi € RN(X),
i=1,...,N, and fi(X)N f;(X), 1 <i<j <N, X\UY, fi(X) are
p-null sets.

(ii) F is the coding map of a branching function system f = {f;}, on
(X, p) if Fis a map from X to X such that (F o f;)(x) = = for each
reXandi=1,...,N.

(iii) For branching function systems f = {f;}}, on (X,p) and g = {g:},

n (Y,v), f ~ g if there is ¢ € RN(X,Y) such that ¢ is bijective,
o '€ RN(Y,X) and po fiop t=g; fori=1,...,N.

(iv) For f € RN(X) and a branching function system g = {g;}}*, on
(Y1), we denote fRg={f x g:}Y).

(v) For branching function systems f = {fi}}_, on (X,p) and g = {g:},
on (Y,v), we denote f ® g = {fi ® g:}¥,.

The notion of branching function system was introduced in [3] in order to
construct a representation of Oy from a family of transformations.

Proposition 3.4. Let (X, u) and (Y,v) be measure spaces.
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(i) For a branching function system f = {f;}}, on (X, ),

rr(s0) = S() (i=1,...,N),

defines a representation (La(X, ), 7¢) of On. We denote (La(X, ), 7¢)
by my simply.

(ii) Let f = {fi}}, and g = {g:}}, be branching function systems on
(X, ) and (Y,v), respectively. If f ~ g, then s ~ m,.

(iii) If there are f € RN(X) and a branching function system g = {gi}X,
on (Y,v) such that f is bijective and f~' € RN(X), then fX g is a
branching function system on (X XY, u X v) and

g ~ S(f) My
where S(f) Wy is in (2.6).

(iv) If there are branching function systems f = {fi}Y, and g = {g;}
on (X, p) and (Y, v), respectively, then

N
=1

Tfag ~ Tf D my.

Proof. (i) and (ii) follow from Lemma 3.2.
(iii) By Lemma 3.2 (iv), 7swg(si) = S(fxgi) = S(f)®S(g:) = (S(f)R7g)(s:)
fori=1,...,N. Therefore the statement holds.
(iv) By Lemma 3.2 (iv), Traq(si) = S(fi ® gi)) = S(fi) ® S(g:) = 7p(s:) @
mg(si) = (mp @ mg)(s;) for i =1,..., N. Hence we have the statement.  [J

3.2. Representations arising from dynamical systems. In this paper,
any dynamical system means a pair (X, F') of a measure space (X, u) and
a measurable transformation F' on (X,u). Any map between dynamical
systems is assumed measurability.

Definition 3.5. Let (X1, F1) and (X2, F») be dynamical systems.

(i) (X1, F1) and (X2, F) are conformal conjugate if there is ¢ € RN (X1, X2)
such that ¢ is bijective, o~* € RN(Xo,X1) and po Fy o p~!t = Fy.

(i) (X1, F1) and (Xo, F3) are weakly conformal conjugate if there are in-
vartant subspaces Y1 C X1 and Yo C X9 with respect to Fy| and F5,
respectively such that X1\ Y1 and Xo\ Y2 are null sets, and (Y1, Fily,)
and (Ya, Faly,) are conformal conjugate.

(iii) f = {fi;}}¥, is the branching function system of (X1,Fy) if f is a
branching function system on (X1, u1) such that Fy is the coding map

of f.

Lemma 3.6. Let (X;, F;) be a dynamical system on a measure space (X;, ;)
fori=1,2. Assume that there are branching function systems f = {f; fll
and f = {f{YN, of Fi and Fy, respectively. If (X1, F1) and (X2, Fy) are
weakly conformal conjugate, then 7y and T are unitarily equivalent.
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Proof. Let ¢ be a weakly conformal map between X; and Xs. Put Y;
the invariant subspace of X; under F; such that 1;(X;\Y;) =0, (Y1) = Y2
for i = 1,2. Since po Fiop ' = Fy, o fiop~t=f fori=1,...,N. By
Proposition 3.4, S(¢p) is a unitary which satisfies (AdS(¥)) o T¢|r,(va,ue) =
T /| La(va,up)- This equation can be extended from the whole La(X1, p1) to
Lo(Xa, pu2) by the assumption of Y7 and Y. O

Definition 3.7. Let (X;, F;) be a dynamical system on a measure space
(Xi, ui) fO?“ 1= 1, 2.

(i) (X, F) is the direct product of (X1, F1) and (Xo, F2) if (X, n) = (X1, u1) X
(Xo, po) is the direct product of measure spaces and F = Fy x Fy on
X = X1 x Xo. We simply denote (X, F) = (X1, 1) x (X2, F»).

(i) (X, F) is the direct sum of (X1, F1) and (Xo, Fs) if (X, pn) = (X1, u1)®
(X2, p2) is the direct sum of measure spaces and F|x, = F; fori=1,2.
We simply denote (X, F) = (X1, F1) ® (X, Fa).

Proposition 3.8. Let (X;, F;) be a dynamical system on a measure space
(X5, pi) with the branching function system {f}z) ;Vzl fori=1,2.

(i) Assume that h € RN(X7) is bijective and h~' € RN(X1). The direct
product (X1, h) x (Xo, Fy) has the branching function system h= & f(2)
and

ﬂhflgf(z) ~ S(h_l) X 7Tf(2) .
(ii) The direct sum (X1, F1) ® (X2, F2) has the branching function system
fOa @ and
g f@) ~ Tpa) D Tre).
Proof. By Proposition 3.4 (iii) and (iv), (i) and (ii) follow respectively.
O

Proposition 3.9. Let (X, F) be a dynamical system with the branching
function system f = {fi}., of F and o_p, p € Z, the shift on Z which is
defined by o_,(n) = n—p forn € Z. Then the direct product (ZxX, o_,xF)
has a branching function system o, X f and the following holds:

&
/ Ty o ywr dn(w) — (p #0),
ﬂ-Up&f ~ U(l)
()P (p=0).
Proof. By checking Definition 3.3 (i), we see that 0,K f is a branching
function system on (Z x X, fi) where i(AxY) = (#A)-u(Y) for A C Z and

Y C X. By definition 3.1, S(op)en = enqp for n € Z where {e,}nez is the
canonical basis of l2(Z). By Proposition 3.8 (i) and Lemma 2.4, it follows.
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4. Proof of Theorem 1.1

Let @ be the transformation on C defined in (1.1). The behavior of @ on C
is well-known([7]). By the action of @), C is decomposed into three invariant
parts D] = {z € C:0< |z] <1}, 8 ' ={2e€ C:|z| =0,1}, Dy = {z €
C : |z| > 1}. Therefore (C, Q) is decomposed into three dynamical systems
(D1, Qlp,), (D2,Q|p,), (51,Q|g1). For the aim to consider operators on
Ly(C), we neglect (51, Q|41) since S is a null set in C with respect to the
measure dugr(z) = dxdy for z = z + /—1y. Q has the following branching

function system g = {q1, g2} on each parts:
(4.1) n(z)=vVz, @iz)=-vVz (2€C)

where /z = /re™ 1% when z = re2™V10 0< 60 <1,7r>0.
By the polar coordinate on C, z = z(r,0) = 1“62”\/__19, we can rewrite

Q(r,0) = (Qr(r), H(0)),

(4.2) Qr(r)=7r% H@B)=20mod 1 ((r,0) € [0,00) x [0,1)).
In this way, the action of ) on C is decomposed into the direct product of
transformations on [0, c0) and [0, 1), respectively.
Consider ([0,00),Qr) in (4.2). Let X = [0,00) and a family {Xr(f) :
i=1,2, n € Z} of an intervals in X by
x =72, xP=2" 2 (ne2)

277,—1

For example, Xél) = [v2,2), XF) = [2,4), X111 = [21/4,1/2), X(§2) =
[1/2,1/v2), X? = [1/4,1/2), X% = [1/v/2,27/4). Hence we have the
following decomposition:
(4.3) x=xOu{o,1}, xO=TJ []xV¥

i=1,2neZ

Q satisfies QR(X,(Li)) = Xﬁj}rl for each n € Z and i = 1,2. Both points 0 and
1 in [0, 00) are fixed points with respect to Qg.

Put a direct product Y = Z x [0,1) x {1,2} of measure spaces Z,
[0,1) and {1,2} where Z and {1, 2} are regarded as discrete measure space.
Put maps ¢1 : [v2,2) — [0,1); ¢i(z) = (z = V2)/(2 = V2), s :
[1/2,1/v2) = [0,1);  4a(z) = —2(z —271/%)/(vV2 - 1).

Lemma 4.1. Define a map ¢ from X© to Y by
(4.4) o(r) = (n, (Yi0oQF") (r), i) (whenr € X;,)
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where Q% = Qro---0Qr, Q" = (QI_%I)” forn >1, Q% = id. Then ¢
—_———
n times
is a measurable bijection in RN(X(©)Y). Let o be the shift on Z. Then
(X, Qg) and (Y, o x id x id) are conformal conjugate.

Proof. 1t is easy to show @ 0o Qr o ¢! =0 x id x id. g

Consider ([0,1), H) in (4.2). Let hj, he be transformations on [0, 1)
defined by
1 1
im + 5
Then h = {hy, ho} is the branching function system of H.
Proposition 4.2. PutY = Zx[0,1)x{1,2} x[0,1) and Q = o xidxidx H.
Then (C,Q) and (Y, Q) are weakly conformal conjugate.

Proof. Put X = X(© x [0,1). Then X is an invariant subspace of
C and C\ X = S' U {0} is a null set in C where we identify X and
{re2™V=10 ¢ C: (r,0) € X}. Put ¢ = ¢ x id for ¢ in (4.4). Then we have
¢oQop ! = Q. From this, (X,Q) and (f/, Q) are conformal conjugate.

Hence (C,Q) and (Y, Q) are weakly conformal conjugate by Lemma 4.1.
O

N |

(4.5) hi(zx) x, ha(x)

Lemma 4.3. Let ¢ = {q1,G2} be the branching function system of Q n
Proposition 4.2 on'Y given by

(46) Qi(naxajay) = (n_17x7j7hi(y)) (Z: 172)
Then the representation (La(C), mo) in (1.2) is unitarily equivalent to (I12(Z)®
Ls[0,1] ® C? ® Ls[0,1], 75).

Proof. The branching function system ¢ = {q1,¢2} of @ in (4.1) is
weakly conformal conjugate with § = {¢1, g2 }. The representation (L2 (C), 7y)
of Qs by q is just (L2(C),mg) in (1.2) by Definition 3.1 and Proposition 3.4.
By natural identification, Ly(Y") ~ lo(Z)® Lo[0,1]@ C?® Ly[0, 1]. By Lemma
3.6, (L2(C), ) is unitarily equivalent to (I2(Z)® L2[0,1]® C?® Ly [0, 1], 4).
In consequence, the statement holds. O

Proof of Theorem 1.1: By (4.6), §; = 0-1 X h; where h; = id x id x h; for
1 =1,2. That is, § = 0_1 X h in Proposition 3.9. By applying Proposition
3.9 (i) for the case p = —1, 7y is equivalent to

53}
Ty & ™ / Tj, © Y1 dn(w).
U(1)
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By Proposition 3.4 (iii), 7} 07,,-1 ~ (I&1)R(7075) where K = Ly[0, 1]@C2.
By Example 2.2 (ii), m;, = mp. Hence (i) is proved. (ii) and (iii) follow from
Proposition 2.3. O

5. Construction of annular basis of Ly(C)

We construct a basis of La(C) by using mp in (1.2). In stead of considering
the orbit of () which consists of points in C, we treat that of regions with
non-zero surface volume.

For X, Y C R, define subsets of C by

AX)={z€C:|zl€ X}, BY)={zeC:(2n) targ(z) €Y},
AB(X,Y) = A(X)NB(Y).

Note AB(X,Y) € AB(X',Y') when X € X and Y C Y. A(X) is an
annulus, and AB(X,Y) is called a chunk([7]) (or a sector, a fan-shaped
region) in C. It is well known that ¢ maps a chunk to that.

Recall {1,2}* in Definition 1.2. For J € {1,2}*, the length |J| of
J is defined by |J| = k when J € {1,2}*, k& > 0. For Jy,Jp € {1,2}",
J1U.]2 = (jl""’jk7jl""7jl) when Jl = (]1,,]k) and JQ = (j17""jl)'
Specially, we define J U {0} = {0} U J = J for J € {1,2}* for convention.
For Ji,Jo € {1,2}*, we denote J; = x U Jo (resp. J1 = Jo U %) if there is
J3 € {1,2}* such that J; = J3U Jy (resp. J1 = Jo U J3).

5.1. Annular decomposition of C. Put closed intervals

xW =227, xB=p"" 2" wmec2).

n,0 —
Let S be the set of all bounded closed intervals of [0, 00). For i = 0,1, 2, put
Z; the transformations of S by
Eo=id, Zi([a,b]) = [a,Vab], Ea([a,b]) = [Vab,b] ([a,b] € S).
Define

(5.1) X0 =z; (X%) (i=1,2,neZ Je{l,2})
where 27 = =;, 0---0&;, for J = (j1,...,jk), K > 1. For example, Xé}o) =

21,2712, x5 = [271, 2734, X{, = [277/%,273/4). Then {A(X\")) :
i=1,2,neZ,Je{1,2}*} is a family of annuli in C with common center
0 € C. Furthermore A(Xf;?]) C A(ij?],) when J = J U . There is the
following decomposition: 7
c=J U U ax¥hu{zec:|z=01}
1=1,2n€Z je{1,2}*
for each k > 0.
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Lemma 5.1. Fori=1,2, n€Z and J € {1,2}*,

AXD) = A v A o), (A)) = Al )

Proof. By XT(LZ)J = X(A?]U{l} ux¥ ?,U{Q}, the first equality holds.
We show the second by induction with respect to J € {1,2}*.

Q(AX\Y) = € Cilel e X3} ={z € C: |s| € X\, o}

for each i = 1,2 and n € Z. Assume that the statement holds for each J €
{1,2}',1=0,...,k. Put J € {1,2}**!. Then we can denote J = .J U{j} for

J € {1,2}*. By definition, Q( ( 7(3?])) = {z2 €C:|z| € EJ(Xr(L%)} If
[a,b] = X:Li?],, then XSJ = [a,Vab] or [Vab,b]. From this, z € Q ( ( S?ﬂ)
if and only if \/|2] € [a, Vab] or [Vab, b] if and only if |z| € [a?, ab] or [ab, b?].

Since A([a%,b%]) = Q (A(X )) X0 0 e = X9 and
Xr(fll ;= [a®, ab] or [ab,b*] according to j = 1,2. Hence z € Q ( ( S?])) if
and only if |z| € X J)rl ;- From this, @ (A(Xf;?,)) = A(szé)rl,J)' O

By Lemma 5.1, @ is the shift of a family {A(XT(J?,)} . of annuli in C for
’ ne

each i =1,2 and J € {1,2}*.
For Q C C, put

(5.2) ﬂmzéﬁﬂm@

Lemma 5.2.
7 (A(ij?])) =9 Virlog2 (i=1,2,neZ Je{1,2}").
Proof. By definition,

1 bin,g 1 bz n,J
T (A(Xf&)) = 5 dur(z) =27 —dr = 27log
Ax©) |z |

aimg T Aimn,J
where we take polar coordinate z = re2™ ~1¢ and @i n,J,bin, s are real num-
_ j _ _on—1
bers such that [a; . s, bin, 7] = ‘:‘j(Xq(ll}]) and a0 = 272", bino = 272",
—1
a2 n,0 = 22n y b2,n,0 = 22n Note

i,n 22” 1 zn,] znO sz sz
Qim0 azn,j aznO asz A n,J'
fori,j=1,2,ne€Zand J = (j1,...,Jk), (J1,---5Jk-1), k > 2. Hence

log(bin,J/@in,y) =2"" 1-|J] log 2. Therefore
7 (A(XT(LZ)J)> =27 log(bin,1/Cin,g) =21 - (2”_1_”‘ log 2) = 2”_‘J‘7rlog 2.

O“
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Next, we decompose annuli into chunks in C. For transformations
hi,he in (4.5), put

(5.3) Yo=10,1], Y;=hy(]0,1]) (J€{1,2}"\{0}).
Then Y; C Y} when J =xU J.
Lemma 5.3. (i) Fori,j=1,2, n€Z and Jy,Jy € {1,2}*,

Ay = aB(x, i) uAB(XY) | Ya),
AB(XY, V) = AB(XY, 0y Vi) UAB(XY) 0 V).

(i) Fori,j=1,2, n€Z and Ji,Jo € {1,2}*, |Jo| > 1,

n,J1 YJ;)7

Q (AB(X(Z) 7YJ2)) = AB(X?SQLJN

n,Jq n

q‘7 <AB(X(1) ,YJQ)) = AB(X(2217J17Y{j}UJ2)
where q; is in (4.1) and Jé = (J2,- -+ k) when Jo = (ju, ..., jk)-

Proof. (i) The first follows by Yy = Y7 U Y, and AB(XS?IN
A(Xff?]l). The second follows by Lemma 5.1.

(i) z € Q (AB(XT(Z)JI,YJ2)) if and only if z € A(XSJ)rl,Jl) by Lemma 5.1

and hy(0) € Yy, or ha(f) € Yy, where § = (2r)~! - arg(z). Therefore the
statement holds. O

Yo) =

Lemma 5.4. (i) Fori=1,2, n€Z and Jy,Js € {1,2}*, we have

7 (AB(X(“

n,J1’

YJ2)> = 2”_|J1‘_|J2|71'10g 2.

(ii) Fori,j=1,2, m,n € Z and Jy, Ja, J;, Jy € {1,2}*, AB(X"

n,Ji?

Y;,)N

AB(X(])J/ ,Y 1) is a null set in C with respect to the measure ur when
m,J; 2

(i,m, J1, J2) # (J,m, Jy, Jo), [Ji] = [J1] and |Ja] = [Jy].

Proof. (i) Note that C is equally divided into images of h; and has.
By Lemma 5.2, we have

7J1

T (ABX),. Yn)) =277 (Ax(D))) = 2711l log 2

(ii) By definition of AB(X(i)

n,J1’

Yy,), it follows. O
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We have the following decomposition of an annulus into chunks:
(5.4) AaxU= U ABXD, . Yn)
Joe{1,2}k

for each k > 1. We see that multi-indices is used to decompose C into annuli
and chunks with respect to the action of Q.

5.2. Annular decomposition of Ly(C). We interpret the annular decom-
position of C in § 5.1 to a decomposition of Lo(C). Here annuli and chunks

are interpreted as several functions on C which are related them.
Let KT(L%] 7, be the characteristic function on AB(X(Z?] ,Yy,) for i =
3J1,J2 n,Ji

1,2, n € Z and Jp, J2 € {1,2}*. For example, Kf:t)),o = Xa(-2" 2-21)) and

2
K?S,()),O = XA([QZ"*HQQ”]) fOI' n e Z

Lemma 5.5. For each i =1,2, n € Z and Jy, Jy € {1,2}*,

(@) (@) () (@) _ 7@ ()
Kn,Jl, Kn ,J1,1 Kn ,J1,20 Kn yJ1,Ja T Kn ,J1U{1},J2 + Kn,J1U{2},J2’

(@) i) (@)
n,J1,J2 °Q= Kn 1,J1,{1}UJ> + Kn—l,Jl,{Q}UJz

where these equalities hold up to null sets in C. Specially, KT(LZ)JO o =

(@)
Kn 1,J,0°

Proof. By Lemma 5.3 (i), the first line follows. By Lemma 5.3 (ii),
Q(z) € AB(X,S:EH,YJ2) if and only if z € AB( TS)IJl,Y{l}UJQ) or z €
AB(X(l)LJl,Y{Q}UJQ). By Lemma 5.4 (ii), the statement holds. O

n—

Put L7(’LZ,)J1,J2( ) = Wn gy, |J2|‘Z| nJ17J2( ) fort=1,2,n€eZ, Ji,Js €
{1,2}*, z € C where w1 = (2” k= lﬂ'logQ) Y2 for n € Z, k1 >0. For
Q) C C, denote La(Q2) = {¢ € Lo(C) : fC\Q |9(2)|? dur (z) = 0}.

Lemma 5.6. (i) |10, .|l =1 and L, ,, € Ly (AB(X\", ,Y2,)) for

i=1,2, ne€Z and Jy,Jy € {1,2}".

(ii) {LS?JIJ2 i=1,2,neZ, J € {1,2}F, J, € {1,2}'} is an orthonormal

family in Lo(C) for each k,l > 0.

(iii) Fori,j=1,2, n € Z and Jy,Jy € {1,2}%,
(55) mo(s3) L = L1 g iy

where o is in (1.2).

Proof. (i) Fori=1,2, n € Z and Jy, Js € {1,2}%,

1L, P = @) T (AB(XY), V).
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By Lemma 5.4 (i), L\, 5, = 1. LY, € Lo (AB(X),,Y2,)) follows
by definition.

(ii) By (i) and Lemma 5.4 (ii), the assertion holds.

(iii) By definition,

(5.6) (mo(s5) L, 1) (2) = 202, (2Jeon o a2l 72 (KL 4 0 Q) (2.
By Lemma 5.5 and wy, |7, 75| = wn717|J1|,|{j}UJg|/27

(i) . —1 7-(4) _ 7@
(mo(s) L 02) () = @iyl K Gron @) = Loy Gron 2

fori,j=1,2,n€Z, Ji,Jo € {1,2}* and z € C. O
The definition of LS)JI J, is natural in a sense of (5.5).

Lemma 5.7. (i) 271/2m(s; +52)LS)JO = LS)_I go fori=1,2, n€Z and

J e{1,2}*.
(ii) Fori,j=1,2, n€Z and J € {1,2}*\ {0},
(%) (1) (%) ~1/27 ()
mo(s;)" Ly, Jide = 5',j1Ln+LJLJ;v mo(s5)° LnJ 0= / Ln+1 J1,0

where J2 = (J2y.-,Jk) when Jy = (J1,...,Jk)-
(iii) Fori=1,2,n€Z and Jy, Jy € {1,2}%,

(@) —1/2/7 (%) (@)
an J1, J2 / (LTL J1U{].} Jo + Ln,Jlu{Q},JQ)'

Proof. (i) By Lemma 5.6 (iii), we have

(mo(s0)L0) (2) = L1 4i(2) = Vaxm ()LL), 4o(2)
fori,j=1,2,ne€Z,J e {1,2}* and z € C. Hence the statement holds by
Lemma 5.6 (iii).

(ii) By (1.2), we have (mo(s;)*®)(2) = (2+/|2])71o((=1)"1y/z) for ¢ €
Ly(C),i=1,2, z € C. By (i) and Lemma 5.6 (111) it follows.

(iii) Assume J; € {1,2}*. By definition, Lt )J Ui T LS,)J1U{2},J2

_1/ . .
_ (on—(k+1)—|J: (@) (@)
_ <2 (k1) 2|71'10g2> (Kn’Jlu{l}’h +Kn,J1U{2}7J2).

By Lemma 5.5, we have the assertion. O

Lemma 5.8. Fori = 1,2 and J € {1,2}*, put Hf,i) = {Wo(w)Léf?]’O T €
Os}. Then

(5.7) HY =Lin<{LY ) e{1,2 nez}>

Furthermore Hg) and Hflj;) are orthogonal when (i,J) # (j,J ) fori,j =1,2
and J,J € {1,2}% k> 1.
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Proof. Fix i = 1,2 and J € {1,2}*. Denote the rhs in (5.7) by H .

By Lemma 5.7 (i), we see LS)JO € Hf,i) for each n € Z. By Lemma 5.6

(iii), LS,)J,Jz = 7T0(5J2)L£f_)~_|J2‘ o for each Jo € {1,2}*. Hence H C Hy). By
Lemma 5.7 (ii), H D H'. Therefore H' = H{. (5.7) is shown. By Lemma
5.6 (ii), the last statement holds. O
Note that (Hg),wo) is a cyclic representation of Oy for each i = 1,2 and
J e {1,2}*.

Lemma 5.9. Define

(1) — (1)
(5'8) MnZ,Jl,h = 7TO(TJ2)L7"Z-5-|u72\,a7170

fori=1,2,neZ, J €{1,2}*, Jo € Ay where Ay is in Definition 1.2 and
T = 2_1/2(51 + s9), Ty = 2_1/2(51 —s9), Ty =Ty, ---Tj,, To = I when
J=(j1,.--,Jk) €{1,2}*\ {0}. Then the followings hold:

(i) Fori=1,2, neZ, Jy € {1,2}* and J € Ayy, | > 1, we have

) _o-l/2 Ja|Jy) 7.(0)
Mn7J17J2 =2 / Z (_1)( ? 2)Ln,J1,Jé
Jye{1,2}!
where (Ja|Jy) is in Definition 1.2.
(i) Fori=1,2,n¢Z,Jy € {1,2})" and J € Ay, My, € Lo (A(X\))).

Proof. (i) By (5.8), we have

' ~1/2 To| T, '
MY = 27 Y (@ Q)WO(SJ;)LSL,JMO
Jye{1,2}

where we denote s; = s, ---55,, 87 = s*-k---sjl, so = I for J =
(J1s-- - Jk) € {1,2}*. By Lemma 5.6 (iii), the assertion holds.

(ii) Since Mr(:?fuh is the image of the isometry mo(7,) from LEZ,)JLO € Ly(C),
Méz’?,hh € Ly(C). By Lemma 5.6 (i) and (5.4), we have

M e @ L (AB) v c L (Ax)))
Jye{1,2}k
when J € A27k. O

Lemma 5.10. {Mr(:?h,h :n € Z, Joy € Ao} is a complete orthonormal basis
onyl) fori=1,2 and Jy € {1,2}*.

Proof. Fixi=1,2 and J; € {1,2}*. By Lemma 5.4 (ii) and Lemma
5.9 (ii),

(@) (%) _ (4) (@)
< M’n,.]l,Jz ‘Mm,Jl,J; >= 5n7m < T‘-O(TJZ)L’H,+|J2‘,J1,O”R—O(TJQ)Ln_HJ;l’Jl’O
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If |.Jo| = |Jy|, then < M N J1,J2’M¢(LZJ1 7 >=0, J. by Lemma 5.6 (ii). Assume

Jo=(j1, -+, jrst) and Jy = (31,...,jk) 1> 1. Then

| (@)

<M7(l?]17j2|M(’) , >=0, /<M() WARTL0

n,Ji J n+k, Jl,JQ 2
where Jo1 = (j1,...,Jk) and Joo = (]k+1, .y Jk+1)- By Lemma 5.9 (i),
(4) _9-1/2 Ja oI (4)
< Mn+k J1,J22’Ln+k: 0 >=2 / Z (—1)22lR) < Ln+k: Ji, 12|Ln+k' Ji0°
I,e{1,2}!
By definition,

< LEle ]17[2|Ln+k J1,0 >= Wntkk+1k * Wntkk+1,0 - (AB( ,(LJ)rk Jpo YIQ)) .
By Lemma 5.4 (i),
(5.9) < Mv(zl—l)—k J1,J2 Q‘L’EZ;-)HC,JLO >= Z (—1)22l12),
Ioe{1,2}
By choice of J; and Lemma A.1 (ii), the rhs in (5.9) equals 0 when [ > 1.
Hence < MT(LZ 1M (IJ , >= 0 when |J5| # |J,]. From these considera-

tions, we have

< Mn J1,J2‘Mm Jl,J

By Lemma 5.8 and (5.8),
HJ1 D {7ro(TJQ)LfAL)J1 0:n€EZ, Jye N} ={M, Ml 5, N EZ, Jy € Ao}

,Jo

) >=0und . (nom € Z, Jo, Ty € Ag).

Specially, M. @ ?]1 = LS)J 0 Therefore
(5.10) mo(T1) M, ?11 =M, il

for each n € Z by Lemma 5.7 (i). From these, Mé 3, 1 Is a cyclic unit vector

of HS? by mo(O2). By Lemma 5.8, (HJ1 WO\H@, é}l ) is the Pp 1-chain

of Oz in Definition 2.1 and (2.2). By Proposition 2.3, {]\Jnl()]1 5, NEL, JrE
Az} is complete in ’HE,? . O

Lemma 5.11. (i) Fori=1,2,n€Z, J; € {1,2}* and Js € Ay,

() _ o120 ()
(511> Mn,JLJQ =2 / (Mn,Jlu{l},Jg + Mn,J1U{2},J2)'

(i) Fori,j=1,2, n,m e Z, Ji,Jy, J3 € {1,2}*, |J1| = |J,], and Jo, J, €
Ao, we have

() ©) — 5.
< Mn7J17J2|Mm,]iUJ3,J£ = 52]5nm5

5. 9 1s1/2

J2 0y I,
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Proof. (i) By (5.8), the rhs of (5.11) equals to

—1/26—k/2 NG AN EAO) 7@
2 2 Z (=1) (Ln,Jlu{l},J;+ n,J1U{2}, J2>
Jye{1,2}k

when Jo € Ag g,k > 1. By Lemma 5.7 (iii), this equals to

2 H Y ()L 0,
n n,J1,J2
Jye{1,2}k Tt

Hence the statement holds.
(ii) By Lemma 5.9 (ii),

(9 () (9 (9
<M, J1,J2|MmJ UJ3,J5 A >= 57,]5nm <M, Jl,J2|MnJ UJ37J/ >

Fix i = 1,2 and n € Z. Since XT(L)J1 N 7(:?] U is a null set when
1 3

JA T < MYy 1M, >= 0 when ) # 1.

J UJ3,
Fix J; € {1,2}*, too.
Assume [ = |Jy| — |Jo| > 1. Put J, = Jil U Jé,2’ Jéﬂ = (Jps s dp)-

Then we have

oM (@)

0 0 )
< MnaJ17J2 |M >= 5J2J2 <L n+k, J1UJ3,J2 2

n,J1UJ3,Jy n+k,J1,0
By Lemma 5.9 (i),

’
— 9 J301J4)
L( ) — 2 l _1 ( 2,2 .C
< Loy, 0lM n+k RUTs Ty > (-1 k1, 3,04
Jye{1,2}

where cj. ket Js,Js =< L( ’L

ke, 1.0 e Then

n+k,J1UJ3,

_ ( )
Ch k1, J3,Js = Wnk,| J1],0 * Wbk, | JLUT5]0 " (AB< ke Jy U0 Y1) ) -

By Lemma 5.4 (i), T (AB (X{'), ;.5 Yo,) ) = 27110 log 2. From
this, we can write
) )22l )
< Ln-l—k J170| n+k J1UJ3,J22 >=W- Z 2

Jye{1,2}

for some constant W. By choice of Jé, Jao # (1,...,1). By Lemma A.1
——’

l

>= (. Hence < Mf:?]hh]M(i) , >=0

(@)
(i), <L n,J1UJ3,J,

ntk,J1,0 oM n—i—k J1UJs, Ty
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_ 7 (%) (@) _
Assume k = |Jo| =|Jy|. Then < M”:J17J2|Mn,Jluj37J; >= 5J2J; <
(4) @
Loyt gy 0l ok im0 > and
(%) (4) —_w (%)
< Lpiknolbniknumsoe >=W -1 (A(Xn+k,J1uJ3’YO)>

where W' = Wn+k:,|J1\,0 Wntk,| T UJ5),0 = 2~ (k= iD+1Js1/2 (7 10g 2)~1. Hence

(@) — 9—15sl/2. (@) (@) _

<Lyikno | n+k SUJs0 = 2 1/1/2 Therefore < M .y J2|Mn e >=
|J31/2

27 5J2J;

Regarding every case, we have the assertion. U

3. Commuting two representations of O,. Here we construct another
representation of Oy which commutes 7y in (1.2). By using this, we decom-
pose (La(C),mp).

Lemma 5.12. Put a closed subspace of La(C)
(5.12)

K(M)=Lin<{M", | :i=1,2n€Z Jy€{1,2}", ]y €A} >
and a function
(4) — o—k/2 JlJy) 37
(5.13) Nogg, =2 / Z (=nt 1)Mn T
Jye{1,2}k

fori=1,2,n€Z and J € {1,2}F,Jy € Ay, k > 1. Then the followings
hold:

(i) Nghu{l},h nJ1 5, for each Ji € {1,2}*\ {0}.

(i) K(M.) = Ls(C).

Proof. (i) Fori=1,2,n€Z, J; € {1,2}*, J, € Ay, we have

(@) _ o—(k+1)/2 NI (@) (4
Ny = 2520 (DYDY g, + M0y 0,)
Te{1,2}*
o—(k+1)/2 Z (— )Jl\l)\fM(IJQ
Ie{1,2}F
(4)
n,J1,J2

where we use Lemma 5.11 (i).

(ii) By Lemma 5.9 and (5.7), K(M.) D {L), | :i=1,2,n€Z, J1, ) €
{1,2}*}. By (5.4), Lin < {L), | i=1,2,n€2Z, Ji,Jr € {1,2}*} > is
dense in Ly(C). Hence the assertion holds. O
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Lemma 5.13. {an?h 7, - J1,J2 € Ao} is an orthonormal family of Lo (A(Xf%))

foreachi=1,2 andn € Z.

Proof. Fix i = 1,2 and n € Z. By Lemma 5.9 (i), N:j?h 5 €

Ly(A(X\))). By Lemma 5.1 (ii), < N\, [N® Yy gy >= 0 when Jp # Jy.

Fix Jy € Ag, too. Assume k; = |J1| and ko = |J3|. Then
_ (%) ()
CJl,Ji =< Nn,Jl,Jz Nn J’ J2 >
— o9—(k1+k2)/2 J |J3)+(JJ5) (1) (@)
A DS > (e H <M G M >

J3e{1,2}*1 Jie{1,2}k2
Assume [ = k1 — kg > 1. Then < M75 ?]3’J2 M:LZ?]§JQ >= 0 when J3 #

JyUx. Assume that there is J; € {1,2}! such that J3 = J;U.J;. By Lemma

(@) (@) _ 912
Al (i) and < M o UJ4,J2’Mn T >=27"“ we have

’ !

_ o—(ki+) J1 2]Ja)+(J1, 1|J) (J11J3)

CJl,J{ = Z Z ’
Jye{1,2}! J/G{LQ} 2

_ —1 J1 2|J.
= 2 6J1,1J1 Z (_1)( L2l
Jye{1,2}

|J12| = 1. By choice of Jyi, Ji2 # (14).

where J; = J171 uJi 12,
By Lemma A.1 (i), C), J/ =0.

Assume k = |.J;| = |J;|. Then

- TilJs)+ (3 15) a0 (4)
CJl,J’ =2 Z (*1)( HRIHCAIS) < n,J3,J2 Mn,Jé,Jz =
J3,Jy€{1,2}k
By Lemma 5.9 (ii) and Lemma 5.11 (ii),
Chy=2" ¥ (= 1) (1l 8)+ (11 Js)
1,
J3e{1,2}k
By Lemma A.1 (i), €, /:5
( . ’
In consequence < N Jl,JQ‘NnJ T >= (5J1J1 for each Ji,J; € As.
Therefore {N,, J1 J, - J1,J2 € Ao} is an orthonormal family of LQ(A(XfL%)).
O

Corollary 5.14. {N,,(l?]“]2 c1=1,2,n€Z, J1,Jo € Ao} is an orthonormal
family of La(C).
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Proposition 5.15. Put

IC(N) L1n<{ TLJlJQ =1,2,n€Z, Jl,J2€A2}>
i — (@ (@)
(514> 7Tl(Sj)]\]’r(L,?l_,Jg = Nn,j,]g’ W1(8‘7>N7(l ?]1 Jo — Nn {]}UJl,JQ

fori,j=1,2,ne€Z,Jy € Ao\ {1}, J2 € Aa. Then (K(Ny),m1) is a repre-
sentation of Os.

Proof. Because 71(s;) is defined on the complete orthonormal ba-
sis { n?h 5,1 of K(Ny), mi(s;) is well defined and it is an isometry for

’

i =1,2. By (5.14) and Corollary 5.14, < m1(s;))N\"), , |m1(s)N" )J >
0 5(n Tydasd) (ot i) Therefore 7y (s;)*m1(sj) = 0;;1. By checking the im-

age of m1(s;), m1(s1)m1(s1)*+71(s2)m(s2)* = I holds. Therefore (K(N),m1)
is a representation of Os. O

Lemma 5.16. For T;, i =0,1,2 in Lemma 5.9, we have
T (TN =M, (i=1,2,n€Z, J€{1,2}", ] € Ay).

Proof.  Since N )1 = MfL%J , the case J = {0} holds. If J € {1,2}*,
then

m(THNG = 2772 3 (1) IDay(s)NY)

Ie{1,2}k
22 N () IING
Ie{1,2}k
where we use 7r1(31)N7(l)1J2 = m(si,) - wl(sikfl)Ngk,h = Nr(zl;)LJz when
I = (il, cee ,’Lk) By (5 13)
Wl(TJ)Nr(Ll,)l,Jg = 27" Y ) (Fpuru )Mé)f Ja

Ie{1,2}F I'e{1,2}*

- 1|+ (@)
S ol D SRS PO

I'e{1,2}k \Ie{1,2}F

- Z oy ;M nIJ2

I'e{1,2}k

(4)
Mnl,J,JQ
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where we use Lemma A.1 (i). O

Proposition 5.17. {N nJ 5 it=L2,n€Z J1,) € Ao} is a complete
orthonormal basis of LQ(C)

Proof. By Lemma 5.16 and Proposition 5.15, MY ?,1 5, € K(Ny) for
eachi=1,2,neZ, J € {1,2}* and Jy € Ay. Recall IC(M ) in (5.12). By
Lemma 5.12, Ly(C) = K(M,) C K(N,) C L2(C). Hence Lo(C) = K(N.).
By Corollary 5.14, the statement holds. O

Lemma 5.18. Let T;, i = 1,2 be in Lemma 5.9. Fori,j =1,2, n € Z and
Ji,JJo € Ao, Jo # {1}, we have

i () (i) (i)
WO(E)N::?]IJ = anq,Jl,ja WO(T )NnZJl,Jz an 1,J1,{j}UJ>"
" (@) (@) (@)
Proof. By (5.10) and Definition of M,,”; ;. mo (T} )Mn T Mn—l,J{,j'
Hence
m@)ND = 2 3 ()@, = NP

Jye{1,2}k
In the same way,
(@) _ o—k/2 Ji|J (@) _ (@
WO(T’J')NTL,LH,JQ =2 / Z (_1)( 1l 1) n 1 Jl’{J}UJQ Nn—l,Jh{j}UJz
Jye{1,2}k
for Jy # {1}. O

Theorem 5.19. (i) We have the following decomposition of invariant sub-
spaces under the action w1 of Oy:

@@ @ ’Cng’ iJ —Lm<{N gt J1 € Ao} >

1=1,2n€Z J2€A2

Furthermore (IC(i)

n,Jo

sl ) is the Ps-cycle of Os.
n,Jo

(ii) We have the following decomposition of invariant subspaces under the
action wy of Oy:

@ @ LJl’ = Lin < {an?h Jp 0T €Z,Jy¢ A2} >
i=1,2 J1€Ao

Furthermore (EF;B,W0|£(¢>) is the Pp1-chain of Os.
J1

(iii) 71'1(02) C (71'0(02))/.
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Proof. (i) By (5.14), W1(81)N75i)1 Iy = NT(L@)1 g, foreachi=1,2, n€Z
and Jy € Ay. By Proposition 5.17, we have the statement.
(ii) Note T1 = Pp,;. By Lemma 5.18, we have mo(11) Ny, 5,1 = Np—1,, 1 for

eachi=1,2, n € Z and J; € As. By Proposition 5.17 and definition of E(il),
we have the statement.

(iii) Put m3 = mp o ay for g = % < 1 _11 > Then 73(s;) = mo(T;) for
i =1,2. By Lemma 5.18 and (5.14), we have the followings:
k k
7T3(3i)7r1<3j)N1§,1),J2 Ny )1,_7{ yus, = m1(85)7s(s )Nél)b

k k
ma(si)mi(s)NS) 5 = N o = M) TN, ),

* * k
m3(si)m1(s;) Né,{)l}UJl,Jz 5N, iy = T1(s5) ”3(5")]\77(%{)1}%7{12’
m3(si)mi(s;) N?Sl)Jz Ni )1,1,{ YUJy m1(s5) 7T3(5i)N751)J2’

k
ma(s0)m (55) NA gy = 0N | = mi(s) ma(si) N -
From these relations, we have [m3(s;),m1(sj)] = 0, [m3(s:)*,m1(s5)] = 0
for 4,5 = 1,2. Therefore [mo(s;),m1(s5)] = 0, [« (8) m(s;)] = 0 for
i,7 = 1,2, too. Hence [mo(z),m1(y)] = 0 for each x,y € O O
Proof of Theorem 1.3: Put Al )J = A(X, XU ) 7,) and AB;L)J J, = AB( 7(L?]1,YJ2).

(i) By Lemma 5.3 (ii), it follows.

(ii) We see that Nr(fz,hb in (5.13) is just that in Theorem 1.3 (ii). By
Proposition 5.17 and Lemma 5.18, the assertion follows.

(iii) By the first paragraph in § 4 and Proposition 3.8 (ii), L2(C) is de-
composed into La(D7) and Lo(Ds2) as representation of Oz. By Theorem
5.19, mi-action of Oy decomposes La(D;) with respect to the index set As.
By Lemma 5.18, (ES),WO,NéZ}I ) is the Ppj-chain for each i = 1,2 and
J1 € Ag. Hence its direct mtegral decomposition follows by Proposition 2.5
(ii).

(iv) Because L(Jll) is equivalent to the Pp j-chain, it holds.

(v) By the proof of (iii) and decomposition of them, £g3’w is equivalent to
the Pp ,-cycle. Hence the statement follows.

(vi) By the proof of (iv), it holds.

(vii) By Proposition 2.3, it follows. O

We call {N, nJ1 5, i =12,n€Z Ji,Jo € Ay} the annular basis of
Ly(C). By Lemma 4.3, myp = 7y is naturally arising from the dynamical



26 K.KAWAMURA

system (C, Q). In this sense and Lemma 5.18, we see that the annular basis
of Ly(C) is arising from (C, Q) naturally.

5.4. Illustration of annular basis. We illustrate the annular basis of
Ls(C) by figures.
Consider an annulus A(Xff})) in § 5.1:

Imz

AXD)

)

.
N

Rez

N

Then {Nf:?,hh : J1, Jo € Aa}is a complete orthonormal basis of Lo (A(XT(Z)O)>

For example,

() _ (4) _
NI = b () N =) (an ()~ Xy ()

N 2(2) = ba(2) <><AB(X;?O,Y1><Z> - ><AB<X;%,Y2><Z)> |

N2 =ba(a) D0 ()P0 ()
J1.42=1,2 o

where b, (2) = (|z|v/2"7log2)~! for n € Z, z € C. These are illustrated as
follows:



w+

w _

In the same way, we have the following illustration:

N, 7(11,)1,22

N7(LZ,)1,12

%

o
S

5
&
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6. Generalization

6.1. Q.(z) = 22 + ¢ for general ¢ € C. We start from general form of
quadratic transformations on C. Consider a transformation Fj; . over C
defined by

(6.1) Fope(z)=az? +bz+c

for a,b,c € C, a # 0. F,; . is injective over subsets X;(a,b, c) of C which
are defined by X;(a,b,¢) = {z—b/(2a) : (=1)" - Imz < 0} for i = 1,2. The
representation (Lo(C),m) of Oy arising from Fp . is given by

(6.2) (m(s:)9)(2) = mi(2)¢(Fape(2)) (¢ € L2(C))

where m;(2) = X x;(a,b,e) (2)[2a2+b| for i = 1,2 and 2 € C. By conjugation of
complex affine transformations, the following transformation are conjugate
with Q(z) = 22

%z2, (z=b)2+b% 22-2242, 22422, 20z—-0)>%+0b, 222+22
for a,b € C, a # 0. Since the transformation Fj;. in (6.1) is always
conjugate with Q.(z) = z? + ¢ by affine transformation for some ¢ € C, the
representation in (6.2) is equivalent to that from Q. by Lemma 3.6. In the
future, we wish try to treat the representation arising from Q. for ¢ # 0.

By § 18.5 in [7], we have representations of Oy from the following
transformations on C except null sets:

1 1 1 1 (z—a)(z—=0b) _
2 2
—92 = - S R A

‘ ’ 2<Z z>’ 2<Z z)’ © % —a—b =

for a,b € C. Every representations associated with these transformations

are equivalent to the case Q(z) = 22.
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6.2. Oy case. Let Py(z) = 2"V, 2 € C, N > 3. Then the polar decomposi-
tion of Py, z = z(r,0) = re2™ =1 s given by
Py (r,0) = (Pn,r(r), Hn (),
Pygr(r)=rY, Hy(0) =N6 (mod1)
for 0 < r and 0 < 0 < 1. According to the similar argument in N = 2, we

have a representation (L2(C), ) of Oy from Py and their decomposition

holds:
(5]

(Lo(C), 7) ~ /U (o) )

where
Hy = LQ[O, 1] & LQ[O, 1], 7A1'B7w(8i) = I®7TB(ZUS¢) (Z =1,.. .,N)

for each w € U(1) and (L2[0,1],7p) is the barycentric representation of
On([13]).

Acknowledgement: We would like to thank A. Asada and N. Nakanishi
for good suggestions to us. The annular decomposition in § 5.1 is explained
by A.Asada([2]).

Appendix A. Formulae about multi-indices
Recall notations {1,2}*, (J|J') in Definition 1.2.
Lemma A.1. (i) For Ji,Js € {1,2}*, k > 1, we have
Z (—1)HDHID) kg,
Je{1,2}k
(ii) If J € {1,2}%, k > 1, then
> (~)U) = 2567 (1)
J e{1,2}¢
where (1%) = (1,...,1).
T

Proof. (i) Denote J; = (ji;)F_, for i = 1,2. By checking the following
equation
k

k
Z (_1)(J1\J)+(J2|J) - H {1 + (—1)j1’l+j2’l_2} = H {26j1,l:j2,l} J
=1

Je{1,2}F =1

we have the assertion.
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(ii) In (i), choose J; = J and Jo = (1¥). Since ((1¥)[J) = 0 for each
J e {1,2}*F,

/ / k /
Z (—)UI) = Z (=1)UIHANIT) — 2k5J,(1k)-
J e{1,2}F J e{1,2}F

Appendix B. Proof of Proposition 2.3

The results in § 2 are obtained in [8, 9, 10]. We show several claims here
for convenience. Specially, the uniqueness of Pg,Pp ,-cycles are shown in
Appendix in [13, 14].

Proposition B.1. Ps, Pp-cycles, are irreducible and inequivalent each
other.

Proof. In§2.1and Appendix A in [12], GP(1,0) and GP(2 12w, 271/2w)
are just Pg-cycle and Pp,-cycle for each w € U(1), respectively. Hence
statements hold. O

In order to show the uniqueness of Pp 1-chain, we construct the canoni-
cal basis of Pp j-chain. Put A(1%°) = {(J,n) € Ay xZ}. For (J ,n) € A(1°°),
put ey =m(sysy)er where s = s1---s1, 57" = (s])" whenn > 1, s{ =1

n
Lemma B.2. Let (H,m, ) be a Pg-chain of On. Then {ey: J € A(1*°)}
is a complete orthonormal basis of H.

Proof.  For (J,n),(J',m) € A(1%), if [J| = |J'|, then < ej,le, , >=
6,y < w(sP)Qm(s7")Q >. Assume that J = Jy U Jo, J1 = (J1,---,Jk),
Jo = (ka1 dkst), and J = (j,....jp). Then < ejley >= 6, o <

7(55,)QQ >. Note Q = nm(s1)lery. Hence < 7(s55,)QQ >= 61,0, <
Qleiy1 >= 0 where J3 = (1,...,1). Therefore {e; : J € A(1*°)} is an
——

l
orthonormal family of H. By cyclicity of H, {ey : J € A(1*°)} is complete.
U

Lemma B.3. Let f = {f;}Y| be in Example 2.2 (iv).

(i) (I2(Z x N),mf,e0,1) is a Ps-chain.

(ii) For g = %( 1 _11 ) € U(2), (I2(Z x N), 750 ag,e01) is a Pp -

chain.
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Proof. (i) Note {fs(n,1) : J € {1,2}*,n € Z} = Z x N. Because
mr(st)eonr = enq forn € Z, {e, : © € Z x N} C m4(O2)ep,1. Hence the
cyclicity follows. By definition of f and (2.5), we have 7¢(s1)en1 = en—1,1
for n € Z. By putting e,, = e, for n > 1, we have the statement. (i) The
cyclicity follows by (i), too. Note 2_1/2ag(81 + 82) = s1. From this, we have
2_1/2(7rf o agy)(s1 + s2)en,1 = Tf(s1)en,1 = en—1,1 for n € Z. Hence 7y o oy
is a Pp 1-chain. O

Proposition B.4. If (H;,7;,8;) is a Ps-chain for i = 1,2. Then (Hi,m1)
and (Ha,m2) are unitarily equivalent.

Proof. By Lemma B.2, any Pg-chain has the canonical basis. From
this, both (Hi,71) and (He,m2) have such canonical basis with the com-
mon index set A(1°°). By corresponding their basis, define a unitary U
between H; and Hy. Then U gives a unitary equivalence between (Hi, 1)
and (Ha, m2). O

Theorem B.5. The Ps-chain and the Pp1-chain are unique up to unitary
equivalences.

Proof. By Proposition B.4, the statements holds about a Pg-chain.
By this result and Lemma B.3 (i), we can identify (l2(IN), 7, e0,1) in (2.5)
and any Pg-chain. By Lemma B.3 (ii) and the uniqueness of Ps-chain, Pg 1-
chain is unique, too. O
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