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In the theory of affine varieties, it is important to investigate the structure associated to the log
Kodaira dimension. In this article, we shall consider how to analyze smooth affine threefolds
associated to the log Kodaira dimension and make the framework for this purpose under a certain
geometric condition. As a consequence of our result, under this geometric condition, we can describe
the construction of affine threefolds X with ®(X) = —oo fairly explicitly, and show that an affine
threefold X with log Kodaira dimension (X)) = 2 has the structure of a C*-fibration.

1 Introduction

Throughout the present article we work over the field of complex numbers C. In the theory on smooth
affine surfaces, it 1s important and essential to investigate the structure associated to the log Kodaira
dimension (see [1i77] for the definition and the relevant results on log Kodaira dimension). The following
results due to Miyanishi-Sugie and Kawamata are very important in this direction in the theory of affine
surfaces:

Theorem 1.1 (cf. [Mi-Su80, Kaw79, Miy01]) Let Y be a smooth affine surface. Then:
(1) ®(Y) = —co = Y has a structure of an Al-fibration. (Miyanishi-Sugie)
(2) ®(Y)=1=Y has a structure of a C*-fibration. (Kawamata)

As the three-dimensional generalization of the above mentioned result Theorem 1.1, our main interest
in this article lies in the investigation of the structure on smooth affine threefolds associated to the log
Kodaira dimension. Since the understanding of the minimal model theory on surfaces was indispensable
in order to obtain Theorem 1.1 (cf. [Mi-Su80, Kaw79]), it seems to be natural that the theory of three-
dimensional Minimal Model Program gives good tools for our purpose. Namely, the rough idea of our
consideration is stated as follows:

Let X be a smooth affine threefold. We embed X into a smooth projective threefold 7" in such a way
that the boundary divisor D is simple normal crossing (= SNC, for short). Starting with 7', we run
Minimal Model Program (= MMP, for short), say g : T'-- - — T", to reach the situation where 7" has the
structure of Mori fiber space (= Mfs, for short) or 7" is a minimal model, i.e., the canonical divisor K.
is nef (cf. [FA], [Ko-Mo98]). Let D’ be the proper transform of D on T’ and put X’ := 7" — Supp (D').
Since T” is a simple object in the set of normal projective threefolds with only Q-factorial terminal
singularities such that the function fields equal C(X), we expect that it is possible to analyze the
structure of X’. Hereafter we wish to investigate the original affine threefold X from the data on X’.

But the following obstacles arise in this above mentioned argument.
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OBSTACLE. The birational map g : T--- — T’ is factorized, say ¢ = ¢" ' o --- 0 ¢°, where each
gh T .. — T ig either a divisorial contraction or a flip, and TY:=T,T" :=T'. Let D' denote the
proper transform of D on 7%, and let X* := T" — Supp (D") denote the complement for 0 < i < r.

(1) In the case where g' is divisorial, the exceptional divisor E* := Exc(g*) C T* may not be contained
in the boundary Supp (D?). Hence X‘*! may be smaller than X strictly.

(2) In the case where gtisaflip,let 41, -, 74 C T% exhaust all the flipping curves and let v, --- v+ C
T**! denote the corresponding flipped curves. Then, in general, we cannot specify the location of
these curves on T% and T**!  respectively. For example, some of flipping curves (resp. flipped
curves) may not be contained in the boundary Supp (D?) (resp. Supp (D**1)).

This is why we can not analyze the structure on X? from that on X?*! in general. Thus, even if we
can analyze X’ concretely, it is usually impossible to recover the data on the original X from that on
X',

Now we wish to investigate how to analyze the structure of smooth affine threefolds associated to
the log Kodaira dimension. Let X be a smooth affine threefold. As usual we embed X into a smooth
projective threefold 7" in such a way that the reduced boundary divisor D with respect to X « T is

SNC. In this article, we assume the following additional condition (). Our condition is geometric in
nature:

(1) : The complete linear system H := |D| is nef and contains a smooth member, say S € H.

We can see, under the condition (1), that the above mentioned obstacles do not have a bad influence
upon our consideration, and we are able to describe X fairly explicitly. Namely, our main result is
stated as follows:

Theorem 1.2 Let X be a smooth affine threefold. Assume that X is embedded into a smooth projective
threefold T satisfying the condition (1). Then we can construct the following diagram (x) consisting
of normal projective threefolds T® with only Q-factorial terminal singularities and the birational maps
among them:

0 1 s—1 s

(%) T S B e S R
s+1 r—1
st ps42 N bt O A Tt

satisfying the following conditions:

(1) Let M (resp. D, S') be the proper transform of H (resp. D, S) on T%, and let X* := T'—Supp(D*)
denote the complement for 0 < i < r. Then H' is a nef, Cartier linear system on T® containing D'
and S* as members. Moreover, S* is smooth.

(2) The exceptional set (which is either an exceptional divisor or a union of the flipping curves) of the
birational map g* : T - - — T+ is contained in Supp (D) for 0 <i < s.

(3) The remaining birational maps g* : T* — T+ for s <i < r are described as follows: g' : T* — Ti+!
contracts the exceptional divisor E* to a smooth point, say p't! := ¢*(E?) € T'*!, and ¢ is realized
as the weighted blow-up at the point p't' € T+ with the weights wt(z,y,2) = (1,1,b%), where
(z,y,2) are the suitable local analytic coordinates at ptl e T and b € N. It follows that
Ml =1, (=Kqp: - 1') = 14+ (1/b%), where I* is a ruling on the exceptional divisor E* = P(1,1,b%) =
Fyi g. Furthermore, the inequalities 1 < b° < b5t < ... < b1 hold true.

(4) For 0 < i < s, we have X' = X. For the remaining s < i < r, X' is obtained as the half-point
attachmenmt to X'+1 of (b k*)-type for some 1 < F k! < b° (cf. Definition 1.1) unless X* = X*+1,
In particular, X't is an open affine subset of X' such that X* — Xi+1 =2 C* =% 5 Al for some
1 <3k <b unless X? = Xi+1,



(5) The right terminal TV in the diagram (%) satisfies one of the following properties according to the
value of the log Kodaira dimension ®(X):

(i) If R(X) = —co then T? has the structure of a Mfs. (See Theorem 1.3 for more detailed descrip-
tion of Mfs on T1.)

(i) If ®(X) >0 then Kpy + D' is nef and x(T"; Kpy + DY) = ®R(X), where D¥ := D" is the proper
transform of D on Tt.

We prepare the definiton of the half-point attachments used in Theorem 1.2. This is a slight gener-
alization in three-dimensional setting of the original definition given in [Miy01, 4.4.1. Definition].

Definition 1.1 Let Z be a normal quasi-projective threefold and let Z < V be a compactification
into a normal projective threefold V with the boundary V' — Z = Supp (B). Let p € Supp (B) be a
point where V is smooth. Let f: V' — V be the weighted blow-up at the point p € V with the weights
wt(z,y,2) = (1,1,b), where (2,y, z) are the suitable local analytic coordinates at p € V and b € N. Let
E = P(1,1,b) 2 Fy o be the exceptional divisor of f. Assume that the proper transform B of Bby f

meets E in such a way that B|g = E;c:l m;l;, where [;’s are the mutually distinct rulings on £ = T g
and m; € N with 25:1 m; = b in case b > 2, and B|g € |Opz(1)| in case b = 1. Then the complement

Z =V — Supp (B) is said to be a half-point attachment to Z of (b, k)-type. It is easy to see, by the
definition, that 7 — 7 = Ck=1)* x AL,

In case K(X) = —oo, we can describe the construction of X more concretely. Namely, the following
result holds true. Once we have Theorem 1.2, almost all parts of this result (Theorem 1.3) follow by
the same argument as in [Me02] and [C-F93] essentially.

Theorem 1.3 Let X be a smooth affine threefold with log Kodaira dimension ®(X) = —oo. Assume
that X can be embedded into a smooth projective threefold T satisfying the condition (). Then:

(1) The Mfs on T" (cf. Theorem 1.2 (5)-(i)), say = : T" — W, and the proper transform D' € H! on
T' of D € H are described according to the type of ® as one of the following:

— Co-type: 7 : TV = P(E) — W is a Pl-bundle structure over a smooth projective surface W, where
£ = m.Orps (DY) is a rank 2 vector bundle on W, and D' ~ O(1).
— Di-type: m : T" — W is a quadric bundle over a smooth curve W with a general fiber (F, D'|p) =

(P x P! Opiypi(1, 1)), and with at most finitely many singular fibers G = Q2% and the vertez of
each G sits in a hypersurface singularity of analytic type o € (zy+22+t* =0) C C* : (2,9, 2,1)
for k > 1, where Q2 < P3 is a quadric cone.

— Ds-type: m: T" 2 P(£) — W is a P2-bundle structure over a smooth curve W with a fiber (F, D!|p) =
(P2, Op2(1)), where £ := m.Ops (DY) is a rank 3 vector bundle on W.

~ Diy-type: @ : TV — W is a P2fibration over a smooth curve W with a general fiber (F,D!|p) =
(P2, Op=(2)) and with at most finitely many singular fibers G = Sy and the vertex of G sits in a
hyper-quotient singularity of analytic type o € (zy+ 22 +1* =0) C C* : (2,y,2,1)/Z5(1,1,1,0)
for k > 1, where S4 C P® is a cone over the quartic rational curve C P
~ Q-Fano: T% is a Q-Fano threefold with the Picard number o(T") = 1. More precisely, the classification
of the pair (TV, H") up to deformation is given as one of the following:
(i) (P(1,1,2,3),0(6));
(i1) (Ts CP(1,1,2,3,a),{za =0} NTg) with a € {3,4,5};
(iii) (Ts C P(1,1,2,2,3), {3 =0} NTs);
(iv) (Te CP(1,1,1,2,3), {20 = 0} N T5);
(v) (P(1,1,1,2),0(b)) with b € {2,4};
(vi) (T CP(1,1,1,1,2), {20 = 0} N T4);
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(vil) (T4 CP(1,1,1,2,a),{zsa = 0} NTy) with a € {2,3};
(viii) (P3 Opa(b)) with b € {1,2,3}, (Q3 Og(b)) with b € {1,2};
(ix) (Ts CP(1,1,1,1,2), {4 = 0} N T3);

(Xl (To 9 C ]P) ,0(1)),
(xii) (V5,0(1)), where Vs — % is a linear section of the Grassmann variely Gr(2,5) — P?
parametrizing lines in P4

)
)
)
(x) (Ts CP4,0(1));
)
)

(2) The original affine threefold X is obtained from X' = T — Supp (D") (where T* and D' are the one
described above) via the composiie of several half-point attachments of suitable types (cf. Definition
1.1) unless X = X*'. More precisely, each of the appearing half-point attachments is described as
in the following fashion according to Mfs on T':

— Cy-type: An appearing half-point attachment is of (1,1)-type and X — X' is a union of several affine
planes A% unless X = X1,

— Di-type: An appearing half-point attachment is of (1,1)-type and X — X' is a union of several affine
planes A% unless X = X',

— Ds-type: Then X =2 X!,
— Di-type: An appearing half-point attachment is of (b, k)-type with 1 < b < 2, 1 < k < b, and the

corresponding irreducible component of X — X' is isomorphic to C*=1% x Al unless X = X1,
— Q-Fano: e In case of (v) with b =2 and (viii) with b=1, X = X!,

o In case of (iv), (vi), (viii) (P3, (’)]pa( ), (x), (xi) and (xii), an appearing half-point attach-
ment is of (1,1)-type, and X — X" is a union of several affine planes A2 unless X = X',

o In case of (iii), (vil) with a = 2, (viii) (Q3 Og(2)) and (ix), an appearing half-point attach-
ment is of (b, k)-type with 1 < b < 2, 1 <k < b and the corresponding irreducible component
of X — X! is isomorphic to C=1)* x Al unless X = X!,

o In case (ii) with @ = 3, (vii) with a = 3 and (viii) (P> Ops(3)), an appearing half-point
attachment is of (b, k)-type with 1 < b < 3, 1 < k < b and the corresponding irreducible
component of X — X' is isomorphic to CF=1* x Al unless X = X!,

o In case of (ii) with a = 4 and (v) with b =4, an appearing half-point attachment is of (b, k)-
type with 1 < b < 4, 1 <k <b and the corresponding irreducible component of X — X' is
isomorphic to CF=1* x Al unless X = X1,

o In case of (ii) with a = 5, an appearing half-point attachment is of (b, k)-type with 1 <
b<5,1<k<band the corresponding irreducible component of X — X" is isomorphic to
CHE=1% 5 Al unless X = X1,

e In case of (i), an appearing half-point attachment is of (b, k)-type with 1 <b <6, 1 <k <b
and the corresponding irreducible component of X — X' is isomorphic to CF=1* x Al unless
X =Xt

On the other hand, in case ®(X) = 2, we obtain the following result as a three-dimensional version
of the result due to Kawamata (cf. Theorem 1.1 (2)) by making use of Theorem 1.2.

Theorem 1.4 Let X be a smooth affine threefold with log Kodaira dimension ®(X) = 2. Assume that
X can be embedded into a smooth projective threefold T satisfying the condition (7). Then X has the
structure of a C*-fibration over a normal surface.

We shall state the scheme of this article. Let X be a smooth affine threefold which i1s embedded into
a smooth projective threefold T satisfying (). In order to prove Theorem 1.2, we need the theory on
$-Minimal Model Program (= §-MMP, for short) which is developed by M. Mella, recently (cf. [Me02]).
In the original context of ~-MMP in [Me02], the varieties treated there are assumed to be uniruled. But



the varieties which we need to consider in this paper are not necessarily uniruled. In Section 2, we
apply the £-MMP to our present situation with a suitable modification for the proof of Theorem 1.2. In
general there are many ways to choose the intermediate process to reach either a Mfs or a minimal model
starting with 7. Then the §~-MMP is useful to choose the right MMP with respect to the linear system
‘H := |D|. We shall investigate the process of $-MMP associated to the pair (7,H) around the proper
transforms of D and S concretely, and analyze how the inside affine threefold X changes via §-MMP
carefully. Although we have to argue according to the value of log Kodaira dimension ®(X) (namely,
K(X) = —oo or B(X) > 0), the intermediate process are very similar to each other. Therefore, we
shall demonstrate the proof for both cases simultaneously. In the process of MMP to prove Theorem
1.2, we often encounter the situation where a (2,0)-type divisorial contraction occurs in such a way
that the proper transform of the smooth member S € H intersects the exceptional divisor £. Then, in
[Me02, Proposition 3.6, Case 3.9], M. Mella asserts that E satisfies (E, E|g) = (P% Op2(—1)) which is
contracted to a smooth point. But his statement is incorrect. We shall state the correct statement and
give the proof for it in Proposition 2.1.

In the following Sections 3 and 4, we shall prove Theorems 1.3 and 1.4, respectively, by making use
of Theorem 1.2 and the proof of it.

We employ the following notation in this article.
Notation.

e ~ : linear equivalence;

e = : numerical equivalence;

e A" : the n-dimensional affine space;

e P” : the n-dimensional projective space;

e P(a,b,c) : the weighted projective plane with weights wt(z,y,z) = (a,b,¢), i.e., Proj(Clz, y, z])
with wt(z,y, z) = (a,b,¢);

e T : the Hirzebruch surface of degree b (b > 0);

o [y g : the normal surface obtained from IF; by contracting the minimal section;

e C(F)* . the affine line with k-point(s) punctured. We write C9* = A' and CV* = C* usually.
e Exc(f) : the exceptional set of a given birational morphism f;

e NE (V) : the closure of the cone of effective 1-cycles on V.

e index(V) : the Gorenstein index of V| i.e., the least positive integer such that index(V)Ky is a
Cartier divisor.

The projective birational morphism f : V — W from a normal threefold V' with only Q-factorial
terminal singularities is said to be a divisorial contraction if it 1s obtained as the contraction of a Ky -
negative extremal ray and the exceptional set £ := Exc(f) is a prime divisor. f issaid to be of (2, 0)-type
(resp. (2,1)-type) if E is contracted to a point (resp. to a curve).

2 The Proof of Theorem 1.2

In this section, we shall give the proof of Theorem 1.2. The most important and essential part in our
proof is an adequate modification of the theory on §-MMP developed by M. Mella (cf. [Me02]) to our
present situation. Although we need to argue according to the value of log Kodaira dimension ®(X)
(R(X) = —co or K(X) > 0), the intermediate process to reach the right terminal 7% in Theorem 1.2 are
very similar to each other. Hence we shall treat both cases ®(X) = —oo and ®(X) > 0 simultaneously
otherwise mentioned.
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Let X be a smooth affine threefold. We embed X into a smooth projective threefold T in such a way
that the reduced boundary divisor D is SNC and satisfies the condition (}) in Section 1. First of all, we
have the following:

Lemma 2.1 H = |D| is nef and big.

Proof. By virtue of the result [Go69, Theorem 1], there exists a closed subscheme F' C Supp (D) and
the blowing-up b : T — T along the ideal sheaf Zr C Or of F C T such that the isomorphic image
X = YX) C T is the complement of an effective ample Cartier divisor on T. Hence the reduced
divisor D on T supported by T — X is big (cf. [Ko-Mo098, Lemma 2.60]). We can write b*(D) = D+ G,

where G is an effective divisor such that Supp (G) C Exc(b). Thus b*(D) is nef and big. (Note that D
is nef by the assumption.) Then we can see that (D?) = b*(D)3 > 0 and D is nef and big (cf. [ibid;
Proposition 2.61]). O

In the case where R(X) = —o0, we have:
Lemma 2.2 If&(X) = —oo, then K7 + D is not nef.

Proof. Assume to the contrary that Kr+ D is nef. Then, by the Non-vanishing Theorem (cf. [Ko-Mo98,
Theorem 3.4]), it follows that |m(Kr + D)| # @ for m >> 0. This is a contradiction to ®(X) =
k(T;Kp+ D)= —0c0. D

On the other hand, in the case ®(X) > 0, we ask whether or not Kp + D is nef. If K7 + D is already
nef, then we have nothing to do in order to obtain Theorem 1.2. Hence we may and shall assume that
K1 + D 1s not nef.

We put t° := sup{u € Q ; D + uKr is nef}. By noting that D is nef (the assumption (1)) and that
Kt + D is not nef, we have 0 < #° < 1. Then there exists an extremal ray R® = R,[I°] C NE (T)
on the hyperplane {D —+—t0KT}l (cf. [Ke-M-M94]). Let ¢ : T% := T'-.. — T' be the rational map
associated with this ray R®. (Note that since T is a smooth projective threefold, g° can not be a flip,
see [C-K-M88]. But, for the inductive argument performed in the subsequent, we do not exclude the
case that ¢° is a flip in Lemmas 2.3, 2.4, 2.5, 2.6.) Then we have the following:

Lemma 2.3 (1) In the case K(X) = —oco, ¢° is birational unless it does not yield a Mfs.
(2) In the case ®(X) >0, ¢° is birational.

Proof. The assertion (1) is clear. We shall show (2). Assume to the contrary that ¢° is not birational.
Then ¢° gives rise to a Mfs. By the construction it follows that D + t"Kp = (go)*(A) for some Q-
Cartier divisor A on T (cf. [Ko-Mo98]). Then we have (D + Kr -1°) = ((¢°)"(A) + (1 —t°)K7) - I° =
(1—t%) (K7 -1°) < 0 as t® < 1. On the other hand, since g° is a Mfs and ®(X) = «(T; K1 + D) > 0, we
have (K7 + D -1°) > 0. This is a contradiction. O

Thus we may and shall assume that ¢° : T-.. — T is birational. (If ¢° yields a Mfs, then there is
nothing to do for the proof of Theorem 1.2. Note that this situation can occur only for the case ®(X) =
—o0, cf. Lemma 2.3.) Let H! := (¢°),(H) be the proper transform of H by ¢°. Let D' := (¢°),(D)
and ST := (¢%),(S) be the members of H' corresponding to D and S, respectively, where S € H is a
smooth member (see the assumption (}) in Section 1). We have the following:

Lemma 2.4 (1) T is a normal projective threefold with only Q-factorial, terminal singularities.

(2) Ift° = 0, then the exceptional set E° of T--- — T' (E° is an exceptional divisor (resp. a union
of the flipping curves) if g° is a divisorial contraction (resp. a flip)) is contained in the boundary
Supp (D).

(3) If t° > 0, then t° = 1/2, H -1° = 1 and ¢° is an E2-type divisorial contraction, namely, the
exceptional divisor E° satisfies (E°, E°|go) =2 (P2, Op2(—1)) which is contracted to a smooth point,
where 10 is a line on E° = P2,



(4) H' is a nef, Cartier linear system on T, and S' is a smooth member of H'.
(5) H' +1°Kz1 is nef.

Proof. The assertion (1) is obvious. Assume that t = 0. Then D -1° = 0. Note that {° can not be
contained in X = T — Supp (D) since X is affine. Therefore, D -[° = 0 implies that {° C Supp (D).
Thus (2) is proved. Assume that t° > 0. Then we have D -1° = t9(—Kp - 1°) < (—=Kr -1°). Hence
(—Kr - 1% > 1, and this implies that ¢° : T--- — T is a divisorial contraction of (2, 0)-type, i.e., the
exceptional divisor E? is contracted to a point, say p* := g°(E?) (cf. [C-K-M88], [C-F93, (2.1)Lemma)).
Let B := SN EY be the intersection curve. Note that B is connected as B is ample on E°. We
have (Ks - Bo)g = (K7 - Bg) + (D - By) < 0 for any irreducible component By C B, hence By = B
is a (—1)-curve on S. By Proposition 2.1, it follows that ¢° is realized as the weighted blow-up with
wt(z,y,2) = (1,1,b), where (z,y, z) are the local analytic coordinates at p! € T and b € N. If b > 2,
then T has a terminal singularity of type %(1, 1,—1), which is a contradiction. Thus b = 1, i.e., ¢° is
an E2-type divisorial contraction. Since D - 1% = t%(— Kz - 1°) = 2¢° with 0 < t? < 1, it follows that
t=1/2 and D-1° = 1 as stated in (3). We shall prove the assertion (4). We consider according to the
value t°, separately. Note that since S is a smooth Cartier divisor, it is disjoint from the singular loci
Sing (T). At first, we consider:

CASE: t° =0

First we consider the case t° = 0. Then ¢° is either a divisorial contraction or a flip. If ¢° is a
divisorial contraction of (2,0)-type, S - I = 0 means that S is disjoint from the exceptional divisor.
Hence ¢%s : S — S! is an isomorphism and S! is a smooth Cartier divisor. If ¢° is divisorial of
(2, 1)-type, the equality S -I° = 0 means that SN E° is either empty or a union of several fibers of
¢°|lgo + E° — ¢%(E®), where E° := Exc(¢"). Thus ¢°|s : S — S! is either an isomorphism or a
contraction of several disjoint (—1)-curves, so S! is a smooth Cartier divisor on 7. In any case, by the
construction, we have (go)*(Sl) = S. Let C be an irreducible curve on T, and let C' be a curve on T
such that (go)*(é) = C. Then we have S' - C = ((4°)"(s") - é) =S-C>0asS eHis nef. On the
other hand, if ¢° is a flip, then the equality S-1° = 0 and SNSing(7T) = @ implies that S is disjoint from
the flipping curves because each flipping curve has to pass through some of the singularities. Therefore
g°|s : S — St is an isomorphism and S! is a smooth Cartier divisor on 7. We shall show that S* € H?!
is nef. For this purpose, we consider the common resolution as in Figure 1:

Figure 1

Let {F;} be the set of all exceptional divisors. Note that since ¢g” is an isomorphism in codimension
one, each Fj is p-exceptional and ¢-exceptional. As usual, we write:

p(S)=5Su+ Y ajFj,
¢ (S") = Sv + Zﬁij,

where Sy is the proper transform on U of S and S'. Hence we have:
P(S) =" (SY) =D (aj — B)Fy,

which is g-nef by noting that S € H is nef. Therefore it follows that a; < 3; (Vj) by the Negativity
Lemma (cf. [FA]). Let C C T! be an irreducible curve. If C'is distinct from a flipped curve, we take a
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curve C C U so that q*(é) = (. Then we have:
shC=q(5")-C= (P + 38 —ank) - C 2 S p.(0).

Note that S - p. (5’) > 0 as S € H is nef. On the other hand, if C' is one of the flipped curve, then we
have S' - C = 0 since S is disjoint from the flipping curves as seen before. Hence S' € H' is nef as
desired.

Next we consider:

CASE: t° >0

Then we have t? = 1/2, S-1° = 1 and ¢° is an E2-type divisorial contraction by the argument in the
proof of (3), where % is a line on the exceptional divisor E° with (E°, E°|go) = (P%, Op2(—1)). Hence
S meets E? along a line on it. Thus ¢%|s : S — S! is a contraction of a (—1)-curve SN E°, so St is a
smooth Cartier divisor. By the construction of the contraction g°, we have (g°)"(S*) = S+ E°. Let C
be an irreducible curve on T and let C' C T be such that (go)*(é) = (. Then S'-C = ((go)*(51)~é) =
(S+ E°-C)>(S-C)>0. Hence S* € H' is nef.

Finally we prove (5). In the case t° = 0, the assertion is obvious as H' is nef. In the case t° > 0,
it follows that ¢° is divisorial and (¢°)"(H' + t°Kp1) = H 4 t°Kr by the construction. Let C be
an irreducible curve on 7" and let C' C T be such that (go)*(é) = C. Then (H' +t"Kp1) - C =
(4°) (H' +1°Kp1)-C = (H+1°Kp) - C >0 as H +t° Ky is nef. O

Lemma 2.5 With the above notation, we put X' := T' — Supp (D). Then:
(1) Ift° = 0, then X' = X.

(2) Ift° > 0 (in fact t® = 1/2), then X' is an open affine subset of X. More precisely, X is obtained as
a half-point attachment to X1 of (1,1)-type (cf. Definition 1.1) and X — X' = A% unless X = X1,

Proof. (1) Let us assume that ¢ = 0. Then the exceptional set E° of T'--- — T is contained in the
boundary Supp (D) as seen in the proof of Lemma 2.4. If ¢° is divisorial, then the assertion is obvious to
see. On the other hand, if g% is a flip, then E° is composed of the flipping curves, say E% = v; U- - -U~,,
where each 7; is a flipping curve. Since D -7; = 0, we have D! ~7]7|' = 0, where ’y;_ is the flipped curve
corresponding to ;. Hence either 7]7" ND'=0or ’yf C Supp (D') occurs. Assume that some of the
flipped curves, say 7;;7 e ,'y]‘t, are not contained in Supp (D!). Then X is embedded into T in such
a way that 7' — X = Supp (Dy) U ’yj+1 u---u 'y]‘»:, which is not of pure codimension one. This is a
contradiction. Thus all flipped curves are contained in Supp (D), so we have X! = X as desired.

(2) Assume that t° > 0. Then t° = 1/2, D -1° = 1 and ¢° is a divisorial contraction with the
exceptional divisor EY satisfying (E®, E%|go) = (P? Op2(—1)). If E° is contained in Supp (D), then
X1 = X obviously. On the other hand, if E® is not contained in Supp (D), the equality D -1° = 1
means that D meets E° in such a way that D|go € |Op2(1)|. Then it is not difficult to see that X is
obtained as a half-point attachment to X' of (1, 1)-type and X! is an open affine subset of X such that
X—-X'=A? O

Concerning the log Kodaira dimension, we obtain the following:
Lemma 2.6 x(T'; K71 + D) = x(T; K7 + D) = ®(X).

Proof. We shall prove the assertion only for the case §(X) > 0. The assertion for the case ®(X) = —c0
also is proved by the similar argument, so we shall omit the detail. As in the proofs of the previous
lemmas, we consider according to the value of 7.

CASE: t° =0

In the case where ¢° is a flip, it is clear that members of |m(Kr + D)| correspond to those of
|m(Kp1 + DU)| bijectively for all m € N since ¢° : T--- — T is an isomorphism in codimension



one, hence we have x(T; Ky + D) = &(T"; Kr1 + D'). In the case where ¢° is divisorial, we have
(go)*(KTl + DY) = K7 + D — aE°, where a@ > 0 is the discrepancy of E, i.e., a := a(E®; K71). Hence,
for any sufficiently large positive integer m € N with ma € N, maE? is contained in the fixed part of
|m(Kr + D)|. Therefore, we have k(T; K1 + D) = (T"; K71 + D') as desired.

CASE: t° >0

Thent® =1/2, D-1° =1 and (go)*(KTl + DY) = K7+ D— E°. Hence mE" is contained in the fixed
part of [m(K7 + D)|. Therefore x(T"; K71 + D) = x(T; K7 + D). Thus we obtain the assertion. O

Summarizing the above mentioned arguments, we have:

(i); T : a normal projective threefold with only Q-factorial terminal singularities.
(i); H' : a nef, Cartier linear system on T™.

(iif), D' : the proper transform of D on 7", which is a member of H! and &(T"; K71 + D') = &(T; K7 +
D) = ®(X).

(iv), S1 : the proper transform of S on 7", which is a smooth member of H!.
(v); t° : the rational number with 0 < ¢° < 1 such that X' + t° K71 is nef.

(vi); X' :=T"— Supp (D') : an open affine subset of X. X is obtained as a half-point attachment to
X1 of (1,1)-type and X — X! = A? unless X = X! (cf. Definition 1.1).

In order to proceed inductively, assume that we obtain a birational map ¢*=' : 7%~ ... — T 5o that
the following properties (i);, (ii),, (iil);, (iv);, (v); and (vi), are satisfied:

2
(1); T% : a normal projective threefold with only Q-factorial terminal singularities.
(i), M : a nef, Cartier linear system on 7%.

(iii); D* : the proper transform of D'~ on T which is a member of H' and &(T%; Kp: + D) =
&(T1; Kpio + DY) = B(X).

(iv); S’ : the proper transform of S~! on T%, which is a smooth member of H'.
(v); =1 : the rational number with 0 < #~1 < 1 such that H® +¢'=1 K7: is nef.

(vi); X" :=T"—Supp (D) : an open affine subset of X*~!. X?~1 is obtained as a half-point attachment
to X of (b~ ki~1)-type for some b= > 1, 1 < k=1 < b7 and X1 — X? = C T 1% ¢ Al
unless X~ = X (cf. Definition 1.1).

Lemma 2.7 Assume that the conditions (1),, (ii),, (ii1);, (iv);, (v); and (vi); are satisfied. Then:

(1) If K(X) = —oo, then Kpi + D' is not nef and one of the following (a) and (b) holds:

(a) T® has the structure of a Mfs,

(b) there exists a birational map gt T — T+ such ‘that T+ and the proper transforms
HF = (¢°), (HY), D= (g°), (D), S+ = (¢°),(S?) satisfy the properties (Digrr ()41,
(iii)i-}-lﬂ (iV)i+1 (V)i+17 (Vi)i-l—l‘

(2) If K(X) > 0 and Kpi + D is not nef, then the same conclusion as in (1)-(b) holds true.
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Proof. Note that D’ is nef and big by the similar reason as in the proof of Lemma 2.1.

(1) Assume that ®(X) = —oco. By the inductive hypothesis (iii);, we have k(T%; Kpi + D') = —cc.
If Kpi + D' is nef, then it follows that |m(Kpi + DY)| # @ for m >> 0 with r!|m by the Non-
vanishing Theorem (cf. [Ko-Mo98, Theorem 3.4]), where r* € N is the Gorenstein index of T%. This
is a contradiction to x(T%; Kp: + D) = —oco. Thus Kp: + D' is not nef. We put # := sup{u €
Q; D'+ uKyp: is nef}, which satisfies 0 < ' < 1 Note that '~ <!, Then there exists an extremal ray
Rl = R4[lI!] C NE(T*)N{D! + ' Kyp: } (cf. [Ke-M-M94]). Let gt T .. — T+ be the rational map
associated to the ray Rf. Assume that g¢ does not yield a Mfs. Then ¢’ is either a divisorial contraction
or a flip. Let H!*! (vesp. D't Si*1) be the proper transform on T%*! of H! (resp. D!, S'). We
consider according to the value of #, separately.

Then D?-{* = S*.[* = 0. Since the complement T% — Supp (D) = X! is affine, the equality D* - I} =0
implies that ! C Supp (D?). Hence the exceptional set, say E, of g* : T? ... — T**1 is contained in the
boundary Supp (D?). The similar argument as in the proof of Lemma 2.4 ascertains that H!*! is a nef,
Cartier linear system on 7%t! containing S't' as a smooth member. Thus we can verify the conditions
(1);41, (i);41, (iv);4, are satisfied. The property (v);,, is obvious as Hit! is nef. In the case ¢' is
a divisorial contraction, it is clear that X**!' = X? because the exceptional divisor E? is contained in
Supp(DZ) Moreover, it follows that (9 ) (Kpit1 + DY) = Kpi+ D' —aE? | where a := a(E*; KT1+1) >0
is the discrepancy of E?. Hence we can easily see that ff(TH'l Kpig —|—DZ+1) = &(T%; Kpi+ D) = ®(X).
Thus we obtain (iii);,; and (vi); ;. On the other hand, in the case where ¢* is a flip, it follows that all
the flipping curves (resp. the flipped curves) are contained in Supp(Dl) (resp. Supp (Di*1)) by the same
reason as in the proof of Lemma 2.5. Hence X't = X*. Since ¢¢ : 7% ... — T'+! is an isomorphism in
codimension one, the members in |m(Kp: + D?)| correspond to those in |m(Kypi1 + Dt1)| bijectively.
Therefore k(T+Y; Kpizr + DY) = k(T Kp: + DY) = ®(X), and we obtain (iii) , as desired.

Then we have D* - I! = S* . I} = #{(—Kpi - I') < (=K7pi - I'), so (=Kpi - ') > 1 and ¢’ is a divisorial
contraction of (2,0)-type (cf. [C-K-M88], [C-F93]). Let E® denote the exceptional divisor of g and
put pitt = g{(E?). Let B := S'N E® be the intersection curve. Note that since B is ample on
E', B is connected. For any irreducible component By C B, we have (Kgi - Bo)gi = (Kpi + D?) -
By < 0. Hence By = B is a (—1)-curve on S°. By Proposition 2.1, we know that ¢¢ : 7% — Tit!
is realized as the weighted blow-up at pit! € T+l with wt(z,y,z) = (1,1,b%), where (z,y,z) are
the suitable local analytic coordinates around p't' and b € N. Moreover, we have S* - I = 1 and
(—=Kpi - 1)) = 14 (1/b%), where I! is a ruling on E? = P(1,1,b) = [Fy: . Hence o= bl /(b + 1).
By the similar argument as in the proof of Lemma 2.4, it follows that Ht! is a nef, Cartier linear
system on T%*! containing S*! as a smooth member. Thus we obtain the properties (i)

i1 (Vi)i+

i+1° (“)z+1’
(iv);;,- Note that (g N (HAY 4t Kps) = HP 4+ Kpi. Hence Mt 48 K. is nef, which is the property
(v);41- By the construction, we have (g' ) (Kpisr + DY) = Kpi + D' — E*, so we can easily see that
k(T Kpita 4+ DY) = k(T%; Kpi + DY) = ®(X), the property (iii); - IF E? is contained in Supp (D?),

then Xi*! = X obviously, hence we have (vi) On the other hand, we claim the following:

i1
Claim. If E* ¢ Supp (D?), then X' is obtained as a half-point attachment to X'*! of (b, k')-type for
some 1 < k' < b (cf. Definition 1.1).

Proof of Claim. Tt is not difficult to see that (g ) (D) = D' + b E* and D!
ruling on £ = Fp: . Assume that D?|g: is an irreducible curve which does not pass through the vertex

v € B = Ty o for b® > 2. Then the complement X* = T% — Supp (D?) has the terminal singularity
v € X of analytlc type —(1 1,—1). This is a contradiction as X? is smooth by noting the conditions
(vi);, -+, (vi);. Thus we can write D|pi = Zf;l m;l; with Zf;l m; = b® for some 1 < k% < b?, where

[;’s are the mutually distinct rulings on J = [Fy: 9. Thus we obtain the assertion. O

pi = bl', where I/ is a

Thus we obtain the property (vi),, ;-
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(2) Assume that ®(X) > 0 and Kpi + D is not nef. We put ¢! := sup{u € Q; D' + uKpi is nef}
as above. Note that 0 < # < 1 and #~! < #!. Then there exists an extremal ray R' = R [l!] C
NE (TH) n {D? —+-tiKTl}l (cf. [Ke-M-M94]) and we denote by g* : T% ... — T*! the rational map
associated to this ray R’. By the same argument as in Lemma 2.3 (2), it follows that ¢’ is birational.
Then we can verify the assertion (2) by the same argument as in the proof of (1). D

Hence we obtain the following result by the inductive argument:

Lemma 2.8 We obtain the following diagram:

() (T,H) -2 — (T 1Y) D (T Y (T ) = (T MY,
where each g¢ : T® - — T**1 is a birational map associated to the extremal ray R' = R [l'] contained
in NE (T%) N {H’ +tiKTz}l, and T*, H', D', S satisfy the conditions (i);, (ii);, (iii);, (iv);, (v);, (vi);-

More precisely, the following assertions hold true:

(1) Let E' C T be the exceptional set of g : T" - - — T*t1. Then g* is described as one of the following:

(a) t* =0 and ¢' is a flip, E* C Supp (D') and £t ¢ Supp (D), where E' (resp. Ei+) s a
union of all flipping curves (resp. flipped curves).

(b) # =0 and ¢' is a divisorial contraction such that E* C Supp (D).

(c) ¢* is a (2,0)-type divisorial contraction which contracts an exceptional divisor E' satisfying
El EHg) 2 (Fyi o, —1%) to a smooth point p'tl .= ¢*(E"), where I' is a ruling on the cone

) E 5,0 Y4 p g ’ g

A= Fyig- gt T — T is realized as the weighted blow-up at p'+! € T+ with wt(z,y, z) =
(1,1,b%) for some bZ € N, where (z,y, z) are the local analytic coordinates around pitl e it
In this case, t* = b* /(b + 1).

(2) If K(X) = —oo, then TV has the structure of a Mfs.

(3) If "(X) >0, then Kps + D' is nef and x(T"; Kpy + D') = ®(X), where D' is the proper transform
of D on TV.

Proof. By Lemma 2.7 (and the proof of it) and the fact that there is no sequence consisting of infinitely
many flips (cf. [FA]), we obtain the desired diagram. O

We have the following concerning the nef value of H! on the right terminal object T in (x).
Lemma 2.9 Let t! :=t" := sup{u € Q;H' + uKypy is nef} be the nef value. Then:
(1) If R(X) = —oo, then 0 < t! < 1.
(2) IfR(X) >0, then t! > 1.

Proof. (1) Assume that ®(X) = —oo. Then T% has a structure of a Mfs, say = : T — W. More
precisely, this Mfs 7 is obtained as the contraction of the extremal ray, say R' = R [I'], contained
in NE (T") n {H! —}—tﬁKTn}l. If #+ > 1, then Kpy + D! is nef and we have |m(Kps + D')| # 0 for
m >> 0 with index(7")|m by the Non-vanishing Theorem (cf. [Ko-Mo98, Theorem 3.4]). This is
absurd as k(T%; Kps + H') = —oo (the property (iii),). On the other hand, if ## = 0 then we have
H' 1" = DV . " = 0 by the choice of the extremal ray R!. Since T" — Supp (D') = X7 is affine, the
equality D'.I! = 0 means that I! is contained in Supp (D). Since 7 yields a Mfs, this is absurd obviously.
(2) The assertion (2) is clear because Kpy + H! is nef. O

Remark 2.1 Concerning the nef value #* = sup{u € Q;H'+uKyp: is nef} for 0 < i < r, the inequalities
0<t® <t <... <! <1 hold true by the construction of the diagram (). Let s € {0,1,---,r} be
the least integer such that ¢* > 0. In case s < r, g' : T® — T'+! is realized as the weighted blow-up at
the smooth point pit! := g¢(E?) € T+! with the weights wt(z,y,z) = (1,1,b), where (z,y, 2) are the
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suitable local analytic coordinates around pi*! € Ti*! and b* € N. Note that #' = b'/(b’ + 1). Hence
the inequalities 1 < b* < b+ < ... < b"! hold true. Furthermore, we have X = X' = ... = X% O
Xt 5 ... D X" so that X? is obtained as a half-point attachment to X**! of (bi,]ci)—type for some
1 < k' < b (cf. Definition 1.1) and X? — X?+! = CF" 1% 5 Al unless X? = X+! for s < < r. If
®(X) = —0c0, then we reach T with the structure of Mfs. We can, in fact, restrict the possibility of the
weights wt = (1, 1, b?) of the weighted blow-up g* : T® — T*+! more concretely according to the type of
Mfs on T* (cf. Lemmas 3.2 and 3.3).

R

By combining Lemma 2.8 with Remark 2.1, we obtain Theorem 1.2.

When we prove Lemmas 2.4 and 2.7, we make use of the following result. This result may be well
known to the experts but we were not able to find a reference. Hence we shall give the proof for the
convenience of the reader.

Proposition 2.1 Let f: U — U be the divisorial contraction from a normal projective threefold U with
only Q-factorial terminal singularities, E the exceptional divisor of f. Assume that (—Ky -C) > 1 for
any rreductble curve C' on E contracted to a point via f, and there exists an irreducible surface A on U
meeting F in such a way that B := ANE is a (—1)-curve on A. Then F is contracted to a smooth point,
say p = f(E) € U and f is realized as the weighted blow-up at p with weights wt(z,y,z) = (1,1,b),
where (z,y,z) are the suitable local analytic coordinates at the point p € U and b € N. In particular,
A-E = B (scheme-theoretically), E = P(1,1,0) =2 Ty, (—Ky -1) =14+ (1/b) and (A-1) =1, where l is

a ruling on the cone F =Ty q.

Proof. First of all, note that f is of (2,0)-type as (—Ky - C) > 1 for any irreducible curve contracted
to a point by f (cf. [C-F93, (2.1)Lemma]). Put p := f(E) € U and A := f(A). By the assumption,
fla : A — A is the contraction of the (—1)-curve, say B := AN E. Hence A is smooth at p. Then,
by [Me97, Lemma 1.7] (see also [FA, Lemma 5.3]), p is a smooth point of U. Hence f : U — U is
realized as the weighted blow-up at the point p € U with weights w := wt(z,y,2) = (1, a,b), where
(z,y, z) are the suitable local analytic coordinates at p € U and a, b are the positive integers such that
ged(a, b) = 1 by the result due to Kawakita [Ka01]. We may and shall assume that a < b. We can write
Ky = f*(Kg)+ (a+b)E, where E 2 P(1,a,b). Let h € (/’); = (C[[x, y, z]] be the local equation of A in
the neighbourhood of p € U. Since A is smooth at p, h contains a linear term. Hence the multiplicity
m := w-mult,(h) € N of A at p with respect to the weights w = (1, a,b) satisfies m < b. We can write
ff(Ay=A+4+mE and Ky = (Ky + A)|a = (f|A)*(KK) + (a4 b—m)E|a by the adjunction. Hence it
follows that a + b — m = 1 and E - A = B scheme-theoretically. Thus we have m =a +b— 1 <b. This
implies that @ = 1, and f : U — U is the weighted blow-up at p with weights wt(z,y,2) = (1,1,b) as
desired. The remaining assertions are easy to see. O

Remark 2.2 Concerning Proposition 2.1, the statement stated in [Me02, Proposition 3.6, Case 3.9] is
not correct. In fact, M. Mella asserted, under the same conditions as in Proposition 2.1, that f: U — U
is the ordinary blow-up of U at the smooth point p € U.

3 The Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3. Once we have obtained Theorem 1.2, the essential part of
the proof is contained in [Me02, Section 5] (see also [C-F93]). Let X be a smooth affine threefold with
log Kodaira dimension ®(X) = —co. Assume that X is embedded into a smooth projective threefold T
so that the reduced boundary divisor D is SNC and satisfies the condition (7). Then, by Theorem 1.2
we can construct the following diagram (x):



13

such that T' has a structure of a Mfs, say 7 : T" — ¥ which is obtained as the contraction of an
extremal ray R = R [I'] C NE (T") contained in {H" + tﬁKTu}l, where H! is the proper transform of
M on TV and ! is the nef value associated to H! (cf. Lemma 2.9).

Lemma 3.1 The pair (T" H") is described as one of the pairs stated in Theorem 1.3 (1).

Proof. First of all, note that the nef value ¢! satisfies 0 < t! < 1 and H! contains a smooth member S!
(cf. Theorem 1.2, Lemma 2.9). Then we can obtain the assertion by the same argument as in the proof

of [Me02, Theorem 5.3]. O

Thus we obtain Theorem 1.3 (1). We shall prove the second assertion.

Lemma 3.2 We have the following concerning the process of the weighted blow-up g* : T® — T+ and
the weights wt = (1,1,b%) of g* fors <i<r:

(1) If m: TV — W is of Cy-type, then b® =1, i.e., ¢* is the ordinary blow-up at a smooth point. X is
obtained from X' via the composite of half-point attachments of (1,1)-type and X — X! is a union
of several affine planes A? unless X = X!,

(2) If 7 : TV — W is of Di-type, then b = 1, i.e., g' is the ordinary blow-up at a smooth point. X is
obtained from X' via the composite of half-point attachments of (1,1)-type and X — X' is a union
of several affine planes A> unless X = X1,

(3) If 7 : TV — W s of Ds-type, then s = r, i.e., X = X',

(4) If 7 : T" — W is of Dj-type, then either b = 1 or b = 2 holds true. X is obtained from X' via
the composite of half-point attachmenis of (1,1)-type and (2, k)-type (k = 1,2) and each irreducible
component of X — X' is isomorphic to either A> or C* x A unless X = X1,

Proof. Note that ¢' : T® — T'*! is the weighted blow-up at smooth points with weights wt = (1,1, b%)
for some b* € N and #* = b°/(b + 1) > 1/2 for s < i < r. Furthermore, the inequalities 0 < t* < --- <
t"=1 <" < 1 hold true (cf. Remark 2.1).

(1) Let us consider the case where 7 is of Cy-type. Then #” = 1/2. Hence we have t* = ... = ""1 =
tr=1/2,ie, bl =1fors<Vi<r.

(2) We can obtain the assertion (2) by the same argument as in (1).

(3) Let us assume that 7 is of Da-type, i.e., a PZbundle structure over a smooth curve W. Then
t"=p=1/3. If s < r, then t* = b°/(b* + 1) > 1/2. But since t* < ¢" = 1/3, this is a contradiction.
Hence s = r and X = X! as desired.

(4) If 7 is of Dj-type, we have t" = p = 2/3. Since ' = b'/(b' + 1) < #" = 2/3, it follows that b is
equal to 1 or 2. O

We, furthermore, have to consider the case where T" is a Q-Fano threefold with Q(Tﬁ) = 1 to complete
the proof of Theorem 1.3 (2). Since the arguments are very similar to each other (i) ~ (xii) in Theorem
1.3, we shall consider the case (i) (7%, H") = (P(1,1,2,3), O(6)) only. Then we have the following:

Lemma 3.3 Assume that (THHY) = (P(1,1,2,3),0(6)). Then the weights wt = (1,1,b%) of the
weighted blow-ups g' : T* — T+ for s < i < r satisfy the inequalities 1 < b* < - < b1 < 6. X is
obtained from X' via the composite of half-point attachments of (b, k)-type wn‘/z 1<h<6,1<k<b
and the corresponding irreducible component of X — X' is isomorphic to C*=1)* x Al unless X = xt.

Proof. Since (T*, H') = (P(1,1,2,3),0(6)), we have " = 6/7. On the other hand, the inequalities
0 <t < <7 <" =6/Tand ## = b'/(b' + 1) (s < i < r) hold true by the construction (cf.
Theorem 1.2). Hence we have b < 6. The remaining assertion is easy to see. O

By performing the similar argument as above to the other situations (ii) ~ (xii) in Theorem 1.3, we
finally complete the proof of Theorem 1.3 (2).
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4 The Proof of Theorem 1.4

In this section, we prove Theorem 1.4 as a three-dimensional generalization of Kawamata’s result (cf.
Theorem 1.1 (2)). Let X be a smooth affine threefold with log Kodaira dimension ®(X) = 2. Assume
that X is embedded into a smooth projective threefold 7" in such a way that the reduced boundary
divisor D is an SNC divisor satisfying (). Then, by Theorem 1.2, we obtain the following diagram (x):

g° 9" g° ! g
(*)T::T0~-~—>T1~~-—>T2~-~—> ...... st s L
gs+1 gr—l
. Ts-l—l AN T5+2 I N TT‘—l N TT‘ —. Tﬁ)

so that Kpy + D' is nef with x(T%; Kpy + D') = 2, where D' is the proper transform of D on T%.
Concerning the complement X? := T% — Supp (D?), we have X = X0 =~ X! =~ ...~ x¢ 5 X+l 5
DX D X' = X and XP — X = -0« Al for some 1 < 3 kP < b unless X? = Xt for
s < i< r (cf. Theorem 1.2, Remark 2.1).

Lemma 4.1 Bs|m(Kp: + D')| = 0 for m >> 0 with t|m, where t := index(T") is the Gorenstein index
of T!.

Proof. Note that D! is nef and big by the same reason as in the proof of Lemma 2.1. Since ¢(Kps + D)
is a nef, Cartier divisor and ¢(Kps + D') — Kpy = (t — 1)(Kps + DY) + D' is nef and big, it follows
that Bs [m(Kps + D")| = 0 for m >> 0 with ¢|m by the Base Point Freeness Theorem (cf. [Ko-Mo98,
Theorem 3.3]). O

Let ® : T" — W be the Stein factorization of the morphism defined by the base point free linear
system |m(Kps + D')|. Since ®(X) = w(T%; Kpy + D') = 2, it follows that W is a normal projective
surface. The general fibers of ¢ are one-dimensional.

Lemma 4.2 The restriction of ® : T — W onto the open affine subset X!'(C T") yields a C* -fibration.

Proof. Let C C W be a general smooth curve and let G := ®*(C) be the pull-back. TLet I be a
general fiber of ®|¢ : G — C. Then (-Kg )y = (—=Kps - 1) = (D' - 1) > 0 and (I*), = 0. If
(D' - 1) = 0 for a general fiber [, then ! must be contained in Supp (D') by noting that the complement
X' = T% — Supp (D') is affine. But this is obviously absurd. Therefore, we have [ = P! and (D' -1) = 2.
This implies that a general fiber I meets Supp (D') in the distinct two points transversally. (Note that
as we work over the field of complex numbers C, the case where a general fiber { of ® meets Supp (D')
in a single point of order two does not occur.) Hence we have the assertion. O

Let ¢ := ®|xs denote the restriction of ®, which is a C*-fibration by Lemma 4.2.
Lemma 4.3 ¢ can be extended to a C*-fibration on X.

Proof. Tt is enough to show that ¢ is extended to a C*-fibration on X* = T — Supp (D*) by noting that
X = X* (cf. Theorem 1.2, Remark 2.1). We put g :=g""to.--0g®: 7% — T where g : T* — T+l is
the divisorial contraction with the exceptional divisor E? so that (E?, E|pi) = (Fpi o, —fors<i<r,
where I! is a ruling on the cone E? = Fyi g. Let ® :=®og:T*® — W be the composite which gives rise
to a P-fibration induced by a P'-fibration ® on 7!. It is easy to see that D* - I’ = D! .| = 2, where
I' is the proper transform of a general fiber I = P! on T®. Hence the restriction ¢’ := ®'|x. yields a
C*-fibration on X* =2 X. O

Thus we complete the proof of Theorem 1.4.
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