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An endomorphism p of the Cuntz algebra Oy brings a
branching of representations:

T Top=m1 PP .
We show branchings of permutative representations of Oy
by endomorphisms which are introduced in the previous our

paper. Their branching laws are computed concretely and
illustrated by graphs effectively.

1. Introduction

For a subgroup H of a group G, an irreducible decomposition of |g for
an irreducible representation 7w of GG is one of main study in representation
theory([12]). When such decomposition holds, the decomposition formula
is called a branching law. This is reformulated as the branching which is
brought by the inclusion map ¢ from H to G, that is, t*(w) = m o+ gives a
map from RepG to RepH. In general, any homomorphism ¢ from a group
(31 to other G3 arises a transformation ¢* from RepGs to RepG. Specially,
when G = G1 = Go, p € EndG gives a transformation on RepG and we can
consider the branching law by p, in this situation.

On the other hand, the branching law by embeddings of C*-algebras
is studied in [1, 2]. The difference of two theories of quantum string field is
explained by the difference of representations arising from two embeddings
of a pseudo Cuntz algebra in [3]. In the last paper [11], we introduce a
class of endomorphisms of the Cuntz algebra Oy arising from permutations
and show the complete reducibility of the action of them on permutative
representations. For a representation m and an endomorphism p, if there is
a decomposition mop = m & - -y, we call this formula by the branching
law of p at w. Because this branching is brought by p, the branching law
of p shows a property of p. In application of branching laws for geometry,
such method to study morphisms is already considered(§ 4.A. in [12]). In
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[11], we show the classification of endomorphisms in a class by using their
branching laws. In this way, the branching law of p is an effective method
for a study of p itself.

In [12], it is mentioned that branching laws bring us various problems
and information. However, such branching laws seem complicated and dif-
ficult to understand visually in general. We develop a method to illustrate
branching laws by graph. For example, consider the following two endomor-
phisms p and 13 of Os:

p(s1) = s18187 + s25155, P13(s1) = sas18T + s15285,

p(s2) = s15287 + s25255, P13(s2) = s15187 + 525285.

We see that p is the canonical endomorphism of Oy and it is neither bijective
nor irreducible(this notion is given in § 3). In stead of their quite concrete
forms, it seems that there is no information about: 1)Whether is 113 auto-
morphisms or not? 2)Whether is 13 irreducible or not? 3)Whether are p
and 113 equivalent or not? We can answer these questions at once by the
following two directed graphs with label which are associated with p and

P13
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The difference between p and 113 are clear by appearance of graphs(more
precise explanation is given in § 3.2 and § 4.1).

In § 2, we review of branching function systems and permutative rep-
resentations of Oyn. In § 3, we review permutative endomorphisms, and
introduce graphs associated with branchings of endomorphisms. In § 4, we
show examples of branching laws and their graphs. In § 5, we show smarter
statements about branching laws by using module of endomorphism semi-
groups.



2. Branching function systems and permutative representations

2.1. Invariants of representations. We introduce several sets of multi

indices which consist of numbers 1,..., N for N > 2 in order to describe
invariants of representations of Op. Their meanings are shown in § 2.4.
Put
{1,...,N}* ={1,... N}*{ U{1,...,N}*>,
GNP =T N | N}1 T4
k>0 k>1

{1,...,N}*={(Jn)nen : jn € {1,..., N}, n € N},
{1,...,N}0 = {0} {1, N ={G)iy s =1,...,N, 1 =1,...,k} for
k> 1. For J € {1,. }# the length |J| of J is defined by |J| = k when

Je{l,...,N¥ k > 0. For Ji,Jo € {1,...,N}* and J3 € {1,...,N}*®

J1UJ2_(]1,...,]k,j1,...,jl) JlUJ'g,_(jl,...,jk,j;,]g,...) when J; =

(J1y---yJK), J2 = (ji,...,]l) and J3 = (j. )nen. Specially, we define J U

{0y ={0}uJ =Jfor J€{l,...,N}¥ and (i,.J) = (i) U J for convention.

For J € {1,...,NY*and k > 2, J¥ = Ju---UJ. For J = (j1,...,jx) €
k

{1,.. .,N}k and 7 € Zy, denote 7(J) = (jT(l),.. . ,]T(k))

Definition 2.1. (i) J € {1,...,N}] is periodic if there are m > 2 and
Jo € {1,...,N}} such that J = J§".
(ii) For Jy,Jo € {1,...,N}i, Ji ~ Ja if there are k > 1 and T € Zj, such
that Jy,Jy € {1,..., N} and 7(J;) = Jo.
(iii) For (J,z2),(J,2) e {l,...,NY:xUQ), (J,2) ~ (J,2) if J~J and
z=2 where U1)={z€ C:|z| =1}.
(iv) For J; = (jl,...,jk) Jo = (Gp,--ndp) €E{L,. .. N, E>1, J1 < Jo
ZfZl 1y = N> 0. ) )
(v) J € {1,...,N}1 is minimal if J < J for each J € {1,...,N}} such
that J ~ J .
Specially, any element in {1,..., N} is non periodic and minimal. Put
(2.1) [1,...,N]*={Je{l,...,N}]:J is minimal and non periodic}.
Note that [1,..., N]* is in one-to-one correspondence with the set of all
equivalence classes of non periodic elements in {1,..., N};. For example,
[1,2]* = {(1), (2), (12), (112), (122), (1112), (1122), (1222), (11112),...},

)()()( 2),(13),(23),
112), (113), (122), (123), (132), (133), (223), (233),

(1

(

[1,2,3 = { (1112), (1113), (1122), (1123), (1132), (1133), (1213),

(1222), (1223), (1232), 1233), (1322), (1323), (1333),
(2223), (2233), (2333), .



Definition 2.2. (i) J € {1,...,N}* is eventually periodic if there are
Jo, JJ1 € {1,...,N}i such that J = Joy U J5°.
(ii) For Ji,Jo € {1,...,N}*°, J; ~ Jo if there are J3,Js € {1,...,N}*
and Js € {1,...,N}* such that J; = J3 U J5 and Jy = J4 U Js.

Put the set [1,..., N]* of equivalence classes of multi indices by
(2.2) [1,...,N]*={J e{l,...,N}*>:Jis non eventually periodic}/~ .

The definition of [1,..., N]* seems inconsistent with [1,..., N]*, but this
definition makes sense as the set of invariants of representations of the Cuntz
algebras in later. Furthermore we put

(2.3) [1,...,N]* =1[1,...,N]*U[L,...,N]*®.

While the definition of several notions of multi indices are changed by
comparison with [8, 10, 11], their meanings are equivalent.

2.2. Branching function systems. Let A be an infinite set and N >
2. f = {fi}}¥, is a branching function system on A if f; is an injective
transformation on A for ¢ = 1,..., N such that a family of their images
coincides a partition of A. For N > 2, f = {f;}}¥, € BFSy(A1) and
g = {9:}, € BFSn(A2) are equivalent if there is a bijection ¢ from Ay
to Ao such that po fiop ™t = g; fori =1,...,N. Put BFSy(A) the set
of all branching function systems on A. For f = {f;}¥, € BFSy(A), we
denote f; = fj, 0---0o fj, when J = (j1,...,jk) € {1,...,NY k> 1,
and define fy = id. For z,y € A, = ~ y(with respect to f) if there are
Ji,Jo € {1,...,N}* and z € A such that fj(2) = x and fj,(2) = y. For
x €A, denote A¢(x) ={y € A:z ~y}.

Definition 2.3. Let f = {f;}}¥, € BFSy(A).

(i) f is cyclic if there is an element v € A such that A = Ag(x).

(i) For k> 1, R = {ny,...,ni} C A is a k-cycle of f if ng # ny when
I # 1 and there is J € {1,...,N}* such that fi() = nyqy forl =
1,...,k where T is a shift on Z.

(ili) R = {m}ien C A is a chain of f if ng # ny when | # I and there is
{jie{l,...,N} : 1 € N} such that fj;l(nl) =ny4 for eachl € N =
{1,2,3,...}.

(iv) f has a k-cycle(chain) if there is a k-cycle(resp. chain) of f in A.
Specially, we call simply that f has a cycle if f has a k-cycle some
k>1.

Let E be a set. For a branching function system f« = { fi[w} N, on
an infinite set A, for w € Z, f is the direct sum of {f¥} ez if f = {f; N
is a branching function system on a set A = [[ .z A, which is defined by

filn) = fi[w] (n) whenn € A, fori=1,...,N and w € Z. For a branching
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function system f € BFSn(A), f = @D = f¥l'is a decomposition of f into
a family {f“!} ez if there is a family {A,},c= of subsets of A such that f
is the direct sum of {f!} ez=.

Proposition 2.4. Let f = {f;}Y; € BFSy(A).

(i) There is a decomposition A = [] .= Ao such that #A, = oo, fla, =
{fila, Y, € BFSn(Ay,) and f|a, is cyclic for each w € E.

(ii) Assume that f is cyclic. Then there is only one case in the followings:
a) f has just one cycle. b) f has just one chain where we identify two
chains R ={n; € A: 1 € N} and R = {m; € A : | € N} when there
are M, L > 0 such that nj;p = my for each | > M.

Proof. See Proposition 2.5 in [11]. O

Definition 2.5. (i) For J € {l1,...,N}* k>1, f € BFSx(A) is P(J) if
f s cyclic and has a cycle R = {nq,...,ng} such that fj(ng) = ng.
(ii) For J € {1,...,N}>, f € BFSN(A) is P(J) if f is cyclic and has a
chain L = {n;}jen such that fJ_kl(nl) = ny where J, = (j1,...,jk) for
each k > 1 when J = (ji)ieN-

By Proposition 2.4, Definition 2.5 (i) and (ii) make sense.

2.3. Transformation of branching function systems. Let Gy ; be the
set of all bijective transformations on {1,..., N} for [ > 1. Put a bijec-
tive map s from {1,...,N} to a set ¥y¢ = {1,2,3,..., N/ — 1, N'} by
k(i1 ..., 0) = Z;Zl N'=3(ij — 1) + 1. We often identify Sy, and the (sym-
metric)group G of all permutations on X1 by corresponding between
o€ Gy and koook ! € Sy, Specially, sk =id on {1,...,N} = Xy. By
a natural identification Gy, and a subset Gy, x {id} of G q1, 1 > 1, we
can consider Gy, = hian N.i-

For 0 € Gy, and f = {fi}¥, € BFSy(A), put f©@ = (£}, €
BFSn(A) by

24) =t (=1, fOUin)=fenn) (>2)
forneA,i=1,...,Nand Jc {l,..., N} 1

Lemma 2.6. Let J € {1,...,N}¥ and o € Sy = Gn1. If f € BFSNy(A)
is P(J) in Definition 2.5, then f\©) is P(J,-1) where

(c7(1),- -0 (k) (J = (1, Jk) €{1,..., N} k> 1),

(U_l(j”))neN (J: (jn)nGN € {17"'7N}OO)'

Next we show concrete examples of branching function systems on N and
its transformation by permutations.

Jy—1 =

ot



Lemma 2.7. For J € {1,...,N}j, define a branching function system f =
{fi}}¥, on N defined as follows: When J =j € {1,...,N}, put

i+1 (1<i<yj),

i (j<i<N),
fori=1,...,N. When J = (j1,...,5x) € {1,...,N}*, k> 2, put
k+i (1<i< ),
fi(1) = k (i = 1),

k+i—-1 (j1 <i<N),

k+(N-1)(1—1)+i (1<i< ),
fil)= § 1-1 (i =),
| k+(N=D(-1)+i-1 (i<i<N),
fin)= N(n—1)+i

forl=2,...)k,n>k+1andi=1,...,N. Then the followings hold:
(i) fis P(J).
(i) For o € &ny, 1> 1, f9) has no chain.
(ili) For o € Gny, 1 > 1, there is 1 < M < N1 such that £ is decom-
posed into a direct sum of M number of cycles. Furthermore the length
of each cycle is a multiple of that of J.

Proof. See Lemma 2.12 in [11] except (iii). We show (iii). Assume
J e {l,...,N}* k> 1. By (ii) and Proposition 2.4, f(®) has only cycles
and does one cycle at least. If fi(a)(fj(m)) = fy(m) for i = 1,...,N,
me N and J,J € {1,...,N};, then |J'| = |J| + 1 by definition of f(?). If
§Z)(n) =n for some n € N and Jy € {1,..., N};, then

(2.5) fr(m)=m

for suitable Ja, |J2| = |Jo| and m € N. (2.5) means a cycle of f and it holds
only when |J2| = ka for some 1 < a < oo by Proposition 2.4 (ii). Hence
|Jo| = ka. Therefore we have the assertion about the length of a component.

Since f() has cycles in only D = {1,...,N'""'k} ¢ N and #D =
N'=1k, the number of cycles in D is N'~! at most by the results of lengths
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of cycles of f(7). O

Next we consider transformations of branching function systems with
chain.

Lemma 2.8. For J = (jp)nen € {1,...,N}*°, put a family {p,}tncz of
transpositions p, € SN by pp(l) = j, for n > 1 and p, = id for n < 0.
Define f = {fi}Y, € BFSy(Z x N) by
(n—1, N(m —1) +1) (m >2),
(2.6) filn,m) =
(n— 1, pn(i)) (m=1)
for n € Zi. Then the followings hold:
(i) fis P(J).
(ii) For each (n,m) € Z x N, there is m € N such that fi(o)(n,m) =
(n—l,m/) fori=1,...,N.
(iii) For o € Gy, 9 has no cycle in Z x N.

Proof. (i) The cyclicity follows by definition of representations. f has
a chain {(n,1) : n € N} in Z x N which satisfy the chain condition with
respect to J.
(ii) For 0 € Gy, I > 2 and f € BFSy(Z x N), we have fi(g)(fJ(n, m)) =
fo@,g)(n,m) for J € {1,...,N}¥=1 i=1,...,N and (n,m) € Z x N. Note
Je{l,...,N}1. We see fi(g)(n, m) = fi(g)(fJ(n+l—1,m0)) =(—-1,m)
for suitable mg. Therefore the statement holds.
(iif) If £(°) has a cycle {z1,...,zp} C ZxN, then there are 1 < M < oo and
Je{1,...,N} such that S (x1) = 2. T 21 = (n,m), then f17)(z,) =
(n — M,m') # x; for some m" € N by (ii). Hence this is a contradiction.
Therefore the statement holds. ]

Lemma 2.9. Let f be in (2.6) and 0 € Gy ;. Put
C={fs(n,j):j=2,....,N, Je{l,... N¥ k>1-1}.

Then fi(a)(C) Cc C and fi(a) has neither chain nor cycle in C for i =
1,....N.

Proof. Any cycle does not exists by Lemma 2.8. If there is a chain L =
{Zn}nen in C, then thereis J = (j,) € {1,..., N} such that fJ_kl (x1) = zp.
By definition of f; in (2.6), the component of f with respect to N is monotone
increasing. Therefore there is a lower bound z for L = {x, } ,en with respect
to N-component. However f[l(a}) ¢ C. This contradicts the assumption
L C C. Hence there is no chain in C. O



D = (Z x N)\ C is the following:

Lemma 2.10. Let f be in (2.6) and o € Sy,. Then thereis 1 < M < N1
such that %) decomposes into just M chains.

Proof. By Lemma 2.8 (ii), Lemma 2.9 and Proposition 2.4, f? has
chains in D = Z x N. Let L = {x,}nen C D be a chain. Denote z,, =
(Yn, zn) for n € N. yp11 = yn + 1 for n € N by Lemma 2.8 (ii). Hence the
cut of L by the set E,, = {(m,m’) € D : m' € N} is just one point. On the
other hand, #E,, = N'=! for each m € Z. Hence the number of chains in
D is N'=1 at most. O

2.4. Permutative representations. For N > 2, let On be the Cuntz
algebra([5]), that is, it is a C*-algebra with generators si,...,sy which
satisfy

(2.7) sisj =01 (i,j=1,...,N), si1s]+---+sysy=1.

In this paper, any representation and endomorphism are assumed unital and
s-preserving. By simplicity and uniqueness of Oy, it is sufficient to define
operators Si,..., Sy on an infinite dimensional Hilbert space which satisfy
(2.7) in order to construct a representation of On. In the same reason, it
is sufficient to define elements T1,..., Ty in Oy which satisfy (2.7) in order
to construct an endomorphism of Oy.
Put « an action of a unitary group U(N) on Oy defined by ay(s;)
(w)

Zé‘v:l gjisj for i = 1,..., N. Specially we denote v, = ag(,) when g(w) =
w-1 CU(N) forw e Ul) ={z € C: |z]| =1}. For multiindices J

. . k- o .
(J1---»Jk) €{1,..., N}¥, we denote s; = sj, -~ sj, and 5 = s} s} .

Definition 2.11. Let (H,n) be a representation of On.

(i) (H,7) is a permutative representation of Oy if there are a complete
orthonormal basis {en}nen of H and a branching function system f =
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{fi}X, on A such that w(si)en = eg,n) for each n € A and i =
1,....N.

(ii) (H,m,Q) is a generalized permutative(=GP) representation of On with
eycle by J € {1,...,NY*, k > 1 and phase z € U(1) if Q € H is a cyclic
unit vector such that ©(s;)Q = 2Q and {m(sj, ---s;,): 1 =1,...,k}
is an orthonormal family in H. We denote P(J;z) = (H,m,Q) and
P(J) = P(J;1) simply.

(iii) (H,m, ) is a GP representation of O with chain by J € {1,...,N}*
if @ € H is a cyclic unit vector such that {m(sj,)*Q}tnen is an or-
thonormal family where J,, = (j1,...,Jn) when J = (jm)men. We
denote P(J) = (H,m,Q) simply.

(iv) (I2(A),7f) is the permutative representation of Oy by f = {fi}}¥, €
BFSN(A) if mf(si)en = ef,n) form€ Aandi=1,...,N.

Branching function system was introduced in [4, 6, 7]. Recall Definition 2.1
about multiindices. Here ~ means the unitary equivalence of representa-
tions.

Theorem 2.12. (i) Any permutative representation is completely reducible.
(ii) Any cyclic(resp. irreducible)permutative representation is equivalent to
P(J) for some J € {1,...,N}¥# (resp. some J € [1,...,N]* or some
non eventually periodic J € {1,...,N}*).

(iii) For each J € {1,...,N}#, P(J) exists and unique up to unitary equiv-
alences. P(J) is equivalent to a cyclic permutative representation.

(iv) If J€{l,...,N}* k>1 and z € U(1), then P(J;1) o, = P(J;z¥).
If Je{l,...,N}* and z € U(1), then P(J) o, = P(J).

(v) For Je{l,...,N}] and z € U(1), P(J;z2) is irreducible if and only if
J is non periodic.

(vi) For J € {1,...,N}*, P(J) is irreducible if and only if J is non even-
tually periodic.

(Vii) For Jl, Jo € {1, .. ,N}T and 21,29 € U(l), P(Jl;zl) ~ P(JQ; 22) if
and only if (Ji,z1) ~ (J2;22) where P(Jy1;21) ~ P(Ja;22) means the
unitary equivalence of two representations which satisfy the condition
P(Jy;21) and P(Jo; z2), respectively.

(viii) For Jy,Jo € {1,...,N}>°, P(J1) ~ P(J2) if and only if Jy ~ Ja.

(ix) For Je{l,...,N}f and 1 > 1,

l
P(J51) =P PJ;E
j=1
where £ = 2™V This decomposition is unique up to unitary equiv-

alences.

Proof. Note P(J;z) = GP(ze
when J = (j1,...,jk), and P(J) =

J) in [8] where 5 = €1 ® - B &y,
GP(ey) where €5 = (¢j,)nen When
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J = (jn)nen € {1,...,N}* in [10], and {ej}j-vzl is the canonical basis of
C". Hence the statement holds from [8, 9, 10]. O

We omit the decomposition of chain in this article(see [10]). By Theorem
2.12 (ii), it is sufficient for a statement about P(J;) to show by a suitable
concrete representation which is P(J) for J € {1,..., N}#. By combining
Theorem 2.12 (iii) and (viii), we have the following:

l
P(J'2) = @ PJ; &2

j=1
where £ = 2™V =1/l In consequence, we have the following:

Theorem 2.13. (i) A set {P(J;2);J € {1,...,N}}, z € U(1)} of rep-
resentations of On is closed under irreducible decomposition, and the
number of components of decomposition is always finite.

(ii) [1,..., N]* is in one-to-one correspondence with the set of equivalence
classes of irreducible permutative representations of On .

Characterizations of permutative representations are given by termi-
nology of branching function systems. The followings hold from definition
of branching function system and Definition 2.11 (iv) immediately:

Proposition 2.14. Let f be a branching function system on an infinite set
A. Recall (Io(A), m¢) in Definition 2.11 (iv).

(i) If g is a branching function system on an infinite set A" such that
f~ g, then (Ia(A),m¢) ~ (l2(A), mg).
(ii) If f is cyclic, then (Ia(A),7f) is cyclic.
m) rorJ eql,..., , 4 8 , then (l2 ,T0F) 48 , 100.
(i) For J € {L,...,N}#, if f is P(J), then (I2(A), my) is P(J)
(v) If f = fD @ f@ and A = Ay U Ay is the associated decomposition of
[ then (la(A), mp) ~ (l2(A1), mp)) © (l2(A2), Tpe2) ).

3. Permutative endomorphisms and their graph invariants

3.1. Permutative endomorphisms. We review endomorphisms of Oy
arising from permutations in [11] and refine their results.

Assume that EndA is the set of all unital x-endomorphisms of a unital
«-algebra A and p,p € EndA in this subsection. p is proper if p(A) # A.
p is irreducible if p(A)' N A = CI where p(A) N A = {z € A: pla)z =
xzp(a) for each a € A}. p is reducible if p is not irreducible. p and p are
equivalent if there is a unitary v € A such that p/ = Adu o p. In this case,
we denote p ~ p’.

Let RepA(resp. IrrRep.A) be the set of all unital (resp. irreducible)s-
representations of A. We simply denote 7 for (H, ) € Rep.A.
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Lemma 3.1. (i) If p, p € EndA and m, 7 € RepA satisfy p ~ p and
T~ thenwopwﬂ/op'.
(ii) Assume that A is simple. If there is m € IrrRepA such that wo p €
IrrRepA, too, then p is irreducible. Specially, if mo p ~ m € IrrRepA,
then p" = po---op is irreducible for each n > 1.
—_——

n
(iii) If there is m € RepA such that mop o4 o o, then p o p.
(iv) If there is w € IrrRepA such that 7o p & IrrRepA, then p is proper.

We identify the symmetric group &y« and Gy, the set of all bijective
transformations on {1,..., N}¥ for k > 1 by the method in § 2.3. Define

(3.1) 0 Uy = Z S(J)57
Je{1,...,N}k

Then we have usu, =u_, s for o, o esd Nk
Definition 3.2. For o € Gy, 1, € EndOy is defined by
Vo(si) =ugs; (i=1,...,N).
g 18 called the permutative endomorphism of Oy by o where u, is in (3.1).
Put the following sets:
(3.2) Eny ={¢s € EndOyN :0 € Gny} (E>1).

Proposition 3.3. (i) If 0 € Gy, then ¢, is an automorphism of Oy
which satisfies 15(s;) = 84 for i =1,...,N. Specially, if o = id,
then ;g = id.
(i) If o € G2 is defined by o(i,j) = (j,i) fori,j=1,...,N, then ¢, is
the canonical endomorphism of O .
(ili) 72 0 %o = g 07, for each z € U(1) and 0 € Gn = [];51 Gny-
(iv) If p € Eny and p € Ey 5 then po p e Ey jvy/ —1 Jor each kK >1.

Proof. Immediately, we see (i)~(iii) by definition. (iv) follows from
Proposition 4.5 in [11]. O

Theorem 3.4. (i) Let A be an infinite set. For 0 € Gny, k > 1, and
f € BFSy(A), let (Ia(A),7f) be in Definition 2.11 (iv) and f(©) in
(2.4). Then we have Tf 0 1)y = T (o) -

(i) If p is a permutative endomorphism and (H,7) is a permutative rep-
resentation of On, then wo p is a permutative representation, too.

(iil) If (H,n) is P(J) for J € {1,...,N}# and 0 € Sy, | > 1, then there
are 1 < M < N1 a family {J;}M,  {1,...,N}* and a family
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{(Hqi, 7)) Y™, of subrepresentations of (H, T o),) such that
M
(3.3) (H, 7o ve) = P (Him)
i=1
and (H;, ;) is P(J;) fori =1,..., M. Furthermoreif J € {1,..., N},
k> 1, then {J}M, ¢ [IN,'{1,..., N}, and if J € {1,...,N}>,
then {J;}M, c {1,...,N}°.
(iv) The rhs in (3.3) is unique up to unitary equivalences.

Proof. See Lemma 4.9 and Theorem 4.10 in [11] for (i) and (ii). By
(i) and Proposition 2.14, it is sufficient for the statement about permutative
representations to check properties of branching function systems associated
with them. Statements in (iii) follows from Lemma 2.7 (iii) and Lemma 2.10.
(iv) follows from Theorem 2.12 (i) and (ix). O

By uniqueness of P(.J), we simply denote (3.3) as

M
(3.4) P(J) oy = P P(J).
=1

Specially, if 0 € Gy = Gy1, then P(J) o ¢, = P(J,-1) by Lemma 2.6.
Roughly speaking, we can say that a permutative endomorphism transforms
cycles(resp.chains) to cycles(resp.chains).

Theorem 3.5. For each 0 € Gy, 1 > 1, J € {1,...,N}] and z € U(1),
there are 1 < M < N=Y {JAM c {1,...,N}} and {z}}, C U(1) such
that

M

P(J;2) 0o = @ P(J;; ).
i=1
Proof.  Applying Theorem 2.12 (vi) and Proposition 3.3 (iii) for (3.4),

we have

M M
P(J;2) 0y = P(J;1) 0ty 0 1,00 = @D P(Jis 1) 0 v = €D P(Ji; 21)
1=1 i=1

where J; € {1,...,N}¥ for each i = 1,..., M. Putting z = 2"/!, we have
the statement. ([

Furthermore we extend our results. For 0 € Gy, and z € U(1), put ¢, =
Py 0 v,. Then

M M
P(J;2) 0oy = EP P(Jis 1) o vy = D P(Jis zi")
i=1 =1

12



where J; € {1,...,N}i fori=1,..., M.
Theorem 3.6. Let o € Gy, 1> 1 andy € U(1).
(i) For J € {1,...,N}*, k> 1, and z € U(1), we have P(J;2) 0 by, =
P(J; zy*) o 5.
(ii) ForJ € {l,...,N}i andz € U(1), there are 1 < M < N'=1 {JM,
{1,...,N}; and {z}M, CU(1) such that

M
P(J;z) 0tpgy = @P(Ji; Zi).
i=1
This decomposition is unique up to unitary equivalences.

(iii) For each J € {1,...,N}*°, P(J)otgy = P(J) 0 1,.

3.2. Graph invariants of endomorphisms. In order to classify endo-
morphisms of O, we introduce a graph from branching laws of an endo-
morphism and show examples. A graph (V, E) in this subsection means a
pair of sets V and E CV x V. V and E are the set of vertices and that of
edges. An element (z,y) € E is an edge of (V, E) with direction from z to
1y, respectively.

Let S be a set and {e }zes the canonical basis of a Hilbert space l2(S).
Put

Wi(S) = {v € la(S5) \ {0} :< ezlv >€ Z>¢ for each x € S}

where Z> is the set of all non-negative integers. Then W, (S) is an abelian
semigroup with respect to addition in la(S).

Definition 3.7. Let ¢ be a transformation on Wi (S).

(i) (Vi,, E,) is the graph of ¢ with the label set S if V, = S is the set of
vertices and E, = {(z,y) € Vi, x V, :< p(es)|ey ># 0} is the set of
directed edges on V.

(ii) For a subset So C S, a subgraph (V,(So), Ey(So)) of (Vy, Ey) is defined
by Vo (So) = So and E,(So) = {(z,y) € Ey = @,y € Vi,(So) }-

If < p(ez)|ey >=m > 1, then we draw m-directed arrows from z to y:

Yy

Remark < ¢(ez)|e, > < oo for each z,y € S by definition of W, (S). The

graph (V,,, E,) of ¢ explains the property of ¢ effectively by illustration.

We prepare notions about graphs.

Definition 3.8. (i) (V,E) and (V',E') are strongly equivalent if V =V’
and E = E'. In this case, we denote (V,E) = (V' ,E').
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(ii) (V, E) has a (non trivial)branch if there isv € V' such that #E, oyt > 2
where By oyt = {w € V : (v,w) € E}.
(i) n = max{#E, out : v € V'} is called the branching number of (V, E).
(iv) (V, E) is n-reqular if n = #Ey oyt for each v e V.
v) (V, E) is finitely branched if the branching number of (V, E) is finite.
(vi) C is a cycle of (V,E) if C = {%}é\il CVoand (zj,zj11), (xpm,21) € E
foreach j=1,.... M —1,1 < M < co. In this case, we call C' by
M -cycle, too.
For any transformation ¢ on W,.(S), (V,, E,) is finitely branched by defi-
nition of W, (S).
We construct a graph from the branching of an endomorphism of Q.
Let S = [1,..., N]*xU(1). Then an element in W, (S) is just an equivalence
class of a finite direct sum of irreducible representations with parameters in
S by Theorem 2.12 (v).
Put

(3.5)  En.={to:0€ Gn.}, EN,* ={por,:p€Ens, 2z U)}.

We see that p € EN,* is a transformation on W, (S) by Theorem 3.4 and
Theorem 3.6.

Definition 3.9. (V,, E,) is called the branching graph of p € ENy* on S.
For a subset So C S, (V,(So), E,(So)) is, too.

A branching law of an endomorphism p at 7 is illustrated as follows:

[r1]
M
mTOop ~ @ﬂ'i =
i=1
where we assume that m, 7y, ..., 7 are mutually inequivalent.

An automorphism is a special endomorphism and its branching is triv-
ial as follows:

Lemma 3.10. If p € EN,* 1s an automorphism of Oy, then the branching
graph (E,,V,) of p has no branch. Specially, if p is inner, then (E,,V,) is
the collection of 1-cycles.

Proof. 1f p € AutOp, then any irreducible representation is trans-
formed to irreducibles. Therefore there is no branch. Because an inner

automorphism preserves any equivalence class of representation, the asser-
tion holds. O

14



Proposition 3.11. Let p,p € EN,* and (Vj, Ey), (Vy,Ey) be branching

graphs of p and p on S = [1,...,N]*x U(1), respectively. Then the follow-
ings hold:

(i) If p~ P then (Vy, Ep) = (Vp’aEp’)-

)
(i) If (Vp(So), Ep(So)) # (V1 (So), £ (So)) for some Sy C S, then p p.
(iii) If (V,, E, ) has a branch, then p is proper.
(iv) If there is a vertex in (V,, E,) with only one outgoing edge, then p
is irreducible. Specially, if there is a 1-cycle in (V,, E,), then p"
irreducible for each n > 1.

Proof. (i) By Lemma 3.1 (i) and Theorem 3.6 (i), it holds.
(ii) This follows from (i) and the definition of subgraph.
(iii) By Lemma 3.10 (i), it holds.
(iv) By Lemma 3.1 (ii), the statement holds. O

By Proposition 3.11 (i), we see that the branching graph of an endomorphism
p is an invariant of p up to equivalences. By Proposition 3.11 (ii), this
invariant is effective to distinguish two endomorphisms. We show examples
in § 4.

4. Examples of branching graphs

4.1. Branching graphs of F5,. We show the branching graphs of ele-
ments in Eyo in (3.2). By Lemma 5.9 in in [11], the set of all equivalence
classes in Fo o is

d, (12)
(4.1) SEyo =1 Y] 0= (123) (13
(1243),

, (13), (14),(23), (24), (34),
(124), (142), (143), (234),

132),
(1342), (12)(34)

where [¢,] = {p € E22 : p ~ 15} and we use the labeling G292 = G4 in §
2.3. By Proposition 3.11 (i), it is sufficient to show graphs for elements in
SEy2. In the following, we identify SFEs9 and the set of representatives of
elements in SFE5 . First, we review the definition of elements in SFEs2 as
follows:



Table 4.1. (Elements in SE;3)

Yo Yo (s1) Yy (s2) property
Yia 51 S9 inn.aut
P12 s12,1 + S11,2 59 irr.end
P13 S21,1 + 8122 | S11,1 + 8222 | irr.end
P14 8221 + 8122 | S21,1 + S11,2 red.end
a3 | S11,1 + 8212 | S12,1 + S222 | red.end
)24 511,1 + 8222 | 21,1 + 5122 irr.end
)34 S1 §22,1 + 21,2 irr.end
Y123 | S12,1 + 8212 | S11,1 + S2222 | red.end
Y132 | S21,1 + 8112 | S12,1 + 8222 | red.end
Y124 | S12,1 + 8222 | S21,1 + S11,2 | red.end
Yia2 | 8221 + 5112 | S21,1 + S12,2 | irrend
Y143 | S22,1 + 8122 | S11,1 + S21,2 | red.end
o34 | S11,1 + 8212 | S22.1 + S122 | red.end
Y1243 | S12,1 + S22,2 | S11,1 + S21,2 | red.end
Y1342 | S211 + S11,2 | S22,1 + S122 | red.end
¢(12)(34) $12,1 + 811,2 | $22.1 + S21,2 | out.aut

where “inn.aut”, “out.aut”, “irr.end” and “red.end” mean an inner au-
tomorphism, an outer automorphism, a proper irreducible endomorphism
and a proper reducible endomorphism, respectively, u = s1s5 4 s2s7 and
sijk = sis;sy, for 4,5,k = 1,2. The branching law of an automorphism
of Oy is shown in the above Theorem 3.5. Hence P(J) o ¢;q = P(J) for
J € {]., ce ,N}# and P(]_) o ¢(12)(34) =

P(12) 0 1/1(12)(34) = P(12).
We consider other 14-endomorphisms in SE3 9. For

(1;+1), P(2; £1), P(12), P(1122), P(1112), P(1222),

(P
(42) S = { P(11212212), P(11112222)

the branching graph (V,(S1), E£,(S1)) of p = 112, 134 are followings:

P(2), P(2) o ¢(12)(34) = P(1),



(11212212) (11112222)  (11112222) (11212212)

where we denote P(J;z) by (J;z) simply and a vertex with a small circle
means P(1). The difference between 112 and 134 is the position of (1;+1)
and (2;£1). In the same way, we show branching graphs for other endomor-
phisms in Ey 9 on Sy = {P(1;£1), P(2;£1), P(12)}:

P13 oy 123
j(l; +1) (2% +1):
(2;41) (1;41) @
(1:+1) (2+1) ()(:{) )

(-1 (2-1)
(12) (12) b1z (2;-1)

(1;-1) (2;-1)

(2;—-1) (1;-1)
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= canonical endomorphism

a3
1:|:1 2:|:1

(1;+1) (2;41) (12)
7#124 ¢132
(1;-1) (2;-1)
ol @ Ne
(1;-1)
(12) (2;+1) (12)
(2;4+1) (1;41)
143
(2;-1) (1;-1) -
<::;:> (2;+1)
2;-1)
(12) (1;£1) (
(1;4+1) (2;+1)
¢1342
w1243

2:+1)
iy @ ot
o & e
(1;=1 2 —1)

These branching laws are computed by checking branching function systems
associated with them(see Table 5.7 in [11]). Branching graphs of ¢12 and 913
on Sy are same except direction of their edges. The branching graph of 19
on S = So1 USp2USp3, Soi = {P(n;2) :n=1,2, 2 = e%l‘/jl/s, [ =

58} Soe = {P(12;2),P(J;£1) « J = (1112),(1122),(1222), =z =
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+1,4v/—1}, So.3 = {P(11112222), P(11212212), P(12122222), P(11111212),
P(11211222), P(11122122)}, is the following:

P12

where we omit labels of vertices and arrows of the graph. The direction of
any edge is from top to down.
Question Find the general rule to draw this graph.
This question is equivalent to find the general branching law of 119 on a
given representation.

The branching graph of y1507,, z = 62”9\/jl, 6 € R\Q is the following:

P12 07,

where we omit other labels of vertices and arrows of the graph.



Because #E3 3 = 8!, it may be difficult to classify elements in Ey 3 by
only their branching graphs. We show examples in Fs 3.

Example 4.2. (i) Put p = 912 0 ¢12. Then the branching laws of p are
given by

P(1)op = P(12) oty = P(1122),
P(2)op =P()®P(2) o (12),
P(12)op = P(1112) & P(1222),
P(1122) 0 p = P(11212212) & P(11112222).

By Proposition 4.6 in [11], p € Ey 3. By the first equation in the above
and Lemma 3.1 (i), we see that p is irreducible. In the same way, we
have

P(2)o (y12)> = P(1)® P(2) ® P(12) © P(1122),
P(2)o (Y1) = P(1)@ P(2) ® P(12) ® P(1122) & P(1112) & P(1222).
(ii) Define p € Ey 3 by

p(81) = 15182871 + S15151558] + S18285, p(s2) = sa.

Then p is irreducible and proper. We show the sketch of proof. Put
a branching function system f;(n) = 3(n — 1) + 4 for n € N and
1 =1,2,3. Then we have the following unique cycle: 1 ha g Iy 3 by

where h; = fi(g), i =1,2,3, and o is the permutation associated with
p. Hence P(1) o p = P(112). Therefore p is irreducible by Lemma 3.1
(ii).

On the other hand, we see P(2) o p = P(1) & P(2) in the same way.
Hence p is proper. O

The branching graph of p on {P(1), P(2), P(112)} is the following:

(1)
@—»—@—»—Q (112)

By Table 5.7 in [11], there is no path from P(1) to P(112) in branching
graphs of elements in E3 9. Hence p is inequivalent to any elements in
E272.
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4.2. Branching graph of p,. Let p, € E32 by

pv(s1) = s231 + 8312 + 5123,
(4.3) puv(s2) = s321 + S132 + 5213,
pu(s3) = s111+ 222 + 5333

where ;5 = 535555 for i, 7,k = 1,2,3. p, is proper and irreducible(Theorem
1.2 in [11]). We show the branching law of p,.

Theorem 4.3. P(1)op, = P(12) ® P(3).

Proof. Put og a transformation on {1,2,3}? defined by the following:

(L,1) (1,2) (1,3) (2,3) (3,1) (1,2)
(3.1 (3,2) (3,3) (1,1) (2,2) (3,3)
Then we see p, = ,,. Put a branching function system h = fle0) for

filn) =3(n —1)+idfor i = 1,2,3 and n € N. Then we have the list of
values of hi, ho, h3:

From this, we have two cycles 1 by 1, 2 by 3 hy g, On the other hand,
(I2(N),7f) and (I2(N),7) are P(1) and (Io(IN),7¢ o 9s,), respectively.
Hence we see that (I2(IN), ) contains P(3) and P(12). We see N = A LI A
where A1 = {f;(1): J€{l,...,N}*}and Ay = {f;(2): J e {1,...,N}*}.
We see that there is no cycle in {n € N : n > 4}. From this, we have the
assertion. g

In the same way, we have the following branching laws of p,:
P(2)0p, = P(3) o p, = P(12) & P(3),
P(12) o p, = P(13) o p, = P(23) o p, = P(113223).

For z € U(1), put p' = p, 0~.. Then P(J)op = P(J;z*) o p, when
Je{l,...,N}* for k > 1 by Theorem 3.6 (i). For example,

P(i)op = P(i)op, o7 = (P(12) & P(3)) o 7. = P(12;2%) & P(3; 2)
for i = 1,2,3. In the same way, we have
P(12)op = P(13)op = P(23)0p = P(113223;2%).
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In consequence, we have the following branching graphs of p, on Sy =
{(1),(2),(3),(12), (13),(23), (113223)} and p, o v, when z = 2™V=1/3 on
S1={(J;6),(113223;1) : J = (1), (2),(3), (12), (13), (23), € =1, 2,22 }:

POz 2= eV 1/3

(13) (12) o (23) (23;22) (13;1)
(23;2) @&—> @ (13;2)

(113223) (113223;1)
(23;1) (13; 2%)

We see that the deformation of graphs in the above is arisen by the action
of .. The canonical U(1)-action - is often called the gauge action on Op.
In this sense, a transformation p — po~y, is the gauge transformation of the
endomorphism p, the transformation of branching law associated with this
transformation of endomorphism is the gauge transformation of branching
low, and the transformation of graph associated with this in the above is
the gauge transformation of graph.

4.3. Endomorphisms by transpositions. We consider permutative en-
domorphisms ), such that ¢ € Gy is a transposition, that is, there are
r,y € {1,...,N}? and o(x) = y, o(y) = =z, 0(2) = z for z € {1,...,N}?,
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z # x,y. Both ¢12 and 113 in Ey 9 are examples of such endomorphisms of
O3 and they are proper irreducible. We prepare the formula of branching
function systems associated with endomorphisms of transpositions.

Let f = {f;}Y, € BFSn(N) be defined by fi(n) = N(n — 1) + i for
i=1,...,N,n € N.
Lemma 4.4. Let 0 € Gy .
(i) Forne N andi,j=1,...,N, we have
7 (f5(m) = N*(n = 1) + N(o(i.§) = 1) +01(i. )
where o1 and o2 are taken by o(i,j) = (01(4,7), 02(4,7)) for (i,5) €
{1,...,N}2.
(ii) (Transposition) If o is a transposition which is defined by o(i1,7j1) =
(i27j2)7 then
N2(n—1)+ N@z—1)+iz  ((6,5) = (i1,51)),
FOWm) = § N2 =D+ NG =D tin ((0.5) = (i2.32)),
N2(n—1)+N(j—1)+i (otherwise)
formeN andi,j=1,...,N. Specially,
N(]2_1)+Z2 ((27]) = (ilajl))a
FO6) = NG=D i ((54) = (i2,32)),
N(G—-1)+1 (otherwise)
fori,j=1,...,N.

We know that f(?) has cycles in only a set {1,..., N} for each o € G2 by
Lemma 2.11 in [11]. Hence it is sufficient to check the behavior of f(?) on
{1,...,N}. As applications of Lemma 4.4, we have the following results:

Example 4.5. Let N > 2. Put v¢y;, is the permutative endomorphism of Oy
which is associated with a transposition o € Gy o defined by o(1,1) = (1, k).
11 is given as follows:

515557 + s1515) + Zj?ﬂ’k 518;8; (i=1),

S (Z 7é 1).
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When k£ =2,..., N, we have

P(1k) (1=1),
P(l)otyy =< PL) e Pk)  (I=k),
P(k) (otherwise).

From these, we see that 1y is irreducible and proper by Proposition 3.11
The branching graph of 1 is following;:

(1) . (1) (1)
(2) (N) (3)
(1k) (12) (12)

N, k>3

where we denote P(J) by J.

Example 4.6. Let ¢ y11 be a permutative endomorphism of Oy by a
transposition between (1,1) and (2,1). When N > 3, we have the following;:

P2) (k=1,2),
P(k)oyy ny1 =

P(k) (3<k<N),

P(12) oy ny1 = P(1;+1) @ P(1;-1).

Specially, 11 n41 is irreducible and proper when N > 2. From this, YINt1 =
wﬁNH o --- 011 N41 is irreducible and proper for N > 2 and each n > 1 by

n
Proposition 3.11. The branching graph of 91 41 is following:
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(2;+1

)
e O O
O

(1;-1)

2;-1)

4.4. Zy-invariant endomorphisms. p, in (4.3) is invariant under the left
Zs-action, that is, a.r o p, = p,, for each T eZsC U(3). We generalize this
to an endomorphism of Oy with Zy-invariance for N > 4.

For N > 3, we define an endomorphism p € Ex 2 which is invariant
under Zy-action. Put 7 is a shift on a set {1,..., N} which is defined by
T(n)=n+1forn=1,...,N —1and 7(N) = 1. Define p by

(

N
> sisis; (i=1),
j=1

N
p(s,-) = E STj—l(1)8Tj+i—2(1)$;k_j+i_1(1) (2 = 2, e ,N — 1),
Jj=1
N
D sy Sr—2 (15 (1) (i=N).
\ Jj=1

When N =3, p(s1), p(s2), p(s3) are given by

S11,1 + 22,2 + 8333, S12,3 + S23,1 + S31,2, S13,2 + S21,3 + S32.1-

1 2 3

Notep:p,,oaaforUEZ;g,a:(S 1 9

) where p, is in § 4.2. By
definition, we see
(4.5) aop=p (foreach T € Zy).

Proposition 4.7. For each N > 3, we have the followings
(i) P(i)op=P(1)® P(N —1,N) for eachi=1,...,N.
(ii) p is proper.



(ili) plyzx s an endomorphism of O%N | too, where OJ%]N = {z € Oy :
N
o (r) = x for each T e Zn}.

Proof. (i) For a branching function system f = {f;}}¥; on N which is
defined by fi(n) = N(n— 1) + i, put h; = f\7) for o € S5 which satisfies

hn_
p = Yy. Then we have 1 M1 and 2 "5 3 Y 2. Hence we see that h is

P(1)@® P(N,N —1). Hence P(1)op= P(1)® P(N,N —1). By (4.5) and
this, the assertion holds.

(ii) The number of branching components is 2(< N) on (1). By (4.5), p is
proper.

(iii) By (4.5), the statement holds. O

The branching graph of p is the following:
(2) 3) (N-1) (N)

4.5. Canonical endomorphism. The most famous non trivial polynomial
endomorphism is the canonical endomorphism by Proposition 3.3 (ii). We
show that its branching law is quite simple.

Proposition 4.8. Let p be the canonical endomorphism of On. For any
representation © of On, we have 7o p ~ w®N . Furthermore mo pt ~ r®N!

where pl = po---opandn® =n®---® 7w forl > 1.
—_——— —_————
l l
Proof. Let (H,m) be a representation of Ony. Put Hy =H @ - & H
—_——

N
and a unitary U from H to Hy by Uz = (w(s1)*z,...,7(sy)*x). Then
AdU o 7o p =N, From this, we have the second statement immediately.
O

That is, p acts on representations as N-times copy of them. Note p!' € F Ni+1
for each [ > 1 by Proposition 3.3 (iv). Therefore the power of canonical endo-
morphism is the case with possible maximal branching number in Theorem
3.4 (iii).

By Proposition 4.8, the branching graph (E,(Sp), V,(So)) on Sy = {[7]}
is the following for each equivalence class [r] of representations of Oy:
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[]

Put p, = poy.and J € {1,... N k>1. Ifz = 2™V =10 g ¢ R\ Q, then
the branching graph of p, is following:

0@00
P(J;2~ P(J;1) P(J;2%) P(J;2%F) Uz%

If 2 = eQW\ﬁ/p and (p,k) = 1, then the branching graph of p, is a finite
regular graph with N-outgoing and N-incoming edges. For example, when
p = 6, it is the following;:

P(J;2%) P(J;1)

P(J; 2%) P(J;2%)

P(J; %) P(J;2%)

5. Branching laws and spectrum modules
We interpret results of branching laws of endomorphisms to smarter state-

ments about modules of the endomorphism semigroup EndOpy of Oy.

5.1. Spectrum semigroup. Let BSpecA be the set of all unitary equiva-
lence classes of unital *-representations of a unital %-algebra A. BSpecA is
closed under direct integral and it is an abelian semigroup with respect to
direct sum:

/ /

BSpecA x BSpecA 3 ([n],[r]) — [r] @ [r ] = [r & x| € BSpecA.

We call BSpecA the spectrum semigroup of A.
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For § € BSpecA, define

<S> : the set of all finite direct sums of elements in S,
<S8 >« : the set of all countable infinite direct sums of elements in S,

<S> o the set of all direct integrals of elements in S.

<8 ><8 >0,< S8 > are subsemigroups of BSpecA and < § > C<
S>>0 C<S >y,

We introduce several subsemigroups of BSpecOy. Let BP(Op) (resp.
P(Op)) be the set of all unitary equivalence classes of (resp. irreducible)
permutative representations of Oy, and BP.(On)(resp. BPs(Op)) the
subset of BP(Oy) which consists of all cyclic representations with a cycle
(resp. a chain). Put

BP4(Oy) = BP.(On) U BPx(Oy),
Pon(On)={P(J;2): JE€[1,...,NJ*, z€ U},
P.(Ox) = BP.(ON) N P(Oy), Pso(On) = BPs(On) N P(Oy),
P.(ON) = Poys(On) U P (Oy).

In this section, we identify a representation and its unitary equivalence class.
We see P(Oy) = {P(J) : J € [1,...,N]#}, Po(On) = {P(J) : J €
[1,...,N]*}, P(On) ={P(J):J e[l,...,N]|*} by Theorem 2.12.

By Proposition 4.7 and Corollary 5.12 in [10], the following inclusions
of semigroups hold:

< Pyo(Op) >
N
< BPy(On) >
N
< BPy(On) >
N
BP(ON) C < PC(ON) >f
U U
< BP,(ON) > C <P.i(ON) >0 C < P(On) >
U U
< BP,(On)> C < P.(On)>
U
< P(Opn) >

where any inclusion is proper. These inclusions show relations among classes
of representations. For example, < BP,(On) >C< P, ,(On) > means that
any element in BP,(Oy) can be expressed as a finite direct sum of elements
in P..(Op). Since P, .(On) is the set of equivalence classes of irreducible
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representations, this inclusion shows irreducible decomposition of elements
in BP,(Op).
Furthermore the followings hold:

< BP4(Oy) >0o= BP(Oy) =< BP(Oy) >4 -

5.2. Spectrum modules of endomorphism semigroups. Let End.A be
the set of all unital x-endomorphisms of a unital x-algebra 4. Then End.A
is a unital semigroups with respect to composition:

EndA x EndA > (p,p/) — po p, € EndA.
For p € EndA, define a right transformation R, on BSpecA by
[T]R, = [rop] ([r] € BSpecA).

R, is defined without ambiguity by Lemma 3.1 (i). Then R is a right action
of End A on BSpecA, that is,

(Ir] @ [ )R, = []R, & [ | Ry,
([ Rp) Ry = [m|(R,R ) = [7]R .y, [w]Ria = [7]

for each [r], [7'(/] € BSpecA and p,p € EndA. In other words, (BSpecA, R)
is a right End.A-module.

Definition 5.1. Let G be a subsemigroup of End.A.
(i) (BSpecA, R|q) is called the (right)spectrum module of G.
(ii) V is a G-submodule of BSpec A if V' is a subsemigroup of BSpecA and
VRy CV foreach g € G.

Recall Ey . and EN’* in (3.5). For each o, = Sn,«, there is o e
Sy« such that ¢y 09 =1 _» and (Y5 072) 0 (Y, 07,) =1 nor, s for
each z,z" € U(1) by Proposition 3.3 (ii) and (iv). Therefore both Ey . and
E N, are subsemigroups of EndOp. According to these subsemigroups and
their spectrum modules, Theorem 3.4, Theorem 3.5 and Theorem 3.6 are
interpreted as follows:

Proposition 5.2. (i) The followings are proper inclusions of En .-submodules

of (BSpecOn, R|gy.,):

< BPOO(ON) >
N
< BP(On) >0 C BP(On) C < P(On)>;
U U
< BP,(ON) > C < FPox(On) >
U U

< BP,(On)> C <P (On)>.
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(ii) The followings are proper inclusions ofEM*—Submodules of (BSpecOy, R|EN ):

<BPx(On) > C <BPx(On) > C < F(On) >/
U
< Pc7*(ON) > Cc < Pq*(ON) >00 -

(iii) Put BPy(Oy) = {P(J) : J € {1,..., N}tV where {1,...,N}* s

the set of all minimal elements in {1,...,N}* for k > 1. For the
following grading

< BP.(Oy) >= P < BP:(Ox) >,

k>1
we have
lel
< Bpk<ON) > Rp C @ < Bpak(ON) >
a=1
when p € Eny, | > 1.
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