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ATSUSHI TAKAHASHI

Abstract. A notion of a Frobenius manifold with a nice real structure was introduced by

Hertling. It is called CDV structure (Cecotti-Dubrovin-Vafa structure). In this paper, we

introduce a “positivity condition” on CDV structures and show that any Frobenius manifold

of rank two with real spectrum can be equipped with a positive CDV structure. We extend

naturally the symmetries of Frobenius structures given by Dubrovin to symmetries of CDV

structures, which will play an important role.

1. Introduction

A family of 2-dimensional topological field theories endow its base space with a nice

geometric structure. This structure is mathematically axiomatized by Dubrovin and called

the Frobenius structure (see [D1]):

Definition 1.1. A Frobenius manifold of rank µ is a tuple (M, η, ◦, E, e) where

• M is a complex manifold of dimension µ,

• η : TM ⊗ TM → OM is a non-degenerate OM -bilinear form,

• ◦ is an associative commutative multiplication on TM which is η-invariant:

η(δ ◦ δ′, δ′′) = η(δ, δ′ ◦ δ′′), δ, δ′, δ′′ ∈ TM , (1.1)

• ∇/ : TM → TM ⊗ Ω1
M is a Levi–Civita connection of η which is flat:

[∇/δ,∇/δ′ ] =∇/[δ,δ′], δ, δ′ ∈ TM , (1.2a)

∇/δδ
′ −∇/δ′δ = [δ, δ′], δ, δ′TM , (1.2b)

δη(δ′, δ′′) = η(∇/δδ
′, δ′′) + η(δ′,∇/δδ

′′), δ, δ′, δ′′ ∈ TM , (1.2c)

and satisfies the potentiality condition ∇/C = 0, where C is the OM -linear map C : TM →
TM ⊗ Ω1

M defined by Cδδ
′ := δ ◦ δ′, δ, δ′ ∈ TM ,

• E is a holomorphic vector field called Euler vector field satisfying

LieE(◦) = ◦, LieE(η) = (2− d)η, for some d ∈ C, (1.3)

• e is a ∇/-flat holomorphic vector field which is an identity with respect to the multiplication

◦, i.e., e ◦ δ = δ, for all δ ∈ TM .

1



2 ATSUSHI TAKAHASHI

Since ∇/ is flat and torsion free, there exist flat coordinates on M , i.e., there exists a local

coordinate system (t1, . . . , tµ) such that

TM ⊃ T f
M := Ker∇/ =

µ⊕

i=1

C
∂

∂ti
and TM ' T f

M ⊗OM . (1.4)

Since e is flat, we can find a flat coordinate t0 such that e = ∂/∂t0. We shall keep “0” to denote

the special direction corresponding to e. It is easy to see that η(δ, δ′) is constant for δ, δ′ ∈ T f
M .

The condition ∇/C = 0 implies the existence of the “potential”:

Definition 1.2. (Frobenius potential)

Let (M, η, ◦, E, e) be a Frobenius manifold and (t0, . . . , tµ−1) be its flat coordinates. A local

holomorphic function F is called the Frobenius potential of the Frobenius manifold M if

η(∂i ◦ ∂j , ∂k) = η(∂i, ∂j ◦ ∂k) = ∂i∂j∂kF, ∀i, j, k ∈ {0, . . . , µ− 1}, where ∂i := ∂/∂ti. (1.5)

In particular, ηij := η(∂i, ∂j) = ∂0∂i∂jF .

The gradient of the Euler vector field ∇E of a Frobenius manifold defines a C-linear map

on the C-vector space of flat vector fields T f
M . We shall only consider Frobenius manifolds

with semi-simple ∇E. Then we see that there exist flat coordinates (t0, . . . , tµ−1) and complex

numbers qi and ri such that the Euler vector field is given by

E =
µ−1∑

i=0

{(1− qi)ti + ri}∂i, (1.6)

where q0 = 0 and ri 6= 0 only if qi = 1. Note that LieE(η) = (2 − d)η implies that ηij = 0 if

qi + qj 6= d.

It is easy to classify Frobenius manifolds of rank one and two with a flat identity e and a

semisimple endomorphism ∇E. See [D1] and [M] for details.

Theorem 1.1. (i) Any Frobenius manifold of rank 1 with a flat identity e = ∂0 is locally

isomorphic to the Frobenius manifold defined by

F (t0) =
1
6
a(t0)3, a ∈ C, E = t0∂0. (1.7)

(ii) Any Frobenius manifold of rank 2 with a flat identity and a semisimple endomorphism ∇E

is locally isomorphic to a direct sum of two 1-dimensional Frobenius manifolds or to one
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of the Frobenius manifolds defined by the following potentials (e = ∂0) :

F (t0, t1) =
1
2
(t0)2t1, E = t0∂0, d = 0, (1.8a)

F (t0, t1) =
1
2
(t0)2t1 + ce

2
r
t1 , E = t0∂0 + r∂1, r 6= 0 d = 0, (1.8b)

F (t0, t1) =
1
2
(t0)2t1 + c(t1)

3−d
1−d , E = t0∂0 + (1− d)t1∂1, d ∈ C\{−1, 1, 3}, (1.8c)

F (t0, t1) =
1
2
(t0)2t1 + c(t1)2 log t1, E = t0∂0 + 2t1∂1, d = −1, (1.8d)

F (t0, t1) =
1
2
(t0)2t1 + c log t1, E = t0∂0 − 2t1∂1, d = 3, (1.8e)

F (t0, t1) =
1
6
η00(t0)3 +

1
2
(t0)2t1, E = t0∂0 + t1∂1, d = 1, (1.8f)

where c, r, η00 are complex numbers.

Remark. (i) In (1.8b), t1 is defined up to addition of a constant.

(ii) Frobenius manifolds given by (1.8b), (1.8c), (1.8d), (1.8e) with c 6= 0 are semi-simple,

i.e., there exists a local basis (e1, e2) of TM in which the multiplication ◦ takes the form

ei ◦ ej = δijej where δij is the Kronecker’s delta.

It is a very interesting problem to equip with Frobenius manifolds with nice real structures.

The following structure was first discovered in the study of the geometry of the moduli space

of N=2 supersymmetric quantum field theories in 2-dimension by Cecotti–Vafa [CV1]. It is

mathematically axiomatized by Dubrovin [D2] and Hertling [H]:

Definition 1.3. (tt∗-geometry, CDV structure)

Let us denote by AM the sheaf of real analytic functions on a complex manifold M and put

T 1,0
M := TM ⊗AM . A CDV structure (M,η, ◦, E, e, κ) is a Frobenius manifold (M,η, ◦, E, e) with

an AM -antilinear involution κ : T 1,0
M → T 1,0

M satisfying the following conditions:

• h(·, ·) := η(·, κ·) is a Hermitian form on T 1,0
M satisfying

h(Cδδ
′, δ′′) = h(δ′, κCδκδ′′), δ, δ′, δ′′ ∈ T 1,0

M , (1.9a)

Liee(h) = 0, LieE−Ē(h) = 0, (1.9b)

where Ē is the usual complex conjugate of E.

• The metric connection D for h respects κ, i.e.,

D(κ) = 0, D(h) = 0 and D(η) = 0. (1.10)

• Let P1
z be the completion of Spec C[z, z−1] and π : P1

z×M → M be the natural projection.

Consider the canonical lifts of D and Q := LieE −DE + (1− d/2) · id. to π∗TM . Then the

connection ∇CV on π∗TM |C\{0}×M defined by

∇CV := D + zC + z−1κCκ + (zCE −Q− z−1κCEκ)
dz

z
, (1.11)
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is flat.

It is proved in [H] that

(i) M can be extended uniquely to a manifold M ext (⊃ M) such that all E-orbits in M ext are

isomorphic to C, C∗ or {pt},
(ii) outside of a real analytic subvariety R ⊂ M ext, there exists a CDV structure on M ext

which extends canonically 1 the CDV structure on M .

Note that if κ is the real structure of a CDV structure on a Frobenius manifold M , then −κ

defines another CDV structure on M . Therefore we shall introduce the following “positivity

condition” on CDV structures based on the flows of the real vector field E + E on M ext which

is motivated by Hertling’s paper [H]:

Definition 1.4. We shall call a CDV structure (M,η, ◦, E, e, κ) positive when the following

condition is satisfied:

If one starts at any point t ∈ M ext and goes sufficiently far along the flow of the real

vector field E + E, then the Hermitian form h is positive definite there.

Remark. In general, the Hermitian form h is not positive definite on M ext. We shall see such

examples in section 3.

It is easy to see that any Frobenius manifold of rank one (1.7) can be equipped with the

positive CDV structure defined by κ(∂0) = a−1|a|∂0, i.e., h(∂0, ∂0) = |a|. Then the natural

problem is whether there exists a positive CDV structure on any Frobenius manifold. We have

the following result for Frobenius manifolds of rank two:

Theorem 1.2. (Main Theorem)

Any Frobenius manifold of rank two can be equipped with a positive CDV structure if and only

if d ∈ R.

We shall prove our main theorem based on the classification of Frobenius manifolds since

CDV structures change very much according to their multiplication structure. Therefore we

shall discuss

(i) in section 3, Frobenius manifolds with trivial potentials: (1.8a), (1.8b), (1.8c), (1.8d), (1.8e)

with c = 0 and (1.8f),

(ii) in section 5, semisimple Frobenius manifolds: (1.8a), (1.8b), (1.8c), (1.8d), (1.8e) with

c 6= 0.

We shall also show in section 4 that there exist discrete symmetries of CDV structures

which is a natural extension of those of Frobenius manifolds discovered by Dubrovin [D1].
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2. CDV structures of dimension 2

In this section, we shall give basic properties of CDV structures of rank two. Let (t0, t1)

be flat coordinates of the Frobenius manifold of a CDV structure (M, η, ◦, E, e, κ). The Euler

field is given by E = t0∂0 + [(1− d)t1 + r]∂1 for some r, d ∈ C and r 6= 0 only if d = 1.

Lemma 2.1. If d 6= 0 and h is positive definite at a point in M ext\R 2, then

(hij̄) =

(
g 0

0 g−1

)
, (2.1)

for a real analytic function g on M ext\R.

Proof. Note that we have

κ2 = id. ⇐⇒ η−1h · (η−1h) = id. (2.2)

by definition h(·, ·) = η(·, κ·). On the other hand, from the potentials F in the classification,

η =

(
0 1

1 0

)
. (2.3)

Since h is positive definite at a point in M ext\R, from the above facts we see that (hij̄) must be

a diagonal matrix and the determinant of (hij̄) must be 1.

Note that g does not depend on t0 since Liee(h) = 0. [E, e] = −e and LieE−Ē(h) = 0 give

(∂E − ∂̄Ē)g = 0. Therefore, Q = LieE −DE + (2− d)/2 · id. is diagonal if d 6= 0 and given by

(Q)j
i =

(
q 0

0 −q

)
, where q = −d

2
− ∂E log(g). (2.4)

We can also show that Q is Hermitian with respect to the Hermitian form h, in other words,

h(Qδ, δ′) = h(δ,Qδ′) for δ, δ′ ∈ T 1,0
M . These facts give the following necessary condition for a

Frobenius manifold to be equipped with a CDV structure:

Lemma 2.2. Let (M, η, ◦, E, e, κ) be a CDV structure of rank 2 and E = t0∂0 +[(1−d)t1 +r]∂1

be its Euler vector field. Then d ∈ R.

Proof. Q is Hermitian if and only if q = q̄. Since (∂E− ∂̄Ē)g = 0, this is equivalent to d = d̄.

(∂E − ∂̄Ē)g = 0 also implies that (t1∂1 − t̄1̄∂̄1̄)g = 0 if d 6= 1 and (r∂1 − r̄∂̄1̄)g = 0 if d = 1

and r 6= 0. Now the following statement is obvious:

2One may also include the case (1.8f) with η00 = 0.
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Lemma 2.3. g depends only on |t1|2 (|et1/r|2) if d 6= 1 and r = 0 (d = 1 and r 6= 0, respectively).

It is very complicated in general to write down explicitly the flatness condition for ∇CV .

But for CDV structures of rank two, (∇CV )2 = 0 gives only one non-trivial differential equation:

Lemma 2.4. Let (M, η, ◦, E, e, κ) be a CDV structure of rank 2 and assume d 6= 0. Then

(∇CV )2 = 0 implies the following

∂̄1̄∂1 log(g) = −g−2 + |∂3
1F |2g2, (2.5)

where F is the Frobenius potential of the CDV structure.

Conversely, if a real analytic solution of (2.5) is given for a Frobenius manifold of rank two

with d( 6= 0) ∈ R, then g defines a real structure κ of a CDV structure over the given Frobenius

manifold.

Proof. In our case, all equations given by (∇CV )2 = 0 except

[D∂1 , ∂̄1̄] =− [C∂1 , κC∂1κ], (2.6)

[∂̄1̄, Q] =− [CE , κC∂1κ], (2.7)

[D∂1 , CE ]+[Q,C∂1 ]− C∂1 = 0, (2.8)

are trivially satisfied. The last two equations follow from the definition of Q, Q = LieE −DE +

(2− d)/2 · id.. We see that κC∂1κ has the following matrix elements (with respect to the basis

(∂0, ∂1) of T 1,0
M )

κC∂1κ = h−1C†
∂1

h =

(
0 g−2

∂3
1F · g2 0

)
. (2.9)

Then we have the statement by some easy calculations.

Therefore, for a Frobenius manifold with d 6= 0, all we have to do is to show the existence

of a real analytic solution g of (2.5) such that g is positive in the sense of the Definition 1.4.

3. Frobenius manifolds with trivial potentials

In this section, we consider the case when the equation (2.5) is given by

∂̄1̄∂1 log(g) = −g−2, (3.1)

in other words, we consider Frobenius manifolds with trivial potentials F = (t0)2t1/2. This class

has three subclasses according to the classification: 1) case (1.8a), 2) case (1.8b) with c = 0 and

3) cases (1.8c), (1.8d), (1.8e) with c = 0, and the case (1.8f) with η00 = 0.
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3.1. Extended moduli space of elliptic curves. First we shall study the case 1) (1.8a)

which should corresponds to the geometry of the extended moduli space of elliptic curves.

Theorem 3.1. Let us set M := {(t0, τ) ∈ C2 | Imτ > 0}. Consider the following data on a

holomorphic vector bundle of rank two H := OMe1 ⊕OMe2
3:

(i) a Hermitian form h on H⊗AM

(hij̄) =

(
g 0

0 g−1

)
, where g := 2Imτ, (3.2)

(ii) an OM -bilinear form η on H

(ηij) =

(
0 1

1 0

)
, (3.3)

(iii) OM -linear maps Cδ : H → H, δ ∈ TM

C∂0 = id., C 1√−1
∂τ

=

(
0 0

1 0

)
, (3.4)

(iv) An AM -endomorphism Q of H⊗AM

(Qj
i ) =

(
−1

2 0

0 1
2

)
. (3.5)

Then any choice of a point (0, τ0) ∈ M ∪ {(0,
√−1∞)} gives a global section ζ of H, which

together with the Euler vector field E = t0∂0 induces via an OM -isomorphism

ζ : TM ' H, δ 7→ Cδζ, (3.6)

a positive CDV structure on TM isomorphic to the one defined by (1.8a), whose flat coordinates

are given by t0 and t1 = (τ − τ0)/(τ − τ̄0) if τ0 6=
√−1∞ and t1 =

√−1τ if τ0 =
√−1∞.

Proof. Note that Cδ : H → H, δ ∈ TM defines a multiplication structure on TM via the isomor-

phism (3.6) once we fix ζ. If we set ζ := e1, then one easily sees that t0, t1 :=
√−1τ define flat

coordinates of Frobenius manifold of type (1.8a) and that g := 2Imτ satisfies the equation (3.1).

Thus we have a positive CDV structure since the real vector field E + E = t0∂0 + t̄0̄∂̄0̄ fixes the

τ -direction.

Note that ∂k
τ log(h(ζ, ζ)) = ∂k

τ log(g) = 0 for all k ≥ 1 at (0,
√−1∞). In this sense,

we mean that the section ζ = e1 is given by the choice of the point (0,∞). For other points

(0, τ0) ∈ M , since g = 2Imτ is real analytic, there exists a unique holomorphic function f on

M up to a constant term such that ζ := exp(f)e1 satisfies ∂k
τ log(h(ζ, ζ)) = 0 for all k ≥ 1 at

(0, τ0) ∈ M . Indeed, we can choose such a function f by exp(f) = (2Imτ0)1/2/(τ − τ0).

Recall that for each point τ0 ∈ H := {τ ∈ C | Imτ > 0} there exists a bi-holomorphic map

fτ0 : H ' D := {z ∈ C | |z| < 1}, τ 7→ t1 =
τ − τ0

τ − τ̄0
. (3.7)

3Here we use the matrix representation with respect to the basis (e1, e2) of H.
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and that fτ0 maps the Weil–Peterson metric g−2 = (2Imτ)−2 on H to the Poincaré metric on

D:

(f−1
τ0 )∗(

|dτ |2
(2Imτ)2

) =
1

(τ − τ̄)2
(τ − τ̄0)2(τ̄ − τ0)2

(τ0 − τ̄0)2
|dt1|2 =

|dt1|2
(1− |t1|2)2 . (3.8)

Note that ∂k
1 (1− |t1|2)−2 = 0 for all k ≥ 1 at t1 = 0. Considering the following isomorphism as

holomorphic bundles with Hermitian metrics

(H, h) ' (TM , G)⊗ (L, g), L := OMe1, (Gij̄) = diag(1, g−2), (3.9)

we see that ζ = exp(f)e1 gives a CDV structure 4 (C × D ' M, η, ◦, E = t0∂0, e, κ) via the

isomorphism

ζ : (f−1
τ0 )∗TC×D ' H, δ 7→ C(f−1

τ0
)∗δζ, (3.10)

whose Frobenius manifold structure is given by (1.8a) with flat coordinates t0, t1 = (τ−τ0)/(τ−
τ̄0). In particular, the Hermitian metric with respect to the basis (∂0, ∂1) is given by

(
1− |t1|2 0

0 (1− |t1|2)−1

)
. (3.11)

This CDV structure is positive since E = t0∂0 fixes the t1-direction and |t1| < 1 for all (t0, t1) ∈
C×D.

Remark. (i) This theorem is implicit in [BCOV].

(ii) ζ is a primitive form in the sense of Kyoji Saito [S].

(iii) If one considers the restriction of a CDV structure to the subspace of M where CE = 0,

then one gets a variation of Hodge structures (see [H]). In the above case, we have a

variation of Hodge structure of rank 2 of weight 1, which is classified by the upper half

plane H. The above construction of CDV structures is based on the Hodge theory, and as

a result it classifies the all CDV structures of type (1.8a).

3.2. Case (1.8b) with c = 0. In this case, since g depends only on x := |et1/r|2, the equation

(2.5) becomes

x
∂

∂x

(
x

∂

∂x
log g

)
= −|r|2g−2. (3.12)

It is not difficult to solve the above equation under some assumptions:

Lemma 3.2. g = |r| log x is the unique solution (up to addition of a real constant) of the

equation (3.12) satisfying limx→0 x∂ log g/∂x = 0, limx→0 g−1 = 0 and g > 0 for x >> 0.

Proof. This follows from the fact that (3.12) can be rewritten as ∂x(∂x log(g/|r|))2 = ∂x(g/|r|)−2.

4One may check directly that η(ζ, C∂1ζ) = 1, h(ζ, ζ) = (1− |t1|2) and etc..
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From this Lemma, we have the following CDV structure for the Frobenius manifold of

type (1.8b) with c = 0:

Theorem 3.3. Let us consider the Frobenius manifold (M, η, ◦, E, e) defined by F = (t0)2t1/2

and E = t0∂0 + r∂1, r 6= 0 . Then it can be equipped with a positive CDV structure whose real

structure κ is given by the following Hermitian form h :

(hij̄) =

(
g 0

0 g−1

)
, where g =

|r|
r

t1 +
|r|
r̄

t̄1̄ − g0, g0 ∈ R. (3.13)

In this case, the real analytic variety R ⊂ M ext where we have no CDV structures is given by

g = 0, i.e., 2Re(r̄t1) = |rg0|.

Remark. (i) The Hermitian endomorphism of the above CDV structure is given by

(Qj
i ) =

(
q 0

0 −q

)
, where q = −1

2
+

|r|2
r̄t1 + rt̄1̄ − g0|r|

. (3.14)

(ii) The flat coordinate t1 for the potential (1.8b) are defined up to addition of a constant.

Hence one can make g0 = 0 by a constant shift of t1.

3.3. Case (1.8c),(1.8d),(1.8e) with c = 0. In this case, since g depends only on x := |t1|2, the

equation (2.5) becomes

∂

∂x

(
x

∂

∂x
log g

)
= −g−2. (3.15)

We can find the following solution to the above equation:

Lemma 3.4. Assume that g has the power series expansion g =
∑

i≥0 gix
i at x = 0. Then

g0 · g1 = 1 and gi = 0 for i ≥ 2.

Proof. One can show by induction.

As a result, we have the following:

Theorem 3.5. Let us consider the Frobenius manifold (M, η, ◦, E, e) defined by F = (t0)2t1/2

and E = t0∂0 +(1−d)t1∂1, d ∈ R. Then it can be equipped with a positive CDV structure whose

real structure κ is given by the following Hermitian form h :

(hij̄) =

(
g 0

0 g−1

)
, where g = g0 − g−1

0 |t1|2,
{

g0 > 0, if d > 1,

g0 < 0, if d < 1.
(3.16)

In this case, the real analytic variety R ⊂ M ext where we have no CDV structures is given by

g = 0, i.e., |t1| = |g0|.

Remark. The Hermitian endomorphism of the above CDV structure is given by

(Qj
i ) =

(
q 0

0 −q

)
, where q = −d

2
+

(1− d)|t1|2
g2
0 − |t1|2

. (3.17)
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Note that

lim
t1→0

q = −d

2
, lim

t1→∞
q = −2− d

2
. (3.18)

3.4. Case (1.8f). Finally, let us consider the case (1.8f). By setting ∂̃0 := ∂0 − η00/2 · ∂1 and

∂̃1 := ∂1, we can reduce this case to the one given in the previous subsection. As a result we

have the following positive CDV structure for this case:

Theorem 3.6. Let us consider the Frobenius manifold (M, η, ◦, E, e) defined by F = 1
6η00(t0)3+

1
2(t0)2t1 and E = t0∂0 + t1∂1. Then it can be equipped with a positive CDV structure whose real

structure κ is given by the following Hermitian form h:

(hij̄) =

(
g + |η00|2

4 g−1 η00

2 g−1

η00

2 g−1 g−1

)
, where g = g0 − g−1

0 |t1|2, g0 ∈ R<0. (3.19)

In this case, the real analytic variety R ⊂ M ext where we have no CDV structures is given by

g = 0, i.e., |t1| = |g0|.

Remark. The Hermitian endomorphism of the above CDV structure is given by

(Qj
i ) =

(
q 0

−η00 · q −q

)
, where q =

|t1|2
g2
0 − |t1|2

. (3.20)

4. Symmetries of CDV structures

Symmetries of Frobenius manifolds are transformations which sends a Frobenius manifold

to another one. There are two basic symmetries I and S1 [D1].

4.1. Inversion I. First we consider a symmetry called the inversion I which is given by 5

t̂0 := t0, (4.1a)

t̂1 := − (t1)−1, (4.1b)

F̂ (t̂) := (t1)−2
[
F (t)− (t0)2t1

]
, (4.1c)

η̂01 := η01. (4.1d)

In particular, one sees that d̂ = 2− d.

We can extend this to the symmetry of CDV structures by setting

ĝ(t̂) := g(t)|t|−2. (4.2)

Note that the CDV structures given in Theorem 3.5 with g0 < 0, d < 1 are the I-transforms

of those of g0 > 0, d > 1. One can glue them and construct CDV structures on C × P1, whose

underlying Frobenius structures are called twisted Frobenius manifold in [D1].

5We assume here d 6= 0 for simplicity.
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4.2. Symmetry S1. For cases (1.8c), (1.8d), (1.8e) with c 6= 0, we have also the following

symmetry called S1:

t̂0 := t0, (4.3a)

t̂1 := ∂2
1F, (4.3b)

∂̂2
1 F̂ (t̂) := t1, (4.3c)

η̂01 := η01. (4.3d)

In particular, one sees that d̂ = −d.

We can also extend this to the symmetry of CDV structures by setting

ĝ(t̂) := (g(t))−1. (4.4)

Thus by using I and S1 we can reduce any semi-simple CDV structure 6 of rank two with

d ∈ R to one with 0 ≤ d̂ ≤ 1.

Remark. (i) I and S1 respects the positivity of CDV structure.

(ii) Note that I and S1 define an action of W (Â1), the affine Weyl group of type A1, on the

space of semisimple CDV structures of rank two.

5. Semisimple case

In this section, we consider the case when the equation (2.5) is given by

∂̄1̄∂1 log(g) = −g−2 + |∂3
1F |2g2, (5.1)

where ∂3
1F is invertible at almost all points on M . This class consists of a direct sum of two

CDV structures of rank one for which the existence of positive CDV structure is clear and the

cases (1.8b), (1.8c), (1.8d), (1.8e) with c 6= 0.

Note that in the semisimple case, g = |∂3
1F |−1/2 is always a solution of (5.1) and defines

a positive CDV structure. Since ∂E∂3
1F = 2d∂3

1F , we see that Q = 0 for this solution. By a

suitable re-definition of η and t1, one can reduce this CDV structure to a direct sum of two CDV

structures of rank one. So we have to find another nontrivial solution.

The key fact for semisimple CDV structures of rank two is that the differential equation

(5.1) can be written in the form of the Painlevé III equation [CV1]:

d2u

dz2
+

1
z

∂u

∂z
= 4 sinh(u), (5.2)

where

u := log(|∂3
1F |g2) and z =

{
C1|t1|

1
1−d , if d 6= 1,

C2|e t1

r |, if d = 1, r 6= 0,
(5.3)

6We mean by semi-simple CDV structure that the multiplication ◦ is semi-simple.
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for some non-zero constants C1 and C2. Note that under the symmetries I and S1 of CDV

structures (see the previous section), z is invariant and u transforms as

I : u 7→ û = u, S1 : u 7→ û = −u. (5.4)

Therefore any semi-simple CDV structure of rank two with d ∈ R can be reduced to

ones with [d] ∈ [0, 1] ' R/W (Â1), where W (Â1)-action on R is given by I : d 7→ 2 − d and

S1 : d 7→ −d. On the other hand, the existence of positive CDV structures for Frobenius

manifolds with 0 ≤ d ≤ 1 is already shown by Cecotti–Vafa in [CV1][CV2]. Thus we get the

following result:

Theorem 5.1. Any semisimple Frobenius manifold of rank two (M,η, ◦, E, e) with d ∈ R can be

equipped with a positive CDV structure whose real structure is given by the following Hermitian

metric h :

(hij̄) =

(
e

u(z)
2 |∂3

1F |− 1
2 0

0 e−
u(z)

2 |∂3
1F | 12

)
, (5.5)

where u(z) is the unique real analytic solution u(z) of (5.2) such that

(i) u(z) has the following asymptotic behavior as z → 0 :

u(z) ∼ s log(z) + t + O(z2−|s|), 0 ≤ s < 2, (5.6)

∼ 2 log(z) + 2 log[− log(
z

2
+ γ)] + O(z4 log2 z), s = 2, (5.7)

where γ is the Euler’s constant and s/2 is the representative of d in [0, 1] ' R/W (Â1),

(ii) u(z) has no poles on the positive real axis. This is equivalent to

e
t
2 =

1
2s

Γ(1
2 − s

4)
Γ(1

2 + s
4)

.

In particular, the CDV structures given by the above u(z) are defined on whole M ext, i.e., R is

empty.

Remark. The Hermitian endomorphism of the above CDV structure is given by

(Qj
i ) =

(
q 0

0 −q

)
, where q := −1

4
z
∂u

∂z
. (5.8)

Note that E = z∂z/2.

It is known that the Stokes matrix S defined over R, a real upper triangular matrix with

identity on the diagonals, describes a positive semisimple CDV structure [CV2][D2][H]. We see

that the following conditions are equivalent for semisimple CDV structures of rank two:

(i) S + tS is positive semi-definite.

(ii) R ⊂ M ext where one can not have CDV structures is empty.

We expect7 that this equivalence holds for semisimple CDV structures of rank greater than 2.

7Motivated by [CV2] and a private discussion with Claus Hertling at Sapporo, Sep. 2003.
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