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In order to compute branching laws of representations of
the Cuntz algebras by endomorphisms, we construct automata
which are called Mealy machines associated with endomor-
phisms, and show that outputs from these machines for inputs
of information of representations give their branching laws.

1. Introduction

In [11, 12], we introduce a class of endomorphisms of the Cuntz algebra On
and show branching laws of permutative representations by them. These
branching laws are interesting subjects themselves and they are useful to
classify endomorphisms effectively. It is expected that they are computed
more smartly and their meanings are well understood clearly. On the other
hand, an automaton is a typical object to consider algorithm of computa-
tion in the computer science([5, 6, 7]). An automaton is a machine which
changes the internal state by an input. A Mealy machine is a kind of au-
tomaton with output. In this paper, we show that the better algorithm of
computation of branching law is given by a semi-Mealy machine associated
with an endomorphism.

For N > 2 put {1,....,N}{ = [T {1, , N} {1,.. ., N} = {(5n)E_; :
gn=1,....,N,n=1,...,k} for k> 1. For J € {1,..., N}*, we have a rep-
resentation P(J) = (H,n) of On in [11] which is equivalent to a cyclic
permutative representation of Oy with a cycle in [1, 3, 4]. Let Gy be
the set of all bijections on the set {1,..., N} for I > 1. For an element
o € G, we have an endomorphism 1, of O in [11]. We denote o), by
P(J)o, in this case. In [11], we show that for each J, there are Jy,. .., Jy,
1 <m < N'* ! such that P(J) o1, can be always uniquely decomposed into
the direct sum of P(.Jy),..., P(Jy) up to unitary equivalences:

(L1) P(J) 0ty ~ P(1) @@ P(J).
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Concrete several branching laws by 1), are already given in [11, 12](precise
their definitions are given in § 2). We show an algorithm to seek Ji, ..., J,
for J by reducing problem to a semi-Mealy machine as an input(= J) and
outputs(= Ji,...,Jm).

A semi-Mealy machine is a data (Q, 3, A, 0, \) which consists of non
empty finite sets @, >, A and two maps d from Q X ¥ to Q, A from Q x X
to A([6, 7, 13]). For qp € @, a Mealy machine is a data (Q, %, A, 0, A, qo).
For an input word x = a; - - - a,, which consists of alphabets aq,...,a, in X,
we have an output word y = by - - - bg which consists of alphabets bq,...,bg
in A according to rule of 6 and A. Let ¥* and A* be free semigroups
generated by X and A, respectively. §is a map from @ x X* to @ and A
is a map from Q x X* to A* which are defined by (g, wa) = 6(6(q, w), a),
Mg, wa) = Mg, w)A(d(g,w),a) for ¢ € Q, w € £* and a € £. We denote
5, A by d, A simply(further their explanation is given in § 3). For symbols
ai,...,an, bi,....,bn, J = (j1,-..,gk) € {1,...,N}*, r > 1, we denote

— s e e - fr c e e . T = PR
aj=aj ---aj,by="0j---bj anda’; =ay---ay.

M
Under these preparations, we have the following result:

Theorem 1.1. Let 0 € Gy, | > 1. Then there is a semi-Mealy machine
My, = (Q,%,A,0,) such that ¥ = {a1,...,an}, A ={b1,...,bn} and the
followings hold: For each J € {1,...,N}i, there are p1,...,pm € Q and
r1,...,7m € N such that 6(pj,a3j) =pj forj=1,....,m and (1.1) holds
where Jy,...,JJm € {1,...,N}} are taken as by, = X(p;,a’}) fori=1,...,m

In § 2, we review branching function systems, permutative representa-
tions and permutative endomorphisms of Oy. In § 3, we review automata,
Mealy machine and introduce that arising from a permutation. From these
preparations, Theorem 1.1 is proved. In § 4, we show examples of Mealy
diagram of a semi-Mealy machine M, and branching laws of 1, for concrete
ce®B N,

2. Branching of representations of the Cuntz algebras by
endomorphisms

We introduce several notions of multi indices which consist of numbers
1,...,N for N > 2 in order to describe invariants of representations of
On. Recall {1,...,N}; in § 1. For J € {1,..., N}, the length |J| of J is
defined by |.J| = k when J € {1,...,N}*, k> 1. For J; = (j1,..., k), Jo =
(jlv cee 7jl) S {17 ce 7N}T7 put Jl U JQ = (jl?' s 7.jk7j17 cee 7jl)' SPeCiauya
we define (7, J) = (i) U J for convenience. For J € {1,...,N}} and k > 2,
JF=Ju---UJ. For J = (j1,...,7%) € {1,...,N}¥ and 7 € Zy, denote
k
7(J) = (Jr(1) - -5 Jr k). J € 1{1,..., N} is periodic if there are m > 2 and
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Jo € {1,...,N}j such that J = JJ". For Ji,Jo € {1,...,N}], J1 ~ Jo if
there are k > 1 and 7 € Zj, such that Jy,.Jo € {1,...,N}*¥ and 7(J;) = Ja.
For Ji = (ji,---dk)sdo = (e ndp) € {1, , N} k> 1, Jy < Jo if
Zle(]’l[ — )N*t > 0. J e {1,...,N} is minimal if J < J for each
J e {1,...,N}t such that J ~ J. Put [1,...,N]* = {J € {1,...,N}} :
J is minimal and non periodic}. [1,..., N|* is in one-to-one correspondence
with the set of all equivalence classes of non periodic elements in {1,..., N}j.
2.1. Branching function systems. Let A be an infinite set and N >
2. f = {fz'}@']L is a branching function system on A if f; is an injective
transformation on A for ¢ = 1,..., N such that a family of their images
coincides a partition of A. Put BFSy(A) the set of all branching function
systems on A. For N > 2, f = {fi}¥, € BFSy(A1) and g = {g:}Y, €
BFSn(Ag) are equivalent if there is a bijection ¢ from A; to Ay such that
pofiopt=gifori=1,...,N. For f = {f;}}¥, € BFSx(A), we denote
f1 = fjo--ofj, when J = (j1,...,jk) € {1,...,N}* k> 1, and define fy =
id. For z,y € A, © ~ y(with respect to f) if there are Jy, Jo € {1,...,N}*
and z € A such that f;(z) = « and f;,(2) = y. For x € A, denote
Ap(r)={y € A:x ~y}. Let f={fi}}¥, € BFSn(A). f is cyclic if there is
an element x € A such that A = A¢(x). For k > 1, {n1,...,np} C Ais a k-
cycle of f if n; # ny when | # I and there is J = (j,...,jx) € {1,...,N}*
such that f;,(n;) =ny_q for [ =2,...,k and f;, (n;) = ng. {m}ienw CAis a
chain of f if n; # ny when [ # I" and there is {j; € {1,..., N} : | € N} such
that fﬂl(nl) = ny4q1 for each | € N = {1,2,3,...}. f has a k-cycle(chain)
if there is a k-cycle(resp. chain) of f in A. Specially, we call simply that f
has a cycle if f has a k-cycle for some k > 1.

Let = be a set and A, be an infinite set for w € . For fl =
{fiM N, € BFSy(Ay), f is the direct sum of {fly ez if f = {f; N €
BFSy(A) for a set A =[]z A, which is defined by fi(n) = f*/(n) when
nel,fori=1,...,Nand w € Z. For f € BFSy(A), f = @wezf[w] is a
decomposition of f into a family {f} ez if there is a family {Ay}eez
of subsets of A such that f is the direct sum of {f“/},cz. For each
f = {fi}}{, € BFSy(A), there is a decomposition A = [] .z A, such
that #A, = 0o, fla, = {fila,}Y, € BFSy(AL) and f|a, is cyclic for each
w € Z. Assume that f is cyclic. Then there is only one case in the follow-
ings: a) f has just one cycle. b) f has just one chain where we identify a
chain {n; € A};en with a chain {m; € A};en when there are M, L > 0 such
that njyr, = my for each [ > M (see Proposition 2.5 in [11]).

Definition 2.1. (i) For J € {1,...,N}* k> 1, f € BFSy(A) is P(J) if
f s cyclic and has a cycle {n1,...,ng} such that fj(ng) = ng.
(ii) For f € BFSNy(A) and J € {1,...,N}}, g is a P(J)-component of f if
g s a direct sum component of f and g is P(J).
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Recall Gy, in § 1. For 0 € Gy, and f = {fi}Y, € BFSy(A), put
7 = {7} € BESn(A) by

21) 7 =fn (=1, fOf0) = funn) (1>2)

forne A, i=1,...,Nand J € {1,...,N}"L. Let J € {1,...,N}; and
o € &y = Gyy. If f € BFSy(A) is P(J), then f(©) is P(J,-1) where
Jo-1 = (07 (1), ... 07 () for J = (jr, ..., gk) € {1,..., N} k> 1.

Lemma 2.2. Put J € {1,...,N}j. Then the followings hold:

(i) There is f € BFSn(A) for some set A such that f is P(J).

(ii) For o € Gny, 1 > 1, there is 1 < m < N'=Y such that £ is decom-
posed into a direct sum of m cycles. Furthermore the length of each
cycle is a multiple of the length of J.

Proof. See Lemma 2.7 in [12]. O

2.2. Permutative representations. For N > 2, let Oy be the Cuntz
algebra([2]), that is, it is a C*-algebra with generators si,...,sy which
satisfy

(2.2) stj = 0;51 (i,j=1,...,N), s1s7+--+snsy=1.

In this paper, any representation and endomorphism are assumed unital and
s-preserving. By simplicity and uniqueness of Oy, it is sufficient to define
operators S, ..., Sy on an infinite dimensional Hilbert space which satisfy
(2.2) in order to construct a representation of Oy. In the same reason, it
is sufficient to define elements T1,..., Ty in On which satisfy (2.2) in order
to construct an endomorphism of Oy. For a multiindex J = (j1,...,Jk) €
{1,...,N}* we denote s; = sj, -+~ 5j, and s* = CHRRERE

Let (H,7) be a representation of Oy. (H,n) is a permutative repre-
sentation of O if there are a complete orthonormal basis {e;, }nea of H and
f={fi}~, € BFSy(A) for some infinite set A such that 7 (s;)en = ej,(,) for
eachnée€ Aandi=1,...,N. (H,7,Q) is a generalized permutative(=GP)
representation of Ox with cycle by J € {1,...,N}*, k> 1if Qe Hisa
cyclic unit vector such that 7(s;)2 = Q and {m(sj, ---s;)Q:1=1,...,k}is
an orthonormal family in H. We denote P(J) = (H,w, Q) simply. (I2(A), 7f)
is the permutative representation of Oy by f = {fi}, € BFSy(A) if
mp(si)en = epmy forn€Aandi=1,...,N.

Permutative representations were introduced in [1, 3, 4]. By [10], any
permutative representation is completely reducible. Any cyclic(resp. irre-
ducible)permutative representation with cycle is equivalent to P(J) for some
J e {l,...,N}i(resp. some J € [1,...,N]|*). For each J € {1,...,N}j,
P(J) exists uniquely up to unitary equivalences. P(J) is equivalent to a
cyclic permutative representation with cycle.
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Theorem 2.3. (i) For J € {1,...,N}}, P(J) is irreducible if and only if
J is non periodic.

(ii) For Ji,Jo € {1,...,N}}, P(J1) ~ P(J2) if and only if J; ~ Jo where
P(Jy) ~ P(J2) means the unitary equivalence of two representations
which satisfy the condition P(Jy) and P(J3), respectively.

(iii) [1,..., N]* is in one-to-one correspondence with the set of equivalence
classes of irreducible permutative representations of On with cycle.

Proof. See Theorem 2.12 in [12]. O

The followings hold by definition of branching function system and (l3(A), 7¢).

Proposition 2.4. Let f € BFSy(A) for an infinite set A.
(i) Ifg € BFSN(A') for an infinite set A such that f ~ g, then (Ia(A), 7p) ~
(Io(A), 7).
(ii) If f is cyclic, then (Ia(A),7f) is cyclic.
(i) For J € {1,...,N}j, if f is P(J), then (I2(A),7¢) is P(J), too.
(v) If f = fO @ f@ and A = Ay U Ay is the associated decomposition of
[ then (Io(A), mp) ~ (I2(A1), 7)) @ (I2(A2), Tpe) ).
2.3. Permutative endomorphisms. We review endomorphisms of Oy
arising from permutations in [11, 12]. Assume that End.A is the set of all
unital *-endomorphisms of a unital *-algebra A and p,p € EndA in this
subsection. p is proper if p(A) # A. p is irreducible if p(A)' N A = CI
where p(A) NA = {z € A: pla)z = zp(a)"a € A}. pis reducible if p is
not irreducible. p and ,0/ are equivalent if there is a unitary u € A such that
p = Aduo p. In this case, we denote p ~ p. Let RepA(resp. IrrRep.A)
be the set of all unital (resp. irreducible)-representations of A. We simply
denote 7 for (H,m) € RepA.
Lemma 2.5. (i) If p,p € EndA and n,7' € RepA satisfy p ~ p and
T~T, thenmopr~m op.
(ii) Assume that A is simple. If there is m € IrrRepA such that wo p €
IrrRep A, too, then p is irreducible.
(iii) If there is m € RepA such that mop o4 o o, then p o p.
(iv) If there is m € IrrRepA such that wo p & IrrRep A, then p is proper.

For 0 € Gny, [ > 1, ¢, € EndOy is defined by
Vo(si) =ugs; (1=1,...,N)

where u, = ZJG{I,...,N}l S0(7)S7y- Yo is called the permutative endomorphism
of On by o. Put the following sets:

(2.3) En;={¢Ys € EndOy :0€ GyN,;} ([ 2>1).
If o € Gy, then 1), is an automorphism of Oy which satisfies 1, (s;) = So(i)
for i = 1,...,N. Specially, if 0 = id, then ;4 = id. If 0 € Gy is
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defined by o(i,j5) = (j,i) for i,5 = 1,..., N, then v, is just the canonical
endomorphism of On. If p € Ey; and p/ € By, then pOp/ € Enir for
each 1,1 > 1(see Proposition 3.3 in [12]).

Theorem 2.6. (i) Let A be an infinite set. For 0 € Gny, | > 1, and
f € BFSn(A), let f9) be in (2.1). Then we see that w0 by = T o) -
(ii) If p is a permutative endomorphism and (H, ) is a permutative rep-
resentation of Oy, then wo p is a permutative representation, too.
(iii) If (H,m) is P(J) for J € {1,...,N}; and 0 € Gy, | > 1, then
there are 1 < m < N'=1, a family {J;}™, C {1,...,N}} and a family
{(H;,m:)}, of subrepresentations of (H,m o 1,) such that
m
(2.4) (H,mot,) = @(Hi,ﬂ'i)
i=1
and (H;, ;) is P(J;) fori=1,...,m. Furthermore if J € {1,... N}¥,
k> 1, then {Ji}m, c [TV, {1,..., N}e,
(iv) The rhs in (2.4) is unique up to unitary equivalences.

Proof. See Theorem 3.4 in [12]. O

(2.4) is called the branching law of (H,7) by 1¢,. By uniqueness of P(J)
and Theorem 2.6 (iv), we can simply denote (2.4) as

(2.5) P(J) oy = P P(J).
=1

Definition 2.7. (i) For J € {1,...,N}j, a representation (H,n) of Oy
has a P(J)-component if (H,m) has a subrepresentation (Ho,|n,)
which is P(J). Specially, a component of a representation P(J) o p
of O is a subrepresentation of (H,w) which is equivalent to P(J') for
some J € {1,...,N}..

(ii) For an endomorphism p € EndOn, P(J) o p has a trivial branching if
there is some J € {1,..., N}t such that P(J)op= P(J').

According to (2.5) and the above discussion, we have the following problems:

Problem 2.8. (i) Computation of branching law: Find {J;}", in (2.5)
for a given J € {1,...,N}] for 0 € Gy, [ > 1. In usual, the determi-
nation of {J;}", is executed by the following step:

a) Prepare a representation (H, ) which is P(J). We often take H =
l2(N) and 7 = 7y for some branching function system f on N.

b) Compute m(1s(s;))en for eachn € Nandi=1,...,N. By [12], we
see that it is sufficient to check for 1 <n < N1k when |J| = k.

c¢) Find all cycles in H by using results in (b).
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d) Show that cycles in (c¢) spans the whole of H.

In this way, the direct computation of branching law is too much of a
bother because of a great number of calculated amount when N, k&,
are large.

(ii) Classification of 1,: Classify elements in Ey; for each N,I > 1 under
unitary equivalences. If we know branching laws of 1, then it is useful
for the classification by Lemma 2.5 (i). However, the computation
of branching law of every element in Ey; is impracticable because
#En; = #6n; = N l1. Therefore it is necessary to find an effective
invariant of 9.

3. Automata and branching laws

3.1. Finite automata and semi-Mealy machines arising from per-
mutations. Automata theory is the study of abstract computing devices,
or “machines”. We review several basic notions about automata and their
variations in this subsection according to [5, 6, 7|]. M = (Q,%,0) is a (fi-
nite)semiautomaton if ) and ¥ are non empty finite sets and § is a map
from @ x ¥ to Q. Q, ¥ and § are called the set of (internal)states, the
set of input alphabets and the transition function, respectively. Elements
of @ and ¥ are called a (internal)state and an input of M, respectively.
M = (Q,%,0,q0, F) is an (deterministic finite)automaton if M = (Q,%,9)
is a semiautomaton with gy € ) and a non empty subset F' of (). gy and an
element of F are called the initial state and a final state of M, respectively.
Recall ¥* and the extension of § on @ x X* in § 1. For z € X* define
Q(x)={q¢ € Q: nc Ns.t.d(q,z") = q}). We see that Q(z) # 0 for each
x € ¥* by finiteness of Q.

Definition 3.1. Let M = (Q, ¥, 0) be a semiautomaton and x = a;, - - - a;j, €
3*.

(i) A sequence C = (q1,...,qx) in Q is a cycle in M by = if q1,...,qx
satisfy that 6(qt, aj,) = g1 fort =1,...,k—1 and §(qx, aj,) = q1 when
k> 2, and 6(q1,a;,) = q1 when k =1. We often denote C = q;--- gy,
stmply.

(ii) For q € Q(x), put ry(¢) = min{n € N : §(¢,2") = ¢}.

(iii) For q,q € Q(x), ¢ ~ ¢ if there isn € NU{0} such that 6(q,z") = .
We see that ~ is an equivalence relation in Q(z). Put R(z) = {[¢] : ¢ €
Q(z)} where [¢] = {¢ € Q(z) :q~q'}.

Definition 3.2. For a semiautomaton M = (Q,%,0), {p1,...,pm} is a
cyclic basis of M for x € ¥* if p1,...,pm € Q(z) are mutually inequivalent
and #R(x) =m.

Lemma 3.3. Let M = (Q,X%,0) be a semiautomaton and x € ¥*. For
0.4 € Qx), if g~ q , then ro(q) = r4(q).
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Proof. Denote gD, = 0(q,a) for ¢ € @Q and a € ¥. Then we see
that D,Dy = Dy, for each a,b € ¥. By assumption, there is m € N U {0}
such that d(q,2™) = ¢. If n € N satisfies 0(q,z™) = q, then 5(q/,x”) =
qlen = qDymDyn = qDyntm = qDygnDym = qDym = q'. Hence we see
that r,(q) > r,(¢). By the same argument, we see that r,(q") > r4(q), too.
Therefore the statement holds. O

Next we consider semi-Mealy machines([13]) in order to describe branch-
ing law. Recall § 1. For a semi-Mealy machine (@, >, A,d,\), A and A are
called the set of output alphabets and the map of outputs, respectively.
When ¢; = §(gi—1,a;) for i = 1,...,n and x = a; ---a, € ¥*, we see that
Mqo, ) = Mqo, a1)Mq1,a2) -+~ Mgn_1,an). Aqo,z) is called the output by
an input x. A transition diagram(Mealy diagram) D(M) of a semi-Mealy
machine M = (@, 3, A, 0, \) is a directed graph with labeled edges which has
a set @ of vertices and a set E = {(¢,0(q,a),a) €eQxQxX:q€Q,ac X}
of directed edges with labels. The meaning of (¢,d(g,a),a) is an edge from
q to 6(q,a) with a label a/\(q, a) for a € :

We show an example in § 2.7, [7]. Let M = ({qo, po,p1}, {0, 1}, {y,n},d, X\, qo)
be a Mealy machine with the following D(M):

()
0/n @
Start—» 0/n

0/y

Mealy machine

For an input 01100, the output from M is nnyny and the path is gopop1p1PoPo-
C' = pop1 is a cycle in a semi-Mealy machine My = ({qo, po, p1},{0,1}, {y,n},
9, A) by =10 and A(po, x) = nn.
Definition 3.4. For a semi-Mealy machine M = (Q,%,A,6,\), x € ¥*
and p € Q(x),

ke(p) = Ap,2") € A (r =72(p))

is called the principal output of M for x from p.
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Finally, we introduce semi-Mealy machines arising from permutations.
For 0 € Sy, | > 2 and J € {1,..., N}, we define 01(J),...,01(J) €
{1, N} by 0(J) = (1), 1)) and Gn() = (a()s -, ()
for 1 <n <m <. Denote {1,..., N}° = {0} for convenience.

Definition 3.5. For N > 2 and l > 1, M, = (Q,3,A,d,\) is called the
semi-Mealy machine by o € Gy if

QE{QJIJG{l,...,N}l_l}, Y={a,...,an}, A={b,...,bn}
and maps 0 : Q@ X X — Q, A: Q x X — A are defined by

QO (l — 1), ba—l(z’) (l = 1)’
6(qs,ai) = Mgy, ai) =
o utr  (122) bo-tyiriy  (122)

fori=1,...,N and J € {1,...,N}~1

We see that MUVJO = (Q,%,A,9,\,q5,) is a Mealy machine for each Jy €
{1,..., N}'=L. By Definition 3.5, there are N'~! states in M, for o € Sy .
We have a family {]\Z[U Jo : Jo € Q} of Mealy machines associated with
o € Gn,. We show examples of M, in § 4.

3.2. The main theorem. In order to show the main theorem, we prepare
several tools and lemmata.

Definition 3.6. Let 0 € Gy, and J = (j1,...,j5k) € {1,...,N}*, 1 > 2,
k>1.

(i) A sequence T = (I;)%; in {1,...,N}=! is an intertwining system
of o for J if there are a € N and T = (t1,...,to) € {1,...,N}*
such that a = ka, o(t1,11) = (Ia,ja) and o(t;, I;) = (I;—1,7i—1) for
each i = 2,...,a where jipr; = ji forl > 1 and i = 1,...,k. In
this case, we denote o(T,Z) = (Z,J*). We denote ITS(o, J) the set
of all intertwining system of o for J and put ITS(o,J;T,a) = {Z €
1TS(0,J) : 0(T,Z) = (Z,J%)}.

(ii) Zp = (I;)le is a subsystem of an intertwining system I = (I;)%, of o
for J if Ty € 1TS(o, J) such that B < « and Il{ =1 fori=1,...,0.
In this case, we denote Iy < T.

(iii) Z € ITS(o, J) is minimal if T is minimal with respect to <.

(iv) T = (I;))$~,,Z = (I,)%_, € ITS(0,J) are equivalent if & = ' and there

/

is B € NU{0} such that (Iy,..., 1) = (Igks1, .- Lo, I,y Igk). In
this case, we denote T ~ T .

Recall a cycle of a branching function system in § 2.1 and put A a countably
infinite set.



Lemma 3.7. Let 0 € Gyy, J = (j1,...,5k) € {L,...,N}*, k> 1, T =
(1;)¢-, € ITS(0, J;T,a) and f € BFSN(A) be P(J) for T = (t1,...,ta) €
{1,...,N}* and a € N. Then the followings hold:
(i) Let {ni,...,ni} be a cycle of f in A such that fj,(n;) = n—1 for
i=2,....k and fj (n1) = ng. Put a sequence (m1,...,mq) in A by
mi = fr,(na) my = fr;(nj-1) (G=2,...,0q),
Nkp+j = Ty (H217j:177k)
Then it satisfies that ft(ia) (m;) =mi_q fori=2,...,a and ft(la) (my) =
Me. Specially, we have f}a) (Mmq) = mq.
(ii) Let (my,...,mq) be in (i). Then I is minimal if and only if m; # m;
when i # j for eachi,j=1,..., a.

Proof. (i) £ (Ma) = Fatata)(th1) = Fu o) (k1) = Fros (n1-2)
= Mq—1. In the same way, we have the statement.

(ii) By proof of (i), we see that f;g) (mq) = mq. By definition of m; and
the injectivity of f;, if m; = m; for some i < j, then there is 3 € N such
that 8 < a and mg = mg. From this, fr(mg) = mg and Iy = {IZ-}?:1 is a
subsystem of Z. Hence Z is not minimal. If 7 is not minimal, we see that
m; = My, for some a > 1. Hence the statement holds. O

By Lemma 3.7, we denote C(Z) = {mi,...,mq} which is obtained by a
minimal intertwining system Z. C(Z) is a cycle of f(?). We denote

AD) ={f(m)er:Te{l,....N}5i=1,...,a}.

Then (A(Z), (@) |A(z)) is a component of f(9). We see that A(Z) = {f§a)(f[a (n1)) €
A:Je{l,...,N};} by cyclicity of A(Z) under f(7),

Lemma 3.8. Let f € BFSy(A) be P(J) for J € {l,...,N}} and o € Gy
for 1> 2. Assume that T,7 € ITS(o,J) are minimal. Then the followings

are equivalent: () T ~Z'. (i) AZ) = A(Z).
Furthermore the followings are equivalent: (i) T £ T . (i) A(Z)NA(Z') = 0.

Proof. Assume that J = (j1,...,5x) € {1,...,N}* for k > 1. Let
{n1,...,n} bethe cycle of f. By Lemma 3.7, we have two cycles {m1,...,mq}
and {my,.. .,m/a,} of f(9) by T and T, respectively. Then A(Z) = A(Z') if
and only if {m1,...,mq} = {m),..., m/a,} By definition of m; and m; in
Lemma 3.7 and injectivity of f;, this is equivalent that Z ~ Z'. From this,
we have the former statement.

By the first half of the statement and its proof, we see that 7 7' if and
only if A(Z) # A(Z) if and only if {m1,...,ma} # {m],... ,mla,}. By the

uniqueness of a cycle in a cyclic component of a branching function system,
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we see that {mq,...,ma} # {m),... ,m/a,} if and only if A(Z)NA(Z) =0
Hence we have the last half of the statement. O

Let T = (I;)$, € 1TS(0,J;T,a) for 0 € &Ny, J = (j1,...,Jk) €
{1,...,N}*, T € {1,..., N}t and a > 1. Assume that Z is minimal. Then
we see that pr = qr, € Q(x) for z = ay. On the other hand, if p € Q(z),
then there are Iy,..., I, such that q;, = p and qr,, = d(qz,,a;,) for i =
1,...,a— 1. We see that Z, = (I;){, € ITS(0,J;T,a), a = r,(p) and it is
minimal. In this way, Q(z) > p — Z, is a one-to-one correspondence.

Lemma 3.9. Forp,p € Q(z), p~p if and only if Iy ~1y.
Proof. Assume that p = q7, and p = q; - Then we have qr,,...,q1,,
1
Gps 04y, € Q such that qr,,, = 6(qy,, a;,) and ., = 6(q12{,aji).

e
1/1=

then we see that o = o by Lemma 3.3. If p = p', then it is clear. If
p # p, then there is n € N such that d(p,z™) = p. This is equivalent that

Assume that p ~ p. If we denote I, = (I;)§, and I, = (I,

(ay,--qp ) = @lypsrs - > 900405 - - - > 41, )- Furthermore this is equivalent
1 a

that (I},...,1,) = (Ink+1,--->1a, 1, ..., Ing). From this, Z, ~ 7. We see

that this argument shows the inverse direction, too. O

Corollary 3.10. For p,p € Q(z), p ~ p if and only if ANTp) = ANZ)).
p 4 p if and only if A(Z,) N A(Ip/) = 0.
Proof. By Lemma 3.9 and Lemma 3.8, it holds. O

Lemma 3.11. Let f € BFSy(A), 0 € Gy, and T,J € {1,...,N}] for
[ > 2. Assume that f is P(J) and M, = (Q,%,A,0,\) is the semi-Mealy
machine by o. Then the followings are equivalent:

(i) There are a > 1 and Z € ITS(o, J;T,a).

(ii) There is Ag C A such that (Ao, f(7|a,) is P(T).

(iii) There is p € Q(x) such that by = Kky(p) for z =ay.

Proof. See Appendix A. O

Lemma 3.12. Let 0 € Gy, | > 2, f € BFSy(A) be P(J) for J €
{1,...,N}], M, = (Q,%X,A,0,\) be the semi-Mealy machine by o and

r=ay € X"
(i) Assume that ng € A such that f7(ng) = no, I € {1,..., N}~ and
T = (t1,...,tq) € {1,...,N}*, a > 1 satisfy that p = qr € Q(z) and

by = Kz (p).- If np = for,,1(n0), then f;o)(np) = ny.

11



(ii) Forp e Q(z), denote Ay = {fb(;,f)(np) :J € {l,...,N}} wheren, € A
is in (1). Then (Ap,f(“)|Ap) is P(T).

(iii) Let {p1,...,pm} be a cyclic basis of M, for x. Then the following
decomposition of branching function system holds:

f(U) — fm @...@f[m}
where flil = f(")|Ai, N =Ny, fori=1,....om. If Ji,....JIn

{1,...,NY: satisfy ke(p;) = by, fori = 1,...,m, then fU is P(J;)
fori=1,...,m.

Proof. (i) By Lemma 3.7 (i) and the argument above Lemma 3.9, it
holds.
(ii) We see that A, = A(Z,). By (i), the statement holds.
(iii) By (ii) and Corollary 3.10, we see that fll € BFSy(A;). The decompo-
sition holds by Lemma 3.11. By (ii), the last statement holds. O

Under these preparations, we show the main theorem.

Theorem 3.13. Let M, = (Q,%, A, \,6) be the semi-Mealy machine by
c€G6nNy, 1 >1and J €{l,...,N};. Assume that {p1,...,pm} is a cyclic
basis of My for x = ay. If Ji,...,Jm € {1,...,N}i satisfy by, = rkg(p;) for
i=1,...,m, then the following holds:

P(J)ote ~P(J1)® - @ P(Jn).

Proof. Assume that J = (j1,...,5%) € {1,...,N}*. Whenl=1,
we see that P(J) o ¢, = P(Jy,-1) by Lemma 2.10 in [11] where J,-1 =
(67'(j1),---, 07 (jk)). Then we see that A(go,as) = by _,. When I > 2, it
holds by Proposition 2.4, Theorem 2.6 (iv) and Lemma 3.12. O

It seems that the statement in Theorem 3.13 depends on the choice of
{p1,...,pm}. For p,p € Q(z), if p ~ p’, then we see that T ~ T when
br = ke(p) and by = kiz(p). By this reason and Theorem 2.3 (ii), we see
that the result in Theorem 3.13 is unique up to unitary equivalences for any
cyclic basis of M.

By Theorem 3.13, Theorem 1.1 is shown and the complexity to compute
branching law in Problem 2.8 (i) is reduced, for example, it is not necessary
to prepare representation space for calculating a branching law in Theorem
3.13.

Lemma 3.14. Let Sy, | > 1. If the Mealy diagram of My has m connected

components, then P(J)ov, has m components of direct sum at least for each
Je{l,...,N};.

Proof. Assume that M, = {Q,%,A,0,\} and J € {1,...,N};. Then

there is one cycle at each connected component of @) at least. Therefore
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there are m cycles in @ at least. By Theorem 3.13, P(J) o 1, has m com-
ponents of direct sum. U

4. Examples

For concrete permutations, we show examples of semi-Mealy machine and
permutative endomorphism of Oy and compute their branching laws by
using Mealy diagrams according to Theorem 3.13. Recall En; in (2.3).

4.1. Fr»o.In [11], we show that there are 16 inequivalence classes in Es9
and there are 5 irreducible and proper classes £ in them. We treat 3 elements
in &€ here. For each 0 € Ga9, M, = (Q, X, A, d, \) consists of Q = {q1,q2},
Y= {al,ag} and A = {bl,bg}.

Let 0 € G35 be a transposition by o(1,1) = (1,2). Then M, =
({q1,q2}, {a1,a2},{b1,b2}, 0, A) where 6 and \ are given by

p | 8(p,ar) | d(p,az) | A(p,a1) | A(p, az)

Q1 i) @ by by
9 ¢ P ba be
1, and the Mealy diagram D(M,) of M, are as follows:
Yo (s1) = s15287 + S15185, ar/by
Ve (s2) = s9, @ @
a1/ba

where a/b on p to ¢ means d(p,a) = g and A(p,a) = bforp,q € Q = {q1, ¢}
Yy is irreducible and proper(Table 5.5 in [11]). We denote 1, by 112 in
convenience. We show several branching laws by 112:

input cycles | outputs branching law
ay 7192 b1b2 P(1)o¢ip = P(12)
as q1, G2 bi,ba | P(2) ot = P(1) @ P(2)
araz | q1q2q2q1 | bibaboby | P(12) 0o 91p = P(1122)
araiazaz | q192q1q1, | bibabiby, P(1122) o 1o
42419242 | b2b1baby = P(1112) & P(1222)

where we use Theorem 2.3 (ii).

Proposition 4.1. For J = (j1,...,jx) € {1,2}*, k > 1, define n1(J) =
#{j € J:j=1}. Then we have P(J) o Y12 has just two-branching when
ny(J) is even and P(J) o912 has no trivial branching when ni(J) is odd.

Proof. Because such transition of two states ¢; and ¢y in the above
diagram happens only when j = 1, ni(J) is the number of changes two
states. If nq(J) is even, then a path from a state always comes back to
itself. Therefore just two cycles occur. On the other hand, If ny(J) is odd,
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then one cycle occurs. The number of cycles is just that of branching of
P(J) o113. Therefore the assertion holds. O
By Proposition 4.1, for each J € {1,2}], there are some Ji, Jo or J3 which
satisfy the following:

P(J1) @ P(J2) (n1(J) = even),

P(J) ot =

P(J3) (nl(J) = Odd).
In this way, it is remarkable that the graph theoretical property of Mealy
diagram gives information of branching.

Let 0 € Gy be a transposition by o(1,1) = (2,1). Then v,, D(M,)

and branching laws of 1, are as follows:

o (51) = s2818] + 515285, az /by
o/t /b
Yo (s2) = 515187 + S25283,
al/bl
input | cycles | outputs branching law
aq q1 bo P(1) o9y = P(2)
as q2 by P(2) o9, = P(2)
aiaz | q2q1 b1bo P(12) otpy = P(11)
araias | gaqiq | biboby | P(112) 09, = P(112)
arazay | g2qiqz | bibiby | P(122) 01p, = P(112)

Let 0 € Gy 5 be defined by o(1,1) = (2,2), 0(1,2) = (1,1), 0(2,1) =
(2,1), 0(2,2) = (1,2). Then v¢,, D(M,) and branching laws of ¢, are as
follows:

al/bl
’(/10(81) = 828281< + 8181837 a2 /by
Yo (52) = 525187 + 15253, @ T @
az/by
input | cycles outputs branching law
al q142 blbg P(l) (e] ¢U = P(12)
ag q142 b2b1 P(Q) o wo = P(12)
aras | q1q2,q2q1 | biby, baby | P(12) 09y, = P(11) @ P(22)

4.2. F35. Note that #FEs9 = 2% = 24 and #F35 = 3?! ~ 3.6 x 10°. Hence
it is difficult to classify every element in E3 5 by computing its branching laws
by comparison with the case Eg 2. We see that M, = ({q1, 92, g3}, {a1, a2, a3},
{b1,b2,b3},0,)) for each o € G35. Put o a transformation on {1,2,3}? by

11 12 13 23 31 12
(4.1) op: | 21 22 23 |— | 32 13 21
31 32 33 11 22 33
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Then p, = ¥,, and D(M,,) are as follows:

pv(s1) = s231 + s312 + 5123,
pu(s2) = 8321 + 5132 + 5213,
pu(53) = s11,1 + 5222 + 5333,

a2/

where s;;, = s;s5s; for 4,5,k = 1,2,3. p, is proper and irreducible by
Theorem 1.2 in [11]. We show several branching laws by p,:

input cycles outputs branching law
ap q1, 9293 b3, b1bo P(1)op, = P(3) @ P(12)
a1a2 | 1q19392q2q3 | bsbibibsbeby | P(12) 0 p, = P(113223)
a1a2a3 | q1419393G242, | b3b1b3b1b3b1, P(123) o p,
424341 b2b2b2 = P(131313) ) P(222)
a1a3a2 | 419142929343, | b3bab3babsba, P(132) o py
439291 b1b1by = P(232323) ©® P(lll)

Let 0 € G329 be a transposition by o(1,1) = (1,2). ¢,, D(M,) and
branching laws of 1, are as follows:

VYo(s1) = s121 + 11,2 + 13,3,
Yo(s2) = 52,
Vo(s3) = 3,



input | cycles | outputs branching law
a1 | qg2 | bibe P(1) o ¢y = P(12)
ao q1, g2 b1, bs P(2)Owozp(1)@P(2)
az 93 b3 P(3) o, = P(3)

From this, we see that 1] is proper and irreducible by Lemma 2.5 (ii), (iv)
for each n > 1. By Lemma 2.5 (ii), ¥, and p, are not equivalent.

4.3. Ey2. Note #E,2 = 16!. Let 0 € G429 be defined by:

11 12 13 14 11 21 33 43

o1 21 22 23 24 . 12 22 32 42
| 31 32 33 34 13 31 34 44

41 42 43 44 14 24 23 41

Then ¢, and D(M,) are as follows:

Yo (1) = s11,1 + 8212 + 5313 + 41,4, Yo (52) = s12,1 + 5222 + 5433 + S42.4,

Yo (83) = 5321 + 5232 + 5133 + 5334, Yo (54) = S44,1 + 5242 + 5143 + 5344,
al/bl

az/bs as/bs
When J = (1), the transition at each vertex comes back itself by input a;.
Hence there are just four cycles. Furthermore, each output is b;. Therefore
P(1)ovs =P(1)® P(1)® P(1) @ P(1). In the same way, we have

P(2)o1hy = P(2) ® P(2) @ P(2), P(4)o01h, = P(4) ® P(444).

This is an example of Lemma 3.14. Furthermore we have the followings:

input cycles outputs branching law
as 4394, 92 bobs, b3 P(3) oo = P(23) & P(3)
a1a4 | q19193939444, | b1babrbsbibs, | P(14) 01,
q2q2 b1by = P(141414) @ P(14)
a1a2a3a4 | G494q3qa, b1b2b2by, P(1234) 0 5
42929292 b1babszbs = P(1224) @ P(1234)
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4.4. Canonical endomorphism. The Mealy diagram of the semi-Mealy
machine associated with the canonical endomorphism p of Oy (see § 2.3) is
given as follows:

an /by an /by

p(x) = s1xs] + -+ + syxsy,

In this case, there is no transition among states. We see that P(J) o ¢, =
P(J)®N for each J € {1,...,N}; where P(J)®" is the direct sum of N-
copies of P(J). In general, 7o), = 7%V for any representation 7 of Ox by
Proposition 4.8 in [12].

4.5. Es3.Let 0 € Ga3 be a transposition by o(1,1,1) = (1,2,1). Then
Yy € E23, D(M,) and branching laws of ¢, are as follows:

_ * % * %k * % * % _
Yy (81) = $15251878] + 151528581 + 151518785 + $152528585,  Ys(S2) = S2,

ag/bl

ai/by az /by
Y
q22
a1/ba (— ):a2/ ba
input cycles | outputs branching law
ai 4114921 b1bo P(1) oy, = P(12)
as q22 by P(2) oty = P(2)

ajaz q12q11 b1b1 P(12) o1p, = P(11)
ajaraz | ¢12q11q21 | bibibe | P(112) o ¢, = P(112)

We see that 7 is irreducible and proper for each n > 1 by Lemma 2.5 (ii),

(iv).

Let 0 € Gy 3 be defined by

111 112 121 122 . 121 122 111 112
211 212 221 222 211 212 221 222 )°
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In this case, we see that ¢, = 112 € Eg in § 4.1. D(M,) and branching
laws of 1, are as follows:

ag/bl

q12

al/b2

az/bz

input cycles outputs branching law

ay q11921 b1bo P(1) oy = P(12)

ao q12, 422 bi,by | P(2) o4y = P(1) ® P(2)
aiaz | q12q11922g21 | bibibeba | P(12) 09y = P(1122)

4.6. E5 4. Note #E, 4 = 16!. Let 0 € Gy 4 be a transposition by o(1,1,1,1) =
(1,2,1,1). ¢y € Ea4, D(M,) and branching laws of 1, are given as follows:

P(s1) = s12118711 + S11128719 + S1125T9 + S11115511 + S12125519 + 5122559,
P(s2) = s,
ag/bl
q111 a2/b1 =N > 121 q122
al b1
ag/bl
b al/bl
a1/by a1 /b az /b
a2/b2
al bg
az/ba / ) ) Y
@ 4212} a2/ 2 4221} al/ 2 @22
a1 /bo az /by
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input cycles outputs branching law
ay q1119211 b1bo P(1) o9y = P(12)
as G222 ba P(2) o9y = P(2)
ajaz 42129121 baby P(12) o9, = P(12)
araiaz | quz2qi21qi11 | bibiby | P(112) o), = P(111)

4.7. E33.Let 0 € G33 be a transposition by o(1,1,1) = (1,2,1). Then
e, D(My) and branching laws of 1, are as follows:

—_ * * * * * * *
Yo (51) = S121811 + 5112812 + S113S73 + S111591 + 5122599 + S123553 + 51353,

Yo(s2) = s2, 1s(s3) =s3 (where we use notation in § 2.2),

2 ai /b
o (015

1 ’
a2/bl




input cycles | outputs branching law
a q114921 b1by P(1) o1y = P(12)

as q22 by P(2) o9y = P(2)
as 33 b3 P(3) oy, = P(3)
aas q12q11 b1b1 P(12) o9y = P(11)
aias 713431 b1b3 P(13) oty = P(13)
asas 723432 babs P(23) 09y = P(23)
aja2a3 | @23q31q12 | babsby | P(123) o), = P(123)

a1azas | q32q21q13 | bzbaby | P(132) o 1), = P(132)
We see that 97 is irreducible and proper for each n > 1 by Lemma 2.5 (ii),

(iv).

Appendix A. Proof of Lemma 3.11
Put A a countably infinite set and N, > 2.

Lemma A.1. Let J € {1,...,N};. If f € BFSN(A) is P(J) and there are
J e{1,...,NY andn € A such that [y (n) =n, then there is M > 1 such
that J ~ JM.

Proof. Assume that J = (ji,...,ja), J = (jll,...,j/ﬁ) and C =
{n1,...,na} C A is the cycle of f. Put n,ﬁ = fj;g(n), n, | = fJ;(n;) for
t=2,...,4and C' = {nll,,nlﬁ} C A. Because f has only one cycle
in A, we see that C' = C. From this, 8 > « and there is M > 1 such
that 3 = Ma. If M =1, then a = 8 and (I2(A), 7f) is P(J) and P(J') by
Proposition 2.4 (iii). Therefore P(.J) ~ P(.J'). By Theorem 2.3 (ii), J ~ J.
If M > 2, then J; = (5}, ..., J,) satisfies f;,(n) = n and JM = J. From
the case M =1, we see that J; ~ J and J o~ JM, [l

Proof of Lemma 3.11. Assume that T = (¢1,...,ty) € {1,...,N}*, J =
(j1,.--, k) € {1,..., N} for a,k > 1.

(i)=(ii): This is shown in Lemma 3.7.

(ii)= (i): If there is Ag such that (Ag, f(7)|a,) is P(T'), then there is ng € Ag
such that fq(ﬂa)(no) = np. Since A = HJIE{L.” w1 fy (A), we can denote
no = fy(n) and f£i7(f,(n)) = f,(n) for some J' € {1,...,N}~! and
n € A. By computing f}a)(fj/ (n)), we have

fJ’ (n) = f(a(t1,Il),az(tz,Iz)y---vaz(taflJafl)vUz(taJa)) (n)
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where I, = J/, I = o1y-1(tig1, Liy1) for i = 1,...,a — 1. Because f, is
injective, we have n = f(g,(t1,11),....01(ta,1a)) (7). By Lemma A.1, we see that
(o1(t1,11),...,00(ta, Is)) is equivalent to J* for some a > 1 and I, = J =
ori-1(ty, ). Put T = (tgy1, ... tast1,. .., t5) for 1 < 3 < a — 1. Because
(Ag, f9]p,) is P(T") for each 1 < 3 < o — 1, we can take t1,...,t, and
I, ..., I, such that (oy(t1,1),...,001(ta, Ia)) = J* Therefore T = (I;)$, €
ITS(o, J;T,a). By Lemma 3.7, 7 is minimal. In consequence, (i) is satisfied.
(i)« (iii): This is shown in a paragraph above Lemma 3.9. O
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