HOLOMORPHIC CURVES IN ABELIAN VARIETIES AND
INTERSECTIONS WITH HIGHER CODIMENSIONAL
SUBVARIETIES
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ABSTRACT. The purpose of this paper is to prove the following: If the image
of a holomorphic map f from C to an Abelian variety A is Zariski dense,
then the counting function with respect to f and a subvariety Z of A with
codim(Z, A) > 2 is very small in the sense of Nevanlinna theory. And a similar
result holds for the differential of any order of the map f.

As an application we prove the truncated second main theorem: If the
image of a holomorphic map f from C to an Abelian variety A is Zariski
dense, then the following inequality

T(r,£,D) < NO (v, f,D) + €T (r, f,L) //
holds for any € > 0, effective reduced divisor D C A and ample line bundle
L on A. Here, T (r, f, D) stands for the height function and N) (r, f, D) for
the truncated counting function as usual in Nevanlinna theory.

As corollaries, we prove a Bloch-Ochiai type theorem for a ramified cov-

ering space of an Abelian variety and an uniqueness theorem for holomorphic
maps from C to Abelian varieties.

0. INTRODUCTION

The purpose of this paper is to consider the value distribution theory of holomor-
phic curves in Abelian varieties. Our main idea is to estimate the intersection numbers
between holomorphic curves in Abelian varieties, or their jet lifts, and subvarieties
of codimension greater than one in the Zariski closures of these curves. One of our
main results asserts that such intersection numbers are very small if the holomorphic
curves are non-degenerate (Theorem 2.5.1). It seems that estimation of the intersec-
tion numbers between holomorphic curves and higher codimensional subvarieties is
an interesting problem in the value distribution theory. And this problem is closely
related to the conjectural second main theorem in Nevanlinna theory. In this paper,
we treat the case that the target spaces are Abelian varieties, and give a satisfactory
answer in this case. Though the general cases are open problems, the cases that the
target spaces are algebraic surfaces and holomorphic curves are tangent to foliations
of that surfaces were considered by M. McQuillan [M98] and M. Brunella [Br99]. The
present paper is inspired by these works.
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As applications of our approach, we treat two topics in Nevanlinna theory of holo-
morphic curves in Abelian varieties: the truncated second main theorem (Theorem
3.1.1) and the unicity problem (Corollary 3.2.3).

Recently, Y.T. Siu-S.K. Yeung [SiY97] [SiY00], R. Kobayashi [Kob00], McQuillan
[M99] and J. Noguchi-J. Winkelmann-K. Yamanoi [NoWY02] established the second
main theorem for holomorphic curves into Abelian varieties. (The last paper also
treats semi-Abelian cases.) Using the terminology of Nevanlinna theory, this second
main theorem states that the counting functions are bounded below by the height
functions up to some (very) small functions. Then one of the most interesting and
important problems is to truncate counting functions. The above papers [SiY00],
[NoWYO02] also treat this problem (see also [Kob91b]). One of the advantages of
truncating the counting functions is that it enables us to control the ramification
of holomorphic curves. As a consequence, we can obtain the second main theorem
for the case that the target spaces are ramified covering spaces of Abelian varieties
(Corollary 3.1.11), and it gives a generalization of Bloch-Ochiai’s theorem (Corollary
3.1.14).

The unicity problem treats how to determine holomorphic curves uniquely by
the data of intersections with given divisors. R. Nevanlinna himself considered this
problem for meromorphic functions on the complex plane C as an application of
his second main theorem. After his work, there has been many important works
to improve this. But as far as the author knows, the unicity problem for the case
where the target spaces are Abelian varieties has not been so much considered before,
except for Y. Aihara’s recent work [A00]. Our result (Corollary 3.2.3) may give some
sufficient answer in this case.

Now we briefly mention our method to estimate the intersection numbers between
holomorphic curves into Abelian varieties and higher codimensional subvarieties. Our
method uses the jet bundle. To consider the value distribution of holomorphic curves
by using jet bundles, we need two steps.

(1) To consider the properties of jet lifts of holomorphic curves.
(2) To consider the global structure of jet spaces and combine with above properties
of jet lifts to get results for the original holomorphic curves.

In this paper, (1) is considered in Proposition 2.1.1, which is given roughly as follows.

Let V be an algebraic variety and x € V be a point. Let f : A — V be a
holomorphic curve from some open disc A C C to V. Assume a € A and f(a) = z.
Then on the I-th jet space J;(V) 2V, there is some infinitesimal neighborhood of
p, ! (x) with which the I-th jet lift j;(f) of f intersects with multiplicity greater than
1+ 1 at the point a. And the size of this infinitesimal neighborhood is not so big
and is controlled by I. (The precise definitions of these terminologies are given in the
section 1.)
In our Proposition 2.1.1, we consider a more relative form of this to apply to results
such as the truncated second main theorem.

The step (2) above uses some natural properties of Abelian varieties, such as that
the jet spaces of Abelian varieties have splitting, and that the Abelian varieties act
on the jet spaces. Also, the structure theorem for the Zariski closures of the jet lifts



of holomorphic curves into Abelian varieties (Lemma 2.4.1) makes the situation very
simple. This structure theorem is essentially due to Siu-Yeung [SiY96] and Noguchi
[No98].

The author is very grateful to Professor R. Kobayashi for many valuable and
inspiring discussions, in particular suggesting that the truncation level of the second
main theorem for Abelian varieties may be one. He is also very grateful to Professor
J. Noguchi for many helpful and inspiring discussions about the early version of the
idea of this paper. He thanks the referees very much for carefully reading the paper
and many comments, which substantially improved this paper.

1. PRELIMINARIES

1.1. Derivations. Let k be aring and let R be a k algebra. Let M be an R module.
We call a k linear map D : R — M to be a k derivation if D satisfies the rule
D(ab) = aD(b) + bD(a) for a,b € R.

In case M = R, we call D to be a k derivation of R and the set of k£ derivation of R
is denoted by Der(R).
Let D € Deri(R) and set D° to be Do Do ---0D. Then D?® satisfies the Leibniz
_—

s times
rule

8

(1.1.1) D*(ab) =) (j) D'(a)D*"i(b) for a,b € R,

i=0

where we set D° to be the identity map of R and (j) denotes the binomial coefficient.
Let I C R be an ideal of R and let a € R be an element of R. We define the index

Ind;,p(a) of a with respect to the ideal I and the derivation D to be

min{k € Z;D*(a) & I}, Fk such that D*(a) ¢ I

Ind =
ndr,p(a) {+oo D*(a) € I for all k

where we set D!, D72 .. to be the 0 map of R. Then we have Ind; p(a) > 0 and

Ind;p(a) >0<=a €l

We have also Ind;,p(0) = +oco. Let J C R be a subset of R. We define Ind; p(J) to
be
IndI,D(J) = Inél]l IndI’D(a).

For an integer s > 0, set Is = {a € R;Ind; p(a) > s+ 1}. Then by the Leibniz
rule (1.1.1), we have
Lemma 1.1.2. I, C R is an ideal of R, and form a descending sequence
I=Iy>DLD>---DI;,D>---.

Let R be a k algebra and let R’ be a k' algebra. Let ¢ : R — R’ be a ring
homomorphism. For an ideal I C R of R, we define the ideal ¢! (I) C R’ of R’ to
be the ideal generated by (I). Let D € Dery(R) and D’ € Dery (R') be derivations
such that D' o p = ¢ o D. Let J C R be an ideal. Then we have



Lemma 1.1.3. Ind;,p(J) < Ind,up pr (PH(J)).

Let k¥ — k' be a ring homomorphism and let D € Derg(R) be a derivation. We
denote Dy € Dery (R ®y, k') for the derivation obtained by the extension of the
constant ring; i.e. Dy = D ® idg.

1.2. Nevanlinna Theory. Let X be a smooth projective variety and let D C X be
an effective divisor. Let f : C — X be a holomorphic curve such that f(C) ¢ supp D.
We define the counting function of D by

N f) = [ SELDOCO)
1
where C(t) = {z € C; || < t}. Note that f*D N C(t) is a divisor on C(t) with finite
supports, hence its degree deg (f*D N C(t)) makes sense.
Let L(D) be the associated line bundle for D. Let || - || be a Hermitian metric of
L(D) and let sp be a section of L(D) such that D is the zero divisor for sp. We
define the proximity function of D by

o 1 de
m@rf,D)= [ log—>—
05,00 = [ 8 ey
Let L be a line bundle on X and let || - || be a Hermitian metric of L. We define

the height function of L by
" dt X
T s 0 = [ [ uro(L D) +00),
1 c(t)

where curv.(L, || - ||) denotes the curvature form of the metrized line bundle (L, || - ||).
We define the height function of D by

T(r, f,D) =T (r, f, L(D)) + O(1).

Then the equality T (r, f, D) = N (r, f, D) + m(r, f, D) + O(1) for a holomorphic
curve with f(C) ¢ supp D is fundamental in Nevanlinna theory and called as First
Main Theorem [NoO90, p.180]. Since we have m (r, f, D) + O(1) > 0, the first main
theorem implies N (r, f, D) < T (r, f, D) +O(1) which is called as Nevanlinna inequal-
ity [NoO90, p.180]. These notations are standard in Nevanlinna theory. For more
information about these functions, see [NoO90].

In this paper, we consider the counting function in the more general case; i.e. for
the case that f : C — V is a holomorphic curve to an algebraic variety V and Z C V' is
a closed subscheme with f(C) ¢ supp Z. In this case, we define the counting function
N (r, f, Z) as follows.

First let V be an affine algebraic variety and let Z C V be a closed subscheme.
Let f: A — V be a holomorphic curve from some open disc A C C to V such that

f(A) ¢ suppZ. Let H(A) be the ring of holomorphic functions on A. Then the
usual derivation - defines the C-derivation &= € Derc(#H(A)). Let Iz C I'(V,0v)
be the defining ideal for Z C V. The holomorphic map f naturally defines a ring
homomorphism

[ :I(V,0v) = H(A).



Let a € A be a point and let (a) C H(A) be the ideal associated to the point a; i.e.
(a) = {p € H(A)] p(a) = 0}.
We define the multiplicity of the intersection of f and Z at a by
multe f - Z = Ind,) ¢ (f)'12).

Next we consider a general algebraic variety V. Let f : A — V be a holomorphic
curve. To define mult, f - Z, take an affine neighborhood U C V of f(a) and take a
small disk a € A" C A such that f(A’) C U. We define

multa f - Z = multa (f|A’) ° (ZlU)7

where f|ar and Z|y denote the restrictions of f to A’ and Z to U respectively. Then
this definition is independent of the choices of U and A’.

Let Z' < Z be a Zariski open subset of Z; i.e. Z' < V is a Zariski open subset
of a closed subscheme. We define the multiplicity by

mult, f - Z, if f(a) € supp Z’
0, if f(a) & supp Z'

Now let f : C — V be a holomorphic curve and let Z' C V be a Zariski open subset
of a closed subscheme Z of V' with f(C) ¢ supp Z. We define the counting function
by

mult, f-Z' = {

u mult, f - Z’
N (7'7 f, Z,) = / Eae(}(t) . f
1

For a positive integer k > 0, we define the truncated counting function by

T min (mult, -Z’, k
N(k) (’I", fv ZI) = / EGEC(t) ( f )dt
1

t
In the case V is a smooth projective variety X, an effective divisor D C X is naturally

equipped with a closed subscheme structure (note that D has one local equation),
and the above two definitions of counting functions coincide each other.

1.3. Jet spaces. Let V' be a smooth algebraic variety and let x € V' be a point of V.
Let f,g : (C,0) — (V,z) be germs of holomorphic mappings from neighborhoods of
the origin 0 € C into V' with £(0) = g(0) = € V. For a positive integer k, we write
£ A g if f(z) and g(z) have the same Taylor expansions in z up to order k for some
holomorphic local coordinate system around x. Then it is easily checked that the
relation “&” is independent of the choice of the holomorphic local coordinate system
around z and defines an equivalence relation on the set {f|f : (C,0) — (V,z)}. Let
Ji(f) denotes the equivalence class of f and set

Je(V)e = {Ge(B)If : (C,0) = (V,2)}.

Then Jj (V) is naturally equipped with complex structure and is isomorphic to
CrdimV  We define a Zariski open subset Ji (V)i of Ji (V). by

Je(V) 8 = {Gr(H)If : (C,0) = (V,z), ji(f) 71(fj1(Constant map to )}



The k—th jet space Jx (V) over V is
T(V) = {J Jk(V)a.

zeV

We set
T (V)8 = | e (V)5®.

z€eV
Then Ji (V') naturally carries the structure of an algebraic variety and Ji(V)™® is a
Zariski open subvariety of Ji (V). In particular, J1 (V') is the tangent space of V. For
convenience sake, set Jo(V) = V. For k > [ we have the natural forgetful morphism
it Je(V) = Ji(V). The morphism py = pg,o : Jr(V) — V is an affine morphism.
Set pr« Oy, (vy = JE. Then we have

Je(V) = Spec Jy
and the natural inclusions
OvCIvCIpC--CIypC-
of the sheaves of algebras over V by the system of morphisms py; : Jp (V) — Ji(V).
Hence J3° = kL>JOJV’° is also a sheaf of algebras over V.

The sheaf Jy° has a canonical derivation d € Derc(Jy° ), which is a collection of C
derivatives d : JE — J"ﬁ“, satisfying the following condition: Let U C V be an affine
open subset and let f : A — U be a holomorphic curve. By the system of jet lifts
Jx(f) : A = J,(U), we have a system of ring homomorphisms ji(f)* : ['(U, J&) —
H(A) which gives a ring homomorphism jo (f)* : I'(U, J5%°) — H(A). Then we have
a following commutative diagram

r, gy =90 qya)
(1.3.1) dl r

rU,Jv°) —— H(A)
which means jo (f)* is a homomorphism of C derivation algebras.
We state the following Proposition from [NoO90, Lemma 6.3.1].

Proposition 1.3.2. Let V be a smooth affine variety. If p1,---,pq4 € I'(V,0v)
(d = dim V') form a local coordinate system around every point of V; i.e. we have
Q%, = Ovdp1 @ -+ @ Ovdepg, we have
L(V,J%) = T(V,0v) & Cldpy, -+ ,dpa, - ,d*p1, -+ ,d* pa).

Let Z C Ji(V) be a closed subscheme. For an integer s > 0, we define a closed
subscheme Z®) ¢ Jk+s(V) inductively in the following manner.

Put Z© = Z. For the step s — s+ 1, let Ly C j"ﬁ"'s be the associated ideal
sheaf of Z®) C Ji4s(V). We define the ideal sheaf Z,(,+1) C Jetetl by

_ k+s+1 k+s+1
Ty =Ly - Ty +dZ,. - Ty

where d : JET* — JET*T! denotes the C derivative. Let ZC+Y) C Jiis41(V) be the
associated closed subscheme of Z,(s+1) C j"}+s+1. Then we have



Lemma 1.3.3. For a holomorphic curve f : A — V and a closed subscheme Z C
Jr (V) with ji(f)(A) ¢ supp Z, we have

multy jrrs(f) - 2 = max ((multq ji (f) - Z) — s,0)

Proof. Put I,y = I'(U,Z,.)) for a suitable affine open subset U C V. By the
definition of the multiplicity, and the equality

Ind(yy 4 (Girs () ) Lper) = Indgyy 2 (oo () (Lpir)),

we have
mult, ji+s(f) - 2 = Ind(a),i (Joo ()" (I 5))
=1Ind ) 4 (Joo (f) (Iz0-1) + dl z(s-1))
= Indy) ¢ (oo (F)" Tgtemn) + Goal£) (AL go—1)))
=Indg,) o (oo (f) (Tz-1)) + £ oo (f) (Tz0-1)))

= max ((multa Jhts—1(f) Z(871)) -1, O) )
where the notation I,s—1) + dI,(.—1) means the subset
{a+b; a€ 1), beEdl 1)} CT(U,Jv°).

Using the above equality inductively, we obtain our lemma. O
By this lemma, we have mult, jx(f) - Z — s < mult, jris(f) - Z*), so the following
corollary is immediate.

Corollary 1.3.4. Let f : C = V be a holomorphic curve with ji(f)(C) ¢ supp Z.
Then we have

N(T:jk(f)7z) _SN(I) (’I“,jk(f),Z) <N (Tajk+s(f)az(8)) .

2. MAIN RESULT

2.1. Let V be a smooth algebraic variety and let P € V be a point. For non-negative
integers k, I, consider the algebraic variety Jx4+;(V) X Ji(V)p as a trivial family

Jk.H(V) X Jk(V)P — Jk(V)P

over Ji(V)p. By the natural projection Ji+i(V)p — Jx(V)p and the closed embed-
ding Jr+1(V)p < Je:(V), we have the closed embedding Ji+1(V)p < Jr4i(V) X
Jk(V)p. Let T C Jg41(V) x Jp(V)p be the image of this embedding. Let T C T
be the Zariski open subset which is the image of the open immersion J 55 (V)p —
Jr+1(V)p =~ T. Under these settings, we have the following proposition.

Proposition 2.1.1. There is a closed subscheme T C Jp41(V) X Jp(V)p satisfying
the following conditions. Here we view T as a family of closed subschemes of Ji+1(V)
over J(V)p.
(1) T is supported by T. Hence, there is a natural closed immersion T — T by
considering the reduced structure of T .



(2) For a holomorphic curve f : A — V with f(a) = P and a € A, the closed
subscheme T, (fya) C Jr41(V) which is a fiber of T over ji(f)(a) € Jr(V)p
satisfies

multg je4i1(f) - ’E'k(f)(a) >1+1.

(3) Let Zr C Ot be the coherent sheaf of Or-ideals defining T — T. Then there

is a filtration of coherent Ot -ideal sheaves

0=, CLi1C--CTiCLo=1Ir
such that all graded pieces Z; [Z;11 (0 < i <1 —1) have Or ~ O1/Ir module
structure; i.e. the action of Ir is trivial. And Z; [Z;11 (0 <4 <1—1) are finite
Or modules whose restrictions to T are rank 1 locally free Orres modules.

Proof. Since the problem is local on V', we can assume V is affine and has a local

coordinate system around P;i.e. there exist global sections z1,--- ,z, € I'(V,Ov) def

A (r =dimV) such that P is defined by 1 =+ =2, =0 and Q}, = Ovdz1 ® - @
Ovdz,. Then by Proposition 1.3.2, we have
AP PV, 78) ~ ARe Cldzy, -+ dee, -+, d°z1, -+, d°z,]
and J,(V) = Spec A®). Put K = I'(Jx(V)p, Oy, (v)p)- Then we have
K=C[d_x1,--- AT, ,d’“—xl,--- ’M]

and
def
B = I'(Jku(V) x Jk(V)onJk_H(V)xJk(V)p) =A% o K.

Put A = N(V, ) = L>JOA(S). Define an ideal I C A ®¢ K by

I=(z1, - ,&r,dz1 —dz1, - ,dzs —dZs,--- ,d"x1 — dFa1,--- ,d*z, — dFz,).
Note that since A ®¢ K = B[djmi]lsisr,k+l<]‘ is a polynomial ring over B, the
ideal BN I of B is also generated as

BNI=(z1, - ,&r,dz1 — day,- - ,dzy — d2y,- - - ,d*x1 — dFs, -+ d*z, — dFx,).

Hence, the ideal B N I is the defining ideal of T; i.e. BN I = Ir.
Consider the natural derivation dx = d ® idg € Derg (A ®c K) obtained by
the extension of the constant ring and define a sequence of ideals

A @cK>I=I0>L DD -
by
I ={ac A @cK;d%(a) e Tfor 0 < s <t} = {a € A ®cK;Indsa, (a) > t+1}.
Note that by the Leibniz rule (1.1.1) (or Lemma 1.1.2), I; is an ideal of A® ®¢ K.
Now let T be a closed subscheme of Spec B = Jx41(V) x Ji(V)p defined by BN I;.
Proof of (1). By the definition of I; and the Leibniz rule, we have I'*! C I, so
(BNI)'*!' ¢ BN I,. Note that BN I is the defining ideal for 7.

Proof of (2). Let f : A — V be a holomorphic curve with f(a) = P. Let
q: K = Kj, (f)(a) = C be the quotient map obtained by

dizj — d'z;i(ji(f)(a)) (1 <i<k 1<j<7).



Then Spec(B ®x Kj, (f)(s)) can be naturally identified with the fiber of
Jk.H(V) X Jk(V)P — Jk(V)P

over ji(f)(a) € Jx(V)p and Tj, (f)a) C Spec(B ®x Kj, (f)(a)) is defined by the ideal
ge(BN1I;). Here g : B =+ B ®k Kj, (f)(a) = A®*D is the quotient map obtained
by taking tensor product of A®*Y) and ¢ : K — K, (f)(a) = C over C. Recall that
B=A%" @c K.

Let ¢ : K — H(A) be the composition of the map ¢ : K = K, (f)(o) = C and
the natural inclusion C < H(A) (considered as constant functions). Now by the two
maps joo(f)* : A = H(A) and ¢’ : K — H(A), we have a map joo (f)* @ ¢ :
A @ K — H(A). Let qa : A™) @ K — A be a map obtained by taking tensor
product of A and ¢: K — K, (f)(a) =~ C over C. Then we have a commutative
diagram

B —Y o A g J=UNOT, gyn)
QB\L QAl id
ARFD v o gl Jeo () H(A)

where ¢ and ¢ are the natural inclusions. This diagram and (1.3.1) imply (joo(f)* ®
q')odrx = Zo(joo (f)*®q') since morphisms ga and joo (f)* commute with derivations.
We have also

(oo ()" 0 )*qn(BN 1) C (jool )" ® ) Li.
Hence by using jeo(f)* 0 ¢ = jr+1(f)*, we have

+1 < Indra, (I) S Ind gy, £ (o () ®¢) (1) (Lemma 1.1.3)
<Ind; (pyewanyt (), 4 (oo (£)" 0 Wiqs(BNI))
< Ind(a),%((jk-‘rl(f)*)ﬁqB(B n1n))
= multa jr+1(f) * T (5)(0)-

Here we use the fact (joo (f)* ® ¢')*(I) C (a) C H(A) which follows from f(a) = P.
Proof of (3). For integers 0 < s < [, let Z, C O7 be the coherent sheaves of
ideals associated to (BN Is)/(BN1I;). Note that (BN I;)/(B N Is41) naturally has a

B/(BNI)~Cld" zli<i<kti,1<j<r ~ (T, Or)
module structure. (This is because the action of BNI C B to (BNIs)/(BNIs41)is
zero.) Since B is a Noetherian ring, (BN I;)/(B N Is41) is a finite B module, hence
also a finite B/(B N I) module. This proves the finiteness part.
Next, we show that the localization (BN Is)/(BN Is+1) ®p/(Bnr) (B/(BNI))z;)
is a free (B/(B N I))(4z;) module of rank 1 for 1 < j < r, which completes the

proof. Here note that (B/(B N I))4z,) denotes the localization with respect to the
multiplicative system generated by dz; and that

Y. Spec (B/(BN D)as,)



is a Zariski open covering of T"°.
Note that by the definition of I; and the Leibniz rule (1.1.1), the composition of
morphisms

g5+
I, > A @ K™%S A oK - (A g K)/I
is a morphism of A(®) ® K modules and the kernel of this morphism is I,;;. Hence
the composition of morphisms
g+t
b :BNIg s I, » A @ K5 A g K 5 (A @ K)/T

is a morphism of B modules and the kernel of §, is B N Isy1.

Claim: For 0 < s <1 — 1, the image d;(BN I,) C (A ® K)/I is contained in
the subring B/(BNI) C (A ® K)/I.

To prove this Claim, we consider a differential operator e € Derx (A ® K)
satisfying

e(a) =0 forae A, e(diz;)=0 for1<i<k,1<j<r

e(dz;)=0 for1<i<k1<j<r, e(dz)=dz; fork+1<i1<j<r
Note that such e uniquely exists. We need one lemma.

Lemma 2.1.2. Let dg ) € Derk (A ® K) be defined inductively by dx,(1) =
dx — e, di (s+1) = di (s)€ — €dg (s)- Then there are a non-commutative polynomial
Ps in s variables and constants as,; (0 < j < s—1) satisfying
s—1 o
dx = Ps(dx 1), dr (s)) + Zas,]‘ek]d{,{.
j=0
Proof of Lemma. We prove this by induction.
The case s = 1 follows by dy, = dk —e+e = dg 1) +e.
Induction step s = s + 1. By di0' = d% - dx, we have

s—1
(2.1.3) di = Podi ), 2 dic o) - di + Y st diE!
=0
s—1 o
= Ps(dk,1), " »dK,(s)) Ak, (1) + Ps(dk,1), - ,dk,(s)) €+ Zas,jesﬂd?—l-
=0

Note that there is a non-commutative polynomial QJs+1 of s + 1 variables satisfying
Py(dr, (1), 5K (s)) € = e Ps(dr, (1), + 5 dic,(s)) T Qs+1(drc, (1), A, (), Are (s +1))-
By e -dx =e- Ps(dk,(1)," " ,dK,(s)) + E;;é as,jes_j+1d§(, we have

s—1

Py(dre,1y,- - dic )€ = edic—»  asie” T di+Qsr1(di,ry, -+ 5 di () dicy(st))-
j=0

10



Hence by combining with (2.1.3), we have

At = Po(dw, 1y, 1 dicy(s) A,y + Qor1(di, 1y, -+ 5 dic(s) dicys41))
s—1 s—1
+e-dx — Zas,jesfﬂ'ld% + Zas,jekidﬂ;l.
=0 i=o

This proves our Lemma. [
By the definition of e,d (1), dk, (2)," - € DerK(A(‘x’) ® K), we have
dK,(S)(dimj) =0for1<s,k+1<1

diy@) e B=A* M gcKforac A¥ @K CB, 1<s<L.
Hence we have dg (5)(B) C B for 1 < s <1, so we have
(2.1.4) Ps(dK,(l), cee ,dK,(S))(B) CBfor1<s<lI.
Note that by the definition of e, we have e(I) C I. So by combining with Lemma
2.1.2, (2.1.4) and the definitions of I, and &5, we get our Claim.

Now for 0 < s <1 —1, we conclude that (BN I;)/(BNIs41) ~ §:(BNI,) and that
8s(BN1) is an ideal of B/(B N I). But note that we have (dz;)*™' € 6,(B N I;) for
1< j <. (This is because zi*' € BN I, and §; (™) = const. x (dx;)**".) These
show that
(BNL)/(BNIL1)) ®p/snn (B/(BNI)) sy = (B/(BNI))z;) for1<j<r
This completes the proof of Proposition 2.1.1. O

We consider the case V' is an Abelian variety A. In this case, we have the canonical
decomposition Ji(A4) = A x Ji and Jp(A)™8 = A x J;*¢. Here J, = C4™4 and
Ji%® C Ji is a Zariski open subset. Let 7 be the closed subscheme

T C Je+i(A) X Jp(A)p = A X Jpq1 X Jg

as in Proposition 2.1.1. Let ¢ : 7 — Ji4: be the composition of morphisms

2nd proj
TL)AXJ]H_l X Jg —p)JJk_H.

Lemma 2.1.5. The morphism q : T — Jr41 18 a finite morphism. And the restric-
tion of the direct image sheaf q.O7 to Ji7; is a rank 1+ 1 locally free OJ;:L module.
Proof. The image of Jxy; < Jr4i1(A) X Jp(A)p defined at the beginning of this
section is given by supp7 = T. And the composition of morphisms
Tt & T 5 Jepr
is the identity map of Ji4;. Now let
0= CL1i1C---CLiCZo=Zr COr

be the filtration of ideals of O as in Proposition 2.1.1 (3). Then the following
quotients of the direct image sheaves

(%) @ Ls[q:ZLs41 for 0 < s <1—1, q.Or/q:To

are all finite 0, ,, modules, and so ¢.O7 is also a finite O, , module. Note that g
is affine. Hence ¢ is finite.
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Restricting the quotient sheaves (x) to J,zi_gl, we get rank 1 locally free O e
modules by the same proposition, which proves Lemma 2.1.5. O

2.2. Nevanlinna’s lemma on logarithmic derivatives. Let A be an Abelian
variety and let Jx(A) (k > 0) be its jet space. Then we have the natural decomposition
Ji(A) ~ A x C*4mA_ Consider the compactification C*dim4 ¢ phdimA and Jet
Hj, C P*4™4 be the boundary divisor of this compactification. Let ay : Jix(A) —
CF dim4 be the natural projection and let @y : Jx(A) — P¥4™4 bhe the composition
of ap : Jp(A) — CkdimA 314 the inclusion CFdim4 _y pkdimA

Proposition 2.2.1. Let L be an ample line bundle on A. Let f : C — A be a
holomorphic curve. Then we have

T (Taa_k o Jk(f)v Hk) < O(lOg(TT (Tv f1 L))) ||7
where the symbol || means that the inequality holds for r > 0 outside a set of finite

linear measure.

Proof. Let dw1, - - ,dwaim 4 be the basis for H°(A, Q}).
For integers 1 <n < k and 1 < m < dim A, put (7, = d"wm o je(f). Then (7, is a
holomorphic function on C. Note that the holomorphic curve ay0ji(f) : C — C* dim4
is represented as {(;,} (1 <n <k, 1 <m < dim A) by using the coordinate system
{d™w} on C*4™4_ Since we have

m (r, {m, 00) < O(log(rT (r, £, L))) ||
(see [N0o0O90, p.230]) and N (r, (s, 00) = 0, we have
T (Ta CZL: OO) =N (Ta CTrrLu OO) +m (Ta CT?H OO) + 0(1)
< OQlog(rT (r, £, L))) ||
for 1 <n<k,1<m <dimA. This implies our inequality
T (r,ax o ji(f), He) < O(log(rT (r, f, L)) ||

(cf. [NoO90, p.185]), which complete the proof of our proposition. [
Remarks. (1) See also [Kob00], where another interesting inequality is obtained

using methods of the integral geometry.
(2) Since ¢, = il ¢k, we have

dzn=1
T (1,1, 00) O (T (1,Ghy00)) + O (log (1T (1, ¢ o)) - (ct: [NoO90, p227]).
Hence we have
(22.2) T (r,ak o jr(f), Hr) < O(T (r,ax 0 ji(f), H1)) + O(log(rT (r, f, L)) ||-
(3) By the fact that T (r, f, L) > O(r?) (cf. [NoO90, p.187]), we have
log(rT (r,f,L)) < €T (r, f,L) ||l for all e > 0.

Hence we have T (r,ax © ji(f), Hr) < €I'(r, f,L) || for all € > 0. Here the symbol
|l means that the inequality holds for » > 0 outside a set (depending on €) of finite
linear measure.
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2.3. Let A be an Abelian variety and let V' be a quasi-projective variety. Let f :
C — A and g : C = V be holomorphic curves. Let L be an ample line bundle on A.

Definition 2.3.1. Take the Zariski closure V' of g(C) in V. Let C(V') be the rational
function field of V’. For & € C(V'), the composition £ o g defines a meromorphic
function on C. Hence it gives the holomorphic curve £o g : C — P'. We say that g is
small with respect to f if the inequality

T (r,§ 0 g,00) < O(log(rT (r, f, L)) |
holds for all ¢ € C(V').

Remarks. (1) Assume that g(C) is Zariski dense in V. Let V — V be a smooth
model of V and let §: C — V be the lifting of g. Then g is small with respect to f
if and only if § is small with respect to f.

(2) Let ¢ : V < S be an immersion to a smooth projective variety S. Let M be an
ample line bundle on S. Then g is small with respect to f if and only if the inequality

T (r,cog,M) < O(log(rT (r, f, L))) ||
holds. (cf. [NoO90, p.185])

Lemma 2.3.2. Keep the notations A,V ,f,g,L. Let My be a line bundle on V. Con-
sider the holomorphic curve f = f x g: C — A xV and a divisor F C A x V which
corresponds to a non-zero global section H°(A x V,w} L®™ ® w3 My) for some integer
n. Here m1 : A XV — A is the first projection and wa : A XV — V is the second
projection. Assume that g is small with respect to f and that f((C) ¢ supp F. Then
we have

N (r,f,F) <nT (r, f, L) + O(og(rT (r, £, L)) ||

Proof. By replacing V by a smooth model V' of the Zariski closure of g(C) in V,
F by the pull-back of the natural map A x V' — A x V and g by the induced map
g : C— V' from g, we may assume that V is smooth and g has Zariski dense image.
We may take a compactification V of V such that V is smooth. Let F C A XV
be a divisor which is an extension of F. Then F corresponds to a non-zero global
section H°(A x V, 71 L®™ @ 72" Mp) for a line bundle M, on V' which is an extension
of My. Here 77 is the first projection A x V' — A and 73 is the second projection
AxV = V. Let f/: C— A x V be the holomorphic curve obtained from f and the
inclusion A x V C A x V. By Nevanlinna’s first main theorem, we have

T (v, f,F) =nT (r,f,L) + T (r, g, M5) + O(1).
Hence we have

T (v, f,F) <nT (1, f,L) + O(log(rT (r, £, L)) |-
Since we have

N(rf,F) =N (r,f,F) <T (r,f,F) +0(),

we obtain our lemma. [

13



2.4. Let A be an Abelian variety. For an integer k > 0, A naturally acts on Ji(A).
For a Zariski closed subset V' C Ji(A), we put St(V) = {a € A;a+V = V}. Then
St(V) is the closed subgroup variety of A. Let St°(V) be the connected component
of St(V) containing the identity element of A. Then St°(V') is the Abelian subvariety
of A.

For a holomorphic curve f : C — A, let Wi(f) C Ji(A) be the Zariski closure of
the image of the holomorphic curve ji(f) : C = Jx(A). In the following lemma, we
use the notations in Proposition 2.2.1.

Lemma 2.4.1. Let A be an Abelian variety and let f : C — A be a holomorphic
curve such that the image of f is Zariski dense. For an integer k > 0, let kK : A —
A/ St°(Wi(f)) be the quotient map. Let L be an ample line bundle on A and let M
be an ample line bundle on A/ St°(Wy(f)). Then we have

T(T,’io faM) < O(T(’I“,a_10j1(f),H1)) + O(lOgT) ||
Hence by Proposition 2.2.1, we have
T (r,so f,M) < O(og(rT (r, f, L))) ||

Remark. This Lemma is a modification of [N0o98, Lemma 1.2]. For more discussion
about the structure of Wx(f), see [NoWO02].
Proof. Put C = A/ St°(Wi(f)) and put

Y = Wi (f)/ St (Wi(f)) C C x Ji,a = Je(A)/ St°(Wi(f))-

Here Jya = C*¥™4 and Jy(A) = A x Jya. Let g : C = C x Jgpa be the
holomorphic curve obtained from the composition of ji(f) and the quotient map
Je(A) = Je(A)/ St° (Wi (f)). Then Y is the Zariski closure of the image of the holo-
morphic curve g. Let ¥; C Ji(C x Jg,4) be the Zariski closure of the holomorphic
curve j;(g). We also consider the closed subscheme Y C J;(C x Ji.4). Then we
have ¥; C supp YV, We have
JI(C X Jk,A) =Cx Jl,C X Jl(Jk‘A).

Let x; : Ji(C x Jx,a) — Ji,c be the second projection and let x7 : J;(C x Jg,a) —
Ji(Jx,4) be the third projection. Put x; = xi x x7 : Ji(C x Jx,a) = Ji,c x Ji(Jx,4)-
Note that x; is a proper morphism, hence the image x:(Y;) C Ji,c x Ji(J,4) is a
Zariski closed subset.

Put Vi = YiNx; " (x:(5i:(9)(0))). Note that we have x; ' (x:(ji(g)(0))) =~ C. Hence
we have a nested sequence of Zariski closed sets,

COViDVeDVsD---

that eventually stabilizes at the variety V. Since we have k o f(0) € V; for all
1 >0, we have V # 0. Note that C naturally acts on C X Jj 4 by considering the
trivial action on Jx 4. For a € V, let § : C = C x Ji,4 be the holomorphic curve
§(z) = g(z) + @ — K o f(0) which is a translate of g by a — ko f(0) € C. Then by
the construction of g, we have §;(3)(0) € ¥; C suppY'"!) for all I > 0, hence by Taylor
series, we have §(C) C Y. Since the image of g is Zariski dense in Y, this shows
that ko f(0) — a € C stabilizes Y for all a € V. Hence by the construction of Y,
we conclude that dim V' = (0. By taking sufficiently large I > 0, we have V; =V and
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dimV; = 0. By considering the induced proper morphism Y; — x;(Y;) from x;, we
conclude that

(24.2) dimY; = dim x;(Y7).

We have Ji,¢ X Ji(Jg,a) o~ C HmOHUHDkdimA 70
¢! dim C+(+1)k dim 4 c pdim C+(i+1)k dim A

be the compactification and let G C pldim C+U+)kdimA ho the houndary divisor of
this compactification. Let Y; be the Zariski closure of Y; in the compactification

JU(C x Jia) = C x C dmC+I+DkdimA i pldim O+(+Dkdim 4
Let X7’ : Y] — PHdimC+U+DEdimA po the morphism obtained by the restriction of the

second projection
C x PLamO+I+)kdimA _ pldim O+(+1)k dim A

to ¥;. Since G is an ample divisor on P!4im C+U+DkdimA using (2.4.2), we know that
the divisor G’ = X7'*G is a big divisor on Yj.

Let Q be an ample line bundle on Y;. Let 7 : ¥; — C be the natural projection.
We also denote ji(g) for the holomorphic curve C — Y; naturally induced from the
holomorphic curve j;(g) : C — J;(C X Ji,4). Then we have 7 o ji(g) = ko f. Hence
we have

(2.4.3) T(r,ko f, M) <O(T (r,5i(9),Q)) + O(1).

Since G’ is a big divisor, there are positive integers n and m such that H°(Y;, mG’ —
n@) # 0. Let F be a divisor on Y; which corresponds to this non-zero global section.
Then by Nevanlinna’s first main theorem, we have

mT (Tajl (g): GI) —nT (Tz jl(g)’ Q) =T (r7 jl (9)7 F) + 0(1)
Since the image of the holomorphic curve j;(g) is Zariski dense in Y}, we have
T (r,4i(9), F) > 0(1)

by Nevanlinna’s inequality. Hence we have

(2.4.4) T (r,ji(9),Q) < O(T (r,ji(9),G")) + O(1).
Using (2.4.3), we have
(2'4'5) T(T’Hof7M) SO(T (T‘,jl(g),G’))-}-O(l).

Let ¢, (1 <n <k,1 <m < dim A) be the holomorphic functions on C introduced
in the proof of Proposition 2.2.1. Then the holomorphic curve x70j;(g) : C = Ji(Jx,4)

is represented as {%j rtfor0<j<l;1<m<kand1l<m<dimA. Since we
dn—l

have C;’L = M——ICTIVL; we have

i
(246) T (r, %c:;,oo) < O(T (r,¢my 00)) + O (log (T (7, ¢m, 0))) |l
Let dui,- -+ ,dugimc be a basis for H°(C,Q¢). For integers 1 <n' <land 1< m' <

dim C, put f,’;:, =d" Uy o Ji(ko f). Then g:,’;:, is a holomorphic function on C. The
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holomorphic curve x; o ji(g) : C = J; ¢ is represented as {ET’;’,} for 1 <n' <1 and
1 <m’' < dimC. Then we have

@47) T (r&,00) <O(T (r,,00)) +0 (log (rT (r,Chw,00) ) I
Since there is the natural linear map Ji1,4 — Ji,c, there are constants ¢, ,,,» € C for

1<m<dimA and 1 < m’ < dim C such that

dim A

=1 1
Cm’ = Z Cm,m’Cm'
m=1

Hence we have

dim A
T (r, f,lnr,oo) <O ( Z T (r, C,ln,oo)) + 0(1).
m=1

Since T (r,{p,,00) < O(T (r,a1 © j1(f), H1)) + O(1) for 1 < m < dim A, using (2.4.6)
and (2.4.7), we have

T (r,xi’ ©5i(f), G) < O(T (r,a o ji(f), H1)) + O(log(rT (r,a7 o ja(f), H1))) ||-

Hence by (2.4.5), we obtain our lemma. [O
Since St°(Wx(f)) D St®(Wi (f)) for k < k', there is a nested sequence of Abelian
subvarieties

A D St°(Wi(f)) D St°(Wa(f)) D StO(Ws(f)) D -+
that eventually stabilizes at an Abelian subvariety By C A.

Corollary 2.4.8. Let Z C Ji(A) be a closed subscheme. Let L be an ample line
bundle on A. Let B C A be an Abelian subvariety such that Bo C B. Let f : C — A
be a holomorphic curve such that the image of f is Zariski dense. Let & : Jp(A4) —
Ji(A)/B be the quotient map. Assume that & o jx(f)(C) ¢ &x(supp Z). Then we
have

N (r,jx(f), 2) < O(log(rT (r, f, L)) ||-

Proof. Note that the morphism &, is proper, hence &x(supp Z) is a Zariski closed
subset of J;(A)/B. By the assumption & o jx(f)(C) ¢ &k (supp Z), there is an ample
divisor E of C x C* 4m4 guch that & (supp Z) C E and & o jx(f)(C) ¢ E.

We have Ji,(A)/B = C x C*4™4 Let J,(A)/B C C x P¥4m4 be the compactifi-

cation and let E C C x PF4™4 he the extension of E. We also denote by & o jx (f)

the composition map C gkoﬂ(f) C x CkdmA - ¢ x pkdima
By Proposition 2.2.1 and Lemma 2.4.1, the holomorphic curve & o jx(f) is small
with respect to f. Hence we have

N (r,jx(f), Z) < O (N (1, &k © jk(f), &k (supp Z)))
<O (N (r&k 0 jk(f), E)) < O(T (r,6x 0 ju(f), E)) < O(log(rT (r, f,L))) I-

This proves our corollary. [
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2.5. The following Theorem is the main result of this section.

Theorem 2.5.1. Let A be an Abelian variety and let E be an ample line bundle on
A. Let f: C— A be a holomorphic curve such that the image of f is Zariski dense.
For an integer k > 0, let Z C Wi (f) be a subvariety which has codimension greater
than one; codim(Z, Wi (f)) > 2. Then we have

N (r,jk(£), Z) < €T (r, £, B) |l for all e > 0.

Proof. Note that we have St°(W,,(f)) C St®(W,:(f)) for n’ < n, hence we have
the nested sequence

St°(Wa(f)) D St°(Wi(£)) D St°(Wa(f) D ---,

which eventually stabilizes at an Abelian subvariety B of A. Let x : A — A/B be
the natural projection. Put C = A/B. Then by Poincaré’s complete reducibility
theorem, there exists an isogeny C — C such that the base change of the quotient
A — C by this isogeny is the second projection B x C — C. Replace A by Bx C, f
by a lifting f' : C — B x C of f over the induced isogeny B x C — A and Z by the
pull-back Z' with the induced map Wi (f') — Wi (f). Define the Abelian subvariety
B' ¢ Bx(C from f' by the same manner for the definition of B. Then we have B' = B,
COdim(Zla Wk(f’)) = COdim(27 Wk(f)) and N('r:jk(f): Z) =N (T: ]k(fl): ZI)- Hence,
to prove our Theorem, we may assume that A has splitting A = B x C.

We may also assume that Z is irreducible. Hence in the following, we prove our
Theorem under these assumptions.

Let Z™° be a Zariski open subset of Z such that Z™* is nonsingular. It is sufficient
to show

(2.5.2) ND (r,jx(f), Z27°) < €T (r, f, E) || for all € > 0.
For we have
N (r,x(£), 2) = NV (r, 3 (£), 27°) + ND (r,5x(£), 2 — Z7°)

and the 2nd term of the right hand side is small by induction on codimension. Here
note that dim Z > dim(Z — Z"*).

To prove (2.5.2), we can assume that the image of the composition of the following
natural morphisms

Z" = Wi(f) - Wi(f)/B

is Zariski dense, otherwise (2.5.2) is obtained by Corollary 2.4.8. Here note that
Wi(f)/B is a Zariski closed subset of Jx(A)/B.

We have Wi(f) = B x (Wg(f)/B) by the assumption A = B x C. Let 7 :

Wi (f) — B be the first projection and let w, : Wi (f) — Wi(f)/B be the second
projection.

Lemma 2.5.3. There exist an ample line bundle L on B and a sequence of positive
integers n(1),n(2),n(3),--- such that

(1) ﬂlﬂ—m when | — oo
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(2) there exist an effective Cartier divisor Fi C Wii(f) and a line bundle M; on
Wit (f)/B with the following properties; F; corresponds to a non-zero global
section

HY (Witi(F), ¥ L2 @ (m40)™ My),
and for every point a € C with ji(f)(a) € supp Z"°, we have mult, jryi(f)-Fi >
I+1.

Proof. Let r1 : Z! — Z be a desingularization of Z such that 1 gives an isomor-
phism over Z™°. Put Vi = Wi(f)/B. Counsider the sequence of morphisms
(2.5.4) 7z 872" 5 2 8 wi(f) 3 va.
Here 7o, r1 079 are open immersions and 73 is a closed immersion. And r3 = 7. Put
r=rsorsor; : Z1 — Vi. Let V{ be a Zariski open subset of V such that Vy is
nonsingular and that the fibers of r : Z" =V} over Vi are all of the same dimension
dim Z' — dim Vj,. Then the restriction of the family r : Z! — Vj, to V{7 is a flat family.

Consider the pull back of the sequence of morphisms (2.5.4) by the natural pro-
jection B x Vi, — V!

BxZ* 8 Bx2'3Bx2Z3 BxWi(f) 3B x V.
Put s=s308208 : Bx Z — B x V. Then s maps as
B x Z' 3 (a,2) ¥ (a,r(2)) € B x Vj.
Let L be an ample line bundle on B and let ¢ : B x Wi (f) — B be the morphism
B x Wi(f) 3 (a,w) — a + v, (w) € B.
Let LJ{ be the line bundle on B x Z! which is the pull back of L by the composition
of morphisms
Bx Z' 2" Bx Wi(f) % B.
Since the restriction of s to B x Vi (i.e. slvy : B x ZT|Vkr — B x V) is a flat family,
the semicontinuity theorem [H77, p.288] implies that there is a Zariski open subset
U, C B x V{7 (n > 0) such that H°(B x Z*|p,LJ{%§7‘) are all the same dimensional C
vector spaces for P € Uy, put this dimension as G,,. Here B x Z T| p denotes the fiber
of the morphism s : B x ZT — B x V4 over P € B x V4, and LJ{%,," is the induced line
bundle. Since the intersection NU, is non-empty, put (a, w) € NU,. Replacing L by
n n

its pull back by the morphism
B>x—x+4+a € B,

we can assume a to be 0 € B; the identity element of B.

Now for a positive integer I > 0, let 7; C Jx41(A) x Ji(A)o be the closed subscheme
obtained in Proposition 2.1.1 by putting P = 0. Let 77[ C A X Jy41 x Jx x C be the
closed subscheme obtained by taking the base change of 7; by the morphism:

w:AX Jk+1 X Jk xC — Ax Jk+l X Jk ~ Jk+1(A) X Jk(A)o
where @ maps

AX Jip X Jg x C 3 (a,v,v',¢) S (@ —c,v,v") € A x Jpyy X J.
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Let A: 7f — C X Ji41 be the morphism obtained by the composition of the natural
inclusion
771—)AXJk+1XJkXC
and the morphism A x Jg4; X Ji X C = C X Ji4; such that
AX Jep x Ji x C 3 (a,v,0',¢) = (k(a),v) € C x Jpty.

Then by Lemma 2.1.5, A has the following properties;

e )\ is finite,

e the direct image sheaf . OT,T is locally generated by [ + 1 elements as an

Ocx iy, module on O x J58,
e ) gives an isomorphism of underlying topological spaces of ’ET and C X Jg4i.

To see these properties, we note the following. Let 7,;* C A X Jp4; X Ji X C be the
closed subscheme obtained by the pull back of 7; by the morphism

A x Jk+l X Jk x C ~ Jk+l(A) X Jk(A)o xC — Ax Jk+l X Jk ~ Jk+1(A) X Jk(A)o
such that
AX Jgr X Jp x C 3 (a,v,v',¢) = (a,v,v") € A X Jypy X Jg-
Let A* : T;* — C X Jp4: be the morphism obtained by the composition of the natural
inclusion
77* CAXJk+lXJkXC
and the morphism A x Jg4; X Ji X C = C X Ji4; such that
A X Jyp1 X Ji x C 3 (a,v,v',¢) = (¢,v) € C X Jpi-
Then by Lemma 2.1.5, 7;* and \* satisfy the above properties. Consider the morphism
PrAX T X Jg X C = AX Jpqy X Jp x C
such that
AX Jpp1 X Jp X C 3 (a,v,v",¢) = (a—c,v,v",k(a)) € AX Jyqqy X Ji X C.

Then this p is an isomorphism and 7;1 is obtained by the pull back of 7;* by u. Let
u ’ET — T;* be the induced isomorphism from u. Then we have A* o u’ = X\. This
gives the above properties for 77' and A.

Now Vit is a Zariski closed subset of C x Ji4;- We denote ogy; : Vi — C for

the composition with the first projection C x Ji4; — C and ng4; : Vi1 — Jrq for
the composition with the second projection. We have the closed immersion

(2.5.5) BXVipyx Vi CBXC X Jpyi X Jpg X C = AX Jpqy X Ji X C
where the first inclusion is given by
B x Vi1 X Vi, 3 (b,0,9") = (b, 064+1(v), M1 (v), 7 (V") 0 (v")) € BXC X Jjopy X Jp x C
and the second identification is given by

BxC x Jyr X Jp x C 3 (b,c,u,u’,c) = ((b,¢),u,u',c') € Ax Jppq x Jp x C.

Let §; C B X Vg4 X Vi be the closed subscheme obtained by the pull-back of 7f by
(2.5.5). Let g : 8t = Vi41 be the composition with the second projection B X Vi1 X
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Vi — Vi4i. Then by the above properties of A, we have the corresponding properties
for g;

e g is finite,

o the direct image image sheaf ¢q.Os, is locally generated by [ + 1 elements as an
Ov,, module on V%%,
e g gives an isomorphism of underlying topological spaces of S; and Vj4.

Here we put V,;j_% = Vit N(C % J,zigl , which is a Zariski open subset of V.
We consider the following commutative diagram (2.5.6) obtained by the base
change of (2.5.4) with a sequence of morphisms
S > BX Vi x Vg > BxVy — Vi
Here B X Vi4; X Vi — B X Vj is the natural projection:

B x Vi1 X Vi 3 (a,w,w') = (a,w') € B x V.

2l —— BxVigpux2Z"® —— BxZ"* —— Z"°

luo lto lso lm

zZl —— BxVipuxz! —— Bxzt —— Zf

I I I+ I

(256) 2z —" % BxViuxZ —— BxZ — Z

luz l” l” lm

—— B X Vi X Wi(f) —— B x Wi(f) —— W(f)

I I b

S ;) B><Vk+1XVk EE— B x Vg E—— Vi
Let £ be the line bundle on Z] obtained by the pull back of L{ by the morphisms
in the above diagram (2.5.6). Let S;,, be the non-empty Zariski open subset of S;
obtained by the inverse image of U,. Then since dim H°(B x Z”p,LI%,”) = G, for
P € U,, the direct image sheaf s.LI®™ is a locally free sheaf of rank G, on U, and
the natural map

8. Li®" @ C(P) - H(B x Z'|p, LI%")

is an isomorphism for P € U,. This follows by the Theorem of Grauert [H77, p.288]
since U, is reduced and irreducible. Here s : B x Z! — B x Vj is the natural map;
i.e. s =83082081. Let u be the morphism wu : Z;r — &; obtained by the composition
w = ug © uz o u1, where ui,us,u3 are the morphisms in the above diagram (2.5.6).
Then the natural map

uw.L]®" @ C(P) » H°(Zf|p, L]%"

is also surjective, so an isomorphism on P € &; . This follows by the Theorem of
Cohomology and Base Change [H77, p.290]. Hence u,L;®" is locally generated by
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Gr elements as an Os, module on S;, C Si. Let Vigin = ¢(Si,n) be a non-empty
Zariski open subset of Vi4; (note that the underlying topological spaces of S; and
Vi+i are the same).

Then by the above properties of g, the direct image sheaf (g o u)*£;’®" is locally
generated by (I + 1)G, elements as an Ov,_, module on Vi1, N V(5. Here, note
that V,38 is non-empty (otherwise f must be constant) and Vi is irreducible. Hence
Viti,n N V,55 is also non-empty.

Now look at the following commutative diagram

Zl‘l‘.s
I+
zh B2 B Vi x Wi(f) % s BxViy —2 > B

J—qou l?nd proj J’T

Vit

Vk+l e Vk+l

where p is the first projection, 7 is the second projection and %) is the morphism
¥ B X Vg X Wi(f) 3 (a,v,w) = (a + v (w),v) € B x Viy.

Since (po oty ov’ ouy)*L = L], we have a natural morphism

(2.5.7) 7up* L™ = H°(B, L®") ®c Ov,,, = (qou).L]®".

Here, note that po ¢ = ¢ o 8 where 8 : B X Viy; X Wi(f) = B x Wi(f) is the
morphism in the diagram (2.5.6) and ¢ is the morphism used in the definition of the
line bundle L{.

Put I, = dimc H°(B, L®™). Then there are a positive integer no and positive
constants C1, C» such that

L, > 0™ 8 G, < Con®™ B2 for n > no.
Here note that G, = dim¢ H(B x Zt|p, LI®") for P € NU,,, and Bx Zf|p = s7'(P)
’ n

has dimension < dim B — 2 since we have codim(Z, W (f)) > 2 and rsors : Z — V4
is dominant. Hence for a positive integer [, we can take a positive integer n(l) such
that
. n(l)
L,y > 1+ l)Gn(l), lligloT — 0.
Let F be the kernel of (2.5.7) for n = n(l);
0 F > 7p LD 5 (gou).£f®V  (exact).

Then we have F # 0. By taking tensor product of a sufficiently ample line bundle
M; on Viq; and F, we may assume that H°(Vj4;, F ® M;) # 0. Since we have

H®(Vigt, F ® My) C H (Vigs, (rup”LO"V) @ M)
= HO(Vk+1,T*(p*L®n(1) ®TM;)) = HO(B X Vk+l,p*L®n(1) ® 77 M),
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we may take a divisor F; C B x Vip4; which corresponds to a non-zero global section
of H°(Vi+1, F ® M;). Then we have

Z[% C YT Fy.
Here note that Z/° C Z; is an open immersion and Z; 2% B x Vit X We(f) is a
closed subscheme.

Using the decomposition A ~ B x C, we let fp : C — B be the holomorphic curve
obtained by the composition of f and the first projection A — B, and let fo : C — C
be the holomorphic curve obtained by the composition of f and the second projection
A-C. N

Now let a € C be a point such that jr(f)(a) € Z"°. Define f : C - B X Vi1 X
Wi(f) by

f(z) = (fB(2) — fB(a), k41 © Jr+1(£)(2), Jk(f)(a)).
Then we have
f(C) CBxVipux2Z, fla)€esuppZ{®, o f=jiu(f),
where the last equality holds under the identification B x Viq; ~ Wi1i(f).
Since v’ is the base change of v in (2.5.6) and f factors through ¢», we have
mult, ? - Z; = mult, (ts o ?) -8,

hence by the construction of S; and Proposition 2.1.1 (2), we have

multa f . Zl = multa (]k+l(f) - f((l)) . ﬁ,(jk(f)ff(a))(a) Z l + 1.
Hence we have
multy jrsi(f) - Fy = multy f - 4" F > multy f - 2, = multe f- 21 > 1 +1,

which proves our Lemma 2.5.3. (Note that we consider Fj as the divisor on Wx4i(f)
by the identification B X Viy; ~ Wi4i(f), and that 7 corresponds to 74 by this
identification.) O

Now we go back to the proof of our theorem. By the above lemma, we have

N(Ty .]k+l(f)aF'l) > (l + 1)N(1) (,’,.’ ]k(f), ZT.S) )
But Lemma 2.3.2 implies
N (r, ji+i (), F1) <n()T (r, f5, L) + €T (v, f5, L) || for all € > 0.

Here note that by Proposition 2.2.1 and Lemma 2.4.1, w4 © jr+i(f) is small with
respect to fp . Hence we have

L+ DOND (r, i (£), Z7°) < n(W)T (r, f5, L) + €T (r, f5, L) || for all € > 0.
We have lim ™8 0 and O(T (r, f5, L)) = O(T (r, f, E))|| for the ample line bundle

E on A (cf. Lemma 2.4.1), which proves (2.5.2) and our Theorem 2.5.1. O
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Corollary 2.5.8. Let A, E and f be the same as Theorem 2.5.1. Let Z C Wi(f) be a
closed subscheme whose support has codimension greater than 1; codim(supp Z, Wi (f)) >
2. Then we have

N(T;Jk(f)az) S ET(T,f,E) ”e fOT all e > 0.

Proof. Consider Z as a closed subscheme of J,(A). We consider the closed sub-
scheme Z©) C Jy44(A) for s > 0. Then by Corollary 1.3.4, we have

(25.9) N (), 2) = sN® (r,5u(£), 2) <N (r,jesa(£), 2).

Let B C A be the same as in the proof of Theorem 2.5.1. Put C = A/B. As in the
proof of Theorem 2.5.1, it suffices to prove our corollary in the case A = B x C. Let
&k @ Jr(A) = Jx(A)/B be the quotient map.

Claim: There is a positive integer s such that

Ekts © Jits (F)(0) & Exps(supp Z°) C Jiss(A4)/B.

Proof of Claim. Suppose that &xys 0 jris(F)(0) € Exys(supp Z2) for all s > 0.
Then we have

Vs def supp z¥n 510_413 (€kts © Jr+s(£)(0)) # 0

for all s > 0. Note that we have canonically §k__¢s (€k+s © Jr+s(f)(0)) =~ B, so Vs is a
Zariski closed subset of B. Note also that Vs D Vs41. Thus we have a nested sequence
of closed sets,

BOVoDViDVaD V3D

that eventually stabilizes at the variety V. Since we are assuming V; # ) for all s, we
have V # (). Let fg : C — B be the holomorphic curve obtained by the composition
of f and the first projection B x C — B. Let a € V, and translate the holomorphic

curve f by a— fg(0) € B and put ?(z) = f(z)+a— fB(0). Then by the construction

of f, we have

jk+s(})(0) esuppZ® forall s>0.

~

Hence by Taylor series, we have ji(f)(C) C supp Z. This is a contradiction since we
are assuming ji(f) is non-degenerate in Wy(f), which proves our claim.

Now let s be an integer such that the above claim is satisfied. Then by Corollary
2.4.8, we have

N (1, Giss(£), 24)) < O (10g(T (1, £, ED) ||
Hence by (2.5.9) and Theorem 2.5.1, we have Corollary 2.5.8. O
3. APPLICATIONS
In this section, we consider two topics in the Nevanlinna theory of holomorphic

curves into Abelian varieties for applications of our Theorem 2.5.1.
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3.1. First we consider the truncation level for the second main theorem.

Theorem 3.1.1. Let A be an Abelian variety and let D C A be a reduced effective
divisor. Let L be an ample line bundle on A. Let f : C — A be a holomorphic curve
such that the image of f is Zariski dense. Then we have

T (r,f,D) <N (r,f,D)+ €l (r,f,L) |lc  foralle>0.

Before going to prove this theorem, we state one result from [Y02, Proposition
4.2.1] without proof.

Lemma 3.1.2. Let X be a smooth projective variety and D C X be a divisor. Let
E be an ample line bundle on X. Suppose there are a positive integer s > 0, a line
bundle L on X and a morphism of fiber bundles ¢ : Js(X) — L such that D® ¢ p*or.
Here op, C L is the divisor corresponding to the zero section. Then for a holomorphic
curve f : C — X with the non-degeneracy condition js(f)(C) ¢ supp ¢"or, we have

m(r,f, D) < T (r, f,L) + O(log(rT (r, f, E))) |-

Remarks. (1) Our definition of D is slightly different to the definition made in
[Y02]. There, we denote our D) by ? D), (.

(2) The term N»pgam»¢(r) in [Y02, Proposition 4.2.1] is positive for r > 1 by
definition. Hence our lemma immediately follows from this proposition.

Proof of Theorem 8.1.1. Put B = St°(Wi(f)) and C = A/B. Let ¢o: A — C be
the natural quotient map. Put C' = St®(Wi(wo o f)) and put CT = C/C.

First we reduce to the case D is irreducible. If D is not irreducible, write D as a
sum of irreducible components D = Dy + --- + D;. Then

quT(r, f,Di) < .iN(l) (r, f,Ds) + €T (r, f,L) |l

<SNO(r, £,D)+ > N (r,f,DiND;)+e€T (r,f,L) ||.
15%5(1
1#)
But since we have codim(D; N Dj, A) > 2 for ¢ # j, Theorem 2.5.1 implies
N (1, £,DinD;) < €T (1, £, 1) I,

and hence T (r, f, D) < NV (r, f, D) + €T (r, f,L) |l

Next we reduce to the case St°(D) = 0. If St°(D) # 0, we replace A by A/ St°(D),
Dby D/St°(D) and f: C— Aby f: C— A — A/St°(D), respectively.

Finally, we reduce to the case that C has splitting C = C' x CT. There is an isogeny
Ct — O such that the base change of the quotient map C — C' by this isogeny is
the second projection CxCt — Ct. Let A’ be the base change of the composition of
the quotient maps A — C — CT by the above isogeny CT — CT. Let D’ be the divisor
on A’ obtained by the pull back of D by the isogeny A’ — A. By replacing A by A’,
D by D' and f by a lifting f' : C — A’ of f, we may assume that C has splitting
C = C x C'. Note that in this final step, D may become non-irreducible. Write D
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as a sum of irreducible components D = D; + --- + D,. Then by the argument of
the first step, it is enough to prove our theorem for each irreducible component D;.
By the second reduction step, we have St°(D;) = 0. Hence we may assume that D is
irreducible, St°(D) = 0 and C has splitting C = C x C*.

Let ¢ : J1(A) = J1(A)/B be the quotient map. Then ¢ is a proper map, and the
function dim{D™ N '(z)} (x € J1(A)/B) on Ji(A)/B is upper semi-continuous.
Hence the set

A = {z € J1(A)/B; codim(D" Ny~ (), (z)) <1} C Ji(A)/B

is a Zariski closed subset of Ji(A)/B.

Claim: Wi (f)/B ¢ A.

Proof of Claim. In the case B = A, A is a Zariski closed subset of J1,4. And we
know that

A= {(07 e 70) € JI,A}-
Hence Wi(f)/B ¢ A follows from the fact that f is non-constant, which proves our
claim in this case. Hence in the following, we assume that B # A, that is, C is
non-trivial.

Since Ji(A) is the tangent space of A and splits into J1(A) ~ A X Ji,a (Ji,a =
C4mA) " J; 4 has the natural structure of a vector space. Since o : A — C induces
the map Ji1(A) = J1(C) ~ C x Ji,¢, there is the natural morphism 7 : Ji1,4 — Ji,¢
of vector spaces. By the assumption St°(D) = 0 and [Kaw80, Thm 4], there is a
Zariski open subset Co C C such that for z € Cp, each irreducible component E of
D N ¢y (x) satisfies St°(E) = 0. Here we consider D N ¢y '(z) and E as divisors
on @5 '(z) ~ B where this isomorphism is not canonical. Replacing Co by smaller
Zariski open subset, if necessary, we may assume thatD Ny '(z) is a reduced divisor
on p;'(z) ~ B for € Cy. To see this, note that we may take a Zariski open subset
Co C C such that

o DNpy(x) is a divisor on ;' (z) ~ B for z € Cy,

e the composition of the natural map Dgmooth — A and o : A — C is smooth

over Cy (cf. [H77, p.272)),
o for z € Cj, each irreducible component E of DNy ' (z) satisfies that ENDsmooth
is a non-empty Zariski open subset of E.
Here Dgmooth is the smooth locus of D. By the above conditions, D N ¢y (x) is a
reduced divisor on B for z € Cp.

Since J1(A)/B ~ C x Ji1,4, we consider A as a Zariski closed subset of C' X J1,4.
For x € C, let A, C Ji,4 be the fiber of the first projection A — C over z, and let
TAs : Az — J1,c be the restriction of 7 on A,.

Subclaim 1: ’T'Xml (TA, (v)) is finite for £ € Co and v € A.

Let w: C x Ji,4 = C X J1,c be the morphism such that

Cx Ji,a3(c,v) 3 (¢,7(v)) € C x Ji,0.

Consider the Zariski closed subset Wi(go o f) C C x J1,¢ which is the Zariski closure
of the image of the holomorphic curve ji(¢oo f) : C = C X J1,¢. Then the restriction
of w induces the dominant map @’ : W1 (f)/B — Wi(yo o f).

Subclaim 2: dim W1 (f)/B > dim Wi(go o f).
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Using these subclaims, we may prove our claim as follows. Assume that W1(f)/B C
A. Then by Subclaim 1, the map @' : W1i(f)/B — Wi(po o f) is generically finite
and dominant. Hence dim Wi (f)/B = dim W1 (o o f). This contradicts Subclaim 2.
We have Wi(f)/B ¢ A which proves our claim.

Next, we prove the subclaims to conclude our proof of the claim.

Proof of Subclaim 1. Let x € Co. Decompose DNy ' (z) = 3°5_, E; into a sum of
irreducible components as a divisor on ;' (z) ~ B. For 1 < i < s, define the subset
P, ; CJi,a by

P,i= {U € Ji,4; E; C supp ((p_l ((z,v))N D(1)>} .

Then this P, ; is a vector subspace of Ji 4. By the definition of A,, we have
Ae= | Pos
1<i<s

Note that the restriction of 7 on P;,; is injective. Otherwise, there is a non-zero
vector v € ker(r) N P;,; whose translations define the vector field 4 on ;' (z) ~ B,
tangent to F;. Here note that DNy ' (z) is a reduced divisor on B. Hence St°(E;) #
0, which contradicts the assumption for Cy. This proves that the restriction of 7 on
P, ; is injective and proves our subclaim. [

Proof of Subclaim 2. We first modify the morphism @’ : W1 (f)/B — Wi(gpo o f)
to the morphism & : S — C' x V as follows. Here S and V' are smooth projective
varieties and they are birational to compactifications of W1 (f)/B and Wi (oo f)/C,
respectively.

Let Wi (o o f)/C be the compactification of Wi(go o f)/C in CT x P4¥™C Here
P4™C js the compactification of Ji,¢. Let V be a smooth model of Wi(epo o f)/C.
By the assumption made in the beginning of this proof of our theorem, we have
C = C x C'. Hence we have

Wi(po o f) = C x (Wi(po o £)/C).
Hence C' x V is a smooth model of a compactification of Wi (g0 o f).

Let Wi(f)/B be the compactification of W1(f)/B in C x PY%™4 where Ji.4 C
P4imA js the compactification of Ji,4. Let S be a smooth model of W1 (f)/B such
that the rational map @& : S --+ C' x V induced from w’ is holomorphic at every point
of S. Hence we get the morphism & : S = C x V.

Let H = P4™4\ J; 4 be the boundary divisor. Let H' C S be the divisor obtained
by the pull back of H by the composition of the natural map S — Wi (f)/B and the
second projection Wi(f)/B — P4™4, By Lemma 2.4.1, using the same notation ar
in this lemma, we have
(313) T(T: $oo f, MC) < O(T (Taa_lojl(f):H)) +O(10g’l“) ||
Here M¢ is an ample line bundle on C.

Now we assume that
(3.1.4) dim Wi (f)/B = dim Wi (o © f),

and derive a contradiction as follows.
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By (3.1.4), we have dimS = dimC x V. Hence, there is an effective divisor
G C C' x V such that

(3.1.5) H c&'G

as divisors on S.
Let g : C — C x V be the holomorphic curve obtained from ji(poo f) : C —
Wi(po o f). Then by (3.1.5), we get

m (r,ax 0 ji(f), H) <m(r,g,G) + O(1).
Since we have
T (r,ar 0 j1(f), H) =m(r,a1 0 ji(f), H) + O(1),
combining with (3.1.3), we get
(3.1.6) T (r,p00 f,Mc) <O (m(r,g,G)) + O(logr) ||.
Let g1 : C — C be the composition of g and the first projectiAon CxV —C. Let
g2 : C = V be the composition of g and the second projection C x V' — V. Let M

be an ample line bundle on € and let My be an ample line bundle on V. Then by
Proposition 2.2.1 and Lemma 2.4.1, we have

(3.1.7) T (r,g92, Mv) < O (log(rT (r, g1, M) |l-
Next, we prove the following inequality.
(318) m(?“,g, G) S O(lOg(’f‘T (Ta glvMC’))) ||

This inequality is a generalization of the second main theorem for holomorphic curves
in Abelian varieties (cf. [NoWY02], [Kob00]). The methods of the proofs of this
second main theorem also adapt to that of (3.1.8). In the following, we give a proof
of (3.1.8) on the line of the method in [Y02].

First C' naturally acts on C' x V by considering the trivial action on V. Hence, e}
also acts on J,(C x V) for s > 0. Since we have J,(C x V) ~ J,(C) x J,(V), we have

J(CxV)[C=J, ¢ xJs(V).

Let 8, : Jo(C x V) — J, & x Js(V) be the quotient map. By a method similar
to the proof of the claim in Corollary 2.5.8, there is a positive integer s such that
Bs 0 js(g)(0) & Bs(supp G(s)). Since Bs is proper, Bs(supp G(S)) is Zariski closed.
Hence there exists an effective divisor © C J, s x Js(V) such that G ¢ B:(©) and
Bs © js(g)(0) & supp ©. There are a line bundle R on V and a morphism ¢ : J, & x
Js (V) = R of fiber spaces over V such that p*or = O, where og is the divisor on R
corresponds to the zero section. This is a consequence of Pic(J & x Js(V)) = Pic(V).
Let R’ be the line bundle on C' x V obtained by the pull-back of R by the second
projection C x V — V. Let ¢’ : Jo(C x V) = R’ be the morphism of fiber spaces over
C x V obtained by p. Then we have G**) C ¢"*ogs. Since we have o *or' = B0, we
have js(g)(0) € supp ¢'*or'. Hence by Lemma 3.1.2, we have
m (7"7,9, G) S T (Tv g2, R) + O(logT (Ta g1, Mé’)) + O(IOgT (Tv 92, MV)) + O(log T‘) ”

Using (3.1.7), we obtain our inequality (3.1.8).
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Since we have
T (’ra g1, MC') < O(T (Ta $o © f’ MC)),
using (3.1.6) and (3.1.8), we deduce
T (r,p0 o f, Mc) < O(log(rT (r, 0 © f, Mc))) ||.

This gives a contradiction, since we have T (r, 00 f,Mc) > O(r®). (Note that
we are considering the case that C is non-trivial.) Hence we get dim Wi(f)/B >
dim W1 (oo f), which proves our subclaim and concludes our proof of the claim. O

Now we go back to the proof of our theorem. By the second main theorem for
Abelian varieties (cf. [NoWY02]), there is a positive constant p, depending on f and
D such that

T (r, f,D) < N® (r, f, D) + O(log(rT (r, f, L))) ||-
By the definition of N (r, f, D), we have
N2 (r, £, D) = NV (r, £, D) < N**V (r, £, D) = N® (r, f, D)
and
N® (1, £,0) = N (1, £, D) < N (v, js(f), DY) .
Hence we obtain
N® (r,£,D) = NV (r, £, D) < (p = )N (r, s (£), D)
and
T (r,£,0) < N (r, £, D) + (p = YN (1,5 (£), D) + O(log(rT (r, £, L))) -
Hence to prove our theorem, it suffices to prove
(3.1.9) N® (r,jl(f),D(l)) <eT(rf,L) |l foralle>o0.
Write supp(D™) N W1(f)) as a sum of irreducible components
supp(D N Wi (f)) = Z1 U--- U Z,.
To prove (3.1.9), it suffices to prove
NO (r,41(f), Zi) < €T (r, f,L) || foralle >0

fori=1,...,q.

In the case ¢(Z;) = Wi(f)/B, we have codim(Z;, W1(f)) > 2 by the above claim.
Hence, by Theorem 2.5.1, we have

(3.1.10) NY (r,51(f), Z:) < €T (r, f,L) ||  for all e > 0.

On the other hand, in the case p(Z;) # Wi(f)/B, we have (3.1.10) by Corollary
2.4.8, which proves Theorem 3.1.1. [

Corollary 3.1.11. Let X be a smooth projective variety and assume that there is a
surjective and generically-finite map ™ : X — A to an Abelian variety A. Let L be
an ample line bundle on X and let Kx be the canonical bundle on X. Then for a
non-degenerate holomorphic curve f: C — X, we have

T(r,f,Kx)<el(r,f,L) ||l foralle>0.
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Proof. By the natural morphism Ox = n* K4 < Kx, there is an associated divisor
D C X to this injection. By the first main theorem, we have
T(r,f,Kx)=T(r,f,D)+0Q1) =N (r,f,D) +m(r, f,D) + O(1),
and by the second main theorem for the Abelian variety A, we have
m (r, f, D) < O(m (r, f,x~'x(D)) = O(m (r,w o f,m(D))) < O(log(rT (r, f, L)) ||-
Hence it suffices to show
(3.1.12) N(r,f,D) <eT(r,f,L) || for all e > 0.
Let U C A be a Zariski open subset such that the restriction
i (U) = U

is quasi-finite; i.e. all fibers of 7y are finite. Since 7y is also projective, it is finite.
Note that we can take U so that codim(A — U, A) > 2.

Now decompose D into a sum of divisors D = D; + D> so that all the irreducible
components of D; have non-trivial intersections with 7~ *(U) and 7(supp D2) C A—U.
By Corollary 2.5.8, we have

(3.1.13) N (r,f,D2) < €T (r,f,L) || for all e >0.
Note that Di|y = D|v is the ramification divisor of my. Decompose D; to a sum
of irreducible components D1 = >-7_; a;E;, a; > 0. Put F; = supp n(E;). Since my
ramifies at E;|y with the ramification index a; + 1, we have
' F; = (a; + 1)E; + Gi,
where G; is an effective divisor on X. Hence we have
(a; + 1) mult, f- E; <mult, (ro f)-F; forall z€C
and
a;mult, f - E; + min(1, mult, (7o f) - F;) < mult, (7o f) - Fj,
and so
N(T‘:.ﬂEi) < N(’I",T{'O_f,Fi) _N(l) (’l",ﬂ'of,Fi)-

Hence by Theorem 3.1.1, we have

N (r,f,E;) <eT'(r,f,L) || for all e > 0.
Combining with (3.1.13), we obtain (3.1.12). This proves our Corollary. O

Corollary 3.1.14. Let X be a projective variety and assume that
(1) X is of general type, and
(2) dim H°(X,Qx) > dim X.

Then every holomorphic curve f : C — X is algebraically degenerate.

Remark. The case dim H°(X,Qx) > dim X is Bloch-Ochiai’s Theorem. Our new
part is the case dim H°(X,Qx) = dim X. C.G. Grant [Gr86] proved this case when
X is a surface and the Albanese variety of X is simple.

Proof. By blowing-up, we can assume that X is smooth. Let A be the Albanese
variety of X and let @ : X — A be the standard map. Then by condition (2), we have
dim X < dim A. It is well known that the image a(X) is not a proper sub-Abelian
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variety. If a(X) is a proper subvariety of A, then Bloch-Ochiai’s Theorem implies
that a o f(C) lies in a proper Zariski closed set of a(X).

If a(X) = A, then @ : X — A is a generically-finite map. Suppose that f is alge-
braically non-degenerate.

Let L be an ample line bundle on X. By assumption (1), there are positive integers
n,m such that H°(X,mKx —nL) # 0. Let F be a divisor on X which corresponds to
this non-zero global section. Then by the Nevanlinna’s first main theorem, we have

mT(TafaKX) —nT(r,f,L) = T(r7f’F) +0(1)

Since we are assuming that f is algebraically non-degenerate, we have T (r, f, F) >
O(1) by the Nevanlinna’s inequality. Hence we have
2T (r, f,L) < T (r, f,Kx) + O(1)
and Corollary 3.1.11 implies that
T(r,f,L)< €T (r,f,L) || for all € > 0.

But since L is ample, it is well known that T (r, f, L) — 400 when r — oo, which is
a contradiction. Hence we conclude that f(C) lies in a proper Zariski closed subset
of X. O

3.2. Next, we consider the unicity theorem.

Theorem 3.2.1. Let A, A’ be Abelian varieties and let D C A, D' C A’ be reduced
and ample divisors. Let f : C — A and f' : C — A’ be non-degenerate holomorphic
curves such that

supp f*D = supp f *D'.
Then there are decompositions of D and D' in the form
D=F(D)+ E(D), D' =FD)+EWD)
where every ample irreducible component of D (resp. D') is contained in F(D) (resp.
F(D")) and there is an isomorphism
a: A/St(F(D)) 5 A'/St(F(D"))
with a0 f = f'. Here we set f (resp. f') to be the composition
f:C— A A/St(F(D)) (resp. f:C— A — A'/St(F(D")).

Proof. We may reduce to the case f(0) = 0 (the identity element of A) and f'(0) =
O’I(the’i%e)ntity element of A') by considering f(z) — £(0), f'(2) — f'(0), D — £(0) and
P Letf é l;e the Zariski closure of the image of the holomorphic curve (f, f') : C —

A x A'. Then B is also an Abelian variety (Bloch-Ochiai’s Theorem). Let p: B — A
(resp. p' : B — A’) be the composition of morphisms

p:Br Ax A LB A (resp.p’ : B A x A" IR 4)

and put ¢ = (f,f) : C — B. Then g is non-degenerate and f = pog, f =
p’ o g. By the assumption that f and f' are non-degenerate, the morphisms p, p’ are
surjective and by the assumption that f(0) = 0, f'(0) = 0’, the morphisms p, p’ are
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homomorphisms of Abelian varieties. Hence, by letting B4 = kerp and B,s = kerp,
we have isomorphisms

B/Ba 3 A and B/By S A'.
Let I be a subset of a set of irreducible components of p* D such that

Hel =T (r,g,H)<eT(r,g,L) ||lc forall e >0

where L is an ample line bundle on B. Let J be the complement of I in the set of
irreducible components of p*D. Define I’ and .J' similarly but from p *D’.

Let H be an irreducible component of the pull back by p of some ample irreducible
component of D. Then we have

(32.2) O(T(r,f,D)) = O(T (r,9,H)) .

By the assumption supp f*D = supp f *D’, we have NV (r,f,D) = NY (r, f', D).
Since Theorem 3.1.1 implies
NO (r,f',D') > 1 =T (r, f,D') || for all e > 0,
we have O (T (r, f',D')) <O (T (r,f,D)) || and T (r,9,L) < O (T (r, f, D)) ||. Using
(3.2.2), we have
O(T (r,g,H)) > O (T (r,9,1)) ||

By the same argument, we also obtain the inequality for an irreducible component H
of the pull back by p’ of an ample irreducible component of D’.
Hence by the definition of J (resp. J'), we conclude that all the irreducible compo-
nents of the pull back by p (resp. p') of all the ample irreducible components of D
(resp. D') are contained in J (resp. J').

In the following, we consider I,J,I' and J' as subsets of the set of irreducible
divisors on B. We claim that J = J' and Ba, Bar C St(}_ ¢, H).

Suppose H € J and H ¢ J' UI'. Then we have codim(H Np*D', B) > 2. By the
assumption supp f* D = supp fl"D’7 we have

NY (r,g,H)=NDY (r,g,H ﬂp’*D') ,
hence Theorem 2.5.1 implies an inequality
NY (r,g,H) < €T (r,g,L) |l
On the other hand, by Theorem 3.1.1, we have
T (r,9,H) <N (r,9,H) + T (r, g, L) ||,

which is a contradiction because H € J. Hence H € J' U I' and by the definition
of J', we have H € J'. Hence J C J'. By the same argument, we have J' C J and
J=J.

Next, to prove B4 C St(3_ 5 H), it suffices to prove that J C I' U J is stabilized
by the action of Ba. Let b € Ba and H € J. Then since H and b+ H are algebraically
equivalent divisors, we have

T(r7g)H) :T(T,g,b+H)+O(1).
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Hence by the definition of J, we have b+ H € J and Ba C St(3_ ., H). By the same
argument, we have By C St(};c, H) = St(3 5, H), which proves our claim.
Now put F(D) = (3, H)/Ba and F(D') = (3. c; H)/Bar. Then we have

St(F(D)) =St()_ H)/Ba, St(F(D'))=St()_ H)/Ba

Hed Hed

and isomorphisms

A/St(F(D)) = B/ St(z H) 5 A'/St(F(D")).

HeJ

Put this composition as a : A/ St(F(D)) = A'/St(F(D")). Then we have ao f = f/,
which proves our Theorem. [

Corollary 3.2.3. Let A, A’ be Abelian varieties and let D C A, D' C A’ be divisors
such that all their irreducible components are ample and that St(D) = St(D’) = 0.
Let f:C— A, f : C— A’ be non-degenerate holomorphic curves such that

supp f*D = supp f'*D'. Then there is an isomorphism o : A = A’ such that ao f =

fl
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