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Abstract

We consider a system of linear inequalities and its associated polyhedron for
which we can maximize any linear objective function by finding tight inequalities at
an optimal solution in a greedy way. We call such a system of inequalities a dual
greedy system and its associated polyhedron a dual greedy polyhedron. Such dual
greedy systems have been considered by Faigle and Kern, and Kriiger for antichains
of partially ordered sets, and by Kashiwabara and Okamoto for extreme points of
abstract convex geometries. Faigle and Kern aso considered dual greedy systems
in a more general framework than antichains. A related dual greedy algorithm was
proposed by Frank for a class of lattice polyhedra.

In the present paper we show relationships among dual greedy systems, sub-
stitutable choice functions, and abstract convex geometries. We also examine the
submodularity and facial structures of the dual greedy polyhedra determined by dual
greedy systems. Furthermore, we consider an extension of the class of dual greedy
polyhedra.
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1. Introduction

We consider asystem of linear inequalities and its associated polyhedron for which we can
maximize any linear objective function by finding tight inequalities at an optimal solution



in agreedy way. We call such asystem of inequalitiesadual greedy systemand its associ-
ated polyhedron adual greedy polyhedron. A polymatroid [3] isatypical classic example
of such a dua greedy polyhedron. Furthermore, dual greedy systems have recently been
considered by Faigle and Kern [4, 5], and Kriger [13] for antichains of partially ordered
sets (also see [16]), and by Kashiwabara and Okamoto [11] for extreme points of abstract
convex geometries ([2]). Faigle and Kern [6] also considered dual greedy systemsin a
more general framework than antichains. A related dual greedy algorithm was proposed
by Frank [7] for aclass of lattice polyhedra[10].

In the present paper we show relationships among dual greedy systems, substitutable
choice functions, and abstract convex geometries. We aso examine the submodularity
and facial structures of the dual greedy polyhedra determined by dua greedy systems.
Furthermore, we consider an extension of the class of dual greedy polyhedra.

2. Dual Greedy Polyhedra

The dual greedy systemsconsideredin[3, 4, 5, 6, 11, 13, 16] have the following common
features.
Let E be afinite nonempty set with n = | E'|. Consider

(i) anonempty family A C 27,
(i) afunction f : A — R,
(iii) asystem of linear inequalities
(X)) < f(X) (X edA, (2.1)

where z isavariable vector in R” and for any X € A wedefinez(X) = ) z(e).
eceX

Note that (2.1) has only {0, 1}-coefficientsin the |eft-hand side. Define the polyhedron
P(f)={r |z eRF, VX € A: 2(X) < f(X)} (2.2)

determined by (2.1).
For any nonnegative vector w € R¥ consider alinear programming problem:

(P,) Maximize Y w(e)z(e)

subjectto = € P(f) (2.3



and itsdual linear programing problem:
(Py) Minimize > f(X)\x

XeA
subject to > Ax=w(e) (e€E),
X:eeXecA
A >0 (X €A (2.4)

Now, suppose that we are given afunction C' : 2¥ — A such that for any X C E we
have (i) C(X) C X and (i) C(X) # 0 if X # (. Weassumethat () € F and C(0) = 0.
Such afunction C' is called a choice function in the literature (see, e.g., [14]).

Then, consider Procedure Dual_Greedy_Algorithm described as follows.

Dual_Greedy_Algorithm
Put w’ <+ wand X < F.
Foreachi =1,2,---,n dothefollowing:
Find e; € X; such that w'(e;) = min{w'(e) | e € X;}.
Put A\, < w'(e;), X < X \ {e;}, and w'(e) + w'(e) — Ay, foreache € X;.

Through Dual_Greedy_Algorithm weget X; € A, Ax, >0 (i =1,2,---,n) such that
i=1
Note that we get adual feasible solution Ay, (i = 1,2, ---,n) together with A\x = 0 for

any other X € A.
We assume

(AO) Each X € A arisesasan X; by Dual_Greedy_Algorithm for somew € RY.

(A1) Theexpressionof w in(2.5) isunique up to terms of zero coefficients, independently
of the choice of e;’sin Dual_Greedy_Algorithm.

The sequence of X; (i = 1,2,---,n) obtained by Procedure Dual_Greedy_Algorithm
defines a system of equations

r(X;) = f(Xy) (1=1,2,--+,n). (2.6)

We call the coefficient matrix of (2.6) adual greedy basismatrixand (X; | i = 1,2,---,n)
adual greedy basis. We aso assume

(A2) After appropriately rearranging the columns of the dual greedy basis matrix A =
la;;] of (2.6), A satisfies the following properties:



(&) A isan upper triangular matrix,
(b) ai; = 1 forali= 1,2,--- . n,

(c) each column of A has 1's consecutively, i.e., if a;; = 1 = ay; fori < ', then
ay; =1 forany " withi <i" <7

Note that the sequence of elementse,, e, - - -, e, found by Dual_Greedy_Algorithm
gives the ordering of the columns of the matrix A such that properties (a), (b), and (c)
hold. In particular, we have {¢;} = X; \ X;41 (i = 1,2,---,n) where X,,,; = 0. The
dual greedy basis determines a primal solution x. If such a solution z is always primal
feasible, we say that the dual greedy algorithm works.

We call the system (2.1) of inequalities adual greedy system and the polyhedron P( f)
adual greedy polyhedron associated with it.

Remark 1: When the dual greedy algorithm works, the optimal objective function value
p(w) of the dual problems (P,,) and (P}) is given by

plw) = 32 A F(X) 27)

according to (2.5). The function i : R — R iswhat is called the support function of
P(f), whichis convex. O

Conversely, without assuming that the dual greedy algorithm works, we can define a
function /2 : RY — R by (2.7) according to (2.5), where note that the expression (2.5) is
unique up to terms with zero coefficients. Also we put ji(w) = +oo for w € R” \ R”.
The function /i thus defined is convex only if the dual greedy algorithm works, as shown
below.

Theorem 2.1: Under Assumptions (A0), (A1), and (A2) the function i : R® — R U
{+o0} isconvex if and only if the dual greedy algorithm works.

(Proof) If the dual greedy agorithm works, then we have ;i = p (the support function
of P(f)) and hence /i is convex. Conversely, suppose that /i is convex. Note that /i
is positively homogeneous by definition and is continuous on R% by Assumption (A1).
Hence, it isasupport function of aconvex set P C R” defined by

P={z|zeR” VweRY: Y wle)a(e) < i(w)} (28)

(see [17, Cor. 13.2.1]). It follows from the definition of /i (by (2.5) and (2.7)) that we
have P = P(f). Now, forany w € RY let (X; | i = 1,2,---,n) be the dual greedy



basis determined by Dual_Greedy_Algorithm. For any Ax, > 0 (i = 1,2, .-+, n) define
w € RY by (2.5). Then we have

n

p(w) =3 Ax, f(X). (2.9)

=1

Let & beavector in P(= P(f)) such that

> w(e)i(e) = i), (2.10)

where recall that £ is the support function of P, so that such a vector z exists. Since
#(X;) < f(Xy)and Ay, > 0 (i = 1,2,---,n), it follows from (2.5), (2.9), and (2.10)
that we have z(X;) = f(X;) (1 = 1,2,---,n). Thatis, z isthe dua greedy solution
associated with the dual greedy basis (X; |i =1,2,---,n). O

In the following we assume

(A3) For any w € RY Dual_Greedy_Algorithm works,

Remark 2: The function /i is an extension of the set function f : A — R, whichisa
generalization of the so-called Lovéasz extension of a set function on 27, Asis the case
for the Lovasz extension of a submodular function on 2%, the convexity of the extension
i1 completely characterizes the primal feasibility of dual greedy solutions. Moreover, if w
is an integral vector, the coefficients Ay, in (2.5) are integers, so that under Assumptions
(AO)~(A3) the system (2.1) of inequalitiesis totally dual integral. O

We shall also investigate the primal feasiblity of the dual greedy solution in Section 4.
In the next section we shall examine properties of the choice function C'.

3. Choice Functionsand Abstract Convex Geometries

Let uscall an ordering (eq, es, - - -, €,) generated by Dual_Greedy_Algorithm an admis-
sible ordering. It follows from Dual_Greedy_Algorithm that the set of admissible or-
derings (eq, e, - - -, €,) for al nonnegative weight functions w coincides with the set of
orderings (eq, e, - - -, €,,) that can be generated by the following procedure:

Admissible_Ordering
Put X < FE.



Foreachi =1,2,---,n dothefollowing:
Choosee; € C(X) and put X + X \ {e;}.

Define F C 2% by

F={{e €1, ent | i=1,2,---,n, (e1,e9, --,€,) : anadmissble ordering}.
(3.1
By restricting the choice function C' to F we regard C' as afunction from F to A.

Example 1 (Antichains of a poset) [4, 5, 6], [13], [1]

For any partially ordered set (poset) P = (F, <) let F C 2% be the set of all the
(lower) ideals of P, where I C F isa (lower) ideal of P if andonly if e; < ey € T
impliese; € I. For eachideal I € F define C'(I) to bethe set of all maximal elements of
I'in poset P. Note that the set of C'(I) (I € F) coincides with that of antichains of P. O

Example 2 (Extreme points of an abstract convex geometry) [2], [11]

Let (E, F) be an abstract convex geometry on E with afamily F of closed sets, i.e.,
(1) 0, FE € F, (2) F isclosed with respect to set intersection, and (3) the length of each
maximal chain of F, considered as a lattice, is equal to |E|. For each X € F let C'(X)
be the set of extreme points of X. Recall that e € X (€ F) is an extreme point of X if
andonly if X \ {e} € F. 0

We can easily see the following properties of C.

Lemma3.1: FunctionC : F — A satisfies the following two:
(C1) For any X € F with X # () wehave C'(X) # 0.
(C2) For any nonempty X € F andanye € C(X),

C(X)\{e}t CCX\ {e}). (32
(Proof) (C1) follows from the definition of C' or (b) of Assumption (A2). Also (C2)
follows from the consecutive 1's property (c) of (A2). O

It should be noted that the choice function C' : F — A having properties (C1) and
(C2) completely characterizes the collection of basis matrices A with properties (a)~(c)
where we assume that X; is determined by U{ X} | £ = 4,i+ 1,---,n}. Property (C2)
shows a kind of substitutability of choice function C' ([14]).

Theorem 3.2: Consider a choice function C' : F — A satisfying (C1) and (C2), where
F isdefined by (3.1). Then, the pair (E, F) isan abstract convex geometry with a family
F of closed sets.



(Proof) First note that the length of any maximal chain of F is equa to |E|. Sup-
pose that X € F and e,e’ € C(X) where e # €. It suffices to show that X \
{e,e'} € F (see egq., [12, Lemma 1.2]). Let (é1,é,---,é,) be an admissible order-
ingsuchthat X = E'\ {é;,és,---,¢éx} for k = |E \ X|. Note that from the assumption
we have e € C(X) and furthermore, ¢’ € C(X \ {e}) due to (C2). It follows from
Procedure Admissible_Ordering that there exists an admissible ordering of the form
(é1,é9, -+, 6, e, ¢, ---). Hencewehave X \ {e, ¢'} € F. a

Theorem 3.2 implies

Theorem 3.3: The class of dual greedy systems (or dual greedy polyhedra) coincides
with the one considered by Kashiwabara and Okamoto [11] for abstract convex geome-
tries. O

4. Adjacency in Dual Greedy Polyhedra

There is a one-to-one correspondence between the set of admissible orderings and that
of dua greedy bases. Let (eq,es,---,¢e,) be an admissible ordering. Then we have a
corresponding dual greedy basis formed by

Xi:C’({e,-,eiH,---,en}) EA (2:1,2,,n) (41)

that determines the basis matrix A = [a;;] and avertex, say v, in P(f).
For any £ € {1,2,---,n} remove the kth row from A and consider the following
system of equations.

(X)) =f(X)) (=1 k—1k+1--,n). 4.2)

The set of solutions of (4.2) isaline (denoted by L*) through v. Let d bea {0, +1}-valued
solution of (4.2) with f(X;) replaced by zero foreachi = 1,--- k — 1,k +1,---,n,
where the consecutive 1's property of the coefficient matrix guarantees the existence of a
{0, +1}-valued solution. If L* determines an edge vector z from v to one of its adjacent
vertex u (possibly a point at infinity), z must be equal, up to a positive multiple, to the
{0, £1}-vector d = xz, — xm, SUChthat Fy, F» C E, Fy N Fy, =), ¢}, € F», and

SeeFigure 1, whered = xp, — xr, With F| = {e1,e4,e5} and Fy, = {ey, 5}
Define
a=sup{a|a >0, v+a(xmn —xr) € P(f)} (4.4)
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Xy 1 1.1 0 O O 1 O 0 O
Xo o 1 1 1 0 O 1 1 0 O
X3 o o 1 1 0o 1 1 1 0 1
Xy o 0o 0o 1 0o 1 1 1 0 1
Xs 6o 0o 0 0 1 1 1 1 0 1
X¢e>|0 0 0 0 O 1 1 1 0 1
X7 o 0o 0o 0 0o 0 1 1 0 1
Xg o o 0o 0o o 0 0 1 1 1
Xy o 0 o0 o o 0 o 0 1 1
Xio o 0 o0 o o 0 o0 0 0 1

Figure 1: An example of adual greedy basis matrix, where E = {eq, e, -, €10} and X
isto beremoved, i.e, k = 6.

Theorem 4.1: The following three statements hold:
(i) & =+ocifandonlyif F; = 0 and Fy, = {e;}.

(i) If 0 < & < 400, then the vertex « adjacent from v in the direction of x r, — xr,
corresponds to the admissible ordering

(€1, "y €k, Chy Eh_1, Chily " * s En)- (4.5)
The sequence
X1, oy Xen, C{er1s€ha1, -5 en}), Xpwr, -+, Xp €A (4.6)
determines the vertex v adjacent to », and we have
a = f(C({ex=1,€r+1, " en})) = v(C({er—1, ept1, - en})). (A7)
(iii) Wehave & = 0 if and only if the sequence (4.6) gives the same vertex v, so that
v(C({er—1;€nt1, - en})) = F(C({en—1, €x11, -, €a})). (4.8)
(Proof) (i) If e, ¢ C({ex_1,¢€x, - --,en}), then because of (a), (b), and (c) z(ex) does
not appear in (4.2) explicitly. Hence we have F; = 0, F5, = {e;}, and & = +oo. On

the other hand, if e, € C({ex_1,ex,- -, en}), then {ex_1,ex11, -+, e,} € F and hence
C({ex_1,€rs1," ", e, }) isdefined. It follows from (C2) that e, € C({ex_1, €r41," ",



en}), Whilee, ¢ C({ex—1,€r+1," -, en}). Sincewe have Fy U Fy C {ey, ez, -, e} and
(F1 U Fz) N C’({ek_l, Chtlr" " ", en}) = {ek_l}, the difference

F(CHersentrs s ent)) = v(C({er1s ehpas -5 en}))

gives an upper bound for &. Hence & < 4oc. Note that in thiscase we havee, | € F.
(if) Asshown in the proof of (i), if & < +o0, thereisan admissble ordering (4.5) and
the corresponding dual greedy basis matrix is determined by (4.6), where X has been
replaced by C'({ex_1, €11, -, en}). Since these two are the only possible dual greedy
basis matrices that satisfy (a)~(c) and have X, - -+, X} 1, X441, -+, X,, incommon, the
statement (ii) holds due to Assumption (A3) (also see Theorem 3.2).
(ii1) The present statement follows from the proof of (ii). i

We say that the dual greedy basis given by (4.6) is adjacent to the dual greedy basis
(X1, Xo, -+, X,,). It should be noted that the set of all the dual greedy basesis connected
with respect to the adjacency.

Remark 3: The collection of al the dual greedy bases forms a shape, which was intro-
duced and examined by Sohoni [18]. Related arguments were also made by Narayanan
[15]. As shown by Sohoni [18], a shape, the collection of all the dual greedy bases con-
sidered here, determines asimplicia division of the intersection of the unit spherein R”
and the nonnegative orthant R . The adjacency of the simplicesin the division coincides
with the adjacency of dual greedy bases. O

Lemma 4.2: Without Assumption (A3), suppose that there exists at least one dual greedy
solution belonging to P(f). Then, for any nonnegative weight vector w € R¥ the dual
greedy algorithm finds an optimal solution if and only if for each admissible ordering
(e1,e9,- -, €,) anditsassociated dual greedy solution v we have

v(C{er-1, ek, en})) < FO({er—1, eria, - en})) (4.9)

foreachk € {1,2,---,n} suchthate, € C'({ex_1,€x, ", en}).

(Proof) The‘only if’ partistrivial. Hence we provethe‘if’ part. It followsfrom Theorem
4.1 that thereis no hyperplane z(C (X)) = f(C(X)) with X € F that separates any two
adjacent dual greedy solutions. Hence we see from the assumption and the connectedness
of the set of all the dual greedy bases that any dual greedy solution is primal feasible. O

Remark 4: Kashiwabara and Okamoto [11] gave a kind of submodularity condition on
f for the primal feasibility of dual greedy solutions. O



Remark 5: In the case of a polymatroid, since C'(X) = X for any X C FE, inequality
(4.9) can be rewritten as

f{er—1,er1, - en})

> v(C({er—1,rt1, ", €n}))

= v({er-1,€r+1, "1 €n})

=uv(eg 1) + v({€rs1, -, €n})

= f({er—1,ek, s en)) — f({er, s en}) + f({ert, v ren}).  (4.20)

Asiswell-known, thisis equivaent to the submodularity of f on2. 0

5. Submodularity in Dual Greedy Polyhedra

In this section we examine the structure of the set of edge vectors, which will reveal a
submodularity structure behind dual greedy polyhedra.

Lemma5.1: Consider an edge vector xr, — xr, determined by (4.2). Then,
|IFiNX;|=|F,nX;|=00r1 (1=1,2,---,k—1). (5.1
(Proof) The present lemma easily follows from properties (a), (b), and (c). O

Hererecall that Fy U F;, C {61,62,' . '7€l€}- Put Z; = {€i+1,' . ',€n} (Z =12, -,n) and
define aface F(Z;,) of P(f) by

F(Z) ={z|z€P(f),Vie{k+1,k+2,--,n}:2a(X;) = f(X)}. (52

Also define aface, determined by face F(Z;,) and asupporting hyperplane z(X;) = f(X;)
for apositiveinteger [l with1 <[ < k, by

From Lemma5.1 we have

Theorem 5.2: Let k£ and [ be positive integerssuch that 1 < | < k£ < n. For aface
F(Zy,1) of F(Z,), the projection of F(Z,) into the subspace R*t along R”\(X1"7) jsa
base polyhedron associated with a submodular function on 2%,

(Proof) After the projection of F(7Z;) into R** we have z(X;) = f(X;). It follows from
Lemma 5.1 that each edge vector of the projected faceisone of theforms y. — x« (e, €’ €
X, e # €'). Hence the projected face is a base polyhedron associated with a submodular
function on 2%, due to Tomizawa (see, e.g., [8, Theorem 3.26], [9, Appendix]). O

10



6. Abstract Convex Geometries Associated with Faces

Given a nonnegative weight vector w € R¥, consider the LP problem (P,,) in (2.3). In
the description of Dual_Greedy_Algorithm in Section 2 define

CY(C(X))={€| € € X;, w'(¢') = min{w'(e) | e € X;}}, (6.2
where X; = C'(X). Notethat C* and the composition C*C' are choice functions.

Lemma6.1: The choice function C'*C' satisfies (C1) and (C2) in Lemma 3.1.
(Proof) Property (C1) isimmediate. We prove (C2). If |C*(C(X))| = 1, then (C2) holds.
If |C*(C(X))| > 2, thenfor any chosene; € C(C(X)) and an updated new v’ we have

e CY(C(X)\{e} = w'(e) =0. (6.2)

It followsthat if e € CV(C(X)) \ {e;}, thenwe havee € argmin{w'(¢’) | ¢’ € C(X \
{eip)} = CU(C(X\ {ei})). O

We see from this lemma and Theorem 3.2 that C“C' defined by (6.1) determines an
abstract convex geometry associated with the face of optimal primal solutionsof (P,,). It
should be noted that the abstract convex geometry is determined by w but not by the face
of optimal primal solutions of (P,). Distinct weight vectors w; and w, may determine
the same face of optimal solutions and distinct choice functions C'*:C' and C*2C, which
occursonly if P(f) isdegenerate.

7. An Extension

In the previous sections any dua greedy polyhedron P(f) has its characteristic cone (or
recession cone) R”. We extend the class of dual greedy polyhedrato that of polyhedra
having more general characteristic cones, which has not been considered in the literature.

Consider a choice function C'; that satisfies Properties (C1) and (C2) in Lemma 3.1.
Also let C5 be achoice function such that the composition C';C; satisfies Properties (C1)
and (C2), and let F bethe family of closed sets of the abstract convex geometry associated
with C5C;. Then, consider the following system of inequalities

2(Ci(X)) < fF(C(X)) (X eF), (7.1)

where f : F — R isafunction such that the dual greedy algorithm based on the choice
function C»C; works for any nonnegative weight function w satisfying C5(C1(X)) N
CP(Ci(X)) # 0 (X € F). Here, C} isthe choice function defined by (6.1) with C
replaced by C,. Denote by P(f) the set of all the feasible solutions of (7.1).

11



DG Systems on Convex Geometries
with possibly unbounded faces
of maximal vectors

S N
DG Systems on Convex Geometries (D, f)
of Kashiwabara and Okamoto Submodular Systems

with bounded faces of maximal vectors  with possibly unbounded base polyhedra

N /

(2%, f)
Submodular Systems
with bounded base polyhedra

Figure 2: A generalization diagram (DG stands for Dual Greedy).

Remark 6: Note that F in (7.1) is defined from C>C, but not from C';. This makes a
great difference between (7.1) considered here and (2.1) in Section 2. An admissible
ordering for C,C' isadmissble for C'; but the converseis not true in general. O

The following two examples show dual greedy polyhedra with unbounded faces of
maximal vectors (also see Figure 2).

Example 3: For aposet (E, <) supposethat C;(X) = X (X C E) and let Cy(X) bethe
set of all the maximal elementsof X C E. Then the family of closed sets associated with
C,C isthefamily, denoted by D, of all the (lower) idealsof poset (F, <). Theset P( f) of
all the feasible solutions of (7.1) is the so-called submodular polyhedron associated with
asubmodular system (D, f), where f isasubmodular function on D (see [8]). Note that
in thisexample D is closed with respect to set union as well as set intersection. Also note
that the characteristic cone of P(f) is generated by vectors x. — x. for al arcs (e, e’) of
the Hasse diagram of poset (£, <) and vectors — . for all minimal elementse of (E, <).
It is different from R” in general. O

Example 4: Let (E, F) be an abstract convex geometry with a family F of closed sets.
Then consider C, C, : F — 2% given by

Ci(X) =X, (Cy(X)=ex(X) (X € F), (7.2
where ex(X') denotes the set of extreme points of X in the abstract convex geometry
(E,F). O

12



It should be noted that the choice function C'5’ defined by (6.1) for any nonnegative
weight vector w satisfies the condition for C,. Hence each face of P(f) for (2.1) givesan
examplefor (7.1).
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