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Abstract

The minimal representation π of O(p, q) (p + q: even) is realized
on the Hilbert space of square integrable functions on the conical sub-
variety of Rp+q−2. This model presents a close resemblance of the
Schrödinger model of the Segal-Shale-Weil representation of the meta-
plectic group. We shall give explicit integral formulas for the ‘inver-
sion’ together with the analytic continuation to a certain semigroup
of O(p+2,C) of the minimal representation of O(p, 2) by using Bessel
functions.

1 Introduction

Our concern in this paper is with the L2-model of the minimal repre-
sentation π of the indefinite orthogonal group O(p, q) with p + q even, in
particular, integral formulas of unitary or contraction operators for q = 2.

In order to explain our motivation, we recall the Segal-Shale-Weil repre-
sentation $ of the metaplectic group S̃p(n,R), the twofold cover of the real
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symplectic group Sp(n,R). Among many beautiful aspects of this represen-
tation, we take up the Schrödinger model which realizes the representation
$ on the Hilbert space L2(Rn) with the following well-known features:

1) The representation space is not complicated; it is just L2(Rn).

2) The whole group S̃p(n,R) acts on the function space L2(Rn), while only
the Siegel parabolic subgroup P can act on the manifold Rn.

3) The restriction $|P is still irreducible. The action of P on L2(Rn) is
given simply by translations and multiplications by unitary characters of
an abelian group.

4) The infinitesimal action d$ of the Lie algebra sp(n,R) is given by differ-
ential operators of at most second order.

5) There is a distinguished element w0 (the “inversion” for P ). Then, the
unitary operator $(w0) on L2(Rn) is essentially the Fourier transform.

The Segal-Shale-Weil representation splits into two irreducible unitary
representations of S̃p(n,R), which are “minimal representations” in the sense
of Joseph. In the last decade, minimal representations of reductive groups
have been extensively studied by many authors, especially by algebraic ap-
proaches (e.g. [12]).

As for the indefinite orthogonal group O(p, q), Vogan pointed out that
there is no minimal representation if p + q > 8 is odd [13]. For p + q even,
Kostant [10] first constructed a minimal representation in the case p = q = 4,
and Binegar-Zierau [1] generalized his construction to the general p, q (≥ 2).
Many other different models of the same representation have been also found:
for example, as the θ-lifting of the trivial representation of SL(2,R) [5], and
also as solution space of the Yamabe operator [8] in the context of conformal
geometry (see also [6] for an exposition). Among other models, it is proved
in Kobayashi-Ørsted [9] that the same representation can be realized on the
Hilbert space of L2-functions on the conical subvariety C in Rp+q−2 associated
to the quadratic form of signature (p− 1, q − 1).

Sections 2 and 3 present a close resemblance of this realization for the
group O(p, q) to the Schödinger model of the Segal-Shale-Weil representation

for the group S̃p(n,R) with regard to the above features (1) ∼ (4). For
example, the pseudo-Euclidean motion group O(p − 1, q − 1) n Rp+q−2 acts
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naturally on L2(C). Then, a maximal parabolic subgroup Pmax containing
O(p− 1, q − 1)nRp+q−2 plays the role of the Siegel parabolic.

Sections 4 and 5 are devoted to the case q = 2, where C splits in two
connected components C+ and C−, a forward and a backward light cone,
and functions supported on the forward cone yield a unitary lowest weight
representation of the connected group SO0(p, 2).

We shall consider the (holomorphic) semigroup of Hilbert-Schmidt oper-
ators π(etZ) = exp(tdπ(Z)) (Re t > 0) on L2(C+) generated by the following
self-adjoint operator

dπ(Z) =
r

4

∂2

∂r2
+

p− 2

4

∂

∂r
+

∆Sp−2

4r
− r.

Here, we have identified C+ with R+×Sp−2 by the polar coordinate. It turns

out that the operator norm of π(etZ) on L2(C+) equals e−
p−2
2

Re t, and thus
it is a contraction. We shall find in Theorem B that the operator π(etz) on
L2(C+) is given as the integral transform on C+ against the kernel

K+(ζ, ζ ′; t) :=
2e−

√
2(|ζ|+|ζ′|) coth t

2

π
p−2
2 sinh

p
2 t

2

√
2〈ζ, ζ ′〉−

p−4
2 I p−4

2

(2
√

2〈ζ, ζ ′〉
sinh t

2

)
,

where Iν(z) =
√−1

−ν
Jν(
√−1z) is the modified Bessel function.

The semigroup {π(etZ) : Re t > 0} on L2(C+) may be regarded as an ana-
logue of the Hermite semigroup on L2(Rn) given by the Gaussian kernel
(see Howe [4] for the connection with the Segal-Shale-Weil representation;
see also [3]).

Furthermore, in light that the inversion element w0 is given by eπ
√−1Z ,

we can obtain the integral formula for the unitary operator π(w0) as the
“boundary value” of the contraction operator π(etZ) as t tends to π

√−1.

In the case of the metaplectic group S̃p(n,R), such an operator $(w0) is
nothing but the Fourier transform on L2(Rn) (see the above feature (5)),
while in the case of the indefinite orthogonal group O(p, 2) it turns out that
the Fourier-Bessel transform arises in describing π(w0) (see Theorem D).

This article is an outgrowth of the lecture delivered by the first author at
the 2002 Twente Conference on Lie Groups. Detailed proof of Theorems B, C
and D will be given in [7]. He expresses his sincere gratitude to the organizers
for the warm hospitality and the opportunity to participate in the conference.
In particular, he admires with all his heart and soul the dedicated work of
Professor Gerard Helminck who organized the conference successfully in spite
of the difficulties of the fire of the mathematics building of Twente University.
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2 Square integrable functions on the cone

In this section, we describe an irreducible unitary representation π of the
semidirect product group O(p−1, q−1)nRp+q−2 on the Hilbert space L2(C)
obtained by translation together with multiplications by unitary characters of
Rp+q−2. All the materials here are standard. In Section 3, the representation
π will be extended to the minimal representation of O(p, q) for p + q ∈ 2N
(see Theorem A).

Let Rp−1,q−1 be the pseudo-Riemannian Euclidean space Rp+q−2 equipped
with the standard indefinite metric

ds2 = dζ2
1 + · · ·+ dζ2

p−1 − dζ2
p − · · · − dζ2

p+q−2. (2.1)

Then, the group Isom(Rp−1,q−1) of isometries on Rp−1,q−1 is isomorphic to
the semidirect product group O(p− 1, q − 1)nRp+q−2.

Let C be the cone in Rp+q−2 given by

C := {(ζ1, · · · , ζp+q−2) ∈ Rp+q−2 : ζ2
1 + · · ·+ ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−2 = 0}\{0}.
Then C is of dimension p + q − 3 and is acted transitively by the indefinite
orthogonal group O(p− 1, q − 1). With respect to the polar coordinate

R+ × Sp−2 × Sq−2 → C, (r, ω, η) 7→ (rω, rη), (2.2)

we define a measure dµ on C by

dµ =
1

2
rp+q−5drdωdη.

Then dµ is O(p− 1, q − 1) invariant because we have

θ|C = dµ

for any (p + q − 3)-form θ on Rp+q−2 satisfying

d(ζ2
1 + · · ·+ ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−2) ∧ θ = dζ1 ∧ · · · ∧ dζp+q−2.

Hence, we have naturally a unitary representation π of O(p− 1, q− 1) on
the Hilbert space L2(C, dµ) ≡ L2(C) by translations.

Next, let the abelian group Rp+q−2 act on L2(C) by the formula:

π(b) : L2(C) → L2(C), ψ(ζ) 7→ e2
√−1(b1ζ1+···+bp+q−2ζp+q−2)ψ(ζ),
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where b = (b1, · · · , bp+q−2) ∈ Rp+q−2.
The above actions of O(p−1, q−1) and Rp+q−2 on L2(C) respectively give

rise to a representation (we shall use the same notation π) of the semidirect
group O(p−1, q−1)nRp+q−2. Then, we have readily the following proposition
(see [9], Proposition 3.3):

Proposition 2.1. (π, L2(C)) is an irreducible unitary representation of the
semidirect product group O(p− 1, q − 1)nRp+q−2.

3 Schrödinger model of the minimal repre-

sentation of O(p, q)

In general, an irreducible representation of a group G is no more irreducible
when restricted to a subgroup G′. In other words, it is quite rare that an
irreducible representation of a subgroup G′ extends to that of the whole group
G (on the same representation space). Hence, it should be noted that the
irreducible unitary representation in Proposition 2.1 can be extended with
respect to the following embedding:

O(p− 1, q − 1)nRp+q−2 ⊂ O(p, q). (3.1)

Theorem A ([9], Theorem 4.9). Suppose p+ q is even, ≥ 6, and p, q ≥ 2.
Then, the representation (π, L2(C)) of the semidirect product group O(p −
1, q− 1)nRp+q−2 extends to an irreducible unitary representation of O(p, q).

The resulting representation, denoted by the same π, of G := O(p, q) is
the minimal representation in the sense of Joseph if p + q ≥ 8. The Gelfand-
Kirillov dimension of π is p + q − 3, which attains its minimum among all
infinite dimensional irreducible unitary representations of G.

Another point of Theorem A is that it gives a model of the minimal repre-
sentation of G on the Hilbert space L2(C), resembling the Schrödinger model

for the Segal-Shale-Weil representation of the metaplectic group S̃p(n,R).
In the papers [2, 11], one finds a similar construction of Hilbert spaces (i.e.,
L2(C) for some conical variety C) of minimal unitary representations of other
groups (e.g., Koecher-Tits groups associated with semisimple Jordan alge-
bras) under the assumption that π is a highest weight representation or a
spherical representation. We note that our representation is neither a highest
weight representation nor a spherical representation if p, q ≥ 3 and p 6= q.
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Let us explain more about Theorem A, especially about how the group
G or the Lie algebra g acts on L2(C).

First, we fix some notation and explain the inclusion (3.1). Let e0, · · · , ep+q−1

be the standard basis of Rp+q, Eij the matrix unit, and

εj :=

{
1 (1 ≤ j ≤ p− 1)

−1 (p ≤ j ≤ p + q − 2),

Nj := Ej,0 + Ej,p+q−1 − εjE0,j + εjEp+q−1,j (1 ≤ j ≤ p + q − 2),

Nj := Ej,0 − Ej,p+q−1 − εjE0,j − εjEp+q−1,j (1 ≤ j ≤ p + q − 2),

E := E0,p+q−1 + Ep+q−1,0.

We define some subalgebras of the Lie algebra g by

nmax :=

p+q−2∑
j=1

RNj, nmax :=

p+q−2∑
j=1

RNj, a := RE,

and define some subgroups of G as follows:

Mmax
+ := {g ∈ G : g · e0 = e0, g · ep+q−1 = ep+q−1} ' O(p− 1, q − 1),

Mmax := Mmax
+ ∪ {−Ip+q} ·Mmax

+ ' O(p− 1, q − 1)× Z2,

A := exp(a),

Nmax := exp(nmax),

Nmax := exp(nmax).

Then the subgroup Mmax
+ Nmax is isomorphic to the semidirect product

group O(p− 1, q − 1)nRp+q−2 via the bijection:

Nmax ∼→ Rp+q−2, exp(

p+q−2∑
j=1

bjNj) 7→ (b1, · · · , bp+q−2).

Hence, the natural inclusion Mmax
+ Nmax ⊂ G amounts to (3.1). Another

meaning of (3.1) is that O(p− 1, q− 1)nRp+q−2 is the group of isometries of
the pseudo-Riemannian Euclidean space Rp−1,q−1, while O(p, q) is the group
of Möbius transformations on Rp−1,q−1 preserving the conformal structure.

Next, we define a maximal parabolic subgroup

Pmax := MmaxANmax,
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which plays an analogous role to the Siegel parabolic subgroup of the meta-
plectic group S̃p(n,R).

With regard to the inclusive relation

Mmax
+ Nmax ⊂ Pmax ⊂ G,

the extension of the unitary representation π from Mmax
+ Nmax to Pmax is

easily achieved by defining

π(−Ip+q)ψ := (−1)
p−q
2 ψ

π(etE)ψ(ζ) := e−
p+q−4

2
tψ(e−tζ), t ∈ R.

Here we recall that Pmax is generated by Mmax
+ , Nmax,−Ip+q and etE(t ∈ R).

In order to describe the extension of the unitary representation π from
Pmax to G, we use the Gelfand-Naimark decomposition

g = nmax ⊕ a⊕mmax ⊕ nmax = pmax ⊕ nmax.

Then, the representation π of G will be determined if we give the differential
representation dπ(X) for X ∈ nmax. For this, we denote by Eζ and ¤ζ the
Euler and Laplace operators, respectively, namely,

Eζ := ζ1
∂

∂ζ1

+ · · ·+ ζp+q−2
∂

∂ζp+q−2

,

¤ζ :=
∂2

∂ζ2
1

+ · · ·+ ∂2

∂ζ2
p−1

− ∂2

∂ζ2
p

− · · · − ∂2

∂ζ2
p+q−2

.

Then, the differential representation dπ(X) is given in [9], Lemma 3.2 as
follows:

dπ(

p+q−2∑
j=1

bjNj) =
√−1((−p + q

2
− Eζ)

p+q−2∑
j=1

bj
∂

∂ζj

+
1

2
(

p+q−2∑
j=1

bjεjζj)¤ζ)),

(3.2)
where we regard dπ(X) as a differential operator acting on the space of
Schwartz’s distributions S ′(Rp+q−2) via the inclusion

L2(C) ↪→ S ′(Rp+q−2), ψ 7→ ψdµ.

The differential operator (3.2) is of second order. This reflects the fact
that the subgroup Nmax does not act on the cone C itself, but only on the
function space L2(C).

Instead of differential actions of the Lie algebra nmax, we will in Section
5 deal with integral formulas for the action of the group G on L2(C).
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4 Integral formulas for the minimal represen-

tation of O(p, 2)

For the rest of this article, we shall assume q = 2. Then, the cone C naturally
splits into two connected components

C = C+ ∪ C−,

where C± := {(ζ1, · · · , ζp) ∈ C : ±ζp > 0}. The polar coordinate (2.2) then
reduces to

R+ × Sp−2 → C+, (r, ω) 7→ (rω, r),

R+ × Sp−2 → C−, (r, ω) 7→ (rω,−r).

Accordingly, we have a direct sum decomposition:

L2(C) = L2(C+)⊕ L2(C−),

where integrations are defined against the measure dµ = 1
2
rp−3drdω. This

gives the branching law π = π+ ⊕ π− with respect to the restriction G ↓ G0

where G0 := SO0(p, 2), the identity component of O(p, 2).
Let K be the standard maximal compact subgroup of G. Then K '

O(p) × O(2), and K0 := K ∩ G0(' SO(p) × SO(2)) is a maximal compact
subgroup of G0. We write L2(C+)K0 for the space of K0-finite vectors in
L2(C+). Then L2(C+)K0 is a dense subspace, on which the Lie algebra g

naturally acts as differentials.
Let z(k) be the center of the Lie algebra k of K. Then z(k) is one dimen-

sional if p > 2. We take a generator Z of z(k)⊗R C as

Z :=
√−1(Ep,p+1 − Ep+1,p) ∈

√−1z(k),

then the set of eigenvalues of dπ+(Z) on L2(C+)K0 is given by

{−(j +
p− 2

2
) : j = 0, 1, 2 · · · },

and thus is upper bounded. Hence, (π+, L2(C+)) is a lowest weight module
of G0. Similarly, (π−, L2(C−)) is a highest weight module of G0.

For t ∈ C we define a linear map π+(etZ) : L2(C+)K0 → L2(C+)K0 by

π+(etZ) :=
∞∑

n=0

1

n!
(dπ+(tZ))n.
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In light of our observation on the eigenvalues of dπ+(tZ), π+(etZ) extends
to a continuous operator on L2(C+) if Re t ≥ 0. Then the set of continuous
operators {π+(etZ) : Re t ≥ 0} forms a semigroup, whose generator is given
by the self-adjoint operator on L2(C+):

dπ+(Z) =
r

4

∂2

∂r2
+

p− 2

4

∂

∂r
+

∆Sp−2

4r
− r, (4.1)

where ∆Sp−2 denotes the Laplace-Beltrami operator on the standard sphere
Sp−2.

We shall give an explicit integral formula for the operator exp(tdπ+(Z)) =
π+(etZ) for t ∈ D, where set

D := {t ∈ C : Re t ≥ 0} \ 2π
√−1Z.

We write 〈·, ·〉 for the standard inner product of Rp, and define the norm
|ζ| by |ζ| :=

√
〈ζ, ζ〉. Let us define a kernel function K+(ζ, ζ ′; t) on C+ ×

C+ ×D by the following formula:

K+(ζ, ζ ′; t) :=
2e−

√
2(|ζ|+|ζ′|) coth t

2

π
p−2
2 sinh

p
2 t

2

√
2〈ζ, ζ ′〉−

p−4
2 I p−4

2

(2
√

2〈ζ, ζ ′〉
sinh t

2

)
, (4.2)

where Iν(z) is the modified Bessel function of the first kind, i.e., Iν(z) =√−1
−ν

Jν(
√−1z) [14]. We note that sinh t

2
in the denominator is non-zero

because t /∈ 2π
√−1Z, and that 〈ζ, ζ ′〉 > 0 if ζ, ζ ′ ∈ C+.

Here is an integration formula of the (holomorphic) semigroup π+(etZ):

Theorem B (integral formula for a semigroup). For t ∈ D, the operator
π+(etZ) : L2(C+) → L2(C+) is given by the integral transform:

(π+(etZ)u)(ζ) =

∫

C+

K+(ζ, ζ ′; t)u(ζ ′)dµ(ζ ′), u ∈ L2(C+). (4.3)

Let us comment on the convergence of the integral (4.3); If Re t > 0, then
for each fixed t, K+(ζ, ζ ′; t) ∈ L2(C+×C+) and consequently π+(etZ) becomes
a Hilbert-Schmidt operator. If t ∈ √−1R \ 2π

√−1Z, then K+(ζ, ζ ′; t) /∈
L2(C+×C+) but the integral (4.3) converges absolutely if u ∈ L2(C+)K0 and
yields an L2-function on C+.

Next, let us rewrite the formula (4.3) of Theorem B in the case where u
is of the form

u(rω, r) = f(r)φ(ω) (4.4)
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for some f ∈ L2((0,∞), rp−3dr) and φ ∈ Hl(Rp−1), where Hl(Rp−1) denotes
the space of spherical harmonics on Sp−2 of degree l (l = 0, 1, 2, · · · ), that is,

Hl(Rp−1) = {φ ∈ C∞(Sp−2) : ∆Sp−2φ = −l(l + p− 3)φ}.

For each l, we introduce the kernel function K+
l (r, r′; t) on R+ ×R+ ×D by

the formula:

K+
l (r, r′; t) :=

2e−2(r+r′) coth t
2

sinh t
2

(rr′)−
p−3
2 Ip−3+2l

(4
√

rr′

sinh t
2

)
. (4.5)

Then the point of the following theorem is that the operator π+(etZ) essen-
tially reduces to the integration of a function f(r) of one variable if u is of
the form (4.4), that is, we have

Theorem C. If u is of the form u(rω, r) = f(r)φ(ω), φ ∈ Hl(Rp−1), then

(π+(etZ)u)(rω, r) = φ(ω)

∫ ∞

0

K+
l (r, r′; t)f(r′)r′p−3dr′. (4.6)

Owing to Theorem C, the semigroup law

π+(et1Z)π+(et2Z) = π+(e(t1+t2)Z) (t1, t2 ∈ D)

is equivalent to the integral equation of the kernel

∫ ∞

0

K+
l (r, s; t1)K

+
l (s, r′; t2)sp−3ds = K+

l (r, r′; t1 + t2), (4.7)

which is closely related to the classical formula, called Weber’s second
exponential integral (see [14], §13.31 (1)):

∫ ∞

0

e−ρx2

Jν(αx)Jν(βx)xdx =
1

2ρ2
exp

(
−α2 + β2

4ρ2

)
Iν

( αβ

2ρ2

)
.

5 Integral formula for the inversion operator

We define the “inversion element” w0 of order two in G0 by

w0 :=

(
Ip 0
0 −I2

)
.
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Then, w0 normalizes MmaxA and

Ad(w0)n
max = nmax. (5.1)

Hence, the group G is generated by Pmax and w0.
The goal of this section is to give an explicit integral formula of the unitary

operator π+(w0) on L2(C+).
In light of w0 = eπ

√−1Z , we define the following kernel functions by sub-
stituting t = π

√−1 into (4.2) and (4.5), respectively:

K+(ζ, ζ ′) := K+(ζ, ζ ′; π
√−1) =

2

(−1)
p−2
2 π

p−2
2

√
2〈ζ, ζ ′〉−

p−4
2 J p−4

2
(2

√
2〈ζ, ζ ′〉),

K+
l (r, r′) := K+

l (r, r′; π
√−1) = 2(−1)−

p−2
2

+l(rr′)−
p−3
2 Jp−3+2l(4

√
rr′).

Then, the following result is obtained as a special case of Theorems B and
C.

Theorem D. 1) The unitary operator π+(w0) : L2(C+) → L2(C+) coincides
with the integral transform defined by

T : L2(C+) → L2(C+), u 7→
∫

C+

K+(ζ, ζ ′)u(ζ ′)dµ(ζ ′). (5.2)

2) If u is of the form u(rω, r) = f(r)φ(ω) with φ ∈ Hl(Rp−1) (l =
0, 1, · · · ), then the integral (5.2) is reduced to that of one variable:

T : L2(C+) → L2(C+), u(rω, r) 7→ φ(ω)(Tlf)(r). (5.3)

Here, the operator Tl : L2((0,∞), rp−3dr) → L2((0,∞), rp−3dr) is defined by

(Tlf)(r) :=

∫ ∞

0

K+
l (r, r′)f(r′)r′p−3dr′. (5.4)

We note that Tl is essentially the Fourier-Bessel transform.
We can prove similar integral formulas for the unitary operator π−(w0)

on L2(C−) for the backward cone C−, and also for π(w0) on L2(C) for C =
C+ ∪ C−.

Finally, we end up this exposition with some immediate consequences of
Theorem D. Since the relation w2

0 = Ip+2 implies π+(w0)
2 = Id, we have:
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Corollary E (Inversion and Plancherel formula). The integral operator
T (see (5.2)) on L2(C+) is of order two, that is, the inversion formula is given
simply as

T−1 = T.

Furthermore, T is unitary:

‖Tu‖L2(C+) = ‖u‖L2(C+), u ∈ L2(C+).

Corollary F (Inversion and Plancherel formula for the Fourier-Bessel
transform). Fix l = 0, 1, 2, · · · . Then the integral operator Tl (see (5.4)) on
L2((0,∞), rp−3dr) is an unitary operator of order two. Hence,

T−1
l = Tl,

‖Tlf‖L2((0,∞),rp−3dr) = ‖f‖L2((0,∞),rp−3dr), f ∈ L2((0,∞), rp−3dr).

The statement T−1
l = Tl in Corollary F is equivalent to the integral

formula:

f(r)r
p−3
2 = 4

∫ ∞

0

(∫ ∞

0

f(r′)r′
p−3
2 Jp−3+2l(4

√
r′r′′)dr′

)
Jp−3+2l(4

√
rr′′)dr′′.

In turn, this is closely related to the reciprocal formula of the Fourier-
Bessel transform (see [14], §14.3 (3)):

F (x) =

∫ ∞

0

(∫ ∞

0

F (y)Jν(yξ)ydy
)
Jν(ξx)ξdξ.
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