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Abstract

We consider a system of linear inequalities and its associated polyhedron for
which we can maximize any linear objective function by finding tight inequalities at
an optimal solution in a greedy way. We call such a system of inequalities a dual
greedy system and its associated polyhedron a dual greedy polyhedron. Such dual
greedy systems have been considered by Faigle and Kern, and Krüger for antichains
of partially ordered sets, and by Kashiwabara and Okamoto for extreme points of
abstract convex geometries. Faigle and Kern also considered dual greedy systems
in a more general framework than antichains. A related dual greedy algorithm was
proposed by Frank for a class of lattice polyhedra.

In the present paper we show relationships among dual greedy systems, sub-
stitutable choice functions, and abstract convex geometries. We also examine the
submodularity and facial structures of the dual greedy polyhedra determined by dual
greedy systems. Furthermore, we consider an extension of the class of dual greedy
polyhedra.

Key words: Dual greedy algorithm, choice function, convex geometry, submodularity

1. Introduction

We consider a system of linear inequalities and its associated polyhedron for which we can
maximize any linear objective function by finding tight inequalities at an optimal solution
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in a greedy way. We call such a system of inequalities a dual greedy system and its associ-
ated polyhedron a dual greedy polyhedron. A polymatroid [3] is a typical classic example
of such a dual greedy polyhedron. Furthermore, dual greedy systems have recently been
considered by Faigle and Kern [4, 5], and Krüger [13] for antichains of partially ordered
sets (also see [16]), and by Kashiwabara and Okamoto [11] for extreme points of abstract
convex geometries ([2]). Faigle and Kern [6] also considered dual greedy systems in a
more general framework than antichains. A related dual greedy algorithm was proposed
by Frank [7] for a class of lattice polyhedra [10].

In the present paper we show relationships among dual greedy systems, substitutable
choice functions, and abstract convex geometries. We also examine the submodularity
and facial structures of the dual greedy polyhedra determined by dual greedy systems.
Furthermore, we consider an extension of the class of dual greedy polyhedra.

2. Dual Greedy Polyhedra

The dual greedy systems considered in [3, 4, 5, 6, 11, 13, 16] have the following common
features.

Let � be a finite nonempty set with � � ���. Consider

(i) a nonempty family� � �� ,

(ii) a function � � � � �,

(iii) a system of linear inequalities

���� � ���� �� � ��� (2.1)

where � is a variable vector in�� and for any � � � we define ���� �
�
���

����.

Note that (2.1) has only ��� ��-coefficients in the left-hand side. Define the polyhedron

���� � �� � � � ��� 	� � � � ���� � ����� (2.2)

determined by (2.1).
For any nonnegative vector � � ��

� consider a linear programming problem:

�	�� Maximize
�
���

��������

subject to � � ���� (2.3)
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and its dual linear programing problem:

�	 �
�� Minimize

�
���

����
�

subject to
�

�� �����


� � ���� �� � ���


� 
 � �� � ��� (2.4)

Now, suppose that we are given a function � � �� � � such that for any � � � we
have (i) ���� � � and (ii) ���� �� � if � �� �. We assume that � � 
 and ���� � �.
Such a function � is called a choice function in the literature (see, e.g., [14]).

Then, consider Procedure Dual Greedy Algorithm described as follows.

—————————————————————————————
Dual Greedy Algorithm
Put �� � � and � � �.
For each 
 � �� �� � � � � � do the following:

Put �� � ����.
Find �� � �� such that ������ � 	
������� � � � ���.
Put 
��

� ������, � � � � ����, and ������ ������ 
��
for each � � ��.

—————————————————————————————

Through Dual Greedy Algorithm we get �� � �, 
��

 � �
 � �� �� � � � � �� such that

� �
��
���


��
���

� (2.5)

Note that we get a dual feasible solution 
��
�
 � �� �� � � � � �� together with 
� � � for

any other � � �.
We assume

(A0) Each � � � arises as an �� by Dual Greedy Algorithm for some � � ��
�.

(A1) The expression of� in ����� is unique up to terms of zero coefficients, independently
of the choice of ��’s in Dual Greedy Algorithm.

The sequence of �� �
 � �� �� � � � � �� obtained by Procedure Dual Greedy Algorithm
defines a system of equations

����� � ����� �
 � �� �� � � � � ��� (2.6)

We call the coefficient matrix of (2.6) a dual greedy basis matrix and ��� � 
 � �� �� � � � � ��
a dual greedy basis. We also assume

(A2) After appropriately rearranging the columns of the dual greedy basis matrix � �

���� of �����, � satisfies the following properties:
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(a) � is an upper triangular matrix,

(b) ��� � � for all 
 � �� �� � � � � �,

(c) each column of � has 1’s consecutively, i.e., if ��� � � � ���� for 
 � 
�, then
����� � � for any 
�� with 
 � 
�� � 
�.

Note that the sequence of elements ��� ��� � � � � �� found by Dual Greedy Algorithm
gives the ordering of the columns of the matrix � such that properties (a), (b), and (c)
hold. In particular, we have ���� � �� � ���� �
 � �� �� � � � � �� where ���� � �. The
dual greedy basis determines a primal solution �. If such a solution � is always primal
feasible, we say that the dual greedy algorithm works.

We call the system (2.1) of inequalities a dual greedy system and the polyhedron ����
a dual greedy polyhedron associated with it.

Remark 1: When the dual greedy algorithm works, the optimal objective function value
���� of the dual problems �	�� and �	 �

�� is given by

���� �
��
���


��
����� (2.7)

according to (2.5). The function � � ��
� � � is what is called the support function of

����, which is convex. �

Conversely, without assuming that the dual greedy algorithm works, we can define a
function �� � ��

� � � by (2.7) according to (2.5), where note that the expression (2.5) is
unique up to terms with zero coefficients. Also we put ����� � �� for � � �� ���

�.
The function �� thus defined is convex only if the dual greedy algorithm works, as shown
below.

Theorem 2.1: Under Assumptions (A0), (A1), and (A2) the function �� � �� � � �
���� is convex if and only if the dual greedy algorithm works.
(Proof) If the dual greedy algorithm works, then we have �� � � (the support function
of ����) and hence �� is convex. Conversely, suppose that �� is convex. Note that ��
is positively homogeneous by definition and is continuous on ��

� by Assumption (A1).
Hence, it is a support function of a convex set 	 � �� defined by

	 � �� � � � ��� 	� � ��
� �
�
���

�������� � ������ (2.8)

(see [17, Cor. 13.2.1]). It follows from the definition of �� (by (2.5) and (2.7)) that we
have 	 � ����. Now, for any � � ��

� let ��� � 
 � �� �� � � � � �� be the dual greedy
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basis determined by Dual Greedy Algorithm. For any �
��
� � �
 � �� �� � � � � �� define

�� � ��
� by (2.5). Then we have

��� ��� �
��
���

�
��
������ (2.9)

Let �� be a vector in 	 �� ����� such that

�
���

���������� � ��� ���� (2.10)

where recall that �� is the support function of 	 , so that such a vector �� exists. Since
������ � ����� and �
��

� � �
 � �� �� � � � � ��, it follows from (2.5), (2.9), and (2.10)
that we have ������ � ����� �
 � �� �� � � � � ��. That is, �� is the dual greedy solution
associated with the dual greedy basis ��� � 
 � �� �� � � � � ��. �

In the following we assume

(A3) For any � � ��
� Dual Greedy Algorithm works.

Remark 2: The function �� is an extension of the set function � � � � �, which is a
generalization of the so-called Lovász extension of a set function on ��. As is the case
for the Lovász extension of a submodular function on �� , the convexity of the extension
�� completely characterizes the primal feasibility of dual greedy solutions. Moreover, if �
is an integral vector, the coefficients 
��

in (2.5) are integers, so that under Assumptions
(A0)�(A3) the system (2.1) of inequalities is totally dual integral. �

We shall also investigate the primal feasiblity of the dual greedy solution in Section 4.
In the next section we shall examine properties of the choice function �.

3. Choice Functions and Abstract Convex Geometries

Let us call an ordering ���� ��� � � � � ��� generated by Dual Greedy Algorithm an admis-
sible ordering. It follows from Dual Greedy Algorithm that the set of admissible or-
derings ���� ��� � � � � ��� for all nonnegative weight functions � coincides with the set of
orderings ���� ��� � � � � ��� that can be generated by the following procedure:

—————————————————————————–
Admissible Ordering
Put � � �.
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For each 
 � �� �� � � � � � do the following:
Choose �� � ���� and put � � � � ����.

—————————————————————————–

Define 
 � �� by


 � ����� ����� � � � � ��� � 
 � �� �� � � � � �� ���� ��� � � � � ��� � an admissible ordering��
(3.1)

By restricting the choice function � to 
 we regard � as a function from 
 to�.

Example 1 (Antichains of a poset) [4, 5, 6], [13], [1]
For any partially ordered set (poset) � � ����� let 
 � �� be the set of all the

(lower) ideals of � , where � � � is a (lower) ideal of � if and only if �� � �� � �
implies �� � � . For each ideal � � 
 define ���� to be the set of all maximal elements of
� in poset � . Note that the set of ���� �� � 
� coincides with that of antichains of � . �

Example 2 (Extreme points of an abstract convex geometry) [2], [11]
Let ���
� be an abstract convex geometry on � with a family 
 of closed sets, i.e.,

(1) �� � � 
 , (2) 
 is closed with respect to set intersection, and (3) the length of each
maximal chain of 
 , considered as a lattice, is equal to ���. For each � � 
 let ����
be the set of extreme points of � . Recall that � � ��� 
� is an extreme point of � if
and only if � � ��� � 
 . �

We can easily see the following properties of �.

Lemma 3.1: Function � � 
 � � satisfies the following two�
(C1) For any � � 
 with � �� � we have ���� �� �.
(C2) For any nonempty � � 
 and any � � ����,

���� � ��� � ��� � ����� (3.2)

(Proof) (C1) follows from the definition of � or (b) of Assumption (A2). Also (C2)
follows from the consecutive 1’s property (c) of (A2). �

It should be noted that the choice function � � 
 � � having properties (C1) and
(C2) completely characterizes the collection of basis matrices � with properties (a)�(c)
where we assume that �� is determined by ���� � � � 
� 
 � �� � � � � ��. Property (C2)
shows a kind of substitutability of choice function � ([14]).

Theorem 3.2: Consider a choice function � � 
 � � satisfying (C1) and (C2), where

 is defined by �����. Then, the pair ���
� is an abstract convex geometry with a family

 of closed sets.
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(Proof) First note that the length of any maximal chain of 
 is equal to ���. Sup-
pose that � � 
 and �� �� � ���� where � �� ��. It suffices to show that � �
��� ��� � 
 (see, e.g., [12, Lemma 1.2]). Let ����� ���� � � � � ���� be an admissible order-
ing such that � � � � ����� ���� � � � � ���� for � � �� ���. Note that from the assumption
we have � � ���� and furthermore, �� � ��� � ���� due to (C2). It follows from
Procedure Admissible Ordering that there exists an admissible ordering of the form
����� ���� � � � � ���� �� ��� � � ��. Hence we have � � ��� ��� � 
 . �

Theorem 3.2 implies

Theorem 3.3: The class of dual greedy systems (or dual greedy polyhedra) coincides
with the one considered by Kashiwabara and Okamoto [11] for abstract convex geome-
tries. �

4. Adjacency in Dual Greedy Polyhedra

There is a one-to-one correspondence between the set of admissible orderings and that
of dual greedy bases. Let ���� ��� � � � � ��� be an admissible ordering. Then we have a
corresponding dual greedy basis formed by

�� � ������ ����� � � � � ���� � � �
 � �� �� � � � � �� (4.1)

that determines the basis matrix � � 
���� and a vertex, say �, in ����.
For any � � ��� �� � � � � �� remove the �th row from � and consider the following

system of equations.

����� � ����� �
 � �� � � � � � � �� � � �� � � � � ��� (4.2)

The set of solutions of (4.2) is a line (denoted by ��
	) through �. Let � be a ������-valued

solution of (4.2) with ����� replaced by zero for each 
 � �� � � � � � � �� � � �� � � � � �,
where the consecutive 1’s property of the coefficient matrix guarantees the existence of a
������-valued solution. If ��

	 determines an edge vector � from � to one of its adjacent
vertex � (possibly a point at infinity), � must be equal, up to a positive multiple, to the
������-vector � � �
� � �
� such that ��� �� � �, �� � �� � �, �� � ��, and

��� ���� � ��� ���� � � �
 � �� � � � � � � �� � � �� � � � � ��� (4.3)

See Figure 1, where � � �
� � �
� with �� � ���� ��� ��� and �� � ���� ���.
Define

�� � ����� � � 
 �� � � ���
� � �
�� � ������ (4.4)
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�
��������������������

�� �� �	 �� �� �� �
 �� �� ��


�� � � � � � � � � � �
�� � � � � � � � � � �
�	 � � � � � � � � � �
�� � � � � � � � � � �
�� � � � � � � � � � �
�� � � � � � � � � � � �
�
 � � � � � � � � � �
�� � � � � � � � � � �
�� � � � � � � � � � �
��
 � � � � � � � � � �

�
��������������������

Figure 1: An example of a dual greedy basis matrix, where � � ���� ��� � � � � ��
� and ��

is to be removed, i.e., � � �.

Theorem 4.1: The following three statements hold�

(i) �� � �� if and only if �� � � and �� � ����.

(ii) If � � �� � ��, then the vertex � adjacent from � in the direction of �
� � �
�
corresponds to the admissible ordering

���� � � � � ����� ��� ����� ����� � � � � ���� (4.5)

The sequence

��� � � � � ����� �������� ����� � � � � ����� ����� � � � � �� � � (4.6)

determines the vertex � adjacent to �, and we have

�� � ���������� ����� � � � � ������ ���������� ����� � � � � ������ (4.7)

(iii) We have �� � � if and only if the sequence ����� gives the same vertex �, so that

���������� ����� � � � � ����� � ���������� ����� � � � � ������ (4.8)

(Proof) (i) If �� �� �������� ��� � � � � ����, then because of (a), (b), and (c) ����� does
not appear in (4.2) explicitly. Hence we have �� � �, �� � ����, and �� � ��. On
the other hand, if �� � �������� ��� � � � � ����, then ������ ����� � � � � ��� � 
 and hence
�������� ����� � � � � ���� is defined. It follows from (C2) that ���� � �������� ����� � � � �
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����, while �� �� �������� ����� � � � � ����. Since we have �� � �� � ���� ��� � � � � ��� and
��� � ��� � �������� ����� � � � � ���� � ������, the difference

���������� ����� � � � � ������ ���������� ����� � � � � �����

gives an upper bound for ��. Hence �� � ��. Note that in this case we have ���� � ��.
(ii) As shown in the proof of (i), if �� � ��, there is an admissible ordering (4.5) and

the corresponding dual greedy basis matrix is determined by (4.6), where �� has been
replaced by �������� ����� � � � � ����. Since these two are the only possible dual greedy
basis matrices that satisfy (a)�(c) and have ��� � � � � ����� ����� � � � � �� in common, the
statement (ii) holds due to Assumption (A3) (also see Theorem 3.2).

(iii) The present statement follows from the proof of (ii). �

We say that the dual greedy basis given by (4.6) is adjacent to the dual greedy basis
���� ��� � � � � ���. It should be noted that the set of all the dual greedy bases is connected
with respect to the adjacency.

Remark 3: The collection of all the dual greedy bases forms a shape, which was intro-
duced and examined by Sohoni [18]. Related arguments were also made by Narayanan
[15]. As shown by Sohoni [18], a shape, the collection of all the dual greedy bases con-
sidered here, determines a simplicial division of the intersection of the unit sphere in��

and the nonnegative orthant��
�. The adjacency of the simplices in the division coincides

with the adjacency of dual greedy bases. �

Lemma 4.2: Without Assumption (A3), suppose that there exists at least one dual greedy
solution belonging to ����. Then, for any nonnegative weight vector � � ��

� the dual
greedy algorithm finds an optimal solution if and only if for each admissible ordering
���� ��� � � � � ��� and its associated dual greedy solution � we have

���������� ����� � � � � ����� � ���������� ����� � � � � ����� (4.9)

for each � � ��� �� � � � � �� such that �� � �������� ��� � � � � ����.
(Proof) The ‘only if’ part is trivial. Hence we prove the ‘if’ part. It follows from Theorem
4.1 that there is no hyperplane ������� � ������� with � � 
 that separates any two
adjacent dual greedy solutions. Hence we see from the assumption and the connectedness
of the set of all the dual greedy bases that any dual greedy solution is primal feasible. �

Remark 4: Kashiwabara and Okamoto [11] gave a kind of submodularity condition on
� for the primal feasibility of dual greedy solutions. �
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Remark 5: In the case of a polymatroid, since ���� � � for any � � �, inequality
(4.9) can be rewritten as

�������� ����� � � � � ����


 ���������� ����� � � � � �����

� �������� ����� � � � � ����

� ������� � �������� � � � � ����

� �������� ��� � � � � ����� ������ � � � � ���� � �������� � � � � ����� (4.10)

As is well-known, this is equivalent to the submodularity of � on �� . �

5. Submodularity in Dual Greedy Polyhedra

In this section we examine the structure of the set of edge vectors, which will reveal a
submodularity structure behind dual greedy polyhedra.

Lemma 5.1: Consider an edge vector �
� � �
� determined by �����. Then,

��� ���� � ��� ���� � � or � �
 � �� �� � � � � � � ��� (5.1)

(Proof) The present lemma easily follows from properties (a), (b), and (c). �

Here recall that ����� � ���� ��� � � � � ���. Put �� � ������ � � � � ��� �
 � �� �� � � � � �� and
define a face ����� of ���� by

����� � �� � � � ����� 	
 � �� � �� � � �� � � � � �� � ����� � ������� (5.2)

Also define a face, determined by face����� and a supporting hyperplane ����� � �����
for a positive integer � with � � � � �, by

����� �� � �� � � � ������ ����� � ������� (5.3)

From Lemma 5.1 we have

Theorem 5.2: Let � and � be positive integers such that � � � � � � �. For a face
����� �� of �����, the projection of ����� into the subspace ��� along ���������� is a
base polyhedron associated with a submodular function on ��� .
(Proof) After the projection of ����� into ��� we have ����� � �����. It follows from
Lemma 5.1 that each edge vector of the projected face is one of the forms ������ ��� �� �
��� � �� ���. Hence the projected face is a base polyhedron associated with a submodular
function on ��� , due to Tomizawa (see, e.g., [8, Theorem 3.26], [9, Appendix]). �
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6. Abstract Convex Geometries Associated with Faces

Given a nonnegative weight vector � � ��
�, consider the LP problem �	�� in (2.3). In

the description of Dual Greedy Algorithm in Section 2 define

�������� � ��� � �� � ��� �
����� � 	
������� � � � ����� (6.1)

where �� � ����. Note that �� and the composition ��� are choice functions.

Lemma 6.1: The choice function ��� satisfies (C1) and (C2) in Lemma ���.
(Proof) Property (C1) is immediate. We prove (C2). If ���������� � �, then (C2) holds.
If ���������� 
 �, then for any chosen �� � �������� and an updated new �� we have

� � �������� � ���� �� ����� � �� (6.2)

It follows that if � � �������� � ����, then we have � � ���	
�������� � �� � ��� �
������ � ������ � ������. �

We see from this lemma and Theorem 3.2 that ��� defined by (6.1) determines an
abstract convex geometry associated with the face of optimal primal solutions of �	��. It
should be noted that the abstract convex geometry is determined by � but not by the face
of optimal primal solutions of �	��. Distinct weight vectors �� and �� may determine
the same face of optimal solutions and distinct choice functions ���� and ����, which
occurs only if ���� is degenerate.

7. An Extension

In the previous sections any dual greedy polyhedron ���� has its characteristic cone (or
recession cone) ��

�. We extend the class of dual greedy polyhedra to that of polyhedra
having more general characteristic cones, which has not been considered in the literature.

Consider a choice function �� that satisfies Properties (C1) and (C2) in Lemma ���.
Also let �� be a choice function such that the composition ���� satisfies Properties (C1)
and (C2), and let
 be the family of closed sets of the abstract convex geometry associated
with ����. Then, consider the following system of inequalities

�������� � �������� �� � 
�� (7.1)

where � � 
 � � is a function such that the dual greedy algorithm based on the choice
function ���� works for any nonnegative weight function � satisfying ��������� �
��
� ������� �� � �� � 
�. Here, ��

� is the choice function defined by (6.1) with �
replaced by ��. Denote by ���� the set of all the feasible solutions of (7.1).
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DG Systems on Convex Geometries
with possibly unbounded faces

of maximal vectors

� �

DG Systems on Convex Geometries ��� ��
of Kashiwabara and Okamoto Submodular Systems

with bounded faces of maximal vectors with possibly unbounded base polyhedra

� �

���� ��
Submodular Systems

with bounded base polyhedra

Figure 2: A generalization diagram (DG stands for Dual Greedy).

Remark 6: Note that 
 in (7.1) is defined from ���� but not from ��. This makes a
great difference between (7.1) considered here and (2.1) in Section 2. An admissible
ordering for ���� is admissible for �� but the converse is not true in general. �

The following two examples show dual greedy polyhedra with unbounded faces of
maximal vectors (also see Figure 2).

Example 3: For a poset ����� suppose that ����� � � �� � �� and let ����� be the
set of all the maximal elements of � � �. Then the family of closed sets associated with
���� is the family, denoted by�, of all the (lower) ideals of poset �����. The set ���� of
all the feasible solutions of (7.1) is the so-called submodular polyhedron associated with
a submodular system ��� ��, where � is a submodular function on � (see [8]). Note that
in this example � is closed with respect to set union as well as set intersection. Also note
that the characteristic cone of ���� is generated by vectors �� � ��� for all arcs ��� ��� of
the Hasse diagram of poset ����� and vectors��� for all minimal elements � of �����.
It is different from��

� in general. �

Example 4: Let ���
� be an abstract convex geometry with a family 
 of closed sets.
Then consider ��� �� � 
 � �� given by

����� � �� ����� � ����� �� � 
�� (7.2)

where ����� denotes the set of extreme points of � in the abstract convex geometry
���
�. �
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It should be noted that the choice function ��
� defined by (6.1) for any nonnegative

weight vector � satisfies the condition for ��. Hence each face of ���� for (2.1) gives an
example for (7.1).
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