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Abstract. For a lattice system with a finite number of Fermions and spins

on each lattice point, conditional expectations relative to an even product

state (such as Fermion Fock vacuum) are introduced and the corresponding

standard potential for any given dynamics, or more generally for any given

time derivative (at time 0) of strictly local operators, is defined, with the case

of the tracial state previously treated as a special case. The standard potentials

of a given time derivative relative to different product states are necessarily

different but they are shown to give the same set of equilibrium states, where

one can compare states satisfying the variational principle (for translation
invariant states) or the local thermodynamical stability or the Gibbs condition,

all in terms of the standard potential relative to different even product states.

1. Introduction

Conditional expectations from a C∗-algebra to its subalgebras relative to the
unique tracial state have been recently used as a basic tool for the formulation of
equilibrium statistical mechanics of Fermion lattice systems and for the equivalence
proof of the KMS condition and the variational principle for translation invariant
states [2]. The main role of the conditional expectations there, apart from their
use as an effective tool of various proofs, is the unique association of the standard
potential (characterized by vanishing of appropriate conditional expectations) for
a given dynamics.
In the present work, we generalize the definitions and results in [2] by introducing

ω-conditional expectations relative to an even product state ω. A mathematical
difference from the slice map treated in mathematical literatures is the mutual non-
commutativity of factor subalgebras, relative to which the state ω has the product
property. The algebra under consideration is somewhat generalized from the one
in [2] to a graded C∗algebra with a graded commutation relations, which may
include simultaneously both Fermion creation and annihilation operators and spin
operators at each lattice point, as long as the local algebra at each lattice point is
a full matrix algebra (i.e. a finite dimensional factor), excluding a possibility for
Boson creation and annihilation operators.
All results in [2] as well as those in [3] hold also for ω-standard potentials relative

to a product state ω. For different choices of ω and a fixed dynamics, they provide
examples of equivalent potentials. Each of characterizations of equilibrium states
in terms of the ω-standard potential, such as the variational principle, the Gibbs
condition and the LTS condition, gives the same set of equilibrium state for any
different choice of the product state ω (Theorems 5.1 and 7.2).

1



2 HUZIHIRO ARAKI

As an immediate consequence, mutual equivalence of the KMS condition, the
dKMS condition, the Gibbs condition, the LTS condition, and the variational prin-
ciple (the last one only for translation invariant states), which is derived in [2] and
[3] (Theorems A, B, 7.5, 7.6, and Proposition 12.1 of [2] and Theorems 1, 2, 3 and
Corollary 4 of [3]) for (τ -) standard potentials under (minimal) assumptions on
dynamics, holds also for the general ω-standard potentials.
The paper is organized as follows. The graded algebra and its graded commuta-

tion relations along with results on commutants (Theorem 2.4 and 2.5) and inter-
sections (Theorem 2.2) are described and proved in Section 2. The ω-conditional
expectations relative to a product state ω along with their basic properties (The-
orems 3.1 and 3.2) are given in Section 3. The ω-standard potentials for a given
dynamics are introduced in Section 4 with a use of the ω-conditional expectations.
The Gibbs and LTS conditions are described in terms of the ω-standard potentials
in Section 5. Translation invariance is introduced in Section 6 and the variational
principle is discussed in Section 7. All results and their proofs in [2] and [3] can
be carried over to the present generalized situation (Theorems 4.1, 4.2, 5.1, 6.1,
6.2, 6.3, and 7.1). Comparison of the ω-standard potentials for different choices of
ω (the tracial state and the vacuum state of a Fermion lattice system) are made
for one-body and two-body potentials in Section 8. The ω-conditional expectations
for a non-even product state is discussed in Section 9. A necessary and sufficient
condition for a subset I of the lattice is given for the existence of the ω-conditional
expectation onto the subalgebra for the subset I in the case of non-even ω (Theorem
9.1).

2. Algebra

We consider a C∗-algebra A equipped with the following structure, modeled after
Fermion and spin lattice systems.
(a) Local structure.
For each point i of a lattice L = Zν , there corresponds a subalgebra Ai of A,

which is isomorphic to a full matrix algebra of d × d matrices, d independent of i
(independence needed for lattice translation automorphisms).
For each subset I of L, A(I) denotes the C∗-subalgebra of A generated by

Ai, i ∈ I. A(L) is assumed to be A.
In most part of this work except Sections 2 and 9, we assume the existence

of a representation of the group L by automorphisms τk of A, k ∈ L, such that
τk(Ai) = Ai+k. Then

τk(A(I)) = A(I + k), I + k = {i+ k; i ∈ I}.(2.1)

(b) Graded structure.
There exists an involutive C∗-automorphism Θ of A such that

Θ(A(I)) = A(I),(2.2)

Θτk = τkΘ, (k ∈ L).(2.3)

Then any A ∈ A splits uniquely as a sum of even and odd elements A+ and A−:

A = A+ +A−,(2.4)

A± = (1/2)(A±Θ(A)), Θ(A±) = ±A±.(2.5)
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Accordingly, A and the subalgebras A(I) split as a sum of even and odd parts
which have a trivial (i.e. zero) intersection:

A = A+ +A−, A± = {A ∈ A; Θ(A) = ±A},(2.6)

A(I) = A(I)+ +A(I)−, A(I)± = A(I) ∩ A±.(2.7)

The following graded commutation relations hold: if I ∩J = ∅, Aσ ∈ A(I)σ, and
Bσ′ ∈ A(J)σ′ (σ, σ

′ = ±), then

AσBσ′ = ε(σ, σ′)Bσ′Aσ,(2.8)

ε(σ, σ′) =

{

−1, if σ = σ′ = −,

+1, otherwise.
(2.9)

Namely, odd elements of disjoint regions anticommute, while other pairs of even
and odd elements commute. The graded commutation relations hold for any pair
of disjoint I and J if they hold for a pair of disjoint one-point sets because A(I) is
generated by Ai, i ∈ I.
We use the notation I ⊂⊂ L to mean that I is a finite subset of L. Then |I|

denotes the number of points in I, sometimes called the volume of I. We denote

A0 = ∪I⊂⊂LA(I).(2.10)

It is a dense ∗-subalgebra of A.

Lemma 2.1. For I ⊂⊂ L, A(I) is isomorphic to a full matrix algebra of d|I|× d|I|

matrices. For an infinite subset I of L, A(I) is a UHF algebra of type d∞. In
paticular, A(I) is simple for all I. As a special case, A is simple.

Proof. First we prove the first assertion inductively for increasing |I|. For this, it is
enough to consider disjoint finite subsets I and J of L and to prove that A(I ∪ J)
satisfies the first assertion if A(I) and A(J) do.
Since any ∗-automorphism of a type I factor is inner, there exists a unitary

u ∈ A(I) satisfying Adu = Θ on A(I). By adjusting a constant multiple of modulus
1, we may assume u2 = 1 due to Θ2 = id. (Then±u are the only selfadjoint unitaries
in A(I) which implement Θ on A(I).) By Θ(u) = u3 = u, we have u ∈ A(I)+ and
hence u ∈ A(J)′.
Consider the mapping

π : A ∈ A(J) −→ π(A) = A+ + uA−.

It is readily seen that π is a unital ∗-homomorphism. Since a full matrix algebra is
simple, π is an isomorphism. Furthermore, π(A(J)) ∈ A(I)′ due to Adu = Θ on
A(I). Therefore the C∗-subalgebra of A generated by A(I) and π(A(J)), which is
the same as the C∗-subalgebra of A generated by A(I) and A(J), i.e. A(I ∪ J), is
isomorphic to a full matrix algebra of d|I|d|J| × d|I|d|J| matrices. This proves the
first assertion.
Suppose I is infinite. For an increasing sequence of finite subsets Li of I tending

to I, the union of A(Li) generates A(I). Hence A(I) is the UHF algebra of type
d∞.
Consequently, A(I) is simple for any I.

We need, in Section 4 and later, the following results.
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Theorem 2.2. For any countable family {In} of subsets of L,

∩∞n=1A(In) = A(∩
∞
n=1In)(2.11)

The proof is the same as that of Corollary 4.12 of [2], where we use Theorem 3.2
of Section 3.

Definition 2.1. For a subset I of L,

I− = {i ∈ I; (Ai)− 6= 0},(2.12)

namely I− is the set of all i ∈ I for which Ai has non-zero odd elements.

Note that if the lattice translation automorphisms τk exist, and Θ is non-trivial,
then (Ai)− 6= 0 for all i and I− = I. The above notation is used in Sections 2
and 9, where some results depend delicately on I− and so they are stated in the
situation with the translation uniformity assumption tentatively dropped in order
to draw attention to the delicate situation.

Lemma 2.3. (1) For each i ∈ L−, there exists a self-adjoint unitary ui ∈ (Ai)+
implementing Θ on Ai. It is unique up to ± .
(2) If I− is finite ,

uI =
∏

i∈I−

ui(2.13)

is a self-adjoint unitary in A(I)+ implementing Θ on A(I), where the product is
taken to be 1 if I− is empty. Such uI is unique up to ±.
(3) For each i ∈ I−, there exists an even state ωi of Ai satisfying ωi(ui) = 0

Proof. (1) This follows from the beginning part of the proof of Lemma 2.1.
(2) The first part follows from (1). The second part is due to the triviality of

the center of A(I) given in Lemma 2.1.
(3) Since ui is a non-trivial self-adjoint unitary, ui = E+i − E−i for mutually

orthogonal non-trivial projections E±i with sum 1. Set

ρi =
1
2 (τ(E

+
i )
−1E+i + τ(E

−
i )
−1E−i ),(2.14)

ωi(A) = τ(ρiA), (A ∈ Ai).(2.15)

Since ui is even, E
±
i are even. Hence ωi is even and satisfies ωi(ui) = 0.

Theorem 2.4. (1) If I− is finite,

A(I)′ ∩ A = A(Ic)+ + uIA(I
c)−(2.16)

where uI is a self-adjoint unitary in A(I) implementing Θ on A(I), which exists.
(2) If I− is infinite,

A(I)′ ∩ A = A(Ic)+.(2.17)

The proof is the same as that of Theorem 4.17 of [2], except for two modifications.
First we use a self-adjoint unitary uI given in Lemma 2.3. Second we apply the
proof of Lemma 4.16 of [2] to the case of an infinite I−, by using, instead of EI in
[2], the conditional expectations Eω

I in Section 3 for an even product state ω of the
tracial state of Ai for i /∈ L− and the state ωi given by Lemma 2.3 (3) for i ∈ L−.
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Theorem 2.5. (1) If I− is finite,

(A(I)+)
′ ∩ A = A(Ic) + uIA(I

c).(2.18)

(2) If I− is infinite,

(A(I)+)
′ ∩ A = A(Ic).(2.19)

The proof is the same as that of Theorem 4.19 of [2] with the same modification
as the proof of the preceding Theorem.

Lemma 2.6. Assume that I− is infinite. Then any u ∈ A satisfying uA = Θ(A)u
for all A ∈ A(I) is 0. In particular, Θ on A(I) is outer.

Proof is the same as that of Lemma 4.20 of [2].

3. Conditional Expectations

Let ω be a state of A possessing the following property.
Product Property: For any disjoint subsets I1, . . . , Ik of L and for any Ai ∈

A(Ii) (i = 1, . . . , k),

ω(A1, . . . , Ak) = ω(A1) . . . ω(Ak).(3.1)

This property for an arbitrary pair of two disjoint one-point subsets (k = 2,
|I1| = |I2| = 1) implies (3.1) for the general case because each A(Ii) is generated
by Al, l ∈ Ii. Such a state is called a product state and is denoted as

ω =
∏

i∈L

ωi(3.2)

where ωi is the restriction of ω to Ai. It is uniquely determined by ωi. It is known
([1],Theorem 1) that such a product state for given ωi, i ∈ L, exists if and only if
all ωi with at most one exception are even, i.e.

ωi(Θ(Ai)) = ω(Ai) forAi ∈ Ai(3.3)

or equivalently

ωi(Ai) = 0 forAi ∈ (Ai)−(3.4)

for all but one i ∈ L.
The product state (3.2) is even if and only if all ωi are even ([1],Theorem 1).
Throughout this paper, except in Section 9, ω is assumed to be an even product

state.
A typical even product state is the tracial state τ which can be characterized by

the following tracial property (see Proposition 8.1):

τ(AB) = τ(BA) for allA,B ∈ A.(3.5)

Another example is the Fock vacuum in the case of Fermion lattice systems (see
Proposition 8.2).

Theorem 3.1. Let ω be an even product state.
(1) For any subset I of L and any A ∈ A, there exists a unique Eω

I (A) ∈ A(I)
satisfying

ω(B1AB2) = ω(B1E
ω
I (A)B2)(3.6)

for all B1, B2 ∈ A(I).
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(2) The map Eω
I from A to Eω

I (A) is a conditional expectation from A to A(I),
namely the following holds.
(2-1) It is linear, ∗-preserving, positive and unital.
(2-2) For B1, B2 ∈ A(I),

Eω
I (B1AB2) = B1E

ω
I (A)B2.(3.7)

(2-3) It is a projection of norm 1.
(2-4) ΘEω

I = Eω
I Θ.

(2-5) If ω is translation invariant, then

τkE
ω
I = Eω

I+kτk, (n ∈ L).

(3) The following relation holds:

Eω
I E

ω
J = Eω

JE
ω
I = Eω

I∩J .(3.8)

Namely, the following diagram is a commuting square.

A(I ∪ J)
Eω
I−−−−→ A(I)

Eω
J





y





y

Eω
J

A(J) −−−−→
Eω
I

A(I ∩ J)

(3.9)

Before presenting the proof of this theorem, we give a result on continuity of Eω
I

on I. For any net Iα of subsets of L, Iα → I means

I = ∩β(∪α≥βIα) = ∪β(∩α≥βIα),(3.10)

the second equality being the condition for the convergence of the net {Iα}. In
particular, if Iα is monotone increasing, its limit is I = ∪αIα and if Iα is monotone
decreasing, its limit is I = ∩αIα, the convergence being automatic in both cases.

Theorem 3.2. If Iα → I, then

lim
α
‖Eω

Iα(A)− E
ω
I (A)‖ = 0(3.11)

for any A ∈ A . In particular, if Iα → L, then

lim
α
‖Eω

Iα(A)−A‖ = 0.(3.12)

In other word,

lim
I→L

Eω
I = 1.(3.13)

The proof of this Theorem is exactly the same as that of Theorem 4.11 in [2].
The rest of this section is devoted to the proof of the first Theorem.

Lemma 3.3. If Eω
I (A) satisfying (3.6) exists, then it is unique and

‖Eω
I (A)‖ ≤ ‖A‖.(3.14)

Proof. Consider the (GNS) triplet consisting of a Hilbert spaceHI
ω, a representation

πIω of A(I) and a cyclic unit vector Ω
I
ω ∈ H

I
ω giving rise to the restriction of the

state ω to A(I). For B1, B,B2 ∈ A(I),

ω(B1BB2) = (Ψ1, π
I
ω(B)Ψ2),(3.15)

Ψ1 = πIω(B1)
∗ΩI

ω, Ψ2 = πIω(B2)Ω
I
ω,(3.16)

where {Ψ1;B1 ∈ A(I)} and {Ψ2;B2 ∈ A(I)} are dense in H
I
ω.
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If B and B′ in A(I) satisfy

ω(B1BB2) = ω(B1B
′B2)(3.17)

for all B1 and B2 in A(I), then (3.15) implies

πIω(B) = πIω(B
′).(3.18)

Hence B = B′ due to the simplicity of A(I). This proves the uniqueness.
Since ‖Ψ1‖

2 = ω(B1B
∗
1) and ‖Ψ2‖

2 = ω(B∗2B2), we obtain

‖πIω(B)‖ = sup{|ω(B1BB2)|/(ω(B1B
∗
1)ω(B

∗
2B2))

1/2}(3.19)

where the sup is taken over all B1 and B2 in A(I) satisfying ω(B1B
∗
1) 6= 0 and

ω(B∗2B2) 6= 0. The same formula as (3.15) and (3.16) for I = L imply

|ω(B1AB2)/(ω(B1B
∗
1)ω(B

∗
2B2))

1/2| ≤ ‖πLω (A)‖.(3.20)

Since A(I) and A are simple, we have

‖πIω(B)‖ = ‖B‖, ‖πLω (A)‖ = ‖A‖.

Hence the above two relations imply (for B = Eω
I (A))

‖Eω
I (A)‖ ≤ ‖A‖.(3.21)

The following Lemma obviously holds.

Lemma 3.4. If Eω
I (A1) and E

ω
I (A2) satisfying (3.6) exist, then E

ω
I (c1A1 + c2A2)

satisfying (3.6) exists and is given by

Eω
I (c1A1 + c2A2) = c1E

ω
I (A1) + c2E

ω
I (A2).(3.22)

Proof of Theorem 3.1
(1)
First we consider

A = BC, B ∈ A(I), C ∈ A(Ic)(3.23)

where Ic denotes the complement of I in L. We claim that

Eω
I (A) = ω(C)B(3.24)

satisfies (3.6). It is enough to check (3.6) for B1 ∈ A(I)σ1
and B2 ∈ A(I)σ2

for all
choices of σ1 = ± and σ2 = ±. By the decompositon (2.4), we have C = C+ + C−
with Cσ ∈ A(I

c)σ (σ = ±) and it is enough to check (3.6) for Cσ, σ = ± instead of
C.
We have

ω(B1AB2) = ω(B1BCσB2) = ε(σ, σ2)ω(B1BB2Cσ)

= ε(σ, σ2)ω(B1BB2)ω(Cσ)

= ε(σ, σ2)ω(B1E
ω
I (A)B2).

If σ = −, then ω(Cσ) = 0 because ω is even. Hence, (3.6) holds. If σ = +, then
ε(σ, σ2) = 1 irrespective of σ2 and (3.6) holds. So (3.24) satisfies (3.6).
By the graded commutation relations between elements of A(I) and A(I c), any

polynomial of a finite number of elements in A(I) and A(Ic) can be written as a
linear combination of the product (3.23). By Lemma 3.4, EI

ω(A) satisfying (3.6)
exists for any element A in the algebraic span of A(I) and A(Ic).
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If An is a Cauchy sequence tending to A, and E
ω
I (An) exists for all n, then

Eω
I (An) is a Cauchy sequence by Lemma 3.4 and Lemma 3.3. Hence the limit

Eω
I (A) = lim

n
Eω

I (An) ∈ A(I)(3.25)

exists in A(I) and satisfies (3.6). This proves the existence of Eω
I for all A ∈ A.

The uniqueness of Eω
I (A) is already given by Lemma 3.3.

(2)
(2-1) The linearity is given by Lemma 3.4. By

ω(B1E
ω
I (A)

∗B2) = ω(B∗2E
ω
I (A)B

∗
1) = ω(B∗2AB

∗
1) = ω(B1A

∗B2)

= ω(B1E
ω
I (A

∗)B2),

we obtain Eω
I (A)

∗ = Eω
I (A

∗). By (3.15) and (3.16) with B1 = B∗2 , we have

(Ψ2, π
I
ω(E

ω
I (A

∗A))Ψ2) = ω(B∗2E
ω
I (A

∗A)B2) = ω(B∗2A
∗AB2)

≥ 0.

This implies πω(E
ω
I (A

∗A)) ≥ 0 and hence Eω
I (A

∗A) ≥ 0 by the faithfulness of πω
(due to the simplicity of A(I)). Finally Eω

I (1) = 1 ∈ A(I) satisfies (3.6) and hence
Eω

I is unital.
(2-2) If B1, B2, B

′
1, B

′′
2 ∈ A(I), then

ω(B′1B1E
ω
I (A)B2B

′
2) = ω(B′1B1AB2B

′
2)

= ω(B′1E
ω
I (B1AB2)B

′
2).

The uniqueness and B1E
ω
I (A)B2 ∈ A(I) implies (2-2).

(2-3) Since Eω
I is unital, (2-2) implies E

ω
I (B) = B if B ∈ A(I). Hence

Eω
I (E

ω
I (A)) = Eω

I (A),

namely Eω
I is a projection. Lemma 3.3 and E

ω
I (1) = 1 imply ‖E

ω
I ‖ = 1.

(2-4) Since ω is even, we have

ω(B1E
ω
I (Θ(A))B2) = ω(B1Θ(A)B2)

= ω(Θ(B1Θ(A)B2)) = ω(Θ(B1)AΘ(B2))

= ω(Θ(B1)E
ω
I (A)Θ(B2)) = ω(Θ(Θ(B1)E

ω
I (A)Θ(B2)))

= ω(B1Θ(E
ω
I (A))B2).

By uniqueness, we have

Eω
I (Θ(A)) = Θ(E

ω
I (A)).(3.26)

(2-5) Due to τk(A(I)) = A(I + k), we have for B1, B2 ∈ A(I + k)

ω(B1E
ω
I+k(τk(A))B2) = ω(B1τk(A)B2) = ω(τ−k(B1τk(A)B2))

= ω(τ−k(B1)Aτ−k(B2)) = ω(τ−k(B1)E
ω
I (A)τ−k(B2))

= ω(τk(τ−k(B1)E
ω
I (A)τ−k(B2)))

= ω(B1τk(E
ω
I (A))B2)

where τ−k(B1), τ−k(B2) ∈ A(I). Hence E
ω
I+k(τk(A)) = τk(E

ω
I (A)).

(3)
If A ∈ A(K) in the proof of (1), it is enough to take B ∈ A(I ∩ K) and

C ∈ A(Ic ∩K) due to A(K) = A((I ∩K) ∪ (Ic ∩K)). Hence we have

Eω
I (A) ∈ A(I ∩K)(3.27)
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if A ∈ A(K). On the other hand, for B1, B2 ∈ A(I ∩ J),

ω(B1E
ω
I∩J (A)B2) = ω(B1AB2) = ω(B1E

ω
J (A)B2)(3.28)

= ω(B1E
ω
I (E

ω
J (A))B2)(3.29)

where the second equality is due to B1, B2 ∈ A(J) and the third due to B1, B2 ∈
A(I). Hence Eω

I∩J = Eω
I E

ω
J by uniqueness. By interchanging the role of I and J,

we also obtain Eω
I∩J = Eω

JE
ω
I .

¤

4. ω-standard potential

We use notation in [2]. We start with the real vector space ∆(A0) of all ∗-
derivations δ with domein A0 and commuting with Θ.
If a dynamics αt of A (i.e. a continuous one-parameter group of automorphisms)

satisfies
Assumption I : Θαt = αtΘ,
Assumption II : The domain of the generator δα of αt contains A0,

then the restriction of δα to A0 is in ∆(A0).
We consider the real vector spaceHω of functions Hω of finite subsets I of L with

values Hω(I) in A satisfying the following properties. (The vector space structure
is taken to be that of a function space with values in a vector space.)
(H-1)ω Hω(I)∗ = Hω(I) ∈ A,
(H-2)ω Θ(H

ω(I)) = Hω(I) (i.e. Hω(I) ∈ A+),
(H-4)ω Eω

Ic(H
ω(I)) = 0,

(H-5)ω Hω(I) = Hω(J)− Eω
Ic(H

ω(J)) for I ⊂ J ⊂⊂ L.

Theorem 4.1. The following relation between Hω ∈ Hω and δ ∈ ∆(A0) gives a
bijective, real linear map from Hω to ∆(A0).
(H-3)ω δA = i[Hω(I), A] (A ∈ A(I)).

The proof is the same as that of Theorem 5.7 in [2]. The operator Hω(I) will
be called the ω-standard local Hamiltonian for the region I (for a given δ).
The internal energy is defined by

Uω(I) = Eω
I (H

ω(I)) (A ∈ A(I)).(4.1)

The local Hamiltonians Hω(I) are recovered from the family { Uω(I)} as follows.

Hω(I) = lim
J↗L

{Uω(J)− Eω
Ic(U

ω(J))}.(4.2)

Definition 4.1. A function Φω of a finite subset of L with values in A is called an
ω-standard potential if it satisfies the following conditions.
(Φ-a) Φω(I) ∈ A(I), Φω(∅) = 0.
(Φ-b) Φω(I)∗ = Φω(I).
(Φ-c) Θ(Φω(I)) = Φω(I).
(Φ-d) Eω

J (Φ
ω(I)) = 0 if J ⊂ I and J 6= I.

(Φ-e) For each I ⊂⊂ L. the net

Hω
J (I) =

∑

K

{Φω(K);K ∩ I 6= ∅,K ⊂ J}(4.3)

is a Cauchy net in the norm topology of A for J → L. (The index set of the net is
the family of all finite subsets J of L partially ordered by the set inclusion.)
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The vector space of all ω-standard potentials is denoted by Pω.

Remark 4.1. The condition (Φ-d) is equivalent to the following condition due to
(Φ-a).

(Φ-d)′ Eω
J (Φ

ω(I)) =

{

Φω(I), if I ⊂ J,

0, otherwise.

(See Remark to Definition 5.10 in [2].)

Theorem 4.2. (1) The following equation gives a bijective, real linear map from
Φω ∈ Pω to Hω ∈ Hω.

Hω(I) = lim
J↗L

∑

K

{Φω(K);K ∩ I 6= ∅,K ⊂ J}.(4.4)

(2) The relations (H-3)ω and (4.4) give a bijective, real linear map from Φω ∈ Pω

to δ ∈ ∆(A0).

Remark 4.2. The following relations hold.

Uω(I) =
∑

K⊂I Φ
ω(K),(4.5)

Φω(I) =
∑

K⊂I(−1)
|I|−|K|Uω(K).(4.6)

The proof of these Theorem and Remark are the same as those of Theorems 5.12
and 5.13 in [2].

5. Gibbs and LTS conditions

We call a function Φ of a finite subset I of L with values Φ(I) in A a general
potential if the conditions (Φ-a), (Φ-b), (Φ-c) and (Φ-e) of Definition 4.1 are satisfied
(where Φω there is replaced by Φ). Then the relations

HΦ(I) = limJ↗L

∑

{Φ(K);K ∩ I 6= ∅,K ⊂ J},(5.1)

δΦ(A) = i[HΦ(I), A], (A ∈ A(I))(5.2)

defines δΦ ∈ ∆(A0) consistently. Consistency means

[HΦ(I), A] = [HΦ(J), A](5.3)

if A ∈ A(I) ∩ A(J) (= A(I ∩ J)).
If δΦ1

= δΦ2
, then Φ1 and Φ2 are said to be equivalent. For a given δ ∈ ∆(A0),

the corresponding ω-standard potential Φω satisfies δΦω = δ and hence Φω for
different ω’s and for a fixed δ are equivalent potentials.
We shall now check that each of Gibbs and LTS conditions, which are possi-

ble characterization of equiblibrium states, are mutually equivalent for equivalent
potentials.

Definition 5.1. A state ϕ of A satisfies (Φ, β)-Gibbs condition for a general po-
tential Φ and β ∈ R if the following two conditions hold.
(1) It is modular (i.e. its extention to the weak closure πϕ(A)

′′ of the (GNS)
cyclic representation πϕ of A is separating).
(2) The (GNS) representing operators πϕ(A(I)) is in the centralizer of the per-

turbed functional ϕh for the perturbation h = βHΦ(I), i.e. they are elementwise
invariant under the modular automorphism group of ϕh. Equivalently,

ϕh(AB) = ϕh(BA)(5.4)

for any A ∈ A(I) and any B ∈ A.
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(See Definition 7.1 with conditions (D-1) and (D-2)’ in [2])
If Φ1 and Φ2 are equivalent general potentials, we have

[HΦ1
(I), A] = [HΦ2

(I), A](5.5)

for all A ∈ A(I) and hence

∆H = βHΦ1
(I)− βHΦ2

(I) ∈ A(I)′.(5.6)

For ϕi = ϕHi where Hi = βHΦi(I), we have

ϕ2 = (ϕ1)
−∆H , ϕ1 = (ϕ2)

∆H .(5.7)

Hence, for modular automorphisms σϕi
t , we have

d

dt
σϕ1

t (πϕ(A)) =
d

dt
σϕ2

t (πϕ(A)) + iπϕ([∆H,A])(5.8)

=
d

dt
σϕ2

t (πϕ(A))(5.9)

for A ∈ A(I). Therefore the vanishing of d
dtσ

ϕi
t (πϕ(A)), which is necesary and

sufficient for the validity of the condition (2) of the Gibbs condition for ϕi, is
equivalent for i = 1 and i = 2. This proves that a state satisfies the (Φ1, β)-Gibbs
condition if and only if it satisfies the (Φ2, β)-Gibbs condition.

Definition 5.2. (1)A state ϕ satisfies the (Φ, β)-LTSM condition if

S̃M
I (ϕ)− βϕ(HΦ(I)) ≥ S̃M

I (ψ)− βψ(HΦ(I))(5.10)

for each finite subset I and for all states ψ with the same restriction to A(I)′ as the
state ϕ
(2) A state ϕ satisfies the (Φ, β)-LTSP condition if the above condition (5.10)

with M replaced by P holds for all states ψ which have the same restriction to A(I c)
as ϕ.

Here S̃M
I and S̃P

I are conditional entropy, independent of the potential. (See [3];
M and P refer to mathematical and physical.)
The equivalence of LTS conditions for equivalent general potentials is already

obtained in Corollary 5 of [3] with its proof in Section 4 of [3].
Thus we have the following.

Theorem 5.1. Let Φ1 and Φ2 be equivalent general potentials.
(1) The (Φi, β)-Gibbs conditions for i = 1 and i = 2 are equivalent.
(2) Each of (Φi, β)-LTSM conditions and (Φi, β)-LTSP conditions for i = 1 and

i = 2 are equivalent.

6. Translation Invariance

A dynamics αt is said to be translation invariant if the following holds.

Asumption IV : τkαt = αtτk for any t ∈ R and k ∈ L.

This Assumption implies Assumption I in Section 4. (See Proposition 8.1 of [2].)
A ∗-derivation δ ∈ ∆(A0) is said to be translation invariant if τkδ = δτk for all

k ∈ L. The real vector subspace of ∆(A0) consisting of all translation invariant
δ ∈ ∆(A0) will be denoted by ∆τ (A0).
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A potential Φ ∈ Pω is said to be translation covariant if

(Φ-f) τk(Φ(I)) = Φ(I + k) for all I ⊂⊂ L and k ∈ L.

The real linear subspace of Pω consisting of all translation covariant Φ ∈ Pω is
denoted by Pω

τ .

Theorem 6.1. The bijection of Theorem 4.2(2) maps ∆τ (A0) onto P
ω
τ .

The proof is by a straightforward computation. (See Corollary 8.5 of [2].)
A potential Φ is said to be of finite range if there is a positive d ∈ R such that

Φ(I) = 0 whenever the maximum distance of two points in I exceeds d.

Theorem 6.2. With respect to

‖Φ‖ := ‖Φ({n})‖, Φ ∈ Pω
τ ,(6.1)

which is independent of a point n ∈ L and is a norm, Pω
τ is a separable Banach

space, in which the subspace of all finite range potentials is dense.

The proof is the same as those of Proposition 8.8, Proposition 8.12 and Corollary
8.13.
The following energy estimates can be shown by the same proof as those of

Lemmas 8.6 and 9.1 of [2], where

Wω(I) = Hω(I)− Uω(I)(6.2)

= lim
J→∞

∑

{Φω(K);K ∩ I 6= ∅,K ∩ Ic 6= ∅,K ⊂ J}.(6.3)

Theorem 6.3.

‖Uω(I)‖ ≤ ‖Hω(I)‖ ≤ |I|‖Φω‖,(6.4)

v.H. limI→∞
1
|I|‖W

ω(I)‖ = 0.(6.5)

Here, v.H. limI→∞ denotes the van Hove limit. (See Appendix of [2].)

7. Variational Principle

Theorem 7.1. For a translation invariant state ϕ of A and Φω ∈ Pω
τ , the following

limits exist.

p(Φω) = v.H. lim
I→∞

|I|−1 log τ(eH
ω(I)) = v.H. lim

I→∞
|I|−1 log τ(eU

ω(I))(7.1)

eΦω (ϕ) = v.H. lim
I→∞

ϕ(Hω(I))/|I| = v.H. lim
I→∞

ϕ(Uω(I))/|I|(7.2)

ŝ(ϕ) = v.H. lim
I→∞

ŜI(ϕ)/|I|(7.3)

where ŜI(ϕ) = −τ(ρ̂ϕI log ρ̂ϕI) for the adjusted density matrix ρ̂ϕI of the restriction
of ϕ to A(I), characterized by ρ̂ϕI ∈ A(I) and ϕ(A) = τ(ρ̂ϕIA) for all A ∈ A(I).

The proof is the same as those of Theorems 9.3, 9.5 and 10.3 in [2].
A translation invariant state ϕ satisfies the (Φ, β)- variational principle if

p(βΦ) = s̃(ϕ)− βeΦ(ϕ).(7.4)

By Proposition 14.1 of [2], ϕ is a solution of (7.4) for a general potential Φ if
and only if it is a solution of (7.4) for the τ -standard potential Φτ equivalent to Φ,
under the condition (14.2) and (14.3) of [2] for Φ. For ω-standard potential Φω,
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the condition (14.2) of [2] is fullfiled due to (6.5) and the limit (14.3) of [2], being
eΦω (τ), converges. Therefore the solutions of (Φ

ω, β)-variational principle coincide
with those of (Φτ , β)-variational principle and hence the solution set is independent
of ω. Thus we have established the following result.

Theorem 7.2. For any pair of even product states ω and ω’, and for the ω- and ω’-
standard potentials Φω and Φω′ corresponding to the same δ ∈ ∆(A0), a translation
invariant state ϕ is a solution of the (Φω, β)-variational principle if and only if it

is a solution of the (Φω′ , β)-variational principle.

8. Examples of equivalent ω-standard potentials for different ω

A potential Φ(I) belongs to A(J) if J ⊃ I. Hence a part of Φ(I) may be
taken out and included in the potential Φ(J) without changing the dynamics (more
specifically, without changing the corresponding derivation). This is the origin of
the existence of equivalent potentials. In this section, we illustrate this by taking
two different even product states ω and comparing the potentials Φω for the same
derivation δ.
The following two Propositions provide examples of even product states.

Proposition 8.1. The tracial state τ of A is an even product state.

Proof. The tracial state of A is unique and hence invariant under any automor-
phism. In particular it is even and τ(A) = 0 for any odd A.
Let i 6= j and Aσ ∈ (Ai)σ, Bσ′ ∈ (Aj)σ′ (σ, σ′ = ±). It is enough to show

τ(AσBσ′) = τ(Aσ)τ(Bσ′)(8.1)

for all pair i, j and all combinations of σ = ± and σ′ = ±.
Consider the case σ′ = − first. Then the right hand side of (8.1) vanishes. If

σ = +, then the left hand side also vanishes because A+B− is odd. If σ = −, then

τ(A−B−) = τ(B−A−) = −τ(A−B−) = 0(8.2)

due to the tracial property of τ and the anti-commutativity of A− and B−. There-
fore, (8.1) holds when σ′ = −.
Consider the case σ′ = +. For any A1, A2 ∈ Ai,

τ(A1A2B+) = τ(A2B+A1) = τ(A2A1B+)(8.3)

due to the tracial property of τ and the commutativity of A1 and B+. Hence

τ([A1, A2]B+) = 0.(8.4)

Since Ai is isomorphic to a full matrix algebra, its element A is a sum of τ(A)1 and
commutators of elements of Ai. Hence (8.1) holds for the present case too.

Proposition 8.2. For Fermion algebras (the case where each Ai is generated by
a finite number of Fermion creation and annihilation operators a∗iα and aiα), the
vacuum state ω0 (uniquely characterized by

ω0(a
∗
iαaiα) = 0(8.5)

for all i and α) is an even product state.
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Proof. Let the restriction of ω0 to Ai be ω0i. Since (8.5) is invariant under the
transposed action ω → ωΘ of Θ on states ω, ω0 as well as all ω0i are even. Then
∏

i ω0i is a state of A satisfying (8.5) and hence coincides with ω0. Therefore, ω0
is a product state.

Example of Equivalent Potentials: Consider the algebra A generated by
Fermion creation and annihilation operators a∗i and ai, i ∈ L, which is studied
in [2]. We give below the ω-standard (one-body and two body) potentials for the
same dynamics and two different even product states: ω = τ (the tracial state) and
ω = ω0 (the Fermion vacuum state). They give examples of equivalent potentials
caused by different choices of ω.
(1) One-body ω-standard potentials.
For ω = τ :

Φτ ({i}) = c(a∗i ai − aia
∗
i ), (c 6= 0).(8.6)

For ω = ω0:

Φω0({i}) = 2ca∗i ai, (c 6= 0).(8.7)

They are related by

Φτ ({i})− Φω0({i}) = −2c1 ∈ A(∅) = C1.(8.8)

Since a multiple of the identity operator does not give any contribution to its
commutator and hence to the corresponding derivation, the above τ -standard and
ω0-standard one-body potentials are equivalent.
(2) Two-body ω-standard potentials.
For ω = τ : Let i 6= j.

Φτ ({i, j}) = c1(aiaj − a
∗
i a
∗
j ) + c2(aia

∗
j − a

∗
i aj)(8.9)

+c3(aia
∗
i − a

∗
i ai)(aja

∗
j − a

∗
jaj).(8.10)

For ω = ω0: Let i 6= j.

Φω0({i, j}) = c1(aiaj − a
∗
i a
∗
j ) + c2(aia

∗
j − a

∗
i aj) + 4c3a

∗
i aia

∗
jaj .(8.11)

They are related by

Φτ ({i, j})− Φω0({i, j}) = −2c3a
∗
jaj − 2c3a

∗
i ai + c31(8.12)

= −c3(a
∗
jaj − aja

∗
j )− c3(a

∗
i ai − aia

∗
i )− c31.(8.13)

Namely the difference is expressed as a sum of ω0-standard one-body potentials
at lattice sites i and j, and also as a sum of τ -standard one-body potentials at lattice
sites i and j, both modulo multiples of the identity operator. Therefore, the above
τ -standard two-body potential is equivalent to the above ω0-standard two-body
potential combined with ω0-standard one-body potentials at lattice sites i and j,
and conversely the ω0-standard two-body potential is equivalent to the τ -standard
two-body potential combined with (−1) times τ -standard one-body potentials at
lattice sites i and j. In the case of translation covariant potentials, we will have
(covariantly related) τ -standard two-body potentials at all shifted pairs {i+n, j+n}
of lattice sites, n ∈ L. They are then equivalent to (covariantly related) ω0-standard
two-body potentials at all shifted pairs {i+n, j+n} of lattice sites, n ∈ L combined
with twice ω0-standard one-body potentials at all lattice sites (twice because any
site will appear as i + n once and as j + n another time). Similarly, (covariantly
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related) ω0-standard two-body potentials at all shifted pairs {i+n, j+n} of lattice
sites are equivalent to (covariantly related) τ -standard two-body potentials at all
shifted pairs {i + n, j + n} of lattice sites combined with (−2) times τ -standard
one-body potentials at all lattice sites.

9. Non-even Product State and Conditional Expectations

We give a necessary and sufficient condition for the extistence of ω-conditional
expectation when one of the factor state of ω is not even.
A state ωI of A(I) will be called an eigenstate of u ∈ A(I) belonging to an

eigenvalue λ if

ωI(Au) = λωI(A)(9.1)

for all A ∈ A(I). We use the notation (I2)− defined in Section 2.

Theorem 9.1. Let I1 and I2 be mutually disjoint non-empty subset of L and I =
I1 ∪ I2. Let ωi be a state of A(Ii)(i = 1, 2) and a state ω of A(I) be a product state
of ω1 and ω2. Assume that ω1 is not even.
(1) There exists the unique ω-conditional expectation Eω

I1
from A(I) onto A(I1)

in the sense of Theorem 3.1.
(2) No ω-conditional expectation Eω

I2
from A(I) onto A(I2) in the sense of The-

orem 3.1 exists if (I2)− is infinite.
(3) Assume that (I2)− is finite. Let u2 ∈ A(I2) be a selfadjoint unitary im-

plementing Θ restricted to A(I2) (which exists). An ω-conditional expectation Eω
I2

from A(I) onto A(I2) in the sense of Theorem 3.1 exists if and only if ω2 is an
eigenstate of u2. It is unique if it exists.

Proof. By theorem 1 of [1], ω2 must be even (in order that a product state of a
non-even ω1 and ω2 exists).
(1) The proof of Theorem 3.1 goes through without any change.
(2) Let A be an odd element of A(I1) such that ω1(A) 6= 0. (Such an A exists

because ω1 is assumed to be not even.) Assuming that the ω-conditional expectation
Eω

I2
from A(I) onto A(I2) exists, we show a contradiction. Set x = Eω

I2
(A). It has

the following properties.
(α) x 6= 0 because

ω(x) = ω(A) = ω1(A) 6= 0.(9.2)

(The first equality is due to (3.6) with B1 = B2 = 1.)
(β) x ∈ A(I2) by the defining property of E

ω
I2
.

(γ) By the property (2-2) of Eω
I2
in Theorem 3.1, we have the following relation

for any B ∈ A(I2).

xB = Eω
I2(A)B = Eω

I2(AB) = Eω
I2(Θ(B)A)

= Θ(B)Eω
I2(A) = Θ(B)x,

where the third equality is by the graded commutation relations. By Lemma 2.6,
x = 0. This contradicts with (α).
(3) For sufficiency proof, assume that ω is an eigenstate of a selfadjoint unitary

u2 ∈ A(I2) which implements Θ on A(I2). (Due to Lemma 2.3, the existence of
such a u2 follows from the assumption that (I2)− is finite.) Then the eigenvalue is
either 1 or -1 due to (u2)

2 = 1. By choosing u2 from ±u2, we may assume that the
eigenvalue is 1.
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For Aσ = BCσ with B ∈ A(I2), Cσ ∈ A(I1)σ, we set

Eω
I2(A+) = ω1(C+)B, Eω

I2(A−) = ω1(C−)Bu2,(9.3)

and show that they satisfy (3.6) by the following computations, thereby showing
that their linear combination gives an ω-conditional expectation from A(I) onto
A(I2) due to Theorem 3.1.

ω(B1A+B2) = ω(B1BB2C+) = ω2(B1BB2)ω1(C+)

= ω2(B1(ω1(C+)B)B2),

ω(B1A−B2) = ω(B1BC−B2) = ω(B1BΘ(B2)C−)

= ω2(B1Bu2B2u2)ω1(C−) = ω2(B1(ω1(C−)Bu2)B2)

where the last equality is due to the assumption that ω2 is an eigenstate of u2
belonging to an eigenvalue 1.
For necessity proof, assume that Eω

I2
exists. Let C− ∈ A(I1)− be such that

ω1(C−) 6= 0 and set x = Eω
I2
(C−). It satisfies the properties (α), (β), and (γ)

(except for the conclusion x = 0 of (γ)) in the proof of (2). In particular, (γ)
implies that u2x ∈ A(I2) commutes with all B ∈ A(I2) and hence belongs to the
center of A(I2), which is trivial by Lemma 2.1. Hence u2x = c1 and x = cu2 for
some scalar c. By the same computation as in the sufficiency proof, we obtain the
following relation for any B1, B2 ∈ A(I2).

ω2(B1xB2) = ω(B1C−B2) = ω(B1Θ(B2)C−)(9.4)

= ω2(B1u2B2u2)ω1(C−)(9.5)

= ω2(B1ω1(C−)u2B2u2).(9.6)

Since x = cu2, we have

ω1(C−) = ω(C−) = ω2(x) = cω2(u2).(9.7)

By ω1(C−) 6= 0, c 6= 0. Hence the equation (9.4) = (9.5) with B2 = 1 and the
equation (9.7) give

ω2(B1u2) = ω2(B1)ω2(u2)(9.8)

for all B1 ∈ A(I2). Hence ω2 is an eigenstate of u2.
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