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We introduce a generalization of permutative representa-
tions of the Cuntz algebras with chain. We show their exis-
tence, uniqueness, irreducibility, equivalence, decomposition
and states associated with them.

1. Introduction

In our previous papers([10, 11]), we introduce a class of representations of
the Cuntz algebra Oy which is a generalization of permutative representa-
tions with cycle by [5, 7, 8]. As application, we have results about quantum
field theory([1, 2, 3, 4]), fractal sets([14]) and dynamical systems([13, 15,
16, 17]). We continue to treat chain case in this paper. The remarkable
results are that this class of representations is completely reducible. Fur-
thermore the decomposition formula is possible to describe explicitly.

In § 2, we prepare several notions and symbols. In § 3, we define a
generalized permutative representation of Oy with chain, review results in
[10, 11] and show its existence. In § 4, the construction of the canonical ba-
sis of representation is shown. In § 5, we show the condition of uniqueness,
irreducibility and equivalence of representations and describe decomposition
formula. In § 6, we show states and spectrums of Oy associated with gener-
alized permutative representations. In § 7, we introduce several examples of
them and applications in [17]. For example, the following application about
states of O is obtained:

Theorem 1.1. For £ € U(1) = {c € C: |c| = 1}, put a state we of Oz by
the following conditions:

W§(5i1 “ e Sik) — w6(s;‘fl e 5;.(1) g 07
;l . 8;1) — 5k,l Ejl—i1€2(j2—i2) .. _Ek(jk—ik)/Qk
for each iy,... 1, j1,..., 51 = 1,2, k, 1 > 1. Then the followings hold:

wf(sh ©rSiS
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(i) we is pure if and only if £ is not a root of unity.
(ii) For £,¢ e U(1), GNS representations of Oy by we and W are equiva-
lent if and only if £ = € .
(iii) If § is a root of unity, then there is a family {(Kw,7w) }wev (1) of mu-
tually inequivalent irreducible representations of Oy such that the GNS
representation of Oy by we is equivalent to

[ Uwma)

u(1)

where 1 is the Haar measure of U(1).

2. Preparation

In order to define a generalized permutative representation, we prepare the
parameter space of representations. Fix N > 2.

We introduce several sets of multi indices which consist of numbers
1,...,N.
Put {1,...,N}* = LJ{l,”.,PV}k,{1,”.,fv}055{0},{1,.”,]V}kzz

k>0
(G, :qi=1,...,N, 1l =1,...,k} for k > 1. For J € {1,...,N}*, the
length |J| of J is defined by |J| = k when J € {1,...,N}* k > 0. For
Ji,J2 € {17 : '?N}*7 J1UJy = (.jlw"ajk:ji?- . a.]ll) when J; = (.]177.]]{?)
and Jo = (ji,...,4;). Specially, we define J U {0} = {0}UJ = J for J €
{1,..., N}* for convention. For Jy,Jo € {1,..., N}*, we denote J; = U Jy
(resp. J1 = JoUx) if there is J3 € {1,..., N}* such that J; = J3U Jay (resp.
Jy=JoUJs). For Je{l,...,N}*, J"=JU---UJ forn > 1.
S———

n
Next we define sets of infinite sequences of numbers 1,..., N.
Put {1,...,N}* = {(in)nen : in € {1,...,N}, n € N} where N =
{1,2,3,...}. For J € {1,...,N}*, J*=JUJU---UJU--- € {1,...,N}*.
For Jy,...,Jr € {1,...,N}*,

g = Jerueugp
(2.1) nzl
= JHU---UJyUJFU---UJFUJFU---UJPU---.

For example (1) = (111---),(1*2*) = (121122111222---) € {1,..., N}>.
We introduce a continuous generalization of discrete parameters.
Denote S(CV) = {z € CV : |z|| = 1} is the unit complex sphere in

CV. Put a set of sequences

S(CM)>® = {(z)pen : 2™ € S(CV), n e N}.
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Furthermore, put

S(C)®F = (z:W@...@z0 e (CN)®F . .0 e (CV), j=1,....k} (k>1),

Ts(CcN) =[] s(cV)®*

k>1

where (CN)® = CN @ ... ® C" for k > 1. Note that T'S(C") is a semi-
—_—
k
group with respect to tensor product. We denote z = (2(™),en € S(CN)*,
2" € §(CN) for n € N. For z = (2") € S(CN)*, denote

(2.2) k=M 020 (k>1).

Note z[k] € S(CN)®* for k > 1. Let {e1,...,en} be the canonical basis
of CV, that is, z = z1e1 + --- + zyen for z = (21,...,2N) € CN. We
denote ej =¢;, ® --- ®¢j, for J = (j1,...,jk) € {1,...,N}* k> 1. Then
£y, ® ey, = €,u., for each Ji, Jo € {1,...,N}*\ {0}. Clearly ¢; € S(CV)
and ey € TS(CV) for j = 1,...,N and J € {1,...,N}*\ {0}. For J =
(Jn)neN € {1, e ,N}Oo, put €5 = (Ejn)neN € S(CN)OO

Definition 2.1. (Parameter of cycle)

(i) z € S(CM)®k s periodic if there is T € Zy \ {id} such that 7(z) = 2
where * is an action of the cyclic group Zj, on (CN)®F by transposition
of tensor factors. In this case, p is the period of z if p is the rank of
of T which is minimal among Zy,.

(ii) z € S(CN)®k s non periodic if z is not periodic.

(iii) For z,z € TS(CN), z ~ 2’ if there are k > 1 and 7 € Zy, such that
2,2 € S(CN)®F and 7(z) = 2.

Definition 2.2. (Parameter of chain)

(i) For z = (2) and y = (y™) in S(CN)®, 2 ~ y if there are non
negative integers L and M, and a sequence {cy }n>0 of complex numbers
with absolute value 1 such that y™tL=Y = ¢, 2" for each n > M.

(i) z = (2() € S(CN)™® is eventually periodic if there are positive integers
p, M and a sequence (cy)n>n in U(1) such that 2P = ¢,2(") for
any n > M. In this case, p is called the period of z if p is the minimal
number which satisfies the above condition.

(iii) z € S(CN)>® is non eventually periodic if z is not eventually periodic.

(iv) Fory € S(CM)®" n > 1, yM ... 4™ € S(CN) are the standard
tensor components of y if yV, ..., y™ satisfy the following conditions:
y=yNe- - .gy™ cmdyl(j) >0 foreachj=1,...,k whenl; = min{l €

{1,...,N}:yl(j) # 0} where y®) = (y§i),...,y%)) foreachi=1,... n.
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(v) Fory e S(CN)®P y>* ¢ S(CN)> is defined by z = (2(") € S(CV)>,
ZP(n=1)+1) = y(i) for eachn>1andi=1,...,p, that is,

yoo = (y(1)7 R ’y(p)’y(l)’ R ’y(p)’ i ‘)

where yM ... y®) are the standard tensor components of y.

(vi) o is the shift on S(CN)>® if o is a transformation on S(CN)> which is
defined by for z = (2™) € S(CN)>®, (y™) = 5(2) where y™ = (1)
for each n > 1.

For example, for J = (1*2*) in (2.1), &5 € S(C?)™ is non eventually periodic.
Relations ~ in Definition 2.2 (i) and Definition 2.1 (iii) are equivalence rela-
tions. The notion of eventually periodic is taken from theory of dynamical
systems([9]). When z ~ y, we call that z and y are equivalent. These equiv-
alences are corresponded to the notion of “tail equivalence” of permutative
representation in [5].

The generalization of parameter space is corresponded to generalization
of a class of representations of Opn. Remark that a case M = 0 is possible
in Definition 2.2 (i) but p > 1 in Definition 2.2 (ii).

3. Definition and existence of generalized permutative
representations with chain

For N > 2, let Oy be the Cuntz algebra([6]), that is, it is a C*-algebra
which is universally generated by generators si, ..., sy satisfying

(3.1) sjsj =01 (i,7=1,...,N), sisi+---+sysy=1.

In this paper, any representation means a unital *-representation. By sim-
plicity and uniqueness of Oy, it is sufficient to define operators Si,...,Sn
on an infinite dimensional Hilbert space which satisfy (3.1) in order to con-
struct a representation of On. Put « an action of a unitary group U(N) on
On defined by a4(s;) = Eévzl gjisj for i = 1,..., N. Specially we denote
Yw = gy When g(w) =w - I CU(N) forw e U(1) ={z€ C: |z| = 1}.

3.1. Definition. We give the definition of generalized permutative repre-

sentations with chain here by using parameters in § 2. In order to show

decomposition theorem of them in § 5.2, we review the definition and prop-

erties of generalized permutative representations with cycle([10, 11]), too.
For z = (z1,...,2x) € S(CV), denote

s(z) = z181+ -+ 2NSN.
For 2 =20 @ ... @ 2k € S(CN)®F,
s(z) = S(Z(l)) . ..S(Z(k)% s(z)" = S(z(k))* . ..S(Z(l))*'
Definition 3.1. Let (H,w) be a representation of O .
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(i) For z € TS(CY), a unit vector Q € H satisfies the cycle condition with
respect to z if w(s(z))Q2 = Q.

(ii) For z € S(CN)>®, a unit vector Q € H satisfies the chain condition
with respect to z if R(z) = {n(s(z[n]))*Q : n > 1} is an orthonormal
family in H. R(z) is called the chain of Q by z.

Definition 3.2. (i) For z € TS(CY), (H,n,Q) is a generalized permu-
tative(=GP) representation of On with cycle by z if (H,7) is a cyclic
representation of On with a unit cyclic vector 2 € H which satisfies
the cycle condition with respect to z. p is the period of (H,n,Q) if z
has the period p.

(ii) For z € S(CN)*®, (H,7,Q) is a GP representation of Ox with chain
by z if (H,n) is a cyclic representation of Oy with a unit cyclic vector
Q € H which satisfies the chain condition with respect to z. p is the
period of (H,m,Q) if z has the period p.

We call 2 in Definition 3.2 both (i) and (ii) the GP vector of a GP representa-
tion. We denote GP(z) = (H,,2) for (i), (ii) simply. We explain meanings
of cycle and chain in Example 3.4. We do not assume the completeness of
the set {m(s(z[n]))*?: n > 1} in Definition 3.1 (ii). For two representations
(Hi,m) and (Ha,m2) of On, (H1,m1) ~ (Ha,m2) means the unitary equiv-
alence between (Hy,m1) and (Hg, 7). Specially, GP(z) ~ GP(z') means
that two cyclic representations of Oy are unitarily equivalent.
We review results about GP representation with cycle.

Theorem 3.3. ([10])

(i) (Emistence) For any z € TS(CN), there exists GP(z), that is, there
exists a cyclic representation (H,m, Q) of On which satisfies the cycle
condition with respect to z.

(ii) (Uniqueness and irreducibility) If z € TS(CN) is non periodic, then
GP(z) is unique up to unitary equivalences, and irreducible.

(iii) (Equivalence) For non periodic elements z,z € TS(CN), GP(z) ~
GP(z/) if and only if z ~ 2.

Proof. (i) Proposition 3.4 in [10]. (ii) The uniqueness is in Proposition
5.4 in [10]. The irreducibility is in Proposition 5.5 in [10]. (iii) Proposition
5.11 in [10]. O

By Theorem 3.3 (ii), we can regard a symbol GP(z) as the representative

element of an equivalence class of irreducible representations of Oy which

satisfies the cycle condition with respect to non periodic z € T'S(C¥). From

this, we see that the statement (iii) has no ambiguity. Note that our results

in Theorem 3.3 (ii), (iii) are assumed the non-periodicity with respect to a

parameter z € T.S(CY). About decomposition of periodic cycle, see [11].
We show examples of them here.
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Example 3.4. (i) The standard representation (l2(N),mg) of Oy is de-
fined by 75(si)en = en(n—1)4i for n € N, i =1,..., N where {en}neN
is the canonical basis of Io(N)([1, 14]). Then (I3(IN), 7g, e1) satisfies
the condition of GP((1,0,...,0)). Because (1,0,...,0) € S(C") is
non periodic, (I2(N),7g) is irreducible.

(ii) The barycentric representation (L2[0,1],75) of Oy is defined by

(me(s:)9)(x) = X(i—1)/Ni/n)(T)p(Nz — i + 1)

for ¢ € L9[0,1], z € [0,1] and @ = 1,..., N where xy is the char-
acteristic function of a subset Y of [0,1]([15]). Then (L2]0,1],75,2)
is GP((N~Y2,..., N=1/2)) where Q is the constant function on [0, 1]
with value 1. (L2]0, 1], 7p) is irreducible, too.

(iii) In (i), (L2[0,1], 75 © v, Q) is GP((w/NY2, ... w/N?)) for w €
U(1).

(iv) Define a representation (I2(IN),7) of O3 by

m(s1)er =ea, w(s1)ea =e1, w(s2)er =e3, 7(s3)er = ey,
m(s2)ez =e5, m(sz)ea =g, T(si)en = ey (1=1,2,3,n>3).

Then (I2(N),7) is cyclic with cyclic vector e; and 7(s1s1)e; = eg.
Therefore (I2(N), m,e;1) is GP((1,0,0) ® (1,0,0)). The tree of the rep-
resentation (I3(IN), ) is following:

where vertices and edges mean the canonical basis {e;},en of l2(IN)
and the action of operators 7(s1), m(s2), 7(s3) on {e; }reN, respectively.
For example, if w(s1)e, = e, for z,y € N, then it is represented as

a
Lo————>——o Y

where labels a, b,c of edges correspond to m(s1),7(s2),m(s3), respec-
tively. Since (1,0,0) ® (1,0,0) € S(C3)®? is periodic, (I2(N), ) is not
irreducible.

(v) Puw Ry =ZxN;, Nyj={N(n—-—1)+i:neN}fori=1,...,N.
Then we have a decomposition Z x N = Ry U--- U Ry. Consider a
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branching function system f = {f;}, on Z x N defined by
(32) fi i Z xN — R;; fl(n,m) (n—l N( )+Z)

for i = 1,...,N. Then fi(n,1) = (n —1,1) for each n € Z. From
this, we have fF(n,1) = (n —k,1) for k > 1 and n € Z. Put a
representation (I2(Z x N), ) of On by 7my(si)ex = ey, ) for v €
ZxN,i=1,...,N. From this, we have m¢(s])en,1 = eny1,1 forn € Z.
Hence {Wf((sl) )6071 NS N} = {ep,1 : n € N} is an orthonormal
family.

When N = 2, the tree of the representation (lo(Z x N),7s) is fol-
lowing:

nll n+11

(ZZ(ZXN)vﬂ-faeo,l) is GP((’ L) ) )OfON-

It is easy to show that cyclicities and eigen equations in Example 3.4 follow
from their definitions, respectively. (i), (iv) and (v) are (cyclic)permutative
representations in [5, 7, 8]. Other examples are introduced in § 7.

3.2. Existence. Fix z = (2(") € S(CN)®. We show the existence of
GP(z) by constructing (H, 7, ) concretely. Denote z(®) = (z%n), e z](:,l)) €
S(CN) for each n € N.

For convenience, we extend z = (z("))nez by 2= = ¢, for each n > 0.
Choose a set {g[n]}nez of unitary matrices in U(N) such that they satisfy
the following conditions:

(3.3) (g[n))1; = z( " (j=1,...,N,neZ).

Let (H,m) be a representation of Oy in Example 3.4 (v) where H =
12(Z x N). For a set {g[n]}nez C U(N) in (3.3), define a family {r'(s;)} ¥,
of operators on H by

(3.4) T (83)enm = T (g (1)) enm  ((n,m) € Z x N)).

We see that 7' (s;)*e,_ LN(m—1)+q = g[nlgienm for (n,m) € Z x N, i,q =
., N and (H,7) is a representation of Oy.

Proposition 3.5. For any z € S(CN)™, there always exists GP(z).

Proof. Let (H,7') be a representation of Oy in (3.4). By (3.3),
(g[n]*)1 = z( Y for n € Z and j=1,...,N. By Lemma A.7 (iv), we
have s(z(" 1)) = agn)-(s1) for each n € Z. Then 7 (s(z* " D))epy = (w0
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gk)) (g (51))er,1 = T(s1)ex,1 = ex—1,1. From this, 7 (s(z[k — 1)))ex1 =
eo.1. Hence 7 (s(z[k—1]))*e01 = ex1 for k € N. Therefore {r (s(z[k]))*eo,1 :
k € N} is an orthonormal family in H. Put V = 7' (On)ep1. Then
(V,7',e01) is GP(z). O

We show this construction of representations in the point of view from group
theory in [12].

4. Construction of the canonical basis

In order to show the uniqueness of GP representation in § 5, we construct
the canonical basis of GP representations with chain. The construction is
given by making a “tree” of representation in Example 3.4.

4.1. Construction of the tree of a representation. At fist, we prepare
roots of the tree.

Fix z = (2M) € S(CN)>®°. We extend z = (2M),cz as (- = ¢, for
n > 0. Choose g = (g[n])nez which satisfies (3.3) and g[—n] = I for n > 0.
Let (H,m, ) be GP(z). We denote m(s;) by s; simply in this section. Put

(4.1) Q_, =510 Q=Q, Q,=s(zn))"Q2 (n>1).
By Definition 3.2 (ii), R(z) = {Qn }nen is an orthonormal family in H.

Lemma 4.1. (i) s(z0")Q,, = Q,_1 for each n € Z.
(ii) {Qn}tnez is an orthonormal family in H.

Proof. (i) We see < s(2")Q,|Q,_1 >= 1 for each n € Z. Hence
50— 1 = 15000 [P 2Re < 5(00) 2[00 1 > +] 1| =
0 for each n € Z.
(ii) For each n € Z, we see || Q]| = 1. Let n,m > 1. Then < Q_,[Q_(;4n) >=<
stQIsTT™Q >, By (i), Q = s(2[m])Qp. Hence < s7Qs7TMQ >=< " @
][ > < 0,00 >, Since < Qn|Q >=0, < Q| () >= 0.

Let n > 1 and m > 0. By (i), Q= s(z[m + 1]) - - - s(z[m + 1)) Qptn.
Hence < Q_p|Qp >=< e |2lm + 1] ® -+ ® z[m + n] >< QQpyp >= 0.

Therefore the statement holds. O
s(z(n)) s(z<"+1))
- e «—e «—e <
Qn—l Qn Qn—&—l

On the orthonormal family {2, } ez, we construct N —1 trunks at each
n € 7.

Lemma 4.2. Put



where yj(n) = ((g[nD)ij,- -+ (gln)n;) € S(CN) forne€Z andj=1,...,N.
Then {en;:ne€Z,j=1,...,N} is an orthonormal family in H. Specially,
en,1 = Qp_1 for each n € Z.

Proof. By definition of y {y] 1 is an orthonormal basis of

CN for each n € Z. From this, we see < ew]em,Z >= 0;;0p,m for each
n,m € Z and i,j = 1,..., N. Hence the first statement holds. Because

y% "= (glnD)iye- - ()i ) = ("7 20 TY) by (33) and Lemma
(1), en1 = s(ygnﬂ))Qn = s(z(”))Qn =,_1 for each n € Z. O

Corollary 4.3. (i) < ey j|Qn >=0 for eachn,meZ and j=2,...,N.

(ii) For k > 1, m € Z and i = 1,...,N, there are m € Z and z €
S(CN)ER such that en,; = s(z)S, /.

Proof. (i) By Lemma 4.2, Q,, = ep41,1. Hence the statement holds.

(ii) If £ = 1, then put =z = yl.(mﬂ) and m' = m. If & > 2, then put

m =m+k—1andz= yi(mﬂ) @2z @ ... @ 2(M+k=D_ Then s(2)Q, , =

s(y; (mtD) @ () @ ... @ Lmth—)Q ) = s(yl(mﬂ))(lm = em.i- O

€n—1,2"""€n—1,N €n,2 "' €En N €n+1,2 """ Ent1,N

A
A

anl Qn Qn«i»l

By putting N branches on a trunk successively, we complete trees.
Lemma 4.4. Let
einj =5ssen; (Je{l,...,N}'\neZ,j=2,...,N).
Then the followings hold:
(i) < esnilemj >=0 for each J € {1,....,N¥, k> 1, nym € Z, j =
1,....,.Nandi=2,...,N.
(i) {:neZulen; :Je{l,...,N}'\neZ,j=2,...,N} is an
orthonormal family.
Proof. (i) By Corollary 4.3 (ii), there are z € S(CN)®* and m' ¢
Z such that en; = s(x)Q,/. From this, < ejnilem; >=< ejlz ><
€n,i|€Q,,» >= 0 by Corollary 4.3 (i).
(ii? By (i), it is fufﬁcient to show < ejniley , . >= 0 when (J;n,i) #
(J,m,j) for J,J € {1,...,N}*\ {0}, n,m € Z and i,j = 2,...,N. If
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|J,] = |J|, then < €J7n’l"€J/7m’j >= 5J7J/ < enjilem; >= 5J7J/6ij6nm by
Lemma 4.2. If | = |J'| — |J| > 0, then there are m’ > 1 and = € S(CN)®ll
and ey .= s(x)Q2, /. Hence < €J’n7i‘€Jl’m’j >=<ejlr >< e, >=0
by (i). O

€{1}uJ,n,2 €{N}UJ,n,2

€eJ,n,2

When N = 3, we have the following tree:

See the figure in Example 3.4 (v).
4.2. Completeness. We show the completeness of the family {2, : n €
Z}U{ejnj:Je{l,...,N}*,ne€Z, j=2,...,N} of vectors in ‘H which
are constructed until the previous subsection. For this purpose, we prepare
an index set of basis.

For z € S(CY)™, put

Az = [T A ), A ) = [[AY ().

nez k>1
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A ) = {0}, A () = (") =2, N,

AV = {(ney oy j=2.. . N, Je{l,..., N}k
for k > 3.
Lemma 4.5. (i) Put
e(n,z) = s(2)Qn  ((n,z) € AW (2), n € Z)

where we define s(0) = I. Then {e(x) : x € A(2)} = {Q, € Z} U
{ejnj:Je{l,...,N}'\neZ,j=2,...,N}.
(ii) For Je{l,...,N}* andn € Z, s;8, € Lin < {e(z) : x € A(2)} >.
(iii) {e(x):x € A(z)} is complete in H.

Proof. (i) We see e(n,0) = Q,, e(n,yj("ﬂ)) = s(y](.nﬂ))ﬂn = enj,
e(n,5J®y(-n+1)) =ejn;forj=2,...,N, Je{l,...,N}* and n € Z.
(ii) Put H; = Lin < {e(z) : * € A(2)} >. By (i), we identify H; and
Lin <{Q,ejn;:Je€{l,..., N}, ne€Z,j=2,...,N} > If J =0, then
57 = Qy € Hi. By Lemma 4.2, dimLin < {e,;: j=1,...,N} >= N
for each n € Z. Hence Lin < {e,; : j =1,...,N} >=Lin < {5;Q, : j =
1,...,N} >. Therefore if j = 1,..., N, then s;Q € Lin < {en,j’ L=
1,...,N} >C Hy. From this, for J € {1,...,N}*, k>1,j=1,...,N
5758, € Lin < {SJenJ/ :j =1,...,N} >C H, for each n € Z.
(iii) By Lemma B.3 (ii) and definition of {€j,. i}, {€sn,} is complete in H
By (i), the assertion holds. O

)

Theorem 4.6. For z € S(CN)>®, {e(z) : x € A(2)} is a complete orthonor-
mal basis of GP(z).

Proof. By Lemma 4.4 (ii) and Lemma 4.5, the statement holds. [

We call {e(z) : x € A(2)} the GP basis of GP(z). Note that the GP basis
depends on the choice of {g[n]|}nez in (3.3).

5. Properties of GP representations
5.1. Uniqueness, irreducibility and equivalence.

Theorem 5.1. (Uniqueness) For z € S(CN)®, GP(z) is unique up to
unitary equivalences.

Proof. For z € S(CN)®, fix {g[n]}nez in (3.3). A(z) in § 4.2 is
uniquely determined by them. For representations (H, w, ) and (H/, T, Q/)
of On which are GP(z), take canonical basis {e(z) : z € A(z)} and {e (z) :
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x € A(z)} in Theorem 4.6, respectively. Then we can define a unitary opera-
tor U from H to H by Ue(x) = € (z) for x € A(z). Wesee AdUor =7 . [

By Theorem 5.1, we can use the symbol GP(z) as both a representation and
an equivalence class of representations of Oy for each z € S(CN).
Recall Definition 2.2.

Theorem 5.2. (Irreducibility I) If z € S(CN)> is non eventually periodic,
then GP(z) is irreducible.

Proof. Assume that z is non eventually periodic and (H,w, ) =
GP(z). Fix vg € H, vp # 0. By cyclicity, there are n > 1 and J €
{1,...,N}* such that < 7(s%)ug|Q2, ># 0. Since < w(s%)vo|Qp >=<
m(s(z[n])s)volQ >, we can assume ¢ =< 9|2 ># 0. By Lemma B.5,
7(s(z[n]) {s(z[n])}*)vo goes to Q2 when n — oco. Hence Q € Onvg. There-
fore H = On§2 C Onvg C ‘H. We see that vg is a cyclic vector of H. Because
any non zero vector in ‘H is cyclic, H is irreducible. ([

The inverse of Theorem 5.2 is shown in § 5.2.

Theorem 5.3. (Equivalence) For z,y € S(CN)>®, GP(z) ~ GP(y) if and
only if z ~ y.

Proof. 1If z ~y, then GP(z) ~ GP(y) by Lemma C.3.

Assume z o y. If GP(z) ~ GP(y), then we can assume that there is a
representation (H, 7) of Oy with unit cyclic vectors Q and Q' which satisfy
chain conditions with respect to z and y, respectively. By Lemma C.1 (ii)
and Lemma C.2, 7(Ox)Q and 7(On)Q" are orthogonal. Because  and €’
are cyclic, this is contradiction. Therefore GP(z) # GP(y). O

We consider a relation between chain and cycle here.

Lemma 5.4. Assume that z € S(CN)>® is non eventually periodic and
y € TS(CN). If (H,n) is a representation of On with Q,Q € H which
satisfy the chain condition with respect to z, and the cycle condition with
respect to y, respectively, then < Q|Q/ >=0.

Proof. Assume y € S(CN)®P for p > 1.
< QI >=< 7(s(2[np))) Lup|T(s(¥Z"NQ >=< z[np]|y®" >< Qpp|Q > .

By Schwarz inequality, | < Q| > | < | < z[np]|[y®" > |. By Lemma A.1
(iv), z ¢ y>®. Hence | < QQ > | < lim, oo | < 2[np]|y®* > | = 0 by
Lemma A.6 (i). O

Proposition 5.5. Let z € S(CN)® andy € TS(CV). If z is non eventually
periodic, then GP(z) +# GP(y).
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Proof. Assume that GP(z) ~ GP(y). We derive contradiction. By
assumption, we can assume that (H, 7, Q) is GP(z) and (H, 7, Q) is GP(y).
By Lemma 5.4, < Q]Q/ >= 0. In the same way, < Qn\Q/ >= 0 for each
root vectors {Q,} of GP(z). Assume that y € S(CV)®P for p > 1. For
Je{l,...,N}" m >0, n € Z, there are k,l > 0 such that m + k = Ip
and < 7(s7)|Q >=< ;@2 @ ... @ 2R |48 < QL0 >=0.
By Lemma B.3 (ii), Q' = 0. This is contradiction. Hence GP(z) + GP(y).

([

Corollary 5.6. Any irreducible GP representation with chain and that with
cycle are inequivalent.

5.2. Decomposition. In order to decompose GP representation with chain
by eventually periodic z € S(C™)>, we prepare a structure theorem of
eventually periodic chains.

For a representation (H, 7) of Oy and a unitary operator U on a Hilbert
space KC, we have a new representation (C®@H, UX7) of Ox which is defined
by

(5.1) (URT)(si) =U®m(s;)) (i=1,...,N).

In this subsection, an equality between representations means their unitary
equivalence.

Lemma 5.7. Let ¢ € Loo(U(1)) such that |o(w)| = 1 almost everywhere
w € U(1), M, the multiplication operator on La(U(1)) by ¢, and (H,7) a
representation of On. Then we have the followings:
(i)
D
M,Xr = / T 0 Yp(w) dn(w)
U(1)
where 7 is the U(1)-gauge action on Oy in § 3 and n is the Haar
measure of U(1).

(i) My, X7 = MgXm where p(w) = p(w) for w e U(1).

Proof. (i) Define a unitary W from Lo(U(1)) ® H to La(U(1), H) by
W(p®v) = ¢-vfor ¢ € La(U(1)) and v € H. Then W(UKT)(s;)W*(¢-v) =
(M) - (m(s5)v). From this, (W(M, B 7)(s:)W*15) (1) — (w)(s:)o(w) —
T(Yp(w)(8:)) ¥ (w) for ¢ € La(U(1),H), w € U(1), and i = 1,..., N. There-
fore {(AdW o (M, X ))(2)¢} (w) = (7 0 Yp(w)) (@)Y (w) for each x € O,
Y € Ly(U(1),H) and w € U(1). By definition of direct integral, we have the
statement.

(ii) Define an operator T' on Lo(U(1)) by (T'¢)(w) = ¢(w). Then TM,T™* =
Mg. From this, (T'® I)(M, X 7)(s;)(T* @ I) = (Mg X m)(s;) for each
i =1,...,N. Hence the assertion holds. O

13



Corollary 5.8. Let p > 1 and o(w) = w'/? for w € U(1) where w'/P =
2™V =10/ ywhen w = 2™ 0 < 0 < 1. For a representation (H, ) of
Opn, we have

o
Mcp&w:/ T O Yypi/p AN(Ww).
U()

We denote M, by M 1/, simply.

Lemma 5.9. Let (H,7,9Q) = GP(2) for z = z:(0 @ ... @ 2(P) ¢ §(CN)®p,
p > 1. Assume that a set {Qj}g;é of vectors which are defined by €2; =
(52Ut @ - @ 2PNQ for 5 =0,...,p— 1, is an orthonormal family.

(i) m(s(z[i))* =9y for0=1,...,p—1.

(i) Let C(w) =w forc e R, y =22 = (21,2 .. ) and

Unp+j = Cn+j/p ® €y

forj=0,....p—1,neZ Ifr = M1/, X7, then W,(s(y[n])*)vo = v,
for each n € N.

(i) Ifr = Myi/,,Xn, then (@m(s7)Qj = 7 (87)vnpsj for J € {1,...,N}*,
neZandj=0,...,p—1.

(iv) Mgip R 7 is cyclic.

Proof. (1) w(s(2[j]))0 = w(s(z1) - s(z0)r(s(z07D) - s(=9)2 =
Qfor0=1,...,p— 1. Then the assertion holds.
(i) Since y[np] = 2&", (7' (s(2)) (@ Q))(w) = W (w)Q for ¢ € Ly(U(1)) and
w € U(1). Hence m(s(y[np+3])")Q0 = 7(s(2[j])*(s(2)?)")Q2 = 7(s(2[j])")Q2 =
Qj forneNand j=0,...,p—1by (i). Therefore

W/(S(y[np + ]])*)UO = CnJrj/p ® Qj = Unp+j-
From this, the statement holds.
(iii) Forw € U(1), J € {1,...,N}* k>1,c€R,and j =0,...,p— 1,
(7 (57) (e ® Q) (w) = @PCe(w) @ 7(5.1)Q = Compyp(w) @ 7(57)y.

From this, (. ® m(s7)$); = WI(SJ)(CC+k/p ®Q;) =7 (ss). Hence we have the
assertion.

(iv) Put 7 = Mgy X7, We extend y = (y™) ez by y(—PH) = 20) for
n>1andj=0,...,p—1. Note 7 (s(y[n]))vo = v_, for n > 1. Hence
{vn}nez C V. Since Lin < {n(s;)Q; : J € {1,...,N}*,j=0,....,p—1} >
is dense in ‘H, Lin < {¢, ® 7(s;)Q; :ne€Z, Je{l,...,N}*, j=0,...,p—
1} > is dense in Lo(U(1)) ® H. By (iii), V = Ly(U(1)) ® H. Therefore 7" is
cyclic. O

When (H, 7, Q) = GP(z), we denote UKGP(z) and GP(z)o~,, instead
of U X 7 and 7 o 7y, for convenience.
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Proposition 5.10. (Structure of eventually periodic chain) If z € S(CN)®P,
p > 1, is non periodic, then M, 1/, K GP(z) = GP(2*).

Proof. Because z is non periodic, the condition in Lemma 5.9 is satis-
fied by Lemma B.1. By Lemma 5.9 (iii), v, € V = 7(On)vg for each n € N.
Since {v,}n>1 is an orthonormal family, 7 contains GP(z>) as subrepre-
sentation. By Lemma 5.9 (iv), M1/, X GP(z) = GP(2*°). By Lemma 5.7
(ii), Mgi» RGP (2) = M,1/» X GP(z). Hence the assertion holds. O

Theorem 5.11. If z € S(CN)®P, p > 1, is non periodic, then

®
GP(2*) = / GP(2) o Yy/p dn(w).
UQ)

Proof. By Proposition 5.10 and Corollary 5.8, the statement holds.
O

Corollary 5.12. (Decomposition of eventually periodic chain)

(i) If z € S(CN)>® is eventually periodic, then there are p > 1 and y €
S(CN)®P such that y is non periodic and

(&)
(5.2) GP(z) = /U 1 P ().

(ii) If there are ¢ > 1 and yo € S(CN)®9 which satisfies the statement (i)
with respect to z, then p = q and there is ¢ € U(1) such that yo ~ cy.

Proof. (i) By Lemma A.1 (ii) and Theorem 5.3, GP(z) ~ GP(y>)
for non periodic y € S(CV)®P. By Theorem 5.11, the statement holds.
(ii) By Theorem 5.11,

D
GP(y) = /U P @ i) = GP(:) = GP™).

By Theorem 5.3, y5° ~ y*°. By Lemma A.1 (iii), there is ¢ € U(1) such that
p=q and yy ~ cy. O

For z € TS(CV) and w € U(1), we consider wz by the scalar product
of a vector z by a scalar w. We see wz € T'S(CV) again.

Proposition 5.13. If z € TS(CY) is non periodic, then

52
GP(z ):/U(l) GP(wz) dn(w).
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Proof. By Lemma B.2 (i), GP(wz) = GP(2) 0 yg1/». By Lemma 5.7
(ii) and Corollary 5.12, the statement holds. O

By Proposition 5.13, if the period of chain is 1(that is, z € S(CV)),

then
@

GP(z™) = GP(z2) o vy dn(w).
U1
We illustrate this by the tree of representations in Example 3.4 when N = 2:

RGOS /tg

Theorem 5.14. (Irreducibility II) For z € S(CN)> (z) is irreducible
if and only if z is non eventually periodic.

Proof. If z is non eventually periodic, then GP(z) is irreducible by
Theorem 5.2. If z is eventually periodic, then GP(z) is not irreducible by
Corollary 5.12. Hence the statement holds. ([

6. States and spectrums of Oy associated with GP
representations

6.1. States. We show a relation between GP representations with chain
and states of Oy.

Theorem 6.1. For z € S(CN)>®, the GNS representation (H.,7.,.) of
Opn by the following state w, of Op:

(6.1) wa(s157)" = 0y < zlk]|ler >< eg|2[l] >

for T € {1,...,N}, J e {1,...,N}, k,l > 0, is equivalent to GP(z).
Furtheremore the followings hold:

(i) wy is pure if and only if z is non eventually periodic.
(ii) For z,z" € S(CN)*®, (H,,7.) and (H,, ) are equivalent if and only
if 2z~ 2.
(iii) If z € S(CN)>® is eventually periodic, then there is y € TS(CN) such
that

(&)
(Haoms) = /U | GPCw) dn)

Proof. Put &,(z) =< Q|n(x)Q2 > for z € Oy. By Lemma B.3 (i),
we have w,(s7s%) = w.(srs%y). Hence &, = w,. By uniqueness of GNS
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representation and cyclicity of GP representation, (H,,7,) is equivalent to
GP(z).

(i) By Theorem 5.2, (H,,7,) is irreducible if and only if z is non eventually
periodic.

(ii) By Theorem 5.3, the assertion holds.

(iii) By Corollary 5.12, the statement holds. O

We call w, the GP state of Oy by z € S(CN)>.

Corollary 6.2. The following state w, of Oy is pure if and only if z €
S(CN)>® is non eventually periodic:

wZ(S]ST]) = (5|I|7|J‘Z[ZJ (I,J S {1,...,N}*)

where zj5 = zj(»ll)"-z](-f) for J = (j1,...,5k) € {1,...,N}* for k > 1 where

z=(z") and z(" = (zin), e ,25\7)).

In this way, we see that GP states are defined on the(gauge fixing) UHF
subalgebra of Oy.

States associated with permutative representations with chain([5, 7, 8])
are given as follows: For J = (jp)n>1 € {1,..., N}*°, define a state w of Oy
by

wisysy) =0 (J #£J), wlsysy) =06y (J €{1l,...,N}")

where J[n] = (j1,...,jn) for n > 1.
Recall that the GP state is defined for GP representation with cycle([10]).

Proposition 6.3. If w and wy are GP states of On by eventually periodic
z € S(CN)>® and non periodic y € S(CN)®P, p > 1, respectively, such that
GP(z) = M1/, KGP(y), then

o) = [ enlan@) i) @ e Ox)
U()
where n is the normalized Haar measure of U(1) defined by dn(e*™~10) = d

for0 <6 < 1.

Proof. Let (H,m,Q) = GP(z) and (Hy, m, Q) = GP(y). By Corol-
lary 5.12, we can realize (H,m, Q) as H = La(U(1),Hp) and Hy = {o(w) :
¢ € La(U(1), Hp)} and Q(w) = Qg for w € U(1). By Corollary 5.12 (i),

52
T = / O © Yopl/p dn(w)
U(1)

Because w =< Q|7(-)Q2 > and wy =< Qo|mo(-) >, we have

w(x) = /U(l) < Qo|(m0 © Vy1/0)(2)Q0 > dn(w) = /U(l) wWo(Yy1/x (7)) dn(w)
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for each z € Oy. O
In Proposition 6.3, we can check the following equation: For I,J €
{1,...,N}¥,
WO(SIST]) (] = |J1),
wWisIsT) =\ p(e2ev=I0I-1D/p _ 1)
2mv/=1(1] = |J1)

This is verified by Theorem 6.1 and § 6 in [10].
By Proposition 6.3, we have the following:

p(

wo(srsy) (] # [J])-

Corollary 6.4. Let z € TS(CY). Assume that w, and w,, are GP states
by 2*° and wz for w € U(1), respectively.

(i) If z is non periodic, then

Wy = / Wz dn(w).
U1

(ii) If = € S(CY), then
Wyoo = / Wy 0 Yy dn(w).
U(1)

6.2. Spectrum. We consider the spectrum of Op. The spectrum SpecOpn
of Oy is the set of all equivalence classes of irreducible representations of Oy .
One of our aim is a classification of elements of SpecOy and a constructive
understanding of them.

We review results about cycle case in [10]. Put

TSnp(CN) = {2z € TS(CY) : 2 is non periodic}.

Then T'Syp(CV)/~ is identified with a subset of SpecOx by Theorem 3.3.
On the other hand, let

Syp(CY)*® = {z € S(CN)* : 2 is non eventually periodic}.

Then Syp(CY)>/~ is identified with a subset of SpecOy by Theorem 5.14
and Theorem 5.3. By Corollary 5.6, Syp(CN)*/ ~ and TSyp(CV)/ ~
have no intersection as subsets of SpecOy.

In consequence, GPSpecOn = (T'Snp(CN)/~) U (Snp(CN)>®/~) is
identified with a subset of SpecOy. In [12], we show that GPSpecOy is
closed under U(N)-action arising from the canonical action of U(N) on
Op. Next problem is a study of SpecOpn \ GPSpecOy, that is, (i) whether
SpecOn \ GPSpecOy is empty or not. If it is not empty, then (ii) construct
all of them concretely.
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7. Examples

7.1. Correspondence with ordinary permutative representations.
Let E = {e1,...,en} be the canonical basis of CV and a subset

B = {(ci,)n>1 tin € {1,...,N}} ={es: J € {1,...,N}>*}

of S(CV)>®. Then the GP representation of Oy by z € E N S(CV)> is
a (cyclic)permutative representation with chain by [5, 7, 8]. For instance,
Example 3.4 (v) is associated with e; € ES?, J = (1)* € {1,..., N}*.

By Theorem 5.3, we see that a class of GP representation is properly
wider than ordinary permutative representation by [5, 7, 8|.

7.2. Representations of O, parameterized by U(1). Fix £ € U(1) and
let zén) = %(1,5") € S(C?) for n € N. Then z = (zén))neN € S(C?)%,
z¢ is eventually periodic if and only if £ is a root of unity, that is, there is

p > 1 such that &P = 1.

Proposition 7.1. We have the following statement about representations
Of 02 N
(i) GP(z¢) is not a permutative representation by [5, 7, 8] for any & €
U(1).
(i) GP(2) is irreducible if and only if & is not a root of unity.
(iii) If there is a positive integer p such that &P = 1 and 9 # 1 for each
1< q<p, then,
2
GP(z) = G P(wze[p]) dn(w)
u)
where z¢[p| = z§1)®- . -®z§p) € S(CN)®P. Furthermore {GP(wz¢ [P]) }wer ()
is a family of mutually inequivalent irreducible representations of Os.
(iv) For&,¢ € U(1), GP(z) = GP(zy) if and only if ¢ =€ .
(v) Put a state we of O by
wf(sh T Sik) - wﬁ(s;l T 8;1) =0,
We(Siy + 8iy, 85,0 85,) = Q_kék,léfjl—hf?(h—i?) o gRUR—)
for each iy,... ik, j1,---,51 = 1,2, k,l > 1. Then the GNS represen-
tation of Oy by we is equivalent to GP(z¢).

(vi) The set of all equivalence classes of irreducible representations of Og
by € € U(1) is one to one corresponded to {e*™ = c U(1): 0 ¢ Q}.

Proof. (i) Because z¢ is not equivalent to any element in £5° in § 7.1
for each & € U(1), the statement holds.
(ii) By Theorem 5.2, GP(z¢) is irreducible if and only if z¢ is non eventually

periodic. By definition, z¢ is non eventually periodic if and only if zél) #+ zé")
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for each n > 2 if and only if £ # £" for each n > 2. From this, GP(z) is
irreducible if and only if £ is not a root of unity.

(iii) By assumption, z¢[p] = 27P/%(1,6) @ --- ® (1,6P71) @ (1,1) is non
periodic. GP(z/p|) is irreducible. By Lemma B.2, the statement about
{GP(wzp]) bwer) holds. Note z¢ = (z¢[p])>°. By Corollary 5.12, we have
the first assertion.

(iv) GP(z¢) = GP(zy) if and only if z¢ ~ 2. Because phase factors are
determined, z¢ ~ 2z, if and only if there are M and L such that gl = (¢

for each n > M. This holds only if (?5)" =¢ L foreach n > M. If L # 0,
then € = ¢. If L = 0, then & = ¢, too. Hence GP(2) = GP(zy) if and
only if £ =¢'.
(v) Note (z¢) s = 717120271 ... ¢kGe=1) for each J = (1, ..., jk) € {1,..., N}¥,
in Corollary 6.2. By Corollary 6.2,
w(srs%) = 2kg, 1 —1g22=1) L gkl gin—1¢2(—1) ... ¢l(—1)
= 27hgy, giig202—i) L gh(e—ik)

for I = (i1,...,4) and I = (j1,...,Jk). Hence we have the assertion.
(vi) The statement holds by (ii) and (iv). O

,From this, Theorem 1.1 is proved.

For example, if & = €2™V=1/3 then (EMnen = (£,€2,1,6,62,1,...),
() )nen = (€2,6,1,62,€,1,...). Therefore z¢ ze2. Hence GP(ze) #
GP(ZE2)

7.3. Representations arising from real numbers. We define a permu-
tative representation of Oy with chain arising from a real number.
For a real number a € [0,1), consider the N-adic expansion a =

21@1 ak/Nk-

Definition 7.2. (i) For a € [0,1), b(a) = (0™ (a))ren € {1,...,N}>® is
defined by b¥)(a) = ap, +1 € {1,...,N}.
(ii) For a,d € [0,1), a ~ d if there are k,1 > 0 such that N¥a = N'd/
mod 1.

For ey, = <€b(k:)(a) JkeN € EY C S(CN)>®, we have a GP representation
G P(gyq)) of On. This class of representations of Oy is well known by
[5, 7, 8].

Proposition 7.3. (i) Fora € [0,1), GP(gyq)) is irreducible if and only

ifa & Q/ ,
(ii) For a,a €[0,1), GP(epa)) = GP(ey,) if and only if a ~a .

Proof. (i) b(a) is non eventually periodic if and only if a ¢ Q. Hence
GP(ep,) is irreducible if and only if a ¢ Q by Theorem 5.2.
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(ii) By Theorem 5.3, GP(gp(q)) = GP(gy () if and only if ey(4) ~ 4,y We

can check that e5(,) ~ €b(a’) if and only if a ~ a’. (]

Any representation of Oy in § 7.2 and that in § 7.3 are disjoint.

7.4. Representations arising from dynamical systems on projec-
tive spaces. Let F' be a transformation on a complex projective space
CpPN-1 = (CN\ {0})/C*. Consider the orbit of the dynamical system
(CPN=1 F) at a € CPN~1. Put a, = F"(a) for n € N. Then we have
a sequence ay = (ap)nen in CPY~1. Choose b (a) € S(CV) such that
6™ (a)] = {cb™(a) : ¢ € C*} = a,,. Then b(a) = (b (a))nen € S(CN)>®.
A sequence (an)neN in CPN~1 is eventually periodic if there are M, p such
that an4p = a, for each n > M. The equivalence class of b(a) in S(CV)>
is independent in the choice of b(™ (a) with respect to a. In this sense, the
equivalence class of GP(b(a)) essentially depends on the orbit of F' starting
from a.

Proposition 7.4. (i) GP(b(a)) is irreducible if and only if as is non
eventually pertodic.
(ii) For a,a’ € CPN=1, GP(b(a)) = GP(b(a")) if and only if there are
L, M such that apyn, = a;L for each n > M.

Proof. (i) b(a) is non eventually periodic if and only if the orbit a, is
non eventually periodic in CPN~!. By Theorem 5.2, it follows.
(ii) By Theorem 5.3, the assertion holds. O

On the other hand, if z = (2(")) € S(CY)>, we have a sequence {[z(™]}
in CP"~!. Hence the parameter space S(C™V)> can be regarded as a set of
all sequences of points in CP™ 1.

In the same way, we can obtain a representation of Oy from a dynam-
ical system on a sphere SV1.

7.5. Others.

Example 7.5. The representation of Oy arising from a dynamical system
(C,Q), Q(z) = 22 gives a direct sum of chains in [17]. Put a representation
(Lo(C),mo) of Og arising from @ by

(7.1) (mo(si)@)(2) = mi(2)9(Q(2))

for ¢ € Ly(C) and z € C where m;(z) = 2|z| - xg,(2), i = 1,2, B} = {z €
C:Imz >0}, By ={z € C:Imz <0}, xy is the characteristic function on
Y C C, Ly(C) is taken by a measure du(z) = dzdy on C for z = z+ /1y,
and s, s2 are generators of Oz. Then (L2(C),mp) is equivalent to

Doo
(GP((271/2,271/2))) %> = {/® GP((272,2712)) 0 v dn(w)} :
U(1)
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Example 7.6. Let 2(") = (1/2%/2 (2" — 1)1/2/27/2) for n > 1. Then z =
(") € §(C?)*® and z is non eventually periodic.

Example 7.7. For 6 € [0,1), define zyp = (z(gn)) € S(C?)™ by
zén) = (cos 2mnf,sin2mnh) € S* = {(z,y) e R? : 2?2 + > =1} (n e N).

Then zp is non eventually periodic if and only if § ¢ Q. Hence GP(zy) is
irreducible if and only if § ¢ Q. If there is p € N such that p = min{q €
N :gf € NU{0}}, then

D

GP(z) = GP(wzg[p]) dn(w).

U(1)
If 6 # 0, then GP(zp) is neither equivalent to any representation in § 7.2
nor that in § 7.3.

Acknowledgement: We would like to thank Prof. Abe for encouragement
to write paper.

Appendix A. Technical lemmata
A.1. Parameters of representations. Recall notations in § 2.

Lemma A.1. (i) ~ is an equivalence relation in S(CN)>.
(ii) If z € S(CN)>® is eventually periodic, then there is y € TS(CN) such
that y is non periodic and z ~ y>°.
(iii) Let z € S(CN)>®. If there are non periodic elements x,y € TS(CV)
such that z ~ y> and z ~ x°°, then there is ¢ € U(1) such that x ~ cy.
(iv) Let z,y € S(CN)>®. If z is non eventually periodic and y is eventually
periodic, then z £ y.

Proof. (i) Reflection law and Symmetric law. are trivial. We show

transitive law. If x ~ y and y ~ 2z, then there are L,L',M,M and
{en}, {c,} € U(1) such that ("5 = ¢,y n > M and y("+L,) = ¢ 2,
n > M. From these, g HLAL) cn+L1y("+L/)c;z(”) for each n > M =
max{M, M'}. Hence & ~ z. ~ is transitive.
(ii) Assume that z = (2(") € S(CN)*> is eventually periodic. Then there
are positive integers M, p and a sequence {¢,} C C, |¢,| = 1 for each n > M
such that 2("*P) = ¢, 2(" for each n > M. Define y = (y)?_, € S(CN)=p
by y® = z(M+i=1) for j =1, ..., p. Then

o (M+kp+i—1) (M+(k=Dp+i-1) _ . _ Ck,iz(M”‘l) = Ck,iy(i)

= CM+(k—1)p+i—17
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fori=1,...,pand k > 0 where C}; = Hf;ol CM+ip+i—1- Hence z ~ y>. If
y is periodic, then there are ¢ > 1 and non periodic 31 € T'S(C) such that
y =y7%. Hence z ~ y5°.

(iii) Assume that z € S(CN)®* y € S(CN)® for k,1 > 1 and (), ..., z(*)),
(y(l),...,y(l)) are standard tensor components of x and y in Definition
2.2 (iv). Furthermore we assume k > [. If k = al + b for a > 0 and
0<b<I-1. By (i), 2z ~ y>. By definition of equivalence, there are L and
{ea}n>1 C U(1) such that 0+ = ¢y UHD) — ¢ g (H1+L) —
iy D, a D) — e ) pBbEIHL) — () (L) — (0
From this, 20 HHE) = ¢ era (D) p(UH2+0) — ) e (IHFD) - 4 s peri-
odic when k > I. Therefore k = [. Then 215 = ¢y gk = ¢ 4(R),
From this, o”(z) = 2D & @ p(BHL) = (c1--- Ck;)y(l) R ® y(k) =cy
where ¢ = ¢ -+ ¢, € U(1). Hence = ~ cy.

(iv) Denote z = (2() and y = (y™). Assume z ~ y. Then there are L and
{e,} C U(1) such that 2"+ = ¢, 4™ for n > M. Because y is eventually
periodic, there are p, M’ and {c;l} C U(1) such that y("*7) = c/ny(”) for each
n > M'. Hence z("tL+p) — cn+py("+p) = cn+pc;1y(”) = Ecnﬂ,c;lz(”JrL) for
n>M = max{M, M /}. Hence z is eventually periodic. This contradicts
against the choice of z. Therefore z % y. O

We consider the value of the inner product among S(C)®" as vectors
in (CM)®" for n > 1.

Lemma A.2. If x ~ y, then there are L > 0, M > 1 and {Cy} C U(1)
such that x[k] = cy[k + L] for each k > M.

Proof. By assumption, there are L > 0, M > 1 and {c¢;} C U(1) such
that z*¥) = ¢py*+E) for each k > M. Hence z[k] = 2V @ - @ z*) =
(cyMt N @ - @ (epy*HE)) = Crylk] where Cp = ¢; - - - ¢, for k > 1. O

Lemma A.3. (i) For z,y € S(CN)>®, z ~ y if and only if there are non
negative integers L and M such that | < z D) |y > | =1 for each
n > M where z = (2) and y = (y™).

(ii) For z € S(CN)*®, 2 is eventually periodic if and only if there are
positive integers p and M such that | < z("tP)[2(") > | = 1 for each
n > M where z = (2(™).

(iii) If z,y € S(CN)>® and z + y, then there is a positive integer M such
that | < z2MyM) > | < 1 where z = (™) and y = (y™).

Proof. Two unit vectors in a vector space with inner product are lin-
early dependent if and only if the absolute value of the inner product of
them are 1. By Definition 2.2, (i) and (ii) follow immediately. (iii) is a
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corollary of (i). O

Lemma A.4. If z € S(CN)™® is non eventually periodic, then there is a
positive integer M such that | < z[k]|z[k] > | < 1 when k,k > M and
k4K,

Proof. For L > 1, put y = o%(z). Because z is non eventually peri-
odic, y ¢ z. By Lemma A.3 (ii), we have the statement. O

Lemma A.5. (i) If z,y € S(CN)>® are not equivalent, then z and o(y)
are not equivalent, too.
(ii) For each z = (2™),>; € S(CN)*® and {c, € C: |cy| = 1,n > 1} C
U(1), 2 = (cn2™)p>1 is equivalent to z.

Proof. By Definition 2.2, they hold immediately. O

Lemma A.6. (i) If z,y € S(CN)>® are not equivalent, then
lim < z[n]ly[n+p] >=0

n—oo

for each p > 0 where < z[n]|y[n] > is the inner product of vectors z[n],
y[n] in (CNV)®F and z[n] is the symbol in (2.2).
(i) If z € S(CN)>® is non eventually periodic, then

lim < z[n]|z[n + p] >=0
for each p > 1.

Proof. (i) Denote z = (2(™) and y = (y™).

We show p = 0 case at first. By Lemma A.3 (iii), there is M > 1 such
that | < 2 |y(M) > | < 1. We denote My = M. If | < 2|y > | =1
for each n > Mj, then this contradicts z % y by Lemma A.3 (i). Hence
there is My > Mj such that | < 2(M2)|y(M2) > | < 1. In this way, we can
takes a monotone increasing sequence (My,),eN of positive integers such that
| < z2Mn)|y(Mn) > | < 1 for each n > 1. From this, 0 < | < z[M,]|y[M,] >
| =] <20y > || < 2(0Mn) |y (Mn) > | < T, | < 2(Mi) | (Mr) > | < 1,
Clearly, | < z[My1]ly[Mni1] > | < | < 2[M,]|y[M,] > | for each n > 1.
Therefore lim,, .o | < z[n]|ly[n] > | < limp—oo | < 2[My]|y[My] > | = 0.
Hence we have p = 0 case.

By Lemma A5 (i), z ¢ y = oP(y) for each p > 0. Hence

lim < z[n]y[n +p] >= lim < z[n]|y’[n] >= 0.

(ii) By Lemma A.3, we can obtain a monotone increasing sequence (M, ),eN
of positive integers such that | < z[My41]|2[Mpt14p] > | < | < z[M,]|2[Mp+
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p] > | < 1 for each n > 1. Hence the assertion is verified. O

A.2. Properties of s(z). Recall notations in § 3.

Lemma A.7. (i) s(ey) = sy =sj, - -85, for J = (j1,...,jk) € {1,...,N}*
for k> 1.

(ii) A map s from TS(CYN) to IsoOy is a homomorphism as semigroup,
that is, s(2®y) = s(2)s(y) for z,y € TS(CN) where IsoOy is the semi-
group of all isometries in Oy. Specially, s(z[k]) = s(z(1) - s(z*)) for
z=(z") e S(CV)>, k> 1.

(iii) For z € S(CM)®" and y € S(CN)®™, n,m > 1,

<zly>1 (n=m)
s(2)s(y) =4 <zly>s(yp)  (n<m,y=y @y, y € S(CV)FN),

< z1ly > s(z2)* (n>m, z =2 ® 29, 21 € S(CV)®™),

(iv) Let z = (21,...,2n) € S(CN). If g = (gi;) € U(N) satisfies gj1 = 2;
for j=1,...,N, then we have s(z) = ay4(s1).

Proof. (i),(ii),(iii) follow by simple computation.
(iv) s(2) = z181 + -~ + 2nSN = g1151 + - + gN15N = ag(s1). O

Lemma A.8. (i) If z,y € S(CN)>® are not equivalent, then
Jim [[s(=[k])"s(y[k])]| = 0.
(ii) If z € S(CN)> is non eventually periodic, then
Jim [s(z[k])"s(=[k + p])]| = 0
for each p > 1.
Proof. (i) By Lemma A.7 (iii), s(z[k])*s(ylk]) =< z[k]|ly[k] > I.

Hence |[|s(z[k])*s(y[k])|| = | < z[k]lylk] > | for K > 1. By Lemma A.6
(i), the assertion holds.
(ii) By Lemma A.6 (ii), the statement holds. O

Appendix B. Lemmata on GP representations

B.1. Cycles. The following lemma is shown in [10]. We show this here for
convenience again. Recall Definition 3.2 (i).

Lemma B.1. Let (H,7,Q) = GP(2) for z = 210 @ ... @ 2P ¢ §(CN)®p
forp>1. Put Q; = n(s(zU+1)) ... 5(zP))Q forj=0,...,p—1. If z is non
periodic, then {Qj}gfl is an orthonormal family.
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Proof. We identify 7(s;) and s; here. We see ||Q;|| = 1 for j =
0,...,p—1. Put o(y) = @@ @y® @yD for y = yV @ ... @ yP
S(CN)®P and z; = o’(2) for j = 0,...,p — 1. Then s(z2;)Q; = € for
j=0,...,p—1. From this, < ;|Q; >=< z;|z; >< ;|Q}; >. Furthermore
< Q| >=< zi]z; >"< ] > for each n € N. By Schwarz inequality,
| <] > | < | < z|z; > |" If 2 is non periodic and @ # j, | < z|z; > |"
goes to 0 when n — oco. Hence < €;|Q; >= 0 when i # j. ]

Lemma B.2. Let z € S(CN)®P for p > 1. Then the followings hold:
(i) Force U(1), GP(cz) = GP(2) o Ya/p-
(ii) Any two elements in {GP(cz)}ecy(1) are mutually inequivalent.

Proof. Assume (H,7,Q) = GP(z).
(i) Put 7" = m0ya/5. Then 7' (s(c2))Q = ¢ {m(7m/(5(2)))Q} = en(E(s(2)))Q =
Q. Because 7 is cyclic, too, (H, 7 ,Q) = GP(cz).
(ii) For ¢,¢ € U(1), ¢z ~ ¢ z if and only if ¢ = ¢. Hence the statement
holds by Theorem 5.3. O

B.2. Chains.

Lemma B.3. Let (H,7) be a representation of On and z € S(CN)>.
Assume that there is a unit vectors Q0 € ‘H such that Q) satisfies the chain
condition with respect to z in Definition 3.1 (ii). Then the followings hold:
(1) m(s)Q =< eglz[k] > Q for J € {1,...,N}* and k > 1 where Qy =
m(s(z[k])*)Q for k > 1.
(ii) A subspace Hy = Lin < {n(s;)Q, : J € {1,...,N}*, n € Z} > of
T(ON)QY is dense in T(On)Q.

Proof. (i) By definition, Q) = 7(s(z[k]))S2 for k > 1. By Lemma A.7
(iii), w(s%)Q = w(s%)m(s(2[k])) QU = w(s%s(2[k])) QU =< e1]2[k] > Q.
(ii) Ho = Lin < {m(sys%)2: I,J € {1,...,N}*} > is dense in 7(On)Q. By
(i), Ho C Hi. Hence H; is dense in 7(On)S2. O

Lemma B.4. Let (H,7,Q) = GP(z) for non eventually periodic z € S(CN)>®.
If <v|Q2 >=0, then

nlirgo m(s(z[n])*v = 0.

Proof. By Lemma B.3 (ii), it is sufficient to show the case v = s;Q,
forJ € {1,...,N}*andn € Z. Assume J € {1,...,N}Fforl > 0. Fork > I,
y B = ;@200 ... @ (=D ¢ §(CN)®k, Hence y = (y)) € S(CN)*.
From this, m(s(z[n])*v =< z[k]|y[k] > Qu4r—1. Hence ||7(s(z[n])*v|| = | <
z[k]|ly[k] > |. By Lemma A.6 (ii), we have the assertion. O
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Lemma B.5. Let (H,n,Q) = GP(z) for non eventually periodic z € S(CN)>
If vg € H satisfies < vo|Q ># 0, then there is ¢ € C, ¢ # 0 such that

Jim 7(s(z[n]) {s(z[n])}*)vo = .

Proof. We simply denote 7(s;) and s; here. Assume ¢ =< Qvg ># 0
and put v = vg — 2. Then we have

Is(2n]) {s(2[n])}" vo — s(zn]) {s(z[n])}" (V|| < lIs(z[n]) {s(zIn])}" |-

By < Qv >= 0 and Lemma B.4,

Jim s(z[n]) {s(z[n])} vo = lim_ s(z[n]) {s(z[n])}" (c£2).
Since s(z[n]) {s(z[n])}" () = cs(2[n])Qn = ¢, we have the assertion. O

Appendix C. Lemmata for Theorem 5.3

Lemma C.1. Let (H,n) be a representation of Oy and z,y € S(CN)>®
Assume that there are unit vectors Q and Q' in 'H such that Q and
satisfy the chain condition with chains {Q, Ynen and {Q, Ynen with respect
to z and y in Definition 3.1 (ii), respectively. Then we have the followings:
(1) If z £y, then < QQ" >= 0.
(ii) If z £ y, then < Qi|Q;, >= 0 for each k,1 > 1.
(i) If {Qn}nen and {Q,}nen are orthogonal, then < m(sr)Q|m(s;)Q; >=
0 for each I,J € {1,...,N}* and k,l > 1.

Proof. (i) By Lemma 4.1, < Q|Q" >=< z[k]jy[k] >< Q|Q; > for
each k > 1. By Schwarz inequality and Lemma A.6 (i), | < Q| >| < | <
z[k]|y[k] > | — 0 when k — co. Hence < QQ >= 0.

(ii) For each k,l > 1, Q; and €, satisfy chain conditions with respect to
o"(z) and o'(y). Because z % y, we see o¥(2) £ o'(y). By (i), we have the
assertion.

(iii) If [I| = |J|, then < 7(sp)Q|m(s7) >= 617 < Q|Q >= 0 by
(). If 1| = K +10 >k = |[J|, ' > 1, then < w(s))Q|m(s,)Q >=
5[1J < W(SIQ)Q]C‘Q; >. Hence < 7T(S]2)Qk|92 >=< 512\y[l + 1,1+ k‘l] ><

|9, ,, >= 0 by (ii). O

Lemma C.2. Let (H,n) be a representation of Oy and z,y € S(CN)>®
Assume that there are unit vectors Q and Q' in H which satisfy the chain
condition with respect to z and y, and {Q,} and {Q,} are their chains,
respectively. If {Q,} and {Q,} are mutually orthogonal, then m(On)Q and
7 (On)Q are orthogonal each other.
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Proof. By Lemma B.3 (ii), Lin < {mw(s;)Q: J € {1,...,N}*} > and
Lin < {7’ (s5)Q : J € {1,...,N}*} > are dense in 7(On)Q and 7 (On)Q,
respectively. By Lemma C.1 (iii), the assertion holds. O

Lemma C.3. (i) Let z € S(CN)*®. Then GP(c’(2)) = GP(2) for each
L>0.
(ii) For z € S(CN)*® and {c,} c U(1), put y = (y™)pen € S(CV)>® by
Y™ = ¢,z . Then GP(y) ~ GP(z).

Proof. (i) Let (H,m, ) = GP(z). Then {n(s(z[k])*)Q2 : k > 1}
is an orthonormal family. Hence {n(s(z[k + L])*)Q : k > 1} is, too.
Hence (H,n, () satisfies the chain condition of GP(o(z)). By Theorem
5.1, GP(c%(2)) ~ GP(z).

(ii) Let (H,m,Q) = GP(z). By Lemma A.2, there is {Cy} C U(1) such
that z[k] = Cjy[k] for each k > 1. Hence 7(s(y[k])*)Q = 7 (s(Crz[k])*)Q =
Crm(s(z[k])*)Q. Therefore {m(s(y[k])*)2: k > 1} is an orthonormal family
in H. Hence (H, 7 ,Q?) = GP(y). By Theorem 5.1, GP(y) ~ GP(z). O
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