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An endomorphism ρ of the Cuntz algebra ON brings a
branching of representations:

π 7→ π ◦ ρ = π1 ⊕ · · · ⊕ πM .

We show branchings of permutative representations of ON

by endomorphisms which are introduced in the previous our
paper. Their branching laws are computed concretely and
illustrated by graphs effectively.

1. Introduction

For a subgroup H of a group G, an irreducible decomposition of π|H for
an irreducible representation π of G is one of main study in representation
theory([12]). When such decomposition holds, the decomposition formula
is called a branching law. This is reformulated as the branching which is
brought by the inclusion map ι from H to G, that is, ι∗(π) ≡ π ◦ ι gives a
map from RepG to RepH. In general, any homomorphism ϕ from a group
G1 to other G2 arises a transformation ϕ∗ from RepG2 to RepG1. Specially,
when G = G1 = G2, ρ ∈ EndG gives a transformation on RepG and we can
consider the branching law by ρ∗ in this situation.

On the other hand, the branching law by embeddings of C∗-algebras
is studied in [1, 2]. The difference of two theories of quantum string field is
explained by the difference of representations arising from two embeddings
of a pseudo Cuntz algebra in [3]. In the last paper [11], we introduce a
class of endomorphisms of the Cuntz algebra ON arising from permutations
and show the complete reducibility of the action of them on permutative
representations. For a representation π and an endomorphism ρ, if there is
a decomposition π ◦ρ = π1⊕· · ·⊕πM , we call this formula by the branching
law of ρ at π. Because this branching is brought by ρ, the branching law
of ρ shows a property of ρ. In application of branching laws for geometry,
such method to study morphisms is already considered(§ 4.A. in [12]). In
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[11], we show the classification of endomorphisms in a class by using their
branching laws. In this way, the branching law of ρ is an effective method
for a study of ρ itself.

In [12], it is mentioned that branching laws bring us various problems
and information. However, such branching laws seem complicated and dif-
ficult to understand visually in general. We develop a method to illustrate
branching laws by graph. For example, consider the following two endomor-
phisms ρ and ψ13 of O2:




ρ(s1) ≡ s1s1s
∗
1 + s2s1s

∗
2,

ρ(s2) ≡ s1s2s
∗
1 + s2s2s

∗
2,





ψ13(s1) ≡ s2s1s
∗
1 + s1s2s

∗
2,

ψ13(s2) ≡ s1s1s
∗
1 + s2s2s

∗
2.

We see that ρ is the canonical endomorphism of O2 and it is neither bijective
nor irreducible(this notion is given in § 3). In stead of their quite concrete
forms, it seems that there is no information about: 1)Whether is ψ13 auto-
morphisms or not? 2)Whether is ψ13 irreducible or not? 3)Whether are ρ
and ψ13 equivalent or not? We can answer these questions at once by the
following two directed graphs with label which are associated with ρ and
ψ13:
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The difference between ρ and ψ13 are clear by appearance of graphs(more
precise explanation is given in § 3.2 and § 4.1).

In § 2, we review of branching function systems and permutative rep-
resentations of ON . In § 3, we review permutative endomorphisms, and
introduce graphs associated with branchings of endomorphisms. In § 4, we
show examples of branching laws and their graphs. In § 5, we show smarter
statements about branching laws by using module of endomorphism semi-
groups.
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2. Branching function systems and permutative representations

2.1. Invariants of representations. We introduce several sets of multi
indices which consist of numbers 1, . . . , N for N ≥ 2 in order to describe
invariants of representations of ON . Their meanings are shown in § 2.4.

Put
{1, . . . , N}# ≡ {1, . . . , N}∗1 t {1, . . . , N}∞,

{1, . . . , N}∗ ≡
∐

k≥0

{1, . . . , N}k, {1, . . . , N}∗1 ≡
∐

k≥1

{1, . . . , N}k,

{1, . . . , N}∞ ≡ {(jn)n∈N : jn ∈ {1, . . . , N}, n ∈ N},
{1, . . . , N}0 ≡ {0}, {1, . . . , N}k ≡ {(jl)k

l=1 : jl = 1, . . . , N, l = 1, . . . , k} for
k ≥ 1. For J ∈ {1, . . . , N}#, the length |J | of J is defined by |J | ≡ k when
J ∈ {1, . . . , N}k, k ≥ 0. For J1, J2 ∈ {1, . . . , N}∗ and J3 ∈ {1, . . . , N}∞
J1 ∪ J2 ≡ (j1, . . . , jk, j

′
1, . . . , j

′
l ), J1 ∪ J3 ≡ (j1, . . . , jk, j

′′
1 , j

′′
2 , . . .) when J1 =

(j1, . . . , jk), J2 = (j
′
1, . . . , j

′
l ) and J3 = (j

′′
n)n∈N. Specially, we define J ∪

{0} = {0} ∪ J = J for J ∈ {1, . . . , N}# and (i, J) ≡ (i) ∪ J for convention.
For J ∈ {1, . . . , N}∗ and k ≥ 2, Jk ≡ J ∪ · · · ∪ J︸ ︷︷ ︸

k

. For J = (j1, . . . , jk) ∈

{1, . . . , N}k and τ ∈ Zk, denote τ(J) = (jτ(1), . . . , jτ(k)).

Definition 2.1. (i) J ∈ {1, . . . , N}∗1 is periodic if there are m ≥ 2 and
J0 ∈ {1, . . . , N}∗1 such that J = Jm

0 .
(ii) For J1, J2 ∈ {1, . . . , N}∗1, J1 ∼ J2 if there are k ≥ 1 and τ ∈ Zk such

that J1, J2 ∈ {1, . . . , N}k and τ(J1) = J2.
(iii) For (J, z), (J

′
, z
′
) ∈ {1, . . . , N}∗1 × U(1), (J, z) ∼ (J

′
, z
′
) if J ∼ J

′
and

z = z
′
where U(1) ≡ {z ∈ C : |z| = 1}.

(iv) For J1 = (j1, . . . , jk), J2 = (j
′
1, . . . , j

′
k) ∈ {1, . . . , N}k, k ≥ 1, J1 ≺ J2

if
∑k

l=1(j
′
l − jl)Nk−l ≥ 0.

(v) J ∈ {1, . . . , N}∗1 is minimal if J ≺ J
′
for each J

′ ∈ {1, . . . , N}∗1 such
that J ∼ J

′
.

Specially, any element in {1, . . . , N} is non periodic and minimal. Put

(2.1) [1, . . . , N ]∗ ≡ {J ∈ {1, . . . , N}∗1 : J is minimal and non periodic}.
Note that [1, . . . , N ]∗ is in one-to-one correspondence with the set of all
equivalence classes of non periodic elements in {1, . . . , N}∗1. For example,

[1, 2]∗ = {(1), (2), (12), (112), (122), (1112), (1122), (1222), (11112), . . .} ,

[1, 2, 3]∗ =





(1), (2), (3), (12), (13), (23),
(112), (113), (122), (123), (132), (133), (223), (233),
(1112), (1113), (1122), (1123), (1132), (1133), (1213),
(1222), (1223), (1232), (1233), (1322), (1323), (1333),
(2223), (2233), (2333), . . .





.
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Definition 2.2. (i) J ∈ {1, . . . , N}∞ is eventually periodic if there are
J0, J1 ∈ {1, . . . , N}∗1 such that J = J0 ∪ J∞1 .

(ii) For J1, J2 ∈ {1, . . . , N}∞, J1 ∼ J2 if there are J3, J4 ∈ {1, . . . , N}∗
and J5 ∈ {1, . . . , N}∞ such that J1 = J3 ∪ J5 and J2 = J4 ∪ J5.

Put the set [1, . . . , N ]∞ of equivalence classes of multi indices by

(2.2) [1, . . . , N ]∞ ≡ {J ∈ {1, . . . , N}∞ : J is non eventually periodic}/∼ .

The definition of [1, . . . , N ]∞ seems inconsistent with [1, . . . , N ]∗, but this
definition makes sense as the set of invariants of representations of the Cuntz
algebras in later. Furthermore we put

(2.3) [1, . . . , N ]# ≡ [1, . . . , N ]∗ t [1, . . . , N ]∞.

While the definition of several notions of multi indices are changed by
comparison with [8, 10, 11], their meanings are equivalent.

2.2. Branching function systems. Let Λ be an infinite set and N ≥
2. f = {fi}N

i=1 is a branching function system on Λ if fi is an injective
transformation on Λ for i = 1, . . . , N such that a family of their images
coincides a partition of Λ. For N ≥ 2, f = {fi}N

i=1 ∈ BFSN (Λ1) and
g = {gi}N

i=1 ∈ BFSN (Λ2) are equivalent if there is a bijection ϕ from Λ1

to Λ2 such that ϕ ◦ fi ◦ ϕ−1 = gi for i = 1, . . . , N . Put BFSN (Λ) the set
of all branching function systems on Λ. For f = {fi}N

i=1 ∈ BFSN (Λ), we
denote fJ ≡ fj1 ◦ · · · ◦ fjk

when J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1,
and define f0 ≡ id. For x, y ∈ Λ, x ∼ y(with respect to f) if there are
J1, J2 ∈ {1, . . . , N}∗ and z ∈ Λ such that fJ1(z) = x and fJ2(z) = y. For
x ∈ Λ, denote Af (x) ≡ {y ∈ Λ : x ∼ y}.
Definition 2.3. Let f = {fi}N

i=1 ∈ BFSN (Λ).
(i) f is cyclic if there is an element x ∈ Λ such that Λ = Af (x).
(ii) For k ≥ 1, R = {n1, . . . , nk} ⊂ Λ is a k-cycle of f if nl 6= nl

′ when
l 6= l

′
and there is J ∈ {1, . . . , N}k such that fjl

(nl) = nτ(l) for l =
1, . . . , k where τ is a shift on Zk.

(iii) R = {nl}l∈N ⊂ Λ is a chain of f if nl 6= nl
′ when l 6= l

′
and there is

{jl ∈ {1, . . . , N} : l ∈ N} such that f−1
jl

(nl) = nl+1 for each l ∈ N ≡
{1, 2, 3, . . .}.

(iv) f has a k-cycle(chain) if there is a k-cycle(resp. chain) of f in Λ.
Specially, we call simply that f has a cycle if f has a k-cycle some
k ≥ 1.

Let Ξ be a set. For a branching function system f [ω] = {f [ω]
i }N

i=1 on
an infinite set Λω for ω ∈ Ξ, f is the direct sum of {f [ω]}ω∈Ξ if f = {fi}N

i=1
is a branching function system on a set Λ ≡ ∐

ω∈Ξ Λω which is defined by
fi(n) ≡ f

[ω]
i (n) when n ∈ Λω for i = 1, . . . , N and ω ∈ Ξ. For a branching
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function system f ∈ BFSN (Λ), f =
⊕

ω∈Ξ f [ω] is a decomposition of f into
a family {f [ω]}ω∈Ξ if there is a family {Λω}ω∈Ξ of subsets of Λ such that f

is the direct sum of {f [ω]}ω∈Ξ.

Proposition 2.4. Let f = {fi}N
i=1 ∈ BFSN (Λ).

(i) There is a decomposition Λ =
∐

ω∈Ξ Λω such that #Λω = ∞, f |Λω ≡
{fi|Λω}N

i=1 ∈ BFSN (Λω) and f |Λω is cyclic for each ω ∈ Ξ.
(ii) Assume that f is cyclic. Then there is only one case in the followings:

a) f has just one cycle. b) f has just one chain where we identify two
chains R = {nl ∈ Λ : l ∈ N} and R

′
= {ml ∈ Λ : l ∈ N} when there

are M,L ≥ 0 such that nl+L = ml for each l > M .

Proof. See Proposition 2.5 in [11]. ¤

Definition 2.5. (i) For J ∈ {1, . . . , N}k, k ≥ 1, f ∈ BFSN (Λ) is P (J) if
f is cyclic and has a cycle R = {n1, . . . , nk} such that fJ(nk) = nk.

(ii) For J ∈ {1, . . . , N}∞, f ∈ BFSN (Λ) is P (J) if f is cyclic and has a
chain L = {nj}j∈N such that f−1

Jk
(n1) = nk where Jk ≡ (j1, . . . , jk) for

each k ≥ 1 when J = (jl)l∈N.

By Proposition 2.4, Definition 2.5 (i) and (ii) make sense.

2.3. Transformation of branching function systems. Let SN,l be the
set of all bijective transformations on {1, . . . , N}l for l ≥ 1. Put a bijec-
tive map κ from {1, . . . , N}l to a set ΣN l ≡ {1, 2, 3, . . . , N l − 1, N l} by
κ(i1, . . . , il) ≡

∑l
j=1 N l−j(ij − 1) + 1. We often identify SN,l and the (sym-

metric)group SN l of all permutations on ΣN l by corresponding between
σ ∈ SN,l and κ ◦ σ ◦ κ−1 ∈ SN l . Specially, κ = id on {1, . . . , N} = ΣN . By
a natural identification SN,l and a subset SN,l × {id} of SN,l+1, l ≥ 1, we
can consider SN,∗ ≡ lim→ l

SN,l.

For σ ∈ SN,l and f = {fi}N
i=1 ∈ BFSN (Λ), put f (σ) = {f (σ)

i }N
i=1 ∈

BFSN (Λ) by

(2.4) f
(σ)
i ≡ fσ(i) (l = 1), f

(σ)
i (fJ(n)) ≡ fσ(i,J)(n) (l ≥ 2)

for n ∈ Λ, i = 1, . . . , N and J ∈ {1, . . . , N}l−1.

Lemma 2.6. Let J ∈ {1, . . . , N}# and σ ∈ SN = SN,1. If f ∈ BFSN (Λ)
is P (J) in Definition 2.5, then f (σ) is P (Jσ−1) where

Jσ−1 ≡




(
σ−1(j1), . . . , σ−1(jk)

)
(J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1),

(
σ−1(jn)

)
n∈N

(J = (jn)n∈N ∈ {1, . . . , N}∞).

Next we show concrete examples of branching function systems on N and
its transformation by permutations.
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Lemma 2.7. For J ∈ {1, . . . , N}∗1, define a branching function system f =
{fi}N

i=1 on N defined as follows: When J = j ∈ {1, . . . , N}, put

fi(1) ≡





i + 1 (1 ≤ i < j),

1 (i = j),

i (j ≤ i ≤ N),

fi(n) ≡ N(n− 1) + i (n ≥ 2)

for i = 1, . . . , N . When J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 2, put

fi(1) ≡





k + i (1 ≤ i < j1),

k (i = j1),

k + i− 1 (j1 ≤ i ≤ N),

fi(l) ≡





k + (N − 1)(l − 1) + i (1 ≤ i < jl),

l − 1 (i = jl),

k + (N − 1)(l − 1) + i− 1 (jl ≤ i ≤ N),

fi(n) ≡ N(n− 1) + i

for l = 2, . . . , k, n ≥ k + 1 and i = 1, . . . , N . Then the followings hold:
(i) f is P (J).
(ii) For σ ∈ SN,l, l ≥ 1, f (σ) has no chain.
(iii) For σ ∈ SN,l, l ≥ 1, there is 1 ≤ M ≤ N l−1 such that f (σ) is decom-

posed into a direct sum of M number of cycles. Furthermore the length
of each cycle is a multiple of that of J .

Proof. See Lemma 2.12 in [11] except (iii). We show (iii). Assume
J ∈ {1, . . . , N}k, k ≥ 1. By (ii) and Proposition 2.4, f (σ) has only cycles
and does one cycle at least. If f

(σ)
i (fJ(m)) = fJ

′ (m) for i = 1, . . . , N ,
m ∈ N and J, J

′ ∈ {1, . . . , N}∗1, then |J ′ | = |J |+ 1 by definition of f (σ). If
f

(σ)
J0

(n) = n for some n ∈ N and J0 ∈ {1, . . . , N}∗1, then

(2.5) fJ2(m) = m

for suitable J2, |J2| = |J0| and m ∈ N. (2.5) means a cycle of f and it holds
only when |J2| = ka for some 1 ≤ a < ∞ by Proposition 2.4 (ii). Hence
|J0| = ka. Therefore we have the assertion about the length of a component.

Since f (σ) has cycles in only D ≡ {1, . . . , N l−1k} ⊂ N and #D =
N l−1k, the number of cycles in D is N l−1 at most by the results of lengths
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of cycles of f (σ). ¤

Next we consider transformations of branching function systems with
chain.

Lemma 2.8. For J = (jn)n∈N ∈ {1, . . . , N}∞, put a family {pn}n∈Z of
transpositions pn ∈ SN by pn(1) ≡ jn for n ≥ 1 and pn ≡ id for n ≤ 0.
Define f = {fi}N

i=1 ∈ BFSN (Z×N) by

(2.6) fi(n,m) ≡




(n− 1, N(m− 1) + i) (m ≥ 2),

(n− 1, pn(i)) (m = 1)

for n ∈ Z. Then the followings hold:
(i) f is P (J).
(ii) For each (n,m) ∈ Z × N, there is m

′ ∈ N such that f
(σ)
i (n,m) =

(n− 1,m
′
) for i = 1, . . . , N .

(iii) For σ ∈ SN,l, f (σ) has no cycle in Z×N.

Proof. (i) The cyclicity follows by definition of representations. f has
a chain {(n, 1) : n ∈ N} in Z ×N which satisfy the chain condition with
respect to J .
(ii) For σ ∈ SN,l, l ≥ 2 and f ∈ BFSN (Z ×N), we have f

(σ)
i (fJ(n, m)) =

fσ(i,J)(n,m) for J ∈ {1, . . . , N}l−1, i = 1, . . . , N and (n,m) ∈ Z×N. Note

J ∈ {1, . . . , N}l−1. We see f
(σ)
i (n,m) = f

(σ)
i (fJ(n+ l−1,m0)) = (n−1,m

′
)

for suitable m0. Therefore the statement holds.
(iii) If f (σ) has a cycle {x1, . . . , xM} ⊂ Z×N, then there are 1 ≤ M < ∞ and
J ∈ {1, . . . , N}M such that f

(σ)
J (x1) = x1. If x1 = (n,m), then f

(σ)
J (x1) =

(n −M, m
′
) 6= x1 for some m

′ ∈ N by (ii). Hence this is a contradiction.
Therefore the statement holds. ¤

Lemma 2.9. Let f be in (2.6) and σ ∈ SN,l. Put

C ≡ {fJ(n, j) : j = 2, . . . , N, J ∈ {1, . . . , N}k, k ≥ l − 1}.
Then f

(σ)
i (C) ⊂ C and f

(σ)
i has neither chain nor cycle in C for i =

1, . . . , N .

Proof. Any cycle does not exists by Lemma 2.8. If there is a chain L =
{xn}n∈N in C, then there is J = (jn) ∈ {1, . . . , N}∞ such that f−1

Jk
(x1) = xn.

By definition of fi in (2.6), the component of f with respect to N is monotone
increasing. Therefore there is a lower bound x for L = {xn}n∈N with respect
to N-component. However f−1

i (x) 6∈ C. This contradicts the assumption
L ⊂ C. Hence there is no chain in C. ¤
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D ≡ (Z×N) \ C is the following:
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(n− 1, 1) (n, 1) (n + 1, 1)

0-th
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l − 1-th

(n− 1, i)

fJ(n, i)

}
D

Lemma 2.10. Let f be in (2.6) and σ ∈ SN,l. Then there is 1 ≤ M ≤ N l−1

such that f (σ) decomposes into just M chains.

Proof. By Lemma 2.8 (ii), Lemma 2.9 and Proposition 2.4, fσ has
chains in D ≡ Z × N. Let L = {xn}n∈N ⊂ D be a chain. Denote xn =
(yn, zn) for n ∈ N. yn+1 = yn + 1 for n ∈ N by Lemma 2.8 (ii). Hence the
cut of L by the set Em ≡ {(m,m

′
) ∈ D : m

′ ∈ N} is just one point. On the
other hand, #Em = N l−1 for each m ∈ Z. Hence the number of chains in
D is N l−1 at most. ¤

2.4. Permutative representations. For N ≥ 2, let ON be the Cuntz
algebra([5]), that is, it is a C∗-algebra with generators s1, . . . , sN which
satisfy

(2.7) s∗i sj = δijI (i, j = 1, . . . , N), s1s
∗
1 + · · ·+ sNs∗N = I.

In this paper, any representation and endomorphism are assumed unital and
∗-preserving. By simplicity and uniqueness of ON , it is sufficient to define
operators S1, . . . , SN on an infinite dimensional Hilbert space which satisfy
(2.7) in order to construct a representation of ON . In the same reason, it
is sufficient to define elements T1, . . . , TN in ON which satisfy (2.7) in order
to construct an endomorphism of ON .

Put α an action of a unitary group U(N) on ON defined by αg(si) ≡∑N
j=1 gjisj for i = 1, . . . , N . Specially we denote γw ≡ αg(w) when g(w) =

w · I ⊂ U(N) for w ∈ U(1) ≡ {z ∈ C : |z| = 1}. For multiindices J =
(j1, . . . , jk) ∈ {1, . . . , N}k, we denote sJ = sj1 · · · sjk

and s∗J = s∗jk
· · · s∗j1 .

Definition 2.11. Let (H, π) be a representation of ON .
(i) (H, π) is a permutative representation of ON if there are a complete

orthonormal basis {en}n∈Λ of H and a branching function system f =
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{fi}N
i=1 on Λ such that π(si)en = efi(n) for each n ∈ Λ and i =

1, . . . , N .
(ii) (H, π,Ω) is a generalized permutative(=GP) representation of ON with

cycle by J ∈ {1, . . . , N}k, k ≥ 1 and phase z ∈ U(1) if Ω ∈ H is a cyclic
unit vector such that π(sJ)Ω = zΩ and {π(sj1 · · · sjl

)Ω : l = 1, . . . , k}
is an orthonormal family in H. We denote P (J ; z) = (H, π,Ω) and
P (J) ≡ P (J ; 1) simply.

(iii) (H, π,Ω) is a GP representation of ON with chain by J ∈ {1, . . . , N}∞
if Ω ∈ H is a cyclic unit vector such that {π(sJn)∗Ω}n∈N is an or-
thonormal family where Jn ≡ (j1, . . . , jn) when J = (jm)m∈N. We
denote P (J) = (H, π, Ω) simply.

(iv) (l2(Λ), πf ) is the permutative representation of ON by f = {fi}N
i=1 ∈

BFSN (Λ) if πf (si)en ≡ efi(n) for n ∈ Λ and i = 1, . . . , N .

Branching function system was introduced in [4, 6, 7]. Recall Definition 2.1
about multiindices. Here ∼ means the unitary equivalence of representa-
tions.

Theorem 2.12. (i) Any permutative representation is completely reducible.
(ii) Any cyclic(resp. irreducible)permutative representation is equivalent to

P (J) for some J ∈ {1, . . . , N}#(resp. some J ∈ [1, . . . , N ]∗ or some
non eventually periodic J ∈ {1, . . . , N}∞).

(iii) For each J ∈ {1, . . . , N}#, P (J) exists and unique up to unitary equiv-
alences. P (J) is equivalent to a cyclic permutative representation.

(iv) If J ∈ {1, . . . , N}k, k ≥ 1 and z ∈ U(1), then P (J ; 1) ◦ γz = P (J ; zk).
If J ∈ {1, . . . , N}∞ and z ∈ U(1), then P (J) ◦ γz = P (J).

(v) For J ∈ {1, . . . , N}∗1 and z ∈ U(1), P (J ; z) is irreducible if and only if
J is non periodic.

(vi) For J ∈ {1, . . . , N}∞, P (J) is irreducible if and only if J is non even-
tually periodic.

(vii) For J1, J2 ∈ {1, . . . , N}∗1 and z1, z2 ∈ U(1), P (J1; z1) ∼ P (J2; z2) if
and only if (J1, z1) ∼ (J2; z2) where P (J1; z1) ∼ P (J2; z2) means the
unitary equivalence of two representations which satisfy the condition
P (J1; z1) and P (J2; z2), respectively.

(viii) For J1, J2 ∈ {1, . . . , N}∞, P (J1) ∼ P (J2) if and only if J1 ∼ J2.
(ix) For J ∈ {1, . . . , N}∗1 and l ≥ 1,

P (J l; 1) =
l⊕

j=1

P (J ; ξj−1)

where ξ ≡ e2π
√−1/l. This decomposition is unique up to unitary equiv-

alences.

Proof. Note P (J ; z) = GP (z̄εJ) in [8] where εJ = εj1 ⊗ · · · ⊗ εjk

when J = (j1, . . . , jk), and P (J) = GP (εJ) where εJ = (εjn)n∈N when
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J = (jn)n∈N ∈ {1, . . . , N}∞ in [10], and {εj}N
j=1 is the canonical basis of

CN . Hence the statement holds from [8, 9, 10]. ¤

We omit the decomposition of chain in this article(see [10]). By Theorem
2.12 (ii), it is sufficient for a statement about P (J1) to show by a suitable
concrete representation which is P (J) for J ∈ {1, . . . , N}#. By combining
Theorem 2.12 (iii) and (viii), we have the following:

P (J l; z) =
l⊕

j=1

P (J ; ξj−1z1/l)

where ξ ≡ e2π
√−1/l. In consequence, we have the following:

Theorem 2.13. (i) A set {P (J ; z); J ∈ {1, . . . , N}∗1, z ∈ U(1)} of rep-
resentations of ON is closed under irreducible decomposition, and the
number of components of decomposition is always finite.

(ii) [1, . . . , N ]# is in one-to-one correspondence with the set of equivalence
classes of irreducible permutative representations of ON .

Characterizations of permutative representations are given by termi-
nology of branching function systems. The followings hold from definition
of branching function system and Definition 2.11 (iv) immediately:

Proposition 2.14. Let f be a branching function system on an infinite set
Λ. Recall (l2(Λ), πf ) in Definition 2.11 (iv).

(i) If g is a branching function system on an infinite set Λ
′

such that
f ∼ g, then (l2(Λ), πf ) ∼ (l2(Λ

′
), πg).

(ii) If f is cyclic, then (l2(Λ), πf ) is cyclic.
(iii) For J ∈ {1, . . . , N}#, if f is P (J), then (l2(Λ), πf ) is P (J), too.
(iv) If f = f (1) ⊕ f (2) and Λ = Λ1 t Λ2 is the associated decomposition of

f , then (l2(Λ), πf ) ∼ (l2(Λ1), πf (1))⊕ (l2(Λ2), πf (2)).

3. Permutative endomorphisms and their graph invariants

3.1. Permutative endomorphisms. We review endomorphisms of ON

arising from permutations in [11] and refine their results.
Assume that EndA is the set of all unital ∗-endomorphisms of a unital

∗-algebra A and ρ, ρ
′ ∈ EndA in this subsection. ρ is proper if ρ(A) 6= A.

ρ is irreducible if ρ(A)
′ ∩ A = CI where ρ(A)

′ ∩ A ≡ {x ∈ A : ρ(a)x =
xρ(a) for each a ∈ A}. ρ is reducible if ρ is not irreducible. ρ and ρ

′
are

equivalent if there is a unitary u ∈ A such that ρ
′
= Adu ◦ ρ. In this case,

we denote ρ ∼ ρ
′
.

Let RepA(resp. IrrRepA) be the set of all unital (resp. irreducible)∗-
representations of A. We simply denote π for (H, π) ∈ RepA.
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Lemma 3.1. (i) If ρ, ρ
′ ∈ EndA and π, π

′ ∈ RepA satisfy ρ ∼ ρ
′

and
π ∼ π

′
, then π ◦ ρ ∼ π

′ ◦ ρ
′
.

(ii) Assume that A is simple. If there is π ∈ IrrRepA such that π ◦ ρ ∈
IrrRepA, too, then ρ is irreducible. Specially, if π ◦ ρ ∼ π ∈ IrrRepA,
then ρn ≡ ρ ◦ · · · ◦ ρ︸ ︷︷ ︸

n

is irreducible for each n ≥ 1.

(iii) If there is π ∈ RepA such that π ◦ ρ 6∼ π ◦ ρ
′
, then ρ 6∼ ρ

′
.

(iv) If there is π ∈ IrrRepA such that π ◦ ρ 6∈ IrrRepA, then ρ is proper.

We identify the symmetric group SNk and SN,k the set of all bijective
transformations on {1, . . . , N}k for k ≥ 1 by the method in § 2.3. Define

(3.1) σ 7→ uσ =
∑

J∈{1,...,N}k

sσ(J)s
∗
J .

Then we have uσuσ′ = uσ◦σ′ for σ, σ
′ ∈ SN,k.

Definition 3.2. For σ ∈ SN,k, ψσ ∈ EndON is defined by

ψσ(si) ≡ uσsi (i = 1, . . . , N).

ψσ is called the permutative endomorphism of ON by σ where uσ is in (3.1).

Put the following sets:

(3.2) EN,k ≡ {ψσ ∈ EndON : σ ∈ SN,k} (k ≥ 1).

Proposition 3.3. (i) If σ ∈ SN , then ψσ is an automorphism of ON

which satisfies ψσ(si) = sσ(i) for i = 1, . . . , N . Specially, if σ = id,
then ψid = id.

(ii) If σ ∈ SN,2 is defined by σ(i, j) ≡ (j, i) for i, j = 1, . . . , N , then ψσ is
the canonical endomorphism of ON .

(iii) γz ◦ ψσ = ψσ ◦ γz for each z ∈ U(1) and σ ∈ SN,∗ ≡
∐

l≥1 SN,l.
(iv) If ρ ∈ EN,k and ρ

′ ∈ EN,k′ , then ρ ◦ ρ
′ ∈ EN,k+k′−1 for each k, k

′ ≥ 1.

Proof. Immediately, we see (i)∼(iii) by definition. (iv) follows from
Proposition 4.5 in [11]. ¤

Theorem 3.4. (i) Let Λ be an infinite set. For σ ∈ SN,k, k ≥ 1, and
f ∈ BFSN (Λ), let (l2(Λ), πf ) be in Definition 2.11 (iv) and f (σ) in
(2.4). Then we have πf ◦ ψσ = πf (σ).

(ii) If ρ is a permutative endomorphism and (H, π) is a permutative rep-
resentation of ON , then π ◦ ρ is a permutative representation, too.

(iii) If (H, π) is P (J) for J ∈ {1, . . . , N}# and σ ∈ SN,l, l ≥ 1, then there
are 1 ≤ M ≤ N l−1, a family {Ji}M

i=1 ⊂ {1, . . . , N}# and a family
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{(Hi, πi)}M
i=1 of subrepresentations of (H, π ◦ ψσ) such that

(3.3) (H, π ◦ ψσ) =
M⊕

i=1

(Hi, πi)

and (Hi, πi) is P (Ji) for i = 1, . . . ,M . Furthermore if J ∈ {1, . . . , N}k,
k ≥ 1, then {Ji}M

i=1 ⊂
∐N l−1

a=1 {1, . . . , N}ak, and if J ∈ {1, . . . , N}∞,
then {Ji}M

i=1 ⊂ {1, . . . , N}∞.
(iv) The rhs in (3.3) is unique up to unitary equivalences.

Proof. See Lemma 4.9 and Theorem 4.10 in [11] for (i) and (ii). By
(i) and Proposition 2.14, it is sufficient for the statement about permutative
representations to check properties of branching function systems associated
with them. Statements in (iii) follows from Lemma 2.7 (iii) and Lemma 2.10.
(iv) follows from Theorem 2.12 (i) and (ix). ¤

By uniqueness of P (J), we simply denote (3.3) as

(3.4) P (J) ◦ ψσ =
M⊕

i=1

P (Ji).

Specially, if σ ∈ SN = SN,1, then P (J) ◦ ψσ = P (Jσ−1) by Lemma 2.6.
Roughly speaking, we can say that a permutative endomorphism transforms
cycles(resp.chains) to cycles(resp.chains).

Theorem 3.5. For each σ ∈ SN,l, l ≥ 1, J ∈ {1, . . . , N}∗1 and z ∈ U(1),
there are 1 ≤ M ≤ N l−1, {Ji}M

i=1 ⊂ {1, . . . , N}∗1 and {zi}M
i=1 ⊂ U(1) such

that

P (J ; z) ◦ ψσ =
M⊕

i=1

P (Ji; zi).

Proof. Applying Theorem 2.12 (vi) and Proposition 3.3 (iii) for (3.4),
we have

P (J ; z) ◦ ψσ = P (J ; 1) ◦ ψσ ◦ γz1/l =
M⊕

i=1

P (Ji; 1) ◦ γz1/l =
M⊕

i=1

P (Ji; zli/l)

where Ji ∈ {1, . . . , N}li for each i = 1, . . . , M . Putting zi ≡ zli/l, we have
the statement. ¤

Furthermore we extend our results. For σ ∈ SN,l and z ∈ U(1), put ψσ,z ≡
ψσ ◦ γz. Then

P (J ; z) ◦ ψσ,y =
M⊕

i=1

P (Ji; zi) ◦ γy =
M⊕

i=1

P (Ji; ziy
li)
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where Ji ∈ {1, . . . , N}li for i = 1, . . . , M .

Theorem 3.6. Let σ ∈ SN,l, l ≥ 1 and y ∈ U(1).
(i) For J ∈ {1, . . . , N}k, k ≥ 1, and z ∈ U(1), we have P (J ; z) ◦ ψσ,y =

P (J ; zyk) ◦ ψσ.
(ii) For J ∈ {1, . . . , N}∗1 and z ∈ U(1), there are 1 ≤ M ≤ N l−1, {Ji}M

i=1 ⊂
{1, . . . , N}∗1 and {zi}M

i=1 ⊂ U(1) such that

P (J ; z) ◦ ψσ,y =
M⊕

i=1

P (Ji; zi).

This decomposition is unique up to unitary equivalences.
(iii) For each J ∈ {1, . . . , N}∞, P (J) ◦ ψσ,y = P (J) ◦ ψσ.

3.2. Graph invariants of endomorphisms. In order to classify endo-
morphisms of ON , we introduce a graph from branching laws of an endo-
morphism and show examples. A graph (V, E) in this subsection means a
pair of sets V and E ⊂ V × V . V and E are the set of vertices and that of
edges. An element (x, y) ∈ E is an edge of (V, E) with direction from x to
y, respectively.

Let S be a set and {ex}x∈S the canonical basis of a Hilbert space l2(S).
Put

W+(S) ≡ {v ∈ l2(S) \ {0} :< ex|v >∈ Z≥0 for each x ∈ S}
where Z≥0 is the set of all non-negative integers. Then W+(S) is an abelian
semigroup with respect to addition in l2(S).

Definition 3.7. Let ϕ be a transformation on W+(S).
(i) (Vϕ, Eϕ) is the graph of ϕ with the label set S if Vϕ ≡ S is the set of

vertices and Eϕ ≡ {(x, y) ∈ Vϕ × Vϕ :< ϕ(ex)|ey > 6= 0} is the set of
directed edges on Vϕ.

(ii) For a subset S0 ⊂ S, a subgraph (Vϕ(S0), Eϕ(S0)) of (Vϕ, Eϕ) is defined
by Vϕ(S0) ≡ S0 and Eϕ(S0) ≡ {(x, y) ∈ Eϕ : x, y ∈ Vϕ(S0)}.

If < ϕ(ex)|ey >= m ≥ 1, then we draw m-directed arrows from x to y:
-

-
v v...m{
x y

Remark < ϕ(ex)|ey >< ∞ for each x, y ∈ S by definition of W+(S). The
graph (Vϕ, Eϕ) of ϕ explains the property of ϕ effectively by illustration.
We prepare notions about graphs.

Definition 3.8. (i) (V, E) and (V
′
, E

′
) are strongly equivalent if V = V

′

and E = E
′
. In this case, we denote (V, E) = (V

′
, E

′
).
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(ii) (V, E) has a (non trivial)branch if there is v ∈ V such that #Ev,out ≥ 2
where Ev,out ≡ {w ∈ V : (v, w) ∈ E}.

(iii) n ≡ max{#Ev,out : v ∈ V } is called the branching number of (V,E).
(iv) (V, E) is n-regular if n = #Ev,out for each v ∈ V .
(v) (V, E) is finitely branched if the branching number of (V,E) is finite.
(vi) C is a cycle of (V,E) if C = {xj}M

j=1 ⊂ V and (xj , xj+1), (xM , x1) ∈ E
for each j = 1, . . . ,M − 1, 1 ≤ M < ∞. In this case, we call C by
M -cycle, too.

For any transformation ϕ on W+(S), (Vϕ, Eϕ) is finitely branched by defi-
nition of W+(S).

We construct a graph from the branching of an endomorphism of ON .
Let S ≡ [1, . . . , N ]∗×U(1). Then an element in W+(S) is just an equivalence
class of a finite direct sum of irreducible representations with parameters in
S by Theorem 2.12 (v).

Put

(3.5) EN,∗ ≡ {ψσ : σ ∈ SN,∗}, ÊN,∗ ≡ {ρ ◦ γz : ρ ∈ EN,∗, z ∈ U(1)}.
We see that ρ ∈ ÊN,∗ is a transformation on W+(S) by Theorem 3.4 and
Theorem 3.6.

Definition 3.9. (Vρ, Eρ) is called the branching graph of ρ ∈ ÊN,∗ on S.
For a subset S0 ⊂ S, (Vρ(S0), Eρ(S0)) is, too.

A branching law of an endomorphism ρ at π is illustrated as follows:

��
��
��
��

PPPPPPPP

1

q
v

v

v
[π]

[π1]

[πM ]

...
··
··
··
··

π ◦ ρ ∼
M⊕

i=1

πi ⇔

where we assume that π, π1, . . . , πM are mutually inequivalent.
An automorphism is a special endomorphism and its branching is triv-

ial as follows:

Lemma 3.10. If ρ ∈ ÊN,∗ is an automorphism of ON , then the branching
graph (Eρ, Vρ) of ρ has no branch. Specially, if ρ is inner, then (Eρ, Vρ) is
the collection of 1-cycles.

Proof. If ρ ∈ AutON , then any irreducible representation is trans-
formed to irreducibles. Therefore there is no branch. Because an inner
automorphism preserves any equivalence class of representation, the asser-
tion holds. ¤
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Proposition 3.11. Let ρ, ρ
′ ∈ ÊN,∗ and (Vρ, Eρ), (Vρ′ , Eρ′ ) be branching

graphs of ρ and ρ
′
on S ≡ [1, . . . , N ]∗×U(1), respectively. Then the follow-

ings hold:

(i) If ρ ∼ ρ
′
, then (Vρ, Eρ) = (Vρ

′ , Eρ
′ ).

(ii) If (Vρ(S0), Eρ(S0)) 6= (Vρ
′ (S0), Eρ

′ (S0)) for some S0 ⊂ S, then ρ 6∼ ρ
′
.

(iii) If (Vρ, Eρ) has a branch, then ρ is proper.
(iv) If there is a vertex in (Vρ, Eρ) with only one outgoing edge, then ρ

is irreducible. Specially, if there is a 1-cycle in (Vρ, Eρ), then ρn is
irreducible for each n ≥ 1.

Proof. (i) By Lemma 3.1 (i) and Theorem 3.6 (i), it holds.
(ii) This follows from (i) and the definition of subgraph.
(iii) By Lemma 3.10 (i), it holds.
(iv) By Lemma 3.1 (ii), the statement holds. ¤

By Proposition 3.11 (i), we see that the branching graph of an endomorphism
ρ is an invariant of ρ up to equivalences. By Proposition 3.11 (ii), this
invariant is effective to distinguish two endomorphisms. We show examples
in § 4.

4. Examples of branching graphs

4.1. Branching graphs of E2,2. We show the branching graphs of ele-
ments in E2,2 in (3.2). By Lemma 5.9 in in [11], the set of all equivalence
classes in E2,2 is

(4.1) SE2,2 ≡


[ψσ] : σ =

id, (12), (13), (14), (23), (24), (34),
(123), (132), (124), (142), (143), (234),
(1243), (1342), (12)(34)





where [ψσ] = {ρ ∈ E2,2 : ρ ∼ ψσ} and we use the labeling S2,2
∼= S4 in §

2.3. By Proposition 3.11 (i), it is sufficient to show graphs for elements in
SE2,2. In the following, we identify SE2,2 and the set of representatives of
elements in SE2,2. First, we review the definition of elements in SE2,2 as
follows:
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Table 4.1. (Elements in SE2,2)

ψσ ψσ(s1) ψσ(s2) property
ψid s1 s2 inn.aut
ψ12 s12,1 + s11,2 s2 irr.end
ψ13 s21,1 + s12,2 s11,1 + s22,2 irr.end
ψ14 s22,1 + s12,2 s21,1 + s11,2 red.end
ψ23 s11,1 + s21,2 s12,1 + s22,2 red.end
ψ24 s11,1 + s22,2 s21,1 + s12,2 irr.end
ψ34 s1 s22,1 + s21,2 irr.end
ψ123 s12,1 + s21,2 s11,1 + s22,2 red.end
ψ132 s21,1 + s11,2 s12,1 + s22,2 red.end
ψ124 s12,1 + s22,2 s21,1 + s11,2 red.end
ψ142 s22,1 + s11,2 s21,1 + s12,2 irr.end
ψ143 s22,1 + s12,2 s11,1 + s21,2 red.end
ψ234 s11,1 + s21,2 s22,1 + s12,2 red.end
ψ1243 s12,1 + s22,2 s11,1 + s21,2 red.end
ψ1342 s21,1 + s11,2 s22,1 + s12,2 red.end

ψ(12)(34) s12,1 + s11,2 s22,1 + s21,2 out.aut

where “inn.aut”, “out.aut”, “irr.end” and “red.end” mean an inner au-
tomorphism, an outer automorphism, a proper irreducible endomorphism
and a proper reducible endomorphism, respectively, u ≡ s1s

∗
2 + s2s

∗
1 and

sij,k ≡ sisjs
∗
k for i, j, k = 1, 2. The branching law of an automorphism

of O2 is shown in the above Theorem 3.5. Hence P (J) ◦ ψid = P (J) for
J ∈ {1, . . . , N}# and P (1) ◦ ψ(12)(34) = P (2), P (2) ◦ ψ(12)(34) = P (1),
P (12) ◦ ψ(12)(34) = P (12).

We consider other 14-endomorphisms in SE2,2. For

(4.2) S1 ≡
{

P (1;±1), P (2;±1), P (12), P (1122), P (1112), P (1222),
P (11212212), P (11112222)

}
,

the branching graph (Vρ(S1), Eρ(S1)) of ρ = ψ12, ψ34 are followings:
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where we denote P (J ; z) by (J ; z) simply and a vertex with a small circle
means P (1). The difference between ψ12 and ψ34 is the position of (1;±1)
and (2;±1). In the same way, we show branching graphs for other endomor-
phisms in E2,2 on S2 ≡ {P (1;±1), P (2;±1), P (12)}:
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These branching laws are computed by checking branching function systems
associated with them(see Table 5.7 in [11]). Branching graphs of ψ12 and ψ13

on S2 are same except direction of their edges. The branching graph of ψ12

on S0 ≡ S0,1 ∪ S0,2 ∪ S0,3, S0,1 ≡ {P (n; z) : n = 1, 2, z = e2πl
√−1/8, l =

1, . . . , 8}, S0,2 ≡ {P (12; z), P (J ;±1) : J = (1112), (1122), (1222), z =
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±1,±√−1}, S0,3 ≡ {P (11112222), P (11212212), P (12122222), P (11111212),
P (11211222), P (11122122)}, is the following:

ψ12

±°
²¯
@
@
@
@
@
@
@@

�
�
�

�
�
�

��

�
��

A
AA

�
��

�
�

��

@
@@

�
��
Q
Q
QQ

A
AA

�
��

@
@@

J
J
JJ

���������������

XXXXXXXXXXXXXXX

















J
J
JJ









J
J
JJ

u u u u u u u u¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

u u u u u u u u

u

u u

u u

u u

u uu

u u

uuuu

where we omit labels of vertices and arrows of the graph. The direction of
any edge is from top to down.
Question Find the general rule to draw this graph.
This question is equivalent to find the general branching law of ψ12 on a
given representation.

The branching graph of ψ12◦γz, z = e2πθ
√−1, θ ∈ R\Q is the following:

ψ12 ◦ γz
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where we omit other labels of vertices and arrows of the graph.
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Because #E2,3 = 8!, it may be difficult to classify elements in E2,3 by
only their branching graphs. We show examples in E2,3.

Example 4.2. (i) Put ρ ≡ ψ12 ◦ ψ12. Then the branching laws of ρ are
given by

P (1) ◦ ρ = P (12) ◦ ψ12 = P (1122),

P (2) ◦ ρ = P (1)⊕ P (2)⊕ (12),

P (12) ◦ ρ = P (1112)⊕ P (1222),

P (1122) ◦ ρ = P (11212212)⊕ P (11112222).

By Proposition 4.6 in [11], ρ ∈ E2,3. By the first equation in the above
and Lemma 3.1 (i), we see that ρ is irreducible. In the same way, we
have

P (2) ◦ (ψ12)3 = P (1)⊕ P (2)⊕ P (12)⊕ P (1122),

P (2) ◦ (ψ12)4 = P (1)⊕ P (2)⊕ P (12)⊕ P (1122)⊕ P (1112)⊕ P (1222).

(ii) Define ρ ∈ E2,3 by

ρ(s1) ≡ s1s1s2s
∗
11 + s1s1s1s

∗
2s
∗
1 + s1s2s

∗
2, ρ(s2) ≡ s2.

Then ρ is irreducible and proper. We show the sketch of proof. Put
a branching function system fi(n) ≡ 3(n − 1) + i for n ∈ N and

i = 1, 2, 3. Then we have the following unique cycle: 1 h2→ 2 h1→ 3 h1→ 1
where hi ≡ f

(σ)
i , i = 1, 2, 3, and σ is the permutation associated with

ρ. Hence P (1) ◦ ρ = P (112). Therefore ρ is irreducible by Lemma 3.1
(ii).

On the other hand, we see P (2) ◦ ρ = P (1)⊕ P (2) in the same way.
Hence ρ is proper. ¤

The branching graph of ρ on {P (1), P (2), P (112)} is the following:

- -6 t tt
ÁÀ

Â¿
(112)

(1)
(2) ±°

²¯

By Table 5.7 in [11], there is no path from P (1) to P (112) in branching
graphs of elements in E2,2. Hence ρ is inequivalent to any elements in
E2,2.
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4.2. Branching graph of ρν. Let ρν ∈ E3,2 by

(4.3)





ρν(s1) ≡ s23,1 + s31,2 + s12,3,

ρν(s2) ≡ s32,1 + s13,2 + s21,3,

ρν(s3) ≡ s11,1 + s22,2 + s33,3

where sij,k ≡ sisjs
∗
k for i, j, k = 1, 2, 3. ρν is proper and irreducible(Theorem

1.2 in [11]). We show the branching law of ρν .

Theorem 4.3. P (1) ◦ ρν = P (12)⊕ P (3).

Proof. Put σ0 a transformation on {1, 2, 3}2 defined by the following:

(4.4) σ0 :




(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)


 7→




(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)
(1, 1) (2, 2) (3, 3)


 .

Then we see ρν = ψσ0 . Put a branching function system h ≡ f (σ0) for
fi(n) ≡ 3(n − 1) + i for i = 1, 2, 3 and n ∈ N. Then we have the list of
values of h1, h2, h3:

n h1(n) h2(n) h3(n)
1 8 6 1
2 3 7 5
3 4 2 9

From this, we have two cycles 1 h3→ 1, 2 h1→ 3 h2→ 2. On the other hand,
(l2(N), πf ) and (l2(N), πh) are P (1) and (l2(N), πf ◦ ψσ0), respectively.
Hence we see that (l2(N), πh) contains P (3) and P (12). We see N = A1tA2

where A1 ≡ {fJ(1) : J ∈ {1, . . . , N}∗} and A2 ≡ {fJ(2) : J ∈ {1, . . . , N}∗}.
We see that there is no cycle in {n ∈ N : n ≥ 4}. From this, we have the
assertion. ¤

In the same way, we have the following branching laws of ρν :

P (2) ◦ ρν = P (3) ◦ ρν = P (12)⊕ P (3),

P (12) ◦ ρν = P (13) ◦ ρν = P (23) ◦ ρν = P (113223).

For z ∈ U(1), put ρ
′ ≡ ρν ◦ γz. Then P (J) ◦ ρ

′
= P (J ; zk) ◦ ρν when

J ∈ {1, . . . , N}k for k ≥ 1 by Theorem 3.6 (i). For example,

P (i) ◦ ρ
′
= P (i) ◦ ρν ◦ γz = (P (12)⊕ P (3)) ◦ γz = P (12; z2)⊕ P (3; z)

for i = 1, 2, 3. In the same way, we have

P (12) ◦ ρ
′
= P (13) ◦ ρ

′
= P (23) ◦ ρ

′
= P (113223; z6).
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In consequence, we have the following branching graphs of ρν on S0 ≡
{(1), (2), (3), (12), (13), (23), (113223)} and ρν ◦ γz when z = e2π

√−1/3 on
S1 ≡ {(J ; ξ), (113223; 1) : J = (1), (2), (3), (12), (13), (23), ξ = 1, z, z2}:
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We see that the deformation of graphs in the above is arisen by the action
of γz. The canonical U(1)-action γ is often called the gauge action on ON .
In this sense, a transformation ρ 7→ ρ ◦ γz is the gauge transformation of the
endomorphism ρ, the transformation of branching law associated with this
transformation of endomorphism is the gauge transformation of branching
law, and the transformation of graph associated with this in the above is
the gauge transformation of graph.

4.3. Endomorphisms by transpositions. We consider permutative en-
domorphisms ψσ such that σ ∈ SN,2 is a transposition, that is, there are
x, y ∈ {1, . . . , N}2 and σ(x) = y, σ(y) = x, σ(z) = z for z ∈ {1, . . . , N}2,
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z 6= x, y. Both ψ12 and ψ13 in E2,2 are examples of such endomorphisms of
O2 and they are proper irreducible. We prepare the formula of branching
function systems associated with endomorphisms of transpositions.

Let f = {fi}N
i=1 ∈ BFSN (N) be defined by fi(n) ≡ N(n − 1) + i for

i = 1, . . . , N, n ∈ N.

Lemma 4.4. Let σ ∈ SN,2.

(i) For n ∈ N and i, j = 1, . . . , N , we have

f
(σ)
i (fj(n)) = N2(n− 1) + N(σ2(i, j)− 1) + σ1(i, j)

where σ1 and σ2 are taken by σ(i, j) = (σ1(i, j), σ2(i, j)) for (i, j) ∈
{1, . . . , N}2.

(ii) (Transposition) If σ is a transposition which is defined by σ(i1, j1) =
(i2, j2), then

f
(σ)
i (fj(n)) =





N2(n− 1) + N(j2 − 1) + i2 ((i, j) = (i1, j1)),

N2(n− 1) + N(j1 − 1) + i1 ((i, j) = (i2, j2)),

N2(n− 1) + N(j − 1) + i (otherwise)

for n ∈ N and i, j = 1, . . . , N . Specially,

f
(σ)
i (j) =





N(j2 − 1) + i2 ((i, j) = (i1, j1)),

N(j1 − 1) + i1 ((i, j) = (i2, j2)),

N(j − 1) + i (otherwise)

for i, j = 1, . . . , N .

We know that f (σ) has cycles in only a set {1, . . . , N} for each σ ∈ SN,2 by
Lemma 2.11 in [11]. Hence it is sufficient to check the behavior of f (σ) on
{1, . . . , N}. As applications of Lemma 4.4, we have the following results:

Example 4.5. Let N ≥ 2. Put ψ1k is the permutative endomorphism ofON

which is associated with a transposition σ ∈ SN,2 defined by σ(1, 1) = (1, k).
ψ1k is given as follows:

ψ1k(si) =





s1sks
∗
1 + s1s1s

∗
k +

∑
j 6=1,k s1sjs

∗
j (i = 1),

si (i 6= 1).
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When k = 2, . . . , N , we have

P (l) ◦ ψ1k =





P (1k) (l = 1),

P (1)⊕ P (k) (l = k),

P (k) (otherwise).

From these, we see that ψ1k is irreducible and proper by Proposition 3.11.
The branching graph of ψ1k is following:
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N = 3, k = 2

where we denote P (J) by J .

Example 4.6. Let ψ1,N+1 be a permutative endomorphism of ON by a
transposition between (1, 1) and (2, 1). When N ≥ 3, we have the following:

P (k) ◦ ψ1,N+1 =





P (2) (k = 1, 2),

P (k) (3 ≤ k ≤ N),

P (12) ◦ ψ1,N+1 = P (1;+1)⊕ P (1;−1).

Specially, ψ1,N+1 is irreducible and proper when N ≥ 2. From this, ψn
1,N+1 ≡

ψn
1,N+1 ◦ · · · ◦ ψ1,N+1︸ ︷︷ ︸

n

is irreducible and proper for N ≥ 2 and each n ≥ 1 by

Proposition 3.11. The branching graph of ψ1,N+1 is following:
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4.4. ZN -invariant endomorphisms. ρν in (4.3) is invariant under the left
Z3-action, that is, ατ ′ ◦ ρν = ρν for each τ

′ ∈ Z3 ⊂ U(3). We generalize this
to an endomorphism of ON with ZN -invariance for N ≥ 4.

For N ≥ 3, we define an endomorphism ρ ∈ EN,2 which is invariant
under ZN -action. Put τ is a shift on a set {1, . . . , N} which is defined by
τ(n) ≡ n + 1 for n = 1, . . . , N − 1 and τ(N) = 1. Define ρ by

ρ(si) ≡





N∑

j=1

sjsjs
∗
j (i = 1),

N∑

j=1

sτ j−1(1)sτ j+i−2(1)s
∗
τj+i−1(1) (i = 2, . . . , N − 1),

N∑

j=1

sτ j−1(1)sτ j−2(1)s
∗
τj(1) (i = N).

When N = 3, ρ(s1), ρ(s2), ρ(s3) are given by

s11,1 + s22,2 + s33,3, s12,3 + s23,1 + s31,2, s13,2 + s21,3 + s32,1.

Note ρ = ρν ◦ ασ for σ ∈ Z3, σ =
(

1 2 3
3 1 2

)
where ρν is in § 4.2. By

definition, we see

(4.5) ατ ′ ◦ ρ = ρ ( for each τ
′ ∈ ZN ).

Proposition 4.7. For each N ≥ 3, we have the followings

(i) P (i) ◦ ρ = P (1)⊕ P (N − 1, N) for each i = 1, . . . , N .
(ii) ρ is proper.
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(iii) ρ|OZN
N

is an endomorphism of OZN
N , too, where OZN

N ≡ {x ∈ ON :

ατ
′ (x) = x for each τ

′ ∈ ZN}.
Proof. (i) For a branching function system f = {fi}N

i=1 on N which is
defined by fi(n) ≡ N(n− 1) + i, put hi ≡ f

(σ)
i for σ ∈ SN,2 which satisfies

ρ = ψσ. Then we have 1 h17→ 1 and 2
hN−17→ 3 hN7→ 2. Hence we see that h is

P (1) ⊕ P (N, N − 1). Hence P (1) ◦ ρ = P (1) ⊕ P (N, N − 1). By (4.5) and
this, the assertion holds.
(ii) The number of branching components is 2(< N) on (1). By (4.5), ρ is
proper.
(iii) By (4.5), the statement holds. ¤

The branching graph of ρ is the following:
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4.5. Canonical endomorphism. The most famous non trivial polynomial
endomorphism is the canonical endomorphism by Proposition 3.3 (ii). We
show that its branching law is quite simple.

Proposition 4.8. Let ρ be the canonical endomorphism of ON . For any
representation π of ON , we have π ◦ ρ ∼ π⊕N . Furthermore π ◦ ρl ∼ π⊕N l

where ρl ≡ ρ ◦ · · · ◦ ρ︸ ︷︷ ︸
l

and π⊕l ≡ π ⊕ · · · ⊕ π︸ ︷︷ ︸
l

for l ≥ 1.

Proof. Let (H, π) be a representation of ON . Put HN ≡ H⊕ · · · ⊕ H︸ ︷︷ ︸
N

and a unitary U from H to HN by Ux ≡ (π(s1)∗x, . . . , π(sN )∗x). Then
AdU ◦ π ◦ ρ = π⊕N . From this, we have the second statement immediately.

¤

That is, ρ acts on representations as N -times copy of them. Note ρl ∈ EN,l+1

for each l ≥ 1 by Proposition 3.3 (iv). Therefore the power of canonical endo-
morphism is the case with possible maximal branching number in Theorem
3.4 (iii).

By Proposition 4.8, the branching graph (Eρ(S0), Vρ(S0)) on S0 ≡ {[π]}
is the following for each equivalence class [π] of representations of ON :
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Put ρz ≡ ρ◦γz and J ∈ {1, . . . , N}k, k ≥ 1. If z = e2π
√−1θ, θ ∈ R\Q, then

the branching graph of ρz is following:
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If z = e2π
√−1/p and (p, k) = 1, then the branching graph of ρz is a finite

regular graph with N -outgoing and N -incoming edges. For example, when
p = 6, it is the following:
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5. Branching laws and spectrum modules

We interpret results of branching laws of endomorphisms to smarter state-
ments about modules of the endomorphism semigroup EndON of ON .

5.1. Spectrum semigroup. Let BSpecA be the set of all unitary equiva-
lence classes of unital ∗-representations of a unital ∗-algebra A. BSpecA is
closed under direct integral and it is an abelian semigroup with respect to
direct sum:

BSpecA× BSpecA 3 ([π], [π
′
]) 7→ [π]⊕ [π

′
] ≡ [π ⊕ π

′
] ∈ BSpecA.

We call BSpecA the spectrum semigroup of A.
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For S ⊂ BSpecA, define

< S > : the set of all finite direct sums of elements in S,

< S >∞ : the set of all countable infinite direct sums of elements in S,

< S >R : the set of all direct integrals of elements in S.

< S >,< S >∞, < S >R are subsemigroups of BSpecA and < S >⊂<
S >∞⊂< S >R .

We introduce several subsemigroups of BSpecON . Let BP (ON ) (resp.
P (ON )) be the set of all unitary equivalence classes of (resp. irreducible)
permutative representations of ON , and BP∗(ON )(resp. BP∞(ON )) the
subset of BP (ON ) which consists of all cyclic representations with a cycle
(resp. a chain). Put

BP#(ON ) ≡ BP∗(ON ) tBP∞(ON ),

Pc,∗(ON ) ≡ {P (J ; z) : J ∈ [1, . . . , N ]∗, z ∈ U(1)},
P∗(ON ) ≡ BP∗(ON ) ∩ P (ON ), P∞(ON ) ≡ BP∞(ON ) ∩ P (ON ),

Pc(ON ) ≡ Pc,∗(ON ) t P∞(ON ).

In this section, we identify a representation and its unitary equivalence class.
We see P (ON ) = {P (J) : J ∈ [1, . . . , N ]#}, P∞(ON ) = {P (J) : J ∈
[1, . . . , N ]∞}, P∗(ON ) = {P (J) : J ∈ [1, . . . , N ]∗} by Theorem 2.12.

By Proposition 4.7 and Corollary 5.12 in [10], the following inclusions
of semigroups hold:

< P∞(ON ) >
∩

< BP∞(ON ) >
∩

< BP∞(ON ) >∞
∩

BP (ON ) ⊂ < Pc(ON ) >R
∪ ∪

< BP∗(ON ) >∞ ⊂ < Pc,∗(ON ) >∞ ⊂ < Pc(ON ) >∞
∪ ∪

< BP∗(ON ) > ⊂ < Pc,∗(ON ) >
∪

< P∗(ON ) >

where any inclusion is proper. These inclusions show relations among classes
of representations. For example, < BP∗(ON ) >⊂< Pc,∗(ON ) > means that
any element in BP∗(ON ) can be expressed as a finite direct sum of elements
in Pc,∗(ON ). Since Pc,∗(ON ) is the set of equivalence classes of irreducible
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representations, this inclusion shows irreducible decomposition of elements
in BP∗(ON ).

Furthermore the followings hold:

< BP#(ON ) >∞= BP (ON ) =< BP (ON ) >∞ .

5.2. Spectrum modules of endomorphism semigroups. Let EndA be
the set of all unital ∗-endomorphisms of a unital ∗-algebra A. Then EndA
is a unital semigroups with respect to composition:

EndA× EndA 3 (ρ, ρ
′
) 7→ ρ ◦ ρ

′ ∈ EndA.

For ρ ∈ EndA, define a right transformation Rρ on BSpecA by

[π]Rρ ≡ [π ◦ ρ] ([π] ∈ BSpecA).

Rρ is defined without ambiguity by Lemma 3.1 (i). Then R is a right action
of EndA on BSpecA, that is,

([π]⊕ [π
′
])Rρ = [π]Rρ ⊕ [π

′
]Rρ,

([π]Rρ)Rρ′ = [π](RρRρ′ ) = [π]Rρ◦ρ′ , [π]Rid = [π]

for each [π], [π
′
] ∈ BSpecA and ρ, ρ

′ ∈ EndA. In other words, (BSpecA, R)
is a right EndA-module.

Definition 5.1. Let G be a subsemigroup of EndA.
(i) (BSpecA, R|G) is called the (right)spectrum module of G.
(ii) V is a G-submodule of BSpecA if V is a subsemigroup of BSpecA and

V Rg ⊂ V for each g ∈ G.

Recall EN,∗ and ÊN,∗ in (3.5). For each σ, σ
′ ∈ SN,∗, there is σ

′′ ∈
SN,∗ such that ψσ ◦ ψσ′ = ψσ′′ and (ψσ ◦ γz) ◦ (ψσ′ ◦ γz′ ) = ψσ′′ ◦ γzz′ for
each z, z

′ ∈ U(1) by Proposition 3.3 (ii) and (iv). Therefore both EN,∗ and
ÊN,∗ are subsemigroups of EndON . According to these subsemigroups and
their spectrum modules, Theorem 3.4, Theorem 3.5 and Theorem 3.6 are
interpreted as follows:

Proposition 5.2. (i) The followings are proper inclusions of EN,∗-submodules
of (BSpecON , R|EN,∗):

< BP∞(ON ) >
∩

< BP∞(ON ) >∞ ⊂ BP (ON ) ⊂ < Pc(ON ) >R
∪ ∪

< BP∗(ON ) >∞ ⊂ < Pc,∗(ON ) >∞
∪ ∪

< BP∗(ON ) > ⊂ < Pc,∗(ON ) > .
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(ii) The followings are proper inclusions of ÊN,∗-submodules of (BSpecON , R| bEN,∗
):

< BP∞(ON ) > ⊂ < BP∞(ON ) >∞ ⊂ < Pc(ON ) >R
∪

< Pc,∗(ON ) > ⊂ < Pc,∗(ON ) >∞ .

(iii) Put BPk(ON ) ≡ {P (J) : J ∈ {1, . . . , N}k
min} where {1, . . . , N}k

min is
the set of all minimal elements in {1, . . . , N}k for k ≥ 1. For the
following grading

< BP∗(ON ) >=
⊕

k≥1

< BPk(ON ) >,

we have

< BPk(ON ) > Rρ ⊂
N l−1⊕

a=1

< BPak(ON ) >

when ρ ∈ EN,l, l ≥ 1.
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