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Introduction

The goal of the present manuscript is to consider the following question	

To what extent can the fundamental group of a Galois category be con�
structed in a canonical fashion which is independent of a choice of
basepoint�

Put another way
 we would like to consider the extent to which the elements �consid�
ered
 say
 up to conjugation� of the fundamental group may be assigned canonical
names
 or labels�

In x�
 x�
 we consider this issue from a very general point of view� That
is to say
 we develop the general theory of �anabelioids� 
 i�e�
 �multi�Galois
categories� in the terminology of �SGA��
 with an eye to giving an answer to this
question� We use the new terminology �anabelioid�
 partly because it is shorter
than ��multi��Galois category�
 and partly because we wish to emphasize that we
would like to treat such objects from a fundamentally di�erent point of view from
the point of view taken in �SGA��	 Namely
 we would like to regard anabelioids as
the primary geometric objects of interest
 which themselves form a category �i�e�

not as a category containing as objects the primary geometric objects of interest��

Our main result in x�
 x�
 is Theorem �����
 which states that	

When an anabelioid possesses a �faithful quasi�core	 �cf� De�nition ������

then its fundamental group may be constructed in a canonical fashion as
a pro
nite group�

The notion of a �quasi�core� is motivated by the notion of a �hyperbolic core	 �cf�
�Mzk���� The condition for a quasi�core states
 roughly speaking
 that a certain
�forgetful functor	 from a category of geometric objects equipped with some special
auxiliary structure to the category of the same geometric objects not equipped with
this auxiliary structure is
 in fact
 an equivalence� Indeed
 this general pattern of
considering such forgetful functors which are
 in fact
 equivalences is an important
theme in the present manuscript �cf� De�nition �����
 as well as Theorem �������
One elementary example of this sort of phenomenon 
 which was
 in fact
 one of
the main motivations for the introduction of the notion of a �quasi�core� 
 is the
following example from elementary complex analysis	

Motivating Example� Metrics on Hyperbolic Riemann Surfaces� A
connected Riemann surface is called hyperbolic if its universal covering is biholomor�
phic to the upper half plane� An arbitrary Riemann surface will be called hyperbolic
if every connected component of this Riemann surface is hyperbolic� Let us write

Lochyp

for the category whose objects are hyperbolic Riemann surfaces and whose mor�
phisms are �etale morphisms �i�e�
 holomorphic maps with everywhere nonvanishing
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derivative�� If X � Ob�Lochyp� is a object of Lochyp
 then we shall refer to the
metric on its tangent bundle determined by the standard Poincar�e metric on the
upper half plane �which is biholomorphic to the universal covering of every con�
nected component of X� as the canonical metric on X� If f 	 X � Y is a morphism

in Lochyp
 then we shall say that this morphism f is integral if the norm of its
derivative �when measured with respect to the canonical metrics on the tangent
bundles of X
 Y � is � �� Let us write

Lochypint � Loc
hyp

for the subcategory whose objects are the objects of Lochyp and whose morphisms are
the integralmorphisms of Lochyp� Then it follows from the �theory of the Kobayashi
hyperbolic metric	 that the natural inclusion functor

Lochypint �� Lochyp

is
 in fact
 an equivalence� At a more concrete level
 one veri�es easily that the
essential substantive fact that one needs to show this equivalence is the well�known
Schwarz lemma of elementary complex analysis �to the e�ect that any holomorphic
function � 	 D � C on the open unit disc D in the complex plane satisfying
���� � �
 j��z�j � � �for all z � D�
 necessarily satis�es j�����j � ��� This lemma
of Schwarz in turn may be regarded as a formal consequence of the well�known
�maximum modulus principle	 of elementary complex analysis�

This example also suggests an interesting relationship between the notions
of uniformization and of canonical labels for elements of the fundamental group	
Namely
 the Koebe uniformization theorem for hyperbolic Riemann surfaces gives
rise to �canonical labels� �up to an ambiguity arising from some sort of conjuga�
tion action� as � by � matrices since it induces an embedding of the topological
fundamental group of the Riemann surface into PSL��R��

This leads us to the content of x�	 In x�
 we discuss the theory of x�
 x�
 in
the case of hyperbolic curves over p�adic and number �elds� In this case
 our main
result 
 Theorem ����
 
 states that	

If a non�proper hyperbolic curve over such a �eld is a �geometric core�
�i�e�
 a core as in �Mzk���
 then its associated anabelioid admits a faithful
quasi�core�

This allows us to assign �canonical names� to the elements of its arithmetic
fundamental group in a fashion reminiscent of the way in which the Koebe uni�
formization theorem allows one to assign �canonical names� to the elements of the
topological fundamental group of a hyperbolic Riemann surface� This main result
is
 in essence
 a formal consequence of Theorem A of �Mzk��
 and may be regarded
as an interpretation of the main result of �Mzk��
 x�
 via the geometry of anabelioids�
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Section �� Notations and Conventions

Numbers�

We will denote by N the set of natural numbers
 by which we mean the set of
integers n � �� A number 
eld is de�ned to be a �nite extension of the �eld of
rational numbers Q�

Topological Groups�

Let G be a Hausdor� topological group
 and H � G a closed subgroup� Let us
write

ZG�H�
def
� fg � G j g � h � h � g� � h � Hg

for the centralizer of H in G�

NG�H�
def
� fg � G j g �H � g�� � Hg

for the normalizer of H in G� and

CG�H�
def
� fg � G j �g �H � g���

�
H has �nite index in H
 g �H � g��g

for the commensurator of H in G� Note that	 �i� ZG�H�
 NG�H� and CG�H� are
subgroups of G� �ii� we have inclusions

H� ZG�H� � NG�H� � CG�H�

and �iii� H is normal in NG�H��

Note that ZG�H�
 NG�H� are always closed in G
 while CG�H� is not neces�
sarily closed in G�

Indeed
 one may construct such an example as follows	 Let

M
def
�
Y
N

Zp

endowed with the product topology �of the various copies of Zp equipped with their
usual topology�� Thus
 M is a Hausdor� topological group� For n � N
 write
Fn�M� � M for the sub�topological group given by the product of the copies
of Zp indexed by m � n� Write AutF �M� for the set of automorphisms of the
topological group M that preserve the 
ltration F ��M� on M � If � � AutF �M�

then for every n � N
 � induces a continuous homomorphism � n 	 M�Fn�M� �
M�Fn�M� which is clearly surjective
 hence an isomorphism �since M�Fn�M� is
pro�nite and topologically �nitely generated 
 cf� �FJ�
 Proposition ������ It

thus follows that � induces an isomorphism Fn�M�
�
� Fn�M�
 hence that the

inverse of � also lies in AutF �M�� In particular
 we conclude that AutF �M� is
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a group� Equip AutF �M� with the coarsest topology for which all of the homo�
morphisms AutF �M� � Aut�M�Fn�M�� �where Aut�M�Fn�M�� �� GLn�Zp� is
equipped with its usual topology� are continuous� Note that relative to this topol�
ogy
 AutF �M� forms a Hausdor� topological group� Now de�ne G to be the semi�
direct product of M with AutF �M� �so G is a Hausdor� topological group�
 and H
to be Y

n�N

pn � Zp �
Y
N

Zp �M

�so H � G is a closed subgroup�� Then CG�H� is not closed in G� For instance

if one denotes by en �

Q
N Zp the vector with a � in the n�th place and zeroes

elsewhere
 then the limit A� �where

A��en�
def
� en � en��

for all n � N� of the automorphisms Am � CG�H� �where Am�en�
def
� en � en�� if

n � m
 Am�en�
def
� en if n � m� is not contained in CG�H��

Curves�

Suppose that g � � is an integer� Then a family of curves of genus g

X � S

is de�ned to be a smooth
 proper
 geometrically connected morphism X � S whose
geometric �bers are curves of genus g�

Suppose that g� r � � are integers such that �g 	 � � r � �� We shall denote
the moduli stack of r�pointed stable curves of genus g �where we assume the points
to be unordered� byMg�r �cf� �DM�
 �Knud� for an exposition of the theory of such

curves� strictly speaking
 �Knud� treats the �nite �etale covering ofMg�r determined

by ordering the marked points�� The open substackMg�r �Mg�r of smooth curves
will be referred to as the moduli stack of smooth r�pointed stable curves of genus g
or
 alternatively
 as the moduli stack of hyperbolic curves of type �g� r��

A family of hyperbolic curves of type �g� r�

X � S

is de�ned to be a morphism which factors X �� Y � S as the composite of an
open immersion X �� Y onto the complement Y nD of a relative divisor D � Y
which is �nite �etale over S of relative degree r
 and a family Y � S of curves of
genus g� One checks easily that
 if S is normal
 then the pair �Y�D� is unique up
to canonical isomorphism� �Indeed
 when S is the spectrum of a �eld
 this fact is
well�known from the elementary theory of algebraic curves� Next
 we consider an
arbitrary connected normal S on which a prime l is invertible �which
 by Zariski
localization
 we may assume without loss of generality�� Denote by S� � S the ��
nite �etale covering parametrizing orderings of the marked points and trivializations
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of the l�torsion points of the Jacobian of Y � Note that S� � S is independent of
the choice of �Y�D�
 since �by the normality of S�
 S� may be constructed as the
normalization of S in the function �eld of S � �which is independent of the choice
of �Y�D� since the restriction of �Y�D� to the generic point of S has already been
shown to be unique�� Thus
 the uniqueness of �Y�D� follows by considering the
classifying morphism �associated to �Y�D�� from S� to the �nite �etale covering of
�Mg�r�Z��

l
� parametrizing orderings of the marked points and trivializations of the

l�torsion points of the Jacobian �since this covering is well�known to be a scheme

for l su�ciently large��� We shall refer to Y �respectively
 D� D� D� as the compact�
i
cation �respectively
 divisor at in
nity� divisor of cusps� divisor of marked points�
of X� A family of hyperbolic curves X � S is de�ned to be a morphism X � S
such that the restriction of this morphism to each connected component of S is a
family of hyperbolic curves of type �g� r� for some integers �g� r� as above�

Next
 we would like to consider �orbicurves	� We shall say that an algebraic
stack is generically scheme�like if it admits an open dense algebraic substack which
is isomorphic to a scheme� Let X be a smooth� geometrically connected� generically
scheme�like algebraic stack of 
nite type over a �eld k of characteristic zero� Then
we shall say that X is an orbicurve if it is of dimension �� We shall say that X is a
hyperbolic orbicurve if it is an orbicurve which admits a compacti�cation X �� X
�necessarily unique�� by a proper orbicurve X over k such that if we denote the
reduced divisor XnX by D � X
 then X is scheme�like near D
 and
 moreover
 the
line bundle �X�k�D� on X has positive degree�

Now suppose that
X

is a hyperbolic orbicurve over a �eld k �of characteristic zero�
 with compacti�cation
X �� X� Let k be an algebraic closure of k� Write

X � X
�

for the �coarse moduli space	 �cf� �FC�
 Chapter I
 Theorem ����� associated to X�

Thus
 X
�
is a smooth
 proper
 geometrically connected curve over k� Denote the

open subscheme of X
�
which is the image of X by X �� Write	

N�
def
� �Nnf�� �g�

�
f
g

Then we shall say that the hyperbolic curve X is of type

�g��r�

if X
�
is of genus g and �r 	 N� � N is the function with �nite support �i�e�
 which is

� away from some �nite subset of N� � de�ned as follows	 �r�
� is the cardinality

of �X
�
nX ���k�� For every positive integer e � N� 
 �r�e� is the cardinality of the

set of k�valued points of X � over which X is �necessarily tamely� rami�ed with
rami
cation index e�
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When k � k
 it is well�known �and easily veri�ed� that the isomorphism class of
the algebraic fundamental group 	��X� is completely determined by the type �g��r��

Categories�

We shall say that two arrows fi 	 Ai � Bi �where i � �� �� in a category C

are abstractly equivalent 
 and write f�
abs
� f� 
 if there exists a commutative

diagram	
A�

�
� A���yf� ��yf�

B�
�
� B�

�where the horizontal arrows are isomorphisms in C��

We shall refer to a natural transformation between functors all of whose com�
ponent morphisms are isomorphisms as an isomorphism between the functors in
question� A functor � 	 C� � C� between categories C�
 C� will be called rigid if �
has no nontrivial automorphisms�

A diagram of functors between categories will be called ��commutative if the
various composite functors in question are rigid and isomorphic� When such a
diagram �commutes in the literal sense� we shall say that it ��commutes� Note
that when a diagram ���commutes	
 it follows from the rigidity hypothesis that
any isomorphism between the composite functors in question is necessarily unique�
Thus
 to state that the diagram ��commutes does not result in any �loss of infor�
mation� by comparison to the datum of a speci
c isomorphism between the various
composites in question�

We shall say that two rigid functors �i 	 Ci � C�i �where i � �� �� the Ci
 C
�
i

are categories� are abstractly equivalent 
 and write ��
abs
� �� 
 if there exists a

��commutative diagram
C�

�
� C���y�� ��y��

C��
�
� C��

�in which the horizontal arrows are equivalences of categories��
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Section �� Anabelioids

x���� The Notion of an Anabelioid

We begin by �xing a �Grothendieck� universe V 
 in the sense of set�theory �cf�

e�g�
 �McLn��� �McLr�
 x�����
 in which we shall work� Also
 let us assume that we

are given a V �small category Ensf of 
nite sets�

Let G be a �V �small� pro
nite group 
 that is to say
 the underlying pro�nite
set of G is an inverse limit of V �sets indexed by a V �set� Then to G
 we may
associate the �V �small� category

B�G�

of �V �small� 
nite sets � Ob�Ensf� with continuous G�action� This category is a�n�
�elementary� topos �in the sense of topos theory�� In fact
 it forms a rather special
kind of topos called a Galois category �cf� �John�� for an exposition of the general
theory of topoi and
 in particular
 of Galois categories� cf� also �SGA��
 Expos�e V��

De�nition ������ We shall refer to as a connected anabelioid any category X
which is equivalent to a category of the form B�G� for some pro�nite group G�

Remark �������� Thus
 a �connected anabelioid� is the same as a Galois category
�as de�ned
 for instance
 in �John��
 p� ���� 
 i�e�
 a �Boolean topos� that admits
an �exact
 isomorphism re�ecting functor� to the category of �nite sets�

Let X be a connected anabelioid� Then recall �cf� �SGA��
 Expos�e V
 x�� the
notion of a fundamental functor


� 	 X � Ensf


 i�e�
 an exact functor� Here
 we recall that an exact functor is a functor that
preserves �nite limits and �nite colimits� Note that �since X is assumed to be a

connected anabelioid� an exact functor 
� 	 X � Ensf is necessarily isomorphism
re�ecting �i�e�
 a morphism � of X is an isomorphism if and only if 
���� is��

Recall
 moreover
 that if X
def
� B�G�
 and 
� 	 B�G� � Ensf is the functor de�ned

by forgetting the G�action
 then G may be recovered
 up to inner automorphism

from X 
 
 as the group	

Aut�
��

Also
 let us recall that any two fundamental functors are isomorphic� Note that
Ensf itself is a connected anabelioid �i�e�
 the result of applying B�	� to the trivial
group�
 so we may think of fundamental functors as �basepoints� in the following
way	
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De�nition ������

�i� If X and Y are connected anabelioids
 then we de�ne amorphism � 	 X � Y
to be an exact functor �� 	 Y � X �cf� �SGA��
 Expos�e V
 Proposition ����� An
isomorphism between connected anabelioids is a morphism whose corresponding
functor in the opposite direction is an equivalence of categories�

�ii� We de�ne a basepoint of a connected anabelioid X to be a morphism 
 	

Ensf � X � If 
 is a basepoint of X 
 then we refer to the group Aut�
� as the
fundamental group 	��X � 
� of �X � 
��

Remark �������� Thus
 the �category of �V �small� connected anabelioids	 is a ��
category �cf�
 e�g�
 �John��
 x���� �McLr�
 Chapter ��� �McLn��
 XII�
 hence requires
special care
 for instance
 when considering composites
 etc� Also
 we remark

relative to the standard terminology of category theory
 that if � 	 X � Y is an
isomorphism �of connected anabelioids�
 it will not
 in general
 be the case that ��

is an isomorphism of categories �i�e�
 an equivalence for which the correspondence
between classes of objects in the two categories is a bijection 
 cf� �McLn��
 IV

x���

Remark �������� Since the isomorphism class of the fundamental group 	��X � 
�
is independent of the choice of basepoint 

 we will also speak of the �fundamental
group 	��X � of X	 when the choice of basepoint is irrelevant to the issue under
discussion�

Remark ������	� Note that a functor �� 	 Y � X which is an equivalence is
always necessarily exact� Thus
 an isomorphism of anabelioids � 	 X � Y is simply
an equivalence �� 	 Y � X in the opposite direction�

Example ����	� Anabelioids Associated to Schemes� Let X be a �V �small�
connected locally noetherian scheme� Then we shall denote by

�Et�X�

the category whose objects are �V �small� �nite �etale coverings of X and whose
morphisms are morphisms of schemes over X� Then it is well�known �cf� �SGA��


Expos�e V
 x�� that �Et�X� is a connected anabelioid�

If G is a pro�nite group
 then we shall use the notation

Aut�G�� Inn�G�� Out�G�
def
� Aut�G��Inn�G�

to denote the group of �continuous� automorphisms �respectively
 inner automor�
phisms� �continuous� outer automorphisms� of G� If H is another pro�nite group
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then we shall write Hom�G�H� for the set of continuous homomorphisms G� H

and

HomOut�G�H�

for the set of continuous outer homomorphisms G � H
 i�e�
 the quotient of
Hom�G�H� by the natural action of H from the right� Also
 we shall write

HomOut�G�H�

for the �V �small� category whose objects are the elements of the set Hom�G�H�
and for which the morphisms

MorHomOut���� ���

from an object �� 	 G� H to an object �� 	 G� H are the elements h � H such
that ���g� � h � ���g� � h

��
 �g � G� Thus
 HomOut�G�H� may be thought of as

the set of isomorphism classes of the category HomOut�G�H��

Proposition ����
� �The �Grothendieck Conjecture� for Connected

Anabelioids� Let X
def
� B�G�� Y

def
� B�H� �where G� H are pro
nite groups�� and


 	 Ensf � X � � 	 Ensf � Y be the tautological basepoints of X � Y� respectively�
determined by the de
nition of the notation �B�	�	� Then�

�i� There is a natural equivalence of categories�

HomOut�G�H�
�
� Mor�X �Y�

which induces a natural bijection�

HomOut�G�H�
�
� Mor�X �Y�

Here� Mor�X �Y� �respectively� Mor�X �Y�� denotes the category �respectively� set
of isomorphism classes� of morphisms X � Y�

�ii� There is a natural bijection�

Hom�G�H�
�
� Morf�X � 
�� �Y � ��g

Here� Morf�X � 
�� �Y� ��g denotes the set of �isomorphism classes of� morphisms
� 	 X � Y such that � � 
 � ��

Proof� Let us �rst consider the situation of ���� Given a homomorphism � 	 G�
H
 composition with � induces a continuous action of G on any �nite set with
continuous H�action� Moreover
 this operation does not a�ect the underlying �nite
set
 so we get an element �Mor � Morf�X � 
�� �Y� ��g� This de�nes the morphism of
���� On the other hand
 given an element � � Morf�X � 
�� �Y � ��g
 it follows from
the de�nitions that � induces a morphism Aut�
� � Aut���� One checks easily
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that this correspondence de�nes a two�sided inverse �well�de�ned up to composition
with an inner automorphism of Aut��� �� H� to the correspondence � 
� �Mor�

Next
 we consider the situation of ���� By the above paragraph
 we get a
morphism

Hom�G�H� � Mor�X �Y�

Let us �rst verify that this morphism is a surjection� Denote by S the pro�object
of Y whose underlying pro�nite set Sset � H and whose H�action is given by the
usual action on Sset � H from the left� Note that the group of automorphisms
AutY�S� of S �as a pro�object of Y� may be identi�ed with H via the action of H
on Sset � H from the right� In fact
 this action of H on S �from the right� endows
S with a structure of �H�torsor object	 of Y� Thus
 if � 	 X � Y is a morphism


then T
def
� ���S� is an H�torsor object of X � If we think of T as a pro�nite set

Tset equipped with a G�action from the left and an H�action from the right
 then
let us observe that
 by �xing some element t � Tset
 we may identify the group of
automorphisms AutH�Tset� of the pro�nite set Tset that commute with theH�action
from the right with H via its action from the left� Here
 we observe that such an
identi�cation

AutH�Tset� �� H

is determined by the choice of a �basepoint� t � Tset
 hence is well�de�ned
 up
to composition with an inner automorphism of H� It thus follows that the action
of G on Tset from the left determines a continuous outer homomorphism G �
AutH�Tset� � H which �cf� the preceding paragraph� gives rise to a morphism
X � Y isomorphic to �� This completes our veri�cation of surjectivity�

Thus
 to complete the proof of ���
 it su�ces to verify that there is a natural
bijection between the set of isomorphisms between the morphisms ��� �� 	 X � Y
arising from two continuous homomorphisms

��� �� 	 G� H

and the subset MorHomOut���� ��� � H� To verify this
 let us observe that if we
pull�back the H�torsor object S of Y �cf� the preceding paragraph� via ��� �� to

obtain H�torsor objects T�
def
� ����S�
 T�

def
� ����S� of X 
 then it is a tautology that

isomorphisms ��
�
� �� are in natural bijective correspondence with isomorphisms

T�
�
� T� of H�torsor objects of X � Thus
 the desired bijection is a consequence of

Lemma ����� below� �

Lemma ����
� �Two�Sided Group Actions� Let

��� �� 	 G� H

be continuous homomorphisms� For i � �� �� denote by Yi a copy of H equipped with
the usual action of H from the right and the action of G determined by composing
the usual action of H from the left with �i� write ti for the copy of ��	 in Yi� Then


 
� h � H
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� where h satis
es 
�t�� � t� �h � determines a bijection from the set of �G�H��

equivariant bijections 
 	 Y�
�
� Y� to the subset MorHomOut���� ��� � H�

Proof� Indeed


t� � h � ���g� � 
�t�� � ���g� � 
�t� � ���g�� � 
�g � t�� � g � 
�t�� � t� � ���g� � h

i�e�
 h ����g� �h
�� � ���g�
 � g � G� Thus
 h �MorHomOut���� ��� � H� Similarly


if �� and �� di�er by composition with an inner automorphism of H de�ned by
an element h � MorHomOut���� ���
 then t� 
� t� � h de�nes a �G�H��equivariant
bijection 

 as desired� �

Remark ����
��� Many readers may feel that Proposition ����� is �trivial� and
�well�known�� The reason that we nevertheless chose to give a detailed exposition
of this fact here is that it represents the essential spirit that we wish to convey
in the term �anabelioid	� That is to say
 we wish to think of anabelioids X as
generalized spaces �which is natural since they are
 after all
 topoi 
 cf� �John���
whose geometry just happens to be �completely determined by their fundamental
groups	 �albeit somewhat tautologically��� This is meant to recall the notion of an
anabelian variety �cf� �Groth��
 i�e�
 a variety whose geometry is determined by its
fundamental group� The point here �which will become clear as the manuscript
progresses� is that	

The introduction of anabelioids allows us to work with both �algebro�
geometric anabelioids	 �i�e�� anabelioids arising from �anabelian� varieties
� cf� Example ������ and �abstract anabelioids	 �i�e�� those which do not
necessarily arise from an �anabelian� variety� as geometric objects on
an equal footing�

The reason that it is important to deal with �geometric objects� as opposed to
groups
 is that	

We wish to study what happens as one varies the basepoint of one of
these geometric objects�

That is to say
 groups are determined only once one 
xes a basepoint� Thus
 it
is di�cult to describe what happens when one varies the basepoint solely in the
language of groups�

Next
 let
� 	 X � Y

be a morphism between connected anabelioids� Write

I� � X
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for the smallest subcategory of X that contains all subquotients of objects in the
essential image of the pull�back functor ��� One veri�es immediately that I� is a
connected anabelioid� Note that the morphism � 	 X � Y factors naturally as a
composite

X � I� � Y

with the property that if we choose a basepoint 
X of X and denote the result�
ing basepoints of I�
 Y
 by 
I� 
 
Y 
 respectively
 then the induced morphisms of
fundamental groups

	��X � 
X �� 	��I�� 
I�� �� 	��Y� 
Y�

are a surjection followed by an injection� Moreover
 we note the following conse�
quence of Proposition �����
 �i�	

Corollary ������ �Automorphism of an Arrow Between Connected
Anabelioids� The set of automorphisms Aut�X � Y� of a ��arrow X � Y between
connected anabelioids is in natural bijective correspondence with the centralizer in
the fundamental group of Y of the image of the fundamental group of X �

De�nition ������

�i� We shall refer to I� as the image of X in Y�

�ii� We shall refer to a morphism � 	 X � Y between connected anabelioids
as a 	��epimorphism �respectively
 	��monomorphism� if the morphism I� � Y
�respectively
 X � I�� is an equivalence�

Now let I be a 
nite set� Assume that for each i � I
 we are given a connected
anabelioid Xi� Write

XI
def
�
Y
i�I

Xi

for the product of the categories Xi� In the terminology of �SGA��
 Expos�e V
 x�

this XI is a �multi�Galois category	� In particular
 XI is a topos�

De�nition ������ Let X be a topos
 and S � Ob�X � an object of X � Write
�X �respectively
 �X � for the initial �respectively
 terminal� object of X � Then any
collection of data

S ��
a
a�A

Sa

�where �X ��� Sa � Ob�X �� the index set A is �nite� will be called a decomposition
of S� The object S will be called connected if the index set of any decomposition
of S has cardinality one� The topos X will be called connected if �X is connected�

Next
 let us observe that	
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The set I and the categories Xi �for i � I�� as well as the equivalence of
categories between XI with the product of the Xi may be recovered entirely
from the abstract category XI �

Indeed
 let us denote �for i � I� the object of XI obtained by taking the product
of �Xi with the �Xj �for j �� i� by �i� Thus
 we obtain a decomposition

�XI �
a
i�I

�i

of the object �XI � Moreover
 this decomposition is clearly maximal with respect
to the partial ordering on decompositions of �XI determined by the �obviously
de�ned� notion of re
nements of decompositions of �XI � Thus
 we see that this
decomposition may be recovered solely from internal structure of the category XI �
In particular
 the 
nite set I may be recovered category�theoretically from the
category XI � Moreover
 the category Xi may be recovered category�theoretically
from the category XI as the subcategory of objects over �i� Finally
 it is clear that
these subcategories determine the equivalence of categories between XI with the
product of the Xi�

De�nition ������ We shall refer to the Xi as the connected components of XI

and to 	��XI�
def
� I as the �
nite� index set of connected components�

De�nition �������

�i� We shall refer to a category equivalent to a category of the form XI as an
anabelioid� We shall denote the ��category of V �small anabelioids by

AnabV

�or simply Anab
 when there is no danger of confusion��

�ii� A morphism between anabelioids is de�ned to be an exact functor in the
opposite direction� An isomorphism between anabelioids is a morphism whose
corresponding functor in the opposite direction is an equivalence of categories�

Next
 let us observe that if we are given a �nite set J 
 together with connected
anabelioids Yj for each j � J 
 and morphisms

� 	 I � J � �i 	 Xi � Y��j�

we get an exact functor ��I 	 YJ � XI �by forming the product of the �i�
 which
we would like to regard as a morphism �I 	 XI � YJ �

Proposition ������� �Morphisms of Not Necessarily Connected Anabe�
lioids� The association

f�� �ig 
� �I
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de
nes an equivalence between the category of data on the left and the category of
arrows � 	 XI � YJ �

Proof� Indeed
 this follows immediately by considering the pull�back of �YJ 
 as
well as of its maximal decomposition
 via the exact functor ��
 in light of the fact
�observed above� that

�XI �
a
i�I

�i

is the maximal �relative to re�nement� decomposition of �XI � �

De�nition ������� We shall refer to a morphism between anabelioids as a 	��
epimorphism �respectively
 	��monomorphism� if each of the component morphisms
�cf� Proposition ������� between connected anabelioids is a 	��epimorphism �respec�
tively
 	��monomorphism��

x���� Finite �Etale Morphisms

In this x
 we consider the notion of a �
nite �etale morphism	 in the context of
anabelioids�

Let X be an anabelioid� Let S � Ob�X �� We will denote the category of objects
over S by

XS

�i�e�
 the objects of XS are arrows T � S in X � the arrows of XS between T � S
and T � � S are S�morphisms T � T ��� Let us write

jS 	 XS � X

for the forgetful functor �i�e�
 the functor that maps T � S to T � and

i�S 	 X � XS

for the functor given by taking the product with S�

Proposition ������ �The Extension Functor�

�i� The category XS is an anabelioid whose connected components are in
natural bijective correspondence with the connected components of S�

�ii� The functor jS is left adjoint to the functor i�S�

�iii� The functor i�S is exact� hence de
nes a morphism of anabelioids iS 	
XS � X �

�iv� Suppose that S is the coproduct of a 
nite number of copies of �X �indexed�
say� by a �V ��set A�� Then each connected component of XS may be identi
ed with
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X � the set of connected components of XS may be identi
ed with A� Moreover� jS
maps a collection of objects fSaga�A of X indexed by A to the coproduct objecta

a�A

Sa

in X �

�v� Suppose that X � B�G� �where G is a �V �small� pro
nite group� and
that S is given by the G�set G�H� where H � G is an open subgroup� Then
iS 	 XS � X may be identi
ed with �i�e�� is �abstractly equivalent	 �cf� x�� � in a
natural fashion � to� the morphism

B�H�� B�G�

induced by the inclusion H �� G� Moreover� if T � Ob�XS� is represented by an
H�set Tset� then jS�T � is isomorphic to the G�set given by

�G� Tset��H

where H � h acts on G� Tset � �g� t� via �g� t� 
� �hg� ht�� and the G�action is the
action induced on �G� Tset��H by letting G � g act on G by multiplication by g��

from the right�

Proof� These assertions all follow immediately from the de�nitions� �

Thus
 Proposition �����
 �ii�
 shows that if � 	 Y � X factors as the com�

posite of an isomorphism � 	 Y
�
� XS with the morphism iS 	 XS � X for some

S � Ob�X �
 then there is a natural choice for the isomorphism �
 namely
 the
isomorphism induced by the left adjoint �	 	 Y � X to the functor ��� Indeed

it follows from Proposition �����
 �ii�
 that such a left adjoint �	 always exists and

that �	 induces an isomorphism Y
�
� XS� 
 where S�

def
� �	��Y��

De�nition ������

�i� A morphism of anabelioids � 	 Y � X will be called 
nite �etale if it factors

as the composite of an isomorphism � 	 Y
�
� XS with the morphism iS 	 XS � X

for some S � Ob�X ��

�ii� Suppose that � 	 Y � X is a �nite �etale morphism� Then we shall refer
to the left adjoint functor �	 to the pull�back functor �

� as the extension functor
associated to ��

Remark �������� Thus
 the morphism B�H� � B�G� induced by a continuous
homomorphism � 	 H � G is 
nite �etale if and only if � is an injection onto an
open subgroup of G� Moreover
 any �nite �etale morphism of connected anabelioids



�	 SHINICHI MOCHIZUKI

may be written in this form �by choosing appropriate basepoints for the domain
and range�� The characterization of De�nition �����
 �i�
 however
 has the virtue of
being independent of choices of basepoints�

De�nition ����	� Let � 	 Y � X be a �nite �etale morphism of anabelioids�
Then we shall say that � is a covering �respectively
 relatively connected� if the
induced morphism 	��Y�� 	��X � on connected components �cf� De�nition ������
is surjective �respectively
 an bijective��

De�nition ����
�

�i� Let G be a pro�nite group� Then we shall say that G is slim if the centralizer
ZG�H� of any open subgroup H � G in G is trivial�

�ii� Let X be an anabelioid� Then we shall say that X is slim if the fundamental
group 	��Xi� of every connected component i � 	��X � of X is slim�

�iii� A morphism of anabelioids whose corresponding pull�back functor is rigid
will be called rigid� A ��category of anabelioids will be called slim if every ��
morphism in the ��category is rigid�

�iv� If C is a ��category
 we shall write

jCj

for the associated ��category whose objects are objects of C and whose morphisms
are isomorphism classes of morphisms of C� We shall also refer to jCj as the coar�
si
cation of C�

Remark ����
��� The name �coarsi
cation	 is motivated by the theory of �coarse
moduli spaces� associated to �say� ��ne moduli stacks��

Remark ����
��� Thus
 a diagram of rigid morphisms of anabelioids ���commutes	
�cf� x�� if and only if it commutes in the coarsi
cation�

In a word
 the theory of coverings of anabelioids is easiest to understand when
the anabelioid in question is slim� For instance	

Proposition ����
� �Slim Anabelioids� Let X be a slim anabelioid� Then�

�i� The pull�back and extension functors associated to a 
nite �etale morphism
between slim anabelioids are rigid �cf� x��� In particular� if we write

Et�X � � Anab
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for the ��category whose ����objects are 
nite �etale morphisms Y � X and whose
����morphisms are 
nite �etale arrows Y� � Y� �over	 X �i�e�� in the sense of

���commutativity	 � cf� x��� then Et�X � is slim� Write� �Et�X �
def
� jEt�X �j�

�ii� The functor

FX 	 X � �Et�X �

S 
� �XS � X �

�where S � Ob�X �� is an equivalence �i�e�� fully faithful and essentially surjec�
tive��

Proof� Indeed
 �i� follows formally from Corollary ����� and De�nition �����
 �i�

�ii�
 �iii�� As for �ii�
 essential surjectivity follows formally from De�nition �����
 �i��
To prove fully faithfulness
 it su�ces to compute
 when X � B�G�
 Y� � B�H��

Y� � B�H��
 and H�
 H� are open subgroups of G
 the subset

MorX �Y��Y�� �Mor�Y��Y��

�i�e�
 of isomorphism classes of morphisms �over� X � via Proposition �����
 �i��
This computation yields that the set in question is equal to the quotient
 via the
conjugation action by H�
 of the set of morphisms H� � H� induced by conjugation
by an element g � G such that H� � g �H� �g

��� But this quotient may be identi�ed
with the subset of elements g �H� � G�H� such that H� � g �H� � g

��� Note that
here we must apply the assumption of slimness
 to conclude that it is not necessary
to quotient G�H� any further by various centralizers in G of conjugates of H�� On
the other hand
 this quotient is simply another description of the set

HomG�G�H�� G�H��

as desired� �

Remark ����
��� By Proposition �����
 �i�
 it follows that
 at least when we
restrict our attention to 
nite �etale morphisms of slim anabelioids
 we do not �lose
any essential information� by working in the coarsi�cation �of Anab�� Thus

in the following discussion
 we shall often do this
 since this simpli�es things sub�
stantially� For instance
 if � 	 Y � X and � 	 Z � X are arbitrary 
nite �etale
morphism of slim anabelioids
 then �if we work in the coarsi�cation� it makes sense
to speak of the pull�back �of � via ��
 or 
ber product �of Y
 Z over X �	

Y �X Z

Indeed
 such an object may be de�ned by the formula	

Z�������Y �� � Z
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By thinking of � 	 Y � X as some �XS � X � as in the above discussion
 one
veri�es easily that this de�nition satis�es all the expected properties� One veri�es
easily that all conceivable compatibilities are satis�ed �e�g�
 when one interchanges
the roles of � and ���

Remark ����
��� In fact
 essentially all of the anabelioids that we shall actually
deal with in this paper will be slim� Thus
 in some sense
 it might have been more
natural to take the notion of a �slim anabelioid� as our de�nition of the term
�anabelioid�� There are two reasons why we chose not to do this	 First
 this would
require us to prove slimness every time that we wish to use term �anabelioid�
 which
would
 in some sense
 be rather unnatural
 just as having to prove separatedness
every time one uses the term �scheme� �if
 as in the earlier terminology
 one de�nes
a scheme to be a �separated scheme� �in the current terminology��� Second
 just as
with the separatedness of schemes
 which is not a Zariski local notion
 the notion
of slimness of an anabelioid is not �
nite� �etale local� �That is to say
 a non�
slim anabelioid may admit a �nite �etale covering which is slim�� Thus
 requiring
anabelioids to be slim would mean that the notion of an anabelioid is not ��nite
�etale local�
 which would again be unnatural�

Remark ����
�	� Note that although FX is fully faithful and essentially surjective

substantial care should be exercised when speaking of FX as an �equivalence	� The
reason for this is that	

The collection of objects of �Et�X � or Et�X � necessarily belongs to a larger

Grothendieck universe � that is to say� unlike X � the category �Et�X �
is no longer V �small � than the collection of objects of X �

Put another way
 FX 
 i�e�
 the passage from X to �Et�X �
 may be thought of as a sort
of �change of Grothendieck universe� while keeping the internal category structure
intact	�

Just as in the theory of schemes
 one often wishes to work not just with �nite
�etale coverings
 but also with �pro
nite �etale coverings	 �i�e�
 projective systems of
�etale coverings�� In the case of anabelioids
 we make the following

De�nition ������ We shall refer to as a pro�anabelioid any �pro�object� �indexed
by a set�

X � lim
�	
�

X�

relative to the coarsi�ed category

Anab
def
� jAnabj

in which all of the transition morphisms X� � X� are �nite �etale coverings of
slim anabelioids� Here
 by �pro�object	� we mean an equivalence class of projective
systems �relative to the evident notion of equivalence��
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Remark �������� Thus
 �for us� pro�anabelioids only exist at the �coarsi
ed
level	 �unlike anabelioids
 which may be treated either in Anab or in Anab��

Remark �������� Given a pro�anabelioid

X � lim
�	
�

X�

it is natural to de�ne the set of connected components of X by	

	��X �
def
� lim
�	
�

	��X��

In general
 	��X � will be a pro
nite set� Moreover
 for each i � I
 one obtains a
connected pro�anabelioid

Xi

by forming
lim
�	
�

of the compatible system of connected components of the X� indexed by i�

Remark ������	� Given two pro�anabelioids X � lim
�	�

X�� Y � lim�	�
Y�
 by the

de�nition of a �pro�object	� it follows that	

Mor�X �Y� � lim
�	
�

lim
	�
�

Mor�X��Y��

Note that this formula also applies in the case when one or both of X 
 Y is an
anabelioid
 by thinking of anabelioids as pro�anabelioids indexed by the set with
one element�

Suppose that we are given a connected anabelioid X
def
� B�G� �where G is

a pro�nite group�� Let us write 
 	 Ensf � X for the tautological basepoint of
B�G�� Then one important example of a pro�anabelioid which forms a pro
nite

�etale covering of X is the �universal covering	 eX� 
 de�ned as follows	 For each
open subgroup H � G
 let us write XH

def
� B�H�� �In other words
 XH is the

category XS associated to the object S � Ob�X � determined by the G�set G�H��
Thus
 if H � � H
 then we have a natural morphism XH� � XH � Moreover
 these
morphisms form a projective system whose transition morphisms are clearly �nite
�etale coverings� Hence
 we obtain a pro�anabelioid

eX� def
� lim
�	
H

XH

�where H ranges over the open subgroups of G�
 together with a �pro
nite �etale
covering	 eX� � X
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which �just as in the case of schemes� has the property that the pull�back via
this covering of any �nite �etale covering Y � X splits �i�e�
 is isomorphic to the
coproduct of a �nite number of copies of the base��

De�nition ������ Let X be an anabelioid
 and Y a pro�anabelioid� Then a
pro�nite �etale covering Y � X will be referred to as a universal covering of X if
it is relatively connected �i�e�
 given by a projective system of relatively connected
�nite �etale morphisms� and satis�es the property that the pull�back to Y of any
�nite �etale covering of X splits�

Note that by Proposition �����
 �ii�
 it follows that when X � B�G� is slim
 the
set

MorX � eX��XH�
may be identi�ed with G�H� In particular
 we obtain the result that the base�
point 
 is naturally equivalent to the restriction to the image of the functor FX of
Proposition �����
 �ii�
 of the basepoint of �Et�X � de�ned by the formula	

MorX � eX��Y�
�where Y � X is an object of �Et�X ���

Proposition ������ �Basic Properties of Universal Coverings� Let X be
a slim anabelioid� Then�

�i� There exists a universal covering Y � X �

�ii� Any two universal coverings Y � X � Y� � X are isomorphic over X �

�iii� Suppose that X is connected� Then the formula



eX
�S�

def
� MorX � eX �XS�

�where S � Ob�X �� de
nes an equivalence of categories between the category

of universal coverings eX � X �whose morphisms are isomorphisms eX �
� eX �

over X � and the category of basepoints 
 	 Ensf � X �whose morphisms 

�
� 
�

are isomorphisms of functors �
���
�
� 
��� In particular� if eX � X determines the

basepoint 

eX
� then

AutX � eX � � Aut�
 eX
� � 	��X � 
 eX

�

�where AutX � eX � is the set of automorphisms relative to the category of universal
coverings just de
ned��

�iv� Suppose that X
def
� B�G�� X � def� B�G�� are slim connected anabelioids� LeteX � X � eX � � X � be the universal coverings determined by the tautological base�

points 
� 
�� Then� if we denote by Isom� eX � eX �� the set of isomorphisms eX �
� eX �
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which do not necessarily lie over some isomorphism X
�
� X �� we have a natural

isomorphism

Isog��X � 
�� �X �� 
���
def
� Isom� eX � eX �� �

� lim
	�
H

fopen injections H �� G�g

�where H ranges over the open subgroups of G��

Proof� Assertions �i�
 �ii� follow formally from the de�nitions and the above discus�
sion� Now let us consider assertion �iv�� Suppose that we are given an isomorphism

� 	 eX �
� eX �� By Proposition �����
 �i�
 such a morphism arises from some homo�

morphism H � H�
 determined up to conjugation with an inner automorphism
arising from H �� Here
 we take H � G
 H � � G� to be normal open subgroups�
If K � � G is another normal open subgroup contained in H �
 then there exists a
normal open subgroup K � G contained in H
 together with a homomorphism
K � K � �determined by �
 up to conjugation with an inner automorphism arising
from K�� such that the outer homomorphism H � H� is compatible with the outer
homomorphism K � K�� Note
 moreover
 that since X � is slim
 a unique homo�
morphism H � H� up to conjugation with an inner automorphism arising from K�

is determined by the homomorphism K � K�� �Indeed
 this follows by considering
the faithful actions �by conjugation� of H 
 H � on K
 K�
 respectively�� Thus
 by
taking K� to be arbitrarily small
 we see that � determines a unique homomorphism
H � H � � G�� Consideration of the inverse to � shows that this homomorphism
H � G� is necessarily an open injection� On the other hand
 any open injection
H �� G� clearly determines an isomorphism �� This completes the proof of �iv��

Finally
 we consider property �iii�� Since it is clear that any isomorphism be�
tween universal coverings induces an isomorphism of the corresponding basepoints

it su�ces to prove property �iii� in the �automorphism� case� For simplicity
 we
shall write X � B�G�
 and assume that the basepoint 
 in question is the tautolog�

ical basepoint� By property �iv�
 any isomorphism � 	 eX �
� eX arises from an open

injection H �� G� The fact that the composite of � with eX � X is isomorphic

to eX � X implies �cf� Proposition �����
 �i�� that this open injection H �� G is
induced by conjugation by a unique �by slimness� element of G� On the other hand


conjugation by an element of G clearly determines an element of AutX � eX �� Thus

AutX � eX � � G
 as desired� �

Remark �������� When �cf� Proposition �����
 �iv�� 

 
� are 
xed throughout
the discussion
 we shall write

Isog�X �X ��

for Isog��X � 
�� �X �� 
���� When �X � 
� � �X �� 
��
 we shall write Isog�X � for
Isog�X �X ���

Finally
 before proceeding
 we present the following	
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De�nition ������

�i� We shall say that a continuous homomorphism of Hausdor� topological
groups G� H is relatively slim if the centralizer in H of the image of every open
subgroup of G is trivial�

�ii� We shall say that a morphism of anabelioids U � V is relatively slim if
the induced morphism between fundamental groups of corresponding connected
components of U 
 V is relatively slim�

Remark �������� Thus
 X is slim if and only if the identity morphism X � X is
relatively slim� Also
 if U � V is relatively slim
 then the arrow U � V is rigid �i�e�

has no nontrivial automorphisms 
 cf� Corollary ������� If U � V is a relatively
slim morphism between connected anabelioids
 then it follows that V is slim� if

moreover
 U � V is a 	��monomorphism
 then it follows that U is also slim�

Remark �������� The construction of a pull�back� or 
ber product� discussed in
Remark ������� generalizes immediately to the case where � 	 Y � X is a 
nite
�etale morphism of slim anabelioids
 and � 	 Z � X is an arbitrary relatively slim
morphism of slim anabelioids
 via the formula of loc� cit�	

Z�������Y �� � Z

One veri�es immediately that all conceivable compatibilities are satis�ed�
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Section �� Cores and Quasi�Cores

x���� Localizations and Cores

In this x
 we discuss the notion of a core in the context of slim anabelioids�
This notion will play a central role in the theory of the present paper�

Let X be a slim anabelioid� Let us write

Loc�X � �� Anab�

for the ��category whose ����objects are �necessarily slim� anabelioids Y that admit
a �nite �etale morphism to X 
 and whose ����morphisms are �nite �etale morphisms
Y� � Y� �that do not necessarily lie over X ��� Note that given an object of Loc�X �

the set of connected components of this object may be recovered entirely category�
theoretically from the coarsi
cation

Loc�X �
def
� jLoc�X �j

of the ��category Loc�X � �cf� Proposition ��������

Proposition ������ �Categories of Localizations� Let X be a slim anabe�
lioid� Then�

�i� Loc�X � is slim�

�ii� Denote by
Loc�X�

the ��category whose ����objects Z are slim anabelioids which arise as 
nite
�etale quotients of objects in Loc�X � �i�e�� there exists a 
nite �etale morphism Y �
Z� where Y � Ob�Loc�X ��� and whose ����morphisms are 
nite �etale morphisms�

Then the ��category Loc�X � is slim� Write� Loc�X �
def
� jLoc�X �j�

�iii� The ��category Loc�X � �respectively� category Loc�X �� may be recon�
structed entirely category�theoretically from Loc�X � �respectively� Loc�X �� by
considering the ���category �respectively� category� of objects of Loc�X � �respec�
tively� Loc�X �� equipped with a 
nite �etale equivalence relation	�

�iv� Suppose that we arbitrarily choose 
nite �etale structure morphisms to
X for all of the objects of Loc�X �� Then every morphism Y� � Y� of Loc�X �

may be written as the composite of an isomorphism Y�
�
� Y
 with a 
nite �etale

morphism Y
 � Y� over X �

Proof� Assertions �i� and �ii� are formal consequences of Corollary ������ Asser�
tions �iii� and �iv� follow formally from the de�nitions� �

Let X be a slim anabelioid� Then	
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De�nition ������

�i� We shall say that X is a�n� �absolute� core if X is a terminal object in
Loc�X ��

�ii� We shall say that X admits a�n� �absolute� core if there exists a terminal
object Z in Loc�X �� In this case
 Loc�X � � Loc�Z� � Loc�Z�
 so we shall say that
Z is a core�

Remark �������� Note that in Proposition �����
 �ii�
 it is important to assume
that the quotients Z that one considers are slim� Indeed
 if one did not impose
this condition
 then by �forming quotients of slim anabelioids by the trivial actions
of �nite groups�
 one veri�es easily that the ��category associated to the resulting
��category never admits a terminal object 
 i�e�
 �no slim anabelioid would admit
a core�� From the point of view of anabelian varieties 
 e�g�
 hyperbolic orbicurves

 this condition of slimness amounts to the condition that the algebraic stacks
that one works with are generically schemes �cf� �Mzk��
 x���

Remark �������� Note that the de
nability of Loc�X �� Loc�X � is one of the most
fundamental di�erences between the theory of �nite �etale coverings of anabelioids
as discussed in x��� and the theory of �nite �etale coverings from the point of view
of �Galois categories	� as given in �SGA��� Indeed
 from the point of view of the

theory of �SGA��
 it is only possible to consider ��Et�X �� 
 i�e�
 �nite �etale coverings
and morphisms that always lie over X � That is to say
 in the context of the theory
of �SGA��
 it is not possible to consider diagrams such as	

Z

� �

X Y

�where the arrows are �nite �etale� that do not necessarily lie over any speci
c
geometric object� We shall refer to such a diagram as a correspondence or isogeny
between X and Y� When there exists an isogeny between X and Y
 we shall say
that X and Y are isogenous�

Next
 we would like to consider universal coverings� Let 
� � be basepoints of
a connected slim anabelioid X � Write

	� 	 eX� � X � 	� 	 eX� � X

for the associated universal coverings �cf� the discussion of x����� In the following
discussion
 we would also like to consider an isomorphism


 	 eX� �
� eX�

�cf� Proposition �����
 �iv���
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De�nition ����	� We shall refer to an isomorphism 
 	 eX� �
� eX� as above as an

outer path from 
 to �� If 
 arises from a commutative �i�e�
 at the coarsi�ed level�
diagram of anabelioids eX� 	

	� eX���y ��y
X

idX	� X

then we shall refer to 
 as an inner path from 
 to �� An outer �respectively
 inner�

path from 
 to itself will be referred to as an � eX��valued� open �respectively� closed�
path�

Remark ����	��� Thus
 inner paths are precisely the paths of �SGA��
 Expos�e V

x�� Note that the di�erence between an �inner	 path and an �outer	 path depends
essentially on the �identity	 of 
� � 
 i�e�
 what appears to be an outer path if one
thinks of 
 and � as in fact being �equal	 may appear to be an inner path if one
thinks of 
 and � as �distinct	� Put another way	

The distinction between inner and outer paths depends essentially on the
�model of set theory� under consideration 
 i�e�
 on the labels that
one uses to describe the various sets involved in the discussion�

It is the hope of the author to pursue this point of view in more detail in a future
paper�

Remark ����	��� Note that an inner path is a special case of an outer path� The
di�erence between an inner path and an arbitrary outer path is easiest to analyze

when 
 � � �but cf� Remark ���������� In this case
 an � eX��valued� closed path is
simply an element of the fundamental group 	��X � 
��

On the other hand
 the motivation for the terminology �open path	 is the
following� Let K be a perfect 
eld� L a 
nite Galois extension of K� and K an
algebraic closure of K� Then to give a K�valued basepoint 
 of L is to give an
embedding �� 	 L �� K� If we are then given a K�linear isomorphism � 	 K

�
� K

�i�e�
 an element � � Gal�K�K��
 then the composite of � with �� determines

another embedding �� 	 L �� K� Of course
 the two basepoints 

 � of Spec�L�
de�ned by �� � �� map to the same basepoint of Spec�K� 
 i�e�
 �if one applies the
projection Spec�L�� Spec�K�
 then � becomes a closed path in Spec�K��� This is
intended to be reminiscent of the analogy between Galois groups in 
eld theory and
fundamental groups in algebraic topology �where we recall that the theory of the
latter may be formulated not just in terms of covering groups
 but also in terms of
literal closed paths
 i�e�
 topological images of the circle S�
 in the space in question��
Thus
 it is natural to regard � 
 when working with � as an object associated to
Spec�L� 
 as an open path �valued in K�
 i�e�
 the analogue of a topological image
of the interval ��� �	� as opposed to the circle S�
 on Spec�L��
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Incidentally
 this example also shows the reason for the choice of terminology
�inner�outer path	� That is to say
 inner�closed paths induce �via �parallel trans�
port�� inner automorphisms of the fundamental group
 while outer�open paths
arise from arbitrary �outer� automorphisms� or even isogenies� of the fundamental
group�

Proposition ����
� �The Totality of Basepoints� Let X be a connected

slim anabelioid� Let eX � X be a universal covering of X � that determines
some basepoint 
 of X � Then�

�i� The subgroup

 X
def
� 	��X � 
� � AutX � eX � � Aut� eX � � Isog�X �

is commensurable with all of its conjugates in Isog�X �� Moreover� the open
subgroups of  X de
ne a basis for a topology on Isog�X � with respect to which
Isog�X � forms a Hausdor� topological group� Finally� the subgroup  X �
Isog�X � is both open and closed with respect to this topology�

�ii� Isog�X � acts transitively on the set of eX �valued basepoints � i�e��

�isomorphism classes of� pro
nite �etale morphisms eX � X � of X � Moreover�

this action determines a bijection between the set of eX �valued basepoints and the
coset space�

Isog�X �� X

�iii� Suppose that X is a core� Then  X � Isog�X �� That is to say� X admits

precisely one eX �valued basepoint� In particular� all open paths on X are� in fact�
closed� Moreover� the natural functors

Et�X �� Loc�X �� Loc�X �� �Et�X �� Loc�X �� Loc�X �

are equivalences�

Proof� These assertions are all formal consequences of the de�nitions �cf� also
Proposition �����
 �iv��� �

Remark ����
��� Note
 however
 that the subgroup of Isog�X � generated by  X
and some conjugate of  X does not necessarily contain either of these two groups
as a 
nite index subgroup� Perhaps the most famous example of this phenomenon
is the theorem of Ihara �cf�
 e�g�
 �Serre��
 II
 x���
 Corollary �� expressing SL��Qp�
as an amalgam of two copies of SL��Zp�
 amalgamated along a subgroup which
is open in both copies of SL��Zp�� In the notation of the present discussion
 this
example corresponds to the case

X
def
� B�SL�� �Zp��
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�where
 instead of SL��Zp�
 we use its quotient SL
�
� �Zp� by �� to ensure that X

is slim�� Note that this example shows that Isog�X � does not necessarily admit a
natural structure of pro
nite group� Indeed
 in the case of SL�� �Zp�
 one checks
easily �by applying the theory of p�adic Lie groups 
 cf�
 e�g�
 �Serre��
 Chapter V

x�� that Isog�X � � PGL��Qp� �which is not pro�nite��

Remark ����
��� The above example of SL��Zp� highlights one of the major
themes of the present paper
 i�e�
 that	

open paths �� Isog�X � �� correspondences


 that is to say
 just as �in the �classical theory� of the �etale fundamental group
given in �SGA��� closed paths �i�e�
 elements of 	�� correspond to elements of  X 

open paths corresponds to elements of Isog�X �
 i�e�
 �correspondences	�

Remark ����
�	� It is interesting to note relative to Proposition �����
 �ii� �cf�
also Proposition �����
 �iii�� Remark �������� that the cardinality of the collection

of basepoints Ensf � X is the same as that of the collection of pro
nite �etale

morphisms eX � X � Indeed
 both collections have the same cardinality as the
collection of morphisms Ensf � Ensf�

x���� Holomorphic Structures and Commensurable Terminality

In this x
 we wish to discuss a relative version of the theory of x���� Let X 
 Q
be slim anabelioids�

De�nition ������

�i� A Q�holomorphic structure on X is the datum of a relatively slim morphism
�cf� De�nition �����
 �ii�� X � Q
 which we shall refer to as the structure morphism�

�ii� A slim anabelioid equipped with a Q�holomorphic structure will be referred
to as a Q�anabelioid�

�iii� A Q�holomorphic morphism �or �Q�morphism	 for short� between Q�
anabelioids is a morphism of anabelioids compatible with the Q�holomorphic struc�
tures�

�iv� A Q�holomorphic structure�Q�anabelioid will be called faithful if its struc�
ture morphism is a 	��monomorphism�

Remark �������� Here
 we note that the term �compatible	 in De�nition �����

�iii�
 makes sense
 precisely because of the assumption of relative slimness in De��
nition �����
 �i� �cf� Corollary �������
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Let us write
LocQ�X �

for the ��category whose ����objects Y � Q are Q�anabelioids that admit a Q�
holomorphic �nite �etale morphism Y � X to X 
 and whose ����morphisms are
arbitrary �nite �etale Q�morphisms �that do not necessarily lie over X ��� Now we
have the �Q�holomorphic analogue	 of Proposition �����	

Proposition ������ �Categories of Holomorphic Localizations� Let Q be
a slim� connected anabelioid� X a Q�anabelioid� Then�

�i� LocQ�X � is slim� Write� LocQ�X �
def
� jLocQ�X �j�

�ii� Denote by
LocQ�X�

the ��category whose ����objects Z � Q are Q�anabelioids which arise as 
nite
�etale quotients of objects in LocQ�X � �i�e�� there exists a 
nite �etale Q�morphism
Y � Z� where Y � Ob�LocQ�X ��� and whose ����morphisms are 
nite �etale Q�

morphisms� Then the ��category LocQ�X � is slim� Write� LocQ�X �
def
� jLocQ�X �j�

�iii� The ��category LocQ�X � �respectively� category LocQ�X �� may be recon�
structed entirely category�theoretically from LocQ�X � �respectively� LocQ�X ��
by considering the ���category �respectively� category� of objects of LocQ�X � �re�
spectively� LocQ�X �� equipped with a 
nite �etale equivalence relation	�

�iv� Suppose that we arbitrarily choose 
nite �etale structure morphisms to
X for all of the objects of LocQ�X �� Then every morphism Y� � Y� of LocQ�X �

may be written as the composite of an isomorphism Y�
�
� Y
 �over Q� with a


nite �etale morphism Y
 � Y� over X �

Let X be a Q�anabelioid� Then	

De�nition ����	�

�i� We shall say that X is a Q�core if X �i�e�
 X � Q� is a terminal object in
LocQ�X ��

�ii� We shall say that X admits a Q�core if there exists a terminal object Z in
LocQ�X �� In this case
 LocQ�X � � LocQ�Z� � LocQ�Z�
 so we shall say that Z is
a Q�core�

De�nition ����
�

�i� We shall say that a closed subgroup H � G of a pro�nite group G is
commensurably �respectively
 normally� terminal if the commensurator CG�H� �re�
spectively
 normalizer NG�H�� is equal to H�
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�ii� We shall say that a 	��monomorphism of anabelioids U � V is commen�
surably �respectively
 normally� terminal if the image of the induced morphism
between fundamental groups of corresponding connected components of U 
 V is
commensurably �respectively
 normally� terminal�

Remark ����
��� Thus
 it is a formal consequence of the de�nitions that	

commensurably terminal �� normally terminal

and that

commensurably terminal with slim domain �� relatively slim

�where the �domain� is the group H �respectively
 anabelioid U� in De�nition �����

�i� �respectively
 �ii����

Proposition ����
� �Commensurable Terminality and Holomorphic
Cores� Let X be a connected faithful Q�anabelioid� assume that Q is also
connected� Then X is a Q�core if and only if its structure morphism is commen�
surably terminal�

Proof� Without loss of generality
 we may write X � B�H�
 Q � B�G�
 where H �
G is a closed subgroup� First
 we verify su�ciency� By Proposition �����
 it su�ces
to prove that
 if H � � H is an open subgroup
 then any continuous homomorphism
� 	 H � � G whose image lies in H and which factors as the composite of the natural
inclusion H � �� G with conjugation by an element g � G is
 in fact
 equal to the
to composite of the natural inclusion H � �� G with conjugation by an element
h � H� But this follows immediately from De�nition �����
 �i�
 which implies that
g � H� Finally
 necessity follows by reversing the preceding argument in the evident
fashion� �

Let X be a connected Q�anabelioid� For simplicity
 we also assume that Q

is connected� Suppose that we are given a universal covering eQ � Q of Q and
consider the resulting cartesian diagram	

eQjX 	� eQ��y ��y
X 	� Q

Note that  Q
def
� AutQ� eQ� acts �compatibly� on eQ over Q
 as well as on eQjX over

X � On the other hand
 if we consider a connected component eX of eQjX as an

independent geometric object
 even if the Q�holomorphic structure on eX remains


xed
 in general eX will admit distinct �pro�nite� �etale morphisms to X � Put another
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way
 in general� X admits distinct eX �valued Q�holomorphic basepoints� That is to
say
 we have the Q�holomorphic analogue of Proposition �����	

Proposition ������ �The Totality of Q�Holomorphic Basepoints� Let X

be a connected faithful Q�anabelioid� where Q is also connected� Let eQ � Q be

a universal covering of Q� eX � X a connected component of eQjX � X � Write

 Q
def
� AutQ� eQ��  X def

� AutX � eX �� Thus� we have a natural inclusion  X �  Q�
Then�

�i� The subgroup

 X � AutX � eX � � IsogQ�X � def� AutQ� eX � � C�Q� X �

is commensurable with all of its conjugates in IsogQ�X �� Moreover� the open
subgroups of  X de
ne a basis for a topology on IsogQ�X � with respect to which
IsogQ�X � forms a Hausdor� topological group� Finally� the subgroup  X �
IsogQ�X � �respectively� IsogQ�X � � Isog�X �� is both open and closed �respectively�
open� with respect to this topology�

�ii� IsogQ�X � acts transitively on the set of eX �valued Q�holomorphic

basepoints � i�e�� �isomorphism classes of� pro
nite �etale Q�morphisms eX � X

� of X � Moreover� this action determines a bijection between the set of eX �valued
Q�holomorphic basepoints and the coset space�

IsogQ�X �� X

�iii� Suppose that X is a Q�core� Then  X � IsogQ�X �� That is to say� X

admits precisely one eX �valued Q�holomorphic basepoint� In particular� all �Q�
holomorphic	 open paths on X are� in fact� closed� Moreover� the natural functors

Et�X �� LocQ�X �� LocQ�X �� �Et�X �� LocQ�X �� LocQ�X �

are equivalences�

Remark �������� Thus
 at a more intuitive level
 just as ��absolute� cores
have essentially only one basepoint�
 if X is a Q�core� then every basepoint of Q
determines an essentially unique �up to renaming� Q�holomorphic basepoint of X �

Remark �������� The topology of Proposition �����
 �i�
 is not to be confused
with the topology on C�Q� X � induced by the topology of  Q� For instance
 if  X
is the pro
nite free group on � generators �which is easily seen to be slim 
 cf�

e�g�
 �Mzk��
 Lemma ������ and  Q � Aut� X � �which also has a natural structure
of pro�nite group�
 then  Q � C�Q� X �
 but  X is not open �i�e�
 relative to the
pro�nite topology of  Q� in  Q� Here
 we note that Out� X � � Aut� X �� X 

hence also  Q
 is in
nite and slim� �Indeed
 the slimness of  Q may be shown
 for
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instance
 as follows	 By �Tama�
 Theorem ���
 applied to the projective line minus
three points over the �eld of rational numbers
 it follows that the centralizer of
any open subgroup of Out� X � is contained in the subgroup of Out� X � obtained
by considering the permutation group of the three points� On the other hand
 by

projecting to Out� ab
X �

�� GL��bZ�
 one sees that any element of this permutation
group that centralizes an open subgroup of GL��bZ� must be trivial��
x��	� Quasi�Cores and Intrinsic Exhaustivity

In order to de�ne the fundamental group of a �connected slim� anabelioid X 

it is necessary to choose a basepoint for X � As we saw in Proposition �����
 this

is equivalent to choosing a universal cover eX � X of X � On the other hand
 in

general
 there is nothing special that distinguishes a given pro�nite �etale eX � X

from another eX � X obtained from the �rst by composition with some element of

Aut� eX � � Isog�X �� That is to say
 the di�erence between these two eX � X is a
�matter of arbitrary choices of labels�� Thus
 the question naturally arises	

To what extent is it possible to construct the fundamental group of a �con�
nected slim� anabelioid in a canonical fashion that does not depend on
such arbitrary choices�

In this x and the next
 we would like to analyze this issue in more detail� Our main
result �cf� Theorem ����� below� states that when the anabelioid in question admits
a �faithful quasi�core	 �cf� De�nition ������
 then its fundamental group can indeed
be constructed in a rather canonical fashion� In addition to quasi�cores
 we also
consider the notion of intrinsic exhaustivity
 which provides a convenient� intrinsic
necessary condition for an anabelioid to admit a faithful quasi�core�

In the following
 we shall always consider morphisms between anabelioids in
the coarsi
cation Anab of Anab�

De�nition ��	��� Let X be a Q�anabelioid �so X 
 Q are slim�� For simplicity

we also assume that the fundamental group of every irreducible component of Q is
countably �topologically� generated�

�i� We shall say that X admits �Q as� a quasi�core if the natural functor

LocQ�X �� Loc�X �

�given by forgetting the Q�holomorphic structure� is an equivalence�

�ii� We shall say that X admits �Q as� a faithful quasi�core if X admits Q as
a quasi�core
 and
 moreover
 the Q�structure on X is faithful�

Next
 let us recall that if G is a slim pro
nite group
 then it admits a natural
injection

G �� Isog�G�
def
� Isog�B�G��
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�cf� Proposition �����
 �i��� Thus
 in the following discussion
 we shall regard G as
a subgroup of Isog�G��

De�nition ��	��� We shall refer to as a pro
nite subgroup K � Isog�G� a sub�
groupK of the abstract group Isog�G� which is equipped with a structure of pro�nite
group such that the intersection K

T
G is a closed subgroup of both G and K

whose induced topologies from G and K coincide�

Remark ��	����� If K � Isog�G� is a pro
nite subgroup which is
 moreover

commensurable to a closed subgroup F � G �i�e�
 K

T
F is open in F 
 K�
 then

one veri�es easily that the topology on K is the unique topology with respect to
which K � Isog�G� is a pro
nite subgroup�

Remark ��	����� One veri�es immediately that if G� � Isog�G� is a pro
nite
subgroup commensurable to G
 so that one has a natural identi
cation Isog�G� �
Isog�G�� 
 then the pro�nite subgroups of Isog�G� are the same �relative to this
identi�cation� as the pro�nite subgroups of Isog�G���

We will also make use of the following de�nitions	

De�nition ��	�	�

�i� A pro�nite group G will be called weakly intrinsically exhaustive if for every
open subgroup H � G and every open embedding � 	 H �� G
 we have	

�G 	 H� � �G 	 ��H��

�ii� A slim pro�nite group G will be called intrinsically exhaustive if there exists
a �ltration

� � � � Gn�� � Gn � � � � � G

�where n ranges over the positive integers� of open normal subgroups Gn of G such
that �

n

Gn � f�g

and
 moreover
 for any pro
nite subgroup K � Isog�G� commensurable to G
 there
exists an integer nK 
 depending only on the pro�nite subgroup K 
 such that
Gn � K for n � nK 
 and
 for any open subgroup H � Gn �where n � nK� and
any open embedding � 	 H �� K
 we have ��H� � Gn �� K��

�ii� An anabelioid will be called intrinsically exhaustive �respectively
 weakly
intrinsically exhaustive� if the fundamental group of every connected component of
the anabelioid is intrinsically exhaustive �respectively
 weakly intrinsically exhaus�
tive��

De�nition ��	�
� Let X be a Q�anabelioid� Then we shall refer to a �nite �etale
�necessarily Galois� covering Y � X obtained as the direct summand of the pull�
back via the structure morphism X � Q of a �nite �etale Galois covering R � Q
as Q�Galois�
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Proposition ��	�
� �Basic Properties of Quasi�Cores and Intrinsic Ex�
haustivity�

�i� Suppose that a slim anabelioid X admits a quasi�core X � Q� Then the
natural functor

LocQ�X �� Loc�X �

�given by forgetting the Q�holomorphic structure� is an equivalence� Moreover� any
relatively slim composite X � Q� of X � Q with a morphism Q � Q� of slim
anabelioids is also a quasi�core for X �

�ii� If a slim anabelioid X admits a core X � Q� then X � Q is a faithful
quasi�core for X �

�iii� Suppose that X and Y are slim� connected anabelioids which are isoge�
nous� Then X admits a quasi�core �respectively� admits a faithful quasi�core� if
and only if Y does�

�iv� Suppose that X and Y are slim� connected anabelioids which are isoge�
nous� Then X is intrinsically exhaustive �respectively� weakly intrinsically exhaus�
tive� if and only if Y is�

�v� If X is intrinsically exhaustive� then it is weakly intrinsically exhaustive�

�vi� Suppose that X is weakly intrinsically exhaustive� Then there is a
unique map

degX 	 Ob�Loc�X ��� Q
�

such that

degX �X � � �� deg�Y��Y�� � degX �Y��� degX �Y��

for all morphisms Y� � Y� of Loc�X �� In particular� if Y � X is a 
nite �etale
morphism of connected anabelioids of degree � �� then Y is not isomorphic to X �

�vii� Let X be a slim� connected� weakly intrinsically exhaustive anabelioid
that admits a quasi�core X � Q� Let

� 	 Y � X

be a connected Q�Galois covering� Then any 
nite �etale �not necessarily Galois��
morphism � 	 Y � X is abstractly equivalent �cf� x�� to ��

�viii� If X admits a faithful quasi�core� then X is intrinsically exhaustive�
In particular� if X admits a core� then X is intrinsically exhaustive�

Proof� Assertions �i�
 �ii�
 �iv�
 and �vi� are immediate from the de�nitions� As�
sertion �iii� follows from the de�nitions and assertion �i�� Next
 we verify assertion
�v�� Let H � G be an open subgroup
 and � 	 H �� G be an open embedding�
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Suppose that �for some large n� Gn �as in De�nition ������ is contained in H
 so
��Gn� � Gn� Then	


 � �G 	 ��H�� � �H 	 Gn� � �G 	 ��H�� � ���H� 	 ��Gn��

� �G 	 ��Gn�� � �G 	 Gn� � �Gn 	 ��Gn��

� �G 	 Gn� � �G 	 H� � �H 	 Gn�

Thus
 �G 	 ��H�� � �G 	 H �� On the other hand
 if we apply this inequality to
��� 	 ��H� �� G
 then we obtain the reverse inequality� This implies equality
 as
desired�

Next
 we turn to assertion �vii�� Suppose that X � Q is a quasi�core for X �
Without loss of generality
 we may assume that X � B�G�
 Q � B�A�
 and that
X � Q is induced by a continuous homomorphism G� A which factors	

G� GA � A

If B � A is an open normal subgroup of A
 and HA
def
� GA

T
B
 H

def
� G �A B


then for any open embedding � 	 H �� G
 it follows from De�nition �����
 �i�

that the image of the composite of � with the homomorphism G � A is equal to
a �HA � a

�� �for some element a � A�� Thus
 since B is normal in A
 we conclude
that a � HA � a

�� � GA

T
B � HA �for some a � A�� On the other hand
 this

implies that � factors through H
 hence 
 by assertion �vi� 
 that ��H� � H
 as
desired�

Finally
 we turn to assertion �viii�� Suppose that X � Q is a faithful quasi�
core for X � Without loss of generality
 we may assume that X � B�G�
 Q � B�A�

where G � A is a closed subgroup of a pro�nite group A� Let

� � � � An�� � An � � � � � A

�where n ranges over the positive integers� be a descending sequence of open normal
subgroups of A �which exists since A is assumed to be countably �topologically�
generated 
 cf� De�nition ������ such that	�

n

An � f�g

Let Gn
def
� G

T
An� Then for any pro
nite subgroup K � Isog�G� commensurable

to G
 it follows from assertion �i� that K
T

G � G � A extends uniquely to

an inclusion K � A� Now take nK to be su�ciently large that Gn � Kn
def
�

K
T

An �� K�
 for all n � nK � Then for any open subgroup H � Gn �where
n � nK� and any open embedding � 	 H �� K
 it follows from De�nition �����
 �i�

that the composite of � with the inclusion K � A is induced by conjugation by an
element a � A� Thus
 �since An is normal in A� we obtain the desired inclusion	

��H� � a �H � a�� � K
�

An � Kn � Gn
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�

Remark ��	�
��� Thus
 in words �cf� De�nition ������ Proposition �����
 �vi��

weak intrinsic exhaustivity means
 with respect to �nite �etale localization on B�G�

that	

The property of �being su�ciently local as to be �nite �etale over B�G� of
degree N	 is intrinsic�

On the other hand
 intrinsic exhaustivity means that	

The property of �being su�ciently local as to be 
nite �etale over B�Gn�	
is intrinsic�

Moreover
 we have implications �cf� Proposition �����
 �v�
 �viii��	

existence of a faithful quasi�core �� intrinsic exhaustivity

�� weak intrinsic exhaustivity

Here
 the second implication is strict �cf� Example �����
 �ii�
 �iii�
 below�
 but it is
not clear to the author at the time of writing to what extent the �rst implication
is strict �but cf� Theorem �����
 �iii�� Corollary �������

Proposition ��	��� �Quasi�Cores and the Group of Isogenies� Let G be a
slim pro�nite group�

�i� Suppose that Isog�G� is pro�nite �i�e�� �Isog�G� � Isog�G� is a pro
nite
subgroup	 � cf� De
nition ������� Then B�G�� B�Isog�G�� is a quasi�core�

�ii� Suppose that G is intrinsically exhaustive� let fGng be as in De
nition
������ �ii�� Then the natural inclusions � � � � Aut�Gn� � Aut�Gn��� � � � � �
Isog�G� �where n � nG� induce an isomorphism of abstract groups�

lim
	�
n

Aut�Gn�
�
� Isog�G�

�iii� Suppose that G is a closed subgroup of a slim pro
nite group A such
that the inclusion G �� A is relatively slim� Then the following are equivalent�

�a� B�G�� B�A� is a faithful quasi�core�

�b� The natural inclusion CA�G� �� Isog�G� is surjective�

�c� The homomorphism of abstract groups G �� A factors through G ��
Isog�G��
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Proof� These assertions are all formal consequences of the de�nitions� �

Remark ��	����� Relative to Proposition �����
 �ii�
 we note that Aut�Gn� is also
equal to the normalizer of Gn in Isog�G�� When G �hence also the Gn� is topo�
logically 
nitely generated
 then it follows that G admits an exhaustive descending
sequence of characteristic open subgroups � � � � Hm � � � � � G
 hence that Aut�G�
�hence also the Gn� admits a natural structure of pro
nite group �by considering
the inverse limit of the images of Aut�G� in the various Aut�G�Hm��� On the other
hand
 this pro�nite topology on Aut�Gn� does not
 in general
 coincide with the
topology induced by the topology of Isog�G� discussed in Proposition �����
 �i� 

cf� Remark �������� Moreover
 �relative to Proposition �����
 �ii�� the work of �TSH�

 involving inductive limits of topological groups whose inductive limit topology
�in the category of topology spaces� is not necessarily compatible with the group
structure of the inductive limit 
 shows that the topology of inductive limits of
topological groups can
 in general
 be a rather subtle issue�

Remark ��	����� The observations given in Proposition �����
 �i�
 �iii�� Remark
������� were related to the author by A� Tamagawa�

Example ��	��� Non�Intrinsically Exhaustive Pro�nite Groups� Let p
be a prime number�

�i� Take A
def
� Zp

�
 B
def
� Zp� Let A act on B in the usual fashion� Take

G
def
� B oA� Note that G is slim� Then the open subgroup

H
def
� �p �B�o A � G

is clearly isomorphic to G
 hence violates Proposition �����
 �vi�� Thus
 G fails to
be weakly intrinsically exhaustive�

�ii� Let G
def
� PGL��Zp�� Note that G is slim� For m a positive integer
 write

Cm � G for the subgroup determined by the matrices congruent to the identity
matrix modulo pm� Then G fails to be intrinsically exhaustive� Indeed
 if fGng is
as in De�nition �����
 then there exist positive integers m � n � nG such that	

Cm � Gn � C�

Thus
 for all open embeddings � 	 Cm �� G
 we should have	 ��Cm� � C�� But this
inclusion fails to hold if we take � to be the embedding given by conjugation by

the matrix

�
pm �

� �

�
� On the other hand
 �it is an easy exercise to show that� in

this case
 the unimodularity of the action by conjugation of GL��Qp� on M��Qp�
implies that G is weakly intrinsically exhaustive�

�iii� For n � �
 let G
def
� bFn
 the free pro
nite group on n generators� Then

G is slim �cf�
 e�g�
 �Mzk��
 Lemma ������� Moreover
 since
 for any n�m � �
 bFn
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bFm admit isomorphic open subgroups
 in order to prove that G is not intrinsically
exhaustive for all n
 it su�ces to prove that G fails to be intrinsically exhaustive
for some n �cf� Proposition �����
 �iv��� On the other hand
 there exists an n such
that G is isomorphic to an open subgroup of the pro�nite completion SL��Z�

	 of
SL��Z�� Thus
 one may show that to assume the intrinsic exhaustivity of any open
subgroup of such a G leads to a contradiction by conjugating by �Hecke operator�
type matrices	 
 an operation which preserves the quotient SL��Z�

	
� SL��Zp�


 as in �ii�
 above� Note
 however
 that in this case
 the Nielsen�Schreier formula
�cf�
 e�g�
 �FJ�
 Proposition ������ implies that G is weakly intrinsically exhaustive�

�iv� The anabelioid �Et�A �Fp � �notation as in Example ������ associated to the

a�ne line over Fp fails to be weakly intrinsically exhaustive� Indeed
 the existence
of the 
nite �etale morphism A �Fp � A �Fp de�ned by

T 
� T p � T

�where T is the standard coordinate on A �
Fp
� contradicts Proposition �����
 �vi��

�v� If K is a 
nite extension of Qp 
 then the associated anabelioid �Et�K� is
weakly intrinsically exhaustive �cf�
 e�g�
 �Mzk��
 Proposition ����
 but fails to be
intrinsically exhaustive
 at least when p � �� Indeed
 to see that GK �the absolute
Galois group ofK� fails to be intrinsically exhaustive
 let us �rst recall the following
theorem of �JR�	

Let K�
 K� be 
nite extensions of Qp �where p � �� which contain the

roots of unity of order p� Then GK�

�
� GK�

if and only if �K� 	 Qp � �

�K� 	 Qp � and K�

T
�Qp

ab� � K�

T
�Qp

ab� �where Qp
ab is the maximal

abelian extension of Q p��

Now suppose that fGng is a sequence of open normal subgroups of GK as in Def�
inition �����
 �ii�� Without loss of generality �cf� Proposition �����
 �iv��
 we may
assume that K contains the roots of unity of order p
 and that �K 	 Qp � � �� Let
L be the �nite Galois extension of K corresponding to some Gn� Write M � L
for the maximal tamely rami
ed subextension of L over K� By taking n to be suf�
�ciently large
 we may assume that the extension L of M is not cyclotomic
 i�e�

that L �� L

T
�M � Qp

ab�� Since �M 	 Qp � � �K 	 Qp � � �
 it thus follows from
local class 
eld theory �cf�
 e�g�
 �Serre��� that the wild inertia subgroup of Gab

M has
rank � � over Zp
 hence that there exists a wildly rami
ed abelian extension L� of
M such that	

�L� 	M � � �L 	M �� L� �� L� L�
�
�M � Qp

ab� � L
�
�M � Qp

ab�

Thus
 �by the theorem of �JR� quoted above� we conclude that GL�
�
� GL � Gn

despite the fact that GL� �� GL� But this contradicts De�nition �����
 �ii��

Remark ��	����� Examples �iv� and �v� were related to the author by A�
Tamagawa�
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x��
� Canonical Construction of the Fundamental Group

Let X be a slim� connected anabelioid� In this x
 we would like to examine the
extent to which the fundamental group of X may be constructed in a canonical
fashion
 independent of a choice of basepoint�

We begin by introducing some notation� Let us write

Locbp�X �

for the category each of whose objects is an arrow U � Y
 where Y is a connected
object of Loc�X �
 and U � Y is a universal covering of Y �cf� De�nition ������

and whose morphisms from an arrow U� � Y� to an arrow U� � Y� are pairs of
arrows �U 	 U�

�
� U�
 �Y 	 Y� � Y� such that the diagram

U�
�U	� U���y ��y

Y�
�Y
	� Y�

commutes� �U is an isomorphism� and �Y is 
nite �etale� Thus
 in particular
 by
mapping U � Y to Y
 we obtain a functor

!X 	 Locbp�X �� Loc�X ��


 where the superscript ��� is to denote the full subcategory consisting of con�
nected objects 
 which �by de�nition� is surjective on objects�

On the other hand
 if we de�ne

SGp

to be the category whose objects are pairs �G�H�
 where G is a group
 and H is
a subgroup of G
 and whose morphisms from �G�� H�� to �G�� H�� are homomor�
phisms � 	 G� � G� such that ��H�� � H�
 then we obtain a natural functor

"X 	 Locbp�X �� SGp

by mapping an arrow U � Y to the pair

�Aut�U��AutY �U� � Aut�U��

and a morphism from U� � Y� to U� � Y� to the isomorphism Aut�U��
�
� Aut�U���

Thus	

Locbp�X � may be thought of as the �category of objects of Loc�X � equipped
with a basepoint	 and "X may be thought of as the standard construction
of the fundamental group �in the presence of a basepoint��
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When it is necessary to specify the universe V relative to which we are working

 i�e�
 relative to which we take all of our �pro��anabelioids �respectively
 groups�

to be V �small �respectively
 V �sets� 
 we shall write LocVbp�X �
 Loc
V �X � �respec�

tively
 SGpV �� �Similarly
 we shall write !VX 
 "
V
X �� Thus
 we observe
 in particular


that the categories LocVbp�X �
 Loc
V �X � are not V �small�

Proposition ��
��� �Dependence of the Fundamental Group on the
Choice of Universal Covering� Let V be a universe �which is� therefore� in
particular� a �set	 in some ambient model of set theory�� Let X be a V �small slim�
connected anabelioid such that the subgroup  X � Isog�X � �cf� Proposition ������

�i�� is not normal� Then there exist distinct objects of LocVbp�X � that map via

!VX to the same object of LocV �X ��� but via "VX to distinct objects of SGpV � In
particular� the functor "VX does not factor through !VX �

Proof� Indeed
 let 	 	 eX � X be a universal covering� let � � Aut� eX � be an
element that does not normalize  X

def
� AutX � eX �� Then 	�

def
� 	 � ��� is also a

universal covering of X � Moreover
 we have

"VX �	� � �Aut� eX �� X � �� "VX �	�� � �Aut� eX �� � � X � ����
but !VX �	� � !

V
X �	

�� � X � �

Remark ��
����� Thus
 the proof of Proposition ����� suggests
 in particular

that
 in order to obtain a factorization of "VX through !VX 
 i�e�
 to obtain a
�canonical construction� of the fundamental group that does not depend on the
choice of basepoint 
 it is necessary to modify "VX so that it takes values in

some sort of �quotient� in which subgroups of Aut� eX � are identi
ed with their
conjugates� This motivates the following discussion�

Let V 
 X be as in Proposition ������ Then let us denote by

SGpVX

the category each of whose objects is an assignment A

U 
� AU


 where U ranges over all V �small universal coverings of X �i�e�
 all domains of
arrows in Locbp�X ��
 and AU is a collection of subgroups of Aut�U� 
 such that

for every isomorphism U�
�
� U�
 the induced isomorphism Aut�U��

�
� Aut�U��

maps AU� onto AU� � and whose morphisms Hom�A�A�� are de�ned as follows	 The
cardinality of Hom�A�A�� is always � �� we take the cardinality of Hom�A�A�� to
be � if and only if the following condition is satis�ed	 for every U 
 every H � AU 

there exists an H � � A�U such that H � H �� Note that this category SGpVX is not
V �small�
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Thus
 we obtain a natural functor

e#VX 	 LocVbp�X �� SGpVX

by mapping an arrow U � Y to the assignment that maps a universal covering V to
the conjugacy class of subgroups of Aut�V� determined by the subgroup AutY�U� �

Aut�U� and an isomorphism Aut�U�
�
� Aut�V� which is induced by an isomorphism

U
�
� V� �Note that this conjugacy class is independent of the choice of isomorphism

U
�
� V�� Moreover
 it is evident from the de�nition of e#VX that	

Theorem ��
��� �Canonical Fundamental Groups up to Isogeny� Let V �
X be as in Proposition ������ Then there exists a functor

#VX 	 Loc
V �X �� � SGp

V
X

such that #VX �
e#VX � !VX �

Remark ��
����� Thus
 the functor of Theorem ����� yields a functorial �i�e�
 with
respect to �nite �etale coverings� construction of the fundamental group as a group
of transformations of some geometric object �i�e�
 the universal covering�
 albeit up
to a certain indeterminacy
 given by the action of Isog�X �� On the other hand

this functor has the drawback that it only constructs the fundamental group as an
�abstract group	
 i�e�
 not as a pro�nite group
 as one might ideally wish�

Now let us assume that X is a connected Q�anabelioid� For simplicity
 we
assume that Q is also connected� In the following discussion
 we would like to show
that �certain quotients� of the fundamental group of X may be constructed in a
very canonical fashion complete with their pro
nite structure
 under the assumption
that X � Q is a quasi�core for X �

First
 let us choose an explicit system of 
nite �etale Galois coverings

� � �� Qn�� � Qn � � � ��Q

of Q which
 when regarded as a pro�anabelioid Q�
 forms a universal covering of
Q� For each n
 choose a coherent system of connected components

Xn �� QnjX

of QnjX �cf� the proof of Proposition �����
 �viii��� This system thus de�nes a
pro�anabelioid X�
 together with a morphism X� � Q��

Now observe that
 since X � Q is a quasi�core
 it follows that any automor�
phism � 	 Xn

�
� Xn necessarily lies over Q
 hence that the natural morphism

Xn � Qn
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�obtained by composing the inclusion Xn �� QnjX with the projection QnjX � Qn�
is preserved by composition on the the left with arbitrary automorphisms of Xn


up to the action of a �unique� element of Gal�Qn�Q�
def
� AutQ�Qn�� That is to

say
 there is a unique element �Qn
� Gal�Qn�Q� for which the following diagram

commutes	
Xn � Qn��y� ��y�Qn
Xn � Qn

Moreover
 the uniqueness of this element implies that the assignment � 
� �Qn
is a

homomorphism� Thus
 in summary
 we see that we obtain an outer homomorphism

�Autn 	 Aut�Xn�� Gal�Qn�Q�

which is entirely determined �as an outer homomorphism� by the isomorphism class
of Xn� In particular
 restricting to Gal�Xn�X � � Aut�Xn�
 we obtain an outer
homomorphism

�Galn 	 Gal�Xn�X �� Gal�Qn�Q�

which is entirely determined �as an outer homomorphism� by the abstract equiv�
alence class of the morphism Xn � X 
 hence
 in particular
 by the isomorphism
class of X plus the covering Qn � Q �since X � Q is a quasi�core��

Since the above construction is clearly �functorial in n�
 by passing to the limit
over n
 we thus obtain an outer homomorphism

�Gal� 	 Gal�X��X ��  Q
def
� Gal�Q��Q�

whose image is entirely determined �up to conjugacy� by the isomorphism class of
X � Let us denote this image �well�de�ned up to conjugacy� by	

 X�Q �  Q

Moreover
 since the above construction is determined entirely by the isomorphism
class of X 
 it follows �cf� Proposition �����
 �iv�� that the assignment X 
�  X�Q
is functorial with respect to 
nite �etale coverings X� � X� of connected objects of
Loc�X � in the sense that such a covering induces an inclusion

 X��Q �  X��Q ��  Q�

which is well�de
ned up to conjugation by elements of  Q� �That is to say
 one
allows an indeterminacy with respect to distinguishing between
 say
 a given inclu�
sion  X��Q �  X��Q and some other inclusion  X��Q � 	 �  X��Q � 	

��
 where
	 �  Q��

If G is a Hausdor� topological group
 then let us write

Sub�G�
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for the category whose objects are conjugacy classes of closed subgroups H � G

and whose morphisms H � H � are inclusions of H into a �conjugate of� H �� That
is to say
 the cardinality of the set of morphisms between two objects of Sub�G� is
either � or ��

Then the above discussion may be summarized as follows	

Theorem ��
�	� �Canonically Constructed Fundamental Groups via
Quasi�Cores� Let Q be a slim� connected anabelioid� Suppose that X is a connected
Q�anabelioid for which X � Q is a quasi�core� Then there is a functor

Loc�X �� � Sub� Q�

Y 
� f Y�Q �  Qg

such that B� Y�Q� is isomorphic to the image of Y in Q �cf� De
nition ������� In
particular� if X � Q is a faithful quasi�core� then Y �� B� Y�Q��

Remark ��
�	��� Thus
 Theorem ����� yields a canonical construction of
the fundamental group of a slim
 connected X which admits a faithful quasi�core
Q� Moreover
 this construction has the virtue that it is compatible �cf� the above
discussion�� with the pro�nite structure of the fundamental group of X � That is
to say
 more concretely	

The functor of Theorem ����� may be written as an inverse limit of a
compatible system of functors to the categories

Sub� Q�Hn�

where � � � � Hn � � � � �  Q is an exhaustive descending sequence of open
normal subgroups of  Q�

This compatibility with the pro�nite structure is closely related to the the intrin�
sicity of �knowing how local one is	 �cf� Remark ���������

On the other hand
 one drawback of the construction of Theorem ����� is that
it depends on the arbitrary choice of a universal covering Q� � Q for Q as an
�input datum	� This motivates the following de�nition	

De�nition ��
�
� Let X be a slim
 connected anabelioid� Then we shall refer to
a closed subgroup $ �  X 
 considered as a subgroup of Isog�X �
 as an intrinsic
pro
nite subgroup if it is topologically �nitely generated
 normal in Isog�X �
 and

moreover
 the continuous inclusion of Hausdor� topological groups $ �� Isog�X �
is relatively slim�

Remark ��
�
��� Note that since $ is topologically 
nitely generated
 it follows
�cf� Remark �������� that Aut�$� has a natural structure of pro
nite group�
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Proposition ��
�
� �The Faithful Quasi�Core Associated to an Intrinsic
Pro�nite Subgroup� Let $ � Isog�X � be an intrinsic pro�nite subgroup�
Then the action by conjugation of  X on $ yields a morphism

X �� B� X �� B�Aut�$��

which is a faithful quasi�core for X �

Proof� Indeed
 this is a formal consequence of Proposition �����
 �iii�
 �a� �� �c��
�

Remark ��
�
��� Thus
 when the quasi�core of Theorem ����� is obtained as in
Proposition �����
 one can replace the functor of Theorem ����� by a functor in the
style of Proposition �����	 That is to say
 instead of considering a conjugacy class
of subgroups of a particular pro
nite group  Q
 we observe that for any universal
covering U 
 we obtain a natural pro
nite subgroup

$U � Aut�U�

�determined by conjugating $ by some isomorphism U
�
� eX of U to the universal

covering eX used to de�ne Isog�X �� such that any isomorphism U�
�
� U� maps $U�

to $U� � In particular
 we obtain an assignment

U 
� AU
def
� Aut�$U�

which is functorial in isomorphisms U�
�
� U�� Then instead of obtaining a con�

jugacy class of subgroups �as in Theorem ������ in a particular  Q
 we obtain a
conjugacy class of subgroups of AU 
 for each U 
 which is compatible with all iso�
morphisms U�

�
� U�� �We leave the routine details to the reader�� At any rate
 this

yields a construction of the canonical fundamental groups of Theorem ����� which
is independent of the choice of any universal covering of Q�
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Section 	� Anabelioids Arising from Hyperbolic Curves

x	��� Anabelioid�Theoretic Interpretation of Scheme�Theoretic Cores

In the following discussion
 we wish to translate the scheme�theoretic theory
of cores in the context of hyperbolic curves �cf� �Mzk��
 x�� into the language
of anabelioids �cf� the pro�nite group�theoretic approach to such a translation
given in �Mzk��
 x��� The main technical tool that will enable us to do this is the
�Grothendieck Conjecture	 
 i�e�
 Theorem A of �Mzk���

For i � �� �
 let Fi be either Q or Q pi �for some prime number pi�� Let Ki be a

nite extension of Fi� Let �Xi�Ki

be a hyperbolic orbicurve over Ki� Assume that
we have chosen basepoints of the �Xi�Ki


 which thus induce basepoints�algebraic

closuresKi of theKi and determine fundamental groups  �Xi�Ki

def
� 	���Xi�Ki

� and

Galois groups GKi

def
� Gal�Ki�Ki�� Thus
 for i � �� �
 we have an exact sequence	

�� $Xi
�  �Xi�Ki

� GKi
� �

�where $Xi
�  �Xi�Ki

is de�ned so as to make the sequence exact�� Here
 we

shall think of GKi
as a quotient of  �Xi�Ki

�i�e�
 not as an independent group to

which  �Xi�Ki
happens to surject�� One knows �cf� �Mzk��
 Lemma ������ that this

quotient  �Xi�Ki
� GKi

is an intrinsic invariant of the pro�nite group  �Xi�Ki
�

Next
 we would like to introduce anabelioids into our discussion� Write	

Xi
def
� �Et��Xi�Ki

�� Si
def
� �Et�Ki�

Note that Xi
 Si are slim �cf� �Mzk��
 Theorem �����
 �ii�� �Mzk��
 Lemma ������

and that the structure morphisms Xi � Si are relatively slim �cf� �Mzk��
 Theorem
�����
 �ii��� Thus
 we may think of Xi as an Si�anabelioid �cf� x����� In particular

we may consider the categories

LocSi�Xi�� LocSi�Xi�

of x���� In the following discussion
 we shall work with anabelioids �at the coarsi
ed
level	 �i�e�
 in Anab��

Corollary 	����� �Anabelioid�Theoretic Preservation of Arithmetic
Quotients� Any 
nite �etale morphism

� 	 X� � X�

induces a commutative diagram

X�
�
	� X���y ��y

S�
�S	� S�
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�where the horizontal morphisms are 
nite �etale�� hence pull�back

LocS��X��� LocS��X� �S� S��� LocS��X��� LocS��X� �S� S��

and extension functors

LocS��X�� �� LocS��X� �S� S��� LocS��X��
�
� LocS��X� �S� S��

which are equivalences whenever � is an isomorphism� Here� the extension functor
on �Loc�	��s	 �respectively� �Loc�	��s	� is a full embedding �respectively� equiva�
lence��

Proof� Indeed
 this is a formal consequence of �Mzk��
 Lemma ����� �and Propo�
sition �����
 �iv��� �

Theorem 	����� �Anabelioid�Theoreticity of Correspondences� Let K
be a 
nite extension of Qp or Q� XK a hyperbolic orbicurve over K� write

X
def
� �Et�XK�� S

def
� �Et�K�� Then the natural functor

LocK�XK� 	� LocS�X �

Z 
� �Et�Z�

�de
ned by applying ��Et�	�	� is an equivalence of categories� A similar asser�
tion holds for �Loc�	�	 replaced by �Loc�	�	� In particular� XK is �respectively�
admits� a K�core if and only if X is �respectively� admits� an S�core�

Proof� Since �Loc�	�� may be categorically reconstructed from �Loc�	�� via
the same recipe for both schemes and anabelioids
 it su�ces to prove the asserted
equivalence in the case of �Loc�	���

In this case
 it is immediate from the de�nitions that the functor in question is
essentially surjective� It follows from the injectivity of �Mzk��
 Theorem A �cf� also
Proposition ������ that this functor is faithful� Thus
 it su�ces to prove that this
functor is full� Since �fullness� follows from Proposition �����
 �ii�
 for morphisms
over X 
 it su�ces �by Proposition �����
 �iv�� to prove that every S�isomorphism

Y
�
� Z

�where Y
 Z are anabelioids representing objects of LocS�X �� arises from a mor�
phism of schemes in LocK�XK�� But this is a formal consequence of �Mzk��
 The�
orem A �cf� also Proposition ������� �

Theorem 	���	� �Absolute Cores over Number Fields� Let K be a num�

ber �eld� XK a hyperbolic orbicurve over K� write X
def
� �Et�XK�� Then�
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�i� XK is an �absolute� core if and only if XK is a K�core� and� moreover� K
is a minimal �eld of de�nition for XK�

�ii� Applying ��Et�	�	 induces an equivalence of categories�

Loc�XK�
�
� Loc�X �

In particular� X is �respectively� admits� an �absolute� core if and only if XK is
�respectively� admits� an �absolute� core�

�iii� Suppose that XK is non�proper� Then X admits a core if and only if
it is intrinsically exhaustive�

Proof� Assertion �i� follows formally from �Mzk��
 De�nition ��� and �Mzk��

Remark ������ Assertion �ii� follows
 in light of �Mzk��
 Theorem �����
 by the same
argument as that used to prove Theorem ������ To prove assertion �iii�
 let us recall
from the theory of �Mzk�� �cf� �Mzk��
 Remark ������ that XK �or
 equivalently
 by
assertion �ii�
 X � fails to admit a core if and only if XK is isogenous to a Shimura
curve� Since XK is assumed to be non�proper
 this Shimura curve may be taken to
be the moduli stack of hemi�elliptic curves �cf� �Take�
 p� ���
 second paragraph��
Thus
 if XK fails to admit a core
 one may show that X fails to be intrinsically
exhaustive by using Hecke correspondences on the moduli stack of hemi�elliptic
curves
 as in Example �����
 �ii�
 �iii� �cf� Proposition �����
 �iv��� On the other
hand
 if X admits a core
 then it follows from Proposition �����
 �ii�
 �viii�
 that X
is intrinsically exhaustive� �

Remark 	���	��� One expects that the assumption that XK be non�proper in
Theorem �����
 �iii�
 is inessential� We made this assumption only to technically
simplify the proof that X fails to be intrinsically exhaustive �when it is assumed
to fail to admit a core�� The point of Theorem �����
 �iii�
 was to give an example
where the existence of a core is equivalent to intrinsic exhaustivity �cf� Remark
��������
 since this contrasts with the situation that occurs in the p�adic case �cf�
Remark �������
 Corollary ����� below��

Corollary 	���
� �Anabelioid�Theoreticity of Cores� Let

� 	 X� � X�

be a 
nite �etale morphism� Then�

�i� � induces � in a fashion functorial with respect to �� a pull�back functor

LocK�
��X��K�

�� LocK�
��X��K�

�

which is an equivalence whenever S� � S� is an isomorphism� and is equal to
the usual scheme�theoretic pull�back functor whenever � arises from a 
nite �etale
morphism of schemes �X��K�

� �X��K�
�



THE GEOMETRY OF ANABELIOIDS �


�ii� �X��K�
is K��arithmetic if and only if �X��K�

is K��arithmetic� Simi�
larly� if X� � X� �S� S� is an isomorphism� then �X��K�

is a K��core if and only
if �X��K�

is a K��core�

�iii� If a 
nite �etale morphism �X��K�
� �Z��K�

to a K��core �Z��K�
maps

�via the functor of �i�� to a 
nite �etale morphism �X��K�
� �Z��K�

� then �Z��K�

is a K��core� and� moreover� the morphism X� � X� �S� S� extends uniquely
to a commutative diagram�

X� � X� �S� S� � X���y ��y ��y
Z�

�
� Z� �S� S� � Z�

�where Zi
def
� �Et��Zi�Ki

�� and the lower horizontal arrow on the left is an isomor�
phism��

Proof� The functor of �i� is obtained by composing the pull�back functor on
�Loc�	�%s� of Corollary ����� with an inverse to the extension functor on �Loc�	�%s�
of Corollary ����� �which is an equivalence�
 and then applying the equivalences of
Theorem ����� to the domain and codomain of this composite� Assertion �ii� is a
formal consequence of assertion �i�� �Mzk��
 De�nition ���� �Mzk��
 Remark ������
and �Mzk��
 Proposition ���
 �i�� To prove assertion �iii�
 we may assume
 for sim�
plicity
 �cf� Proposition �����
 �iv�� that S� � S� is an isomorphism� Then it follows
that the pull�back functor on �Loc�	�%s� of �i� is an equivalence	

LocK�
��X��K�

�
�
� LocK�

��X��K�
�

Thus
 the existence of an extension as in assertion �iii� follows formally by think�
ing of Xi
 Zi as subcategories of LocKi

��Xi�Ki
� �cf� Proposition �����
 �ii��� The

uniqueness of such an extension is a formal consequence of the slimness of Zi� �

Proposition 	���
� �Absolute Degrees� For i � �� �� set�

degarith�Xi�
def
� �Ki 	 Fi�

and deggeo�Xi� equal to the Euler characteristic of �Xi�Ki
� �That is to say�

if �Xi�Ki
is a hyperbolic curve of type �gi� ri�� then we set deggeo�Xi� equal to

�gi	��ri� more generally� if �Xi�Ki
is only an orbicurve� then we take its deggeo�	�

to be the deggeo�	� of some degree d 
nite �etale covering of �Xi�Ki
which is a curve�

divided by d�� Then for any 
nite �etale morphism � 	 X� � X� �which thus induces
a commutative diagram as in Corollary ������� we have�

deggeo�X�� � deggeo�X����deg����deg��S��� degarith�X�� � degarith�X���deg��S�

In particular� Xi is weakly intrinsically exhaustive� We shall refer to deggeo�Xi�
�respectively� degarith�Xi�� as the absolute geometric �respectively� absolute
arithmetic� degree of Xi�
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Proof� Indeed
 this follows from �Mzk��
 Lemma �����
 �for the absolute geometric
degree� and �Mzk��
 Proposition �����
 �i�
 �v� �for the absolute arithmetic degree��
�

Remark 	���
��� Proposition ����� already suggests the possibility that
 under
the further assumption that �Xi�Ki

admits a Ki�core
 Xi should admit a faithful
quasi�core� In the remainder of the present x
 we shall show that this is
 in fact
 the
case �at least when �Xi�Ki

is non�proper� 
 cf� Theorem ����� below� In light of
Proposition �����
 �ii�� Theorem �����
 �ii�
 this fact is primarily of interest in the
case where Ki is a p�adic local 
eld �although we shall not assume this to be the
case in the following discussion��

In the following discussion
 we would like to assume that	

�a� The hyperbolic orbicurve �Xi�Ki
admits a Ki�core �Zi�Ki

�

�b� The anabelioids X�
 X� are isogenous�

Choose basepoints for �Zi�Ki

 so that we obtain
 for i � �� �
 exact sequences	

�� $Zi �  �Zi�Ki
� GKi

� �

Write Zi
def
� �Et��Zi�Ki

�� Then assumptions �a�
 �b�� Corollary �����
 �iii�� and
�Mzk��
 Lemma �����
 imply that �Z��K�


 �Z��K�
are hyperbolic orbicurves of the

same type �g� �r�� Let us choose once and for all a model

b g��r
of the geometric fundamental group of a hyperbolic orbicurve of type �g� �r� �in char�
acteristic ��� To simplify notation
 in the following discussion
 we shall simply writeb for b g��r�

Thus
 we have �noncanonical� isomorphisms b �� $Zi � Such isomorphisms

induce an outer homomorphism  �Zi�Ki
� Aut�b � which is independent �as an

outer homomorphism� of the choice of such isomorphism and
 moreover
 �ts into a
commutative diagram	

� 	� $Xi
	�  �Xi�Ki

	� GKi
	� ���y ��y ��y

� 	� $Zi 	�  �Zi�Ki
	� GKi

	� ���y ��y ��y
� 	� b 	� Aut�b � 	� Out�b � 	� �

Here
 we observe that the vertical arrows between the 
rst and second lines are al�
ways injective� If
 moreover
 �Xi�Ki

is non�proper
 then the vertical arrows between
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the second and third lines are also injective �by the theory of �Mtmo� 
 cf� �Mzk��

Theorem ������� If we then set

Zcom
def
� B�Aut�b ���Mcom

def
� B�Out�b ��


 i�e�
 we wish to think of Zcom � Mcom as a sort of �universal combinatorial
model	 of Zi � Si 
 then we obtain a commutative diagram of connected slim
anabelioids

Xi 	� Zi 	� Zcom��y ��y ��y
Si

id
	� Si 	� Mcom

in which the horizontal arrows are all relatively slim �cf� �Mzk��
 Theorem �����
 �ii��
�Mzk��
 Lemma ������ �Mzk��
 Theorem A�� Next
 let us observe that the intrinsic
nature of the anabelioid associated to a geometric core �cf� Corollary �����
 �iii��
implies that the morphism Xi � Zcom is functorial with respect to arbitrary 
nite
�etale morphisms X� � X��

Finally
 let us observe that Aut�b � �hence also Out�b �� is countably �topo�
logically� generated� Indeed
 to show this
 it su�ces to show the existence of a
descending sequence of open subgroups

� � � � An�� � An � � � � � Aut�b �
such that

T
n An � f�g� To this end
 let us note that b admits a descending

sequence of open characteristic subgroups

� � � � b �n� �� � b �n� � � � � � Aut�b �
such that

T
n
b �n� � f�g� Thus
 if we set

An
def
� Ker�Aut�b �� Aut�b �b �n���

we obtain a sequence fAng with the desired properties�

Thus
 in summary
 we see that we have proven �most of� the following	

Theorem 	����� �The Quasi�Core Associated to a Geometric Core� Let
K be a 
nite extension of Qp or Q� XK a hyperbolic orbicurve over K which
admits a K�core ZK of type �g��r�� Write�

X
def
� �Et�XK�� Z

def
� �Et�ZK�� Zcom

def
� B�Aut�b g��r��� Mcom

def
� B�Out�b g��r��

Then�

�i� ZK determines a Zcom�holomorphic structure X � Zcom on X which is a
quasi�core for X � In particular� the theory of x���� ��� may be applied to X �
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�ii� If XK is non�proper� then this quasi�core is faithful and� moreover�
obtained as the quasi�core associated to an intrinsic pro�nite subgroup �cf�
Proposition ������� Finally� if K is a number �eld which is a minimal �eld of
de�nition for ZK � then the morphism Z � Zcom is commensurably terminal�

Proof� It remains only to observe that the �nal part of �ii� is a formal consequence
of Theorem �����
 �i�
 �ii�� Proposition ������ �

Remark 	������� In the case of p�adic local �elds
 one does not expect Z
def
�

�Et�ZK� to be a core �even if K is a minimal extension of Qp over which ZK is
de�ned�� Nevertheless
 Theorem ����� shows that Z has the interesting property
of being �closer to being a core	 than
 for instance
 PGL��Qp� �cf� Example �����

�ii�
 �iii�� Theorem �����
 �iii�� Corollary ����� below��

Remark 	������� Our use of �Mzk��
 Theorem ����� �i�e�
 the main result of
�Mtmo�� in the above construction of a faithful quasi�core 
 which �by the the�
ory of x���� allows us to construct �canonical fundamental groups	
 i�e�
 to assign
canonical names� or labels �up to conjugacy� to the elements of the funda�
mental group 
 is reminiscent of the essential idea lying behind the theory of
the Grothendieck�Teichm�uller group
 which applies this same injectivity to assign
canonical names �up to conjugacy� to the elements of GQ� It is interesting to
note
 however
 that although this theory of the Grothendieck�Teichm&uller group
is typically applied to analyzing GQ
 in fact
 �by the �Neukirch�Uchida Theorem	

 cf�
 e�g�
 �Mzk��
 Theorem ������ the elements of GQ already possess intrinsic�
canonically determined names �up to conjugacy�� Thus
 the ability to assign
canonically determined names has much greater signi
cance in the case of p�adic
local �elds�

Remark 	�����	� Relative to Remark �������
 it is also interesting to note that

just as the theory of x��� only applies in the case where the curve in question
admits a geometric core
 the theory of the Grothendieck�Teichm&uller group centers
around considering not just the projective line minus three points 
 a curve which
fails to admit a geometric core 
 but instead a certain system of moduli stacks
of hyperbolic curves
 which includes
 for instance
 the moduli stack of hyperbolic
curves of type ��� �� which �by �Mzk��
 Theorem C� does admit a geometric core�

Finally
 we have the following analogue of Theorem �����
 �iii�
 which is valid
in the local p�adic case as well	

Corollary 	����� �Criteria for the Existence of a Geometric Core� Let
K be a 
nite extension of Qp or Q� XK a non�proper hyperbolic orbicurve

over K� write X
def
� �Et�XK�� Then the following assertions are equivalent�

�i� XK admits a K�core�
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�ii� X admits a faithful quasi�core�

�iii� X is intrinsically exhaustive�

Proof� This is a formal consequence of Theorem �����
 �i�
 �ii�� Proposition �����

�viii�� and the existence of Hecke correspondences �cf� the proof of Theorem �����

�iii�� when XK does not admit a K�core� �

Remark 	������� The implication �i� �� �iii� of Corollary ����� �in the p�adic
case� is somewhat surprising in light of Example �����
 �v�� That is to say
 Corollary

����� implies that �when XK admits a K�core� the rigidity of �Et�XK� is su�ciently

strong to eliminate the non�intrinsic exhaustivity of �Et�K�� In particular
 we con�
clude in this case that the natural inclusion

COut��Z��GK� �� Isog�GK�

fails to be surjective �cf� Propositions �����
 �viii�� �����
 �iii���

x	��� The Logarithmic Special Fiber via Quasi�Cores

In this x
 we interpret the results of �Mzk��
 x�
 from the point of view of the
theory of quasi�cores 
 cf� x���
 ����

Let XK be a hyperbolic curve over a 
nite extension K of Qp � Denote the ring
of integers �respectively
 residue 
eld� of K by OK �respectively
 k�� also we shall
use notation such as �klog�
 ��klog���
 as in �Mzk��
 x��

Assume that XK admits a stable model over OK �cf� �Mzk��
 x��
 as well as
a K�core ZK 
 and that XK is Galois over ZK � Then we de
ne the stable model of
ZK to be the quotient 
 in the sense of �log� stacks 
 of the stable model of XK

by Gal�XK�ZK�� Let us denote the logarithmic special 
bers of the stable models

of XK 
 ZK by X log
k 
 Z log

k 
 respectively� Write	

X
def
� �Et�XK�� Z

def
� �Et�ZK�

Also
 let us write Zcom for the quasi�core �for X 
 Z� of Theorem ������

Now recall from �Mzk��
 the discussion following Remark �����
 the �universal
admissible covering	 eX log

k � X log
k

of X log
k determined by the admissible quotient  XK

�  adm
XK

� Put another way
 this

covering is the composite of all admissible coverings �cf� �Mzk��
 x�� of Xlog
k �klog

�klog��� In the following discussion
 let us denote the category of �disjoint unions
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of coverings isomorphic to� subcoverings of this universal admissible covering �re�

spectively
 subcoverings of the �geometric universal admissible covering	 eX log
k �

X log
k �klog �k

log��� by	

�Etadm�X log
k � �respectively
 �Etadm�X log

k �klog �k
log����

To keep the notation simple
 we set	

X�
def
� �Etadm�X log

k �� X �
def
� �Etadm�X log

k �klog �k
log���

�so the fundamental group of X� �respectively
 X �� may be identi�ed with  
adm
XK

�respectively
 the geometric portion $adm
XK

�  adm
XK

of  adm
XK


 cf� �Mzk��
 x����

Similarly
 we may construct

Z�
def
� �Etadm�Z log

k �

�for instance
 as the quotient of X� by the faithful action on X� of the �nite group
Gal�XK�ZK���

Next
 let us write
Q�

for the �anabelioid quotient	 of X � by the natural action on X � by the pro
nite
group

Aut�X log
k �klog �k

log���

�i�e�
 the group of automorphisms of the abstract log scheme which do not neces�
sarily lie over klog or �klog����� That is to say
 at the level of pro
nite groups

the fundamental group of the anabelioid Q� is the extension of the pro�nite group
Aut�X log

k �klog �k
log��� by the fundamental group of X � determined by the natural

outer action of the former pro�nite group on the latter� Note that by the de�ni�
tion of �Aut�
 the slimness of X� �cf� �Mzk��
 Lemma ���
 �i��
 and the slimness
of Gal��klog���klog� �cf� �Mzk��
 Proposition �����
 �iii��
 it follows that Q� is also
slim�

Thus
 we have a commutative diagram of natural relatively slim morphisms of
slim� connected anabelioids

X � Z��y ��y
X� � Z� � Q�

in which the horizontal morphisms are all 
nite �etale�
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Theorem 	����� �The Admissible Quotient as Quasi�Core� Assume that
X � Z is Zcom�Galois� Then the morphism

X � Q�

is a quasi�core� In particular� the theory of x���� ��� may be applied to this
morphism�

Proof� By the functoriality of the anabelioid associated to a geometric core ��cf�
Corollary �����
 �iii�� and our hypothesis that X � Z is Zcom�Galois �cf� Proposi�
tion �����
 �vii��
 it follows that it su�ces to consider
 for K� a �nite extension of
K
 the behavior of automorphisms of the quotient

� X ��  XK�
�  adm

XK�
��  X�

�

induced by arbitrary automorphisms of  XK�
� By �Mzk��
 Theorem ���
 it follows

that such automorphisms of  adm
XK�

necessarily arise from automorphisms of the
logarithmic special 
ber of XK� � Thus
 we conclude by the de�nition of Q� and the
easily veri�ed fact that base�change to totally wildly rami�ed extensions K�� of K �

does not a�ect the automorphism group of the logarithmic special 
ber� �

Remark 	������� Note that the anabelian nature of the logarithmic special 
ber
�i�e�
 �Mzk��
 Theorem ���� is applied in Theorem ����� in a fashion similar to the
way in which the anabelian nature of hyperbolic curves over number 
elds is applied
in Theorem �����
 �ii��
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