
Plane quartics and Fano threefolds of genus twelve∗

Shigeru MUKAI †

288 triangles are strictly biscribed by a plane quartic curve C ⊂ P2 = P2(C). Two

computations of this number will be presented. This number 288 = 36× 8 is related with

an even theta characteristic of C and with a Fano threefold V22 of genus twelve. In fact

there is a natural birational correspondence between the moduli of V22’s and that of plane

quartics. This correspondence led the author to a description of those Fano threefolds as

V SP (6,Γ), the variety of sums of powers of another plane quartic Γ : F4(x, y, z) = 0 ([6]).

1 Biscribed triangles

A triangle is biscribed by a curve C if it is both circumscribed and inscribed, that is, each

vertex lies on C and each side is a tangent. It is interesting to count the number of such

triangles for a given plane curve C ⊂ P2. The following is an easy exercise and we leave

the proof to the readers.

Proposition The number of biscribed triangles of a smooth cubic is 24.
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Figure 1 (Triangle biscribed by a cubic)
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A secant line ab, a 6= b ∈ C, of a smooth plane curve C is a strict tangent of C if either

i) ab tangents to C at a point different from a, b, or

ii) ab is a triple tangent at a or b.

b = r
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Figure 2

This is equivalent to the condition that the divisor class h − a − b − 2r is effective for a

point r ∈ C, where h is the linear equivalence class of the intersection of C with a line.

A triangle is strictly biscribed if all sides are strict tangents. A plane cubic has no such

triangles.

Problem Count the number of strictly biscribed triangles of a plane curve.

We consider the case where C is a smooth plane quartic. A triangle 4 = 4abc is

strictly biscribed by C if and only if three distinct points a, b, c ∈ C satisfy the linear

equivalence

h− b− c ∼ 2p, h− c− a ∼ 2q and h− a− b ∼ 2r (1)

for some points p, q, r ∈ C.
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Figure 3 (Triangle strictly biscribed by a quartic)

The image of the morphism Φ|2h−a−b−c| : C −→ P2, the restriction of the quadratic

Cremona transformation with center 4, is a quintic curve with three cusps. Namba[10]

makes use of this for the classification of singular plane quintics.
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2 First computation

The following is the author’s computation in 1982 (cf. Remark 2.3.6 at p. 159 in [10]).

We put

D = {(a, b) |h− a− b ∼ 2r ∃r ∈ C} ⊂ C × C,

which is a divisor. Since (D. C × pt.) = (C. pt. × C) = 10 and (D.∆) = 2 × 28, D is

numerically equivalent to 16(C×pt.+pt.×C)−6∆. Here 10 is the number of the tangent

lines of C passing through a general point a ∈ C, excluding the tangent line itself at a, 28

is the number of bitangents of C and ∆ ⊂ C ×C is the diagonal. Let Dij, 1 ≤ i < j ≤ 3,

be the pull-backs of D by three projections C × C × C −→ C × C. The intersection

D12 ∩D13 ∩D23 consists of three parts:

{a, b, c are distinct} ∪ {two of a, b, c are the same} ∪ {a = b = c}.

p = q = r

a = b = c

r

c

a = b

p = q

Figure 4 (2nd and 3rd parts)

(a, b, c) belongs to the first part if and only if the secant lines ab, bc and ac are strict

tangents of C. Hence the number of the strictly biscribed triangles of C is equal to

{(D12.D13.D23)−# of 2nd part−# of 3rd part}/3!

= (3296− 28× 2× 9× 3− 28× 2)/6 = 288 (2)

counted with multiplicities.

By adjunction the divisor class h is the canonical class KC of a plane quartic C. Hence

if a line tangents to C at two points a and r, then the divisor a+r is a theta characteristic.

This is an odd theta characteristic since C is not hyperelliptic. Generally a divisor class

η with 2η ∼ KC is called a theta characteristic of a curve C. Their cardinality is equal

to 4g, where g is the genus of C. A theta characteristic η is called even or odd according

as the parity of h0(η), the dimension of the vector space {f ∈ C(C) | (f) + η ≥ 0}. The

following is well-known:
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Proposition The number of even (resp. odd) theta characteristics is 2g−1(2g+1) (resp.

2g−1(2g − 1)).

Since a plane quartic curve C is of genus 3, these numbers are equal to 36 and 28,

respectively.

3 Second computation

Let 4 = 4abc be a triangle strictly biscribed by a quartic C and p, q, r as in Figure 3.

We give another computation using the tangent points p, q, r of 4 instead of vertices and

using even theta characteristics. For 4, we denote the divisor class

a+ b+ c+ p+ q + r − h ∈ Pic2 C

of degree 2 by η(4). Then η(4) is a theta characteristic and we have

η(4) ∼ a− p+ q + r ∼ b+ p− q + r ∼ c+ p+ q − r (3)

by (1). It is easy to see that η(4) is ineffective, that is, h0(η(4)) = 0. In particular,

η(4) is an even theta characteristic.

Proposition For an even theta characteristic η of a plane quartic C, the number of

strictly biscribed triangles 4 with η(4) ' η is equal to 8 (counted with multiplicities).

Proof. For a pair of points p, q ∈ C, we denote p
η

∩ q if h0(η − p + q) 6= 0. By the

Riemann-Roch theorem, p
η

∩ q implies q
η

∩ p. Hence
η

∩ defines a symmetric divisor in

C × C, which we denote by

E(η) = {(p, q) | p
η

∩ q} (4)

and call the incidence relation induced by η. This divisor is linearly equivalent to p∗1η +

p∗2η + ∆. Three tangent lines at p, q, r form a strictly biscribed triangle if and only if

(p, q, r) ∈ C×C×C belongs to the intersection E12∩E13∩E23, where Eij, 1 ≤ i < j ≤ 3,

are the pull-backs of E(η). Hence the number is equal to

(E12.E13.E23)/3! = (p∗1η + p∗2η +∆12.p
∗
1η + p∗3η +∆13.p

∗
2η + p∗3η +∆23)/6

= (−4 + 3× 4 + 3× 8 + 16)/6 = 8. 2

Since the number of even theta characteristics is equal to 36, the number of strictly

biscribed triangle is equal to 36× 8 = 288, which agrees with (2).
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4 Fano threefolds (of genus twelve)

A compact complex manifold X is called Fano if the anticanonical class −KX ∈ PicX

is ample, or equivalently, the first Chern class c1(X) ∈ H2(X,Z) is positive. The most

typical example is the projective space Pn. Its anticanonical class is n + 1 times the

hyperplane class. The projective line P1 is the unique Fano manifold in dimension one.

In dimension two, a Fano manifold is called also a del Pezzo surface. There are 10

deformation types of them and the projective plane P2 is characterized among them by

the property that B2 = 1, where B2 is the second Betti number. For Fano manifolds

the Picard group is torsion free and the Chern class map PicX −→ H2(X,Z) is an

isomorphism. In particular, B2 is equal to the Picard number.

In dimension three, there are 105 deformation types of Fano threefolds ([3], [5]). The

property B2 = 1 does not characterize the projective space any more. In fact there are

17 deformation types of Fano threefolds with B2 = 1 and some are even irrational. Some

of the readers may ask how the additional topological property B3 = 0 is. The third

Betti number B3 is very important invariant and equal to zero for the projective space

P3. But even this additional property does not characterize P3. There are four types of

Fano threefolds with B2 = 1 and B3 = 0:

P3, Q3 ⊂ P4, V5 ⊂ P6 and V22 ⊂ P13. (5)

All are rational and the first three are easy to describe: Q3 ⊂ P4 is a hyperquadric and

V5 ⊂ P6 is a quintic del Pezzo threefold. A quick description of V5 is the intersection

of the 6-dimensional Grassmannian G(2, 5) ⊂ P9 with a transversal linear subspace of

codimension three ([2]). The final one is not very easy to describe. It was very mysterious

at least for me in early 80’s. I carried out the computation of §2 in order to understand

this V22.

Let h be an ample generator of PicX ' Z for a Fano threefold X with B2 = 1. The

positive integer r defined by −KX = rh is called the (Fano) index of X. This measures a

certain complexity of a Fano manifold: when r (or more precisely the nonpositive integer

r− n− 1) becomes smaller and smaller a Fano manifold becomes more and more compli-

cated. The indices of four Fano threefolds in (5) are equal to 4, 3, 2 and 1, respectively.

What is new and makes a classification of Fano manifolds hard in dimension three and

higher is the appearance of those with B2 = r = 1. Such Fano manifolds are called prime.

Their Picard groups are generated by −KX . In dimension three, Iskovskih[3] classified

prime Fano threefolds into 10 deformation types, which are distinguished by the degree:

(−KX)
3 = 2, 4, 6, 8, 10, 12, 14, 16, 18 or 22. (6)

The V22 is the prime Fano threefolds with the largest degree. It is embedded into P13 by

the anticanonical linear system |h| = |−KX |. The degree (−KX)
3 is always even and the
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integer g := 1
2
(−KX)

3 + 1 ≥ 2, called the genus, is more convenient for a Fano threefold.

For example, the above (6) is equivalent to g = 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12.

A Fano threefold was initiated by G. Fano in connection with the Lüroth problem: is

a unirational variety rational? But it is interesting in many other ways including moduli.

V22 is not interesting from the Lüroth view point since it is rational. But but it is the most

interesting Fano threefold from moduli view point since it has continuous moduli in spite

of its trivial period mapping, or trivial intermediate Jacobian. 1 For a Fano threefold X

the (virtual) number of moduli is given by the formula

µ := h1(TX)− h0(TX) = 19−B2 − g +
1

2
B3

by virtue of the vanishing of Akizuki and Nakano: H2(Ω2
X(−KX)) = H3(Ω2

X(−KX)) =

0. This number is equal to −15,−10,−3 and 6 for the Fano threefolds in (5). The

first three are (locally) rigid, that is, H1(TX) = 0 and −µ is the dimension of their

automorphism groups, PGL(4), PSO(5) and PGL(2). But surprisingly the final one V22

has a 6-dimensional family of deformations. Around 1982, the following was known on

this variety:

1. (Shokurov[12]) V22 ⊂ P13 contains a line l.

2. (Iskovskih[3]) The double projection

Φ|h−2l| : V22 · · · −→ P6

from a line l is birational onto a smooth quintic del Pezzo threefold V5.

3. (M.-Umemura[9]) There is a special V22, denoted by U22, which has an almost ho-

mogeneous action of PGL(2). U22 is the closure of a certain PGL(2)-orbit in P12.

These are very analogous to the following facts for V5:

1. V5 ⊂ P6 contains a line l.

2. The (single) projection Φ|h−l| : V5 · · · −→ P4 from a line l is birational onto a smooth

quadric Q3 and induces an isomorphism between the blow-up of V5 along l and that

of Q3 ⊂ P4 along a twisted cubic.

3. V5 is the closure of a certain PGL(2)-orbit in P6.

1The study of Brill-Noether loci of vector bundles on a curve in [8] has its origin in the analysis of the

fiber of the period map of a prime Fano threefold of genus 7 ≤ g ≤ 10.
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But there are two differences:

i) the birational map between V22 and V5 are more complicated than that between

V5 and Q. The double projection induces a strong rational map between the blow-up of

V22 along l and the blow-up of V5 along a quintic rational curve, where strong means an

isomorphism in codimension one. But the map is not an isomorphism.

ii) V5 is rigid but U22 has 6-dimensional deformations.

Using the results 1 ∼ 3 for V22, the author was able to prove the following:

Theorem (1982, unpublished) The moduli space of V22’s is birationally equivalent to that

of the pairs (C, η) of a plane quartic C and an even theta characteristic η of C.

The correspondence between V22 and (C, η) and the outline of the proof are as follows:

1. The Hilbert scheme L(V22) of lines on V22 ⊂ P13 is a plane quartic. L(V22) is smooth

for a general V22.

2. The incidence relation

{(l, l′) | l ∩ l′ 6= ∅} ⊂ L(V22)× L(V22)

of lines is equal to the incidence relation E(η) induced from an even theta charac-

teristic η of L(V22) if V22 is general.

3. A general V22 is reconstructed from the pair (L(V22), η) using the description of the

inverse of the double projection Φ|h−2l|.

A strictly biscribed triangle of (L(V22), η) corresponds to a trilinear point of V22, that is,

a point where three lines pass through. By the computation of the previous section, we

have

Proposition The number of trilinear point of a general V22 is equal to 8.

Remark The normal bundle of a line l ⊂ V22 is isomorphic to either O ⊕ O(−1) or

O(1)⊕O(−2). L(V22) is smooth at the point [l] if and only if the former holds. In general

L(V22) is not smooth. For example, L(U22) is a double conic in P2

5 Covariant quartics

Not only a Fano threefold V22 but also a plane quartic itself produces a pair (C, η) of a

quartic C and an even theta η. The reference of this section is [4].
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Let

D : F3(x, y, z) =
∑

i+j+k=3

aijkx
iyjzk = 0

be a plane cubic. The ring of invariants of ternary cubics, that is, that of the natural action

of SL(3) on the polynomial ring C[a300, . . . , a003] of 10 coordinates of F3 is generated by

two homogeneous polynomials S and T , which are of degree 4 and 6, respectively. A cubic

D has a cusp or a worse singularity if and only if S = T = 0. D is of Fermat type, i.e.,

projectively equivalent to x3 + y3 + z3 = 0, if and only if S = 0 and T 6= 0.

Now let Γ : F4(x, y, z) = 0 ⊂ P2 be a plane quartic. For a point p ∈ P2 with

homogeneous coordinate (a : b : c), we consider the cubic

Γp : a
∂F4

∂x
+ b

∂F4

∂y
+ c

∂F4

∂z
= 0

defined by a linear combination of partials. Then Γp does not depend on the choice of a

system of homogeneous coordinates and is called the (first) polar of Γ at p. So a quartic

Γ produces a (linear) family {Γp} of plane cubics parameterized by P2.

Since the invariant S is quartic, so is the curve

C = {p ∈ P2 | S(Γp) = 0},

which is the locus of points p at which the polar Γp is Fermat in rough but usual expression.

This curve C is called the covariant quartic of Γ. The following is easy to prove but a

crucial observation:

Lemma Assume that Γp, p ∈ C, is Fermat, that is, Γp : l31 + l32 + l33 = 0 for linearly

independent three liner forms l1, l2 and l3. Then the three vertices of the triangle l1l2l3 = 0

also lie on the covariant quartic C.

This gives a self correspondence of C, that is, a curve E in C×C. If Γ is general, then

C is smooth and E is the incidence relation E(η) induced by an even theta characteristic η

of C. By Scorza[11], a general Γ is reconstructed from the pair (C, η). (See also Dolgachev-

Kanev[1].) Therefore, by the theorem in the previous section, there is a birational map

between the moduli space of V22’s and that of plane quartics. In 80’s the author sought

a direct construction of V22 from a plane quartic and reached to the following:

Theorem([6]§3) The variety of sums of powers V SP (6, F4), which is the closure of

{([l1], . . . , [l6]) | F4 ∈ 〈l
4
1, . . . , l

4
6〉C} ⊂ [(P2,∨)6 − diagonals]/S6

in the Hilbert scheme of six points in the dual projective plane P2,∨, is a prime Fano

threefold of genus twelve for a general ternary quartic form F4 = F4(x, y, z). Conversely,

every smooth Fano threefold V22 is isomorphic to V SP (6, F4) for a ternary quartic form

F4.
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The proof, which involves a development of vector bundle technique (cf. [7]), will

be given elsewhere. The eight strictly biscribed triangles of the covariant quartic C

correspond to the expression of F4(x, y, z) in the special form

ax4 + by4 + cz4 + d(y − z)4 + e(z − x)4 + f(x− αx)4

for constants a, b, . . . , f and α ∈ C in eight ways (up to projective equivalence).
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