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Abstract. Smooth compact complex surfaces admitting non-trivial surjective endo-
morphisms are classified up to isomorphisms. The algebraic case has been classified in
[3], [19]. The following surfaces are listed in the non-algebraic case: a complex torus, a
Kodaira surface, a Hopf surface with at least two curves, an Inoue surface with curves,
and an Inoue surface without curves satisfying a rationality condition.

1. Introduction

A non-trivial surjective endomorphism of a compact complex variety X is a non-

isomorphic surjective morphism X → X by definition. Projective surfaces X admitting

non-trivial surjective endomorphisms are classified in [3], [19] as follows:

(1) X is a toric surface;

(2) X is a P1-bundle over an elliptic curve;

(3) X is a P1-bundle over a non-singular curve C of genus g ≥ 2 such that X ×C C ′ �
P1 ×C ′ for a finite étale covering C ′ → C ;

(4) X is an abelian surface or a hyperelliptic surface;

(5) X is an elliptic surface with the Kodaira dimension κ(X) = 1 and the topological

Euler number e(X) = 0.

The cases above correspond to the following numerical invariants: (1) κ(X) = −∞ and

the irregularity q(X) = 0; (2) κ(X) = −∞ and q(X) = 1; (3) κ(X) = −∞ and q(X) ≥ 2;

(4) κ(X) = 0; (5) κ(X) = 1. Note that a surface of general type does not admit non-trivial

surjective endomorphisms. In this article, we study the case where X is non-algebraic.

The following is our main result:

Theorem 1.1. The non-algebraic non-singular compact complex surfaces X admitting

non-trivial surjective endomorphisms are classified as follows :

(1) X is a complex torus ;

(2) X is a primary Kodaira surface, a secondary Kodaira surface, or an elliptic Hopf

surface;
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(3) X is a Hopf surface with two elliptic curves or one of the following Inoue surfaces

without curves : SM , S
(+)
N,p,q,r;t satisfying a rationality condition (cf. Theorem 8.6)

on the parameter t, and S
(−)
N,p,q,r;

(4) X is a successive blowups of one of the following surfaces whose centers are nodes

of curves : a parabolic Inoue surface, a hyperbolic Inoue surface, and a half Inoue

surface.

The cases above correspond to the following numerical invariants: (1) the first Betti

number b1(X) is even; (2) b1(X) is odd and the algebraic dimension a(X) = 1; (3)

a(X) = 0, b1(X) = 1, and b2(X) = 0; (4) a(X) = 0, b1(X) = 1, and b2(X) > 0.

In particular, if X is Kähler, then X is a complex torus. The definitions of Kodaira

surfaces, Hopf surfaces, Inoue surfaces are given in [10], [5], [7] (cf. [1]). But we discuss

the structures and the properties of these non-Kähler surfaces in Sections 2, 6–9 below.

The Kodaira surfaces X are characterized by the conditions: b1(X) is odd and c1(X) = 0

in H2(X, Q). A Hopf surface is a compact complex surface whose universal covering

space is biholomorphic to C2 \ {(0, 0)} by definition. A compact complex surface is called

a surface of class VII if the first Betti number is 1. If it is minimal, furthermore, it is

called a surface of class VII0. Hopf surfaces and Inoue surfaces are typical examples of

surfaces of class VII0 with the algebraic dimension zero.

The idea of the proof of Theorem 1.1 is as follows: In the first step, we list the possible

surfaces X admitting a non-trivial surjective endomorphism. We can show that, for such

an X, the set S(X) of curves with negative self-intersection number is finite by the same

argument as in [19]. This yields a strong condition on X. For example, it implies that if

X is a non-algebraic elliptic surface, equivalently if a(X) = 1, then the singular fibers are

multiple of elliptic curves (cf. Proposition 4.1). Furthermore by investigating the variation

of Hodge structure, we infer that X is one of the surfaces listed in (2) of Theorem 1.1

(cf. Theorem 4.5). The finiteness of S(X) and some known results on surfaces of class

VII0 imply that if X is a surface of class VII, then its minimal model is one of the known

examples (cf. Theorem 5.2). Thus we can make a list of the possible surfaces.

Conversely in the second step, we examine whether a non-trivial surjective endomor-

phism exists or not individually for the cases of surfaces listed as candidates. It seems to

be difficult to determine the existence on Kodaira surfaces, on non-elliptic Hopf surfaces,

and on Inoue surfaces without curves, because of their complicated construction from the

universal covering space. We consider a lift of an expected endomorphism to the uni-

versal covering space and examine whether it really induces a non-trivial endomorphism

by elementary and long calculations. In the case of Kodaira surfaces and Inoue surfaces

without curves, we can describe the induced endomorphism of the fundamental group

explicitly by using triangular matrices in GL(3, C) (cf. Proposition 6.4, Proposition 8.5).

Our method is delicate but powerful enough for the investigation. For example, we find a

remarkable condition on the parameter t for the existence of endomorphism on the Inoue
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surface S
(+)
N,p,q,r;t. Contrary to the above, in the case of elliptic Hopf surfaces, we look

at the behavior of multiple fibers of the elliptic fibration. If it has three multiple fibers,

then it is obtained as the quotient of an elliptic fiber bundle over P1 by a free action of a

regular polyhedral group G ⊂ PGL(2, C). A G-equivariant endomorphism on the elliptic

bundle is constructed by a similar method as in Lemma 6 in [19].

This paper is organized as follows: After explaining the classification theory of non-

algebraic surfaces in Section 2, we recall and generalize the argument in [19] on the set

S(X) of curves with negative self-intersection numbers in Section 3. The possible surfaces

X are listed in Section 4 and Section 5, respectively for the cases a(X) = 1 and a(X) = 0.

The existence of endomorphisms is studied individually for the cases of surfaces in Sections

6, 7, 8, and 9 according to Kodaira surfaces, Hopf surfaces, Inoue surfaces without curves,

and Inoue surfaces with curves.

Notation

Throughout this paper, we call a compact complex analytic surface by a surface and a

compact complex analytic curve by a curve, for short, if it causes no confusion.

Let X be a non-singular compact complex surface. For u ∈ Hi(X, Z), v ∈ H4−i(X, Z),

we denote by u · v the intersection number
∫

u ∪ v, where ∪ is the cup-product and
∫

is

the trace map H4(X, Z) → Z. A divisor D of X defines a homology class in H2(X, Z)

which corresponds to the first Chern class c1(D) = c1(OX(D)) associated with the line

bundle OX(D) by the Poincaré isomorphism H2(X, Z) � H2(X, Z). The intersection

number c1(D1) · c1(D2) of two divisors D1 and D2 is denoted by D1 · D2. Note that

c1(L) · C = degL|C for a line bundle L and for an irreducible curve C .

Let f : Y → X be a surjective morphism from another non-singular compact com-

plex surface. It induces the pull-back f∗ : Hi(X, Z) → Hi(Y, Z) and the push-forward

f∗ : Hi(Y, Z) → Hi(X, Z). By the Poincaré duality, the push-forward induces a ho-

momorphism Hi(Y, Z) → Hi(X, Z), which we also denote by f∗. Then the composite

f∗ ◦ f∗ : Hi(X, Z) → Hi(X, Z) is the multiplication map by deg f : the mapping de-

gree of f . The projection formula f∗(f
∗x · y) = x · f∗y holds for x ∈ Hi(X, Z) and

y ∈ H4−i(Y, Z). For a divisor D on X and a divisor E on Y , we have c1(f
∗D) = f∗c1(D)

and c1(f∗E) = f∗c1(E), where f∗D and f∗E are the pull-back and the push-forward as

divisors, respectively.

Contrary to the case of algebraic surfaces, the canonical line bundle ωX = Ω2
X may

not have a non-zero global meromorphic section. The divisor of the meromorphic section

is called canonical and is denoted by KX . Even if the canonical divisor does not exist,

we use the same symbol KX as the canonical divisor class virtually in order to simplify

some formulas such as the canonical bundle formula of elliptic fibration, the adjunction

formula, and the ramification formula. For example, we explain that the arithmetic genus
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pa(D) = dimH1(D,OD) for a connected reduced divisor D is calculated by 2pa(D)− 2 =

(KX + D) · D, which is derived from the adjunction formula KD ∼ (KX + D)|D.

2. Non-algebraic surfaces

Let X be a non-singular compact complex surface. The algebraic dimension a(X) is

the transcendence degree of the meromorphic function field of X over C. Here, a(X) ≤ 1

if and only if X is non-algebraic. If a(X) = 1, then the algebraic reduction π : X → T

is holomorphic and is an elliptic fibration. Moreover any curves on X are contained in

fibers of π. If a(X) = 0, then there exist at most finitely many irreducible curves on X

by Theorem 5.1 of [9, I]. We recall the following useful results:

Lemma 2.1. Suppose that a(X) ≤ 1. Then a line bundle L of X satisfies the following

properties:

(1) c1(L)2 ≤ 0.

(2) If c1(L)2 = 0, then c1(L) · c1(L′) = 0 for any line bundle L′.

(3) If pg(X) = 0 and c1(L)2 = 0, then c1(L) is torsion in H2(X, Z).

Proof. (1) Suppose that c1(L)2 > 0. The Riemann–Roch formula for χ(X,L⊗m) implies

that h0(X,L⊗m) or h0(X,L⊗(−m) ⊗ωX) increases of order m2 as m → ∞. But the former

case does not occur since κ(L, X) ≤ a(X) ≤ 1. Thus there exists a non-zero effective

divisor D such that OX(D) � ωX ⊗ L⊗(−n) for some n > 0. The exact sequence

0 → H0(X,L⊗(−m+n)) → H0(X, ωX ⊗ L⊗(−m)) → H0(D, ωX ⊗L⊗(−m)|D)

implies κ(L−1, X) = 2 contradicting κ(L−1, X) ≤ a(X) ≤ 1.

(2) This is shown by (1) and by the inequalities

0 ≥ (tc1(L) + c1(L′))
2

= 2tc1(L) · c1(L′) + c1(L′)2

for any rational number t.

(3) follows from (2), from the surjectivity of c1 : Pic(X) → H2(X, Z), and from the

non-degeneracy of the intersection pairing on H2(X, Q). �

Notation. Let C be an irreducible curve on a non-singular compact complex surface.

(1) If C2 < 0, then C is called a negative curve.

(2) If C2 = 0, then C is called a 0-curve.

(3) If C � P1 and C2 = −d < 0, then C is called a (−d)-curve.

An exceptional curve of the first kind is just a (−1)-curve. If a(X) ≤ 1, then a non-

negative irreducible curve is a 0-curve with pa = 1 and does not intersect other curves.

Remark. A relative minimal model Y of X is, by definition, a non-singular compact

complex surface bimeromorphic to X having no (−1)-curves. If X is non-algebraic, then

Y is unique up to isomorphisms. This is shown as follows: Suppose that there exist a
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bimeromorphic morphism µ : X → Y and a (−1)-curve C ⊂ X such that µ(C) is not a

point. Then µ(C) is a 0-curve with the arithmetic genus pa(µ(C)) = 1 by Lemma 2.1.

Thus µ(C) has a node or a cusp. Let Y ′ → Y be the blowup at the singular point of µ(C).

Then the self-intersection number of the proper transform of µ(C) is less than −1. Since

µ factors through Y ′ → Y , this is a contradiction. Thus, we call Y the minimal model

of X in the non-algebraic case. Similarly, a non-algebraic surface without (−1)-curves is

called a minimal surface.

If X is a non-Kähler elliptic surface with κ(X) = 0, then b1(X) = 3 or 1. In the

case b1(X) = 3, the minimal model is the quotient space of C2 by the action of an affine

transformation group and is called a primary Kodaira surface. In the case b1(X) = 1,

the minimal model has a primary Kodaira surface as a finite étale covering space and is

called a secondary Kodaira surface.

Let X be a compact complex surface with a(X) = 0. If b1(X) is even, then the minimal

model of X is either a complex torus or a K3 surface. If b1(X) is odd, then b1(X) = 1.

In the classification theory of compact complex surfaces by Kodaira [10], the class

VII is not completely classified. A compact complex surface belongs to the class VII if

b1(X) = 1. The class VII0 consists of all the minimal surfaces of class VII. A surface X

of class VII has the following invariants:

q(X) − 1 = pg(X) = χ(X,OX) = h1,0(X) = 0, b2(X) = −K2
X ≥ 0.

Moreover the intersection pairing on H2(X, Q) is negative definite.

A Hopf surface is a surface whose universal covering space is isomorphic to W :=

C2 \ {(0, 0)}, by definition. This is a surface of class VII0 with b2 = 0 containing an

elliptic curve.

The classification of surfaces of class VII0 after Kodaira [10] was started by the discovery

of Inoue surfaces [5], [6], [7]. The Inoue surfaces SM , S
(+)
N,p,q,r;t, S

(−)
N,p,q,r contain no curves

and have the vanishing second Betti number. The surfaces SM are also found by Bombieri

and are called Bombieri–Inoue surfaces. Inoue [5] showed that if a surface S of class VII0

contains no curves, b2(S) = 0, and has a line bundle L with H0(S, Ω1
S ⊗ L) �= 0, then

S is isomorphic to one of the Inoue surfaces above. The last condition on the existence

of L is not required for the characterization. This was shown by [11], [21] in 1990’s.

The other Inoue surfaces: Parabolic Inoue surface Xλ,n, Hyperbolic Inoue surface XK,N,

Half Inoue surface X̂K,N, are constructed in [7]. These surfaces contain curves and have

positive second Betti numbers. A parabolic Inoue surface is related to Hirzebruch’s cusp

singularities and is called also a Hirzebruch–Inoue surface. Another construction of these

Inoue surfaces with curves is given in [20] by the method of torus embedding theory

(cf. Section 9).
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There are many contributions to the classification of surfaces of class VII0 by Kato [8],

Enoki [2], Nakamura [13], [14], and others. The following surfaces are listed in the Table

(10.3) of [13]:

Fact. The surfaces X of class VII0 with a(X) = 0 are classified as follows:

(1) Hopf surface with a(X) = 0;

(2) A parabolic Inoue surface: It is characterized as a surface containing an elliptic

curve and a cycle of rational curves;

(3) A hyperbolic Inoue surface: It is characterized as a surface containing two cycles

of rational curves;

(4) An exceptional compactification with no elliptic curves (cf. [2]): It is characterized

as a surface containing a cycle D of rational curves with D2 = 0 and no elliptic

curves;

(5) A half Inoue surface: It is characterized as a surface containing a cycle D of

rational curves with D2 < 0 and b2(X) = b2(D);

(6) A surface with a cycle D of rational curves with D2 < 0 and b2(X) > b2(D);

(7) A surface with no elliptic curves and with no cycles of rational curves.

Here, by a cycle of rational curves, we mean a reduced connected divisor D =
∑

Ci

satisfying one of the following conditions:

(1) D is an irreducible rational curve with exactly one node;

(2) Any irreducible component Ci is isomorphic to P1 and intersects with D − Ci

transversely at two points.

3. Curves of negative self-intersection number.

The argument of this section is almost parallel to that of Section 2 of [19], where the

algebraic case was discussed.

Lemma 3.1. A surjective endomorphism f : X → X is a finite morphism. If κ(X) ≥ 0,

then f is étale.

Proof. If an irreducible curve C is contracted to a point by f , then C2 < 0. Since

f∗ : H2(X, Q) → H2(X, Q) is isomorphic, no irreducible curve is contracted by f . Hence

f is finite. Suppose that κ(X) ≥ 0. Then KX ∼ f∗KX + R for the ramification divisor

R ≥ 0. Thus KX ∼ f∗f∗KX + f∗R + R. Since f∗ : H0(X, mKX) → H0(X, mKX ) is

isomorphic, R + f∗R + · · · is contained in the fixed part of |mKX |. Thus R = 0. �

Lemma 3.2. Let f : X → X be a surjective endomorphism. If C is a negative curve,

then f(C) is also negative and f−1(f(C)) = C.

Proof. Assume that f(C) = f(C ′) for another irreducible curve C ′. Then af∗C = a′f∗C
′

for some a, a′ > 0. Hence c1(aC − a′C ′) = 0 in H2(X, Q). In particular, C · C ′ < 0 and

thus C = C ′. �
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Let f : X → X be a non-trivial surjective endomorphism of degree d > 1. We consider

the set S(X) of all the negative curves on X. Then S(X) is preserved by f and the

mapping S(X)  C �→ f(C) ∈ S(X) is injective. Let R be the ramification divisor of X

and let S0(X) be the set of all the negative curves contained in Supp R.

Lemma 3.3. If C ∈ S(X) \ S0(X), then |C2| > |f(C)2|.

Proof. There exist natural numbers a, b such that f∗C = af(C) and f∗f(C) = bC . Here

b = 1 since C �⊂ Supp R. Thus a = d and af(C)2 = C2. �

The proof of the following elementary Lemma is left to the reader:

Lemma 3.4. Let S be a set, S0 a finite subset, and let h : S → S be an injection. If

S =
∞⋃

m=1

(hm)−1(S0),

then S is finite and hk is identical for some k > 0.

By Lemma 3.3 and Lemma 3.4, we have:

Proposition 3.5. S(X) is a finite set and there is a natural number k with fk(C) = C

for any C ∈ S(X).

Hence we assume in what follows that f(C) = C for any C ∈ S(X). Then f∗C = aC

and f∗C = aC for a natural number a > 1 with a2 = d. Let NX denote the reduced

divisor
∑

C∈S(X) C . Then R = (a− 1)NX + ∆ for an effective divisor ∆ whose irreducible

component are not negative curves. In particular

(3.1) KX + NX = f∗(KX + NX) + ∆.

For any connected reduced curve D ≤ NX , we have

KD + (NX − D)|D = (f |D)∗ (KD + (NX −D)|D) + ∆|D.

In particular, pa(D) = h1(D,OD) ≤ 1. If pa(D) = 1, then ∆ ∩ D = (NX − D) ∩ D = ∅.
If pa(D) = 0, then (NX −D) · D ≤ 2, and if further (NX − D) ·D = 2, then ∆ ∩ D = ∅.

The induced morphism f |D : D → D is an endomorphism of degree a. Moreover it is

étale outside Sing D∪∆|D by the well-known Lemma 3.6 below. In particular, f(Sing D) ⊂
Sing D ∪ ∆|D, and ∆|D gives the ramification divisor of f |D over D \ Sing D.

Lemma 3.6. Let τ : U → V be a finite morphism between non-singular complex man-

ifolds and let C ⊂ V be a non-singular divisor such that τ is étale outside τ−1C. Then

τ−1C → C is étale.

Proof. We may assume that V is a d-dimensional polydisc and C is a hyperplane by

considering the local situation. Then V \C is isomorphic to the product of the punctured

disc and a (d−1)-dimensional polydisc. In particular, the finite étale covering U \τ−1C →
V \C is cyclic and U → V is the cyclic covering branched along C . Hence τ−1C � C . �
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A reduced connected divisor D is called a straight chain of rational curves if D =
∑l

i=1 Ci

for irreducible curves Ci � P1 such that

(1) Ci · Cj = 0 for |i − j| ≥ 2,

(2) Ci ∩ Cj = 1 for |i− j| = 1.

Lemma 3.7. A negative curve C is either an elliptic curve, a rational curve with exactly

one node, or a smooth rational curve. A reducible connected component of NX is an elliptic

curve, a straight chain of rational curves, or a cycle of rational curves.

Proof. If pa(D) = 1 for a connected reduced curve D ≤ NX, then KD = (f |D)∗KD and

f |D : D → D is étale outside Sing D. Thus no rational curves with cusps are negative.

If a negative curve C1 intersects another negative C2 at one point not transversely, then

pa(C1 +C2) = 1. This contradicts the property: no étale covering exists over C1 \C2 � C.

If three negative curves C1, C2, C3 intersect transversely as C1∩C2 = C2∩C3 = C3∩C1 =

{P} for a point P , then pa(C1 + C2 + C3) = 1. This contradicts the same property as

above. These observations tell us that a reducible connected component D is a straight

chain of rational curves or a cycle of rational curves. �

Suppose that X contains a (−1)-curve C . Let X → X1 be the blowing down of C .

Then an endomorphism of X1 is induced since f−1C = C . Therefore, an endomorphism

is induced on a relative minimal model of X.

4. The case of elliptic surfaces

Let X be a non-singular compact complex surface admitting a non-trivial surjective

endomorphism. Assume that a(X) = 1. Let π : X → T be the algebraic reduction

which is an elliptic fibration onto a non-singular projective curve. A non-trivial surjective

endomorphism f induces a surjective endomorphism h of T such that h ◦ π = π ◦ f .

Proposition 4.1. Under the situation, X is a minimal elliptic surface with e(X) = 0.

Proof. The set of all the irreducible component of reducible fibers coincides with S(X). A

0-curve is the support of an irreducible fiber. We may assume that f−1C = C for negative

curves C for the endomorphism f .

Step 1. We may assume that f−1C = C for any rational curves C.

We have to consider only rational 0-curves C . If C ′ is an irreducible component of

f−1C , then C ′ is not negative and C ′ → C is étale outside Sing C by Lemma 3.6. If C is

a rational curve with a cusp, then C ′ � C . If C is a rational curve with a node, then C ′

also has a node since f is branched along the normal crossing divisor around the node.

The number of rational 0-curves are finite. Hence f−1C is irreducible and (fk)−1C = C

for some k > 0.

Step 2. X admits no curves with cusps.
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Suppose that there exist an irreducible curve C with a cusp and set P = π(C). Note

that C = π∗P is a singular fiber of type II. By the argument of Step 1, we infer that

f∗C = dC for d = deg f . Hence h∗P = dP . In particular, deg h = d. If D is a connected

component of NX, then D = π−1P ′′ and h∗P ′′ = dP ′′ = aP ′′ for a2 = d. Thus NX = 0. In

particular, π is a minimal elliptic fibration with only irreducible fibers. If C ′ = π−1(P ′) is

another rational 0-curve, then h∗P ′ = dP ′ since f−1C ′ = C ′. Considering the ramification

formula for h, we infer that T � P1 and there exist at most two rational curves on X.

If C is the unique rational curve, then π is smooth outside P and the local constant

system R1π∗ZX |C\P is trivial. The local monodromy corresponding to a singular fiber

of type II is of order 6 in SL(2, Z). This is a contradiction. Hence there is another

rational 0-curve C ′ = π−1(P ′). If C ′ has a node, then J(P ′) = ∞ for the J -function

associated with π. However, π is smooth over T \ {P, P ′} � C \ {0}. Thus the period

function is constant, a contradiction. Hence there remains the case in which C ′ has a cusp.

Let U and U ′ respectively be open discs with centers P and P ′. A positive generator of

π1(U \{P}) � Z corresponds to a negative generator of π1(U ′\{P ′}) by the isomorphisms

π1(U \ {P}) → π1(T \ {P, P ′}) ← π1(U ′ \ {P ′}).

Thus the condition that C is of type II implies that C ′ is of type II∗, a contradiction.

Step 3. X admits no rational curves

Assume the contrary. By Step 1, f∗C = (deg h)C for any rational curve C on X. If

deg h = 1, then NX = 0 and f is étale along f−1C for a rational 0-curve C . Here, the

mapping degree of f−1C → C is deg f . However, there exists only one point in f−1C over

the node of C . This is a contradiction. Consequently, deg h ≥ 2. By the same argument

as Step 2, we infer that T � P1 and that the number of singular fibers supported on a

union of rational curves is at most 2. Then the period map of π is constant. Hence no

singular fibers of type mIb with b > 0 appear on the relative minimal model of π : X → T .

Therefore, X has no rational curves.

As a result, π is minimal and a singular fiber is a multiple of an elliptic curve. �

The elliptic fibration π : X → T above defines a variation of Hodge structure H of

weight 1 on T since the local monodromies around the image of singular fibers are trivial.

Here, we have R1π∗QX � H ⊗ Q (cf. Lemma 5.4.4 of [18]). Here, H0(T, H) �= 0 implies

H � Z⊕2
T by Corollary 4.2.5 of [18] (cf. Theorem 11.7 of [9, III]). From Leray’s exact

sequence

0 → H1(T, Q) → H1(X, Q) → H0(T, H ⊗ Q) → H2(T, Q) → H2(X, Q),

we infer that b1(X) is odd if and only if H is trivial and H2(T, Q) → H2(X, Q) is zero. If

b1(X) is even, then X is Kähler by Miyaoka [12]. Let L be the invertible sheaf R1π∗OX.

Then L is isomorphic to the graded piece Gr0 for the Hodge filtration on H ⊗ OT and
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π∗ωX � ωT⊗L−1. Moreover, L⊗12 � OX. Then g(T ) ≤ q(X) = g(T )+h0(T,L) ≤ g(T )+1

by

0 → H1(T,OT ) → H1(X,OX) → H0(T,L) → 0.

Hence pg(X) = g(T )− 1+h0(T,L) by χ(X,OX) = 0. If h0(T,L) = 0, then h0(T, H) = 0,

b1(X) = 2g(T ), and X is Kähler. If h0(T,L) �= 0, or equivalently, L � OT , then the

Weierstrass model [15] associated with H is isomorphic to the product of an elliptic curve

and T , and hence H is trivial.

Lemma 4.2. The induced endomorphism h : T → T is not identical.

Proof. Assume the contrary. Then f is an endomorphism over T . Let Σ be a set of points

P ∈ T such that π∗P is a multiple fiber. Let mP be the multiplicity of π∗P . Then we have

a finite ramified covering τ : Z → T such that τ ∗P = mP (τ ∗P )red for P ∈ Σ and g(Z) ≥ 2.

Then the normalization of X ×T Z is smooth over Z and admits a non-trivial surjective

endomorphism. Thus we may assume from the first that π is smooth and g(T ) ≥ 2.

By considering the étale cyclic covering given by L⊗k � OT , we may also assume that

L � OT and hence the variation of Hodge structure H is trivial. Let E be the elliptic

curve isomorphic to a fiber of π. We fix a point 0 ∈ E and give a group structure on E

whose zero is 0. Let OT (E) be the sheaf of germs of holomorphic mappings from T to E.

Then we have an exact sequence

0 → H � Z⊕2
T → OT → OT (E) → 0.

There is an element η ∈ H1(T,OT(E)) such that π is obtained as the torsor of E×T over

T defined by η. The endomorphism f induces an endomorphism f∗ : H → H of variation

of Hodge structures which corresponds to

H1(π−1(P ), Z) � H1(π
−1(P ), Z)

f∗−→ H1(π
−1(P ), Z) � H1(π−1(P ), Z),

where the edge isomorphisms are the Poincaré duals. The endomorphism f∗ : E → E

keeps 0 and is the multiplication by a complex number λ. If we identify E as the quotient

of C by the lattice Lθ = Zθ +Z for some θ ∈ H, then λLθ ⊂ Lθ. Hence 1 �= λ ∈ Z or Q(λ)

is an imaginary quadratic field. In the latter case, t = λ + λ and d = |λ|2 are integers

with 1 − t + d �= 0. The cohomology class η satisfies λ∗η = η. Hence (λ − 1)η = 0 or

(1 − t + d)η = 0. Thus η is torsion, which implies that π is projective. This contradicts

a(X) = 1. �

Corollary 4.3. g(T ) ≤ 1. If g(T ) = 1, then π is smooth.

Proof. If g(T ) ≥ 2, then hk = idT for some k > 0. If g(T ) = 1 and if there exists a multiple

fiber F = π−1(P ), then π−1(Q) is also multiple for any Q ∈ h−1(P ), since h : T → T is

étale. Thus h is isomorphic and hk keeps P for some k > 0 since the set of multiple fibers

is finite. Hence hkl is identical for some l > 0, since the group of automorphisms of E

keeping P is finite. �
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Lemma 4.4. Let π : X → T be an elliptic surface of class VII0. Then T � P1 and

singular fibers are multiple of elliptic curves. In particular, KX ∼Q π∗(KT + Θ) for an

effective Q-divisor Θ =
∑

(1−m−1
i )Pi on T , where mi is the multiplicity of the fiber π∗Pi.

Furthermore the following assertions hold :

(1) If deg Θ > 2, then any surjective endomorphism of X is isomorphic.

(2) If deg Θ = 2, then X is a secondary Kodaira surface.

(3) If deg Θ < 2, then X is an elliptic Hopf surface.

Proof. T is rational by b1(T ) ≤ b1(X) = 1. The variation of Hodge structure is trivial

since e(X) = 0 and π1(T ) = {1}. Let Σ = {P1, P2, . . .} be the set of points P such that

π∗P is a multiple fiber. Then π∗Pi = miCi for an elliptic curve Ci and mi ≥ 2. We

assume that m1 ≤ m2 ≤ · · · Then

KX ∼ π∗KT +
∑

(mi − 1)Ci ∼Q π∗(KT + Θ), for Θ =
∑ (

1 − 1

mi

)
Pi.

In particular, κ(X) = 1, 0, −∞ according as deg Θ > 2, = 2, < 2.

Suppose that κ(X) = 1. Let f be a surjective endomorphism of X and h the induced

endomorphism of T with π ◦f = h◦π. Then f is étale by Lemma 3.1. Thus KX ∼ f∗KX

implies that KT +Θ ∼Q h∗(KT +Θ). Thus h is an automorphism keeping the set Σ which

consists at least three points. Hence some power hk is identical and f is isomorphic by

Lemma 4.2.

Suppose that κ(X) = 0. Then (m1, m2, . . .) is one of the followings:

(2, 2, 2, 2), (2, 3, 6), (2, 4, 4), (3, 3, 3).

In each case, there is a cyclic covering τ : A → T from an elliptic curve such that τ ∗Pi =

mi(τ
∗Pi)red for any i and that τ is étale outside Σ. Moreover, for a suitable choice of group

structure of A, a generator of the Galois group of τ is given as the multiplication map

z �→ αz by a primitive root α of unity of order 2, 6, 4, 3 according as (2, 2, 2, 2), (2, 3, 6),

(2, 4, 4), (3, 3, 3) above. The normalization Y of the fiber product X ×T A is smooth over

A and étale over X. Hence Y is a primary Kodaira surface and X is secondary.

Finally suppose that deg Θ < 2. If Σ �= ∅, then (m1, m2, . . .) is one of the followings:

(m1), (m1, m2), (2, 2, m3), (2, 3, 3), (2, 3, 4), (2, 3, 5).

If 
Σ ≤ 2, then X is Hopf by Lemma 8 of [10] (cf. Fact 7.2 below). If 
Σ = 3, then

there is a finite Galois covering τ : Γ → T from a non-singular rational curve Γ such that

τ ∗Pi = mi(τ
∗Pi)red for any i and that τ is étale outside Σ. Moreover, τ is isomorphic to

the quotient morphism by the standard action of the following finite group G ⊂ Aut(Γ)

according to (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5): the dihedral group Dn of order 2n, the

tetrahedral group A4, the octahedral group S4, and the icosahedral group A5. The

normalization Y of the fiber product X ×T Γ is smooth over Γ and étale over X. Hence

X is also a Hopf surface since Y is so. �
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Theorem 4.5. Let X be a non-singular compact complex surface admitting a non-

trivial surjective endomorphisms. If a(X) = 1, then X is a complex torus, a primary

Kodaira surface, a secondary Kodaira surface or an elliptic Hopf surface.

Proof. Assume that g(T ) = 1. If H is not trivial, then X is Kähler and pg(X) = 0. This

implies that X is projective, a contradiction. Hence H is trivial. Thus ωX � OX and

3 ≤ b1(X) ≤ 4. If b1(X) = 4, then X is a complex torus. If b1(X) = 3, then X is a

primary Kodaira surface.

Next assume that g(T ) = 0. Then L � OT and H is trivial. In particular, pg(X) = 0

and q(X) = 1. Thus X is a surface of class VII0. It is a Hopf surface or a secondary

Kodaira surface by Lemma 4.4. �

Appendix to Section 4

The existence of non-trivial surjective endomorphisms on an algebraic surface X with

κ(X) = 1, e(X) = 0 is proved in Proposition 3.3 of [3] by using the ∂-étale cohomology

theory developed in [18]. Here, we shall give a more geometric proof.

Let π : X → T be the elliptic fibration obtained as the Iitaka fibration. Let Σ be the

set of points P ∈ T such that π∗P is a multiple fiber of multiplicity mP ≥ 2. Then

KX ∼Q π∗(KT + Θ) for the Q-divisor Θ =
∑

P∈Σ(1−m−1
P )P as in Lemma 4.4. Note that

deg(KT + Θ) > 0 by κ(X) = 1. By applying Theorem 4.2 of [16], we have a finite Galois

covering Z → T such that the normalization Y of X ×T Z is isomorphic to the product

C ×Z over Z for an elliptic curve C and is étale over X. We consider C as the torus C/L

for the lattice L = Zτ + Z with Im τ > 0. We denote by [x] the image of x ∈ C under

C → C . Let G be the Galois group. Then the induced action of g ∈ G on Y � C × Z is

written by

([x], z) �→ ([agx] + bg(z), g · z)

for some ag ∈ C� and some holomorphic mapping bg : Z → C . Here, {ag} gives rise to a

homomorphism G → C� and L is a G-submodule of C. In particular, the complex torus

C is a G-module. The set Hom(Z, C) of holomorphic maps ϕ : Z → C also has a right

G-module structure by ϕg(z) = a−1
g ϕ(g · z). By the relation agbh(z) + bg(h · z) = bgh(z)

for g, h ∈ G, we infer that {a−1
g bg} defines an element of H1(G, Hom(Z, C)). Since the

cohomology group is torsion, there exist a positive integer n and a holomorphic mapping

c : Z → C such that

na−1
g bg(z) = c(z) − a−1

g c(g · z)

for any g ∈ G. The endomorphism C × Z → C × Z given by

([x], z) �→ ((n + 1)[x] + c(z), z)

commutes with the action of G on C × Z. Thus it induces a non-trivial surjective endo-

morphism on X.
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5. The case of algebraic dimension zero

Let X be a non-singular compact complex surface of a(X) = 0 admitting a non-

trivial surjective endomorphism. Suppose that X is Kähler. Then κ(X) = 0. Thus the

endomorphism is étale and hence X admits no negative curves. Hence X is minimal and

is a complex torus. A complex torus admits a non-trivial surjective endomorphism as the

multiplication map by an integer greater than 1.

Thus we assume that X is non-Kähler. Then X belongs to the class VII. We have

(KX + NX)2 = 0 by (3.1). Thus pa(D) = 1 for any connected component D of NX .

Moreover, K2
X = N2

X =
∑

D2
λ for the decomposition NX =

∑
Dλ into the connected

components.

Lemma 5.1. If D is a reduced divisor with (KX + D) ·D = 0, then D has at most two

connected components.

Proof. Since a(X) = 0, we have h0(X,OX(KX + D)) = h2(X,OX(−D)) ≤ 1. Hence

h1(X,OX(−D)) ≤ 1 by (KX + D) · D = 0. The exact sequence

0 → H0(X,OX) → H0(X,OD) → H1(X,OX(−D))

implies h0(D,OD) ≤ 2. �

Theorem 5.2. Let X be a non-Kähler surface of a(X) = 0 admitting a non-trivial

surjective endomorphism. Then the minimal model of X is one of the following surfaces :

a parabolic Inoue surface; a hyperbolic Inoue surface; a half Inoue surface; a Hopf surface;

an Inoue surface with no curves. Moreover, X is obtained from the minimal model by a

succession of blowups whose centers are nodes of curves.

Proof. One of the following cases occurs by Lemma 5.1:

Case 1. NX has two connected components;

Case 2. NX is connected;

Case 3. X contains a 0-curve but no negative curves;

Case 4. X contains no curves.

Let Y be the minimal model of X and let µ : X → Y be the contraction. Then the

endomorphism of X descends to Y and NY ≤ µ∗NX .

Case 1. Any curve on X is contained in NX by Lemma 5.1. Thus f∗(KX + NX) ∼
KX + NX . We have h2(X,OX(−NX)) = 1 by the exact sequence

H1(X,OX) → H1(NX,ONX
) → H2(X,OX(−NX)) → H2(X,OX) = 0.

Thus KX + NX ∼ E for an effective divisor E. Here f∗E = E. Therefore, E = 0,

equivalently, KX +NX ∼ 0. Let D1 and D2 be the two connected components of µ∗NX ∼
−KY . Then pa(Di) = 1 for i = 1, 2. By Lemma (2.11) of [13], D1 is an elliptic curve

if and only if D2
2 = 0. Hence, if D2

2 = 0, then D2
1 < 0. Otherwise, D1 and D2 are both
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elliptic curves and µ∗NX has no nodes, which implies that µ is isomorphic and NX = 0,

a contradiction. Therefore if D2
1 = 0 or D2

2 = 0, then Y is a parabolic Inoue surface by

Theorem (7.1) of [13] (cf. (7.12) of [13], [2]). If D2
1 < 0 and D2

2 < 0, then NY = µ∗NX

and Y is a parabolic Inoue surface by Theorem (8.1) of [13]. In both cases, µ : X → Y is

a successive blowups whose centers are nodes.

Case 2. Suppose that there is a curve C not contained in NX. Then any curve on X

is contained in C ∪NX . The contraction µ : X → Y is isomorphic along C . Since C2 = 0,

then µ∗NX is an elliptic curve and C is a rational curve with a node by Lemma (2.11)

of [13]. Then µ is isomorphic and X is a parabolic Inoue surface of b2 = 1 by [2] or by

Theorem (7.1) of [13].

Next suppose that any curve on X is contained in NX. Then f∗(KX + NX) ∼ KX +

NX . Moreover, f induces a finite étale endomorphism on the complement U = X \ NX .

Therefore, e(U) = 0. Thus e(X) = e(NX). If NX is an elliptic curve, then −N2
X = −K2

X =

e(X) = 0, a contradiction. Thus NX is a cycle of rational curves. Here, e(X) = e(NX) is

equivalent to b2(X) = b2(NX). Thus b2(Y ) = b2(µ∗NX). If NY �= 0, then NY = µ∗NX and

Y is a half Inoue surface by [13]. If NY = 0, then µ∗NX is a rational curve with a node.

This case does not occur by the argument in Case 3 below. Therefore, X is obtained as

a successive blowups of a half Inoue surface whose centers are nodes.

Case 3. We have b2(X) = e(X) = −K2
X = −(KX + NX)2 = 0. By Lemma (2.11) of

[13], one of the following three possibilities remain:

(1) X contains two elliptic curves;

(2) X contains an elliptic curve as a unique curve.

(3) X contains a rational curve with a node as a unique curve.

For the complement U of the union of all the curves on X, we have e(U) = 0 since f induces

a finite étale endomorphism on U . Hence the case (3) does not occur by e(X \ U) = 0.

In the cases (1), (2), X is a Hopf surface by Lemma 8 of [10].

Case 4. Since b2(X) = −K2
X = 0, X is one of Inoue surfaces without curves by [5],

[11], [21]. �

6. Kodaira surfaces

A primary Kodaira surface X is defined as a surface with KX ∼ 0, b1(X) = 3. The

algebraic reduction π : X → T is an elliptic fibration over an elliptic curve T . This is

smooth by e(X) = 0 and KX ∼ 0. Moreover the associated variation of Hodge structure

H is trivial since π∗ωX/T � L−1 � OT . For a fiber E, we fix a point 0 and give an abelian

group structure on E with 0 being the identity. Then as in the proof of Lemma 4.2,

X � (E × T )η as a torsor corresponding to some η ∈ H1(T,OT(E)), where OT (E)

is the sheaf of germs of holomorphic mappings from T to E. The image of η under

H1(T,OT (E)) → H2(T, H) = H2(T, Z2) is not zero, since X is non-Kähler.
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Let Lτ denote the lattice Zτ + Z ⊂ C for τ ∈ H. We fix τ , θ ∈ H and isomorphisms

T � C/Lτ , E � C/Lθ. For c ∈ Lθ and δ ∈ C, let us consider the following automorphisms

of C ×E:

g1 : (z, [ζ]) �→ (z + τ, [ζ + cz + δ]), and g2 : (z, [ζ]) �→ (z + 1, [ζ]),

where [ζ] denotes ζ mod Lθ. The quotient space of C×E by g1 and g2 is denoted by Xc,δ.

Let π : Xc,δ → T denote the induced smooth elliptic fibration from the first projection

C × E → C.

Lemma 6.1. A primary Kodaira surface is isomorphic to Xc,δ for some c �= 0 and δ.

Proof. We have an isomorphism H1(T,OT (E)) � H1(Lτ , H
0(C,O(E))) by Hochschild–

Serre spectral sequence for the universal covering map C → T . Thus the cohomology

class η is represented by a cocycle {xu = xu(z)} of holomorphic functions on C for u ∈ Lτ

such that xu+v(z) ≡ xv(z) + xu(z + v) mod Lθ. Here, X is isomorphic to the quotient

space of C × E by the following action of u ∈ Lτ :

(z, [ζ]) �→ (z + u, [ζ + xu(z)]).

Thus we shall find a simple form of xu(z) up to coboundary. Note that {xu} is determined

only by x1 and xτ which satisfy

(6.1) xτ (z + 1) − xτ(z) ≡ x1(z + τ ) − x1(z) mod Lθ

We know that dim H1(T,OT ) = 1 and H1(T, C) → H1(T,OT) is surjective. The homo-

morphism is isomorphic to H1(Lτ , C) → H1(Lτ , H
0(C,O)). Hence, for a cocycle {yu(z)}

of holomorphic functions on C satisfying yu+v(z) = yv(z) + yu(z + v), there exist con-

stant c1, c2, and a holomorphic function h(z) such that y1(z) = c2 + h(z + 1) − h(z),

yτ(z) = c1 + h(z + τ )− h(z). Since c2(z + 1) − c2z = c2, we may assume c2 = 0.

Applying the observation above to (d/dz)xu, we have constant c, δ, and a holomorphic

function φ(z) such that xτ(z) = cz + δ + φ(z + τ ) − φ(z) and x1(z) = φ(z + 1) − φ(z).

The condition (6.1) is equivalent to c ∈ Lθ. Hence X � Xc,δ. The homomorphism

H1(T,O(E)) → H2(T, H) is isomorphic to

H1(Lτ , H
0(C,O(E))) → H2(Lτ , Lθ) � Lθ,

which sends η to c. Hence c �= 0. �

Definition 6.2. (1) For three complex numbers x1, x2, x3, let T (x1, x2, x3) denote

the matrix 
1 0 0

x1 1 0

x3 x2 1

 .

The matrices above form a subgroup of GL(3, C), which is denoted by T3(C).
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(2) Let D : C2 × C2 → C be the skew symmetric form defined by

D((x1, x2), (x
′
1, x

′
2)) = x1x

′
2 − x′

1x2.

(3) Let ∆3(C) be the following group structure on (ξ, y) ∈ C2 × C:

(ξ, y) ∗ (ξ′, y′) := (ξ + ξ′, y + y′ − (1/2)D(ξ, ξ′)).

Note that the l-th power (ξ, y)l is equal to (lξ, ly) for l ∈ Z, (ξ, y) ∈ ∆3(C). There is

an isomorphism T3(C) → ∆3(C) given by

(6.2) T (x1, x2, x3) �→ ((x1, x2), x3 − (1/2)x1x2).

We have a homomorphism π1(Xc,δ) → T3(C) by

g1 �→ T (τ, c, δ), g2 �→ T (1, 0, 0), g3 �→ T (0, 0, θ), g4 �→ T (0, 0, 1).

Therefore the composite π1(Xc,δ) → ∆3(C) is written by

gl1
1 gl2

2 gl3
3 gl4

4 �→ ((l1τ + l2, l1c), l1ε + (1/2)l1l2c + l3θ + l4), where ε := δ − (1/2)cτ.

Definition 6.3. (1) For a free abelian group L of finite rank and for c ∈ L, let

L[c/2] denotes the abelian group L + Z(c/2) ⊂ L ⊗ Q.

(2) Let Dτ : Lτ × Lτ → Z be the skew symmetric form defined by

Dτ (m1τ + m2, m
′
1τ + m′

2) = m1m
′
2 − m′

1m2.

In other expressions,

Dτ (x, y) =
1

τ − τ
(xy − xy) =

Im(xy)

Im τ
.

(3) For c ∈ Lθ, let Πc be the following group defined on Lτ × Lθ[c/2]:

(x, y) ∗ (x′, y′) := (x + x′, y + y′ + (c/2)Dτ (x, x′)).

Note that Dτ (x, 1) = Im x/ Im τ and x = Dτ (x, 1)τ −Dτ (x, τ ) for x ∈ Lτ .

We have homomorphisms Πc → ∆3(C) and π1(Xc,δ) → Πc, respectively, by

(x, y) �→ ((x, Dτ (x, 1)c), y + Dτ (x, 1)ε) , and

gl1
1 gl2

2 gl3
3 gl4

4 �→ (l1τ + l2, l3θ + l4 + (1/2)l1l2c).

Then we have the commutative diagram

π1(Xc,δ) −−−→ Πc� �
T3(C)

�−−−→ ∆3(C).

The image of the injection π1(Xc,δ) ↪→ Πc consists of all the elements (x, y) such that

y + (c/2)Dτ (x, 1)Dτ (x, τ ) ∈ Lθ. In particular, Πc is generated by π1(Xc,δ) and (0, c/2).

The group Πc acts on C × C by

(z, ζ) �→ (z + x, ζ + Dτ (x, 1)cz + y + Dτ (x, 1)(ε + (1/2)cx))
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for (x, y) ∈ Πc.

Proposition 6.4. Let f : Xc,δ → Xc,δ be a surjective endomorphism and let h : T → T

be the induced endomorphism with π ◦ f = h ◦ π. Suppose that

h∗ : H0(T, ΘT ) → H0(T, ΘT )

is the multiplication by α ∈ C with αLτ ⊂ Lτ . Then f is induced from the automorphism

Φα,v : (z, ζ) �→ (αz + (1/c)(α − 1)ε, |α|2ζ + ϕα,v(z))

of C × C for a holomorphic function

ϕα,v(z) = αDτ (α, 1)
(

c

2
z2 + εz

)
+ v,

for v ∈ C.

Proof. A lift Φ of f to C × C is written by (z, ζ) �→ (αz + β, F (z, ζ)) for a holomorphic

function F (z, ζ) and for a constant β. Here, F (z, ζ) = ρζ + ϕ(z) for a holomorphic

function ϕ(z) and a constant ρ since F (z, ζ) mod Lθ depends only on ζ mod Lθ. The

endomorphism f∗ : π1(Xc,δ) → π1(Xc,δ) is induced from g �→ Φ ◦ g ◦ Φ−1 and lifts to an

endomorphism of Πc. The image of (x, y) ∈ Πc is (αx, y1) for some y1 ∈ Lθ[c/2] in which

the following equation holds:

(6.3) ρ
(
Dτ (x, 1)cz + y + Dτ (x, 1)(ε + (1/2)cx)

)
+ ϕ(z + x)

= ϕ(z) + Dτ (αx, 1)c(αz + β) + y1 + Dτ (αx, 1)(ε + (1/2)cαx).

By using Im(αx) = x Im α + α Imx, we have Dτ (αx, 1) = xDτ (α, 1) + αDτ (x, 1), and

ϕ(z + x)− ϕ(z) =
(
Dτ (α, 1)αx + Dτ (x, 1)(|α|2 − ρ)

)
cz + y1 − ρy

+ (c/2)Dτ (α, 1)αx2 + Dτ (α, 1)(cβ + ε)x

+ Dτ (x, 1)(αcβ + (α − ρ)ε) + (cx/2)Dτ (x, 1)(|α|2 − ρ).

Hence ϕ′′(z) is a constant equal to Dτ (α, 1)cα and ρ = |α|2. If we write ϕ(z) =

(cα/2)Dτ (α, 1)z2 + uz + v for constants u, v, then

ux = Dτ (α, 1)(cβ + ε)x + Dτ (x, 1)α(cβ + (1 − α)ε) + y1 − |α|2y.

Therefore, cβ = (α − 1)ε and u = Dτ (α, 1)αε. �

Theorem 6.5. A primary Kodaira surface and a secondary Kodaira surface admit a

non-trivial surjective endomorphism.

Proof. For the primary Kodaira surface Xc,δ, the morphism Φl,0 for l > 1 induces a non-

trivial surjective endomorphism of degree l6. Let Y be a secondary Kodaira surface. Then

by Lemma 4.4, there is a cyclic étale covering Xc,δ → Y for some c, δ. Then a generator

of the cyclic group acts on Xc,δ as Φα,v for a root α of unity and for some v ∈ C. We may

assume α = exp(2π
√
−1/k), where k = 2, 3, 4, or 6. The order of Φα,v is just k. If k > 2,
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then τ ∈ SL(2, Z)α for the fractionally linear action on H. Hence, we may assume α = τ

if k > 2. For l ∈ Z, we define v[l] by Φl
α,v = Φαl,v[l]. Then

v[l] = lv + αDτ (α, 1)
ε2

2c

(
−l +

l−1∑
i=0

α2i

)
for l ≥ 0. In fact, it follows from that the term v3 in the formula Φα1,v1 ◦Φα2,v2 = Φα1α2,v3

is calculated by

v3 = v1 + |α1|2v2 + α1Dτ (α1, 1)
α2

2 − 1

2c
ε2.

If k = 2, then v[2] = 2v ∈ Lθ. If k > 2, then τ = α implies Dτ (α, 1) = 1 and

v[k] = k

(
v − αε2

2c

)
∈ Lθ.

Let l be an integer with l > 1 and l2 ≡ 1 mod k. Then, for w1 and w2 defined by

Φl,0 ◦ Φα,v = Φlα,w1 and Φα,v ◦ Φl,0 = Φlα,w2 , we have

w2 −w1 =

(
v + αDτ (α, 1)

l2 − 1

2c
ε2

)
− l2v = − l2 − 1

k
v[k] ∈ Lθ.

Hence Φl,0 induces a non-trivial surjective endomorphism on the quotient space Y . �

7. Hopf surfaces

In this section, we shall prove the following:

Theorem 7.1. A Hopf surface admits a non-trivial surjective endomorphism if and

only if it has at least two elliptic curves.

We set W to be the open set C2 \ {(0, 0)} and (z1, z2) to be a coordinate system

of C2. A Hopf surface is a compact complex surface whose universal covering space is

biholomorphic to W by definition. We write the function exp(2π
√
−1z) by e(z).

First, we treat the case of elliptic Hopf surfaces with at most two singular fibers.

Let m1, m2, n be positive integers such that gcd(m1, m2) = gcd(n, m1) = gcd(n, m2) =

1 and let τ be a complex number in H. Let Y = Y (τ, m1, m2, n) be the quotient space of

W by the following two actions:

A : (z1, z2) �→ (α1z1, α2z2), B : (z1, z2) �→ (ε1z1, ε2z2),

where αi = e(miτ ), εi = e(mi/n), for i = 1, 2. Then Y is an elliptic Hopf surface over P1

and smooth over P1 \ {0,∞} by the morphism (z1, z2) �→ (zm2
1 : zm1

2 ). The multiplicities

of the fibers over 0 = (1 : 0) and ∞ = (0 : 1) are m1 and m2, respectively. Conversely, we

know the following result by Kodaira (cf. Lemma 8 of [10, II]):

Fact 7.2. Let Y → P1 be an elliptic Hopf surface smooth outside {0,∞}. Let m1

and m2 be the multiplicities of the fibers over 0 and ∞, respectively. Suppose that

gcd(m1, m2) = 1. Then Y � Y (τ, m1, m2, n) for some τ and n.
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In particular, if Y → P1 is smooth, then Y � Y (τ, 1, 1, n), which is obtained by the

actions

A : (z1, z2) �→ ρ(z1, z2) = (ρz1, ρz2), B : (z1, z2) �→ e(1/n)(z1, z2),

for ρ = e(τ ). We write Y (τ, 1, 1, n) by Y (ρ, n).

Proposition 7.3. Let π : X → T be an elliptic Hopf surface with at most two singular

fibers. Then X admits a non-trivial surjective endomorphism.

Proof. We may assume that π is smooth outside {0,∞} ⊂ P1 = T . Let m1 and m2 be

the multiplicities of the fibers over 0 and ∞, respectively. Let Γ = P1 → T = P1 be the

cyclic covering of degree k = gcd(m1, m2) branched at {0,∞}. Then the normalization

Y of X ×T Γ is an elliptic Hopf surface étale over X. Moreover, Y � Y (τ, m1/k, m2/k, n)

for some τ and n by Fact 7.2. A generator of the cyclic Galois group acts on Γ = P1 by

(t1 : t2) �→ (t1 : e(1/k)t2). This lifts to an automorphism of W written by

C : (z1, z2) �→ (u(z1, z2)
m1z1, u(z1, z2)

m2 e(l/m1) e(1/km1)z2)

for a unit function u : C2 → C� and for an integer l. We shall show that u is constant.

Since it induces an automorphism of Y , there is an integer q such that

u(αz1, αz2)
m1α1 = e(m1/n)qα±

1 u(z1, z2)
m1,

u(αz1, αz2)
m2α2 = e(m2/n)qα±

2 u(z1, z2)
m2,

for any (z1, z2) ∈ W . Substituting (z1, z2) = (0, 0), we have

u(αz1, αz2) = e(q/n)u(z1, z2).

Then u is constant by

|u(z)| = lim
p→∞

|u(αpz1, α
pz2)| = |u(0, 0)|.

Let Φ: (z1, z2) �→ (zd
1 , z

d
2) be an endomorphism of W for d > 1. Then Φ ◦ A = Ad ◦ Φ,

Φ◦B = Bd◦Φ, and Φ◦C = Cd◦Φ. Hence Φ induces non-trivial surjective endomorphisms

on Y and on X. �

Secondly, we treat the case of elliptic Hopf surfaces with at least three multiple fibers.

Let G ⊂ PGL(2, C) � Aut(P1) be a finite subgroup and let G̃ ⊂ SL(2, C) be the pull-back

by SL(2, C) → PGL(2, C). We denote by A(g) the matrix in SL(2, C) corresponding to

g ∈ G̃. We also denote by 1 the unit element of G̃ and by −1 the element corresponding to

the minus of the unit matrix. Note that G is a cyclic group or one of the regular polyhedral

groups. We choose τ ∈ H such that ρ = e(τ ). Let χi : G̃ → C� be group homomorphisms

(characters) for i = 0, 1. Let us choose ψi(g) ∈ Q satisfying e(ψi(g)) = χi(g). We define

ϕ(g) := e(ψ1(g)τ + ψ0(g)(1/m)).



20 YOSHIO FUJIMOTO AND NOBORU NAKAYAMA

An action of G̃ on Y (ρ, m) is well-defined by the maps

(z1, z2) �→ ϕ(g)(z1, z2)
tA(g)

for g ∈ G̃. Thus, an extension G̃m,χ of the finite group G̃ by Z ⊕ Z/mZ acts on W . For

the action of g ∈ G̃ on Y (ρ, m), it has a fixed point if and only if ϕ(g)ρk e(i/m) is an

eigenvalue of A(g) for some k and i. Equivalently, χ1(g) = 1 and χ0(g) is an eigenvalue

of A(g)m. In particular, g = −1 acts trivially on Y (ρ, m) if and only if

(7.1) (χ1(−1), χ0(−1)) = (1, (−1)m).

We assume this equality holds for χ1 and χ0. Then G acts on Y (ρ, m) and the image Gm,χ

of the homomorphism G̃m,χ → GL(2, C) given by the action on W is an extension of G

by Z⊕Z/mZ. We also assume that the action of G on Y (ρ, m) is free. This is equivalent

to:

(7.2) χ1(g) �= 1 or χ0(g) is not an eigenvalue of A(gm)

for g ∈ G̃ \ {±1}. Then the quotient space X(ρ, m, G, χ) := G\Y (ρ, m) = Gm,χ\W is an

elliptic Hopf surface over G\P1.

Lemma 7.4. Let X be a Hopf surface with an elliptic fibration X → T that has at least

three singular fibers. Then X is obtained as the free quotient X(ρ, m, G, χ) above for some

ρ, m, G, χ.

Proof. Let π : X → T be the elliptic fibration. By the argument in the proof of Lemma 4.4,

there is a Galois covering τ : P1 � Γ → T such that the normalization Y of X ×T Γ is

smooth over Γ and étale over X. Then Y � Y (ρ, m) for some ρ and m by Fact 7.2. The

universal covering map W → X is the composite of W → Y and Y → X. The action of

G on Γ lifts to that on Y . For g ∈ G̃, a lift of the action of g on Y to W is written by

z = (z1, z2) �→ u(z, g) · (z1, z2)
tA(g)

for a holomorphic function u : W × G̃ → C�. The description of the universal covering

map W → Y = Y (ρ, m) implies that, for g, there exist k, i ∈ Z such that u(ρz, g) =

ρk e(i/m)u(z, g). Since u extends as C2 × G̃ → C�, we have ρk e(i/m) = 1 by substituting

z = (0, 0). Therefore, u descends to W/〈ρ〉×G̃ → C� which is constant by the compactness

of the quotient W/〈ρ〉. Hence we may write u(g) = u(z, g) ∈ C�. Therefore, for any g1,

g2, there exist k and i with u(g1g2) = ρk e(i/m)u(g1)u(g2). Hence u(g) = ϕ(g) above for

some characters χ1 and χ0. Thus X is isomorphic to the quotient space of W by Gm,χ

above and the action of Gm,χ is free since the action of G on Y is free. �

Lemma 7.5. X(ρ, m, G, χ) admits a non-trivial surjective endomorphism if there exists

a G̃-semi-invariant homogeneous polynomial H(z1, z2) of degree d > 2 such that

(1) H(z1, z2) has only simple zeros over P1,
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(2) χ1(g)d−2 = δ(g)mχ0(g)d−2 = 1 for the character δ determined by

H((z1, z2)
tA(g)) = δ(g)H(z1, z2).

Proof. (cf. [19]) Let F1(z1, z2) = −∂H(z1, z2)/∂z2 and F2(z1, z2) = ∂H(z1, z2)/∂z1. Then

the morphism Φ: W  (z1, z2) �→ (F1(z1, z2), F2(z1, z2)) ∈ W is well-defined and(
F1((z1, z2)

tA(g)), F2((z1, z2)
tA(g))

)
= δ(g) (F1(z1, z2), F2(z1, z2))

tA(g)

for any g. Thus Φ is Gm,χ-equivariant by the condition (2). Hence Φ induces a non-

trivial surjective endomorphism of X(ρ, m, G, χ) since Φ induces an endomorphism of P1

of degree d − 1 > 1. �

Proposition 7.6. The elliptic Hopf surface X(ρ, m, G, χ) admits non-trivial surjective

endomorphisms.

Proof. If G is a cyclic group of order of n, then G̃ is conjugate to the cyclic group generated

by

A =

e(1/2n) 0

0 e(−1/2n)


in SL(2, C). Then the elliptic surface X(ρ, m, G, χ) → G\P1 has at most two singular

fibers. Hence the existence of non-trivial surjective endomorphisms on X(ρ, m, G, χ) for

a cyclic group G follows from Proposition 7.3.

Thus we assume G is not cyclic. It is enough to construct H satisfying the condition

of Lemma 7.5 in the following cases (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

Case (2, 2, n): G is the dihedral group Dn of order 2n ≥ 4. We may assume G̃ is

generated by

Q :=
√
−1

0 1

1 0

 and A :=

e(1/2n) 0

0 e(−1/2n)


in SL(2, C). Then Q2 = An = −1 and QAQ−1 = A−1. In particular, A2 ∈ [G̃, G̃]. Thus

G̃/[G̃, G̃] is isomorphic to Z/4Z for n odd and to Z/2Z ⊕ Z/2Z for n even.

If n is even, then m is even by (7.1) since Q2 = −1.

Let us consider the homogeneous polynomial

H(z1, z2) = z2n
1 − z2n

2

of degree d = 2n. This has only simple zeros over P1 and is G̃-invariant for n odd and G̃-

semi-invariant for n even. Note that d−2 is even and moreover d−2 = 2(n−1) ≡ 0 mod 4

for n odd. Thus H satisfies the condition of Lemma 7.5 since χd−2
1 = χd−2

0 = δm = 1.

Case (2, 3, 3): G is the tetrahedral group isomorphic to the alternating group A4. We

may assume that G̃ is generated by

A =

√
−1 0

0 −
√
−1

 and B =
1√
2

e(1/8)

1
√
−1

1 −
√
−1

 ,
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where we regard
√
−1 as e(1/4). Then A2 = B3 = −1 and (AB)3 = 1. Here, G̃/[G̃, G̃] �

Z/3Z. In particular, χ3
1 = χ3

0 = 1. Let us consider the homogeneous polynomial

H(z1, z2) = z8
1 + z8

2 + 14z4
1z

4
2

of degree d = 8. Then this has only simple zeros over P1 and is G̃-invariant. Thus H

satisfies the condition of Lemma 7.5 since d − 2 ≡ 0 mod 3.

Case (2, 3, 4): G is the octahedral group isomorphic to the symmetric group S4. We

may assume that G̃ is generated by

A =

e(1/8) 0

0 e(−1/8)

 and B =
1√
2

e(1/8)

1
√
−1

1 −
√
−1

 .

Then A4 = B3 = (AB)2 = −1. Here, G̃/[G̃, G̃] � Z/2Z. In particular, the square of

any character is trivial. Here m is even by (7.1) since A4 = −1. Let us consider the

homogeneous polynomial

H(z1, z2) = z1z2(z
4
1 − z4

2)

of degree d = 6. Then this has only simple zeros over P1 and is G̃-semi-invariant. Thus

H satisfies the condition of Lemma 7.5 since m and d − 2 are even.

Case (2, 3, 5): G is the icosahedral group isomorphic to the alternating group A5. We

may assume that G̃ is generated by

A = −
β−2 0

0 β2

 and B =
1√
5

−(β − β−1) β2 − β−2

β2 − β−2 β − β−1

 ,

where β = e(1/5). Then A5 = B2 = −1 and (AB)3 = 1. Here, G̃ has no non-trivial

characters. Hence the G̃-invariant polynomial

H(z1, z2) := z1z2(z
10
1 + 11z1z2 − z10

2 )

satisfies the condition of Lemma 7.5. �

Finally, we treat the case of non-elliptic Hopf surfaces. By Theorem 32 of [10, II], a

non-elliptic Hopf surface X is obtained as the quotient of W by the following action of

Z ⊕ Z/lZ: A generator of Z acts as

(z1, z2) �→ (α1z1 + λzm
2 , α2z2),

where m is a positive integer, α1, α2, λ are complex numbers with 0 < |α1| ≤ |α2| < 1

and (α1 − αm
2 )λ = 0. If λ = 0, then αp

1 �= αq
2 for any positive integers p, q; A generator

Z/lZ acts as

(z1, z2) �→ (ε1z1, ε2z2)

for primitive l-the roots ε1, ε2 of unity with (ε1 − εm
2 )λ = 0.
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The equation z2 = 0 defines an elliptic curve on X. If λ �= 0, then it is a unique curve

of X. If λ = 0, then the equation z1 = 0 defines another elliptic curve and there are no

other curves contained in X.

If λ = 0, then (z1, z2) �→ (zd
1 , z

d
2) for d > 1 gives a non-trivial surjective endomorphism

of X. Therefore, the proof of Theorem 7.1 is reduced to the following:

Proposition 7.7. If λ �= 0, then X admits no non-trivial surjective endomorphisms.

Proof. We write α = α2 and ε = ε2. Then α1 = αm, ε1 = εm, and (k, j) ∈ Z ⊕ Z/lZ acts

on W by

ϕk,j : (z1, z2) �→
(
εjm(αkmz1 + kλα(k−1)mzm

2 ), εjαkz2

)
.

Note that ϕk,j for k > 0 is a contraction (cf. Section 10 of [10, II]) in the sense that

ϕn
k,j(B) converges to (0, 0) for n → +∞ for the ball B = {|z1|2 + |z2|2 ≤ 1}. Suppose that

there is an endomorphism f : X → X. Let Φ: W → W be a lift, which is written by

Φ: (z1, z2) �→ (F (z1, z2), G(z1, z2))

for holomorphic functions F , G defined on C2. Here, Φ ◦ϕ1,0 = ϕp,q ◦Φ for some integers

p and q. Hence the following functional equations hold:

F (αmz1 + λzm
2 , αz2) = εqm

(
αpmF (z1, z2) + pλα(p−1)mG(z1, z2)

m
)
,(7.3)

G(αmz1 + λzm
2 , αz2) = εqαpG(z1, z2).(7.4)

Here, we have p > 0 by (7.4); otherwise,

|G(z1, z2)| = |α−pkG(ϕk,0(z1, z2))| → 0 as k → +∞

for p < 0 and G(z1, z2) is constant for p = 0. Moreover, F (0, 0) = G(0, 0) = 0 by

Φ ◦ ϕk,0(z1, z2) = ϕk
p,q ◦ Φ(z1, z2) → Φ(0, 0) = (0, 0) as k → +∞.

We insert here the following:

Lemma 7.8. Let G(z1, z2) be an entire holomorphic function satisfying (7.4). Then

G(z1, z2) = czp
2 for a constant c. If c �= 0, then εq = 1.

Proof. We follow the argument of Kodaira in the proof of Theorem 31 of [10, II]. We may

assume that G is not identically zero. We set G(ν)(z1, z2) := ∂νG(z1, z2)/∂zν
1 for ν ≥ 1.

Then

αmν−pε−qG(ν)(ϕ1,0(z1, z2)) = G(ν)(z1, z2)

by (7.4). If mν > p, then G(ν)(z1, z2) ≡ 0 by

G(ν)(z1, z2) = αk(mν−p)ε−qkG(ν)(ϕk,0(z1, z2)) → 0 for k → +∞.

Hence we can write

G(z1, z2) =
N∑

i=0

Gi(z2)z
i
1
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for entire holomorphic functions Gi(z2) and for an integer 0 ≤ N ≤ p/m such that GN is

not identically zero. By comparing the coefficients of zi
1 on both sides of (7.4), we have

(7.5) εqαpGi(z2) = αmi
N∑
l=i

(
l

i

)
Gl(αz2)λ

l−iz
m(l−i)
2 ,

for 0 ≤ i ≤ N . In particular, GN (αz2) = εqαp−mN GN (z2). Hence εq = 1, and GN (z2) =

czp−mN
2 for a constant c �= 0. Suppose that N �= 0. By (7.5) in the case i = N − 1, we

have:

(7.6) αpGN−1(z2) = αm(N−1)GN−1(αz2) + cNλαp−mzp−mN+m
2 .

By comparing the coefficients of zk−mN+m
2 on both sides of equation (7.6), we derive a

contradiction to N �= 0. Therefore, N = 0 and G(z1, z2) = czp
2 for some c �= 0. �

Proof of Proposition 7.7 continued. We have εq = 1 and G(z1, z2) = czp
2 for a constant

c �= 0 by Lemma 7.8. Thus the equation (7.3) is written by

(7.7) F (αmz1 + λzm
2 , αz2) = αpmF (z1, z2) + pλα(p−1)mcmzpm

2 .

Hence, F(1) := ∂F/∂z1 satisfies a functional equation

F(1)(α
mz1 + λzm

2 , αz2) = α(p−1)mF(1)(z1, z2)

similar to (7.4). Thus F(1)(z1, z2) = c1z
(p−1)m
2 for a constant c1 by Lemma 7.8. Then

F (z1, z2) = c1z1z
(p−1)m
2 + H(z2) for a holomorphic function H(z2). By (7.7), we have

c1λα(p−1)mzpm
2 + H(αz2) = αpmH(z2) + pλα(p−1)mcmzpm

2

and hence H(z2) = δzpm
2 for a constant δ and c1 = pcm. Thus we obtain:

F (z1, z2) = pcmz1z
(p−1)m
2 + δzpm

2 , G(z1, z2) = czp
2.

If p ≥ 2, then F (z1, 0) ≡ G(z1, 0) ≡ 0, which contradicts the assumption that F and G

have no common zeros except (z1, z2) = (0, 0). Hence p = 1 and

F (z1, z2) = cmz1 + δzm
2 , G(z1, z2) = cz2

for constants c �= 0 and δ. Thus the endomorphism f : X → X is an isomorphism. �

8. Inoue surfaces without curves

In the paper [5], Inoue constructed examples of compact complex surface of class VII0
with b2 = 0 having no curves. These are called Inoue surfaces and are denoted by SM ,

S
(+)
N,p,q,r;t, and S

(−)
N,p,q,r. Moreover Inoue showed in the same paper that if there is an

invertible sheaf L satisfying

H0(S, Ω1
S ⊗ L) �= 0

on a surface S with b1(S)− 1 = b2(S) = 0 having no curves, then S is one of the surfaces

above. By the works [11], [21], we can remove the assumption on the existence of L
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above; These Inoue surfaces are characterized as the surfaces with b1 = 1, b2 = 0 having

no curves.

Lemma 8.1. Let f : X → X be an étale endomorphism of a surface of class VII0 with

κ(X) = −∞. Then f∗ : H1(X, Z) → H1(X, Z) is identical.

Proof. Assume the contrary. Then f∗ is the multiplication map by an integer d �= 1.

We have the isomorphism H1(X, C�) � H1(X,O�
X) from the exponential sequence on X.

Thus KX ∼ f∗KX implies that OX((d − 1)mKX ) � OX for the order m of the torsion

part of H1(X, Z). In particular, κ(X) = 0, a contradiction. �

The Inoue surface SM is defined as follows: Let M be a matrix in SL(3, Z) with eigen-

values α, β, β such that α > 1 and β �∈ R. Here, α �∈ Q. Let t(a1, a2, a3) be a real

eigenvector with α as the eigenvalue and let t(b1, b2, b3) be an eigenvector with β as the

eigenvalue. Then three vectors (a1, b1), (a2, b2), (a3, b3) are R-linearly independent and

satisfy

(αai, βbi) =
3∑

j=1

mij(aj, bj), where M = (mij) ∈ SL(3, Z).

Let GM be the group of automorphisms of H × C generated by

g0 : (w, z) �→ (αw, βz),

gi : (w, z) �→ (w + ai, z + bi) for i = 1, 2, 3.

The action of GM on H×C is properly discontinuous and free. The surface SM is defined

as the quotient surface of H×C by GM . The generators gi satisfy the following relations:

gigj = gjgi, g0gig
−1
0 = gmi1

1 gmi2
2 gmi3

3 , for 1 ≤ i, j ≤ 3.

Proposition 8.2. The Inoue surface SM admits a non-trivial surjective endomor-

phism.

Proof. Let Φ be the automorphism of H×C given by (w, z) �→ (nw, nz) for an integer n >

1. Then Φ◦g0 = g0◦Φ and Φ◦gi = gn
i ◦Φ for 1 ≤ i ≤ 3. Thus an endomorphism f : SM →

SM is defined by Φ. Here f∗ : π1(SM ) → π1(SM) is isomorphic to the homomorphism

GM → GM given by GM  g �→ Φ ◦ g ◦ Φ−1. Thus f is non-trivial. �

The Inoue surface S
(+)
N,p,q,r;t is defined for a matrix N in SL(2, Z) with n := trN > 2,

integers p, q, r with r �= 0, and for a complex number t as follows: Let α be an eigenvalue

with α > 1. Let a = t(a1, a2) and b = t(b1, b2) be non-zero real column vectors such that

Na = αa and Nb = α−1b. Note that ai and bi are non-zero and a2/a1 and b2/b1 are

irrational. We set θ := det(a, b) = a1b2 − a2b1. For a pair (l1, l2) of integers, we set

e(l1, l2) :=
l1(l1 − 1)

2
b1a1 +

l2(l2 − 1)

2
b2a2 + l1l2b1a2.
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We define e1 := e(n11, n12) and e2 := e(n21, n22) for the matrix N = (nij). We also define

a real column vector c = t(c1, c2) by

(8.1) (N − I)c + t(e1, e2) − (θ/r) t(p, q) = 0,

where I denotes the unit matrix. Let G(+) = G
(+)
N,p,q,r;t be the group of automorphisms of

H × C generated by

g0 : (w, z) �→ (αw, z + t),

gi : (w, z) �→ (w + ai, z + biw + ci) for i = 1, 2,

g3 : (w, z) �→ (w, z − θ/r) .

Then g3 commutes with gi for 0 ≤ i ≤ 2. Moreover, we have:

(8.2) g1g2 = g2g1g
r
3 , g0g1g

−1
0 = gn11

1 gn12
2 gp

3 , g0g2g
−1
0 = gn21

1 gn22
2 gq

3.

These relations determine the group structure of G(+). The subgroup Γ = Γ(+)
r ⊂ G(+)

generated by g1, g2, and g3 is normal and the quotient G(+)/Γ is a free abelian group of

rank one generated by the class of g0. The center of G(+) is generated by g3 and contains

[Γ, Γ]. The quotient group of Γ by the center is a free abelian group of rank two generated

by the classes of g1 and g2. The action of G(+) on H × C is properly discontinuous and

free. The surface S
(+)
N,p,q,r;t is defined as the quotient space. More precisely, we denote it

by S
(+)
N,p,q,r;t(a, b).

Definition 8.3. (1) Let T3 denote the subgroup of T3(C) consisting of T (x1, x2, x3)

with xi ∈ R.

(2) Let ∆3 denote the subgroup of ∆3(C) consisting of ((x1, x2), y) with x1, x2, y ∈ R.

(3) Let D : Z2 × Z2 → Z be the skew symmetric form defined by

D((l1, l2), (l
′
1, l

′
2)) := l1l

′
2 − l2l

′
1.

In other expressions, D(ξ, ξ′) = det( tξ, tξ′) for row vectors ξ, ξ′ ∈ Z2.

(4) For an integer r �= 0, let Z[r/2] = Z + Z(r/2) ⊂ Q and let Γr be the following

group structure defined on Z2 × Z[r/2]:

(ξ, y) ∗ (ξ′, y′) := (ξ + ξ′, y + y′ + (r/2)D(ξ, ξ′)) .

An element of Γr is denoted by (ξ, y) for a row vector ξ ∈ Z2 and y ∈ Z[r/2].

The group T3 acts on (w, z) ∈ H × C by the multiplication map

T (x1, x2, x3)
t(1, w, z) = t(1, w + x1, z + x2w + x3).

The group homomorphism Γ = Γ(+)
r → T3 given by

g1 �→ T (a1, b1, c1), g2 �→ T (a2, b2, c2), g3 �→ T (0, 0,−θ/r)
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is compatible with the actions on H × C. The homomorphism is written explicitly as

follows:

gl1
1 gl2

2 gl3
3 �→ T ((l1, l2)a, (l1, l2)b, (l1, l2)c − (θ/r)l3 + e(l1, l2)) ,

where (l1, l2)a = l1a1+l2a2, (l1, l2)b = l1b1+l2b2, and (l1, l2)c = l1c1+l2c2. An isomorphism

T3 → ∆3 is induced from (6.2). There is a homomorphism Γ → Γr given by

gl1
1 gl2

2 gl3
3 �→ ((l1, l2), l3 + (r/2)l1l2).

Then an element ((l1, l2), λ) ∈ Γr comes from Γ if and only if λ − (r/2)l1l2 ∈ Z. There is

also a homomorphism Γr → ∆3 given by

(ξ, y) �→ (ξ(a, b), ξc′ − (θ/r)y), where c′ := c − (1/2) t(a1b1, a2b2).

Then we infer that the diagram
Γ −−−→ Γr� �
T3

�−−−→ ∆3

of injective homomorphisms is commutative. The action g0 on H × C corresponds to the

matrix

(8.3) A =


1 0 0

0 α 0

t 0 1

 .

For the choice of c, the relation (8.1) is equivalent to the last two equalities in (8.2). This

is also equivalent to

(8.4) (N − I)c′ = (θ/r)p′, where p′ = t(p + (r/2)n11n12, q + (r/2)n21n22).

In particular, G(+) is a isomorphic to the subgroup of GL(3, C) generated by the image

of Γ → GL(3, R) → GL(3, C) and by the matrix A.

Lemma 8.4. (1) An endomorphism ϕ of Γr, i.e., a group homomorphism ϕ : Γr →
Γr, is written as

Γr  (ξ, y) �→ ϕ(ξ, y) = (ξM, ξv + (detM)y)

for a matrix M ∈ M2(Z) and a column vector v ∈ Z[r/2]2.

(2) The semigroup End(Γr) of endomorphisms of Γr is anti-isomorphic to the following

semigroup structure on M2(Z) × Z[r/2]2:

(M1, v1) � (M2, v2) = (M1M2, M1 · v2 + (detM2)v1).

(3) An endomorphism of Γ lifts to Γr. A pair (M, v) ∈ M2(Z)×Z[r/2]2 is induced from

an endomorphism of Γ if and only if v1 − (r/2)m11m12, v2 − (r/2)m21m22 ∈ Z,

where M = (mij), v = t(v1, v2).

(4) The automorphism γ �→ g0γg−1
0 of Γ corresponds to (N, p′).
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(5) An endomorphism of G(+) inducing identity on G(+)/Γ is given by an endomor-

phism (M, v) of Γ and integers l1, l2, l3 satisfying

(8.5) MN = NM, and (M − (detM)I)p′ − (N − I)v = rM t(l2,−l1).

Here, g0 is mapped to g0g
l1
1 gl2

2 gl3
3 .

Proof. For an endomorphism ϕ of Γr , we attach M = (mij) and v = t(v1, v2) by

ϕ((1, 0), 0) = ((1, 0)M, v1) and ϕ((0, 1), 0) = ((0, 1)M, v2).

Then (1) and (2) follow from simple calculations. For (3), it is enough to show that the

endomorphism lifts. This is because Γr is generated by Γ and an element ((0, 0), r/2)

commuting with Γ. (4) follows from the relations (8.2). Let ρ be the endomorphism of

(5) and let ϕ be the induced endomorphism of Γ. Then ρ(g0) = g0η for some Γ  η =

gl1
1 gl2

2 gl3
3 . Let ι(η) denote the automorphism γ �→ ηγη−1 for γ ∈ Γ and let ν denote another

automorphism γ �→ g0γg−1
0 . Then ρ maps g0γg−1

0 = ν(γ) to g0ηϕ(γ)η−1g−1
0 = ϕ(ν(γ)).

Therefore,

(8.6) ν ◦ ι(η) ◦ ϕ = ϕ ◦ ν.

Conversely, if the relation (8.6) holds, then ι(η) and ϕ define an endomorphism ρ on G(+).

Let (M, v) ∈ M2(Z) × Z[r/2]2 correspond to ϕ. We infer that (I, r t(−l2, l1)) corresponds

to ι(η) by (8.2). Thus (8.6) is equivalent to (8.5). �

Proposition 8.5. Let f : X → X be a surjective endomorphism of the surface X =

S
(+)
N,p,q,r;t(a, b). Then f is induced from the automorphism

Φ: (w, z) �→
(
cw − α

α − 1
(l1, l2)a, (detM)z +

c

α − 1
((l1, l2)b)w + δ

)
,

for a matrix M ∈ M2(Z) with a positive eigenvalue c, and for integers l1, l2, and a complex

number δ, in which the following conditions are satisfied :

(1) detM �= 0, MN = NM , and

(detM − 1)t +
θ

2(n − 2)
(l1, l2)N

 l2

−l1

 − (l1, l2)c
′ + (θ/2)l1l2 ∈ (θ/r)Z.

(2) Let v = t(v1, v2) be the solution of the equation

(M − (detM)I)p′ − (N − I)v = rM

 l2
−l1

 .

Then vi − (r/2)mi1m12 ∈ Z for i = 1, 2, where M = (mij).

Conversely, if M and (l1, l2) satisfy the conditions (1), (2), then the automorphism Φ

above induces an endomorphism on X of degree (detM)2.
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Proof. The space H0(X, ΘX) of global holomorphic vector fields on X is one-dimensional

and is generated by the vector field ∂/∂z by Proposition 3 of [5]. Let

Φ: H × C  (w, z) �→ (Φ1(w, z), Φ2(w, z)) ∈ H × C

be a lift of the endomorphism f for some holomorphic functions Φi. The lift is an au-

tomorphism since f is étale. Note that Φ1 depends only on w since any holomorphic

mapping C → H is constant. Thus Φ1 = F (w) for a holomorphic function F on H. The

formula Φ∗(∂/∂z) = ∂Φ2/∂z(∂/∂z) implies that Φ2 = εz +G(w) for a constant ε �= 0 and

a holomorphic function G on H.

The injective endomorphism f∗ : π1(X) → π1(X) is given by π1(X)  g �→ Φ ◦ g ◦ Φ−1.

This defines an element (M, v) ∈ M2(Z)×Z[r/2]2 and integers l1, l2, l3 by Lemma 8.1 and

Lemma 8.4. Here the condition (8.5) is satisfied and vi − (r/2)mi1mi2 ∈ Z for i = 1, 2,

for M = (mij) and v = t(v1, v2). Note that (ξ, y) ∈ Γr acts on ∈ H × C by

(w, z) �→ (w + ξa, z + (ξb)w + ξc′ − (θ/r)y + (1/2)(ξa)(ξb)) .

Hence Φ ◦ (ξ, y) ◦ Φ−1 = (ξM, ξv + (detM)y) is equivalent to

F (w + ξa) = F (w) + ξMa, and(8.7)

ε ((ξb)w + ξc′ − (θ/r)y + (1/2)(ξa)(ξb)) + G(w + ξa) − G(w)(8.8)

= (ξMb)F (w) + ξMc′ − (θ/r)(ξv + (detM)y) + (1/2)(ξMa)(ξMb).

Similarly, Φ ◦ g0 ◦ Φ−1 = g0g
l1
1 gl2

2 gl3
3 is equivalent to

F (αw) = α(F (w) + ζa), and(8.9)

(ε − 1)t + G(αw) −G(w) = (ζb)F (w) + ζc′ − (θ/r)l′ + (1/2)(ζa)(ζb),(8.10)

where ζ = (l1, l2) and l′ := l3 + (r/2)l1l2. Then F ′(w) has two periods a1, a2 by (8.7).

Since a1/a2 is irrational, Za1 + Za2 ⊂ R is dense, which implies that F ′(w) is constant.

Then G′′(w) has also periods a1, a2 by (8.8) and hence G′′(w) is constant. Moreover

G′′(w) = 0 by (8.10). We can write

F (w) = cw − α

α − 1
(l1, l2)a

for a constant c with Ma = ca by (8.7) and (8.9). Note that c > 0 since Im F (w) =

c Im w > 0. Let c
 be the conjugate of the algebraic integer c over Q. Then Mb = c
b.

Similarly from (8.10) and (8.8), we have

G(w) =
c

α − 1
((l1, l2)b)w + δ, cMb = εb
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for some δ ∈ C. Thus ε = cc
 = detM . We note that

θ =
a2b2

n21
(α − α−1), 1/2 − α/(α − 1) = − α + 1

2(α − 1)
= − 1

2(n − 2)
(α − α−1),

((l1, l2)a)((l1, l2)b) =
a2b2

n21

(l1, l2)N

 l2

−l1

 .

Thus (8.10) is written by

(detM − 1)t = (1/2 − α/(α − 1))(ζa)(ζb) + ζc′ − (θ/r)l′

= − θ

2(n − 2)
(l1, l2)N

 l2

−l1

 − (l1, l2)c
′ − (θ/2)l1l2 − (θ/r)l3.

Hence the conditions (1) and (2) required for M and (l1, l2) are satisfied. Conversely,

suppose that the conditions are satisfied. The condition (8.8) for any (ξ, y) ∈ Γr is

equivalent to

(M − (detM)I)c′ =
c

α − 1
((l1, l2)b)a +

αc


α − 1
((l1, l2)a)b + (θ/r)v.

By (8.4) and (8.5), it is also equivalent to

θM

 l2

−l1

 = c((l1, l2)b)a − c
((l1, l2)a)b.

In other words, Z t(l2,−l1) = 0 for the matrix

Z := θM − ca(b2,−b1) + c
b(a2,−a1).

However, Za = Zb = 0 by a direct calculation. Hence Z = 0. Therefore, Φπ1(X)Φ−1 ⊂
π1(X) for the automorphism Φ. Thus an endomorphism of X is induced. �

Theorem 8.6. S
(+)
N,p,q,r;t(a, b) admits a non-trivial surjective endomorphism if and only

if t ∈ Qθ, where θ = det(a, b).

Proof. If the endomorphism exists, then t ∈ Qθ by Proposition 8.5-(1). Conversely sup-

pose that t ∈ Qθ. We consider a matrix M = (mij) = kN + I for an even integer k > 0.

Then M has a positive eigenvalue c = kα + 1 and detM = k2 + kn + 1 > 1. It is enough

to show that, M satisfies the conditions (1) and (2) of Proposition 8.5 for (l1, l2) = (0, 0)

for some k > 0. By assumption,

(detM − 1)t = k(k + n)t ∈ Z(θ/r)

for some k. Let v be the solution of (M − (detM)I)p′ = (N − I)v. Since m11m12 =

k(kn11 + 1)n12 and m21m22 = kn21(kn22 + 1) are even, we have only to show that v ∈ Z2.

We note that (N − I)−1 = (2 − n)−1(N−1 − I) and M − (detM)I = k(N − (k + n)I).

Thus if k is divisible by n − 2, then v ∈ Z2. �
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The Inoue surface S
(−)
M,p,q,r is defined in [5, §4] for a matrix M ∈ M2(Z) with detM = −1,

trM > 0 and for integers p, q, r �= 0. The surface S(−) = S
(−)
M,p,q,r has an Inoue surface

S(+) = S
(+)
N,p1,q1,r;0 as an unramified double covering for N = M2 and for suitable integers

p1, q1. The involution of S(+) generating the Galois group is induced from Ψ: (w, z) �→
(βw,−z) for the positive eigenvalue

√
α = β of M .

Theorem 8.7. S
(−)
M,p,q,r admits a non-trivial surjective endomorphism.

Proof. We consider an endomorphism of S(+) given by

Φ: (w, z) �→ ((kα + 1)w, (k2 + kn + 1)z)

for a suitable integer k > 0 as in Theorem 8.6. Then Ψ ◦ Φ = Φ ◦Ψ. Thus Φ also gives a

non-trivial surjective endomorphism of S(−). �

9. Inoue surfaces with curves

A parabolic Inoue surface, a hyperbolic Inoue surface, and a half Inoue surface are the

first examples of surfaces X of class VII0 with a(X) = 0, b2(X) > 0. Different descriptions

from [7] of these surfaces are given in [20] by the theory of torus embeddings.

A parabolic Inoue surface Xλ,n for a complex number λ with 0 < |λ| < 1 and for a

positive integer n is given as the quotient space of a toric variety TN(Σ) by an automor-

phism gn
λ of infinite order which are defined as follows: N is a free abelian group of rank

two with basis e1, e2 and the fan Σ consists of the cones

{0}, R≥0e2, R≥0(e1 + νe2), R≥0(e1 + νe2) + R≥0(e1 + (ν − 1)e2)

for all ν ∈ Z. Let gλ be the automorphism of the open orbit TN = N ⊗ C� given by

(z, z′) �→ (λz, zz′),

where (z, z′) ∈ (C�)2 corresponds to z ⊗ e1 + z′ ⊗ e2. Then gλ extends holomorphically to

an automorphism of TN(Σ). Note that gn
λ is given by

(z, z′) �→ (λnz, λ
n(n−1)

2 znz′).

The surface Xλ,n is of class VII0 with b2(X) = n. It contains an elliptic curve E with

E2 = −n and a cycle D of rational curves consisting of n irreducible components with

D2 = 0. Here, E is the quotient curve of the orbit corresponding to R≥0e2 and an

irreducible component of D is the quotient of the orbit corresponding to R≥0(e1 + νe2)

for some ν.

Proposition 9.1. Parabolic Inoue surfaces Xλ,n admit non-trivial surjective endomor-

phisms.
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Proof. For an integer k > 1, let hk be the following endomorphism of TN:

(z, z′) �→
(
zk, z

k(k−1)
2 z′k2

)
.

Then hk extends to an endomorphism of TN(Σ) and gk
λ ◦ hk = hk ◦ gλ. Thus hk induces a

non-trivial surjective endomorphism on Xλ,n. �

A hyperbolic Inoue surface XK,N and a half Inoue surface X̂K,N are defined as follows

for a real quadratic field K and for a free abelian subgroup N ⊂ K of rank two generating

K over Q: Let K ⊗Q R → R2 be the isomorphism given by ξ �→ (ξ, ξ
) for ξ ∈ K and for

the conjugate ξ
 over Q. We set

ΓN = {u ∈ O×
K | u > 0, uN = N} and Γ+

N = {u ∈ ΓN | u
 > 0},

where O×
K is the unit group of the ring OK of integers of K. Then ΓN � Z and Γ+

N is a

subgroup of index at most two. Let ΘN and Θ′
N be the convex hulls of N ∩ (R>0 × R>0)

and N∩ (R>0 ×R<0), respectively. Let ΣN be the fan of N⊗R = R2 corresponding to the

decomposition of R>0 × (R \ {0}) into sectors by rays joining 0 and a point of

N ∩ (∂ΘN ∪ ∂Θ′
N) .

Then Γ+
N acts on the toric variety TN(Σ) by u× : N → N. If Γ+

N is of index two in ΓN,

then ΓN also acts on the toric variety. Let McN(Σ) be the topological quotient space of

TN(Σ) by the compact torus N ⊗ U(1) ⊂ TN = N ⊗ C�, where U(1) = {z ∈ C | |z| = 1}.
Let ordN : TN(Σ) → McN(Σ) be the quotient map. Its restriction to TN is described as the

composite

ordN : N ⊗ C� id⊗|·|−−−→ N ⊗ R>0
id⊗(− log)−−−−−−→

�
N ⊗ R,

in which the first arrow is induced from the norm map z �→ |z| and the second from

0 < r �→ − log r. Let VN be the pull-back by ordN of the open subset

(R>0 × R) ∪ (McN(Σ) \ N ⊗ R).

Then the hyperbolic Inoue surface XK,N is defined as the quotient space of VN by the

action of Γ+
N . The half Inoue surface X̂K,N is defined in the case [ΓN : Γ+

N ] = 2 as the

quotient space VN by the action of ΓN.

Proposition 9.2. Hyperbolic Inoue surfaces and half Inoue surfaces admit non-trivial

surjective endomorphisms.

Proof. For a positive integer l > 1, the multiplication N → N by l defines an endomorphism

of TN(Σ) of degree l2 > 1. This preserves VN and commutes with the action of Γ
(+)
N or

ΓN. Thus a non-trivial surjective endomorphism of degree l2 is induced. �

Corollary 9.3. Let X be a successive blowups of an Inoue surface with curves whose

centers are nodes of curves. Then X admits a non-trivial surjective endomorphisms.
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Proof. Let Y be an Inoue surface with curves and let f : Y → Y be a non-trivial surjective

endomorphism. By replacing f by some power fk, if necessary, we may assume that

f−1(C) = C for any curve C . Then f−1(P ) = P for any node of the union
⋃

C of

all curves. Let Y1 → Y be the blowup at a node P . Then f induces a non-trivial

surjective endomorphism f1 : Y1 → Y1 which also preserves any curve on Y1. In particular,

f−1
1 (P1) = P1 for any node P1 of the union of all the curves of Y1. Therefore, if X → Y

is a succession of blowups whose centers are nodes of curves, then a non-trivial surjective

endomorphism on X is induced from f . �
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[15] N. Nakayama, On Weierstrass models, Algebraic Geometry and Commutative Algebra. vol. II, In

honor of M. Nagata(Eds. H. Hijikata et al.), 405–431, Kinokuniya, Tokyo, 1988.
[16] N. Nakayama, Projective algebraic varieties whose universal covering spaces are biholomorphic to

Cn, J. Math. Soc. Japan 51 (1999), 643–654.
[17] N. Nakayama, Local structure of an elliptic fibration, Higher Dimensional Birational Geometry

(Eds. Y. Miyaoka and S. Mori), Adv. Studies in Pure Math. 35, 185–295, Math. Soc. Japan, 2002.
[18] N. Nakayama, Global structure of an elliptic fibration, Publ. RIMS Kyoto Univ. 38 (2002), 451–

649.
[19] N. Nakayama, Ruled surfaces with non-trivial surjective endomorphisms, Kyushu J. Math. 56

(2002), 433–446.



34 YOSHIO FUJIMOTO AND NOBORU NAKAYAMA

[20] T. Oda, Torus embeddings and applications, Based on joint work with K. Miyake, Tata Inst. Fund.
Res. 58, Springer-Verlag, Berlin-New York, 1978.

[21] A. Teleman, Projectively flat surfaces and Bogomolov’s theorem on class VII0 surfaces, Intern. J.
Math. 5 (1994), 253–264.

Department of Mathematics, Faculty of Education

Gifu University, Gifu 501-1193

Japan

E-mail address: fujimoto@cc.gifu-u.ac.jp

Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606-8502

Japan

E-mail address: nakayama@kurims.kyoto-u.ac.jp


