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We introduce a class of endomorphisms of the Cuntz al-
gebras which are defined by polynomials of generators. We
show their classification under unitary equivalence by help of
permutative representations.

1. Introduction

1.1. Main theorem. In usual, the irreducible decomposition of a repre-
sentation of an operator algebra does not make sense because there is no
uniqueness of such decomposition in general. This fact disturbs an intention
to study an ordinary representation theory of operator algebras like that of
semisimple Lie algebras and quantum groups. In spite of this, permutative
representations of the Cuntz algebra ON ([3, 5, 6]) are completely reducible
and their irreducible decompositions are unique up to unitary equivalences.
Roughly speaking, there are two kinds of (cyclic)permutative representa-
tions, “cycle” and “chain”. This remarkable property assists to characterize
endomorphisms of ON , too, in the following way: For N ≥ 2, let s1, . . . , sN

be generators of ON and {1, . . . , N}k ≡ {(jl)k
l=1 : jl = 1, . . . , N, l = 1, . . . , k}

for k ≥ 1.

Theorem 1.1. For a permutation σ on {1, . . . , N}k, k ≥ 1, let ψσ be an
endomorphism of ON defined by

(1.1) ψσ(si) ≡ uσsi (i = 1, . . . , N)

where uσ ≡
∑

J∈{1,...,N}k sσ(J)(sJ)∗ and sJ ≡ sj1 · · · sjk
when J = (j1, . . . , jk).

If (H, π) is a permutative representation, then (H, π ◦ψσ) is, too. Specially,
if (H, π) has only cycles, then (H, π ◦ ψσ) does, too.

Theorem 1.1 assures the completely reducibility of (H, π ◦ ψσ) for any per-
mutative representation (H, π) and any permutation σ.

The first aim of this article is a preparation of tools of analysis of
endomorphisms of ON by representations.

e-mail:kawamura@kurims.kyoto-u.ac.jp.
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1.2. Origin of study of endomorphisms. Endomorphisms of operator
algebras are studied in fields of operator algebras and quantum field theory([2,
7, 8, 9, 10]) for aims of computation and construction of the indices of sub-
algebras, and formulation of super selection sectors. In these theories, we are
interest in concrete endomorphisms of ON which are defined by polynomials
of generators s1, . . . , sN and their conjugates. For example, we showed the
branching law of representations of the CAR algebra which are associated
with endomorphisms of ON in [1]. In fact, ψσ in (1.1) is not only an endo-
morphism of ON but also that of UHFN = OU(1)

N because ψσ is covariant
with respect to the gauge action of ON . This tame class of endomorphisms
of ON , N ≥ 2, was obtained by generalizing the following endomorphism ρν

of O3:

(1.2)





ρν(s1) ≡ s1s2s
∗
3 + s2s3s

∗
1 + s3s1s

∗
2,

ρν(s2) ≡ s2s1s
∗
3 + s3s2s

∗
1 + s1s3s

∗
2,

ρν(s3) ≡ s1s1s
∗
1 + s2s2s

∗
2 + s3s3s

∗
3.

N.Nakanishi found ρν in (1.2) by trial and error([18]). (Reader can check
that three elements ρν(s1), ρν(s2), ρν(s3) satisfy the relations of generators
of O3. Therefore they define an endomorphism ρν of O3.) Such wild type
of endomorphism of C∗-algebra is beyond someone’s reach by well known
method because there is no general assumption from index theory and quan-
tum field theory. In other words, we need new approach for ρν which depends
on just the definition of ρν . Fortunately, we develop tools of analysis of ρν

and show the following:

Theorem 1.2. ρν in (1.2) is a unital ∗-endomorphism of O3 which is irre-
ducible, that is, ρν(O3)

′ ∩O3 = CI and not an automorphism. Specially, ρν

is not unitarily equivalent to the canonical endomorphism of O3.

In this way, we can construct many naive nontrivial examples of en-
domorphisms of ON systematically as ψσ in (1.1). The second aim of this
article is an introduction of our studies of endomorphisms and a notion of
sector of C∗-algebras in the next work([16]). For this purpose, we show ele-
mentary examples and naive methods of classification of endomorphisms of
ON . After discovery of ρν in (1.2), we studied the following endomorphisms
of O2.

Theorem 1.3. Put E2,2 the set of ψσ in (1.1) by a permutation σ on a set
{1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}. Then the followings hold:

(i) The number of unitary equivalence classes of elements in E2,2 is 16.
(ii) G2 ≡ AutO2∩E2,2 is a subgroup of the automorphism group AutO2 of

O2 which is isomorphic to the Klein’s four-group. G2 consists of two
outer, and two inner automorphisms.
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(iii) E2,2 \ G2 consists of 10 irreducible and 10 reducible endomorphisms.
Numbers of equivalence classes in them are 5 and 9, respectively. Spe-
cially, the (class of)canonical endomorphism of O2 belongs to the set
of reducible classes in E2,2.

For example, the following irreducible endomorphisms ρ, ρ̄, η of O2 are in
E2,2 \G2:

ρ(s1) ≡ s12,1 + s11,2, ρ(s2) ≡ s2,

ρ̄(s1) ≡ s21,1 + s12,2, ρ̄(s2) ≡ s11,1 + s22,2,

η(s1) ≡ s22,1 + s11,2, η(s2) ≡ s21,1 + s12,2

where sij,k ≡ sisjs
∗
k for i, j, k = 1, 2.(ρ and ρ̄ are “conjugate” each other in

a sense of super selection sector. We show relations among ρ, ρ̄, η in [17].)
Endomorphisms in Theorem 1.3 are called the second order permutative en-
domorphisms of O2(§ 6-1 [1]). They play an important role in representation
theory of CAR algebra.

In § 2, we prepare branching function systems and transformation of
them by permutations. In § 3, we review the permutation representation of
ON . In § 4, we introduce a generalization of ρν and E2,2 for ON for N ≥ 2,
that is, ψσ in (1.1), and show Theorem 1.1. In § 5, we prove Theorem 1.2
and Theorem 1.3 as examples of Theorem 1.1.

2. Action of permutations on branching function systems

We introduce several sets of multi indices which consist of numbers 1, . . . , N
for N ≥ 2. Put

{1, . . . , N}∗ ≡
∐

k≥0

{1, . . . , N}k, {1, . . . , N}∗1 ≡
∐

k≥1

{1, . . . , N}k,

{1, . . . , N}0 ≡ {0}, {1, . . . , N}k ≡ {(jl)k
l=1 : jl = 1, . . . , N, l = 1, . . . , k}

for k ≥ 1. For J ∈ {1, . . . , N}∗, the length |J | of J is defined by |J | ≡
k when J ∈ {1, . . . , N}k, k ≥ 0. For J1, J2 ∈ {1, . . . , N}∗, J1 ∪ J2 ≡
(j1, . . . , jk, j

′
1, . . . , j

′
l ) when J1 = (j1, . . . , jk) and J2 = (j

′
1, . . . , j

′
l ). Specially,

we define J ∪ {0} = {0} ∪ J = J for J ∈ {1, . . . , N}∗ and (i, J) ≡ (i) ∪ J
for convention. For J = (j1, . . . , jk) ∈ {1, . . . , N}k and τ ∈ Zk, denote
τ(J) = (jτ(1), . . . , jτ(k)).

Definition 2.1. (i) J = (j1, . . . , jk) ∈ {1, . . . , N}k is periodic if there is
τ ∈ Zk \ {0} such that τ(J) = J .
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(ii) For J1, J2 ∈ {1, . . . , N}∗1, J1 ∼ J2 if there are k ≥ 1 and τ ∈ Zk such
that J1, J2 ∈ {1, . . . , N}k and τ(J1) = J2.

2.1. Branching function systems. Let Λ be an infinite set and N ≥ 2.

Definition 2.2. f = {fi}N
i=1 is a branching function system on Λ if fi is

an injective transformation on Λ for i = 1, . . . , N such that a family of their
images coincides a partition of Λ.

A branching function system was introduced by [3] in order to study rep-
resentation of ON . It is convenient to construct concrete examples of rep-
resentations easily. It is possible to consider branching function systems
on any set with infinite cardinality. About the measure theoretical gen-
eralization of branching function system, see [15]. We often treat cases
Λ = N ≡ {1, 2, 3, . . .},Z. Put BFSN (Λ) the set of all branching function
systems on Λ. For f = {fi}N

i=1 ∈ BFSN (Λ), we denote fJ ≡ fj1 ◦ · · · ◦ fjk

when J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1, and define f0 ≡ id.

Definition 2.3. Let f = {fi}N
i=1 ∈ BFSN (Λ).

(i) For x, y ∈ Λ, x ∼ y(with respect to f) if there are J1, J2 ∈ {1, . . . , N}∗
and z ∈ Λ such that fJ1(z) = x and fJ2(z) = y.

(ii) For x ∈ Λ, denote Af (x) ≡ {y ∈ Λ : x ∼ y}.
(iii) f is cyclic if there is an element x ∈ Λ such that Λ = Af (x).
(iv) For k ≥ 1, R = {n1, . . . , nk} ⊂ Λ is a k-cycle of f if nl 6= nl

′ when
l 6= l

′
and there is J ∈ {1, . . . , N}k such that fjl

(nl) = nτ(l) for l =
1, . . . , k where τ is a shift on Zk.

(v) R = {nl}l∈N ⊂ Λ is a chain of f if nl 6= nl
′ when l 6= l

′
and there is

{jl ∈ {1, . . . , N} : l ∈ N} such that f−1
jl

(nl) = nl+1 for l ∈ N.
(vi) f has a k-cycle(chain) if there is a k-cycle(resp. chain) of f in Λ.

Specially, we call simply that f has a cycle if f has a k-cycle some
k ≥ 1.

The definition of cyclicity of branching function system is corresponded with
that of representation of ON . In order to treat the decomposition of repre-
sentations, we prepare the followings:

Definition 2.4. Let Ξ be a set.
(i) For a branching function system f [ω] = {f [ω]

i }N
i=1 on an infinite set

Λω for ω ∈ Ξ, f is the direct sum of {f [ω]}ω∈Ξ if f = {fi}N
i=1 is a

branching function system on a set Λ ≡ ∐
ω∈Ξ Λω which is defined by

fi(n) ≡ f
[ω]
i (n) when n ∈ Λω for i = 1, . . . , N and ω ∈ Ξ.

(ii) For a branching function system f ∈ BFSN (Λ), f = ⊕ω∈Ξf [ω] is a
decomposition of f into a family {f [ω]}ω∈Ξ if there is a family {Λω}ω∈Ξ

of subsets of Λ such that f is the direct sum of {f [ω]}ω∈Ξ.
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Proposition 2.5. Let f = {fi}N
i=1 ∈ BFSN (Λ).

(i) There is a decomposition Λ =
∐

ω∈Ξ Λω such that #Λω = ∞, f |Λω ≡
{fi|Λω}N

i=1 ∈ BFSN (Λω) and f |Λω is cyclic for each ω ∈ Ξ.
(ii) Assume that f is cyclic. Then there is only one case in the followings:

a) f has just one cycle. b) f has just one chain where we identify two
chains R = {nl ∈ Λ : l ∈ N} and R

′
= {ml ∈ Λ : l ∈ N} when there

are M,L ≥ 0 such that nl+L = ml for each l > M .

Proof. See Appendix A. ¤

Definition 2.6. (i) For J ∈ {1, . . . , N}k, k ≥ 1, f ∈ BFSN (Λ) is P (J) if
f is cyclic and has a cycle R = {n1, . . . , nk} such that fJ(nk) = nk.

(ii) For N ≥ 2, f = {fi}N
i=1 ∈ BFSN (Λ1) and g = {gi}N

i=1 ∈ BFSN (Λ2) are
equivalent if there is a bijection ϕ from Λ1 to Λ2 such that ϕ◦fi◦ϕ−1 =
gi for i = 1, . . . , N .

By Proposition 2.5, Definition 2.6 (i) makes sense. In this article, we treat
only cycle case.

Lemma 2.7. Let Λ1 and Λ2 be infinite sets.

(i) If f = {fi}N
i=1 ∈ BFSN (Λ1) and ϕ is a bijection from Λ1 to Λ2, then

ϕ ◦ f ◦ ϕ−1 ≡ {ϕ ◦ fi ◦ ϕ−1}N
i=1 ∈ BFSN (Λ2).

(ii) If f = {fi}N
i=1 ∈ BFSN (Λ1) with a cycle R and ϕ is a bijection from

Λ1 to Λ2, then ϕ(R) is a cycle of ϕ ◦ f ◦ ϕ−1.
(iii) Let f ∈ BFSN (Λ1) and g ∈ BFSN (Λ2). Assume that there are J1, J2 ∈

{1, . . . , N}∗1 such that f is P (J1) and g is P (J2). Then f and g are
equivalent if and only if J1 ∼ J2.

Proof. (i) By checking the condition of branching function system for
ϕ ◦ f ◦ ϕ−1, we have the assertion.
(ii) By direct computation, we have the statement.
(iii) Let R and R

′
be cycles of f and g

′
, respectively.

If f and g are equivalent, then there is a bijection ϕ from Λ1 to Λ2 such
that ϕ◦fi◦ϕ−1 = gi for i = 1, . . . , N . By (ii) and ϕ◦fJ1 ◦ϕ−1 = gJ1 , ϕ(R) is
a cycle of g such that ϕ(R) satisfies cycle condition of g by J1. Furthermore
ϕ(R) = R

′
by Proposition 2.5 (ii). From this, we see J1 ∼ J2.

Assume J1 ∼ J2. Then we have a map ϕ0 from R to R
′

such that
ϕ0 ◦ f ◦ϕ−1

0 = g on R
′
. Because of cyclicity of f on Λ1 and that of g on Λ2,

we can extend ϕ0 to a map ϕ such that ϕ◦f ◦ϕ−1 = g. Therefore f ∼ g. ¤

In order to show the completely reducibility about the action of permu-
tative endomorphisms on permutative representations(Theorem 1.1, Theo-
rem 4.11), we use the order structure of a set Λ = N.
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Lemma 2.8. Let f = {fi}N
i=1 be a branching function system on N. If

there is a subset C of N such that fi(C) ⊂ C and fi is strictly monotone
increasing on C for each i = 1, . . . , N , then f has neither cycle nor chain
in C.

Proof. Assume that f has a cycle R in C. Put n0 the minimum
number in R. Then there are i ∈ {1, . . . , N} and m ∈ R such that
fi(m) = n0 < m. This contradicts the assumption of f . Hence f has
no cycle in C. In the same way, we see that f has no chain in C, too. ¤

Lemma 2.9. Let f = {fi}N
i=1 be a branching function system on N. Assume

that there is a subset C ⊂ N such that

(2.1) fi(C) ⊂ C, fi(n) = N(n− 1) + i (n ∈ C)

for i = 1, . . . , N . Then the followings hold:

(i) For n ∈ C, N l+k + 1 ≤ fJ(n) ≤ N l+k+1 when J ∈ {1, . . . , N}l, l ≥ 1
and Nk + 1 ≤ n ≤ Nk+1.

(ii) For J, J
′ ∈ {1, . . . , N}∗1 and n ∈ C, fJ(n) < fJ

′ (n) when |J | < |J ′ |.
(iii) f has neither cycle nor chain in C.

Proof. (i) Note that f1(N l +1) = N l+1 +1 and fN (N l) = N l+1 when
N l, N l +1 ∈ C. Because f1(n) ≤ fi(n) ≤ fN (n) for i = 1, . . . , N and n ∈ C,
fJ(n) ≥ f l

1(N
k + 1) = Nk+l + 1, fJ(n) ≤ f l

N (Nk+1) = Nk+l+1.

(ii) Assume Nk + 1 ≤ n ≤ Nk+1. By (i), fJ(n) ≤ N |J |+k+1 ≤ N |J ′ |+k <

N |J |′+k + 1 ≤ fJ
′ (n).

(iii) By Lemma 2.8, it holds. ¤

2.2. Transformation of branching function systems. Let SN,k be the
set of all bijective transformations on {1, . . . , N}k for k ≥ 1. Put a bijec-
tive map κ from {1, . . . , N}k to a set ΣNk ≡ {1, 2, 3, . . . , Nk − 1, Nk} by
κ(i1, . . . , ik) ≡

∑k
l=1 Nk−l(il−1)+1. We often identify SN,k and the (sym-

metric)group SNk of all permutations on ΣNk by corresponding σ ∈ SN,k

and κ ◦σ ◦κ−1 ∈ SNk . Specially, κ = id on {1, . . . , N} = ΣN . By a natural
identification SN,k and a subset SN,k × {id} of SN,k+1, k ≥ 1, we can
consider SN,∗ ≡ lim→ k

SN,k.

For σ ∈ SN,k and f = {fi}N
i=1 ∈ BFSN (Λ), put f (σ) = {f (σ)

i }N
i=1 ∈

BFSN (Λ) by

(2.2) f
(σ)
i ≡ fσ(i) (k = 1), f

(σ)
i (fJ(n)) ≡ fσ(i,J)(n) (k ≥ 2)

6



for n ∈ Λ, i = 1, . . . , N and J ∈ {1, . . . , N}k−1. For σ ∈ SN,∗, define a
transformation Φσ on BFSN (Λ) by

(2.3) Φσ(f) ≡ f (σ) (f ∈ BFSN (Λ)).

Remark Φσ ◦ Φσ′ 6= Φσ◦σ′ in general.

Lemma 2.10. Let J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1 and σ ∈ SN =
SN,1. If f ∈ BFSN (Λ) is P (J) in Definition 2.6, then f (σ) is P (Jσ−1).
where Jσ−1 ≡ (σ−1(j1), . . . , σ−1(jk)).

Proof. Let {nj}k
j=1 ⊂ Λ be unique cycle of f such that fjl

(nl) = nτ(l)

for l = 1, . . . , k. Then f
(σ)
σ−1(jl)

(nl) = fσ(σ−1(jl))(nl) = fjl
(nl) = nτ(l) for

l = 1, . . . , k. Hence {nj}k
j=1 is a cycle of f (σ), too. From this, the assertion

holds. ¤

Lemma 2.11. Let f = {fi}N
i=1 be a branching function system on N. As-

sume that there is a subset C of N which satisfies (2.1).

(i) For σ ∈ SN,l, l ≥ 2, f
(σ)
i in (2.2) is strictly monotone increasing on

Ĉ ≡ ⋃
J∈{1,...,N}l−1 fJ(C) for i = 1, . . . , N .

(ii) In (i), f (σ) has neither cycle nor chain in Ĉ.

Proof. (i) By definition of f
(σ)
i and Lemma 2.9 (ii), f

(σ)
i (fJ(n)) =

fσ(i,J)(n) > fJ(n) for n ∈ C, J ∈ {1, . . . , N}l−1. Therefore f
(σ)
i (m) > m for

each m ∈ Ĉ.
(ii) By definition and the choice of C, f

(σ)
j (Ĉ) ⊂ Ĉ for each j = 1, . . . , N .

By (i) and Lemma 2.8, the statement holds. ¤

Next we show concrete examples of branching function system on N
and its transformation by permutations.

Lemma 2.12. For J ∈ {1, . . . , N}∗1, define a branching function system
f = {fi}N

i=1 on N defined as follows: When J = (j) ∈ {1, . . . , N}, put

fi(1) ≡





i + 1 (1 ≤ i < j),

1 (i = j),

i (j ≤ i ≤ N),

fi(n) ≡ N(n− 1) + i (n ≥ 2)

7



for i = 1, . . . , N . When J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 2, put

fi(1) ≡





k + i (1 ≤ i < j1),

k (i = j1),

k + i− 1 (j1 ≤ i ≤ N),

fi(l) ≡





k + (N − 1)(l − 1) + m (1 ≤ i < jl),

l − 1 (i = jl),

k + (N − 1)(l − 1) + i− 1 (jl ≤ i ≤ N),

fi(n) ≡ N(n− 1) + i

for l = 2, . . . , k, n ≥ k + 1 and i = 1, . . . , N . Then the followings hold:

(i) f is P (J).
(ii) For σ ∈ SN,l, l ≥ 1, f (σ) has no chain.
(iii) For σ ∈ SN,l, l ≥ 1, f (σ) is decomposed into a finite direct sum of

cycles.

Proof. (i) Note {fi(n) : i = 1, . . . , N, n = 1, . . . , k} = {1, . . . , Nk}
and {fJ

′ (1) : J
′ ∈ {1, . . . , N}∗} = N. Furthermore fJ(k) = k. Hence the

assertion holds by definition of P (J).
(ii) Let C ≡ {n ∈ N : n ≥ k + 1}. Then f satisfies (2.1). Hence f (σ) has
neither cycle nor chain in Ĉ = {n ∈ N : n ≥ N l−1k+1} by Lemma 2.11 (ii).
Because N \ Ĉ = {1, . . . , N l−1k} is a finite set, f (σ) has no chain in N \ Ĉ.
Therefore f (σ) has no chain in N.
(iii) By (ii) and Proposition 2.5 (i), f (σ) is decomposed into a direct sum of
cyclic branching function systems with cycle. By proof of (ii), if f (σ) has a
cycle, then it is in {1, . . . , N l−1k}. Hence f (σ) has finite number of cycles in
N at most. Therefore the statement holds. ¤

Theorem 2.13. For J ∈ {1, . . . , N}∗, |J | ≥ 1, let f be P (J) on an infinite
set Λ. Then for each σ ∈ SN,l, l ≥ 1, f (σ) is a direct finite sum of cycles.

Proof. Let f be P (J). Then the assumption of cyclicities of f on Λ,
Λ is countable. Hence we can take a bijection ϕ from Λ to N such that f
is equivalent to a branching function system f

′ ≡ ϕ ◦ f ◦ ϕ−1. By Lemma
2.12 and Lemma 2.7 (iii), the statement holds. ¤
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3. Permutative representations

For N ≥ 2, let ON be the Cuntz algebra([4]), that is, it is a C∗-algebra
which is universally generated by generators s1, . . . , sN satisfying

(3.1) s∗i sj = δijI (i, j = 1, . . . , N), s1s
∗
1 + · · ·+ sNs∗N = I.

In this paper, any representation and endomorphism are assumed unital and
∗-preserving. By simplicity and uniqueness of ON , it is sufficient to define
operators S1, . . . , SN on an infinite dimensional Hilbert space which satisfy
(3.1) in order to construct a representation of ON . In the same reason, it
is sufficient to define elements T1, . . . , TN in ON which satisfy (3.1) in order
to construct an endomorphism of ON .

Put α an action of a unitary group U(N) on ON defined by αg(si) ≡∑N
j=1 gjisj for i = 1, . . . , N . Specially we denote γw ≡ αg(w) when g(w) = w·

I ⊂ U(N) for w ∈ U(1) ≡ {z ∈ C : |z| = 1}. We denote UHFN = {x ∈ ON :
γw(x) = x, w ∈ U(1)}. For multiindices J = (j1, . . . , jk) ∈ {1, . . . , N}k, we
denote sJ = sj1 · · · sjk

and s∗J = s∗jk
· · · s∗j1 .

In order to consider properties of endomorphisms of ON , we review
the permutative representations of ON . The permutative representation was
introduced by [3, 5, 6]. We generalize and give another characterization of
them in [11, 12, 13, 14]. In this article, we treat only cyclic permutative
representation with cycle.

Definition 3.1. (i) (H, π) is a permutative representation of ON if there
are a complete orthonormal basis {en}n∈Λ of H and a branching func-
tion system f = {fi}N

i=1 on Λ such that π(si)en = efi(n) for n ∈ Λ and
i = 1, . . . , N .

(ii) (H, π) is a generalized permutative(=GP) representation of ON with
cycle by J ∈ {1, . . . , N}k, k ≥ 1 if there is a cyclic unit vector Ω ∈
H such that π(sJ)Ω = Ω and {π(sj1 · · · sjl

)Ω : l = 1, . . . , k} is an
orthonormal family in H. We denote P (J) = (H, π,Ω) simply.

(iii) (l2(Λ), πf ) is the permutative representation of ON by f = {fi}N
i=1 ∈

BFSN (Λ) if πf (si)en ≡ efi(n) for n ∈ Λ and i = 1, . . . , N .

(i) in Definition 3.1 contains non-cyclic cases. (ii) is another characterization
of cyclic case in (i). (iii) is a realization of (i) by branching function system.
In Definition 3.1 (ii), we use a symbol P (J) for representation again because
such definition is justified in later.

Recall Definition 2.1 about multiindices.

Theorem 3.2. (i) Any permutative representation is completely reducible.
(ii) For each J ∈ {1, . . . , N}∗1, P (J) exists and unique up to unitary equiv-

alences. Furthermore, P (J) is a permutative representation.
(iii) For J ∈ {1, . . . , N}∗1, P (J) is irreducible if and only if J is non peri-

odic.
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(iv) For J1, J2 ∈ {1, . . . , N}∗1, P (J1) ∼ P (J2) if and only if J1 ∼ J2.

Proof. Note P (J) = GP (εJ) in [11] where {εi}N
i=1 is the canonical

coordinate of CN and εJ = εj1 ⊗ · · · ⊗ εjk
when J = (j1, . . . , jk).

(i) This follows from [3, 5, 6].
(ii) The existence is shown in Proposition 3.4 in [11]. If J is non periodic,
then the uniqueness is shown in Proposition 5.4 in [11]. If J is periodic, the
uniqueness is shown in Corollary 5.6 (v) in [12].

In § 4 in [11], we construct a canonical basis of P (J) = GP (εJ). By
this basis, P (J) satisfies the condition of permutative representation.
(iii) The irreducibility is proved in Proposition 5.5 in [11].
(iv) This is shown in Proposition 5.11 in [11]. ¤

By Theorem 3.2 (i), it is sufficient for a statement about P (J) to shown by
a suitable concrete representation which is P (J).

The characterization of permutative representations are given by ter-
minology of branching function systems.

Proposition 3.3. Let f be a branching function system on an infinite set
Λ.

(i) If g is a branching function system on an infinite set Λ
′

such that
f ∼ g, then (l2(Λ), πf ) ∼ (l2(Λ

′
), πg).

(ii) If f is cyclic, then (l2(Λ), πf ) is cyclic.
(iii) If f is P (J), then (l2(Λ), πf ) is P (J), too.
(iv) If f = f (1) ⊕ f (2) and Λ = Λ1 t Λ2 is the associated decomposition,

then (l2(Λ), πf ) ∼ (l2(Λ1), πf (1))⊕ (l2(Λ2), πf (2)).

Here ∼ means the unitary equivalence of representations.

Proof. (i) Put ϕ a bijection from Λ to Λ
′
such that ϕ ◦ f ◦ ϕ−1 = g.

Let Uϕ be a unitary from l2(Λ) to l2(Λ
′
) naturally defined from ϕ. Then we

see AdUϕ ◦ πf = πg.
(ii) For J, J

′ ∈ {1, . . . , N}∗, we see πf (sJs∗
J
′ )en = e(fJ◦f−1

J
′ )(n) for n ∈ Λ.

Hence the statement holds.
(iii) If R is a cycle in Λ, then {en ∈ l2(Λ) : n ∈ R} is an orthonormal family
which satisfies the condition of P (J). By (ii) and this, the statement holds.
(iv) By definition of the direct sum decomposition of branching function
system and πf , it holds. ¤
However it is not sufficient to show properties of a representation (l2(Λ), πf )
by using only those of a branching function system f , a branching function
system is convenient to study of representation of ON .
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4. Permutative endomorphisms

4.1. General properties of endomorphisms of C∗-algebras. In order
to classify endomorphisms of C∗-algebras, we prepare several notions about
properties of endomorphisms. Assume that EndA is the set of all unital
∗-endomorphisms of a unital ∗-algebra A and ρ, ρ1, ρ2 ∈ EndA in this sub-
section.

Definition 4.1. (i) ρ is proper if ρ(A) 6= A.
(ii) ρ is irreducible if ρ(A)

′ ∩ A = CI.
(iii) ρ is reducible if ρ is not irreducible.
(iv) ρ1 and ρ2 are equivalent if there is a unitary u ∈ A such that ρ2 =

Adu ◦ ρ1. In this case, we denote ρ1 ∼ ρ2.

Of course an automorphism is a special endomorphism, but we are mainly
interest in an endomorphism which is not an automorphism. Hence the
notion of “proper” is important and we treat an automorphism as a trivial
endomorphism. The notion of “reducible” is more reasonably explained in
[17]. One of the aim of study of endomorphisms is an analogy of repre-
sentation theory. The minimal object of endomorphism is an “irreducible”
endomorphism. In [17], we show the analogy of tensor product, irreducible
decomposition and representation ring of endomorphisms.

Immediately, we have the followings without topological argument:

Lemma 4.2. (i) If ρ1 is proper and ρ2 is not proper, then ρ1 6∼ ρ2.
(ii) If ρ1 is irreducible and ρ2 is not irreducible, then ρ1 6∼ ρ2.
(iii) If ρ is an automorphism, then ρ is irreducible and not proper. If A is

simple, ρ is an automorphism if and only if ρ is not proper.

Our method of study of endomorphism is a practical use of representa-
tion. By using representation, we can look endomorphisms more closely and
easily in some situation. Let RepA be the set of all unital ∗-representations
of A. We simply denote π for (H, π) ∈ RepA,

Lemma 4.3. (i) Assume that A is simple. If there is π ∈ RepA such that
π is irreducible and π ◦ ρ is irreducible, too, then ρ is irreducible.

(ii) Assume that A is simple. If there is π ∈ RepA such that π is irreducible
and equivalent to π ◦ ρ, then ρn ≡ ρ ◦ · · · ◦ ρ︸ ︷︷ ︸

n

, n ≥ 1, is irreducible.

(iii) If there is π ∈ RepA such that π ◦ ρ1 and π ◦ ρ2 are not unitarily
equivalent, then ρ1 6∼ ρ2.

(iv) If there is π ∈ RepA such that π is irreducible and π ◦ ρ is not irre-
ducible, then ρ is proper.

(i) By assumption, π1 ≡ π◦ρ is irreducible. CI = π1(A)
′
= π(ρ(A))

′ ⊃
π(ρ(A))

′ ∩ π(A). Therefore π(ρ(A)
′ ∩ A) = π(ρ(A))

′ ∩ π(A) = CI. On the
other hand, ρ is injective since A is simple. Therefore ρ(A)

′ ∩ A = CI.
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(ii) By assumption, there is a unitary u on H such that π ◦ ρ = Adu ◦ π.
Therefore π ◦ ρn = (Adu)n ◦ π. Because (Adu)n ◦ π is irreducible and (i),
the assertion holds for each n ≥ 1.
(iii) For ρ1, ρ2 ∈ EndA, if ρ1 ∼ ρ2, then π ◦ρ1 ∼ π ◦ρ2. Hence the statement
holds.
(iv) For an irreducible representation, if ρ(A) = A, then π ◦ ρ is irreducible.
Hence the assertion holds. ¤

4.2. Definition of permutative endomorphisms. Consider the follow-
ing canonical inclusions:

(4.1) SNk ⊂ U(Nk) ⊂ MNk(C) ⊂ UHFN = OU(1)
N ⊂ ON

where SNk is the symmetric group with order Nk. We identify SNk and
SN,k the set of all bijective transformations on {1, . . . , N}k for k ≥ 1 by the
method in § 2.2. The inclusion of SN,k

∼= SNk into ON in (4.1) is defined
by

(4.2) σ 7→ uσ =
∑

J∈{1,...,N}k

sσ(J)s
∗
J .

Definition 4.4. For σ ∈ SN,k, ψσ ∈ EndON is defined by

ψσ(si) ≡ uσsi (i = 1, . . . , N).

ψσ is called the permutative endomorphism of ON by σ where uσ is in (4.2).

Reader can check that {ψσ(si)}N
i=1 satisfies (3.1). By the first paragraph

in § 3, ψσ is an endomorphism of ON . There are many other methods of
construction of endomorphism of ON ([1]). We treat only this type in this
article.

Put the following sets:

(4.3) EN,k ≡ {ψσ ∈ EndON : σ ∈ SN,k} (k ≥ 1).

Note #EN,k = Nk!. Before a complete characterization of ψσ by σ, we
aspire a goal to classify elements in EN,k for concrete N and k.

Immediately, we see the followings:

Proposition 4.5. (i) If σ = id, then ψid = id on ON .
(ii) If σ ∈ SN , then ψσ is an automorphism of ON which satisfies ψσ(si) =

sσ(i) for i = 1, . . . , N .
(iii) If σ ∈ SN,2 is defined by σ(i, j) ≡ (j, i) for i, j = 1, . . . , N , then ψσ is

the canonical endomorphism of ON .
(iv) γz ◦ ψσ = ψσ ◦ γz for each z ∈ U(1) and σ ∈ SN,∗.
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When σ, η ∈ SN = SN,1, then ψσ ◦ ψη = ψσ◦η. However

ψσ ◦ ψη 6= ψσ◦η

for σ ∈ SN,k, η ∈ SN,l, k, l ≥ 1, (k, l) 6= (1, 1) in general. In order to
consider the composition ψσ ◦ ψη, we introduce a new product on a set of
permutations. When M ≥ m, for F ∈ SN,m, define Fj ∈ SN,M by

(4.4) F1 ≡ F × idM−m, Fj ≡ idj−1 × F × idM−m−j+1

for 2 ≤ j ≤ M −m + 1.

Proposition 4.6. (product rule) For σ ∈ SN,k and η ∈ SN,l, k, l ≥ 1,
define σ ∗ η ∈ SN,k+l−1 by

(4.5) σ ∗ η ≡




σ ◦ η1 (l = 1),

σ1 ◦ (Ad(σ2 ◦ · · · ◦ σl)) (η1) (l ≥ 2)

where σ1, . . . , σl and η1 are in SN,k+l−1 which are defined by (4.4) with
respect to σ and η. Then σ ∗ (η ∗ ζ) = (σ ∗ η) ∗ ζ and the followings hold:

(4.6) Φσ ◦ Φη = Φσ∗η,

(4.7) ψσj = ψσ (j = 1, . . . , l),

(4.8) ψσ ◦ ψη = ψσ∗η

where Φ is in (2.3). Specially (SN,∗, ∗) is a semigroup and ψσ ◦ ψη = ψσ◦η
when k = l = 1.

Proof. The associativity of ∗-product and (4.6) can be checked by
(4.5). (4.7) holds by (3.1). By checking both sides of (4.8), it follows by
definition of ∗-product and ψσ and ψη. The compatibility between inclusion
SN,k ↪→ SN,k+1, k ≥ 1, and ∗-product is verified directly. ¤

We see EN,k ⊂ EN,k+1 for each k ≥ 1 by (4.7) when l = 2. From this,
we can define EN,∗ ≡ lim→ k

EN,k. Recall SN,∗ in § 2.2. Although SN,∗ is

a semigroup by ordinary composition of transformations, it is important to
consider another product “ ∗ ” in (4.5) on SN,∗ in the following sense:

Corollary 4.7. (SN,∗, ∗) and (EN,∗, ◦) are isomorphic as a semigroup with
unit.

Proof. By Proposition 4.6, σ 7→ ψσ is a homomorphism between
(SN,∗, ∗) and (EN,∗, ◦). Because ψσ = ψη if and only if uσ = uη, the
injectivity of a map ψ is checked. ¤
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The meaning of (4.5) is illustrated as follows:
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(σ2 ◦ · · · ◦ σl)−1

σ2 ◦ · · · ◦ σl

1 2 l k l + k − 1

1 2 l k l + k − 1

where we use an electronic circuit-like figure by explaining a permutation on
the set {1, . . . , N}k, k ≥ 1. There are k wirings and σ ∈ SN,k as a part of
the electronic circuit changes the input signals into the output. σ ∗ η means
a king of composition of two circuits σ and η. From top down, the electronic
signal is changed by this integrated circuit.

In § 4.1, we introduce equivalence and irreducibility of endomorphisms
of C∗-algebras. In this sense, we consider the following problem:

Problem 4.8. For N, k ≥ 2, classify elements in EN,k. More concretely,
solve the following questions:

(i) When is ρ ∈ EN,k proper ?
(ii) When is ρ ∈ EN,k irreducible ?
(iii) When are ρ, ρ

′ ∈ EN,k equivalent ?

Since we are interest in proper endomorphisms of ON , we neglect the case
k = 1 by Proposition 4.5 (ii). We solve Problem 4.8 by using permutative
representation in § 3. By fixing N ≥ 2 and k ≥ 2, we check elements in EN,k

individually.

4.3. Action of permutative endomorphisms on permutative rep-
resentations. For a representation (H, π) and an endomorphism ρ of ON ,

14



(H, π◦ρ) is a representations, too. That is, an endomorphism brings a trans-
formation of representation. In order to show the properties of permutative
endomorphisms, we consider this transformation.

Recall BFSN (Λ) in § 2.1.

Lemma 4.9. Let Λ be an infinite set. For σ ∈ SN,k, k ≥ 1, and f ∈
BFSN (Λ), let (l2(Λ), πf ) be in Definition 3.1 (iii) and f (σ) in (2.2). Then
we have πf ◦ ψσ = πf (σ).

Proof. By definition, we can directly check (πf◦ψσ)(si)en = πf (σ)(si)en

for n ∈ Λ and i = 1, . . . , N . ¤

Theorem 4.10. (i) If ρ is a permutative endomorphism and (H, π) is a
permutative representation of ON , then π ◦ ρ is a permutative repre-
sentation, too.

(ii) If ρ is a permutative endomorphism of ON , then the restriction of any
permutative representation on a subalgebra ρ(ON ) ⊂ ON is completely
reducible.

Proof. (i) By Lemma 4.9, it holds immediately.
(ii) Because any permutative representation is completely reducible, it holds
from (i). ¤

Theorem 4.11. If (H, π) is P (J) for J ∈ {1, . . . , N}∗1 and σ ∈ SN,l,
l ≥ 1, then there are a finite family {Jσ,i}M

i=1 ⊂ {1, . . . , N}∗1 and a family
{(Hi, πi)}M

i=1 of subrepresentations of (H, π ◦ ψσ) such that

(4.9) (H, π ◦ ψσ) =
M⊕

i=1

(Hi, πi)

and (Hi, πi) is P (Jσ,i) for i = 1, . . . , M .

Proof. By definition, (H, π) is equivalent to (l2(N), πf ) for a suitable
branching function system on N. Hence we identify (H, π) and (l2(N), πf ).
By Lemma 4.9, πf ◦ψσ = πf (σ) . By Theorem 2.13, the statement holds. ¤

In consequence, Theorem 1.1 is proved. From this and uniqueness of
irreducible decomposition of permutative representations, it is worth to con-
sider the branching law of an endomorphism on a representation and char-
acterization of an endomorphism by its branching law. We simply denote
(4.9) as

(4.10) P (J) ◦ ψσ =
M⊕

i=1

P (Jσ,i).
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Specially, if σ ∈ SN = SN,1, then P (J) ◦ ψσ = P (Jσ−1) by Lemma 2.10.
Roughly speaking, we can say that a permutative endomorphism transforms
cycles to cycles.

Problem 4.12. For σ ∈ SN,∗ and J ∈ {1, . . . , N}∗1, find {Jσ,i}M
i=1 ⊂

{1, . . . , N}∗1 in (4.10).

The solution of Problem 4.12 is the branching law of ψσ. We show concrete
examples of Theorem 4.11 in § 5 and treat the subject about branching law
in [16] for real.

5. Examples

5.1. Properties of ρν. Recall ρν in (1.2) and § 4.2.

Proposition 5.1. (i) ρν is in E3,2.
(ii) If α is an action of Z3 on O3 defined by ατ (si) ≡ sτ(i) for i = 1, 2, 3

and τ ∈ Z3, then ατ ◦ ρν = ρν for each τ ∈ Z3.
(iii) ρν is proper.

Proof. (i) Put σ0 a transformation on {1, 2, 3}2 defined by the follow-
ing:

(5.1) σ0 :




(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)


 7→




(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)
(1, 1) (2, 2) (3, 3)


 .

Then we see ρν = ψσ0 .
(ii) By definition of ρν in (1.2), we can check the assertion directly.
(iii) By (ii), ατ (ρν(x)) = ρ(x). for each x ∈ O3 and τ ∈ Z3. Hence
ρν(O3) ⊂ Oα

3 ≡ {x ∈ O3 : ατ (x) = x, for each τ ∈ Z3} 6= O3. There-
fore ρν is proper. ¤

In order to show Theorem 1.2, we prepare a permutative representation
of O3. Recall Definition 3.1.

Lemma 5.2. Let σ0 be in (5.1) and f = {f1, f2, f3} a branching function
system on N defined by

f1(1) ≡ 2, f1(2) ≡ 5, f2(1) ≡ 4, f2(2) ≡ 1, f3(1) ≡ 3, f3(2) ≡ 6,

fi(n) ≡ 3(n− 1) + i (i = 1, 2, 3, n ≥ 3).
Then the followings hold:

(i) (l2(N), πf ) in Definition 3.1 (iii) is equivalent to P (12) of O3.
(ii) f (σ0) has neither cycle nor chain in {n ∈ N : n ≥ 7}.

Proof. (i) Note (f1◦f2)(2) = 2 and {fJ(2) : J ∈ {1, 2, 3}∗} = N. From
these, πf (s1s2)e2 = e2 and e2 is a cyclic vector of (l2(N), πf ). Therefore
(l2(N), πf , e2) is P (12).
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(ii) Let C ≡ {n ∈ N : n ≥ 3}. By Lemma 2.11, f (σ0) has neither cycle nor
chain in Ĉ = ∪3

j=1fj(C) = {n ∈ N : n ≥ 7}. ¤

Proposition 5.3. P (12) ◦ ρν = P (113223).

Proof. Put (l2(N), πf ) in Lemma 5.2. By Lemma 5.2 (i), it is sufficient
to show that (l2(N), πf◦ρν) is P (113223). Because πf◦ρν = πf◦ψσ0 = πf (σ0) ,

compute the value of hi ≡ f
(σ0)
i on a subset {1, . . . , 6} ⊂ N for i = 1, 2, 3.

Then we have the following:

n h1(n) h2(n) h3(n)
1 12 16 5
2 8 15 4
3 13 1 9
4 17 3 10
5 6 7 14
6 2 11 18

From this, we can find the following cycle by h = {h1, h2, h3}:
(5.2) 1 h37→ 5 h17→ 6 h17→ 2 h37→ 4 h27→ 3 h27→ 1.

Therefore f
(σ0)
(113223)(2) = h(113223)(2) = 2. From this, (πf ◦ ψσ0)(sJ)e2 = e2.

By Lemma 5.2 (ii), any n ≥ 7 belongs to K ≡ {f (σ0)
J (m) : m = 1, . . . , 6, J ∈

{1, 2, 3}∗}. Hence N = K and there is no cycle except (5.2). Because πf ◦ρν

is cyclic and has a cycle (5.2), (l2(N), πf ◦ ρν) is P (113223). ¤

Corollary 5.4. ρν is irreducible.

Proof. Note that both P (12) and P (113223) are irreducible because
(12) and (113223) are non periodic. By Lemma 4.3 (i) and Proposition 5.3,
the statement holds. ¤

From these, Theorem 1.2 is proved.

5.2. Classification of E2,2. We show the complete classification of ele-
ments in E2,2 in (4.3). A classification of E2,2 in the point of view from
quantum field theory is already shown by [1]. Note #E2,2 = 22! = 24. De-
spite of small number of elements of E2,2, E2,2 contains sufficiently various
examples of non trivial inequivalent endomorphisms of O2. By the map κ
in § 2.2, we identify between {1, 2, 3, 4} and {(1, 1), (1, 2), (2, 1), (2, 2)} by
κ−1(1) = (1, 1), κ−1(2) = (1, 2), κ−1(3) = (2, 1), κ−1(4) = (2, 2). For
σ ∈ S4, we identify σ and κ−1 ◦σ ◦κ. Denote sij,k ≡ sisjs

∗
k for i, j, k = 1, 2.

We show the classification of 24 endomorphisms of O2 in E2,2. First,
we introduce a rough classification of them by the following:
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Table 5.5. (Elements in E2,2)

ψσ ψσ(s1) ψσ(s2) property Adu ◦ ψσ

ψid s1 s2 inn.aut ψ(14)(23)

ψ12 s12,1 + s11,2 s2 irr.end ψ1324

ψ13 s21,1 + s12,2 s11,1 + s22,2 irr.end ψ1432

ψ14 s22,1 + s12,2 s21,1 + s11,2 red.end ψ14

ψ23 s11,1 + s21,2 s12,1 + s22,2 red.end ψ23

ψ24 s11,1 + s22,2 s21,1 + s12,2 irr.end ψ1234

ψ34 s1 s22,1 + s21,2 irr.end ψ1423

ψ123 s12,1 + s21,2 s11,1 + s22,2 red.end ψ243

ψ132 s21,1 + s11,2 s12,1 + s22,2 red.end ψ132

ψ124 s12,1 + s22,2 s21,1 + s11,2 red.end ψ124

ψ142 s22,1 + s11,2 s21,1 + s12,2 irr.end ψ134

ψ134 s21,1 + s12,2 s22,1 + s11,2 irr.end ψ142

ψ143 s22,1 + s12,2 s11,1 + s21,2 red.end ψ143

ψ234 s11,1 + s21,2 s22,1 + s12,2 red.end ψ234

ψ243 s11,1 + s22,2 s12,1 + s21,2 red.end ψ123

ψ1234 s12,1 + s21,2 s22,1 + s11,2 irr.end ψ24

ψ1243 s12,1 + s22,2 s11,1 + s21,2 red.end ψ1243

ψ1324 s2 s12,1 + s11,2 irr.end ψ12

ψ1342 s21,1 + s11,2 s22,1 + s12,2 red.end ψ1342

ψ1423 s22,1 + s21,2 s1 irr.end ψ34

ψ1432 s22,1 + s11,2 s12,1 + s21,2 irr.end ψ13

ψ(12)(34) s12,1 + s11,2 s22,1 + s21,2 out.aut ψ(13)(24)

ψ(13)(24) s2 s1 out.aut ψ(12)(34)

ψ(14)(23) s22,1 + s21,2 s12,1 + s11,2 inn.aut ψid

where “inn.aut”, “out.aut”, “irr.end” and “red.end” mean an inner auto-
morphism, an outer automorphism, a proper irreducible endomorphism and
a proper reducible endomorphism, respectively, and u ≡ s1s

∗
2 + s2s

∗
1.

We prove Table 5.5 step by step. The column of Adu ◦ψσ follows from
direct computation. From this, there are 16 unitary equivalence classes at
most in E2,2. Because notions “inn.aut”, “out.aut”, “irr.end” and “red.end”
are preserving unitary equivalence, it is sufficient for the column of property
to representative elements of 16 endomorphisms ψσ for σ =

id, (12), (13), (14), (23), (24), (34), (123), (132), (124), (142), (143), (234),
(1243), (1342), (12)(34).

We see the following immediately:

Lemma 5.6. Let V4 ≡ {id, (12)(34), (13)(24), (14)(23)} ⊂ S4 be the Klein’s
four-group. Then G2 ≡ {ψσ : σ ∈ V4} is a family of automorphisms of O2.
Specially ψσ ◦ ψη = ψσ◦η for each σ, η ∈ V4.
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Hence it is sufficient to consider only 14 endomorphisms ψσ except σ =
(id), (12)(34). The results of branching law of ψσ in (4.10) are followings:

Table 5.7.
ψσ P (1) ◦ ψσ P (2) ◦ ψσ P (12) ◦ ψσ

ψid P (1) P (2) P (12)
ψ(12)(34) P (2) P (1) P (12)

ψ12 P (12) P (1)⊕ P (2) P (1122)
ψ13 P (2) P (2) P (11)
ψ24 P (1) P (1) P (22)
ψ34 P (1)⊕ P (2) P (12) P (1122)
ψ142 P (12) P (12) P (11)⊕ P (22)
ψ14 P (22) P (11) P (12)⊕ P (12)
ψ23 P (1)⊕ P (1) P (2)⊕ P (2) P (12)⊕ P (12)
ψ123 P (1)⊕ P (2) P (1)⊕ P (2) P (12)⊕ P (12)
ψ124 P (22) P (1)⊕ P (1) P (1212)
ψ132 P (11) P (2)⊕ P (2) P (1212)
ψ143 P (2)⊕ P (2) P (11) P (1212)
ψ234 P (1)⊕ P (1) P (22) P (1212)
ψ1243 P (2)⊕ P (2) P (1)⊕ P (1) P (12)⊕ P (12)
ψ1342 P (11) P (22) P (12)⊕ P (12)

These branching laws are computed as the case may be in the same way with
ρν in § 5.1. For example, we show the sketch of proof about P (2) ◦ ψ12 =
P (1) ⊕ P (2). For a branching function system f = {f1, f2} on N which is
P (2) defined by lhs of Table 5.8, its transformation f (12) = {f (12)

1 , f
(12)
2 } by

σ = (12) is rhs of Table 5.8 where the symbol ∗ means a suitable number

in N. We see that there are two cycles 1
f
(12)
27→ 1 and 2

f
(12)
17→ 2 in the table

of f (12). From this, we see that πf ◦ ψ12 is P (1) ⊕ P (2). By uniqueness of
P (1), P (2), this shows P (2) ◦ ψ12 = P (1)⊕ P (2).

Table 5.8.
n f1(n) f2(n)
1 2 1
2 3 4
∗ ∗ ∗

n f
(12)
1 (n) f

(12)
2 (n)

1 3 1
2 2 4
∗ ∗ ∗

Lemma 5.9. (i) All equivalence classes in E2,2 is

(5.3)



[ψσ] : σ =

id, (12), (13), (14), (23), (24), (34),
(123), (132), (124), (142), (143), (234),
(1243), (1342), (12)(34)





where [ψσ] = {ρ ∈ E2,2 : ρ ∼ ψσ}.
(ii) ψσ is proper except σ = id, (12)(34).
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(iii) If σ ∈ {(12), (13), (24), (34), (142)}, then ψσ is irreducible.

Proof. (i) Because any two branching laws in Table 5.7 are different,
they are inequivalent each other by Lemma 4.3 (iii).
(ii) Note that all of P (11), P (22), P (1212) is reducible by Theorem 3.2 (iii).
Any ψσ in (5.3) except σ = id, (12)(34) transforms one of irreducible rep-
resentations P (1), P (2), P (12) to reducible one. By Lemma 4.3 (iv), the
assertion holds.
(iii) For each σ = (12), (13), (24), (34), (142), we see that there is a repre-
sentation π of O2 in {P (1), P (2), P (12)} such that π ◦ψσ is irreducible. By
Lemma 4.3 (i), the statement holds. ¤

By the proof of Lemma 5.9, we see that branching law is an excellent tool
to understand the difference among many endomorphisms at a glance.

Lemma 5.10. Any element in

{ψσ ∈ E2,2 : σ = (14), (23), (123), (124), (132), (143), (234), (1243), (1342)}
is reducible.

Proof. Put u1 ≡ s1s
∗
1 + s2s

∗
2, u2 ≡ δ1δ

∗
1 + δ2δ

∗
2, δ1 ≡ 2−1/2(s1 − s2),

δ2 ≡ 2−1/2(s1 + s2). Then we see that ψσ(s1) and ψσ(s2) commute u1

for σ = (23), (123), (1243) and ψσ(s1) and ψσ(s2) commute u2 for σ =
(14), (124), (132), (143), (234). Furthermore ψ1342 = α ◦ ψ14 for α ∈ AutO2,
α(s1) ≡ s2, α(s2) ≡ s1. Since u1, u2 are self adjoint, they belong to
ψσ(O2)

′ ∩ O2, respectively. Hence the statement holds. ¤

In consequence, the column of property in Table 5.5 is proved. Toward
Problem 4.8, we put the following “homework” for readers:

Problem 5.11. (i) Classify elements in E3,2 in (4.3). Note #E3,2 = 32! =
362880. The cardinality of E3,2 is too many to classify by the same
method for E2,2. How many is the number of irreducible proper endo-
morphisms in E3,2? How many is the number of equivalence classes in
E3,2?

(ii) For ρν in (1.2), characterize an inclusion

ρν(O3) ⊂ O3

by index theory of C∗-algebras. We show this answer and compute
fusion rules about elements in E2,2 in [17].

Acknowledgement: We would like to thank N. Nakanishi for an excellent
present to us. Our study had never happen without his discovery. Every-
thing started from ρν in (1.2).

20



Appendix A. Proof of Proposition 2.5

(i) For x ∈ Λ, f is a cyclic branching function system on Λx ≡ Af (x). For
x, y ∈ Λ, if Af (x) ∩ Af (y) 6= ∅, then Af (x) = Af (y). We see that x ∼ y
is equivalent to Af (x) = Af (y). In this way, ∼ is an equivalence relation
on Λ and we can choose {xω}ω∈Ξ ⊂ Λ such that Λ =

∐
ω∈Ξ Af (xω) and

Af (xω) 6= Af (xω′ ) when ω 6= ω
′
where Ξ ≡ Λ/∼.

(ii) Assume that f has a cycle R ⊂ Λ. For x, y ∈ Λ, we call that there
is a path from x to y when there is J ∈ {1, . . . , N}∗ such that fJ(x) = y.
Note there is no incoming path into R because of injectivity of fi for each
i = 1, . . . , N . If f has another cycle R

′ ⊂ Λ, then there is a finite path
in Λ from R to R

′
by f because f is cyclic. However this is forbidden

because there is no incoming path into both R and R
′
from outside of them.

Therefore there is no cycle except R.
Assume that f has no cycle. Fix x ∈ Λ. By definition of branching

function system, there are unique j ∈ {1, . . . , N} and y ∈ Λ, such that
fj(y) = x. Denote j1 ≡ j and y1 ≡ y. For y1, we can take a pair (j2, y2)
such that fj2(y2) = y1 in the same way. In this way, we have {jl}l∈N and
Sx ≡ {yl}l∈N. If yl = yl

′ for l 6= l
′
, then, there is a cycle in R. Therefore

yl 6= yl′ when l 6= l
′
. Hence f has a chain R. If f has another chain R

′
, then

there is only one path from R and R
′
in Λ because f is cyclic and f has no

cycle. Therefore R and R
′
are identified in the statement of proposition. In

consequence, the assertion is verified.
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