
Relaxing the Value Restriction

Jacques Garrigue

Research Institute for Mathematical Sciences,
Kyoto University, Sakyo-ku, Kyoto 606-8502
garrigue@kurims.kyoto-u.ac.jp

Abstract. Restricting polymorphism to values is now the standard way to obtain
soundness in ML-like programming languages with imperative features. While
this solution has undeniable advantages over previous approaches, it forbids poly-
morphism in many cases where it would be sound. We use a subtyping based
approach to recover part of this lost polymorphism, without changing the type
algebra itself, and this has significant applications.

1 Introduction

Restricting polymorphism to values, as Wright suggested [1], is now the standard way to
obtain soundness in ML-like programming languages with imperative features. Section
2 explains how this conclusion was reached. This solution’s main advantages are its ut-
ter simplicity (only the generalization rule is changed from the original Hindley-Milner
type system), and the fact it avoids distinguishing between applicative and imperative
type variables, giving identical signatures to pure and imperative functions. This prop-
erty is sometimes described asimplementation abstraction.

Of course, this solution is sometimes more restrictive than previous ones: by as-
suming that all functions may be imperative, lots of polymorphism is lost. However,
this extra polymorphism appeared to be of limited practical use, and experiments have
shown that the changes needed to adapt ML programs typechecked using stronger type
systems to the value only polymorphism type system were negligible.

Almost ten years after the feat, it might be useful to check whether this is still true.
Programs written ten years ago were not handicapped by the value restriction, but what
about programs we write now, or programs we will write in the future?

In his paper, Wright considers 3 cases of let-bindings where the value restriction
causes a loss of polymorphism.

1. Expressions that never return. They do not appear to be really a problem, but he
remarks that in the specific case of∀α.α, it would be sound to keep the stronger
type.

2. Expressions that compute polymorphic procedures.
This amounts to a partial application. Analysis of existing code showed that their
evaluation was almost always purely applicative, and as a result one could recover
the polymorphism through eta-expansion of the whole expression, except when the
returned procedure is itself embedded in a data structure.

2

3. Expressions that return polymorphic data structures. A typical example is an ex-
pression returning always the empty list. It should be given the polymorphic type
α list , but this is not possible under the value restriction if the expression has to
be evaluated.

Of these 3 cases, the last one, together with the data-structure case of the second
one, are most problematic: there is no workaround to recover the lost polymorphism,
short of recomputing the data structure at each use. This seemed to be a minor problem,
because existing code made little use of this kind of polymorphism inside a data struc-
ture. However we can think of a number of cases where this polymorphism is expected,
sometimes as a consequence of extensions to the type system.

1. Constructor and accessor functions. While algebraic datatype constructors and pat-
tern matching are handled specially by the type system, and can be given a poly-
morphic type, as soon as we define functions for construction or access, the poly-
morphism is lost. The consequence is particularly bad for abstract datatypes and
objects [2], as one can only construct them through functions, meaning that they
can never hold polymorphic values.

2. Polymorphic variants [3]. By nature, a polymorphic variant is a polymorphic data
structure, which can be seen as a member of many different variant types. If it is
returned by a function, or contains a computation in its argument, it looses this
polymorphism.

3. Semi-explicit polymorphism [4]. This mechanism allows to keep principality of
type-checking in the presence of first-class polymorphism. This is done through
adding type variable markers to first-class polymorphic types, and checking their
polymorphism. Unfortunately, value restriction looses this polymorphism. A work-
around did exist, but the resulting type system was only “weakly” principal.

We will review these cases, and show how the value restriction can be relaxed a
little, just enough for many of these problems to be leveled. As a result, we propose a
new type system for ML, withrelaxed value restriction, that is strictly more expressive
(it types more programs) than ML with the usual value restriction.

The starting point is very similar to the original observation about∀α.α : in some
cases, polymorphic types are too generic to contain any value. As such they can only
describe empty collections, and it is sound to allow their generalization.

Our basic idea is to use the structural rules of subtyping to recover this polymor-
phism: by subsumption, if a type appears at a covariant position inside the type of a
value, it shall be safe to replace it with any of its supertypes. From a set-theoretic point
of view, if this type is not inhabited, then it is a subtype of all other types (they all con-
tain the empty set). If it can be replaced by any type, then we can make it a polymorphic
variable. For instance, consider this expansive binding:

val f : unit -> ’_a list

The_ in ’_a means that the type variable is not generalized: it can be instantiated only
once, and is shared between all uses off . We can replace’ a by the base typezero ,
obtaining the typeunit -> zero list . Assuming thatzero is not inhabited, it
is sound to replace all its covariant occurrences by polymorphic variables:

3

val f : unit -> ’a list

Since ’ a had only covariant occurrences,zero does not appear in this new type,
making it strictly more general than the original one.

Unfortunately, this model-based reasoning cannot be translated into a direct proof:
we are aware of no set theoretic model of ML extended with references. Neither can we
use a direct syntactic proof, as our system, while being sound, does not enjoy the subject
reduction. Nonetheless this intuition will lead us to an indirect proof, by translation into
a stronger type system with subtyping.

This paper is organized as follows. After a short reminder on why the value restric-
tion became so popular, we give some examples of our scheme applied to simple cases,
and then show how it helps solving the problems described above. In section 5 we an-
swer some concerns. In section 6 we formalize our language and type system, and prove
its soundness using semantic types in section 7, before concluding. Proofs of lemmas
can be found in appendix.

2 Why the value restriction

Before discussing in what way we are improving on the value restriction, it is useful
to explain why this seemingly weak approach has become the standard solution to the
soundness problem created by ML’s imperative features. We expose the path chronolog-
ically, but do not enter into technical details. Busy readers may skip directly to section
3, as the material in this section is only indirectly related to our problem.

2.1 The soundness problem

The original problem is well-known: in the presence of mutable references (and also of
other imperative features, like continuations), the usual typing rule for the polymorphic
let is unsound. We use Objective Caml syntax and library for our examples. Programs
are in typewriter font, and output from the interpreter in italic.

let r = ref []
val r : ’a list ref
r := [3]; r
- : ’a list ref
let l = List.map (function true -> 1 | false -> 2) !r
val l : int list = Segmentation fault

If we apply the usual rule, we can give a polymorphic type tor . Since each use ofr
is then assigned a different instance of this polymorphic type, assigning a value of type
int list does not change the type of other uses ofr . As a result we are able to use
r in a context expecting another type, which causes a runtime type error, or undefined
behavior if the compiler removed type checks.

The problem at hand is clear enough:’a in the above example should not be allowed
to be polymorphic, because it is the type of the contents of a reference cell, and this
contents can be modified. If’a is kept monomorphic, then it must be instantiated to the
same type in all uses ofr , so that we have:

4

System Type of imp map

Old Caml (int → string) → int list → string list

SML 90 (α∗ → β∗) → α∗ list → β∗ list

SML/NJ (α2 → β2) → α2 list → β2 list

Effects (α
ς→ β) → α list

ς→ β list

Closure (α
L→ β)

M→ α list
N→ β list with α

L→ β . N

Value (α → β) → α list → β list

Fig. 1. Comparing types

r := [3]; r
- : int list ref

and unsound uses ofr are not allowed anymore.
The question is: how can we restrict the type system, keeping principality, so that

mutable data will not be given a polymorphic type?

2.2 Conservative solutions

The first natural direction to take is to design a conservative extension to ML, satis-
fying the above restriction, but also able to type all programs typable in ML without
references.

The simplest conservative approach is to just keep monomorphic all variables used
somewhere under theref type constructor. The old Caml system [5] made such a
choice. However, it became quickly apparent that such a restrictive approach gives im-
perative features only second-class citizenship. For instance this definition of map using
reference cells would not be given a polymorphic type (c.f.comparison in figure 1):

let imp_map f l =
let input = ref l and output = ref [] in
while !input <> [] do

output := f (List.hd !input) :: !output;
input := List.tl !input

done;
List.rev !output

Sincel is stored in a reference, the only way to have this program accepted would be
to explicitly force it to accept only lists of a fixed ground type (int or string for
instance).

This typing seeming too restrictive, more refined type systems were developed to
handle the specificity of types affected by side-effects. The Tofte discipline [6], used in
Standard ML 90 [7], introduced imperative type variables for references, marked by a
“∗”. They must be instantiated to ground types whenever a side-effect may occur,i.e.
after any function application or reference cell creation. This was extended in Standard

5

ML of New Jersey to allow for deeper curried functions [8]. You can see in the compar-
ison table thatimp mapmay take two arguments before requiring ground instantiation.
This subsumes the Tofte discipline: you just have to replace “∗” by “ 1”. Some further
improvements have also been proposed [9].

While above typings do allow some degree of polymorphism, one may remark that
references inimp mapare purely local to the computation, and do not escape from its
scope. As such, this would be sound to make them normal polymorphic variables. Yet
more refined type systems, based either on effect analysis by Talpin and Jouvelot [10]
or closure typing by Leroy and Weis [11, 12], are able to extract this polymorphism,
by tracking in more detail creation and access of references. They both give the same
type to imp map and an applicative version ofmap, but this is at the price of adding
information about the program execution flow. This means complex types, which may
be acceptable for a system based on type inference alone, but are awkward when one
has to explicitly write them, in ML module signatures for instance.

2.3 Simplicity and abstraction

By 1993, some people could see that these more and more complex attempts at conser-
vative extensions were doomed. Of this negative conclusion, two requirements emerged:
keeping the type algebra simple, and keeping the implementation abstract in types. All
the conservative systems have to reveal information about how a function is imple-
mented, breaking this abstraction. In practice, this means that when defining the signa-
ture of a module, one has to decide in advance how it will be implemented. This goes
against the goal of “programming in the large” promoted by the ML module system,
and can be particularly awkward when one changes the implementation and realizes
that the types do not fit anymore.

The only solution left was to drop conservativity: accept that some existing ML pro-
grams will not be typable anymore. A first attempt by Leroy was to restrict polymor-
phism to call-by-name bindings, as they have clearly no side-effects [13]. This avoids
any change in the type algebra, but requires some in the syntax. Yet, this didn’t seem to
restrict the expressivity of the language.

However, a simpler way to obtain the same result was the value restriction [14]:
similarly polymorphism is limited to bindings without side-effects, but the syntax is
left unchanged. The choice of the typing rule to apply forlet is driven by a syntactic
definition ofvalues, which includes variables, functions, and all constructs except func-
tion application and reference cell creation. With the value restriction, imperative and
applicative version of functions receive the same type, even if the imperative version
hides some references in a closure. There is no magic: rather than tracking the danger
carefully as previous systems did, the value restriction just assumes that all function ap-
plications are dangerous, and their results are not generalizable locally. This is actually
equivalent to the Tofte discipline, assuming all variables are imperative. To beginners
this may cause some gripes, as some types become monomorphic. This is particularly
confusing when using an interpreter, and experimenting with partial applications. How-
ever tests on a huge corpus of programs showed that the transition was very easy, with
only a few places where eta-expansion was needed. After all the headaches caused by
overly specific types, this appeared as the solution.

6

Since then, the community seems to have settled with the value restriction, which
was first adopted by Caml in 1995, and Standard ML in 1997.

To finish this overview, an interesting improvement of the value restriction was
suggested by Ohori with the introduction of rank 1 polymorphism [15]: by allowing
quantification in non-prenex positions, for instanceint → ∀α.α → α list , it can
recover some lost polymorphism, much in the same way as indexed weak variables
improved on imperative type variables. Yet this re-introduces some complexity, and
reveals the implementation in some cases.

3 Polymorphism from subtyping

With the background of the previous section, we can now better define our intent.
We follow the value restriction, and keep its principles: simplicity and abstraction.

That is, we do not distinguish at the syntactic level betweenapplicativeandimperative
type variables; neither do we introduce different points of quantification, as in rank-1
polymorphism. All type variables in any function type are to be seen as imperative: by
default, they become non-generalizable in the let-binding of a non-value (i.e. a term
containing a function application), on a purely syntactical criterion.

However we can analyze the semantic properties of types, independently of the im-
plementation. By distinguishing between covariant and contravariant variables in types
we are able to partially lift this restriction when generalizing: as before, variables with
contravariant occurrences in the type of an expansive expression cannot be generalized,
but variables with only covariant occurrences can be generalized.

The argument goes as follows. We introduce a new type constructor,zero , which
is kept empty. We choose to instantiate all non-contravariant variables in let-bound ex-
pressions byzero . In a next step we coerce the type of the let-bound variable to a type
where allzero ’s are replaced by (independent) fresh type variables. Since the coer-
cion of a variable is a value, in this step we are no longer limited by the value restriction,
and these type variables can be generalized.

To make explanations clear, we will present our first two examples following the
same pattern: first give the non-generalizable type scheme as by the value restriction
(typed by Objective Caml 3.06 [16]), then obtain a generalized version by explicit sub-
typing. However, as explained in the introduction, our real intent is to provide a replace-
ment for the usual value restriction, so we will only give the generalized version —as
Objective Caml 3.07 does—, in subsequent examples. Here is our first example.

let l =
let r = ref [] in !r

val l : ’_a list = []

The type variable’_a is not generalized: it will be instantiated when used, and fixed
afterwards. This basically means thatl is now of a fixed type, and cannot be used in
polymorphic contexts anymore.

Our idea is to recover polymorphism through subtyping.

let l = (l : zero list :> ’a list)
val l : ’a list = []

7

V −(α) = ∅ V −(τ ref) = FTV (τ)
V −(τ list) = V −(τ)

V −(τ1 → τ2) = FTV (τ1) ∪ V −(τ2)
V −(τ1 × τ2) = V −(τ1) ∪ V −(τ2)

Fig. 2. Dangerous variables

A coercion(e : τ1 :> τ2) makes sure thate has typeτ1, and thatτ1 is a subtype ofτ2.
Then, it can safely be seen as having typeτ2. Sincel is a value, and the coercion of a
value is also a value, this is a value binding, and the new’a in the type of the coerced
term can be generalized.

Why is it sound? Since we assigned an empty list tor , and returned its contents
without modification,l can only be the empty list; as such it can safely be assigned a
polymorphic type.

Comparing with conservative type systems, Leroy’s closure-based typing [11] would
indeed infer the same polymorphic typing, but Tofte’s imperative type variables [6]
would not: since the result is not a closure, with Leroy’s approach the fact[] went
through a reference cell doesn’t matter; however, Tofte’s type system would force its
type to be imperative, precluding any further generalization when used inside a non-
value binding.

The power of this approach is even more apparent with function types. This is the
example from the introduction.

let f =
let r = ref [] in fun () -> !r

val f : unit -> ’_a list

which we can coerce again

let f = (f : unit -> zero list :> unit -> ’a list)
val f : unit -> ’a list

This result may look more surprising, as actuallyr is kept in the closure off . But since
there is no way to modify its contents,f can only return the empty list. This time, even
Leroy’s closure typing and Talpin&Jouvelot’s effect typing [10] cannot meet the mark.

This reasoning holds as long as a variable does not appear in a contravariant posi-
tion. Yet, for type inference reasons we explain in section 6, we define a set of dangerous
variables (figure 2) including all variables appearing on the left of an arrow, which is
more restrictive than simple covariance. In a non-value binding, we will generalize all
local variables except those inV −(τ), assuming the type before generalization isτ .
This definition is less general than subtyping, as a covariant type variable with multiple
occurences will be kept shared. For instance, subtyping would allow(’ a * ’ a)
list to be coerced to(’a * ’b) list , but type inference will only give the less
general(’a * ’a) list .

Of course, our approach cannot recover all the polymorphism lost by the value re-
striction. Consider for instance the partial application ofmap to the identity function.

let map_id = List.map (fun x -> x)
val map_id : ’_a list -> ’_a list

8

Since’ a also appears in a contravariant position, there is no way this partial applica-
tion can be made polymorphic. Like with the strict value restriction, we would have to
eta-expand to obtain a polymorphic type.

However, the relaxed value restriction becomes useful if we fully applymap, a case
where eta-expansion cannot be used.

let l = List.map (fun id -> id) []
val l : ’a list

Note that all the examples presented in this section cannot be handled by rank-1
polymorphism. This is not necessarily the case for examples in the next section, but this
suggests that improvements by both methods are largely orthogonal.

While our improvements are always conceptually related to the notion of empty
container, we will see in the following examples that it can show up in many flavors,
and that in some cases we are talking about concrete values, rather than empty ones.

4 Application examples

In this section, we give examples of the different problems described in the introduction,
and show how we improve their typings.

4.1 Constructor and accessor functions

In ML, we can construct values with data constructors and extract them with pattern
matching.

let empty2 = ([],[])
val empty2 : ’a list * ’b list = ([], [])
let (_,l2) = empty2
val l2 : ’a list = []

As you can see here, since neither operations use functions, the value restriction does
not come in the way, and we obtain a polymorphic result. However, if we use a function
as accessor, we loose this polymorphism.

let l2 = snd empty2
val l2 : ’_a list = []

Moreover, if we define custom constructors, then polymorphism is lost in the original
data itself. Herepair assists in building a Lisp-like representation of tuples.

let pair x y = (x, (y, ()))
val pair : ’a -> ’b -> ’a * (’b * unit)
let empty2’ = pair [] []
val empty2’ : ’_a list * (’_b list * unit) = (..)

The classical workaround to obtain a polymorphic type involves eta-expansion, which
means code changes, extra computation, and is incompatible with side-effects, for in-
stance if we were to count the number of cons-cells created.

If the parameters to the constructor have covariant types, then the relaxed value
restriction solves all these problems.

9

let l2 = snd empty2
val l2 : ’a list = []
let empty2’ = pair [] []
val empty2’ : ’a list * (’b list * unit) = (..)

This extra polymorphism allows one to share more values throughout a program.

4.2 Abstract datatypes

This problem is made more acute by abstraction. Suppose we want to define an abstract
datatype for bounded length lists. This can be done with the following signature:

module type BLIST = sig
type +’a t
val empty : int -> ’a t
val cons : ’a -> ’a t -> ’a t
val list : ’a t -> ’a list

end
module Blist : BLIST = struct

type ’a t = int * ’a list
let empty n = (n, [])
let cons a (n, l) =

if n > 0 then (n-1, a::l) else raise (Failure "Blist.cons")
let list (n, l) = l

end

The + in type +’a t is a variance annotation, and is available in Objective Caml
since version 3.01. It means that’a appears only in covariant positions in the definition
of t . This additional information was already used for explicit subtyping coercions
(between types including objects or variants), but with our approach we can also use it
to automatically extract more polymorphism.

The interesting question is what happens when we useempty . Using the value
restriction, one would obtain:

let empty5 = Blist.empty 5
val empty5 : ’_a Blist.t = <abstract>

Since the type variable is monomorphic, we cannot reuse thisempty5 astheempty
5-bounded list; we have to create a new empty list for each different element type. And
this time, we cannot get the polymorphism by building the value directly from data
constructors, as abstraction has hidden the type’s structure.

Just as for the previous example, relaxed valued restriction solves the problem: since
’ a is not dangerous in’ a Blist.t , we shall be able to generalize it.

val empty5 : ’a Blist.t = <abstract>

With the relaxed value restriction, abstract constructors can be polymorphic as long
as their type variables are covariant inside the abstract type.

10

4.3 Object constructors

As one would expect from its name, Objective Caml sports object-oriented features.
Programmers are often tempted by using classes in place of algebraic datatypes. A
classical example is the definition of lists.

class type [’a] list = object
method empty : bool
method hd : ’a
method tl : ’a list

end
class [’a] nil : [’a] list = object

method empty = true
method hd = raise (Failure"hd")
method tl = raise (Failure"tl")

end
class [’a] cons a b : [’a] list = object

method empty = false
method hd = a
method tl = b

end

This looks all nice, until you realize that you cannot create a polymorphic empty
list: an object constructor is seen by the type system as a function.

let nil : ’a list = new nil
val nil : ’_a list = <obj>

Again, as’a is covariant in’a list , it is generalizable, and the relaxed value restric-
tion allows a polymorphic type.

let nil : ’a list = new nil
val nil : ’a list = <obj>

We are of course restricted to objects with only covariant methods: if you add a
methodcons : ’a -> ’a list , this ’a will be dangerous in the class type, and
we cannot relax the value restriction anymore. This is unfortunate as this method is not
expected to change the state of the object itself, but to create a new one. Yet we have
no way to know that without looking at the implementation. A workaround is to define
such methods outside of the object, as functions, just like abstract datatypes.

let cons a l : ’a list = new cons a l
val cons : ’a -> ’a list -> ’a list
let nilist = cons nil nil
val nilist : ’a list list = <obj>

4.4 Polymorphic variants

Polymorphic variants [3, 17] are another specific feature of Objective Caml. Their de-
sign itself contradicts the assumption that polymorphic data structures are rare in ML
programs: by definition a polymorphic variant can belong to any type that includes its
tag.

11

let one = ‘Int 1
val one : [> ‘Int of int] = ‘Int 1
let two = ‘Int (1+1)
val two : _[> ‘Int of int] = ‘Int 2

Again the value restriction gets in our way: it’s enough that the argument is not a value
to make the variant constructor monomorphic (as shown by the “” in front of the type).
And of course, any variant returned by a function will be given a monomorphic type.
This means that in all previous examples, you can replace the empty list by any poly-
morphic variant, and the same problem will appear.

Again, we can use our coercion principle1:

let two = (two : [‘Int of int] :> [> ‘Int of int])
val two : [> ‘Int of int] = ‘Int 2

This makes using variants in multiple contexts much easier. Polymorphic variants
profit considerably from this improvement. One would like to see them simply as the
dual of polymorphic records (or objects), but the value restriction has broken the duality.
For polymorphic records, it is usually enough to have polymorphism of functions that
accept a record, but for polymorphic variants the dual would be polymorphism of vari-
ants themselves, including results of computations, which the value restriction did not
allow. While Objective Caml allowed polymorphism of functions that accept a variant,
there were still many cases where one had to use explicit subtyping, as the same value
could not be used in different contexts by polymorphism alone. For instance consider
the following program:

val all_results :
[‘Bool of bool | ‘Float of float | ‘Int of int] list ref

val num_results : [‘Float of float | ‘Int of int] list ref
let div x y =

if x mod y = 0 then ‘Int(x/y) else ‘Float(float x/.float y)
val div : int -> int -> [> ‘Float of float | ‘Int of int]
let comp x y =

let z = div x y in
all_results := z :: !all_results;
num_results := z :: !num_results

val comp : int -> int -> unit

Sinceall results andnum results are toplevel references, their types must be
ground. With the strict value restriction,z would be given a monomorphic type, which
would have to be equal to the types of both references. Since the references have differ-
ent types, this is impossible. With the relaxed value restriction,z is given a polymorphic
type, and distinct instances can be equal to the two reference types.

1 zero amounts here to an empty variant type, and if we show the internal row extension vari-
ables the coercion would be(two : [‘Int of int | zero] :> [‘Int of int | ’a]) , mean-
ing that in one we case we allow no other constructor, and in the other case we allow any other
constructor.

12

4.5 Semi-explicit polymorphism

Since version 3.05, Objective Caml also includes an implementation of semi-explicit
polymorphism [4], which allows the definition of polymorphic methods in objects.

The basic idea of semi-explicit polymorphism is to allow universal quantification
anywhere in types (not only in the prefix), but to restrict instantiation of these variables
to cases where the first-class polymorphism isknownat the instantiation point. To ob-
tain a principal notion ofknowledge, types containing quantifiers are marked by type
variables (which are only used asmarkers), and a quantified type can only be instanti-
ated when its marker variable is generalizable. Explicit type annotations can be used to
force markers to be polymorphic.

We will not explain here in detail how this system works, but the base line is that
inferred polymorphism can be used to enforce principality. While this idea works very
well with the original Hindley-Milner type system, problems appear with the value
restriction.

We demonstrate here Objective Caml’s behavior. The marker variableε on the type
poly ε is hidden in the surface language.

class poly : object method id : ’a. ’a -> ’a end
let f (x : poly) = (x#id 1, x#id true)
val f : poly -> int * bool = <fun>
let h () = let x = new poly in (x#id 1, x#id true)
val h : unit -> int * bool = <fun>

f is a valid use of polymorphism: the annotation is on the binding ofx and can be
propagated to all its uses,i.e. the type ofx is ∀ε.poly ε. But h would not be accepted
under the strict value restriction, becausenew poly is not a value, so that the type
poly ε of x is not generalizable. Since refusing cases likeh would greatly reduce the
interest of type inference, it was actually accepted, arguing that markers have no impact
on soundness. A system allowing this is formalized in [4], yet it replaces full blown
principality by a notion of principality among maximal derivations, which is a weaker
property.

By using our scheme of generalizing type variables that do not appear in dangerous
positions, we can recover full principality, with all its theoretical advantages, and accept
h “officially”.

Note also that since these markers may appear in types that otherwise have no
free type variables, this boosts the number of data structures containing polymorphic
(marker) variables. That is, semi-explicit polymorphism completely invalidates the as-
sumption that polymorphic values that are not functions are rare and not essential to
ML programming.

5 Concerns

This section addresses some natural concerns about the relaxed value restriction.

13

5.1 Typing power and usefulness

A first question is how powerful the relaxed value restriction is, compared to the value
restriction and other known systems, and whether its improvements are genuinely use-
ful or not. If we considered only benchmarks proposed in the literature [10, 11], we
would come to the conclusion that the relaxed value restriction adds no power: its re-
sults exactly matches those of the strict value restriction. This is because all examples in
the literature are only concerned with polymorphic procedures, not polymorphic data.

In the previous section we have given a fair number of examples handling polymor-
phic data. They demonstrate the additional power of our system. Compared with system
predating the value restriction, we are in general less powerful, with some exceptions as
shown in section 3. However, as we have seen in section 2,implementation abstraction
matters more than pure typing power, and on this side we keep the good properties of
the value restriction.

Our examples with constructor functions and abstract datatypes were expressible in
systems predating the value restriction, and are refused by the strict value restriction.
This makes one wonder why this didn’t cause more problems during the transition.
These idioms were apparently rarely used then. However, the author believes he is not
alone in having experienced exactly those problems on newly written code. And there
have been explicit reports of polymorphism problems with objects and variants, justi-
fying the need for such an improvement.

5.2 Abstraction

While we claim that our scheme is not breaking implementation abstraction, one may
remark that we require variance annotations for abstract datatype definitions. Aren’t
these annotations breaking abstraction?

Clearly, specifying a variance reduces the generality of an interface, and as such it
is reducing its abstraction degree. However we claim that this does not mean that we
are breaking implementation abstraction. We give here a concrete example, defining
covariant vectors on top of nonvariant mutable arrays.

type +’a vector = {get: int -> ’a; length: int }
let make len f =

let arr = if len = 0 then [||] else Array.create len (f 0) in
for i = 1 to len-1 do arr.(i) <- f i done;
{get=Array.get arr; length=len }

val make : int -> (int -> ’a) -> ’a vector
let map f vect = make vect.length (fun i -> f (vect.get i))
val map : (’a -> ’b) -> ’a vector -> ’b vector

What this example demonstrates, is that variance is not limited by the implementation.
By changing the superficial definition, while keeping the same internal implementa-
tion, we may improve the variance of a datatype. This situation is to be compared with
imperative type variables, or equality type variables, whose specificity must be propa-
gated through any definition they are used in, making it impossible to abstract from the
implementation.

14

To be fully honest, there are cases where an overspecified variance results in mak-
ing some implementations impossible. But this should be seen as a problem of bad
design, and the above example gives a natural criterion for proper variance of an ab-
stract datatype: this should at most be the variance of the minimal set of operations
which cannot be defined without access to the implementation.

5.3 Ease of use

Does the introduction of variance make the language harder to use? There are actually
two problems: understanding the new typing rule, and having to write variance annota-
tions for abstract datatypes.

Seeing that the value restriction itself is rather hard to grasp —notwithstanding the
simplicity of its definition—, one might argue that any improvement of polymorphism
(when it does not involve changes in the type algebra itself) is good, as it is going to
avoid some non-intuitive type errors. Moreover, once you understand the typing algo-
rithm, the relaxed value restriction introduces no leap in complexity.

More disturbing may be the need for variance annotations. For Objective Caml, they
were already there, as the language allows explicit subtyping. So we are just exploiting
an existing feature. But even if it were to be newly added, keep in mind that explicit
annotations are only needed for abstract datatype definitions, and that there is a good
semantic criterion as to what they should be. Of course this information is only optional:
at worst, we are still as powerful as the value restriction.

5.4 Compilation

A last concern is with compilation, in particular for compilers using type information
during compilation or at runtime. These compilers often involve a translation to an
explicitly typed second-order lambda-calculus, which does not seem to be a good target
for our system since, as we will see in the next sections, our type soundness seems to
require subtyping.

A first remark is that the problem lies not so much in our approach as in the in-
adequation between polymorphic data structures and second-order lambda-calculus.
While there can be no value whose type is a covariant variable inside the data struc-
ture, second-order lambda-calculus would have us pass its (useless) type around.

The answer is simple enough: we just have to extend the target type system with the
needed subtyping, knowing that this will not impact later stages of compilation as there
are no values of typezero anyway. To gain full profit of our remark, we may even
replace all purely covariant type variables withzero —in value bindings too—, so as
to minimize the type information passed around.

While zero is not a problem, compilation is one of the reasons we have stopped
short of exploiting the dual observation: that assuming a “type of all values”top , the
monomorphic type variables that appear only in contravariant positions are generaliz-
able too. This would have had an extra advantage: this should alleviate the principality
problem, which had us restrict generalizability to type variables of rank 0. Only vari-
ables that appear both in covariant and contravariant position would not be generaliz-
able. However, the existence oftop would require all values to be represented in a

15

uniform way. This is just what type-passing implementations want to avoid. Actually,
even Objective Caml, which has only a very conservative use of type information, does
not satisfy this property2.

6 Formalization and type system

In this section we fully formalize our language, and propose a type system where the
extra polymorphism described in previous examples is recovered automatically (with-
out the need for explicit coercions). Yet this type system, which we call therelaxed
value restriction, enjoys the principal type property.

We base ourselves on Wright and Felleisen’s formalization of Reference ML [14].
For our results to be meaningful, we need to handle more varied data, so we also add
pairs and lists, as they do not incur any difficulty in typing.

Expressions distinguish between values and non-values. The store is introduced by
theρθ.e binder and is handled explicitly. Two kinds of contexts are defined for reduction
rules:R-contexts, used in store operations, andE-contexts, in evaluation.

e ::= v | e1 e2 | let x = e1 in e2 | ρθ.e
v ::= x | Y | λx.e | ref | ! | := | := v | (v, v) | π1 | π2 | nil | cons v | uncons v v
θ ::= {〈x, v〉}∗
R ::= [] | R e | v R | let x = R in e
E ::= [] | E e | v E | let x = E in e | ρθ.E

As in Reference ML, both:= and := v are values, reflecting the fact:= can only be
reduced when given two arguments.

Reduction rules are given in figure 3. They are those of Reference ML, with a few
innocuous additions. We define one-step reduction asE[e] → E[e′] whenevere → e′,
and multi-step reduction ase1

∗→ en whenevere1 → e2 . . . → en. Reduction does not
produce badly-formed expressions.

Lemma 1. If e is a well-formed expression (i.e. no non-value appears at a value posi-
tion), ande → e′, thene′ is well-formed.

Types are the usual monotypes and polytypes.

τ ::= α | τ ref | τ × τ | τ list
σ ::= τ | ∀ᾱ.τ

An instantiation orderÂ is defined on polytypes by∀ᾱ.τ Â ∀β̄.τ ′ iff β̄∩FTV (∀ᾱ.τ) =
∅ and there is a vector̄τ of monotypes such that[τ̄ /ᾱ]τ = τ ′.

2 The functionObj.repr can be seen as a coercion totop (akaObj.t), but it is unsafe.
let l = Array.create 2 (Obj.repr 1.0)
val l : Obj.t array = [|<abstr>; <abstr>|]
l.(1) <- Obj.repr 1
Segmentation fault

In one sentence: arrays of float values have a special representation, and operations on ar-
rays are not semantically correct when float and int values are mixed —which is of course
impossible using the existing type system and safe operations.

16

(βv) (λx.e) v → e[v/x]
(let) let x = v in e → e[v/x]
(Y) Y v → v (λx.Y v x)
(ref) ref v → ρ〈x, v〉.x
(deref) ρθ〈x, v〉.R[! x] → ρθ〈x, v〉.R[v]
(assign) ρθ〈x, v1〉.R[:= x v2] → ρθ〈x, v2〉.R[v2]
(ρmerge) ρθ1.ρθ2.e → ρθ1θ2.e
(ρlift) R[ρθ.e] → ρθ.R[e] if R 6= []
(ρdrop) ρθ.e → e if dom(θ) ∩ FV (e) = ∅

(π1) π1 (v1, v2) → v1

(π2) π2 (v1, v2) → v2

(un1) uncons v1 v2 nil → v1 nil
(un2) uncons v1 v2 (cons v) → v2 v

Fig. 3. Reduction rules

VAR

Γ (x) Â τ

Γ ` x : τ

APP
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

ABS

Γ [x 7→ τ1] ` e : τ2

Γ ` λx.e : τ1 → τ2

LETv

Γ ` v : τ1 Γ [x 7→ Close(τ1, Γ)] ` e : τ2

Γ ` let x = v in e : τ2

PAIR
Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2) : τ1 × τ2

LETe

Γ ` e1 : τ1 Γ [x 7→ CovClose(τ1, Γ)] ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

CONS
Γ ` v : τ × τ list

Γ ` cons(v) : τ list

RHO

Γ [xj 7→ τj ref]n1 ` e : τ Γ [xj 7→ τj ref]n1 ` vi : τi (1 ≤ i ≤ n)

Γ ` ρ〈x1, v1〉 . . . 〈xn, vn〉.e : τ

AXIOMS

Γ ` Y : ((τ1 → τ2) → τ1 → τ2) → τ1 → τ2

Γ ` ref : τ → τ ref Γ ` ! : τ ref → τ Γ ` := : τ ref → τ → τ
Γ ` π1 : τ1 × τ2 → τ1 Γ ` π2 : τ1 × τ2 → τ2 Γ ` nil : τ list
Γ ` uncons : (τ1 list → τ2) → (τ1 × τ1 list → τ2) → τ1 list → τ2

Fig. 4. Typing rules

B-SUB

Γ |= e : t t ≤ t′

Γ |= e : t′

B-LETv

(∀t ∈ s) Γ |= v : t Γ [x 7→ s] |= e : t′

Γ |= let x = v in e : t′

B-ABS

Γ [x 7→ ↑t1] |= e : t2
Γ |= λx.e : t1 → t2

B-VAR

t ∈ Γ (x)

Γ |= x : t

B-APP

Γ |= e1 : τ2 → t1 Γ |= e2 : t2
Γ |= e1 e2 : t1

B-LETe

Γ |= e1 : t1 Γ [x 7→ ↑t1] |= e2 : t2
Γ |= let x = e1 in e2 : t2

B-RHO

Γ [xj 7→ ↑(tj ref)]n1 |= e : t Γ [xj 7→ ↑(tj ref)]n1 |= vi : ti (1 ≤ i ≤ n)

Γ |= ρ〈x1, v1〉 . . . 〈xn, vn〉.e : t

Fig. 5. Typing rules for B(T)

17

We type this language using typing rules in figure 4. Those rules are again taken
from Reference ML, assuming all type variables to be imperative (which is equivalent to
applying the value restriction,cf [1] page 6). The only exception is theLETe rule, which
generalizes some variables. In the value case,Close(τ1, Γ) = ∀FTV (τ1)\FTV (Γ).τ1

as usual, but in the non-value case we still generalize safe variables:CovClose(τ1, Γ) =
∀FTV (τ1) \ V −(τ1) \FTV (Γ).τ1, with V − the set of dangerous variables defined in
figure 2. The definition ofV − captures more variables than the usual definition of con-
travariant occurrences. We deem dangerous all occurrences appearing in a contravariant
branch of a type. While this is not necessary to ensure type soundness, we need it to
keep principality of type inference. For instance, consider the following function.

let f = let r = ref nil in λk.Y (λf.f) !r

As the type ofY (λf.f) is ∀αβ.α → β, we expect the principal type off to be∀β.γ →
β, with γ a non generalizable variable. However, if we were to generalize covariant
variables at ranks higher than 0, then∀βδ.(δ → γ) → β would be another acceptable
type for f , and neither of the two is an instance of the other.i.e. we would have lost
principality.

As we explained in section 4.5, ruleLETe does not unshare covariant type variables,
as it would be sound to do, but only allows for more type variables to be generalized.
Unsharing variables would break even the partial subject reduction we define lower.

We include theRHO typing rule for completeness, but we cannot use it to obtain full
subject reduction. We can see this on the following example3.

let f = (let r = ref nil in λx.!r) in (cons(nil, f nil), cons(ref nil, f nil))
→ ρ〈r, nil〉.(cons(nil, (λx.!r) nil), cons(ref nil, (λx.!r) nil))

In the first line,f can be given the polymorphic type∀α. β list → α list , with β
a non-generalized type variable. When we applyf to nil we may get any list. The type
of the whole expression is(τ1 list list × τ2 list ref list). However, after
reduction,r can only be given a monomorphic type, and its two occurrences appear in
incompatible type contexts.

If you think that the problem is superficial, and that it can be solved for instance by
adding polymorphic type information to the store, or even by more extensive changes
like making ref a two-parameter type (one covariant, one contravariant), then try re-
placing the definition off in the above example by the identically typed

let r = ref nil in λx.(λy.λz.let u = !y in (:= y (z y) ; := y u ; u)) r (λx.nil)

and consider the typing needed forρ〈r, nil〉.let f = λx.(λy.λz. · · ·) r (λx.nil) in e,
wheree usesf polymorphically. For instance, if we assume the type ofr to be(∀α.α
list) ref , then we must assumey to have the same second-order type, andz to be
of type(∀α.α list) ref → (∀α.α list), which is getting further and further away
from ML style polymorphism. What this example shows is that this is not enough to

3 For sake of conciseness we use pairs of expressions, rather than an expanded form where pairs
contain only values; and we writee1 ; e2 as a shorthand forlet i = e1 in e2 (i fresh). This has
no impact on typing.

18

be able to extract polymorphic values from references, we need a way to propagate this
polymorphism to the type off after reduction.

In the absence of direct subject reduction, we must prove type soundness in an
indirect way. Following our intuition, we could recover subject reduction in a stronger
system, by adding a subsumption rule,

Γ ` e : τ [zero /ᾱ]
Γ ` e : τ

ᾱ ∩ V −(τ) = ∅

Rather than doing this directly, and bearing the burden of proof, we will do this in the
next section by translating our derivations into a known type system validating this rule.
We believe that an appropriate form of subsumption (direct or indirect) is essential to
proofs of subject reduction for type systems validating ourLETe rule.

On the other hand, principality is a static property of terms, and we can prove it
easily by trivially modifying the inference algorithmW, usingCovClosein place of
Close for non-values. This is clearly sound: this is our rule. This is also complete:
CovCloseis monotonic with respect to the instantiation orderÂ, that is, for any type
substitutionS, we haveCovClose(τ,Γ) Â CovClose(S (τ),S (Γ)).

Proposition 1 (principality). If, for a given pair(Γ, e) there is aτ0 such thatΓ ` e :
τ0 is derivable, then there exists aσ such that for anyτ , Γ ` e : τ iff σ Â τ .

We can also verify a partial form of subject reduction, limited to non side-effecting
reductions, but allowing those reductions to happen anywhere in a term. While insuffi-
cient to prove type soundness, this property is useful to reason about program transfor-
mations.

C ::= [] | C e | e C | let x = C in e | let x = e in C
| ρθ〈x,C〉.e | ρθ.C | λx.C | (C, v) | (v, C)

Proposition 2 (partial subject reduction). Non side-effecting reductions, i.e. rules
(βv), (let), (Y), (πi), (uni) preserve typing: for any contextC, if Γ ` C[e] : τ and
e →f e′, thenΓ ` C[e′] : τ .

The proof can be easily transposed from any proof of subject reduction for applicative
ML. We only need to verify that the substitution lemma still holds in presence of our
distinction betweenLETv andLETe.

Lemma 2 (substitution). If Γ [x 7→ σ1] ` e : τ andΓ ` v : τ1 andClose(τ1, Γ) Â
σ1, thenΓ ` e[v/x] : τ .

7 Type soundness

Rather than extending our own type system with subsumption, we will reuse one that
already has the required combination of polymorphism, imperative operations, and sub-
typing. A good choice is Pottier’s B(T) [18], as its typing rules closely match ours.
B(T) was originally developed as an intermediate step in the proof of type soundness
for HM(X), a constraint-based polymorphic type system [19]. B(T) is particular by
its extensional approach to polymorphism: polytypes are not expressed syntactically,

19

but as (possibly infinite) sets of ground monotypes. For us, its main advantages are its
simplicity (no need to introduce constraints as in HM(X)), and the directness of the
translation of typing derivations.

We give here a condensed account of the definition of B(T), which should be suf-
ficient to understand how a typing derivation in our system can be mapped to a typing
derivation in an instance of B(T).

TheT in B(T) represents a universe of monotypes, equipped with a subtyping re-
lation≤, serving as parameter to the type system. Monotypes inT are denoted byt.
→ should be a total function fromT × T into T , such thatt1 → t2 ≤ t′1 → t′2 im-
plies t′1 ≤ t1 and t2 ≤ t′2. ref should be a total function fromT to T , such that
t ref ≤ t′ ref implies t = t′. Moreovert1 → t2 ≤ t ref andt ref ≤ t1 → t2
should both be false for anyt, t1, t2 in T . Polytypess are upward-closed subsets ofT
(i.e. if t ∈ s andt ≤ t′ thent′ ∈ s). We write↑t for the upward closure of a monotype
(the set of all its supertypes).

The terms and reduction rules in B(T) are identical to those in our system (exclud-
ing pairs and lists). While Pottier’s presentation uses a different syntax for representing
and updating the store, the presentations are equivalent, ours requiring only more re-
duction steps. We will stick to our presentation.

Typing judgments are writtenΓ |= e : t with Γ a polytype environments (mapping
identifiers to upward-closed sets of monotypes) andt a monotype. Typing rules4 are
given in figure 5. They are very similar to ours, you just have to transpose allτ ’s into
t’s and all` into |=. The only changes are thatB-LETe is now monomorphic (this is
the strict value restriction), subsumptionB-SUB is added, and polymorphism is handled
semantically inB-VAR andB-LET. AXIOMS for references are included.

The following theorem is proved in [18], section 3, for any(T,≤) satisfying the
above requirements.

Theorem 1 (Subject Reduction).If e → e′, wheree, e′ are closed, thenΓ |= e : t
impliesΓ |= e′ : t.

For our purpose, we chooseT as the set of all types generated by the type construc-
tors zero , int , →, ref , ×, list and the set of all type variables{α, β, . . .}. The
variables are introduced here as type constants, to ease the translation, but they are un-
related to polymorphism: there is no notion of variable quantification in B(T). zero is
an extra type constructor, which need not be included in our original language. The sub-
typing relation is defined aszero ≤ t andt ≤ t for anyt in T , and extended through
constructors, all covariant in their parameters, exceptref which is non-variant, and
→ which is contravariant in its first parameter and covariant in its second one. This
conforms to the requirements for B(T), meaning that subject reduction holds in the
resulting system. We also extend the language, reduction and typing rules withPAIR,
CONS andAXIOMS aboutY, pairs and lists. Extending subject reduction to these fea-
tures presents no challenge; the concerned reader is invited to check this (and other
details of formalization), on the remarkably short proof in [18].

4 In Pottier’s presentation, a judgment writesΓ, M |= e : t; we have mergedΓ andM (M only
mapping to monotypes), as our syntax for references permits.B-RHO mergesB-STORE and
B-CONF from the original presentation.

20

The progress lemma depends more directly on the syntax of expressions, and we
cannot reuse directly Pottier’s proof. However, our reduction and typing rules are basi-
cally the same as in [14].

Lemma 3 (Progress).For any closede, if for all e′ such thate
∗→ e′ there isΓ andt

such thatΓ |= e′ : t, then reducinge either diverges or leads to a value.

Combining the above subject reduction and progress, our instance of B(T) is sound.
We present now the translation itself. First we must be able to translate each compo-

nent of a typing judgment. The expression part is left unchanged. Types are translated
under a substitutionξ : V → T .

[[α]]ξ = ξ(α)
[[τ ref]]ξ = [[τ]]ξ ref

[[τ1 × τ1]]ξ = [[τ1]]ξ × [[τ2]]ξ
[[τ list]]ξ = [[τ]]ξ list

This translation is extended to polytypes appearing in typing environments.

[[∀α1 . . . αn.τ]]ξ = {t | (t1, . . . , tn) ∈ Tn, [[τ]](ξ[α1 7→ t1, . . . , αn 7→ tn]) ≤ t}

Before going on to translate full derivations, we state a lemma about the single
subsumption step we need.

Lemma 4. Let ᾱ be a set of type variables that appear only covariantly inτ1. Letξ be
any translation substitution. Then[[∀ᾱ.τ1]]ξ = ↑[[τ1]](ξ[ᾱ 7→ zero]).

Finally the derivation is translated by induction on its structure, transformingΓ `
e : τ into [[Γ]]ξ |= e : [[τ]]ξ for anyξ.

– if the last rule applied isLETe andCovClose(τ1, Γ) = ∀ᾱ.τ1 then it is translated
into

[[Γ]]ξ′ |= e1 : [[τ1]]ξ′ [[Γ [x 7→ ∀ᾱ.τ1]]]ξ |= e2 : [[τ2]]ξ
[[Γ]]ξ |= let x = e1 in e2 : [[τ2]]ξ

(B-LETe)

whereξ′ = ξ[ᾱ 7→ zero]. By Lemma 4, we have[[∀ᾱ.τ1]]ξ = ↑[[τ1]]ξ′, and this is
an instance of ruleB-LETe. Note also that[[Γ]]ξ′ = [[Γ]]ξ asαi ∩ FTV (Γ) = ∅.

– if the last rule applied isLETv andClose(τ1 ,Γ) = ∀α1 . . . αn.τ1, then it becomes

[[Γ]]ξ′ |= v : [[τ1]]ξ′

[[Γ]]ξ′ |= v : t
(B-SUB) [[Γ]]ξ[x 7→ s] |= e : [[τ2]]ξ

[[Γ]]ξ |= let x = v in e : [[τ2]]ξ
(B-LETv)

wheres = [[∀α1 . . . αn.τ1]]ξ, t ranges over all elements ofs, andξ′ = ξ[α1 7→
t1, . . . , αn 7→ tn] is such that[[τ1]]ξ′ ≤ t. Here again[[Γ]]ξ′ = [[Γ]]ξ.

– if the last rule applied isVAR, it becomes
[[τ]]ξ ∈ ([[Γ]]ξ)(x)
[[Γ]]ξ |= x : [[τ]]ξ

(B-VAR).

– other cases are trivial induction.

From this construction we can obtain the following proposition.

21

Proposition 3. If Γ ` e : τ is derivable in ML with the relaxed value restriction, then
[[Γ]]ξ |= e : [[τ]]ξ is derivable in B(T) for anyξ.

Now, suppose that we restrict ourselves to closed expressions whose types do not
contain references nor function types. Normal forms of such expressions can only be
data of the form:

d ::= nil | (d, d) | cons d

For such normal forms, type derivations in B(T) coincide with our system.
From this and type soundness for our instance of B(T) we can deduce the type

soundness of ML with the relaxed value restriction, as stated below.

Theorem 2 (Type Soundness).If ∅ ` e : δ with δ any type of the formδ ::= α | δ×δ |
δ list , then reducinge either diverges or leads to a normal formd, and∅ ` d : δ.

8 Conclusion

Thanks to a small observation on the relation between polymorphism and subtyping —
thatzero in a covariant position is equivalent to a universally quantified type variable—,
we have been able to smooth some of the rough edges of the value restriction, while
keeping all of its advantages. This is a useful result, which has already been integrated
in the Objective Caml 3.07 compiler. Hopefully this should make the use of polymor-
phic data structures easier.

Notwithstanding our achievements, this paper does nothing to solve the fundamental
problem of the value restriction, namely that by assuming all functions to be imperative,
it is overly pessimistic. We have been able to rescue some cases that were probably not
even considered when it was introduced. But there is no easy solution for more involved
cases, with polymorphic function types in the data.

The triviality of this result brings another question: why wasn’t it discovered earlier?
Actually, this specific use of subtyping is not new: the fact has not attracted very

much attention, but ourLETe rule is already admissible in HM(X). This could give yet
another way to prove type soundness for our system: by defining it as a subsystem of a
sufficiently feature-rich instance of HM(X) as found in [20]. We preferred B(T) for its
robustness, and the lightness of its definition and proof, but this last approach would be
purely syntactic.

Acknowledgments

I want to thank here Didier Ŕemy and other members of the Cristal team at INRIA for
discussions and encouragements.

A Proofs of lemmas

Lemma 1. If e is a well-formed expression (i.e. no non-value appears at a value posi-
tion), ande → e′, thene′ is well-formed.

22

Proof. We assumee = E[e0], e′ = E[e′0] and e → e′ by direct application of a
rule. We have to check the well-formedness ofe′0. For (βv) and(let), this comes from
the closedness of values under substitution: for any valuev′ inside e0, by induction
on the structure of valuesv′[v/x] is also a value. For all other reduction rules, this is
immediate. FinallyE[e1] is well-formed for any well-formed expressione1, soE[e′0] is
well-formed.

Lemma 2. If Γ [x 7→ σ1] ` e : τ and Γ ` v : τ1 and Close(τ1, Γ) Â σ1, then
Γ ` e[v/x] : τ .

Proof. The proof is by induction on the length of the derivation and case analysis on
the last rule used.
CaseLETe. If Γ [x 7→ σ1] ` let x′ = v′ in e : τ usingLETv, then there is a derivation
Γ [x 7→ σ1] ` v′ : τ ′. By induction hypothesis, after substitution,Γ ` v′[v/x] : τ ′

holds, and since values are closed under substitution,v′[v/x] is still a value. Since
FTV (Γ) ⊂ FTV (Γ) ∪ FTV (σ1), Close(τ ′, Γ) Â Close(τ ′, Γ [x 7→ σ1]), so that
Γ [x 7→ Close(τ ′, Γ)] ` e[v/x] : τ is derivable, andΓ ` let x′ = v′[v/x] in e[v/x] : τ
by LETv.
CaseLETv. If Γ [x 7→ σ1] ` let x′ = e′ in e : τ usingLETe, then there is a derivation
Γ [x 7→ σ1] ` e′ : τ ′. By induction hypothesis, after substitution,Γ ` e′[v/x] : τ ′

holds, ande′[v/x] is not a value. AgainCovClose(τ ′, Γ) Â CovClose(τ ′, Γ [x 7→
σ1]), so thatΓ [x 7→ CovClose(τ ′, Γ)] ` e[v/x] : τ is derivable, andΓ ` let x′ =
e′[v/x] in e[v/x] : τ by LETe.
Other cases are all simple and standard.

Lemma 3. For any closede, if for all e′ such thate
∗→ e′ there isΓ and t such that

Γ |= e′ : t, then reducinge either diverges or leads to a value.

Proof. We reuse lemmas 5.5 and 5.6 of [14], extending the definition of faulty expres-
sions with cases implying pairs and lists. Lemma 5.5 (uniform evaluation) does not
depend on types, and lemma 5.6 (faulty expressions are untypable) uses only the struc-
ture of types, which subsumption does not change.

Lemma 4. Let ᾱ be a set of type variables that appear only covariantly inτ1. Letξ be
any translation substitution. Then[[∀ᾱ.τ1]]ξ = ↑[[τ1]](ξ[ᾱ 7→ zero]).

Proof. By definition, the latter is included in the former. So it is enough to show that
for anyt in [[∀ᾱ.τ1]]ξ, we have[[τ1]](ξ[ᾱ 7→ zero]) ≤ t.
Let ᾱ = α1 . . . αn andξ′ = ξ[ᾱ 7→ zero]. By definition of [[∀ᾱ.τ1]]ξ, there exists
t̄ = t1 . . . tn such that[[τ1]](ξ[ᾱ 7→ t̄]) ≤ t.
Since theαi’s only have covariant occurrences, andzero ≤ ti for all ti’s, we also have
[[τ1]]ξ′ ≤ [[τ1]](ξ[ᾱ 7→ t̄]) ≤ t.
By transitivity of≤ we can conclude that[[τ1]]ξ′ ≤ t.

References

1. Wright, A.K.: Simple imperative polymorphism. Lisp and Symbolic Computation8 (1995)

23

2. Rémy, D., Vouillon, J.: Objective ML: A simple object-oriented extension of ML. In: Proc.
ACM Symposium on Principles of Programming Languages. (1997) 40–53

3. Garrigue, J.: Programming with polymorphic variants. In: ML Workshop, Baltimore (1998)
4. Garrigue, J., Ŕemy, D.: Extending ML with semi-explicit higher order polymorphism. In-

formation and Computation155(1999) 134–171
5. Weis, P., Aponte, M., Laville, A., Mauny, M., Suarez, A.: The CAML reference manual,

version 2.6.1. Rapport Technique RT-0121, INRIA (1990)
6. Tofte, M.: Type inference for polymorphic references. Information and Computation89

(1990) 1–34
7. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press, Cambridge,

Massachusetts (1990)
8. Greiner, J.: SML weak polymorphism can be sound. Technical Report CMU-CS-93-160R,

Canegie-Mellon University, School of Computer Science (1993)
9. Hoang, M., Mitchell, J., Viswanathan, R.: Standard ML-NJ weak polymorphism and imper-

ative constructs. In: Proc. IEEE Symposium on Logic in Computer Science. (1993) 15–25
10. Talpin, J.P., Jouvelot, P.: The type and effect discipline. In: Proc. IEEE Symposium on Logic

in Computer Science. (1992) 162–173
11. Leroy, X., Weis, P.: Polymorphic type inference and assignment. In: Proc. ACM Symposium

on Principles of Programming Languages. (1991) 291–302
12. Leroy, X.: Polymorphic typing of an algorithmic language. Research report 1778, INRIA

(1992)
13. Leroy, X.: Polymorphism by name for references and continuations. In: Proc. ACM Sym-

posium on Principles of Programming Languages. (1993) 220–231
14. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and

Computation115(1994) 38–94
15. Ohori, A., Yoshida, N.: Type inference with rank 1 polymorphism for type-directed compi-

lation of ML. In: Proc. International Conference on Functional Programming, ACM Press
(1999)

16. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system
release 3.06, Documentation and user’s manual. Projet Cristal, INRIA. (2002)

17. Garrigue, J.: Simple type inference for structural polymorphism. In: The Ninth International
Workshop on Foundations of Object-Oriented Languages, Portland, Oregon (2002)

18. Pottier, F.: A semi-syntactic soundness proof for HM(X). Research Report 4150, INRIA
(2001)

19. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theory and
Practice of Object Systems5 (1999) 35–55

20. Skalka, C., Pottier, F.: Syntactic type soundness for HM(X). In: Proceedings of the 2002
Workshop on Types in Programming (TIP’02). Volume 75 of Electronic Notes in Theoretical
Computer Science., Dagstuhl, Germany (2002)

