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Abstract

We analyze the criterion of the multiplicity-free theorem of repre-
sentations [5, 6] and explain its generalization. The criterion is given
by means of geometric conditions on an equivariant holomorphic vec-
tor bundle, namely, the “visibility” of the action on a base space (i.e.
generic orbits intersecting with a real form) and the multiplicity-free
property on a fiber.

Then, several finite dimensional examples are presented to illus-
trate the general multiplicity-free theorem, in particular, explaining
that three multiplicity-free results stem readily from a single geometry
in our framework. Furthermore, we prove that an elementary geomet-
ric result on Grassmann varieties and a small number of multiplicity-
free results give rise to all the cases of multiplicity-free tensor product
representations of GL(n,C), for which Stembridge [12] has recently
classified by completely different and combinatorial methods.
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0 Introduction

Our concern in this paper is with a new geometric aspect on multiplicity-free
representations. We shall try to clarify an abstract multiplicity-free theorem
(Theorem 1.3) by various examples such as multiplicity-free tensor product
representations of U(n), in the framework of “visible actions” on complex
manifolds, that is, those actions having a property that all orbits intersect
with a fixed totally real submanifold.

We recall that a completely reducible representation π is called multiplicity-
free if any irreducible representation occurs in π at most once (see Subsec-
tion 1.2 for a more general definition). Multiplicity-free representations are
a very special class of representations, for which one could expect a simple
and detailed study. A priori knowledge of multiplicity-free property of a
given representation could give a guidance and encourage in finding its ex-
plicit irreducible decomposition. One might also expect that representation
theory works effectively in applications to other fields, especially when the
representation in consideration is multiplicity-free.

In this article, we study the representation of a group H on the space
O(D,V) of holomorphic sections of an H-equivariant holomorphic vector
bundle V → D. We find out geometric conditions on the base space and a
typical fiber so that O(D,V) is multiplicity-free as an H-module (see Sub-
section 1.1 and Theorem 1.3 for a precise formulation). Loosely, our main
assumption consists of the followings:

1) (Base space) Generic H-orbits meet a real form of D (“visible action”).

2) (Fiber) The isotropy representation on the fiber is multiplicity-free
when restricted to a certain subgroup M . (Here, M is defined by using
the H-orbital structure on the base space D.)

Though our multiplicity-free theorem (Theorem 1.3) produces a number
of multiplicity-free examples for infinite dimensional representations with D
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non-compact ([5, 6]), the applications treated in this paper will be limited
to the finite dimensional case with D compact. We shall report in another
paper on some further applications of Theorem 1.3 to infinite dimensional
representations.

Dealing with concrete examples, we shall explain as explicitly as possible
key geometric backgrounds, in which the representations become multiplicity-
free by virtue of Theorem 1.3.

For example, any circle with center at the origin meets the real axis.
Even such a simple geometry (the visibility of the torus action on C) gives
rise to the multiplicity-free property of several results such as the tensor
product with the symmetric tensor representation Sk(Cn) (Pieri’s rule), the
restriction U(n) ↓ U(n− 1), etc.

Then, we also observe that an obvious equivalent expression of group
decompositions (e.g. (2.4.1)) leads to non-trivial three different types of
multiplicity-free results (which we call “triunity” of multiplicity-free repre-
sentations; see Subsection 2.4).

Recently, Stembridge [12] has classified those pairs (πλ, πν) of irreducible
(finite dimensional) representations of U(n) for which the tensor product πλ⊗
πν is multiplicity-free. His approach is not geometric, but is combinatorial on
a case-by-case basis. By using Theorem 1.3, we find that the same list can be
obtained from the multiplicity-free property of very small representations (see
Proposition 0.2 below) combined with an elementary geometry on Grassmann
varieties given in Proposition 0.1.

Proposition 0.1 (Visible action). Every H-orbit on D meets DR in the
following cases:
1) H = Tn, D = Pn−1C and DR = Pn−1R.
2) H = U(n1) × U(n2) × U(n3) (n = n1 + n2 + n3), D = Grp(Cn) and
DR = Grp(Rn), if min(p, n− p) ≤ 2 or min(n1, n2, n3) ≤ 1.

This proposition will be explained in (2.2.2) and Theorem 3.1.
Next, let πλ be the irreducible representation of U(n) with highest weight

λ. For example, if we set ωk := (1, · · · , 1︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−k

), then πωk
is nothing but

the k-th exterior tensor representation of U(n) on
∧k(Cn) (1 ≤ k ≤ n).

Then, we shall see in (3.2.1) and Proposition 3.4.2 the following:

Proposition 0.2. 1) πωk
(1 ≤ k ≤ n) is multiplicity-free as a Tn-module.

2) π2ωk
(1 ≤ k ≤ n) is multiplicity-free as a (U(n1)×U(n2)×U(n3))-module.
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We shall find that not only multiplicity-free tensor products of U(n) (see
Theorem 3.6) but also Kac’s multiplicity-free spaces such as M(n + 1,m;C)
acted by GL(n,C) × GL(m,C) (see Theorem 2.7) can be explained in our
framework by the same Grassmannian geometry given in Proposition 0.1 (2).

Apart from these applications to representation theory, such geometry
itself seems interesting for its own sake, and we shall report a finer structural
theorem (a generalized Cartan decomposition) on the double coset space
(U(p)× U(q))\U(n)/(U(n1)× U(n2)× U(n3)) in a subsequent paper [7].

Notation: N = {0, 1, 2, · · · }.
Acknowledgement: The results here are an outgrowth of [5], and were

obtained while the author stayed at Harvard University during the academic
year 2000-2001. He would like to thank sincerely all the people there, and
among all, W. Schmid, for the warm and stimulating atmosphere of research.
Parts of the results and related topics were presented at MSRI 2001 (the
program “Integral Geometry” organized by S. Gindikin, L. Barchini and
R. Zierau), NUS 2002 (the IMS program on “Representation Theory of Lie
Groups” organized by Eng-Chye Tan and Cheng-Bo Zhu), in the Lorentz
center, Leiden 2002 “Representation theory of Lie groups, harmonic analysis
on homogeneous spaces and quantization” organized by G. van Dijk and V.
F. Molchanov, and in a Paris VI seminar organized by M. Duflo. He would
like to thank everyone at these institutes for their hospitality during his stay
and also for valuable comments by the participants at various occasions.

1 Geometric conditions for multiplicity-free

representations

1.1 Holomorphic bundles and anti-holomorphic maps

Let D be a connected complex manifold, K a (possibly, non-compact) Lie
group, and $ : P → D a principal K-bundle. Given a finite dimensional uni-
tary representation (µ, V ) of K, we define an associated holomorphic vector
bundle V := P ×K V over D.

Suppose a group H acts on P from the left, commuting with the right
action of K, such that the induced action of H on D is biholomorphic. Then
H also acts on the holomorphic vector bundle V → D, and we form naturally
a continuous representation of H on the Fréchet space O(D,V) consisting of
holomorphic sections.
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Suppose we are given automorphisms of Lie groups H and K, and a
diffeomorphism of P , for which we use the same letter σ, satisfying the
following two conditions:

• σ(hpk) = σ(h)σ(p)σ(k) (h ∈ H, k ∈ K, p ∈ P ). (1.1.1)

• The induced action of σ on D (' P/K) is anti-holomorphic. (1.1.2)

1.2 Multiplicity-free representations

Let π be a unitary representation of a group H on a (separable) Hilbert
space H, and we write EndH(H) for the ring of continuous endomorphisms
commuting with H. In order to state a general theorem on multiplicity-free
representations (see Theorem 1.3 below), we recall:

Definition 1.2. We say (π,H) is multiplicity-free if the ring EndH(H) is
commutative.

This (abstract) definition makes sense even if dimH = ∞. Let us observe
that the above definition coincides with the usual one in the case dimH < ∞.
In fact, one can write an irreducible decomposition of a finite dimensional
representation π as a finite direct sum:

π ' µ1 ⊕ µ1 ⊕ · · · ⊕ µ1︸ ︷︷ ︸
n1

⊕µ2 ⊕ µ2 ⊕ · · · ⊕ µ2︸ ︷︷ ︸
n2

⊕ · · · ⊕ µk ⊕ µk ⊕ · · · ⊕ µk︸ ︷︷ ︸
nk

.

Then, Schur’s lemma implies that the ring EndH(H) is isomorphic to
⊕k

j=1 M(nj,C).
Hence, EndH(H) is commutative if and only if all the multiplicity nj ≤ 1.

1.3 Abstract multiplicity-free theorem

Suppose we are in the setting of Subsection 1.1. For a subset B of P σ :=
{p ∈ P : σ(p) = p}, we define the subset M(B) of K by

M ≡ M(B) := {k ∈ K : bk ∈ Hb for any b ∈ B}. (1.3.1)

Then it is clear that M is a σ-stable subgroup.
We are interested in when O(D,V) becomes multiplicity-free. Since

O(D,V) itself is not necessarily unitarizable, we shall consider all possible
subrepresentations of O(D,V) which are unitarizable, and then discuss their
multiplicity-free property. Here is our main machinery in finding multiplicity-
free representations in both infinite and finite dimensional cases.
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Theorem 1.3 (Abstract multiplicity-free theorem). Retain the setting
as above. Assume that there exists a subset B of P σ satisfying the following
four conditions:

• HBK contains an interior point of P . (1.3)(a)

• The restriction µ|M decomposes as a multiplicity-free sum of

irreducible representations of M , say, µ|M '
⊕

i

ν(i). (1.3)(b)

• µ ◦ σ is isomorphic to µ∗ (the contragredient representation

of µ) as representations of K. (1.3)(c)

• ν(i) ◦ σ is isomorphic to (ν(i))
∗

as representations of M for every i.
(1.3)(d)

Then, if an (abstract) unitary representation π of H can be embedded H-
equivariantly and continuously into O(D,V), then π is multiplicity-free as
an H-module.

The proof of Theorem 1.3 will be given in another paper.
Let us examine the assumptions of Theorem 1.3. In order to get an upper

estimate of the multiplicities like Theorem 1.3, it would be natural to require
that both base spaces and fibers should be relatively “small”, compared to
the transformation group H. In this respect, we note:

a) The first assumption (1.3)(a) controls the base space D (' P/K).
The subset B may be regarded as a set of representatives of (generic) H-
orbits on D if we take B as small as possible. (An extremal case is when
B consists of finitely many points. This means that there exists an open
H-orbit on D.) We note that an H-orbit HpK in D is σ-stable whenever
p ∈ P σ. Therefore, the assumption (1.3)(a) implies that generic H-orbits in
D are σ-stable because B ⊂ P σ.

b) Another relation of the assumption (1.3)(a) is that generic H-orbits
meet Dσ. We shall discuss this point in Section 2 as “visible actions”.

c) The second assumption (1.3)(b) is to control the fiber. Loosely, the
smaller B is, the larger becomes M and the more likely (1.3)(b) tends to
hold.

d) The remaining assumptions (1.3)(c) and (d) are less crucial because
they are often automatically fulfilled by an appropriate choice of σ.

Relevant results were previously given in some special settings; in [1] for
the trivial line bundle case, and in [5, 6] for the general line bundle case. The
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novelty here is to find out the conditions (1.3)(b), (c) and (d), by which the
multiplicity becomes still free for the general vector bundle case. We note
that these conditions are automatically satisfied in the trivial line bundle
case. The generalization to the vector bundle case here enables us to handle
some delicate examples of finite dimensional representations, as we shall see
in Section 3.

1.4 Propagation of multiplicity-free property

Putting a special emphasis on the assumption (1.3)(b), we may regard The-
orem 1.3 as a propagation theorem of multiplicity-free property (or
an induced theorem of multiplicity-free property) from a smaller represen-
tation (µ|M , V ) of a smaller group M to a larger representation (π,H) of a
larger group H. We note that H can be infinite dimensional, while V is finite
dimensional.

As an example, we shall see in Section 3 that all multiplicity-free tensor
product representations of U(n) can be obtained as a propagation of the
multiplicity-free property of very small representations given in Proposition
0.2 (and the obvious one dimensional cases).

2 Triunity and visible actions

In this section, we shall illustrate Theorem 1.3 by elementary examples such
as a toral action on C.

We shall see that a single geometry leads to three different multiplicity-
free results (triunity) in our framework. This fact reflects the obvious three
equivalent conditions on group structure (see (2.4.1)).

2.1 Three examples of multiplicity-free representations

We start with well-known examples of multiplicity-free decompositions.
For λ = (λ1, · · · , λn) ∈ Zn, we put |λ| :=

∑n
j=1 λj, and write Cλ for

the one dimensional representation of the n-torus Tn. Furthermore, if λ1 ≥
λ2 ≥ · · · ≥ λn, we denote by πλ ≡ π

U(n)
λ the irreducible representation of

U(n) with highest weight λ. For example, π
U(n)
(k,0,...,0) is realized as the k-th

symmetric tensor representation Sk(Cn) (k ∈ N), and π
U(n)
ωk ≡ π

U(n)
(1,··· ,1,0,··· ,0) is

realized as
∧k(Cn) (0 ≤ k ≤ n).
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Here are some explicit formulas of decompositions:

(Weight decomposition) π
U(n)
(k,0,...,0)|Tn '

⊕

µ∈Nn

|µ|=k

C(µ1,··· ,µn). (2.1.1)

(U(n) ↓ U(n− 1)) π
U(n)
λ |U(n−1) '

⊕

µ∈Zn−1

λ1≥µ1≥λ2≥···≥µn−1≥λn

π
U(n−1)
(µ1,··· ,µn−1).

(2.1.2)

(Tensor product) π
U(n)
λ ⊗ π

U(n)
(k,0,...,0) '

⊕

µ1≥λ1≥···≥µn≥λn

|µ−λ|=k

π
U(n)
(µ1,··· ,µn) (Pieri’s rule).

(2.1.3)

As the explicit formulas show, all of the above decompositions are multiplicity-
free. The multiplicity-free property itself in each case can be also shown a
priori without explicit computations. We shall explain and compare two
methods of proving (abstract) multiplicity-free property of the above exam-
ples — one is a new approach based on Theorem 1.3 (see Subsection 2.4)
and the other is a well-established approach by using Borel subgroups (see
Subsection 2.5). The geometry involved is apparently different (see Prob-
lem 2.6).

2.2 Torus action

Let us consider the natural action of a one dimensional toral subgroup T :=
{z ∈ C : |z| = 1} on C. Then, an obvious observation is:

every T-orbit on C meets R.
Likewise, the natural action of an n-torus Tn on Cn has the following

property:

every Tn-orbit on Cn meets Rn, (2.2.1)

and also on the projective space Pn−1C:

(Geometry) every Tn-orbit on Pn−1C meets Pn−1R. (2.2.2)

In turn, the geometric property (2.2.2) can be interpreted as the following
decomposition of the unitary group G := U(n).

(Group structure) G = TGσL. (2.2.3)
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Here, T := Tn (maximal toral subgroup of G), L := U(1)× U(n− 1), and σ
is an automorphism of G given by σ(g) = g (complex conjugation) so that
Gσ = O(n).

Proof of (2.2.3). We identify the homogeneous space G/L with Pn−1C. Like-
wise, Gσ/Lσ ' Pn−1R. Then, the geometry (2.2.2) means that any T -orbit
on G/L contains a representative coming from Gσ, that is, TGσL = G.

2.3 Visible actions

Definition 2.3 (Visible action). Suppose a Lie group H acts holomorphi-
cally on a complex manifold D. We say the action is visible if there exists
a totally real manifold DR such that every H-orbit meets DR.

For a connected D, the action is generically visible if there exists an
H-invariant open subset D′ of D such that the action on D′ is visible.

Example 2.3.1. The (standard) action of Tn on Pn−1C is visible in light of
(2.2.2).

Example 2.3.2. In the setting of Theorem 1.3, suppose that Dσ is a totally
real submanifold of D. Then, it follows from the condition (1.3)(a) that the
action of H on D ' P/K is generically visible.

Further examples will be given in Proposition 2.8, Theorem 3.1, and
Example 3.1.2.

2.4 Triunity — simplest examples

Next, we rewrite (2.2.3) in the following three different assertions on the
decomposition of a group G (or G×G), of which the equivalence is obvious:

TGσL = G ⇔ LGσT = G ⇔ diag(G)(Gσ ×Gσ)(T × L) = G×G. (2.4.1)

Correspondingly, Theorem 1.3 gives a proof of three different types of
(abstract) multiplicity-free results that we have observed in (2.1.1), (2.1.2)
and (2.1.3), respectively.

Example 2.4 (Triunity). 1) (Weight multiplicity-free) For any k ∈ N,
Sk(Cn) is multiplicity-free as a Tn-module.

2) (U(n) ↓ U(n− 1)) For any π ∈ Û(n), the restriction π|U(n−1) decomposes
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with multiplicity free.

3) (Tensor product) For any π ∈ Û(n) and for any k ∈ N, the tensor product
π ⊗ Sk(Cn) decomposes with multiplicity free.

Sketch of proof. 1) Set (H, B, K, P ) := (T, Gσ, L,G).
2) Set (H,B,K, P ) := (L,Gσ, T,G).
3) Set (H,B,K, P ) := (diag(G), Gσ ×Gσ, T × L,G×G).

Accordingly, the representations Sk(Cn), π, and π ⊗ Sk(Cn) are realized
on the space of holomorphic sections of some holomorphic line bundles over
P/K ' G/L, G/T , and (G × G)/(T × L), respectively, by the Borel-Weil
theorem. Since σ is given by σ(g) = g, the induced action of σ on P/K is
anti-holomorphic. Now, let us apply Theorem 1.3 with dim V = 1. Then, the
assumption (1.3)(a) is fulfilled in each case, as we saw the equivalent form
in (2.4.1). The other assumptions (1.3)(b)∼(d) are verified easily. Hence, all
the statement of Example 2.4 follows from Theorem 1.3.

2.5 Open orbits of Borel subgroups

The point of the approach in Subsection 2.4 is that such an elementary geom-
etry (2.2.2) gives rise to three different (easy but non-trivial) multiplicity-free
results simultaneously without computations of representations.

Example 2.4 can be verified also by another geometry, that is, by the
existence of an open orbit of a Borel subgroup. For this, we recall a well-
known fact:

Fact 2.5. Suppose V → D be a holomorphic line bundle over a connected
complex manifold D, on which a complex reductive Lie group HC acts equiv-
ariantly. If D is a spherical variety (this means that a Borel subgroup
of HC acts on D with an open dense orbit), then any irreducible (finite di-
mensional, holomorphic) representation of HC occurs in O(D,V) at most
once.

Thus, the three statements of Example 2.4 are proved also by the following
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assertions, respectively.

• The complex torus (C×)n admits an open orbit on Pn−1C. (2.5.1)

• A Borel subgroup of GL(n− 1,C) admits an open orbit (2.5.2)

on the full flag variety Bn of GL(n,C).

• A Borel subgroup of GL(n,C) admits an open orbit (2.5.3)

on Bn × Pn−1C under the diagonal action.

The assertions (2.5.2) and (2.5.3) may not be so obvious as (2.5.1) (or
(2.2.2)), but can be verified by straightforward computation on Lie algebras.

2.6 Visible actions versus spherical varieties

So far, we have seen that two different arguments on geometry, namely, visible
actions (2.2.2) and spherical varieties ((2.5.1) ∼ (2.5.3)) lead to the same
representation theoretic conclusions (Example 2.4). We raise the following
problem:

Problem 2.6. Suppose a complex reductive Lie group HC acts holomorphi-
cally on a complex manifold D. Are the following two conditions equivalent?
i) (visible actions) There exists a real form H of HC such that the action of
H on D is visible.
ii) (spherical variety) There exists an open orbit of a Borel subgroup of HC
on D.

2.7 Multiplicity-free spaces

We end this section with Kac’s example of multiplicity-free spaces as another
application of the action of Tn on Cn, as stated in Subsection 2.1.

A complex vector representation D of H is sometimes referred as a multiplicity-
free space if the space C[D] of polynomials on D splits into an algebraic
direct sum of irreducible representations of H. For example, M(n,m;C) is
a multiplicity-free space of GL(n,C) × GL(m,C), as is also known as the
“GLn-GLm duality” (see [3], Subsection 2.1). More strongly, the following
theorem holds.

Theorem 2.7 (Kac, [4]). M(n,m;C) ⊕ Cm are multiplicity-free spaces of
GL(n,C)×GL(m,C) in both cases (2.7.1) and (2.7.2).
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Here, we let HC := GL(n,C)×GL(m,C) act on D := M(n,m;C)⊕ Cm

in the following two ways: For g = (g1, g2) ∈ HC,

D → D, (A, b) 7→ (g1Ag−1
2 , bg−1

2 ), (2.7.1)

D → D, (A, b) 7→ (g1Ag−1
2 , b tg2). (2.7.2)

In the next subsection, we shall give a new proof of Theorem 2.7 by using
Theorem 1.3, and an elementary example of visible actions (see Proposi-
tion 2.8, which reduces essentially to (2.2.1)).

2.8 Geometry of Kac’s examples and Triunity

Retain the notation as in Section 2.7. For the proof of Theorem 2.7, we need:

Proposition 2.8. Let H := U(n)×U(m). In both cases (2.7.1) and (2.7.2),
every H-orbit on D = M(n + 1,m;C) meets DR := M(n,m;R)⊕ Rm. That
is, the H-action on D is visible (see Definition 2.3).

Proof. Let Eij be the matrix unit, and we set

a :=

min(m,n)∑
i=1

REii.

What follows below is a proof of a stronger statement, namely, every H-orbit
on D meets a⊕ Rm.

First, it follows from a theory of normal forms in linear algebra that any
element of M(n,m;C) can be transformed into a by the action of H.

Second, take an arbitrary element (A, b) ∈ D. Then, as far as the H-orbit
through (A, b) is concerned, we may and do assume that A ∈ a. Now, we
define a subgroup T of H = U(n)× U(m) by

{(diag(t1, · · · , tm, (1, · · · , 1)), diag(t1, · · · , tm)) : tj ∈ T}.

Then T is isomorphic to an m-torus Tm, stabilizes the element A, and acts
on Cm as rotations, so that every H-orbit through (A, b) (∈ a⊕ Cm) has an
intersection with A ⊕ Rm, as we saw in (2.2.1) (what we have used here is
again the geometry that any circle with center at the origin meets the real
axis). Hence, every H-orbit meets a⊕ Rm.
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Since M(n+1, m;C) is embedded in the Grassmann variety Grn+1(Cn+m+1)
as an open dense set (a Bruhat cell), Proposition 2.8 implies that the action
of U(n) × U(m) on Grn+1(Cn+m+1) is generically visible (in fact, it is visi-
ble). In turn, we obtain the following three multiplicity-free properties for
representations of U(n) as corollaries of Theorem 1.3:

• (Theorem 3.3) πν ∈ Û(n) is multiplicity-free, when restricted to U(p)×
U(q) for any p and q with p+q = n if ν is of the form ν = (x, · · · , x, y, · · · , y,
z, · · · , z) ∈ Zn for some x ≥ y ≥ z such that at least one of x, y or z appears
at most once.

• (Theorem 3.4) πλ ∈ Û(n) is multiplicity-free when restricted to (U(n1)×
U(n2) × 1) for any n1 and n2 with n1 + n2 = n − 1 if λ is of the form
λ = (a, · · · , a︸ ︷︷ ︸

p

, b, · · · , b︸ ︷︷ ︸
q

) ∈ Zn such that a ≥ b and p + q = n.

• (Theorem 3.6) πλ ⊗ πν is multiplicity-free if λ and ν are of the above
forms.

These three results may be regarded as a part of triunity arising from
the equivalence (2.4.1). To see this more systematically, we shall explain in
the next section, a generalization of the visibility of the action of U(n) ×
U(m) on the Grassmann variety Grn+1(Cn+m+1) to a more general setting
in Theorem 3.1, and then we shall give some applications to representation
theory by using Theorem 1.3.

3 Multiplicity-free representations of U(n)

In this section, various multiplicity-free results on finite dimensional repre-
sentations of U(n) (or equivalently, rational representations of GL(n,C)) will
be provided in the framework of our abstract multiplicity-free theorem (The-
orem 1.3). Relevant elementary Grassmannian geometry is also discussed.

3.1 Visible actions on Grassmann varieties

We start with a geometric background that will lead to multiplicity-free ten-
sor product representations of U(n).

Let n1 +n2 +n3 = p+q = n. We consider naturally embedded subgroups
L := U(n1) × U(n2) × U(n3) and H := U(p) × U(q) in G := U(n). We
define an automorphism σ of G by σ(g) := g, the complex conjugate of
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g ∈ G. Then, the fixed point subgroup Gσ is nothing but the orthogonal
group O(n).

Let Grp(Cn) be the Grassmann variety, and Bn1,n1+n2(Cn) the generalized
flag variety consisting of pairs (F1, F2) of vector spaces of dimensions n1,
n1 + n2, respectively, in Cn. Similarly, the real Grassmann variety Grp(Rn)
and Bn1,n1+n2(Rn) are defined. We note that Grp(Cn) ' B0,p(Cn) ' Bp,n(Cn).

Theorem 3.1 (see [7]). Let p + q = n1 + n2 + n3 = n. The the following
five conditions are equivalent:
i) Any orbit of (U(n1)× U(n2)× U(n3)) on Grp(Cn) meets Grp(Rn).
i)′ Any orbit of (U(p)× U(q)) on Bn1,n1+n2(Cn) meets Bn1,n1+n2(Rn).
ii) G = LGσH.
ii)′ G = HGσL.
iii) min(p, q) ≤ 2 or min(n1, n2, n3) ≤ 1.

Proof. The equivalence (i) ⇔ (ii) holds because the homogeneous space G/H
is isomorphic to Grp(Cn), and Gσ/Hσ to Grp(Rn). Similarly, (i)′ ⇔ (ii)′

holds. Since the equivalence (ii)⇔ (ii)′ is obvious, all of (i), (i)′, (ii) and (ii)′

are equivalent.
The implication (ii)′ ⇐ (iii) follows from a main result in [7], where we

constructed explicitly a subset B ⊂ Gσ such that G = LBH under the
assumption (iii).

The implication (i) ⇒ (iii) will not be used logically in this paper. An
elementary proof based on linear algebra can be found in [7]. Here, we give
an alternative proof by using Theorem 1.3. If the condition (i) were the
case, then the same argument of Theorem 3.6 would show that the tensor
product representations πλ⊗ πν were multiplicity-free for any λ and ν of the
form (3.6.1) and (3.6.2) (for any a, b, x, y, z with the notation therein). This
contradicts to the fact due to Stembridge (see Remark 3.6.4) that πλ ⊗ πν

is not multiplicity-free if neither (λ, ν) nor (ν, λ) satisfies the condition in
Theorem 3.6.

Remark 3.1.1. One of (therefore, all of) the conditions in Theorem 3.1 is also
equivalent to:
vi) The direct product manifold Grp(Cn)×Bn1,n1+n2(Cn) is a spherical variety
of GL(n,C) under the diagonal action.

See Littelmann [10] for the statement (vi) in the case n3 = 0. (We note
that complex reductive Lie groups other than GL(n,C) are also treated in
[10].)
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We pin down a special case of Theorem 3.1 by putting n3 = 0:

Example 3.1.2. The standard action of U(n1) × U(n − n1) on Grp(Cn) is
visible (Definition 2.3) for any n1 and p such that 1 ≤ n1, p ≤ n.

This geometry leads to a multiplicity-free theorem of the branching law
of π

U(n)
ν when restricted to U(p) × U(q) if ν is a rectangular shape (n3 = 0

in (3.3.1)). See Theorem 3.6 and Remark 3.6.2.
In the following three subsections, we shall consider the restriction of

representations of U(n) with respect to standard subgroups. We shall see
that the above geometry is used to prove some of multiplicity-free results.

3.2 U(n) ↓ Tn

First, consider the restriction of π
U(n)
ν (≡ πν) to a maximal toral subgroup

Tn of G = U(n).
We have seen in Example 2.4 (1) (or in (2.1.1)) that the k-th symmetric

tensor representation Sk(Cn) is weight multiplicity-free, namely, the restric-
tion π(k,0,··· ,0)|Tn is multiplicity-free as a Tn-module for any k ∈ N.

The exterior tensor representation π
U(n)
ωk on

∧k(Cn) (1 ≤ k ≤ n) is also
weight multiplicity-free, as one sees the following branching law:

πU(n)
ωk

|Tn '
⊕

µi∈{0,1} (i=1,··· ,n)
µ1+···+µn=k

C(µ1,··· ,µn). (3.2.1)

Conversely, it is known that all of irreducible representations of U(n) that
are weight multiplicity-free are either Sk(Cn) (k ∈ N) or

∧k(Cn) (1 ≤ k ≤ n)
up to one dimensional character ([3], Theorem 4.6.3).

3.3 U(p + q) ↓ (U(p)× U(q))

Next, we consider the restriction of πν ∈ Û(n) to the subgroup H = (U(p)×
U(q)), where n = p + q. It turns out that Theorem 1.3 yields the following
multiplicity-free result as an outcome of the Grassmannian geometry given
in Theorem 3.1.
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Theorem 3.3 (U(p + q) ↓ (U(p) × U(q))). The irreducible representation

π
U(n)
ν decomposes as a multiplicity-free sum of irreducible representations

when restricted to the subgroup U(p) × U(q), if one of the following three
conditions is satisfied:
1) min(p, q) = 1 (and ν is arbitrary).
2) min(p, q) = 2 and ν is of the form

(x, · · · , x︸ ︷︷ ︸
n1

, y, · · · , y︸ ︷︷ ︸
n2

, z, · · · , z︸ ︷︷ ︸
n3

), (3.3.1)

where x ≥ y ≥ z and n1 + n2 + n3 = n.
3) min(p, q) ≥ 3 and ν is of the form (3.3.1) satisfying

min(x− y, y − z, n1, n2, n3) ≤ 1. (3.3.2)

The converse also holds ([12], see Remark 3.6.4). An example of explicit
branching laws will be given in Lemma 3.4.3 in the case (x, y, z) = (2, 1, 0).

Proof. The statement (1) has been already explained in Example 2.4(2),
where we attributed its reasoning to the visibility of the action of Tn on
Pn−1C.

Likewise, Theorem 1.3 leads to the statement (2) from the Grassmannian
geometry given in Theorem 3.1.

Let us prove the statement (3). One could prove a part of it (namely,
under the assumption min(n1, n2, n3) = 1) by using Theorem 3.1 again. How-
ever, Theorem 3.1 does not cover the case where min(x−y, y−z) ≤ 1. So, we
shall give a proof by using a slightly different setting (still in the framework
of Theorem 1.3). For this, we set

(H,P,K, µ) := (U(p)×U(q), U(n), U(n1)×U(n2+n3), π
U(n1)
(x,...,x)£π

U(n2+n3)
(y,...,y,z,...,z)).

Since both (P,H) and (P, K) are symmetric pairs, it follows from a Cartan
decomposition (see Hoogenboom [2] or [7]) that there exists a compact torus
B of O(n) with dimension l = min(p, q, n1, n2 + n3) such that HBK = P .
Then the subgroup M ≡ M(B) (recall (1.3.1) for the definition) is of the
form:

M(B) '
{
Tl × U(p− l)× U(q − l) (l = min(n1, n2))

Tl × U(n1 − l)× U(n2 − l) (l = min(p, q))
(3.3.3)
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because M(B) coincides with the centralizer ZH∩K(B) of B in H ∩K.
From now, assume n2 = 1 (or n3 = 1) or y−z = 1 (other cases are similar).

Then, µ|U(n2+n3) = π
U(n2+n3)
(y,··· ,y,z,··· ,z) is the (y − z)-th symmetric tensor represen-

tation Sy−z(Cn2+n3) if n2 = 1 (or its dual if n3 = 1) or the exterior tensor
representation

∧n2(Cn2+n3) if y − z = 1 up to a one dimensional character.

In any case, the restriction µ|M(B) is multiplicity-free because π
U(n2+n3)
(y,··· ,y,z,··· ,z)

is weight multiplicity-free (see Subsection 3.2) and because dim π
U(n1)
(x,...,x) = 1.

Hence, all of the assumptions of Theorem 1.3 are verified.
Since the representation πν is realized in the space of holomorphic sections

of the vector bundle P ×K µ over the Grassmann variety P/K ' Grn1(Cn)
by the Borel-Weil theorem, Theorem 1.3 implies that the restriction πν |H is
multiplicity-free.

3.4 U(n) ↓ (U(n1)× U(n2)× U(n3))

Third, we consider the restriction to the direct product subgroup U(n1) ×
U(n2)× U(n3) of U(n) = U(n1 + n2 + n3).

Theorem 3.4 (U(n) ↓ (U(n1)× U(n2)× U(n3))). Suppose λ is of the form

λ = (a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q

)

for some p, q such that p + q = n and a, b ∈ Z with a ≥ b.
Then the irreducible representation π

U(n)
λ decomposes as a multiplicity-free

sum of irreducible representations when restricted to the subgroup U(n1) ×
U(n2)× U(n3) if one of the following three conditions is satisfied:
1) a− b ≤ 2 (and p, q, n1, n2, n3 are arbitrary).
2) min(p, q) ≤ 2 (and a, b, n1, n2, n3 are arbitrary).
3) min(n1, n2, n3) ≤ 1 (and a, b, p, q are arbitrary).

Proof. The statement (1) is obvious when a − b = 1 because it is already
weight multiplicity-free (see (3.2.1)). The statement (1) with a − b = 2
follows from a direct computation for (a, b) = (2, 0) (see Proposition 3.4.2
below). The statements (2) and (3) are a consequence of Theorem 3.1 (visible
actions on Grassmann varieties).

Remark 3.4.1. As we have seen in the proof, Theorem 3.3 and the statements
(2) and (3) of Theorem 3.4 are proved simultaneously from the same geo-
metric result given in Theorem 3.1. This is a part of triunity, of which the
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counterpart in geometry is the equivalence (i) ⇔ (i)′ in Theorem 3.1. One
more multiplicity-free result (tensor product representations) will be given
in Theorem 3.6 based on the same geometry (the remaining part of triunity
in this case).

For the statement (1) of Theorem 3.4, we pin down the branching law for
(a, b) = (2, 0):

Proposition 3.4.2 (U(n) ↓ (U(n1) × U(n2) × U(n3))). Let 1 ≤ p ≤ n =
n1 + n2 + n3.

π
U(n)
2ωp

'
⊕

p1,p2,p3,q1,q2,q3≥0
pi+qi≤ni (i=1,2,3)

2qi≤q1+q2+q3 (i=1,2,3)
2(p1+p2+p3)+(q1+q2+q3)=2p

π
U(n1)
ωp1+ωp1+q1

⊗ π
U(n2)
ωp2+ωp2+q2

⊗ π
U(n3)
ωp3+ωp3+q3

.

In particular, π
U(n)
2ωp

(1 ≤ p ≤ n) is multiplicity-free when restricted to the
subgroup (U(n1)× U(n2)× U(n3)) for any partition (n1, n2, n3) of n.

It is interesting to observe that the condition 2qi ≤ q1+q2+q3 (i = 1, 2, 3)
is nothing but the triangular inequality:

q1 ≤ q2 + q3, q2 ≤ q3 + q1, q3 ≤ q1 + q2.

Proof of Proposition 3.4.2. Use twice the following branching law, which in
turn is obtained in an elementary way by the Littlewood-Richardson rule.

Lemma 3.4.3 (U(n1 + n2) ↓ (U(n1) × U(n2))). Suppose p + q ≤ n1 + n2.
Then

π
U(n1+n2)
ωp+ωp+q

|U(n1)×U(n2) '
⊕

p1,p2,q1,q2≥0
p1+q1≤n1, p2+q2≤n2

|q1−q2|≤q≤q1+q2

2(p1+p2)+(q1+q2)=2p+q

π
U(n1)
ωp1+ωp1+q1

⊗ π
U(n2)
ωp2+ωp2+q2

.

We note that this decomposition is also multiplicity-free, corresponding
to the case (x, y, z) = (2, 1, 0) in Theorem 3.3.

3.5 Multiplicity-free tensor product

Let gC be a (general) complex reductive Lie algebra. We take a Cartan sub-
algebra tC, and fix a positive system ∆+(gC, tC). For a dominant integral
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weight λ ∈ t∗C, we denote by πλ the irreducible finite dimensional representa-
tion of gC with highest weight λ. Let lC be a Levi subalgebra containing tC.
The following theorem also fits nicely into the framework of Theorem 1.3:

Theorem 3.5. The tensor product representation πλ ⊗ πν decomposes as
a multiplicity-free sum of representations of gC if both (3.5)(a) and (b) are
satisfied:
(3.5)(a) λ vanishes on tC ∩ [lC, lC].
(3.5)(b) πν decomposes with multiplicity-free when restricted to lC.

Sketch of proof. We may and do assume that gC is a semisimple Lie algebra.
Let G be a simply connected compact Lie group and L a connected subgroup
such that their Lie algebras are real forms of gC and lC, respectively. We set

(P, H, K, B, µ) = (G×G, diag(G), L×G, {e} × {e},Cλ ⊗ πν).

Here, Cλ denotes the one dimensional representation of L with differential
λ. We note that the tensor product representation πλ ⊗ πν is realized on
the space O(G/L,G ×L Cλ) ⊗ πν ' O(P/K, P ×K µ). Thus, the proof of
Theorem 3.5 will be complete if all assumptions of Theorem 1.3 are shown.

Obviously, we have HBK = P . Hence the assumption (1.3)(a) holds.
It is straightforward to see M = diag(L) (recall (1.3.1) for the definition

of M). As πν |L is multiplicity-free by the assumption (3.5)(b), so is µ|M
because Cλ is one dimensional. Hence, the assumption (1.3)(b) holds.

The remaining assumptions (1.3)(c) and (d) are automatically fulfilled
by taking a suitable involutive automorphism σ of G so that rank G/Gσ =
rank G (e.g. σ(g) = g for g ∈ G = U(n)). Hence, Theorem 3.5 follows from
Theorem 1.3.

Let us consider a special case lC = tC. Then, the condition (3.5)(a) is
automatically satisfied. Hence, we obtain a new proof of the following well-
known fact:

Corollary 3.5.1. Let F and π be irreducible finite dimensional representa-
tions of gC. If F is weight multiplicity-free, then the tensor product repre-
sentation π ⊗ F decomposes with multiplicity free.

Example 3.5.2. As we saw in Example 2.4(3), π⊗Sk(Cn) is multiplicity-free

for any k and π ∈ Û(n).
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3.6 Multiplicity-free tensor product of U(n)

In this subsection, we consider the tensor product of two irreducible repre-
sentation πλ and πν of U(n) with highest weights λ, ν ∈ Zn, respectively. We
shall assume that λ is of the form

λ = (a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q

) (3.6.1)

for some (p, q) such that p + q = n and for some a, b ∈ Z with a ≥ b.

Theorem 3.6. The tensor product representation πλ⊗πν is multiplicity-free
as a U(n)-module, if one of the following three conditions is satisfied.
1) min(a− b, p, q) = 1 (and ν is arbitrary).
2) min(a− b, p, q) = 2 and ν is of the form

(x, · · · , x︸ ︷︷ ︸
n1

, y, · · · , y︸ ︷︷ ︸
n2

, z, · · · , z︸ ︷︷ ︸
n3

), (3.6.2)

where x ≥ y ≥ z and n1 + n2 + n3 = n.
3) min(a− b, p, q) ≥ 3 and ν is of the form (3.6.2) satisfying

min(x− y, y − z, n1, n2, n3) = 1. (3.6.3)

Proof. This theorem follows from Theorems 3.3 and 3.5. For example, to
see the statement (3), we note that the condition (3.5)(a) is satisfied by
setting L := U(p)× U(q) if λ is of the form (3.6.1). On the other hand, the
condition (3.5) (b) is satisfied, that is, πν |L is multiplicity-free if ν satisfies
(3.6.3) because of Theorem 3.3. Hence, Theorem 3.5 implies that πλ ⊗ πν is
multiplicity-free.

Example 3.6.1. The case q = 1 corresponds to Example 2.4 (3) assured by
Pieri’s rule.

Remark 3.6.2. The multiplicity-free property for the case min(n1, n2, n3) = 0
was noticed previously by Kostant, and can be also read from the list by
Littelmann [10] on spherical varieties.

Remark 3.6.3. For some special cases, explicit branching laws are also found
by Okada [11] and Krattenthaler [9] by combinatorial methods.
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Remark 3.6.4. Recently, Stembridge [12] gave a different and combinatorial
proof of Theorem 3.6. Furthermore, he proved that the above description
exhausts all the cases of multiplicity-free tensor products of irreducible rep-
resentations of U(n) up to a switch of factor.

Further applications including infinite dimensional cases and a proof of
Theorem 1.3 will be given in subsequent papers.
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