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Abstract

For a given category C and a topological space X, the constant stack on X with
stalk C is the stack of locally constant sheaves with values in C. Its global objects
are classified by their monodromy, a functor from the Poincaré groupoid I1; (X) to
C. In this paper we recall these notions from the point of view of higher category
theory and define the 2-monodromy of locally constant stacks with values in a 2-
category C as a 2-functor from the homotopy 2-groupoid IIs(X) to C. We show that
2-monodromy classifies locally constant stacks on a reasonably well-behaved space
X. As an application, we show how to get classical formulae of algebraic topology
from this classification, and we extend them to the non abelian case.
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Introduction

A classical result in algebraic topology is the classification of the coverings of a (reasonably
well-behaved) path-connected topological space X by means of the representations of its
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fundamental group 7;(X). In the language of sheaves this generalizes to an equivalence
between the category of locally constant sheaves of sets on X and that of representations
of m1(X) on the stalks. The equivalence is given by the functor which assignes to each
locally constant sheaf F with stalk S its monodromy p(F): m1(X) — Aut(S).

Now, let C be a category. It makes sens to consider the representations of 71 (X) on C,
in other words functors from the Poincaré groupoid I1; (X)) to C. One would then say that
they classify locally constant sheaves on X “with stalk in the category C” even if there do
not exist any sheaves with values in C. To state this assertion more precisely, one needs
the language of stacks of Grothendieck and Giraud. A stack is, roughly speaking, a sheaf
of categories and one may consider the constant stack Cx on X with stalk the category
C (if C is the category of sets, one recovers the stack of locally constant sheaves of sets).
Then one defines a locally constant sheaf on X with values in C to be a global section
of the constant stack Cx. The monodromy functor establishes (on a locally relatively
1-connected space X) an equivalence of categories between global sections of Cx and
functors 11, (X) — C.

A question naturally arises: what classifies stacks on X which are locally constant?
Or, on the other side, which geometrical objects are classified by representations (i.e.
2-functors) of the homotopy 2-groupoid Il5(X)? We define a locally constant stack with
values in a 2-category C as a global section of the constant 2-stack Cx. In this pa-
per, we give an explicit construction of the 2-monodromy of such a stack as a 2-functor
p*(6): (X)) — C. We will show that, for locally relatively 2-connected topological
spaces, a locally constant stack is uniquely determined (up to equivalence) by its 2-
monodromy. We then use this result to extend classical formulae of algebraic topology to
the non abelian case, relating Giraud’s second non abelian cohomology set with constant
coeffiecients of X to its first and second homotopy group.

During the preparation of this work, a paper [12] of B. Toen appeared, where a sim-
ilar result about locally constant co-stacks and their co-monodromy is established. His
approach is different from ours, since we do not use any model category theory and any
simplicial techniques, but only classical 2-category (and enriched higher category) the-
ory. Moreover, since we are only interested in the degree 2 monodromy, we need weaker
hypothesis on the space X than loc.cit., where the author works on the category of CW-
complexes.

This paper is organised as follow. In Chapter 1 we recall the basic notions on stacks
and give a functorial construction of the classical monodromy. Our approach appears at
first view to be rather heavy, as we use more language and machinery in our definition
as is usually done when one considers just monodromy for sheaves of sets or abelian
groups. The reason for our category theoretical approach is to motivate the construction
of the 2-monodromy (and to give a good idea how one could define n-monodromy of
a locally constant n-stack with values in an n-category, for all n). As a byproduct we
get the classification of locally constant sheaves with values in finite categories (e.g. in
the category defined by a group) which yields an amusing way to recover some classical
formulae relating the first non abelian cohomology set with constant coefficients to the
representations of the fundamental group.



In Chapter 2 we introduce the 2-monodromy 2-functor of a locally constant stack with
values in a 2-category. This construction is analogous to our approach to 1-monodromy,
but the diagrams which should be checked for commutativity become rather large. One
reason for our lengthy tale on 1-monodromy is to give good reasons to believe in our
formulae, since we do not have the space to write down complete proofs. We also describe
the 2-monodromy as a descent datum on the loop space at a fixed point. Finally, we give
some explicit calculations about the classification of gerbes with locally constant bands.
This is related to Giraud’s second non abelian cohomology set with constant coeffiecients.

In Appendix A we review the construction of the stack of sheaves with values in
a complete category and in Appendix B the construction of the 2-stack of stacks with
values in a 2-complete 2-category.

Aknowledgement. We wish to thank Denis-Charles Cisinski for useful discussions.

Notations and conventions

We assume that the reader is familiar with the basic notions of classical category theory,
as those of category, functor between categories, transformation between functors (also
called morphism of functors), equivalence of categories, monoidal category and monoidal
functor. We will also use some notions from higher category theory, as 2-categories,
2-functors, 2-transformations, modifications, 2-limits and 2-colimits. Moreover, we will
look at 3-categories and 3-functors, but only in the context of a “category enriched in
2-categories” which is much more elementary than the general theory of n-categories for
n > 3. References are made to [10, 9, 1, 11]*.

We use the symbols C, D, etc., to denote categories. If C is a category, we denote
by ObC (resp. m(C)) the collection of its objects (resp. of isomorphism classes of its
objects), and by Hom (P, Q) the set of morphisms between the objects P and @ (if
C = Set, the category of all small sets, we will write Hom (P, Q) instead of Homg, (P, Q)).
For a category C, its opposite category is denoted by C°.

We use the symbols C, D, etc., to denote 2-categories. If C is a 2-category, we denote
by ObC (resp. my(C)) the collection of its objects (resp. of equivalence classes of its
objects), and by Hom (P, Q) the small category of arrows between the objects P and Q
(if C = Cat, the strict 2-category of all small categories, we will use the shorter notation
Hom (C, D) to denote the category of functors between C and D). Given two 2-categories
C and D, the 2-category of 2-functors from C to D will be denoted by Hom (C, D).
If G is a commutative group, we will use the notation Catg for the 2-category of G-
linear categories and Hom(C,D) for the G-linear category of G-linear functors. If C
is a 2-category, C°, denotes its opposite 2-category and for any object Q € ObC, we
set Picc(Q) = mo(Auto(Q))?, where Aut(Q) denotes the monoidal category of auto-

'Note that 2-categories are called bicategories by some authors, for which a 2-category is what we call
a strict 2-category. Similarly, a 2-functor is sometimes called a pseudo-functor

2This is consistent with the classical notion of strict gr- group. Indeed, if R is a ring, by the Morita
theorem the group Piccat, (Mod(R)) is isomorphic to the Picard group of R.



equivalences of Q in C. Note that the group Picc(Q) acts on the commutative group
Zc(Q) = Aut,,, (Q)(idg) by conjugation. If there is no risk of confusion, for a category

(resp. G-linear (éategory) C, we will use the shorter notations Pic(C) (resp. Picg(C))
andZ(C).

1 Locally constant sheaves with values in a category

1.1 General definitions

We start by recalling the definition of a stack on a topological space. The classical
reference is Giraud’s book |7]. Our presentation follows that of [8|, to which we refer for
more details.

Let X be a topological space. Denote by Op(X) the category of its open subsets with
inclusion morphisms and by Op(X) the 2-category obtained by trivially enriching Op(X)
with identity 2-arrows. Recall that a prestack of categories® on X is a 2-functor

S : Op(X)° — Cat.

A functor between prestacks is a 2-transformation of 2-functors and transformations of
functors of prestacks are modifications of 2-transformations of 2-functors. Two prestacks
are called equivalent if there exist functors F': & — & and G: & — & such that
idg ~ G o F and idg ~ F' o G. We denote by PSt(X) the strict 2-category of prestacks
on X.

Recall that a descent datum for & on an open subset U C X is a triplet

F = ({Ui}ier, {Fi}ier, {05 }iger) (1.1.1)

where {U;}icr is an open covering of U, F; € &(U;), and 0;;: F;|y,, = Filu,; are isomor-
phisms such that the following diagram commutes

?j|Uijk<—f?j|Uij|Uijk gji|Uij|Uijkf—>g:i|Uijk

o]~ o]~

‘rfj|Ujk|U¢jk ?i|Uik|Uijk
ejkTN 9¢kT~
S S
‘rfk’|Ujk|Uijk ~ ‘rfk|Uz'jk ~ r‘fk|Uik|Uijk'

The descent datum F' is called effective if there exist ¥ € S(U) and isomorphisms

3More generally, one may replace Cat by a 2-category C and get a prestack with values in C. See
Appendix B for more details.



0;: Flu, = F; for each 4, such that the following diagram commutes

S S
35|Uj Uij T>?Uij'<T§Ui Uij
ele ell’\/
Stj|Uij ~ g:i|Uij'

Definition 1.1.1. (i) A prestack & is called separated if for each open subset U and
F.G € S(U), the presheaf of sets on U

Hom g, (F,9): V= Homgy(Flv, §lv)
is a sheaf.
(ii) A separated prestack & is called a stack if each descent datum is effective.

(iii) A functor (resp. transformation of functors, resp. equivalence) of stacks is a functor
resp. transformation of functors, resp. equivalence) of the underlying prestacks.
ymg
One denotes by St(X) the strict 2-category of stacks on X.

(iv) A functor of stacks is called faithful (resp. fully faithful) if it is faithful (resp. fully
faithful) on each open subset.

Note that (i) implies that if {U;},c;r is an open covering of an open subset U and if
F,G € 6(U) are such that F|y, ~ G|y, for all i € I, then F ~ G.

For G and &’ stacks on X, we will denote by $Hom (S, &’) the prestack, which is
actually a stack, associating to an open subset U C X the category Hom (&|y, &'|y) of
functors from S|y to &'|y.

As for presheaves, to any prestack & one naturally associates a stack &*. Precisely,
one has the following

Proposition 1.1.2. The forgetful 2-functor
For: St(X) — PSt(X)
has a 2-left adjoint 2-functor
I: PSt(X) — St(X).
Let us fix an adjunction 2-transformation
nx : ldpsgx) — Foro 1.

Note that there is an obvious fully faithful* 2-functor of 2-categories Cat — PSt(X)
which associates to a category C the constant prestack on X with stalk C.

4Recall that a 2-functor F: C — D is faithful (resp. full, resp. fully faithful) if for any objects X,Y €
Ob C, the induced functor F: Hom (X,Y) — Hom(F(X),F(Y)) is faithful (resp. full and essentially
surjective, resp. an equivalence of categories).



Definition 1.1.3. Let C be a category. The constant stack on X with stalk C is the
image of C by the 2-functor

(+)x: Cat — PSt(X) —— St(X).

Note that the 2-functor (-)x conserves faithful and fully faithful functors (hence sends
(full) subcategories to (full) substacks). Moreover, the 2-transformation nx induces on
global sections a natural faithful functor

77X,C: C — C)((X)

Definition 1.1.4. An object § € ObCx(X) is called a locally constant sheaf on X with
values in C. A locally constant sheaf is constant with stalk M if it is isomorphic to
nx.c(M) for some object M € ObC.

Let C = Set, the category of all small sets (resp. C = Mod(A), the category of left
A-modules for some ring A). Then it is easy to see that Cx is naturally equivalent to
the stack of locally constant sheaves of sets (resp. Ax-module). Moreover the functor
nxc: C — Cx(X) is canonically equivalent to the functor which associates to a set S
(resp. an A-module M) the constant sheaf on X with stalk S (resp. M). More generally
we have

Proposition 1.1.5. Let C be a complete category’ and X a locally connected topological
space. Denote by £cShy(C) the full substack of the stack Shy(C) of sheaves with values
in C, whose objects are locally constant. Then there is a natural equivalence of stacks

Cx =5 £eBh 5 (C).
For a detailed construction of the stacks &h(C) and £c&hy(C), see Appendix A.

Remark 1.1.6. Suppose now that C is a category that is not necessarily complete. The
category C = Hom (C°, Set) of contravariant functors with values in Set is complete (and
cocomplete), and the Yoneda embedding

Y:C—C

commutes to small limits. Then one usually defines sheaves with values in C as presheaves
that are sheaves in the category PShx(C). Note that in general there does not exist a
sheaf with values in C (take for example C the category of finite sets), but if C # & then
the category Cx(X) of locally constant sheaves with values in C is always non-empty.
More precisely we get a fully faithful functor of stacks

Yx: Cx — (E)X ~ SCGbX(/C\).

Let F € £c6h,(C). Then F is in the essential image of Cy if and only if all stalks are
representable.

SRecall that a complete category is a category admitting all small limits.
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1.2 Operations on constant stacks

Let f: X — Y be a continuous map of topological spaces, & a prestack on X and ® a
prestack on Y.

Notation 1.2.1. (i) Denote by f.©& the prestack on Y such that, for any open set
VY, f.6(V)=6(fYV)). If & is a stack on X, then f,& is a stack on Y.

(ii) Denote by fp_1© the prestack on X such that, for any open set U C X, fp_1©(U) =
2lim D(V). If D is a stack on Y, we set f1D = (f, D)%
H p
focv

Recall that the category 2lim D (V) is described as follows:
f{ou)cv

Ob( 2lim D(V)) = [ | Ob@(V)).

fu)cv fucv
Hom oy, 9(V)<GV7GV') = lim Homg(vﬂ)(GVW”:GV’|V”)-
f(U)_c>V faoycvrcvnv’

Proposition 1.2.2. The 2-functors
for St(X) — St(Y)  f7hSt(Y) — St(X)
are 2-adjoint, f, being the right 2-adjoint of f1.

Moreover, if g: Y — Z is another continuous map, one has natural equivalences® of
2-functors

geofe(gof)  frogThx(gof)Th
For each continuous map f: X — Y, the following diagram commutes up to equiva-

lence

PSt(Y) —— St(V) (1.2.1)

]
Cat fot £
\

PSt(X) ——= St(X),

hence f~! preserves constant stacks (up to natural equivalence).
Definition 1.2.3. Denote by (X, -) the 2-functor of global sections

St(X) — Cat ; 6—TI(X,6)=06(X)
and set [x =T(X,-)o(")x.

6For sake of simplicity, here and in the sequel we use the word “equivalence” for a coherently invertible
2-transformation. In the case of the inverse image, to be natural means that if we consider h = f3o fao f1,
g1 = faof1 and ga = f30 fa, then the two equivalences h ™ ~ flgot o~ frify s tand h i grtfo !
fflfglf:;l are naturally isomorphic by a modification, in the sense that, if we look at k = fyo f30 fa0 f1,
we get the obvious commutative diagram of modifications.
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Note that for any stack &, &(@) is the terminal category (which consists of precisely
one morphism). Hence the 2-functor

F({pt},-) : St({pt}) — Cat

is an equivalence of 2-categories.

Proposition 1.2.4. The 2-functor T'(X, -) is right 2-adjoint to (-)x.

Proof. Consider the map ay : X — {pt}. Then (X, -) is canonically equivalent to
St(X) X St({pt}) = Cat.

From the diagram (1.2.1) one gets that the functor (-)x is canonically equivalent to

(171
Cat = St({pt}) = St(X).
Then the result follows from Proposition 1.2.2. O

It is not hard to see that we can choose the functors nx c: C — (X, Cx) to define the
adjunction 2-transformation

Nx: ldcat — Ix.

Consider the commutative diagram of topological spaces

X f

Y

Loy

a

Tty

and the induced 2-transformation of 2-functors

ays o (-)y — ayw o0 fao fTh o ()y ~ax.o fT o ()y ~ax. o (-)x.

Hence we get a 2-transformation of 2-functors f~! compatible with nx and 7y, i.e. the
following diagram commutes up to a natural invertible modification:

-1
[y ———Tx.

N,

dCat
Note that this implies that for any point z € X and any F,§ € Cx(X), the natural
morphism

i;ljfomcx(fﬂ G) — Hom(i;'F,i;'9)

is an isomorphism (here i,: {pt} — X denotes the natural map sending {pt} to x and
we identify C with global sections of C,;). Therefore, for any map f: X — Y, we get a
natural isomorphism

f715{0mcy(3~7 g) = }Comcx(fflgj F71G).



Lemma 1.2.5. Let [ =[0,1] and t € 1. Consider the maps
X—=X x1,
P

where v(x) = (x,t) and p is the projection. Then the 2-transformations

—1

Mx ——=Txxr
Ly

are equivalences of 2-functors, quasi-inverse one to each other.

Proof. Let C be a category. It is sufficent to show that

M(X. Cx) ==—=T(X x I, Cxx)

23

are natural equivalences of categories. Since 17 o p™' ~ (po i)™t = idr(x,cy), it remains
to check that for each F € I(X x I, Cxy;) there is a natural isomorphism p~'¢, 'F ~ F.

First let us prove that if F is a locally constant sheaf of sets on X x I, then the natural
morphism

NX x1,F) — (X, ;'F) (1.2.2)

is an isomorphism. Indeed, let s and s’ be two sections in I'(X x I, &) such that s, ; = s, ;.
Since F is locally constant, the set {#' € I | s, = S,.+} is open and closed, hence equal to
I. Therefore the map is injective. Now let s € I'(X, 4, 'F). Then s is given by sections 5
of F on on a family (U; x I;);e; where I; is an open interval containing ¢, the U; cover X
and the sheaf F is constant on U; x I;. It is not hard to see that by refining the covering
the sections s; can be extended to U; x I and using the injectivity of the map one sees
that we can patch the extensions of the s; to get a section of 3 on X x I that is mapped
to s. Hence the morphism (1.2.2) is an isomorphism.

Now let F € T(X x I,Cxxs). Since L[lﬂfomcxxl(p_let’l&'“, F) ~ ﬂ{omcx(at’lff", ;F),
by (1.2.2) we have an isomorphism

(X x I,Home  (p ' ' F,F)) —= T(X, Hom¢ (i F, ;' F)).

It is an easy exercise to verify that this morphism and its inverse are compatible with the
composition of morphisms of locally constant sheaves and preserve isomorphisms. Then
the isomorphism p~1;7'F = F is defined by the identity section in the set
(X, Hom (71T, 171F)). O

Corollary 1.2.6. The adjunction 2-transformation
nr: ldcat — 7

is an equivalence, i.e. for each category C, the functor nyc: C — (1, Cy) is a natural
equivalence.



Proof. Take X = {pt} in Lemma 1.2.5. Then one gets a diagram of equivalences

-1
rpt - - r{pt}X[

TlptT / T
{pt}xI

ldCat 01 > rI

which commutes up to invertible modification. O

Remark 1.2.7. For each X and each ¢ € I, we have an invertible modification idr, =~
t;7'p~ Y. Then for any s,t € I there exists a unique invertible modification ¢;*
compatible with these modifications. Recall that there exists a unique invertible modifi-
cation idr, ~ p~'i;' such that our conventions are satisfied. Then the invertible mod-
ification ¢, 1 ~ 1! is also caracterised by the fact that its image by p~! is precisely
p~l,t ~idr, ~ p~li;t. This can be used to prove the following two lemmas by diagram
chases.

-1
=~ L

Lemma 1.2.8. The diagram of continuous maps on the left induces for each t' € I the
commutative diagram of modifications on the right

X—>XxI (e x idp) Tt =1 (1 X idy) T
le lLind[ Nl lw
- o 2 1 — ~ 1.
X xlI Jt X x1 l’s 1.]t ! [’s 1.7t’1'

Lemma 1.2.9. Let H: X X1 — 'Y be a continuous map that factors through the projection
p: X x I — X. Then the composition of isomorphisms

(Hou) '~y '"H i)' H >~ (H o)™
18 the identity.

Let Top denote the strict 2-category of topological spaces and continuous maps, where
2-arrows are homotopy classes of homotopies between functions (see for example [1] cap.
7 for explicit details). Hence, homotopic spaces are equivalent in Top. Then homotopy
invariance of locally constant sheaves may be expressed as the following

Proposition 1.2.10. The assignment (C, X) — (X, Cx) defines a 2-functor
[: Cat x Top® — Cat.
Moreover, the natural functors nxc: C— (X, C) define a 2-transformation
n:Q — 1T

where Qp: Cat x Top°® — Cat is the projection.
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Proof. Let H : fy — fi1 be a homotopy, i.e. a continous map X x I — [ such that
H(z,0) = fo(z) and H(x,1) = fi(x). Then ay : fi* — f;' is defined by the chain of

natural invertible modifications
fot=(How) ' = H ~ ' H ~ (Houy) ™t = f7h
Consider the constant homotopy at f: X — Y

Hiy: X x 1 —Y ; (z,t)— f(2).

Since we may factor Hy as X x [ rox 4 Y, by Lemma 1.2.9 we get ay, = ids1.

Now let Hy, Hi: fo = f1 be two homotopies and K: Hy, = H; a homotopy. Then
consider the commutative diagram

1~ o lgpp=l o~ ol lpee] ~ a1 _~ 1=l _ -~ —1
Jo ~ 1y Hp > 1y Jo K > 1y J1 K7 < Lo Hy = fo

e e T
FT =  Hy o K e KT e T < f
Then we have to check that the horizontal lines are identity modifications. This is a
consequence of Lemma 1.2.8, which allows us by a diagram chase to identify the two lines
with the modifications induced by constant homotopies.

The fact that o is compatible with the composition of homotopies is finally a very
easy diagram chase. O

1.3 The monodromy functor

Definition 1.3.1. The homotopy groupoid (or Poincaré groupoid) of X is the small
groupoid II; (X)) = Hom g, ({pt}, X), where {pt} is the terminal object in Top.

Roughly speaking, objects of I1; (X') are the points of X and if z,y € X, Homp, (x)(z, y)
is the set of homotopy classes of paths starting from = and ending at y. The composition
law is the opposite of the composition of paths. Note that, in particular, my(I1; (X)) =
mo(X), the set of arcwise connected components of X, and, for each x € X, Aut x) (r) =
m1(X, z). Moreover, since by definition II;(X) is functorial in X, it defines a 2-functor

IT;: Top — Gr,

where Gr denotes the strict 2-category of small groupoids.
Denote by Yy, the Yoneda 2-functor

Cat x Top® — Cat, (C,X)— Hom (II;(X),C).

11



Definition 1.3.2. The monodromy 2-transformation
pw: — Yo
is defined as follows. For any topological space X and any category C, the functor
Mxc: HomTop({pt},X) — Hom (I'(X, Cx), C)
induces by evaluation a natural functor
MX,Cx) xI1(X) — C,
hence by adjunction a functor
pxc: T'(X,Cx) — Hom (II;(X), C).

We will sometimes use the shorter notation y instead of the more cumbersome px c. We
will also extend p to pointed spaces without changing the notations.

Let us briefly illustrate that we have constructed the well-known classical monodromy
functor. Recall that, for any x € X one has a natural stalk 2-functor

Fo: St(X) — Cat ; & &, =2lim &(U).

zeU

Let i, : {r} — X denote the natural embedding. Since F, is canonically equivalent to
F({z},-) ot one gets a 2-transformation I'(X,-) — F, and then a 2-transformation

Px: I_X - FX,m - Fm o ()X

Let Top, be the 2-category of pointed topological spaces, pointed continuous maps
and homotopy classes of pointed homotopies. One can prove by diagram chases similar
to those in the proof of Proposition 1.2.10, that

Proposition 1.3.3. The assignement (C, (X, z)) — (Cx). defines a 2-functor
F: Cat x Top, — Cat.
Moreover, the natural functors pyc: T'(X,Cx) — (Cx), define a 2-transformation
p: I —F.

Since the stalks of the stack associated to a prestack do not change, we see that, for
each category C and each pointed space (X, x), the functor



is an equivalence of categories. Hence the composition
pon: Q —F

is an equivalence of 2-functors. Let e: F — Q; denote a fixed quasi-inverse to p o7, i.e.
for each category C and each pointed space (X, x), we fix a natural equivalence

€x’c : (Cx)x ; C

such that if we have a pointed continuous map f: (X, z) — (Y, y) we get a diagram

Cy(Y) L Cx(X)
ny,\ /Xl
Py,C C Pz,C
(Cy)y J:l (Cx)

that commutes up to natural isomorphism. Denote by w the composition € o p: I — Q.
Fix a topological space X and a category C, and let F € I'(X,Cx). Then a direct
comparison shows that up to natural isomorphism we have

px.c(F) (@) = wec(T)

(if C = Set, then w, is just the usual stalk-functor) and if v:  — y is a path, then
px.c(F)(y) is defined by the chain of isomorphisms

we,c(F) ~woc(VF) 2 e (V) 2 wic(YTHF) ~ wyc(F)

(and if C = Set, we usually choose ;' = I'(I, -)).
In particular, this means that the following diagram commutes up to natural invertible
modification:

r r Yy, (1.3.1)

Q

where ev is the evaluation 2-transformation, i.e. for each pointed space (X, z) and each
functor a:: T (X) — C, ev,(a) = a(z).

Let A: Q; — Yp, denote the diagonal 2-transformation: for each topological space

X, each category C and each M € ObC, Ax (M) is the constant functor x +— M (i.e.
the trivial representation with stalk M). Clearly ev o A = idq,. Moreover, we get
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Proposition 1.3.4. The diagram of 2-transformations

commutes up to invertible modification.

Proof. We have to show that for each topological space X, each category C and every
M € ObC, the representation pix c(nx,c(M)) is naturally isomorphic to the trivial repre-
sentation with stalk M. But this is easily verified by a diagram chase. O

Proposition 1.3.5. For each topological space X and each category C, the functor
Hx,.C - F(X, Cx) — Hom (Hl(X), C)
18 faithful and conservative.

Proof. Since the diagram 1.3.1 commutes, we get that if f,g: F — G are two morphisms
of locally constant sheaves such that px c(f) = px.c(g) then f, = g, in (Cx), for all
x € X and since Cy is a stack this implies that f = g, hence px ¢ is faithful.

The same diagram implies that if px c(f) is an isomorphism, then f, is an isomorphism
in (Cx), for all z € X and therefore f is an isomorphism. O

Proposition 1.3.6. Let X be locally arcwise connected. Then for each category C, the

functor
Hx,C: F(X, C)() — Hom (Hl(X)A C)

18 full.

Proof. Let F,G € Cx(X). A morphism ¢: pu(F) — p(9) is given by a family of morphisms
Gr: ez ((F)) — eve(u(S))

such that for every path v:  — y the diagram

ev, (u(F)) N evy(1(9))
u(fﬂ(v)l lu(S)(v)

evy (1(F)) ——evy (1(9))

is commutative. By the diagram and the definition (of the stalks of a stack) we get an
arcwise connected open neighborhood U, of x and a morphism

¢ Fly, — 9Ylu,

14



such that ev,(u(¢”)) = ¢,
In order to patch the ¢* we have to show that for any z € U, N U, we have (¢*), = (¢Y)..
Since ¢, is an equivalence, it is sufficent to check that ev,(u(¢™)) = ev,(u(¢V)).

Choose a path 7: x — z and 7/: y — z, then

1S () 0 eva(9”) o (F) () ! = evap(e”).
But by definition the lefthand side is just ¢.. Hence
(") = &2 = (¢¥).

and by definition of the stalks this means that ¢* and ¢? coincide in a neighborhood of
z. Since z was chosen arbitrarily, they coincide on U, N U,. Since Cx is a stack, we can
lift the morphisms ¢, to a unique ¢: ¥ — G such that p(p) = ¢. O

Corollary 1.3.7. Let X be I-connected ”. Then

Nx: ldcat — INx

is an equivalence of 2-functors, i.e. for each category C, the functor nxc: C — I'(X,Cx)
is an equivalence of categories, natural in C.

Proof. Fix xy € X. Since the groupoid II;(X) is trivial (i.e. II;(X) ~ 1), the 2-
transformation ev,, is an equivalence, quasi-inverse to px onx. Since pux is fully faithful,
this implies by abstract nonsense that ux and nx are equivalences. O

Denote by CSt(X) the full 2-subcategory of St(.X) of constant stacks on X. We get

Corollary 1.3.8. If X is 1-connected, the functors

()x

Cat

CSt(X)

Nx,)
are equivalences of 2-categories, inverse one to each other.
Theorem 1.3.9. Let X be locally relatively 1-connected®. Then
Hx - x — YH1(X)

1s an equivalence of 2-functors.

"Here and for the sequel, a topological space X is n-connected if m;(X) ~ 1 for all 0 < i < n, and
locally n-connected if each neighborhood of each point conteins an n-connected neighborhood.

8Recall that a topological space X is locally relatively 1-connected if each point z € X has a funda-
mental system of arcwise connected neighborhoods U such that each loop v in U is homotopic in X to a
constant path.
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Proof. We may assume without loss of generality that X is connected. Fix a category
C. We have to show that px ¢ is essentially surjective. Let us first suppose that C is
complete, hence we can work in the category of sheaves with values in C.

Let a € Hom (II;(X), C). By choosing a base point 2y € X, « is given by a pair (M, «)
where M is an object of C and a: 71 (X, x9) — Autc(M) is a morphism of groups. Note
that if we choose for each x € X a path x — z( then each path v: 2 — y defines a unique
automorphism a(vy) : M — M compatible with the composition of paths.

Define

V= {(V, x) | x € V, V relatively 1-connected open subset of X}

and set (V,x) < (W,y) if and only if x € W C V which turns 'V into a filtered category.
Let U C X be an open subset. We set

M,(U) = lim M

(V,z)ev

vcUu
where for any (V,z) < (W, y) we chose a path 7,,: £ — y in W and use the isomorphism
a(Yzy): M — M in the projective system. Note that since W is relatively 1-connected,
this automorphism does not depend on the choice of 7,,,.

Now let U = |J,.; U; be a covering stable by finite intersection. In order to prove that

M, is a sheaf we have to show that the natural morphism

lim M — lim M ~lim M,(U;)
Pa— — —
(V,z)ev (V,z)eV €1
vcu 3 VU,
is an isomorphism, but this follows from a simple cofinality argument.
By definition it is clear that, if U is relatively 1-connected, then for any choice of
x € U we get a natural isomorphism M, (U) ~ M (this isomorphism being compatible
with restrictions). Hence, since relatively 1-connected open subsets form a base of the
topology of X, we get that M, is a locally constant sheaf that is constant on every
relatively 1-connected open subset of X.
To calculate the monodromy, consider first a path v: £ — y such that there exists
a relatively 1-connected open neighborhood of . Obviously we get that u(M,)(y) is
naturally isomorphic to a(v). For a general v, we decompose v in a finite number of
paths that can be covered by relatively 1-connected open subsets to get the result.
Now the general case. Embed C into C by the Yoneda-functor

Y:C—C

Then given a representation a, we can construct M, as a locally constant sheaf with
values in C. Then M, has representable stalks (isomorphic to M) and is therefore in the
image of the fully faithful functor

r(X,Cx) — (X, Cy).
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Since by construction the monodromy of a locally constant sheaf with values in C can be
calculated by considering it as a locally constant sheaf with values in C, we can conclude.
O

Corollary 1.3.10. Suppose that X is connected and locally relatively 1-connected. Then
there is an isomorphism of groups

PlC(rx) ~ OutGr(m(X)),
where Outg,(m (X)) denotes the group of outer automorphisms of m(X).

Proof. By Theorem 1.3.9 and the 2-Yoneda lemma (see for example 1] cap. 7), one gets
the following chain of equivalences of monoidal categories

Aut (Mx) ~ Aut (Y, x)) ~ Aut (11, (X)).

Applying 7y, we get an isomorphism of groups Pic(l'y) ~ Pic(Il;(X)). Since X is con-
nected, this last group is isomorphic to Outg, (71 (X)) (see below for details). O

Note that, for each category C the previous isomorphism induces a morphism of groups
Outg, (m (X)) — Pic(Cx(X)).

1.4 Degree 1 non abelian cohomology with constant coefficients

Let M be a (not necessarily commutative) monoid. Denote by M[1] the small category
with 1 as single object and Endy (1) = M. Note that if G is a group then G[1] is a
groupoid. Then it is easy to check that we get fully faithful functors

[1] : Mon — Cat 1] : Gr — Gr.

Also note that if G is a connected groupoid, i.e. my(G) ~ 1, then for each P € Ob(G), the
inclusion functor Aut(P)[1] — G is an equivalence.

Consider the category Set(G) of right G-sets and G-linear maps. Then G[1] is equiv-
alent to the full sub-category of Set(G) with GG as single object. Hence the stack G[1]x
is equivalent to the stack Tors(Gx) of torsors over the sheaf Gx, i.e. the stack which
associates to each open subset U C X the category Tors(Gy) of right Gy-sheaves locally
free of rank one’. Assume that X is locally relatively 1-connected. By Theorem 1.3.9
there is an equivalence of categories

Tors(Gx) ~ Hom (I1;(X), G[1]).
A standard cocycle argument shows that there is an isomorphism

mo(Tors(G'x)) ~ H'(X;Gx)™.

9Recall that Tors(G'x) is equivalent to the category of G-coverings over X.
19Tn the non commutative case, this is sometimes taken as the definition of H*(X;Gx).
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Assume that the space X is connected. Let us calculate the set mo(Hom (II1(X), G[1])).
Since I1; (X)) is connected, I1;(X) is equivalent to 7 (X)[1] for a choice of a base point in
X. Hence there is a natural surjective map

Hom ¢, (m1(X), G) — mo(Hom (I1,(X), G[1])),

and one checks immediately that two morphisms of groups ¢, ¥ : m1(X) — G give isomor-
phic functors if and only if there exists g € G such that ¢ = ad(g) o ¢, where ad(g) is the
group automorphism of G given by h — ghg ! for each h € G. Hence

Hom ¢, (m1(X), G)/ Int(G) ~ m(Hom (I1; (X), G[1]))

where Int(G) is the groups of inner automorphisms of G (i.e. automorphism of the form
ad(g) for some g € G), which acts on the left on Hom (m(X),G) by composition''. We
get the classical

Proposition 1.4.1. Let X be connected and locally relatively 1-connected. Then for any
group G there is an isomorphism of pointed sets

H*(X;Gx) ~ Homg, (7 (X),G)/ Int(G).
In particular, if G is commutative one recovers the isomorphism of groups

H'(X;Gx) ~ Homg,(m(X),G).

More generally, to each complex of groups G 1 9, GO one associates a small groupoid,
which we denote by the same symbol, as follows: objects are the elements ¢ € G° and

morphisms g — ¢ are given by h € G~! such that d(h)g = ¢’. If moreover G* 4, GO has
the structure of crossed module!? the associated category is a strict gr-category, i.e. a
group object in the category of groupoids. In fact, all strict gr-categories arise in this way
(see for example [5], and [SGA4| for the commutative case). In particular, if G is a group,
the groupoid G[1] is identified with G — 1 and it has the structure of a strict gr-category
if and only if G commutes. Moreover, the category Aut (G[1]) of auto-equivalence of G/[1]

is equivalent to the strict gr-category G 2 Aut o(G).

Now consider the constant stack (G o, Aut ¢ (G))x. It is equivalent to the strict gr-
stack Bitors(G x) of Gx-bitorsors, i.e. G x-torsors with an additional compatible struc-
ture of left G'x-torsors (see [2] for more details). Suppose that X is locally relatively
1-connected. Then, by Theorem 1.3.9, there is an equivalence of strict gr- categories

Bitors(Gx) =~ Hom (IT;(X), G 25 Aut (G)).

HNote that Int(G) ~ G/ Z(G), where Z(G) denotes the center of G.
12Recall that a complex of groups G~ % GO is a crossed module if it is endowed with a (left) action
of G° on G1 such that (i) d(9h) = ad(g)(d(h)) and (ii) “™h = ad(h)(h) for any h,h € G~ and g € G°.
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One can show (see loc. cit.) that
mo(Bitors(Gx)) ~ H'(X; Gx 2% Aut, (Gx))

where the right hand side is the cohomology group of X with values in the crossed module

Gx 2% Aut o(Gx). Suppose that X is connected. Then II; (X) ~ 71(X)[1] and a similar
calculation as above leads to the isomorphism of groups

mo(Hom (I, (X), G 2% Aut ., (G))) ~ Hom, (m1(X), Z(G)) x Oute,(G),

where Oute (G) = Aut, (G)/Int(G) is the group of outer automorphisms of G, which
acts on the left on Hom, (m1(X),Z(G)) by composition. We get

Proposition 1.4.2. Let X be connected and locally relatively 1-connected. Then for any
group G there is an isomorphism of groups

H'(X;Gx 2% Aut, (Gx)) ~ Hom, (m(X), Z(G)) x Oute(G).

A similar result holds replacing G 24, Aut o(G) by a general crossed module G~ 4,
G°. More precisely, noting that ker d is central in G~1, one gets an isomorphism of groups

HY(X;GH 4, G%) ~ Hom, (71 (X), ker d) x coker d.

2 Classification of locally constant stacks

Following our presentation of 1-monodromy, we will approach the theory of 2-monodromy
in the setting of 2-stacks. We refer to |2] for the basic definitions. Let X be a topological
space and let 2Cat, 2PSt(X) and 2St(X) denote the strict 3-category'® of 2-categories,
2-prestacks and that of 2-stacks on X, respectively. As for sheaves and stacks, there exists
a 2-stack associated to a 2-prestack:

Proposition 2.0.3. The forgetful 3-functor
For: 2St(X) — 2PSt(X)

has a left adjoint 3-functor
I: 2PSt(X) — 2St(X).

Hence, similarly to the case of sheaves we can associate to any 2-category a constant
2-prestack on X and set

13Here and in the following, we will use the terminology of 3-categories and 3-functors only in the
framework of strict 3-categories, i.e. categories enriched in 2Cat.
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Definition 2.0.4. Let C be a 2-category. The constant 2-stack on X with stalk C is the
image of C by the 3-functor

(+)x: 2Cat — 2PSt(X) - 28t(X).

An object & € ObCx(X) is called a locally constant stack on X with values in C. A
locally constant stack is constant with stalk P, if it is equivalent to nx c(P) for some
object P € Ob C, where the 3-functor

Nx,c: C — Cx(X)
is induced by the 3-adjunction of Proposition 2.0.3.

Let us look at the case when C is Cat, the 2-category of all small categories. It is
easy to see that a stack & on X is locally constant if and only if there exists an open
covering X = |JU; such that S|y, is equivalent to a constant stack (as defined in the
first part). We denote by LcSt(X) the full 2-subcategory of St(X) whose objects are the
locally constant stacks.

Similarly, suppose that C is a 2-category that admits all small 2-limits. Then one
can define the notion of a stack with values in C similarly to the case of sheaves (see
Appendix B). It is not difficult to see that Cx(X) is naturally equivalent to the category
of locally constant stacks with values in C. For a more general C, we can alway embed C
by the Yoneda 2-Lemma into the 2-category of contravariant 2-functors from C to Cat
which admits all small 2-limits. Then Cx(X) can be identified with the (essentially) full
sub-2-category of Hom (C°, Cat)x (X) defined by objects whose stalk is 2-representable.

Now let f: X — Y be a continous map. We leave to the reader to define operations
f. and f~! such that

Proposition 2.0.5. The 3-functors

fe: 25t(X) — 2St(Y) 1 2St(Y) — 2St(X)
are 3-adjoint, f,. being the right 3-adjoint of f~1.
Definition 2.0.6. Denote by I'(X, -) the 3-functor of global sections

2St(X) — 2Cat ; 6—T(X,6)=6(X)
and set I'y =T'(X,-) o (+)x.
Note that the 3-functor
T({pt},-): 2St({pt}) — 2Cat

is an equivalence of 3-categories. Hence, using Proposition 2.0.5, we have

20



Proposition 2.0.7. The 3-functor T'(X, -) is right 3-adjoint to (- )x.

It is not hard to see that we can choose the 3-functors nx c: C — I'(X, Cyx) to define
the adjunction 3-transformation

Nx: Idacat — T'x.
Consider the commutative diagram of topological spaces

f

I
{nt}

X

Y

Hence we get a 3-transformation of 3-functors f~! compatible with nx and 5y, i.e. the
following diagram commutes up to a natural invertible 2-modification:

Recall that, if f: X — Y is a continous map and ¥ a locally constant stack on Y, by
diagram 1.2.1 the stack f~!'T on X is locally constant. It is then easy to check that we
get a 2-functor

f 1 LeSt(Y) — LeSt(X).

Note that this implies that for any point z € X and any 6,% € Cx(X), the natural
functor

iglﬁomcx (6,%) — Hom C(flG, i1%)

T

is an equivalence (here i,: {pt} — X denotes the natural map to x and we identify C with
global sections of C,;). Therefore, for any map f: X — Y, we get a natural equivalence
of stacks of categories

fflﬁomCY(G,T) SN ﬁomcx(fflg’ffli).

2.1 The 2-monodromy 2-functor

Lemma 2.1.1. Consider the maps X#X x I as in Lemma 1.2.5. Then the 3-

transformations
—1

ry ——

FX><I

Ly

are equivalences of 2-functors, quasi-inverse one to each other.
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Proof. Let C be a 2-category. Since ;' o p~! ~ Idp,, it remains to check that for each

G € I'(X x I,Cxy;) there is a natural equivalence of stacks p~1;'& ~ &.
First, let us suppose that & is a locally constant stack of categories and let us prove
that the natural functor

NXx1,6) —TI(X,;'6)

is an equivalence. Since the sheaves Hom g are locally constant, by Proposition 1.2.5, it

is clear that this functor is fully faithful. Let us show that it is essentially surjective.
First note that, since & is locally constant, it is easy to see that for every open

neighborhood U x I; 3 (z,t) such that [; is an interval and &|y.;, is constant, there

exists an open subset U 3 z so that for every locally constant sheaf F € G(U x I;) there
exists F € S(U x I) such that F|p, ;. ~F.

Now take F € T'(X,;*6). Then we can find a covering X x {t} C U, U; N I; where
I; are open intervals containing ¢ such that &|y,ny, is constant and we can find objects
F; € 6(U; x I) such that ¢;7'F; ~ F|y,. Then the isomorphism

Hom (9:7:|UinI7?j|Uij><I) — Hom (?|Ui|Uij79:|Uj|Uij)

implies that we may use the descent data of F to patch the F; to a global object on X x I
that is mapped to F by ¢, *.

The rest of the proof is similar to that of 1.2.5. Consider the stack of functors
ﬁoch“(p’lLt_lG, G). Since G is locally constant, the $Hom g stack is locally constant
and the natural functor

Ly Home  (p 1 16,6) — Home (1,76, '6)
is an equivalence. We have thus shown that the natural functor
N(X xI,9omg_ (p7'4;'6,6)) — I'(X, Home (1;'6,,'6))
is an equivalence. We can therefore lift the identity of ¢, '& to get an equivalence

p 6 = 6.

Corollary 2.1.2. For each 2-category C, the 2-functor
(+)r: C— Cy(I)
18 an equivalence.

Remark 2.1.3. For any X and any ¢ € I, we have the equivalence Ildp, = (po ) ! ~
17 'p~t. Then, for any s,# € I, there exists an equivalence ¢;' ~ ;! unique up to a

unique invertible modification, compatible with these equivalences.
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Lemma 2.1.4. (i) The topological diagram on the left induces for each t' € I the di-
agram of equivalences on the right, which is commutative up to natural invertible

modification.:
X—=XxI i (1 xidy) T =0 (0 x idy) T
le lbsxidj Nl lw
. 2 1 ~ 1
XxI—=XxI Tl s

(ii) The topological diagram

X - X x I
/Lt A
X x 1 X x I? texidy
L Jexidy
jt X x [ — X x I?
Le Xidy I
LSXidIQ
X x I? - X x I3

induces a (very big) commutative diagram of the corresponding modifications.

Lemma 2.1.5. Let f: X — Y be a continous map and Hy: X x I — Y the constant
homotopy of f. Then, for any t,t" € I, the diagram

= idy - f-
Nl lw
Lt_lH;I S Lt_,le_l
commutes up to natural invertible modification.
Proof. Compose with the functor p=*, where p: X x I — Y is the projection. O
Proposition 2.1.6. The assignement (C, X) — I'(X, Cx) defines a 3-functor
I': 2Cat x 2Top° — 2Cat.

Proof. Let fo, fi: X — Y be continous maps and H: f, = f; a homotopy. Then the
equivalence of 2-functors ag: fy * = f; ! is defined by the chain of equivalences

fo_l =(Ho LO)_l ~ Lng_1 ~ Ll_lH_l ~ (Ho Ll)_l = fl_l'

23



Now let Hy, Hi: fo = fi be homotopies and K: Hy — H; a homotopy. We get a
diagram of equivalences

e R G Tt P G T £ Pl

T T

1 —17-1 —1.:—17-—1 “1:-1p-—1 —177-1 -1
J1 ~= H, == Jo K = J1 K === Hy =< [;

By the two Lemma 2.1.4 (i) and 2.1.5, the horizontal compositions are naturally equivalent
to the 1dent1ty Hence K defines a natural invertible modification ag: agy, = ag,.

Let H: fo = f1 be a homotopy and Kz: X x I? — Y the constant homotopy of H.
Composing with the functor p~!, where p: X x I — Y is the projection, one gets that
the modification ag,, : ag — ay is the identity.

With a little patience (and a very large piece of paper) the reader can check that all
compatibility conditions of a 3-functor are verified (using Lemma 2.1.4). O

Definition 2.1.7. The homotopy 2-groupoid of X is the 2-groupoid*4
I(X) = Hom q ({pt}, X).

Roughly speaking, its objects are the points of X and, if x,y € X, Hom T (X) (x,y) is
the category II; (P, ,X), where P, , X is the space of paths starting from = and ending in y,
endowed with the compact-open topology. Compositions laws are defined in the obvious
way. Note that, in particular, mo(Il3(X)) = mo(X) and for each z € X, Picy,x)(z) =
mo(111 (2, X)) = m (X, x), where we denote by ©,X the loop space P, ,X with base point
z, and Zn,x)(z) = m(X,z)'. Since by definition II,(X) is functorial in X, it defines a
3-functor

I1: 2Top — 2Gr,

where 2Gr denotes the strict 3-category of 2-groupoids.
Denote by Yy, the Yoneda 3-functor

2Cat x 2Top® — 2Cat, (C,X)+— Hom (II5(X), C).
Definition 2.1.8. The 2-monodromy 3-transformation
p*: T — Y,
is defined in the following manner. For each topological space X, the 2-functor

I'xc: Hom, ({pt}, X) — Hom (I'(X,Cx),C)

14Recall that a 2-groupoid is a 2-category whose l-arrows are invertible up to an invertible 2-arrow
and whose 2-arrows are invertible.

" Note that the categorical action of Picyy,x)(z) = m1(X,z) on Zp,(x)(x) = m(X, x) is exactly the
classical one of algebraic topology.
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induces by evaluation a natural 2-functor
I'(X,Cx) x IIh(X) — C,
hence by adjunction a 2-functor
1%.c: T(X, Cx) — Hom (TI1(X), C).

As in the case of 1-monodromy, let us visualize this construction using stalks. To every
2-stack & we can associate its stalk at € X, which is the 2-category

S, = 3lim &(U).

zeU

If C is a 2-category, then (Cx), =~ C. In the case that & is the 2-stack &ty of all stacks
on X, we get the natural 3-functor

2Sty — 2Cat ; 66— 6,

that induces an equivalence
LcSt, — 2Cat.

Then similarly as in the case of sheaves, one proves
Proposition 2.1.9. The assignment (C, (X, z)) — (Cx), defines a 3-functor
F: 2Cat x 2Top; — 2Cat
and the 2-functors px c define a 3-transformation
p:I' — F.
We find that

pon: Q — F

is an equivalence of 3-functors. Let €: F — Qi be a fixed quasi-inverse to p on and set
w=Egop.

Fix a topological space X and a locally constant stack &. Then (up to a natural
equivalence)

1x.c(6)(x) = wsc(6)

(if & is a locally constant stack with values in Cat, then w, cat(S) can be canonically
identified with &,). If v: © — y is a path, then the equivalence u% (&)(7) is defined by
the chain of equivalences

ws,c(6) ~woc(Y7'6) 2 c(y'6) ¥ wic(v'6) ~w,c(6),
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where n; ¢ is just the global section functor in the case of ordinary stacks, i.e. for C =
Cat. If H: vy = 7 is an homotopy, then the invertible transformation p% o(6)(H) is
defined by the diagram of equivalences

H(-,0
(4.)(00) H 16 EHOHC0) (4.)(170)([’]_16)

12(8)(%0) np(H16) nA(&)(m)

%m‘\

wan(H16).
(S)(H(.L) apH6)

wo, 1)(H

In particular, the following diagram of 3-transformations commutes (up to a natural 2-

modification)
2

r
N
Q.

where ev denotes the evaluation 3-transformation.

YH2 )

2.2 Classifying locally constant stacks

Let A: Q; — Yy, denote the diagonal 3-transformation. Exactly as in the sheaf case,
one gets

Proposition 2.2.1. The image of a constant stack is equivalent to a trivial representation.
In other words, the diagram of 3-transformations

2

r - Y,

A
Q

commutes up to 2-modifications.

Proposition 2.2.2. For any topological space X and 2-category C, the 2-functor
1x.c: T(X, Cx) — Hom (II,(X), C)
18 faithful and conservative.

Proof. We have to show that, for any locally constant stack & and &', the induced functor
M%(,d Hom cX(Ga &') — Hom Hom (II5(X),C) (M%(,C(G)v M%{,C(Gl))
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is faithful and conservative. Fix F,G: & — &’ two functors of stacks. Since for each
x € X, there is a natural isomorphism Hom (p?(F)(z), u*(F)(x)) ~ Hom (F,, G,), we get
the commutative diagram

2

Hom (F, G) —— Hom (u*(F), p*(G))

Hom (F,G), —— Hom (F},, G,).

Let ¢,v: ' — G be two morphisms of functors. If p?(p) = p?(¢), then ¢, = 1, for
all x € X and, since Hom (F,G) is a sheaf, we get ¢ = 1. Similarly, if u?(p) is an
isomorphism, it follows that the morphism ¢ is an isomorphism. O

Proposition 2.2.3. Let X be locally 1-connected. Then for each 2-category C, the 2-
functor
pr’C: I'(X,Cx) — Hom (II5(X), C)

18 full.
Proof. We have to show that, for any locally consant stack & and &', the induced functor

Hg(,ci Homg (6,8) — Homy,,, (Hg(X),C)(M%(,C(G)v#%(,C(Gl))

is full and essentially surjective. Since the stack of functors Hom (&,&') is locally
constant, for each pair of functors F, G: & — &', the sheaf Hom (F, GG) is locally constant.
Let ¥: p*(F) — p?(G) be a morphism of functor. It defines a morphism of functors
V.. F, — G, hence a morphism ' — G. O

Corollary 2.2.4. Let X be 2-connected. Then the 2-functor
( - )X . C E— CX
is an equivalence of 2-categories (for C = Cat, a quasi-2-inverse is given by I'(X,-) ).

Proof. Fix xy € X. Since II5(X) ~ 1, the evaluation ev,, is a 2-equivalence, quasi-inverse
to px.c o (-)x. Since p%k ¢ is fully faithful this implies by abstract nonsense that p% ¢
and (-)x are 2-equivalences, with F,, a quasi-inverse of (-)x. Then, the 2-functor I'(X,-)
provides another quasi-inverse, thanks to the natural 2-transformation I'(X, ) — F,,. O

Theorem 2.2.5. Let X be locally relatively 2-connected™®. Then
H?X: FX — YHQ(X)

1s an equivalence of 3-functors.

16Recall that a topological space X is locally relatively 2-connected if each point z € X has a funda-
mental system of 1-connected neighborhoods U such that every homotopy of a path in U is homotopic
to the constant homotopy in X.

27



Proof. We have to show that for each 2-category C, the 2-functor p% ¢: I'(X,Cx) —
Hom (I15(X), C) is essentially surjective. We may assume without loss of generality that
X is connected.

Suppose first that C = Cat. and let @« € Hom (II5(X), Cat). Fix a base point
o € X, and denote by QX the loop space at xy. Then the 2-functor a is given by a pair
(C, ), where C is a category and a: I1;(2X) — Aut (C) a monoidal functor.

Set

V= {(V, x) | x € V, V relatively 2-connected open subset of X}

and define (V,x) < (W,y) if and only if z € W C V. For any (V,z) < (W,y), we chose
a path 7,,: x — y in W and for any (V,z) < (W.y) < (Z,2) we chose an homotopy

H’Yﬂcy:'szszz: ,chy/sz — ’Yg;z in Z
Let U C X be an open subset. We set

Co(U) = 2lim C
(V,z)ev
vcu
where in the projective system we use the equivalence a(7,,): C = C for any points z,y
and the invertible transformations of functors a(H,,, ,.,.) for any paths 7,,,7,. and
Ysz- Note that since W is relatively 2-connected, the equivalences a(v,,) are unique up
to invertible transformation and the invertible transformations a(H,,, ,.,.) does not
depend on the choice of the homotopy H,,, +,. ..
One argues as in the proof of Theorem 1.3.9 to show that the pre-stack defined by
X DU — C,(U) is actually a stack. By definition it is clear that, if U is relatively
2-connected, then for any choice of x € U we get an equivalence of categories C,(U) ~ C
compatible with restriction functors in a natural sense. Hence, the stack C, is constant on
every relatively 2-connected open subset of X. Since relatively 2-connected open subsets
form a base of the topology of X, we get that C, is locally constant with stalk C.
The calcul of the 2-monodromy of C, is similar to that of 1-monodromy in the proof
of Theorem 1.3.9.
The same proof holds for any 2-complete 2-category and for a general 2-category C
we can use the Yoneda 2-Lemma to reduce to this case. O

Suppose that X is connected and locally relatively 2-connected, and let 2.X be the
loop space at a fixed point xqg € X. Consider the following diagram of topological space
and continuous maps

q1—

— 2—>
(X I (X)) === ax [z}

where the ¢;’s, the ¢;;’s and the g¢;;;’s are the natural projections, a the action of 2.X on
PX and m the composition of paths in QX7

"Note that QX does not define a simplicial topological space, since the maps m o (id x m) and
mo (m x id) are not equal but only homotopic. What one gets is a 2-simplicial object in the 2-category
Top. This will not cause particular difficulties, since for locally constant objects there is a natural
invertible transformation of functors (m x id)~'m~' = (id x m)"'m~1.
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Let & be a locally constant stack on X with values in C. Theorem 2.2.5 asserts
that & is completely and uniquely (up to equivalence) determined by its 2-monodromy
1x.c(6): Iy(X) — C. Since X is connected, the stalks of & are all equivalent. Let
us denote by P the stalk at xy. Then the 2-monodromy reads as a monoidal functor
1x.c(6): I (2X) — Aut(P). Since the topological space QX satisfies the hypothesis
of Theorem 1.3.9, there is a chain of equivalences of categories

Hom (IT; (2X), Aut (P)) < T(QX, Aut (P)ax) =~ Aut o (nax.c(P)).

I

Then the 2-monodromy p3 (&) is equivalent to a pair (a,v) where a: noxc(P) =
Nax,.c(P) is an equivalence of constant stacks on {2.X and

-1 -1~ 1
Viq; QoQy, a—1m -«

is an isomorphism of functors of stacks on (Q2X)? such that the following diagram of
invertible transformations of functors of stacks on (2X)? commutes

aoq2 aoqd

o/ \

05 (g7 a0 gyl 'ao gy (g7 ao gy a)

G120 " 0(gs qlaoq23m a
(mxid) (¢ aoqy ) (id x m) g 'ao gy ' a)
(mxid)"'m™la ——— (id x m)"'m~'a.

(2.2.1)

Roughly speaking, v is given by a family of functorial invertible transformations v15: a., o
Oy X Oy, for any 1,72 € QX such that for vy, 7v,,73 € QX the following diagram
commutes

V23
a'}’l © 05’72 ° a’Ys e —— O"W © a’m’ya

iqu lV1,23
V12,3

Qi O Qyg ————— Qlyqp.q5 = Qlygqpys

Definition 2.2.6. We call the triplet (P, a,v) a descent datum for the locally constant
stack & on X.

Let us analize a particular case, for which the descent datum admits a more familiar
description. Let G be a (not necesserly commutative) group. Assume that X is connected
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and locally relatively 2-connected, and let & be a G x-gerbes (see [7]), i.e. a stack locally
equivalent to the stack of torsors Tors(Gx). Since Tors(Gx) ~ G[l]x, & is a locally
constant stacks on X with stalk the groupoid G[1]. By Morita theorem for torsors (see
loc. cit. cap. IV), an equivalence a: Tors(Gox) — Tors(Gax) is given by N +— P AN for
a Gqx-bitorsor P, where - A - denotes the contracted product. Then, the descent datum
for & is equivalent to the datum of (G[1], P, v) where

vigi" P AP S mTP

is an isomorphism of Gqx-bitorsors on (Q2.X)? satisfying a commutative contraint similar
to that of diagram (2.2.1). See |6] cap. 6, for related constructions of line bundles on the
free loop space of a manifold.

2.3 Degree 2 non abelian cohomology with constant coefficients

Let D be a monoidal category. Denote by D[1] the 2-category with 1 as single object and
End D[1](1> = D. Note that if D is a groupoid whose monoidal structure is rigid'®, then
DJ[1] is a 2-groupoid. It is easy to see that we get a fully faithful 2-functor

[1] : Mon — 2Cat,

where we denote by Mon the 2-category of monoidal categories with monoidal functors
and monoidal transformations. This functor sends rigid monoidal groupoids, called gr-
categories, to 2-groupoids.

Note that if M is a monoid, then M[1] is monoidal if and only if M is commutative,
and that if M is also a group, then M|[1] is a gr-category. Hence we get (essentially fully
faithful) functors

[2] = [1] o [1]: Mon® — Mon — 2Cat , 2]: Gr* — 2Gr

where the uppercase ¢ means commutative structures. Conversely, if G is a connected
2-groupoid, for each object P € Ob G, the inclusion 2-functor Autg(P)[1] — G is a
2-equivalence. If G is even 2-connected (i.e. moreover Aut(P) is a connected groupoid
for some (hence all) P), then G ~ Z¢g(P)[2].

For a not necessarily commutative group G, we can consider the strict gr-category
Aut (G[1]) which gives rise to the 2-groupoid

Gl2] = Aut (G[1))[1

Recall that Aut (G[1]) is equivalent to G d, Aut (G). Hence if G is commutative, then
Aut (G[1]) is completely disconnected but only id € Ob Aut (G[1]) is G-linear, so we get a
monoidal functor

Aut(GI)[1] = G2 — G2] = Aut (G1])]1]

18Recall that a monoidal category (D, ®) is rigid if for each P € ObD there exists an object P* and
natural ismorphisms P ® P* ~ [ and P* ® P ~ I, where I denotes the unit object in D.
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that identifies G[2] to a sub-2-category of G[2] which has only one morphism but the
same transformations.

Consider an object C of the 2-category Cat (resp. Catg). Then End (C)[1] (resp.
End(C)[1]) is just the full sub-2-category of Cat (resp. Cat¢) with the single object
C. Hence, End (C)[1]x (resp. End,(C)[1]x) is the 2-stack of locally constant stacks (resp.
G x-linear stacks) on X with stalk C.

If X is a locally relatively 2-connected space, by Theorem 2.2.5 equivalence classes of such
stacks are classified by the set

7o(Hom (IL,(X), Aut (C)[1]). (2.3.1)

Assume moreover that X is connected. Then the 2-groupoid II(X) is connected, hence
it is equivalent to IT;(2X)[1] for some base point o5 € X. We thus get that (2.3.1) is
isomorphic to

mo(Hom (I3 (2X), Aut (C)) / Pic(C), (2.3.2)

where Hom (-, -) denotes the category of monoidal functors and the group Pic(C) acts by
conjugation. A similar reslut holds, replacing Cat by Catg.

Let us analyze more in detail the case of gerbes. We start with the abelian case. Let G
be a commutative group and take C = G[1]. Since there is an obvious equivalence of strict
gr-categories G[1] ~ End ,(G[1]), we get that G[2] is just the full sub-2-category of Catg
with the single object G[1]. This means that the 2-category I'(X, G[2]x) is equivalent to
Ger,(Gx), the strict 2-category of abelian G'x-gerbes (see |7, 2| and [6] for a complete
introduction to abelian gerbes), i.e. Gx-linear stacks on X locally G x-equivalent to the
G x-linear stack of torsors Torvs(Gx) ~ G[1]x.

By some cocycle arguments (see for example [6]), one shows that there is an isomorphism
of groups
mo(Gery, (Gx)) ~ H*(X; Gx).

Assume that X is locally relatively 2-connected. By Theorem 2.2.5, there is an equivalence
of monoidal 2-categories

Ger,,(Gx) ~ Hom (II,(X), G[2]).

If X is connected, (2.3.2) gives the group my(Hom _ (I, (2X), G[1]), since Pica(G[1]) ~ 1.
Hence we get

Proposition 2.3.1. Let X be connected and locally relatively 2-connected. Then for any
commutative group G there is an isomorphism of groups

H2(X; Gx) ~ mo(Hom _ (11, (2X), G[1])).

Consider a gr-category H. Then there exists an "essentially exact"! sequence of gr-
categories

1 An[1] == H -2 1o (H)[0] —= 1,

19This means that the monoidal functor i (resp. 7o) is fully faithfull (resp. essentially surjective) and
that the essential image of i is equivalent to the kernel of my as monoidal categories.
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where Ay denotes the commutative group Aut (1) of automorphims of the unit object,
and the group my(H) is view as discrete category, which acts on Ay by conjugation. If G
is another gr-category, we get an exact sequence of groups

1 — mo(Hom , (7o (H)[0], G)) — mo(Hom , (H, G)) — mo(Hom  (An[1], G)). (2.3.3)

Lemma 2.3.2. Let G = G[1], for G an abelian group. Then 2.3.3 gives an exact sequence
of abelian groups

I— HQ(TI—O(H)’ G) - 7r0(Hom®(H, GH])) - HomGr(AH7 G);
where G is view as a mo(H)-module with trivial action.

Proof. Denote by H the group mo(H). It is easy to see that a monoidal functor H[0] —
(1] is given by a set-theoretic function A\: H x H — G such that

ARy, ha) A(hiha, hs) = Ao, hs) Ay, hohs).

Two monoidal functors A, \’ are isomorphic if and only if there exists a function v: H — G
such that

)\(hl, hg)V(hlhg) = )\/(hl, hg)l/(hl)y(hg).
Hence we get an isomorphism of groups

mo(Hom _ (H[0]. G[1]) ~ H?*(H; G),

ol

where (G is view as a H-module with trivial action. Similarly, one easily checks that
mo(Hom ,(An[1], G[1])) is isomorphic to Hom ¢, (An, G). O

Taking H = 11; (22X ) in Lemma 2.3.2 and using Proposition 2.3.1, we get

Corollary 2.3.3 (Hopf’s theorem for 2-cohomolgy). Let X be connected and locally
relatively 2-connected. Then for any commutative group G, there is an exact sequence of
abelian groups

1 — H?*(m(X); G) — H*(X; Gx) — Hom, (m2(X), G),
where G is view as a w1 (X )-module with trivial action.

One can be more precise as follow. Let Hom_  y (m2(X),G) denote the subgroup
of morphisms in Hom (m2(X),G) which are m(X)-linear. One easily checks that the
morphism H?(X; Gx) — Hom (m(X), G) factors through Hom ) (m2(X), G) and that
one gets an exact sequence

1 —— H*(mi(X); @) —= H*(X; Gx) — Hom_ () (m2(X), &) — H¥(m1(X); G).
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Let us describe the last morphism. Recall that to each gr-category H one associates a
cohomology class ¢(H) in H3(m(H), Ay), where Ay is endowed with the conjugation action

of my(H) (if H is strict, i.e. H~ H! 4, HO, the class ¢(H) coincides with the usual class

attached to the crossed module H—! % H® in H 3(coker d, ker d). See for example [4] cap
V).
For H =TI, (QX), we get a class ¢(I[;(QX)) in H3(m(X), m2(X)). Hence, to each m(X)-
linear morphism f: my(X) — G, one associates the image of ¢(I1;(€2X)) by the induced
morphism f: H3(m(X), m2(X)) — H3(m(X),G).

Moreover, we have

Corollary 2.3.4. Let X be connected and locally relatively 2-connected. Suppose that
c(IT1(QX)) = 1 4n H3(m(X), m(X)). Then for any commutative group G, there is a split
exact sequence of abelian groups

1 — H*(m(X); G) — H*(X; Gx) — Hom_ ) (m(X),G) —1.  (2.3.4)

Proof. One possible way to show that the sequence splits is the following. Since ¢(11;(Q2X)) =
1in H?(m(X), m2(X)), the "essentially exact" sequence of gr-categories

1 ——=m(X)[1] —=11;(QX) —= 7 (X)[0] —= 1,

~

splits. This means that there is an equivalence of monoidal categories II;(QX) —
(WQ(X ) Lm (X )) Hence, a direct calculation as in 2.3.2 shows that there is an isomor-

phism of groups

1

7o(Hom  (m2(X) — mi(X), G[1]) = H*(m (X); G) x Hom (v (m2(X),G).
U

Since H?(m(X); Q) classifies (central) extensions of 71(X) by G, the sequence 2.3.4 is an
homotopical version of the Universal Coefficient Theorem.

Now, let G’ be a not necessarily commutative group and consider C = G[1]. Then
the 2-category I'(X,End (G[1])[1]x) is equivalent to Ger(Gx), the strict 2-category of
G x-gerbes. One may show (see for example [3]) that there is an isomorphism of pointed
sets?

mo(Ger(Gy)) ~ HA(X;Gx 2% Aut (Gx)),

where the right hand side is the second cohomology set of X with values in the crossed
module Gy 25 Aut o (Gx).

*"The pointed set m(Ger(Gx)) is sometimes denoted by HZ(X;Gx) and called the Giraud’s second
non abelian cohomology set of X with values in Gx.
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Assume that X is locally relatively 2-connected. By Theorem 2.2.5, there is an equiv-
alence of 2-categories

Ger(Gx) ~ Hom (II5(X), End (G[1])[1]).
Since Pic(G[1]) =~ Outg, (G), by (2.3.2) we get

Proposition 2.3.5. Let X be connected and locally relatively 2-connected. Then for any
group G there is an isomorphism of pointed sets

H(X;Gx % Aut,(Gx)) = mo(Hom  (I1 (2X), (G % Aut ¢, (G)))/ Oute (G).
With similar computations as for the commutative case, we get the following

Lemma 2.3.6. Let G = G~ % GO, Then 2.5.3 gives an exact sequence of pointed sets

L —= H2(my(H); ™' 4 %) —= mo(Hom ,(H, G~ = G)) — Hom g, (A Jer d),

where the first term is the cohomolgy set of mo(H) with values in the crossed module
G4 GO (see for ezample [2]).
Combining Lemma 2.3.6 with Proposition 2.3.5, we get

Corollary 2.3.7 (Hopf’s theorem for non abelian 2-cohomolgy). Let X be con-
nected and locally relatively 2-connected. Then for any group G there is an exact sequence
of pointed sets

1— H2(m(X); G 2% Aut (G))/ Oute (G) H2(X;Gx 2% Aut (Gx)) —

— Hom g (m(X), Z(G))/ Oute (G),

where the action of Oute,(G) on Hom (m2(X), Z(G)) is induced by the natural action on
Z(G). If moreover m (X) is trivial, one gets an isomorphism

H?(X;Gx 25 Aut, (Gx)) ~ Hom, (m(X), Z(G))/ Outer(G),

Final comments

What’s next? It seems clear that, using the same technique, one should expect for each
n-category C and each locally relatively n-connected space X a natural n-equivalence

Cx(X) ~ Hom (IL,(X), C), (.0.5)
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where Cx denotes the constant n-stack with stalk C and II,,(X') the homotopy n-groupoid
of X. However, some care has to be taken since there are several non-equivalent definition
of n-categories for n > 3, so it may well be necessary to suppose that C is an “enriched”
(or even strict) n-category. We will not investigate this problem any further here. An
answer in this direction is partially given in [12], for C = (n—1)Cat, the strict n-category
of (n — 1)-categories and X a C'W-complex.

For a commutative group G, denote by G[n] the strict gr- n-category with a single
element, trivial ¢-arrows for + < n —1 and G as n-arrows. Then one may check that there
is an isomorphism of groups

H"(X;Gx) ~mo(Gn]x(X)).

Suppose that X is locally relatively n-connected. From .0.5, we have an isomorphism of
groups

H"(X;Gx) ~my(Hom (IL,(X), G[n])). (.0.6)
This isomorphism should be interpreted as as the categorical version of the cohomological
Hopf’s theorem. Indeed, if we suppose that X is connected and that 7;(X) ~ 1 for all
2<1<n-—1, we get an "essentially exact" sequence of gr-n-categories

1 — (X)) [n] — 11, 1(2X) —m (X)[0] —1,
and hence an exact sequence of groups

1 —mo(Hom  (m,(X)[0], G[n])) —mo(Hom , (IT,,_1 (2X), G[n])) —

&

— mo(Hom , (7,,(X)[n], G[n]))
From the isomorphism .0.6 and a direct calculation, we finally get an exact sequence
1 — H"(m(X);G) — H"(X; Gx) — Hom, (m,(X), G),

where G is view as a (X )-module with trivial action.
If G is a not necessarily commutative group, we define the n-groupoid G[n] by induc-
tion as

Gl =G[],  G[n+1] = Autycae(Gn])[1],

where Aut,,cat(G[n]) denotes the gr-n-category of auto-n-equivalence of G[n] (note that,
when G is commutative, if we require G-linearity at each step in the definition of G[n],
we recover G[n]). Then one may define the non abelian n-cohomology set of X with
coefficient in G'x as

H!(X;G) = mo(Gn]x (X)).

If X is locally relatively n-connected, then the n-equivalence .0.5 gives an isomorphism
of pointed sets

H}(X;G) ~my(Hom (IL,(X), G[n])).

This is the non abelian version of the cohomological Hopf’s theorem.
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A The stack of sheaves with values in a complete cat-
egory

We recall here the construction of the stack of sheaves with values in a complete category
C, i.e. a category which admits all small limits.

Definition A.0.8. A presheaf on X with values in C is a functor
Op(X)® — C.

A morphism between presheaves is a morphism of functors. We denote by PShx (C) the
category of presheaves on X with values in C.

A presheaf is called a sheaf if it commutes to filtered limits indexed by coverings that are
stable by finite intersection, and we denote by Shx(C) the full subcategory of PShx(C)
whose objects are sheaves.

Note that if U C X is an open subset and F is a sheaf on X, then its restriction F|y
is also a sheaf. Hence we can define the prestack of sheaves on X, denoted by Shy(C),
by assigning X D U ~— Shy(C).

Let &, G be two presheaves on X. We have a natural bijective map of sets

HomPShX(C)(‘rf? g) — lim Hom (F(U), S(V))

(U, v)
vcu

where (U, V) is considered as an object of Op(X)° x Op(X). Now let U C X be an open
subset, F a presheaf on X and G a presheaf on U. Then it is easy to see that we have the
isomorphism of sets

HomPShU(C)(SE|U79)L) lim Hom ¢ (F(V), §(W)) — lim Hom(F(V), (W N U)).

(V,W) (V,W)
WCcvVcU wWcvcx

Lemma A.0.9. Let F be a presheaf and G be a sheaf on X.
Then the presheaf fHomPShX(C)("J", G) defined by

%OmPShX(C)(gi 9(U) = HomPShU(C)(fﬂU; Slv)
1s a sheaf of sets.

Proof. We have to show that Hompg, (. §) commutes to small filtered limits indexed
by coverings that are stabel by finite intersection. Let {U;};e; be such a covering of an
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open subset U C X.

:HomPShX(C)(g? S)(U) = HomPShU(c)(ﬂUa 9lv) ~ lim Hom (F(V),S(UNW))

(V,w)
wcv
~ lim Hom (F(V),imG(U; N W)) ~ lim lim Hom (F(V), §(U; N W))
(VW) iel (v, w) i€l
wcCcv wcv
~ @ l&l HOIIlC(St(V), 9<Uz N W)) >~ @HomPShUi(c)(?|Ui, 9|U2)
i€l (V,w) iel
wWcCcv
~ lim Hom gy, (y(F, 9) (Vi)
iel

O

Lemma A.0.10. Let F be a presheaf on X. Then F is a sheaf if and only if for any
object A € Ob C and any open subset U C X the presheaf

U>DV — Hom(A F(V))
s a sheaf of sets.
Proof. Follows immediately from Yoneda’s Lemma. O
Proposition A.0.11. The prestack Ghx(C) of sheaves with values in C is a stack.

Proof. By Lemma A.0.9, the prestack is seperated. Now let ({U;}ier, {Fitier, {0 }ijer)
be a descent datum for Shy(C) on open subset U C X. By taking a refinement, we can
assume that the covering {U; }i¢; is stable by finite intersections.

Let V C U. Then the cocycle condition allows us to define

F(V) = im,(V N U,).

el

It is then obvious that F is a sheaf (for instance using Lemma A.0.10 and the fact that
this is true if C = Set) which by construction is isomorphic to &F; on U;. O

Proposition A.0.12. The stack Ghx(C) admits all small limits.

Proof. Let 5:1 — Shx(C) be a functor, with | a small category. Then, for each open
subset U C X, set

T(U) = (V).

i€l

It is immediately verified that F is a sheaf on X that satisfies

F =~ limpB(3).

i€l
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Definition A.0.13. Let F be a presheaf. A sheaf F together with a morphism ¥ — F
is called the sheaf associated to JF if it satisfies the usual universal property, i.e. any
morphism from JF into a sheaf G factors uniquely through F:

F—=§

e

F

Proposition A.0.14. Let M € ObC. Assume that X is locally connected. Then the
sheaf associated to the constant presheaf with stalk M exists.

Proof. Let U C X be an open subset. Denote by #U the set of connected components of
U. Set
Mx(U) = M#Y.

Let z € U. Then we denote by Ty its class in #U.
For any inclusion V' C U of open subsets and for any x € V, we have the natural
morphisms

MX(U) — MEU — MEV'
These morphisms define the morphism

Since we know that this is a sheaf if C = Set, Lemma A.0.10 implies that Mx is a sheaf
which verifies the desired universal property. O

Definition A.0.15. Let M € ObC. The sheaf associated to the constant presheaf with
stalk M is called the constant sheaf with stalk M, and we denote it by Mx.

Remark A.0.16. The hypothesis on the connectivity of X in the Proposition A.0.14 is
necessary to recover the classical definition of constant sheaf. More precisely, if M is a set
and My is the constant sheaf defined in the usual way, there is a natural injective map
(the 0-monodromy) p°: Mx(X) — Hom (#X, M) ~ M#X defined by p°(s)(Tx) = s(Tx)
for a section s in My (X). Clearly, if X is locally connected, u° is a bijection.

Let X be a locally connected topological space. Denote by CShy(C) the full subcate-
gory of Shx(C) of constant sheaves. The previous construction defines a faithful functor

(\)x: C— CShx(C),

which is an equivalence if X is connected (a quasi-inverse is given by the global sections
functor).

Definition A.0.17. A sheaf JF is called locally constant if there is an open covering
X = |JU; such that F|y, is isomorphic to a constant sheaf.
We denote by £¢Shy(C) the full substack of Shy(C) whose objects are the locally con-

stant sheaves.
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B The 2-stack of stacks with values in a 2-complete
2-category

Let us recall the construction of the 2-stack of stacks with values in a 2-complete 2-category
C, i.e. a 2-category which admits all small 2-limits wher, for the sake of simplicity, the
reader might assume that C is a strict 2-category. For the basic definitions about 2-stacks,
we refer to [2]. In particular we get a Yoneda 2-Lemma, that states that the 2-functor

C — Hom(C? Cat) ; A~ Homg(:,A)

is fully faithful.
Let X be a topological space and denote by Op(X) the 2-category of its open subsets.

Definition B.0.18. A prestack on X with values in C is a 2-functor
Op(X)* — C.

A functor between prestacks is a 2-transformation of 2-functors and transformations of
functors of prestacks are modifications of 2-transformations of 2-functors. We denote by
PStx (C) the 2-category of prestacks on X with values in C.

A prestack is called a stack if it commutes to filtered 2-limits indexed by coverings that are
stable by finite intersection, and we denote by Stx(C) the full subcategory of PStx(C)
whose objects are stacks.

Note that if U C X is an open subset and & is a stack on X, then its restriction S|y
is also a stack. Hence the assignment X D U +— Sty (C) defines the pre-2-stack of stacks
on X with values in C, which we denote by &tx(C).

Let &, % be two prestacks on X. We have a natural equivalence of categories

Hom pe . (¢ (6. F) = 2limHom o (S(U), T(V))

u,v)
vcu

where (U, V) is considered as an object of Op(X)® x Op(X). Now let U C X be an open
subset, & a prestack on X and ¥ a prestack on U. Then it is easy to see that we have
the equivalence of categories

Hom pge, () (Slv. T) = 2lim Hom o(S(V), T(W)) == 2lim Hom o(&(V), T(W NU)).

(V,\w) (V,w)
wcvcu wcvcx

Lemma B.0.19. Let G be a prestack and ¥ be a stack on X.
Then the prestack Hompg, () (6. %) defined by

Hompg, () (6, F)(U) = Hompg, c)(Slv, Tlv)

s a stack of categories.
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Proof. We have to show that Hompg; (S, T) commutes to small filtered limits indexed
by coverings that are stable by finite intersection. Let {U;};c; be such a covering of an
open subset U C X.

Hompg; () (6, T)U) = Hompg, () (Slv, Flv) = 2limHom (S(V), T(U N W)

VW)
wcv
~ 2limHom (&(V), 2imT(U; N W)) =~ 2lim2limHom ¢(&(V), T(U; N W))
(V,w) i€l (Vv\w) el
wcv wWcCcv
~ 2lim2limHom (&(V), T(U; N W)) = 2limHom PStUZ.(C)(6|Ui7 Tv,)
iel (v,w) iel
wcCcv
icl

O

Lemma B.0.20. Let & be a prestack on X. Then & is a stack if and only if for any
object P € Ob C and any open subset U C X the prestack

U DV = Homq(P,&(V))
s a stack of categories.
Proof. Follows immediately from Yoneda’s 2-Lemma (see for example [1] cap. 7). O
Proposition B.0.21. The pre-2-stack &tx(C) of stacks with values in C is a 2-stack.
Proof. By Lemma B.0.19, the pre-2-stack is seperated. Now let
({Uitier: {&i}ier. { Fij}tijer {@ijn tijner)

be a descent datum for Gtx(C) on open subset U C X. This means that {U;};cs is an
open covering of U, &; are stacks on U;, Fy;: 6|y, - &;|u,; are equivalences of stacks,
and @it wijopr — @i are invertible transformations of functors from 6k|Uijk to 6i|Ui]_k,
such that for any ¢, j, k,l € I, the following diagram of transformations of functors from

&i|v, to &4y, commutes
Fyjo Fjy o Fy — % Fy o Fy, (B.0.7)
l‘ﬂjkl l%kz
Pijl
Fijo Iy F.

By taking a refinement, we can assume that the covering {U;};c; is stable by finite inter-
sections.
Let V C U. Then the cocycle condition B.0.7 allows us to define

S(V) = 2im&,(V N U;).

i€l
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It is then obvious that & is a stack (for instance using Lemma B.0.20 and the fact that
this is true if C = Cat) and that, by construction, there are equivalences of stacks
F;: 6|y, 5 &;, Moreover, one checks that there exist invertible transformations of
functors @;;: Fyj o Fylu,, = Filu,, such that ©glu,,, © @iklv, = ikl © Pijk- O

Proposition B.0.22. The 2-stack Gtx(C) admits all small 2-limits.

Proof. Let B: I — Stx(C) be a 2-functor, with I a small 2-category. Then, for each open
subset U C X, set

S(U) = 2AimB(0) (V).

i€1
It is immediately verified that & is a stack on X that satisfies
S~ 211_1115(2)

i€l

O

Definition B.0.23. Let G be a prestack. A stack S together with a functor & — S is
called the stack associated to & if it satisfies the usual universal property, i.e. any functor
from & into a stack T factors through & up to unique equivalence:

G&—%

.

S

Proposition B.0.24. Let P € ObC. Assume that X is locally 1-connected. Then the
stack associated to the constant prestack with stalk P exists.

Proof. Let U C X be an open subset. Set
PX(U) = PHl(U):

where P denotes the 2-limit of the constant 2-functor A(P): II;(U) — C at P. Let
x € V C U and denote by zy the corresponding object in IT1;(U). Then we have the
natural 1-arrows

Px(U) — P,, — Py, .

These 1-arrows define the 1-arrow

Since we know that this construction gives a stack if C = Cat (in fact, if P = C is a
category, then C™(¥) is equivalent to Hom (IT;(U), C) < Cy(U), hence it is the stack of
o

locally constant sheaves on U with values in C), Lemma B.0.20 implies that Px is a stack
which verifies the desired universal property. O
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Definition B.0.25. Let P € Ob C. The stack associated to the constant prestack with
stalk P is called the constant stack with stalk P, and we denote it by Px.

Let X be a locally 1-connected topological space. Denote by CStx(C) the full sub-
2-category of Stx(C) of constant stacks. The previous construction defines a faithful

2-functor
(')X: C — Cstx(C),

which is an equivalence if X is connected (a quasi-2-inverse is given by the global sections
2-functor).

Definition B.0.26. A stack G is called locally constant if there exists an open covering
X = U, such that G|y, is isomorphic to a constant stack.

We denote by £e6Ghx(C) the full sub-2-stack of Gty (C) whose objects are the locally
constant stacks.
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