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Abstract

For any finite Coxeter system (W, S) we construct a certain noncommutative algebra,
the so-called bracket algebra, together with a family of commuting elements, the so-called
Dunkl elements. The Dunkl elements conjecturally generate an algebra which is canonically
isomorphic to the coinvariant algebra of the Coxeter group W. We prove this conjecture
for classical Coxeter groups and Iz(m). We define a “quantization” and a multiparameter
deformation of our construction and show that for Lie groups of classical type and Ga,
the algebra generated by Dunkl’s elements in the quantized bracket algebra is canonically
isomorphic to the small quantum cohomology ring of the corresponding flag variety, as
described by B. Kim. For crystallographic Coxeter systems we define the so-called quantum
Bruhat representation of the corresponding bracket algebra. We study in more detail the
structure of the relations in B,-, D,- and Gs-bracket algebras, and as an application,
discover a Pieri-type formula in the B, -bracket algebra. As a corollary, we obtain a Pieri-
type formula for multiplication of an arbitrary B,-Schubert class by some special ones.
Our Pieri-type formula is a generalization of Pieri’s formulas obtained by A. Lascoux and
M.-P. Schiitzenberger for flag varieties of type A. We also introduce a super-version of the
bracket algebra together with a family of pairwise anticommutative elements, the so-called
flat connections with constant coefficients, which describes “a noncommutative differential
geometry on a finite Coxeter group” in a sense of S. Majid.

Introduction

The study of small quantum cohomology ring of flag varieties of type A was initiated by
P. Di Francesco and C. Itzykson [5], and completed by A. Givental and B. Kim [11]. Later,
results of [11] were generalized by B. Kim [14] to the case of flag varieties corresponding to
any finite dimensional semi-simple Lie group. More “geometric” approach to a description of
the small quantum cohomology ring of flag varieties was developed in still unpublished lectures
by D. Peterson [21]. Pure algebraic approach to the study of small quantum cohomology
ring of flag varieties of type A was developed in [7] and [16]. A new point of view on both
classical and quantum cohomology rings of flag varieties of type A has been developed in [8].
Namely, the cohomology rings in question were realized as certain commutative subalgebras
in some (noncommutative) quadratic algebras. The latter quadratic algebra corresponding to
the classical cohomology ring of flag variety of type A, has many interesting combinatorial and
algebraic properties, e.g. it appears to be a braided Hopf algebra over symmetric group, see e.g.
[1], [18], [20]; its commutative quotient is isomorphic to the algebra of Heaviside’s functions of
hyperplane arrangements of type A, see, e.g. [15] and the literature quoted therein; the value



of Schubert polynomials on Dunkl elements in the A,-bracket algebra can be used to describe
the structural constants for the product of Schubert classes in the cohomology ring of the flag
variety of type A, [8]. The main algebraic problem related with the latter quadratic algebra
is the following: Is this quadratic algebra finite dimensional or not? The main combinatorial
problem related with the bracket algebra BE(A,) is to find a combinatorial description, i.e.
a “positive expression” in the algebra BFE(A,,), for the Schubert polynomials evaluated at the
Dunkl elements. It seems natural to raise a question: Does there exist for any Coxeter group
W a certain algebra with properties similar to those for the algebra BE(A,,) 7

In the present paper we are going to present partial answers on the questions stated above.
We introduce and study a generalization of the quadratic algebras from [8] to the case of
any finite Coxeter system (W,S). Our starting point is a remarkable result by C. Dunkl [6]
that the algebra generated by “truncated Dunkl operators” [ibid] is canonically isomorphic
to the coinvariant algebra of the Coxeter group W. It is an attempt to construct a “quantum
coinvariant algebra” of a finite Coxeter group and find a “quantum” analog of C. Dunkl’s result
mentioned above, that were the main motivation for the present paper.

Let us say a few words about the content of our paper.

In Section 2 we present a definition of bracket algebra BE(W,S), as well as that of its
super-version BET (W, S), corresponding to any finite Coxeter system (W, S). If (W, S) is the
Coxeter system of type A, the bracket algebra BE(W, S) coincides with the quadratic algebra
En+1 introduced and studied in [8] and [15], while the algebra BET (W, S) coincides with the
quadratic algebra Agyqq of [18], see also [1], [20]. We note that the algebra BE(W,S), as
well as that BET(W,S), is a quadratic one only if the Coxeter group W corresponds to a
simply-laced semi-simple Lie group. In the case of a crystallographic Coxeter system (W, S),
except Ga2, we introduce a Hopf algebra structure on the twisted group ring BE(W, S){W} of
the algebra BE(W,S), and show that the latter algebra satisfies a “factorization property”,
see Lemma 2.1. As a corollary, for a crystallographic Coxeter system (W, .S), except G2, we
obtain a decomposition of the bracket algebra BE(W,S) into the tensor product of certain
algebras corresponding to the connected components of the Dynkin diagram of the Coxeter
system (W, S) after removing all the simple edges. Our results may be considered as a partial
generalization of results obtained in [9] for A,-quadratic algebras.

In Section 3 we describe two basic representations of the algebra BE(W, S), namely, Calogero-
Moser’s and Bruhat’s representations. The latter one is a bridge between the algebra BE(W, .S)
and the Schubert Calculus on the Coxeter system (W, S).

In Section 4 for any s € S, we introduce Dunkl elements in the algebra BE(W, S), denoted
by 65, and prove that they commute with each other, see Theorem 4.1. The commutative
subalgebra generated by Dunkl elements is the main object of our study. We also remark that
in the algebra BE' (W, S) the corresponding elements 6, s € S, are pairwise anticommutative.

In Section 5 we state a “classical version” of one of the main results of our paper, namely,
that for classical Coxeter groups and I2(m), the algebra generated by the Dunkl elements
is canonically isomorphic to the coinvariant algebra of the corresponding Coxeter group, see
Theorem 5.1. We believe that the same result holds for any finite Coxeter system. Our proof
of Theorem 5.1 is based on explicit calculations in the corresponding bracket algebras, and
we hope to improve our techniques to cover other cases. More specificially, using the defining
relations in the algebra BE(B,,), we show that all power sums poy, := 3™ + .- +62™ m > 0,
are equal to zero. Note that to show the equality py = 0 in the algebra BE(B,), n > 2, we
have to use the 4-term relations of degree four in the algebra BE(B,,). However, in the algebra
BE(D,), n > 4, the equality ps = 0 follows only from quadratic relations.



In Section 6 we construct a quantization ¢BE (W, S) of our bracket algebra BE(W, S).

(From Section 7 we will assume that Coxeter system (W, S) is a crystallographic one. Under
the assumption that (W, S) is a crystallographic, we construct a representation of the quantized
bracket algebra ¢ BE(W,S) in the group ring of W, Theorem 7.1. The main reason why we
made such an assumption on Coxeter system (W, .S) is that the quantum Bruhat representation
of the quantized bracket algebra ¢ BE(W, S), as defined in Section 7, does not work for general
noncrystallographic groups, e.g. for Io(m), if m > 9. In Section 7 we also state one of the main
results of the paper, Theorem 7.2, namely, that under the same assumptions as in Theorem 5.1,
the subalgebra generated by the Dunkl elements in the quantized bracket algebra ¢ BE(W, S) is
canonically isomorphic to the small quantum cohomology ring of the corresponding flag variety.

In Section 8 we state the “quantum Chevalley formula” and prove it for classical Lie groups
as a corollary of the existence of the quantum Bruhat representation and our Theorem 7.2.

In Section 9 we describe in more detail the bracket algebras for Lie groups of type B,
D,, and G2. In Subsection 9.2 we are going to make use of an algebraic structure of relations
in the algebra BE(B,) to the study of the so-called Pieri problem in the Schubert Calculus.
Remind that Pieri’s problem for a finite Coxeter pair (W,.S) means to find a generalization
of the Chevalley formula, see Section 5, for multiplication of an arbitrary Schubert class X,,,
w € W, by the Schubert class X, corresponding to a simple reflection s € S, to the case of
multiplication of an arbitrary Schubert class X,, by the Schubert class X, corresponding to
an element v € W which has a unique reduced decomposition. For the Coxeter group of type
A, a solution to Pieri’s problem is well-known, see e.g. [17], [22], [24], and is given by the
so-called Pieri formula. The latter formula may be interpreted as an explicit computation
of the elementary er(X,,), and the complete hx(X,,), symmetric polynomials in the bracket
algebra BE(A,,) after the substitution of the variables X,, = (x1,...,zy,) by the A,-Dunkl
elements, see e.g. [8], [22]. In Subsection 9.2 we give a partial answer on the B,-Pieri problem
stated above, namely, we give an explicit (if complicated) combinatorial formula for the value
of the elementary symmetric polynomials of an arbitrary degree and the complete symmetric
polynomials of degree at most two in the bracket algebra BE(B,,) after the substitution of the
variables by the B,-Dunkl elements. Let us observe that if we specialize all the generators
[i] € BE(B,) to zero, we obtain a D,-analog of Pieri’s formula. If we further specialize all
the generators [i, j] € BE(By,) to zero, we will come to the Pieri rule of type A,. It is known
that for Coxeter groups of classical type, the condition that an element u € W has a unique
reduced decomposition is equivalent to the condition that modulo the ideal generated by the
fundamental invariant polynomials, the Schubert class X, is equal to either e (X,,) or hx(X,,)
for some k£ and m < n, up to multiplication by some power of 2. Let us remark that our
Theorem 9.1 describes Pieri’s formula in the algebra BE(B,,). In order to obtain a Pieri-type
formula in the corresponding (quantum) cohomology ring one has to apply the (quantum)
Bruhat representation, see Theorems 3.2 and 7.1. Since both the classical and the quantum
Bruhat representations have a huge kernel, it is not obvious how to deduce the Pieri-type
formulas of [2] and [23] from the B,-type Pieri formulas of this paper.

It seems very interesting problems to extend our results to the cases of the Grothendieck ring
and (quantum) equivariant cohomology ring of flag varieties. We will consider these problems
in subsequent publications.

We expect that for simply-laced Coxeter systems (W, S) the algebra BE(W,S) is a finite
dimensional braided Hopf algebra over W. However, our algebra BFE(D,) is different from the
pointed Hopf algebra over Dy constructed in [20]. Surprisingly, the latter Hopf algebra appears
to be isomorphic to a certain quotient of the algebra BE™(Bsy), see Section 9.1. For nonsimply-




laced Coxeter systems (W, S) the algebra BE(W, S) turns out to be infinite dimensional, but
it seems plausible that a certain finite dimensional quotient of the algebra BE(W,S) has a
natural structure of a pointed Hopf algebra, and the algebra generated by the images of Dunkl’s
elements is isomorphic to that in the algebra BE(W,S).

The main motivation for introducing our bracket algebra and its quantization is an intimate
connection of the former and latter with classical and quantum Schubert Calculi for finite
Coxeter groups [3], [12]. For Coxeter systems of type A, combinatorial and algebraic study
of Schubert polynomials was initiated and developed in great details by Alain Lascoux and
Marcel-Paul Schiitzenberger [17]. It is our pleasure to express deep gratitude to Alain Lascoux
from whom we have learned a lot about this beautiful and deep branch of Mathematics.

1 Coxeter groups

Most part of this section can be found in Humphreys [13].

Definition 1.1 A Cozeter system is a pair (W, S) of a group W and a set of generators S C W,
subject to relations
(Ssl)m(s,s’) =1,

where m(s,s) =1 and m(s,s’) =m(s',s) > 2 for s #s' € S. The group W is called a Coxeter
group.

Definition 1.2 Let (W, S) be a Coxeter system. For an element w € W, the number
l(w) =min{r |w==s1---5,, s €S}

is called the length of w. We say the expression w = s1--- 8, (s; € S) is reduced if r = l(w).
The set of all reduced expressions of an element w € W is denoted by R(w).

We assume S to be finite. Let V' be an R-vector space with a basis ¥ = {as | s € S} and
symmetric bilinear form (, ) such that

(as,ay) = —cos (s 5

Consider the linear action ¢ of W on V' defined by
()X =X — 2(as, A as.
The representation o : W — GL(V) is called the geometric representation of W.

Definition 1.3 We define the root system A of W to be the set of the all images of as under
the action of W.

Any element v € A can be expressed in the form

v = Z csas (cs € R).
seS

Call v positive (resp. negative) and write v > 0 (resp. v < 0) if all ¢5 > 0 (resp. ¢; < 0).
Write A, (resp. A_) for the set of positive (resp. negative) roots. Note that A = —A and
A=A, TTA_.



Lemma 1.1 The representation o : W — GL(V') is faithful.

For a given root v = w(as) (w € W, s € S), the element wsw~! depends only on 7 and it acts
on V' as a reflection sending v to —y. We denote it by s,.

Lemma 1.2 Let w € W and v € Ay. Then l(wsy) > l(w) if and only if w(vy) > 0.

Definition 1.4 The Coxeter system (W, S) is called crystallographic when its root system A
can be normalized to satisfy the condition

for all v,~" € A.

In our paper, the crystallographic systems are always normalized to satisfy the condition above.

2 Bracket algebra of Coxeter group

2.1 Definition of the bracket algebra

Definition 2.1 Let (W,S) be a Coxeter system and assume W to be finite. We define the
bracket algebra BE(W,S) as an associative algebra over R with generators [y], v € A, subject
to the following relations:

(i) For any v € A,

(i) For any v € A,

M? =o0. (1)
(iii) (Quadratic relations) Let A" = {yo,...,Ym—1} C Ay be a set of positive roots such that
R>o(vi,Yit1) VAL = {vi,Yit1} for alli =0,...,m—2. If A" forms a root system of type Io(m)
(m > 2), then

m

> illisk] =0 (2)

i=0
for 1 <k <m/2, where we set by definition v;ym = —7;.
(iv) (4-term relations for subsystems of type Iz(m)) Let A’ C A be a set of positive Toots as
in (iil). If A" forms a root system of type Io(m), m >4, and k = [m/2] — 1, then

(k] - [vol[va] -+~ [yaw] + [vol[val - - - [yvex] - [kl

+ve] - [vard[v2k—1] -+ - [vo] + [var)[v2k—1] - - - [v0] - [v] = 0.

Remark 2.1 1) The defining ideal generated by the relations (i), (ii), (iii) and (iv) is stable
with respect to the action of the Weyl group W. In other words, the algebra BE(W,S) is a
W-module.

2) If (W, S) is a Coxeter system of type A, then the bracket algebra BE(W, S) coincides with
the quadratic algebra &,41 introduced in [8], see also [15].

3) All the defining relations above come from the subsystems of rank two. As for explicit
descriptions of these relations in the case of type By, Do and Go, as well as for B, and D,
types, see Section 9.

4) Algebra BE(W,S) has a natural grading, if we consider the generators [y] as elements of
degree one.



Problem 2.1 Find the Hilbert series of the bracket algebra BE(W,S).

We expect that the algebra BE(W,S) is finite dimensional for simply-laced Coxeter groups.

Problem 2.2 Describe the algebra BE(W, S) as a W-module, find its character, and / or the
graded multiplicities of its irreducible components.

Remark 2.2 We can define the super-version BET (W, S) of the bracket algebra by using
the relation [y] = [—7] (y € A) instead of (i) in Definition 2.1. If (W,S) is of type A,
the algebra BE™T (W, S) coincides with the algebra Agyqq of [18], see also [1] and [20]. For
crystallographic groups, one can show that the left-invariant Woronowicz exterior algebra A,
[25] for some special choice of a differential structure on W, see [18], is a quotient of the algebra

BET(W,S). However, in a nonsimply-laced case, the algebra A,, is a proper quotient of our
algebra BE1(W, S).

2.2 Hopf algebra structure on the twisted group algebra

Since the bracket algebra BE(W, S) has a W-module structure, one can construct the twisted
group algebra BE(W,S){W} = {3 ewcw - w | co € BE(W,S)} by putting commutation
relations w[y] = [w(y)]w for w € W and [y] € BE(W,S).

Proposition 2.1 Let (W, S) be a crystallographic Cozeter system, except Ga, the twisted group
algebra BE(W, S){W} has a natural Hopf algebra structure with the coproduct A, the antipode
S and the counit € defined by the following formulas:

AR =hel+s,@h], Aw)=wew,
S() = sy, S(w) =w™,
() =0, e(w) =1,

for [y] € BE(W,S) and w € W.

Such a Hopf algebra structure was invented and studied in [9] for A,,-quadratic algebras.
The Hopf algebra BE(W, S){W} acts on itself by the adjoint action

w:xr—>wazw_1, w e W,

] == [Ye = sy (2)[].

The subalgebra BE(W, S) is invariant under the adjoint action of BE(W, S){W}. The element
[v] € BE(W,S) acts on BE(W, S) by a twisted derivation

D, (z) = [ylz — sy(z)[7],

which satisfies the twisted Leibniz rule

D, (zy) = D,y(x)y + Sv(x)D'y(y)-

Lemma 2.1 Let (W', S") be a parabolic subsystem of (W, S) and A’ the set of roots correspond-
ing to (W', S"). Denote by A(A\ A') the subalgebra of BE(W,S) generated by the elements
[v], v € A\ A’ Assume that S\ S" = {t} and m(s,t) <3 for any s € S’. Then the subalgebra
A(A\ A) is invariant under the adjoint action of algebra BE(W',S"), and the multiplication
map

e W= 0IW], eBEW,S), []e AA\A)



defines a BE(W',S")-linear isomorphism of algebras
A(A\ A"Y®@ BE(W',S") = BE(W, S),
where BE(W', S")-module structure on the tensor product A(A\ A") @ BE(W',S’) is given by
[(a®b) = Dy(a) ® b+ sy @ [y]b.

It follows from Lemma 2.1 that the Hilbert series of algebra BE(W’, S’) divides that of algebra
BE(W,S). We give a few more examples of application of Lemma 2.1 in Section 9.

Remark 2.3 It is not difficult to see that the algebra BE(W,S) is a braided group in the
category of W-crossed modules with braiding U([y1] ® [2]) = s+, [72] ® [71]. The Hopf algebra
BE(W,S){W} is obtained as its biproduct bosonization in the sense of Majid. For Coxeter
groups of type A these results have been shown originally by S.Majid, see [18] and the literature
quoted therein.

3 Representations of bracket algebra

In this section we are going to construct two basic representations of the algebra BE(W,S).

3.1 Calogero-Moser representation

Given the geometric representation o : W — GL(V), it induces the natural action of W on the
ring of polynomial functions S(V*). For any positive root v, the divided difference operator 0,
or Demazure’s operator [4], acting on the ring S(V*) is defined by

1—sy
T
Theorem 3.1 A map [y] — 0, defines a representation of the algebra BE(W,S).

9, =

Proof. Compatibility with the relation (iv) is clear. As for the compatibility with the relation
(iii), we may restrict our consideration to subsystems of rank two. It is easy to check the
compatibility for As, By and Io(m). B

3.2 Bruhat representation

Let us define a linear operator s, acting on the group ring R(W) by the rule

) wsy, i Hwsy) = Hw) + 1,
Sy W= 0, otherwise.

Theorem 3.2 A map [7] — s, defines a representation of the algebra BE(W,S).

Proof. Tt is enough to show the compatibility with the relation (iii). We use only linear relations
among the roots in the subsystem of rank two containing o and 3. We may assume that «
and (3 generate a root system of type Io(m) (m > 2). Let a; = (cos(in/m),sin(in/m)) € R?,

i=0,...,m—1. Then Ay ={ag,...,am—1} and we have to check
m—1 m—k—1
Z Qjyf— m az Z az+k
i=m—k =0



for 1 < k < (m —1)/2. From now on, we put k& = 1 for simplicity, but the following argu-
ment works well for all k. If sq,, Sq,w = wsg,8q,,,, then l(w) = l(wsy;) — 1 and [(wsy,) =
l(wSa;Sa;4,) — 1. From Lemma 1.2, w(a;) > 0 and wsg, (a;4+1) = —w(a;—1) > 0. So we have that
w(am-1) > 0 and ws,,, ,(ap) = w(am—2) < 0, and that w(a;) and w(a;j—1) are both positive
or both negative for j # i. Hence, if sq, ,Sq,w = wSg;8a,,,, then sq;  sq;w = 0 for j # i and
SaoSa,, W = WSq,, | Sq,- Conversely, if s4,8,,, W = wsq,, ,Sq,, then there is only one ¢ such
that sq,,,Sq,W = W84, 8q,,, and sq;,,8q;w = 0 for j # . A

Problem 3.1 Does there exist a finite dimensional faithful representation of the algebra BE(W, S)?

4 Chevalley and Dunkl elements

Definition 4.1 For each s € S, the Chevalley element ns in the algebra BE(W,S) is defined
by
Ns = Z <w8aryv>[7]v (3)

vEAL

where ws is the fundamental dominant weight corresponding to as and v = 2v/(7,7).

Definition 4.2 For each s € S, the Dunkl element 65 in the algebra BE(W,S) is defined by

0s = Z Cs,s' s’

s'esS

where the coefficients cs ¢ are defined by cs ¢ = (s, g ).
Theorem 4.1 The Dunkl elements 05 (s € S) commute pairwise.

Proof. 1t is enough to show that the Chevalley elements commute pairwise. First of all, let us
observe that the element nsn. — n.ns can be decomposed as a sum of contributions from root

subsystems of rank two. Thus, we may assume that the root system A is of type Ia(m). Let
S = {ap, am—-1} and

_ .1 .
a; = )\1_1/\i+1a0 + Al lAiam_l, A; = sin %ﬂ, 0<i<m-—1.

Then A = {ag,a1,...,am—1}. We have to show that n; and 7y commute, where

m—1 m—1
m= > Aiplad, m=Y Ailai].
=0 =0

We have
il i+j+1
2 — ) = 3 <cos I s w> (aillas] = [as][ai]) -
i,j=0 " mn

Here, cos((i + j + 1)7/m) is symmetric on ¢ and 7, so
it+j+1
5 (cos 50 (ladlog) - faglla) =0,
— m
17‘7
Note that Sa;Sa; = SapSa, if and only if 1 — j = p — ¢ mod m. Hence the relations in Definition
2.1 (iii) imply that

Z Z (COS k;?: 17r) ([Gi][aj] — [aj][ai]) —-0. N
)

k i—j=k (m



Remark 4.1 For the commutativity of the Dunkl elements 65 it is enough to assume the
validity of quadratic relations (iii) in Definition 2.1 only.

Remark 4.2 In a similar fashion one can check that the elements 65, s € S, defined as in
Definition 4.2 in the super-version BET (W, S) of the bracket algebra BE(W,S) are pairwise
anticommutative. It is a challenging problem to describe the subalgebra in BE™T (W, S) gener-
ated by the elements 6, s € S.

5 Algebra generated by Dunkl elements

Let |S| = n. In case when W is a finite reflection group, it is known that the subalgebra
S(V W < S(V*) of W-invariant polynomials is generated over R by n homogeneous, alge-
braically independent polynomials fi,..., f, of positive degree. We denote by Iyy C S(V*)
the ideal generated by fi1,..., fn. The quotient ring Sy := S(V*) /Iy is called the coinvariant
algebra of W.

An explicit construction of a linear basis of Sy is given by Bernstein, Gelfand and Gelfand
[3], and Hiller [12]. Let w = s;, - - - si, (Siy,-..,5i, € S) be a reduced decomposition of w € W.
We define the operator 0, acting on the algebra of polynomial functions S(V*) by 9, =
8%2,1 e Oasl,l, where 8a8i1 yenn ’80182'1 are divided difference operators defined in Section 3. The
definition of the operator 9,, is independent of the choice of a reduced decomposition of w.

For any polynomial f € S(V*), one can define an element [f] € BE(W,S) as an image of
f by the algebra homomorphism obtained by the substitution wg — ;.

Definition 5.1 (cf. [3],[12]) We define the polynomials X,, € S(V*), w € W, by the following
formulas:

Xy = ‘W‘il H s
YEAL

Xuw = 0y Xuwos

71’[1}0

where wyg € W is the element of maximal length.

It is known ([3], [12]) that the images of the polynomials {X,,} in the coinvariant algebra Sy
form a linear basis and satisfy the Chevalley formula

Xs Xy = Z(ws,VV)sty mod Iy,

where the sum is taken over the positive roots v such that l[(ws,) = l[(w) + 1. It is useful to
note that one can obtain the Chevalley formula above by applying the Bruhat representation,
see Theorem 3.2, to the equality [X;] = 75 in the algebra BE(W,S).

We have the following statement from the Chevalley formula.

Lemma 5.1 There exists a surjective homomorphism from Sy to the subalgebra generated by
the Chevalley elements R[ns|s € S] € BE(W,S), which maps X to ns.

Theorem 5.1 For Cozxeter groups of classical type and Is(m), the subalgebra R[fs|s € S| in
BE(W,S) generated by Dunkl elements is canonically isomorphic to the coinvariant algebra of
the group W, i.e.

R[0s | s € S]=Sw.

We postpone a proof till Section 9.



Conjecture 5.1 The statement of Theorem 5.1 is valid for any finite Cozeter group.

Conjecture 5.2 Let (W, 5) be a crystallographic Coxeter system, then there exists a monomial
basis {b,}, in the algebra BE(W,S), such that for any w € W the polynomial [X,,] can be
expressed as a linear combination of b,’s with nonnegative coefficients.

6 Quantization of bracket algebra

We consider the group of characters
C = Hom(V*, 81,
and its elements g; = exp(2my/—1( -, ))) for s € S. For v = > g nsa, we set g,v =[], 7.

Definition 6.1 The quantized bracket algebra ¢BE(W,S) is the associative algebra over the
ring Rlgs | s € S] with generators [y], v € A, subject to the relations:
(i)' For any v € A,

(ii)" For vy e Ay,
M =g, if veEX,

(]2 =0, otherwise.

iii) The same relations as in Definition 2.1 (iii).
v)" Under the same assumptions as in Definition 2.1 (iv), if in addition the following inequality

(
(i
U(sy,) #2(p,v)) —1 holds, then

(k] - [vol[val -+~ [yaw] + [vollval -+ - [yek] - [kl

vkl - [kl [v2k—1] -+ - [vo] + [var)[v2k—1] - - - [vo] - [v] = 0.

Definition 6.2 The Chevalley elements s and the Dunkl elements 9~S, s € S, in the algebra
qgBE(W,S) are defined by the same formulas as in Definitions 4.1 and 4.2.

Theorem 6.1 The Dunkl elements 537 s € 5, commute pairwise.

Proof. The proof can be done in the same manner as that of Theorem 3.1. i

Remark 6.1 Tt is natural to consider a multiparameter deformation of the algebra BE(W,S)
which is generated by elements [y], v € A, with defining relations (i)', (iii)’, (iv)" and the
additional one
(i1)”

[/7]2 = Q’yv if Y € AJrv
where @Q’s are independent central parameters indexed by v € Ay. The commutative algebra
generated by Dunkl elements in this case may be considered as a “multiparameter” deformation
of the coinvariant algebra of the Coxeter system (W, .5).

Remark 6.2 In a similar fashion one can define a quantization ¢gBE' (W, S) of the super-
version BET (W, S) of the bracket algebra BE(W, S) and a family of elements §, € ¢gBE+ (W, S).
See Remark 2.2 for the definition of the algebra BE'(W,S). It is a challenging problem to
describe the subalgebra in gBE*(W,S) generated by the pairwise anticommutative elements
fs, s €S.
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7 Extended Bruhat graph and quantum Bruhat representation

Starting from this section, we assume that the Coxeter system (W, .S) is a crystallographic one.
Let us denote by p the half-sum of all positive roots, i.e.

1
pP=5 2
vEAL

If vV =3 cgnsay, then

(p,7Y) = s

seS

Lemma 7.1 Let v be a positive root, then

2(p,7") — 1> 1(s4)-

Proof. For v € A, define r as the minimal number of simple reflections sg, s1,...,s,—1 such
that s, = 5,1+ 515051 - - Sp—1. Then, we can conclude that I(s,) = 2r—1. Hence, by induction
on 7, we have 2(p,7") —1>2r —1=1(s,). B

7.1 Extended Bruhat graph

Definition 7.1 The extended Bruhat graph T'(W,S) is a graph whose vertices are elements of
W with arrows v — w in the Bruhat ordering and additional arrows v 2o w which mean that
w=wvsy (v € A}) and l(w) = 1(v) — 2(p,v") + 1.

Lemma 7.2 Let (W, S) be a crystallographic Coxeter system and (W', S") its parabolic subsys-
tem. Then the extended Bruhat graph T'(W' S’ is a subgraph of T'(W, S) by the map induced by
the inclusion W' — W. Moreover, if there exists an arrow v —. w with v,w € W' in T(W, S),
then the arrow v —. w belongs to T (W', S7).

This follows immediately from Lemma 1.2 and Lemma 7.1.

Remark 7.1 Definition 7.1 and Lemma 7.2 were discovered originally by D.Peterson [21].

7.2 Quantum Bruhat representation

Let us define an operator s, (y € Ay ) acting on the group ring
Qlgs|s € S](W), by the rule

WS-, if l(w) = l(ws'y) -1,
Syw =1 grwsy, if l(w)=1U(wsy)+2(p,7")—1,
0, otherwise.

Theorem 7.1 A map [y] — §, defines a representation of the quantized bracket algebra
¢BE(W, 5).

Proof. The compatibility with the relations (i)’ in Definition 6.1 is clear. We check the
compatibility with the relations (iii)’ and (iv)’. Let A’ be as in Definition 2.1 (iii). We are
considering only crystallographic root systems, so we may assume that A’ is of type Iz(m)
with m = 3,4, 6. Take an arbitrary element w € W. If I(wsgsa) = l(w) + 2, then relation

Mollym—1]w =Y [villi+1]w

7
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follows from the same argument as in the proof of Theorem 3.2.

Let @ = 79, f = Ym—1 and A(a, B) = {(7i,vi+1)|t = 0,...,m — 2}. We consider the case
l(wsgsa) < l(w). Note that (p,v) > (p,") and (p,71) > (p,BY) for i =0,...,m — 2. For
(71,72); (01,02) € A, 8), (p,7]) = (p,6}) holds if and only if (y1,72) = (d1,d2). Hence, if

there exists a path I' of type w L x ie wsgSq, then we have
l(w) = Wwsgsa) +2(p, ") +2(p,8") = 2 > Uwsgsa) + U(sa) +1(sp) (%).

This means that [(w) = l(wsgsa) + I(sa) + I(sg), and (7,d) = (B, a). In this case, we can
see that there exists unique pair (y1,72) € A(a, 8) such that if [y1][y2Jw # 0 and (*) holds.

Similarly, if there exists a path I' of type w ﬂe x 2 WS3Sq OF W . 2. ws3Sqa, we can find
unique pair (y1,72) € A(a, ) such that [y1][y2]w # 0. R

Remark 7.2 It follows from our proof that in the extended Bruhat graph corresponding to a
crystallographic Coxeter group, there exist exactly two paths connecting two vertices vy, v such
that {(v1) — l(ve) = 0 (mod 2). This property does not hold in general for noncrystallographic
Coxeter systems.

Now we assume that Coxeter system (W,S) comes from a connected simply-connected
semi-simple Lie group G. We denote by B the Borel subgroup of G. The small quantum
cohomology ring of the flag variety G/B is isomorphic to the quotient ring of the polynomial
ring S(V*) ® R|gs] by the ideal Iy generated by quantum W-invariant polynomials, which are
explicitly given by Kim [14].

Theorem 7.2 For Cozeter groups of classical type and of type Ga, the subalgebra in gBE(W,S)
generated by Dunkl elements, Rlgs|[0s | s € S|, is canonically isomorphic to the quantum
cohomology ring QH*(G/B).

A proof of Theorem 7.2 is based on direct computations, see Section 9. Note that for Lie
algebras of type A, Theorem 7.2 was stated for the first time in [8], and has been proved later
in [22].

Conjecture 7.1 Theorem 7.2 holds for any crystallographic finite Coxeter system.
Problem 7.1 For any finite Coxeter system (W, .S), describe “a quantum coinvariant algebra”

of the group W, i.e. to describe the subalgebra in ¢BE (W, S) generated by the Dunkl elements
Os, s €S.

8 Quantum Chevalley formula

For any polynomial f € S(V*) ® R[gs], one can define an element [f] of ¢BE(W,S), using
the substitution ws — 17;. We regard this element [f] as an operator acting on the group ring
Rgs[(W).

Proposition 8.1 Let w € W, there exists a unique polynomial P, € S(V*) @ R|gs] character-
ized by the conditions: )
[Pw](l) = w,

]sw == Xw + Z C’UX”U (CU € R[qs])7
l(v)<l(w)

where X,, are the polynomials defined in Section 5, Definition 5.1 .

12



Proof. If l(w) < 2, then [X,,](1) = w. In general, we have

Xo])=w+ > v (weR[g],veW) N
l(v)<l(w)

Remark 8.1 The polynomial P,, defined in Proposition 8.1 coincides with the quantum Bernstein-
Gelfand-Gelfand polynomial introduced in [19].

It follows from Theorems 7.1 and 7.2 that for classical Coxeter groups and G one has

Quantum Chevalley formula ([21], [10])
For s € S and w € W, we have

pspw: Z <w577\/>Pw’+ Z qWV<w877v>Pw’ mod I~W7

/ R

~
w—w W—eW

where the sums are taken with respect to the positive roots .

Remark 8.2 In Proposition 8.1, we have introduced the polynomial P, satisfying the condi-

tion [P,](1) = w. One can consider the action of [P,] on any element v € W via the quantum
Bruhat representation, and obtain an expression

[Pul(w) = > chula) v,

veW

where ¢!, (¢) € R]gs] are polynomials whose coefficients are the so-called 3-point Gromov-
Witten invariants of genus zero for the target space G/B.

Conjecture 8.1 Let (W, S) be a crystallographic Coxeter system, then there exists a monomial

basis {b,}, in the algebra ¢BE(W,S) such that for any w € W the polynomial [P,] can be
written as a linear combination of b,’s with nonnegative coefficients which do not depend on

)
qds'S.

9 Examples

Explicit description of relations and the Dunkl elements for quantized A,-bracket algebra is
given in [8]. In this Section we study in more detail the cases of B,-, D,- and Ga-bracket
algebras.

We fix an orthonormal basis eq, ..., e, of n-dimensional Euclidean space.

9.1 Quantized B,-bracket algebra

The root system of type B, n > 2, consists of the elements +e; + e; and +e; (1 < 4,5 < n),
and we fix a set of simple roots

S(Bp)={a1=e€1—€2,...,Qn_1 = €p_1 — €n,0p = €p}.

The quantized B,-bracket algebra ¢BE(B,) = ¢qBE(W (By,),S(B,)) is generated by the sym-
bols [i, j] = [e; — €], [i,j] = [e; + €;] and [i] = [e;] over Rlqu, ..., gn] subject to the relations:

13



(1) [ii+ 1> = g, [0]* = g,

[i,§]2 = 0, if |i — j| # 1; [i]? :0,ifi<n;m2:0,ifi7éj,
(2) [i, g1k, 1T = [k, 03, g1, (2, 3]k 0 = [k, 2010, 5], 2, 511K 1] = [k, [, 1,

i {i,3} N {k. I} = o,
(3) @[] = [)lal. [2, 41, 5] = 6. 4104, 31, 6. 11k] = [K1la, 3], 6, 11K] = [K][a, ], if & # 4. 5,
(4) [, 4113, k] + [J, k][k, i] + [k, l%lj] =0,

(¢, K1[i, 3] + [, 2113, K] j
(2, 4112l + (10, 4] + [a][e, 4] + [, d]1
if all 4, j and k are distinct,

(5) [a, a1, 502] + [é, 1021, 502] + [)la, 1[a)Ta, 4] + [d)[a, (el la, 4] = 0, if @ < 3.
The Chevalley and Dunkl elements are given by 7, = 01 + - - - + 6;, where
0; =07 = "([i, 4] + i, 4]) + 2], 1<i<n
JF

The Chevalley elements Nsa, correspond to the Pieri-Chevalley type formula, where as the

Dunkl elements 6; correspond to the Monk type formula in the cohomology ring of the flag
variety. It is easy to see that in the formula for 6; above, one can replace the term 2[i] by that
c[t] for any constant c. The resulting operators still commute pairwise.

Now we define the quantum Bj-invariant polynomials following [14]. Let E;; € Ma,(R)
be a matrix such that its (i, 7) entry is 1 and other entries are 0. We set t; = E;; — Eitp itn,

Eov = Eit1,i + Eitnjitnt1, E_oy = Eiiv1 — Eigni1,i4n (1 <0 <n—1), Eqy = —2E3,, and
E_ay = 2Ey 9. Let
q) = Z eiti + Z Gl _ay + Z Eqy.
i J J
The quantum B,-invariant polynomials JZ(e,q) = JP(e1,...,en;q1,...,qn) (1 < v < n) are

coefficients of the characteristic polynomial of X? (e, ¢), namely,
n
det(tI + XB(e,q)) = t*" + > JP (e, q)t* ).
v=1
The quantum cohomology ring of B,-flag variety is isomorphic to the ring
C[elv e 767Z7Q17 . 7qn]/(J].B’ R J’ﬂB)

Proposition 9.1 In the quantized bracket algebra ¢BE(By,) we have the following identities

JyB(él,...,én;q) =0, 1<v<n.
Proof of Proposition 9.1 is based on Lemma 9.1 below.

Before to state it, let us introduce a bit of notation.

Notation Let {i,j} denote either generator [i,j] or [i,j], and define [i, ;] = [ ] We also
define elements A(ay,...,ax), A(ay,...,ar) € BE(B,) for distinct integers 2 < aj,...,ar < n

as follows
= e (fle) 0 (1 )

k J
Alay,...,a Z ( [1,am]> S[1] - (H (1, am)

Jj=1 m=1

N

5
o

—~

-

m

J
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Lemma 9.1 We have the following cyclic relations in the algebra BE(B,,) for distinct integers
2<ai,...,ar <n:
(1) {1,a1}{1,a2}---{1,ar}{1, a1} + (cyclic permutations on indices) = 0;
(2) {1’ (11}{1, CL?} T {17 ak}m + {1) QQ}{L (13} T {17 ak}m
+-t {17 ak}{L al} T {17 akfl}{lv ak} = {L al}{17a2} T {17 ak}{Lal}
+m{17 az}t-- {1, ak}m{lv agt + -+ {LapH{l, a1} - {1l a1 {1, ax };
(3) [I(A(a1, ..., ax) + Aar,...,ax)) + (A(ar, ..., ax) + Aar, ..., ax))[1] = 0;
(4) All the relations which are obtained from (1), (2) and (3) by the action of the Weyl group.

Example 9.1 For k = 3, one can write down the relations in Lemma 9.1 as follows:
(1) {1, a1 {1, a2}{1, az}{1, a1} + {1, a2 }{1, as}{1, a1 }{1, a2} + {1, as }{1, a1 {1, a2 }{1, as} = 0;
(2) {1, a {1, aaH{1, a3} {1, an} + {1, a2}{1, a3} {1, a: }{1, a2} + {1, a3}{1, a1 }{1, a2} {1, az}

= {1, }{1,a2}{1, a5 }{1, a1} + {1, a2} {1, as}{L, ar } {1, ao} + {1, as {1, a1 {1, a2 {1, a};
(3) [[L, ax][1, as][1, as][1][1, ar] — [1][1, a2][1, as][1][1, a1][1, ao] + [1][1, as][1][1, a1][1, a2][1, as]
J[L a1] = [1][1, a2][1, as][1][1, a1][1, ag]

]
+[J[L a1][1; a2[1, as][1 + [, az][1][1; a1][1, a2][1, a3
+[1, a1][1, a2][1, as][1[1, ar][1] = [1, a2][1, as][1][1, aa][1, ax] [1] + [1, as][1][1, aa][1, a2][1, as][1]
+[1 a][L; a2][1, a3][1[1; aa][1] = [1, az][1; as][1][L; a1][1, ag] [1] + [1, az][1][1, a1][1; a2][1, as][1]

In the final part of this Subsection we consider an application of Lemma 2.1 to the case of
B,,-bracket algebra.

Let z; = [i,n], y; = [i,n] for 1 <i < n — 1, and z, = [n] be elements of BE(B,). Denote by
AB = A(A(B,) \ A(B,_1)) the subalgebra of BE(B,,) generated by z1,...,%n,¥1,. .., Y, and
Zn-

Proposition 9.2 Action of the twisted derwation Dy, on the algebra AB is determined by the
following formulas:

Dy j(@i) = —wizj, Dy () = zj2i, Dy (yi) = —viyj. Duj(y) = Y,
Dgo(wi) = wiyj, Dp(s) = z59i, Dyg(vi) = vizj, Diz(y;) =y,
Dyy(z:) = wizn — 20Yi, Dpy(yi) = 2nTi — Yizn,
Dy j1(zn) = Dg7(2n) = Dpgj(2n) = 0,
for1<i#j<n-—1, and
Dyiy(wi) = Dy (yi) = Digy(zi) = Dy (yi) = 0, if i, k, [ are all distinct,
and the twisted Leibniz rule, see definition of the former in Section 2.2.

Therefore, the subalgebra AZ is invariant under the twisted derivation Dy, for any root v €
A(Bp-1). By applying Lemma 2.1 successively, we obtain the following decomposition of the
algebra BE(B,,) for n > 2,

BEB,) = AP ®...@ AL

Note that the relations in Lemma 9.1 can be obtained by applying the twisted derivations
successively to the defining relations of the bracket algebra. We don’t know whether or not all
the relations in the bracket algebra can be obtained in such a way.
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Example 9.2 By applying D4, 451 D[a;,a,) t0 the 4-term relation

WL, a] (1L a] + [1, a1 aa][1] + (L a] 1L ] + [1 ][, en][1] = 0,
we obtain the relation (3) in Example 9.1.

We conclude this subsection by a construction of one more representation of the algebra
BE(B,_1). Denote by FZ the quotient of the free associative algebra over R generated by
Xi,..., X1, Y1,...,Y,1 and Z, modulo the two-side ideal generated by XZ»Q, Y;Q, Z% and
InXiZnYi+ X 2, Y Zp + Z,Y; 20, X + Y Zp, X Zy, for 1 < i < n — 1. The Weyl group W(B,,—1)
acts on the algebra FZ by the rule
sij(Xi) = Xj, si;(Yi) =Y, si5(Xi) = =Y, s5(Ya) = =X, si(Xi) = =5, si(Ys) = = X5,
5ij(Xi) = s75(Xk) = 8i(Xp) = X, 53 (Yi) = s55(Yi) = si(Yi) = Vi,
sij(Zn) = s75(Zn) = si(Zn) = Zn

for distinct 4, j, k € {1,...,n—1}. Now define operators Vy; j, Vm and Vi), 1 <i# j <n—1,
which act on the algebra FZ by the same formulas as for the operators Dy; i1 DW and Dy
from Proposition 9.2 after replacing z;, y; and z, by X;, Y; and Z,, respectively. Then the
operators Vy; j and Vm and Vi, 1 < i # j < n— 1, give rise to a representation of the
algebra BE(B,,_1) in the algebra F2, and natural epimorphism 72 : 8 — AB is compatible
with the action of the algebra BE(B;,_1).

B

n -

Problem 9.1 Describe the kernel of the epimorphism 7

9.2 Pieri formula for B,-bracket algebra

The main goal of this subsection is to describe a Bj,-analog of Pieri’s formula in some cases,
namely, we give an explicit formula for the value of elementary symmetric polynomials of
arbitrary degree and complete symmetric polynomials of degree two in the bracket algebra
BE(B,,) after the substitution of variables by the B,,-Dunkl elements. Let us observe that if we
specialize all the generators [i| € BE(B,,) to zero, we obtain a D,-analog of Pieri’s formula. To
state our result, it is convenient to introduce a bit of notation. Let S = {i; < is < -+ < i5:=7}
be a set of positive integers. Define inductively a family of elements {K;(S)};>1 in the algebra
BE(B;) by the following rules

i) Ey(S) =) i+ > [igls Ki(8)=0, if s<I;
i€S i<j, 1,J€S
i) Ky(S) = Ki(S\ {r}) + > _(la, 7] + [a, D K1 (S \ {a}) + Ki1(S\ {7}y,
a€s

where 0, ¢ = > ,cq(—[a, 7] + [a,7]) + 2[r].
Theorem 9.1 (la) Let m < n, then

-~ k k k-l
en(07", .. 00m) =" [T da} + 2D > [ {fas da ({1, .o om}\ {in, . i }),
() a=1 =1 (%) a=1

where the symbol i: means that in the corresponding sums we have to take only distinct
monomials among the products [1°_ {ia, ja} and [1*Z{ia,ja}; the condition (x) means that
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1<ia <m < jg <n and all indices i, are distinct.

(Ib) The elements K;(S) can be expressed in the algebra BE(By) as a linear combination of
monomials in [i]’s and [i, j]’s with nonnegative integer coefficients.

(1c) If the number of elements in the set S is equal to I, then K;(S) = 0 after the specialization
[a]| =0 for all a € S.

(1d) Ka(S) = (K1(5))%

Ka(S) = Ko(S\ {r}) + 3" arIKa(S \ {a}) + Ka(S1\ {r) (zm+2m)

a€sS

+ ([aﬂ“][a] + [r]fa, ]+ [b,7] [a,b]) Ky (S\{a})+E1(S\{r}) D ([aﬂ“Ha] + [r]fa, ]+ b, T][a’b]> :

a€sS besS a€sS besS

For example, the multiplicity of the monomial [12][34][56] in 63(91B6, 056, ol 956) is equal to 4.
(2) Let m < mn, then

~ 2
ho(077, .. 05 =" T[liardat +2 > {6, 5 K ({1, ...,m}\ {i}) + 2K2({1,...,m})
(

*k) a=1 1<i<m<j<n

2 Y (il + i dfd) +2 Y (G + ),

1<ig<m<j<n 1<i<m<j<n
where the condition (xx) means that 1 < i, <m < j, < n and all j,’s are distinct.
(3) hi (0P, ..., 0B) =0, if k+m > 2n.

Finally, let us remark that for classical Coxeter groups W = W (4,), W(B,), and W(D,,),
the condition |R(u)| = 1, u € W, is equivalent to the condition that modulo the ideal Iy,
the Schubert class X, is equal to either ex(X;,) or hi(X,,) for some k& and m < n, up to
multiplication by some power of 2. In the case of symmetric groups, the permutations w such
that |R(w)| = 1 are exactly the permutations of the following forms:

w = h(a,b) :=(1,2,....,a+b,a,b+1,b+2,...), or
w=-e(a,b):=(1,2,....a—ba—b+2,..,a+1,a—b+1,a+2,a+3,...), see e.g. [24].

9.3 Quantized Bj-algebra and quantum cohomology

Here we give an explicit calculation of quantum cohomology ring and certain polynomial rep-
resentatives for Schubert classes for Ba-flag variety. The bracket algebra ¢ BE(B3) is generated

by the symbols [12] [12], [1] and [2] subject to the following relations:

(i) [122 = g1, [12]° =0, 12 =0, [2]° = o,

(i) [12][12] = [12][12], [1][2] = [2][1],

(i) [12][1] — [2][12] + [1)[12] + [12][2] = 0, [1][12] — [12)[2] + [12][1] + [2I[12] = O,
(iv) [12][1)[12][1] + [L2][][22][1] + ]2 [L02] + [][A2)[2][12] = 0.

The Chevalley and Dunkl elements are 7, = 6, and Nsy, = =6, + 02, where

Sag

01 = [12] + [12] + 2[1], 62 = —[12] + [12] + 2[2].
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Quantum cohomology ring of the By-flag variety is isomorphic to the algebra Clq1, ¢2][e1, e2]/1B,,
where

Tp, = (& + & — 201 — g2, 363 + 2qrerca — dpcl + 07

The subalgebra generated by 61,6, in ¢BE (B2) ® C is isomorphic to the quantum cohomology
ring. Let us consider the quantum Bruhat representation of ¢BFE(Bz) and regard the Dunkl
elements 6; as operators acting on the group ring R[qi, . .., ¢n](W(Bz)). Denote by s13 and so
the simple reflections with respect to the simple roots e; — es, and es respectively. Then,

é%Q_m(id.) = $2512
5167224-611(16” = 51252
03 — QQ1§1 — 010, (id.) = s1959519
0305 — 63 +43Q151 + @16, (id.) = 051259
é§9~2 + Ché% — q1616; — ¢t — dae (id.) = s125251252.

4

Remark 9.1 Both algebras BE(Bs) and BE™(Bs) are infinite dimensional, but if we add the
new relation

[][21[1{12] = [12][1][12][1]
in the algebra BE(B3), and that
[][21[112] + [12][1[12][1] = 0

in the algebra BE™(Bs), the resulting algebras appear to be finite dimensional and have the
same Hilbert polynomial

(1+ )41+ 32
One can check that the pointed Hopf algebra over the Coxeter group Dy constructed in [20], is
isomorphic to the quotient of the algebra BE'(Bs) by the relation of degree 4 defined above.

9.4 Quantized D,-bracket algebra

In D, case, n > 2, fix a set of simple roots as

S(Dp)={a1=e€1—€2,...,0p-1=€n—1—€n,Qp =€n_1+€n}.

The quantized D,,-bracket algebra ¢BE(D,,) = ¢gBE(W(D,,), S(D,,)) is generated by the sym-
bols [i, j] = [e; — e;] and [i, j] = [e; + €;] over Rqi, ..., gn] subject to the following relations:
(0) [4, 5] = =[5,4); i, ] = [3,2]7
1) [ii+ 1 = g, [n — 1, =an

[i,4]* = 0,if [i —j| # 1, [i,j]” = 0, if (4,5) # (n —1,n), (n,n — 1),
(2) [Za]][kvl] = [k> l][za]]? %] ][kvl] = [kvl][i’jL [17.7”]@ ” = [k‘,l”’i,j],

if {4,751 N{k,1} =0,
(3) [i, 510, 5] = [i, 4][3. 51,

(4) 16, 4115, K] + 4, k][k, 4] + [k, il[i, 5] = O, [é, k][4, 5] + [5, ][4, k] + [k, 5][i, k] = O,
if all 4, j and k are distinct.
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Remark 9.2 Our construction of the quantized bracket algebra ¢ BE(D),,) is compatible with
the isomorphisms between the Coxeter systems Dy = A x A1 and D3 & As. It is easy to see
that ¢BE(Dy) = ¢qBE(A;1) X ¢BE(A;) and ¢BE(D3) = qBE(A3).

We set t; = Ei,i - Ei+n,z'+n, EO‘E/ = _Ei-f—l,i + Ei+n,i+n+1, E—a;/ = Ei,i—f—l — Ei+n+1,i+n (1 <i<
n—= 1)’ E%vz = _EQn*L” + EQTL,n*l and E—ax = En,anl - En71,2n- Let
X(e,q) = Z eit; + Z (]jE_a]v + Z Ea]v.
(2 Vi 7
We define the polynomials J (e, q) by the equation
n
det(t1 + XP(e,q)) = 17+ 32 I (e )20

v=1

Then the quantum cohomology ring of D,-flag variety is isomorphic to the ring

C[ela' - €nyq1, - .- 7qn]/<J1Da-"7JD—17ﬁ)7

n

where JP is a polynomial such that (JP)? = JP. . .
The Chevalley and Dunkl elements are given by 7, = 61 + - -+ + 0;, where

bi =3 (li.4] +[i,4]), 1<i<n.
J#1
Proposition 9.3 In the quantized bracket algebra ¢qBE(D,,) we have the following identities
JyD(él,...,én;q) =0, 1<v<n.
Proof of Proposition 9.2 follows from the following lemma.

Lemma 9.2 Relations (1), (2) in Lemma 9.1 and all the relations obtained from them by the
action of the Weyl group, hold also in the algebra BE(D),).

Remark 9.3 The non-quantized bracket algebra BE(D,) is a quotient ring of BE(B,,) ob-
tained by putting [i] = 0, and the Dunkl elements of BE(D),,) are images of those of BE(B,,).
Hence the Dunkl elements of BE(D,,) satisfy the equations coming from the B,, case. However,
gBE(D,,) is not a quotient of ¢BE(By,).

Example 9.3 Quantum D,,-invariants for n = 4,

JlD:—e%—e%—e%—6?1+QQ1+2Q2+2(]3‘|‘QQ4>

JP = g3 + 2qie1ea + @3 — 2queses + 2qaqs + 2q3eseq + 43 — 2q3q4 + 2q1q2
+4q193 + 2q2q3 + @& + 4q1q4 + 2qoeses — 2qied — 2gaet — 2que + efel — 2qoe?
+e3ed + efe3 — 2q1e3 — 2qzed + efel + e3ed + e3ed — 2quel — 2gzes3,
JP = —2qaq3€3 — efeded — 2qaquel + 2queteld — 2q1qoel — e3eded + 2qseied

2

+2q1€e3e3 — ee3ed + 4qiqseses — 4q1q3qa + 2q1G3 + 2qeetel — ededed + 2q3qued

+2q1q2q3 + 201924 + 2q3qa€3 — qiel — qied + 2quqt — giet + 2q5qn + 2q3¢3
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—q3et — gied — giet — giel — 2qiqueres — 2qagseses — 2qiere2el + Aqigaeren
+2qs€3ezes — 2qaeleses + Aqigzeres — Aqiqueses — qhe3 — 2gzedeses

2 2 2 2
—2qie1e2e] + 2quesezes — 2qzefezes + 2qoqaeses — 2goeseseq,

Jij = ejegeseq + qreseq + qae1e4 + q3erez — qaer1e2 + q193 — q144.

Remark 9.4 We don’t know whether or not the algebra BFE(Dj,) is finite dimensional. How-
ever, the commutative quotient of the algebra BE(D,) is finite dimensional and has the fol-
lowing Hilbert polynomial

14 12t 4+ 50t% + 84¢3 + 48t* = (14 2t)(1 4 4t)(1 + 6t + 6t2) = (1 + t)(1 + 3t)*(1 + 5t) + 3t*.

Let us remark that the polynomial (1+t)(1+3t)2(145t) coincides with the Hilbert polynomial
of the cohomology ring of the pure braid group of type Dy.

It was a big surprise for us to find that the Hilbert polynomial of the commutative quotient
of the algebra BE(Ds5) is equal to

14 20t + 150t% + 520t + 824t* + 480t° = (1 4 2t)(1 + 4t)(1 + 6t)(1 + 8 + 10t?).

However, the obvious generalization of the above formulas for the Hilbert polynomial of the
commutative quotient of the algebra BE(D,,) is false.

Similar to the case of B,-bracket algebra, the subalgebra A2 = A(A(D,)\A(D,_1)) generated
by x; = [i,n] and y; = [i,n], ¢ = 1,...,n — 1, in the algebra BE(D,) is invariant under the
twisted derivation Dy, for any root v € A(D,,—1). By applying Lemma 2.1 successively, we
obtain the following decomposition of the algebra BE(D,,) for n > 2,

BE(D,) =AY @ @ AL.

9.5 Quantized G,-bracket algebra

Fix a set of positive roots of type G5 as
{a,b=3a+ f,c=2a+ f,d=3a+2f,e=a+ f, f}.

Then quantized Go-bracket algebra is generated by the symbols a, b, ¢, d, e, f with the relations:
Mal=q, fP=q,=2=d*=¢=0,
(2) ea = ce + ac, ae = ec + ca, fb=df +bd, bf = fd + db,
eb=be, cf = fc, ad = da,
af =ba+cb+dc+ed+ fe, fa=ab+ bc+ cd+ de + ef,
(3) bedefd + dbedef + fedcbd + dfedcb = 0,
fabedb + bfabed + dcbafb + bdcbaf = 0,
defabf + fdefab+ bafedf + fbafed = 0.
The Chevalley elements are defined by

Ns, = @+ 3b+2c+ 3d + e,

Ns, =b+c+2d+e+f.
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Let 51 = Tls, —Tlsy and 52 =1s; be the corresponding Dunkl elements, then we have the relations
gg(él, ég) = gﬁ(él, ég) = 0 in the algebra ¢BE(G3), where

92(61,6) =& + & — &1& — @1 — 3o,

96(€1,&2) 1= &3 — 3013+ 1616 + 165 + 192€7 + 302 (1 + @2) &1 62+ 2019265 + ¢ g2 — 60145 — g5

The small quantum cohomology ring of Go-flag variety is isomorphic to the ring

R(q1, ¢2][€1, €21/ (92, 96)-

One can check the latter representation for the small quantum cohomology ring of Ga-flag
variety is equivalent to that given by B.Kim [14].

9.6 Dunkl elements and fundamental invariant polynomials for I,(m)

Let a; = pie; + A\jea, where p; = cos(im/m) and \; = sin(iw/m) for i = 0,1,...,m — 1. Then
Ay ={a1,...,am—1} forms the set of positive roots of type Is(m). The set of simple roots is
S ={ag, am-1} and

ai = A\ Niv1ag + AT N1

The Chevalley elements are given by

m—1
Msay = D AL Aiga[ail,
1=0
m—1
Nsap,_1 — AflAz[GZ]
=0

Let 61 = 1ns,, + M7s,,,_, and 02 = (AP + D)Nsey + A+ #1)7s,,._, be the Dunkl elements
of type Iz(m). The fundamental invariant polynomials are

f2(€l)§2) = 5% +£§)

and
[m/2] )\ . '
fm(élqu) = Z (_1)1 (21')5%1531—21’
=0

where £ and & are variables corresponding to the orthonormal basis e; and es.

Proposition 9.4 In the algebra BE(I2(m)) one has

J2(61,02) =0, fin(01,62) = 0.

We can check that the algebra generated by the Dunkl elements 6; and 6 in the algebra
BE(I2(m)) is isomorphic to the quotient of the polynomial ring R[{1,&2]/(f2, fm)-

Remark 9.5 In this subsection, all roots are normalized to satisfy the condition (a;,a;) = 1.
The root systems of type I2(4) and I5(6) can be identified with the crystallographic systems of
type Bs and Go, but the choice of the normalization is different. Hence, the Dunkl elements
for I5(4) and I5(6) in this subsection have a different expression from the ones defined in
Subsections 9.3 and 9.5.
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