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Abstract

The aim of this note is to indicate an example that demonstrates the
incorrectness of limura’s discrete fixed point theorem (Iimura 2003) and to
present a corrected statement using the concept of integrally convex sets.
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1 Introduction

limura (2003) gave a discrete fixed point theorem for set-valued correspondences
on discrete sets. The theorem claims that a discretely convex-valued direction-
preserving correspondence defined on a contiguously convex set has a fixed point
(see Section 2 for the precise statement). In this note we indicate an example that
demonstrates the incorrectness of this statement, and rectify the statement using
the concept of integrally convex sets introduced by Favati and Tardella (1990).

2 Iimura’s statement and a counterexample

Let R and Z denote the sets of all reals and all integers, respectively. Given a
positive integer n, we denote by Z™ the set of all integer vectors z = (x; € Z :
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i=1,...,n). A finite set X C Z" is called discretely convex (or hole free, Murota
(2003)) if
X=XnNnZ", (1)

where X denotes the convex hull of X. A finite set X C Z" is said to be contigu-

ously convex if
VyeX, dzeX:||lz—yllo <1, (2)

where ||z — y||oo = max{|z; —y;| | ¢ = 1,...,n}. By the definitions, a contiguously
convex set is discretely convex. For two integer vectors x and z/, we define a
relation x ~ 7’ as

r~1 S|z — 12| < 1 (3)

Let X be a nonempty finite subset of Z" and I' : X —— X be a nonempty-valued
correspondence. A point x € X is said to be a fized point if x € T'(x). For any

x € Z", let mp(x) denote the projection of = onto I'(x), i.e.,

||7r(x) — x|l = min_[[y — ||, (4)
yel'(z)

where |ly — z|]s = (X, (y; — wi)2)1/2. We denote 7r(z) — 2 by 7(x), and define
o(z) = (sign(r(x)) € {+1,0, -1} :i=1,...,n), (5)

where 7;(x) denotes the ith component of 7(x).
According to Iimura (2003), a correspondence I' : X —— X is said to be
direction preserving' if for all z, 2" € X with z ~ 2/,

oi(z) >0 = 0y(z') > 0 (i=1,...,n), (6)
where o;(x) denotes the ith component of o(x). The condition is equivalent to
oi(r) < 0= 0y(2') <0 (1=1,...,n). (7)
limura (2003) made the following statement.

Iimura’s Statement: Let X be a finite contiguously convex subset of Z". If
[': X —-— X is a nonempty- and discretely convex-valued direction preserving
correspondence, then I' has a fixed point.

A counterexample exists to the above statement. We consider the finite set
X C 72 defined as

X ={a=(0,1,0),b=(1,0,0),¢ = (2,0,0),d = (3,0,0),e = (4,0,1)}  (8)
and the correspondence I' : X —— X defined as

[(a) =T () = {e}, T(c) = {a,e}, T(d) = T(e) = {a}. (9)

'We note that “direction preserving” can also be defined in terms of T as: if for all z,2’ € X
with x ~ 2/, 7;(z) >0=71(z') >0 foralli =1,...,n.
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Figure 1: A contiguously convex set X = {a = (0,1,0),b = (1,0,0),¢c =
(2,0,0),d = (3,0,0),e = (4,0,1)} for the counterexample with I'(a) = T'(b) =
{e}, T(c) ={a,e}, T(d) =T(e) = {a}.

Figure 1 shows that X is a contiguously convex set and I' is a nonempty- and
discretely convex-valued correspondence. Furthermore, I' is direction preserving,

because
a~b b~c c~d, d~e, (10)

the other pairs of distinct points are not in the relation ~, and 7 and o are
calculated as

() = (4, =1, 1)) o(a) (+1, —1, +1)
(b)) = ( 3, 0, 1) o) = (+1, 0, +1)
(c) = (0, 1/2, 1/2) =1 oa(c) = ( 0, +1, +1) (11)
m(d) = (-3, 1, 0) o(d) = (-1, +1, 0)
(e) = (-4, L, -1) | | o(e) (-1, +1, -1).

Obviously, I' has no fixed point.

3 Theorem for integrally convex sets

In this section, we give a discrete fixed point theorem for integrally convex sets.
For € R", we define a neighborhood N(z) of = by

N(z) ={y € Z" | ||z — ylloo < 1}. (12)
A finite set of integer points X C Z" is said to be integrally convex if it satisfies
reX=2z€XNN(x) (VreR") (13)

(see Murota (2003), Section 3.4). By the definitions, an integrally convex set is
contiguously convex.

Lemma 1 For any finite integrally convex set X C Z™, there exists a simplicial
decomposition? S of X such that for anyy € X, the vertices of the smallest simplex

%S satisfies (a) X = Jgeg S, (b) S €S, §: aface of S = 5" € S, and (¢) Sy, 5, € S with
S1 NSy 75 (Z) — 51 N Ssy: aface of S; and S5.



S(y) € S containing y belong to N(y). Therefore, we have y € S(y) N N(y) for all
ye X and {z} € S fordllx € X.

Proof. The proof is given at the end of this section. [ |

Lemma 2 Suppose thatT’ : X —— X s a nonempty- and discretely convex-valued
correspondence. For x € X we have x € T'(x) if and only if 7(x) = 0.

Proof. By the definition of 7, we have 7(z) = 0 if and only if = € T'(z). The

latter condition is equivalent to z € I'(z), since I'(x) = I'(x)NZ". Hence, 7(z) = 0
if and only if x € I'(x). i

Theorem 3 Let X C Z" be a nonempty finite integrally convex set. IfT" : X ——
X 15 a nonempty- and discretely convex-valued direction preserving correspondence,
then T has a fized point, that is, there exists © € X such that x € T'(x).

Proof. We make use of Brouwer’s fixed point theorem, which says that every
continuous mapping from a compact convex set of R" to itself has a fixed point.
We define a continuous mapping v from X to X. For any point z € X, we define
v(z) = mr(z). Since X is a finite integrally convex set, there exists a simplicial
decomposition & of X satisfying conditions in Lemma 1. Let y be an arbitrary
point in X. By Lemma 1, we have y € S(y) N N(y). Let

Y= Z A2, Z)\Z =1, A, >0, (14)
z€S5(y)NN (y)
be the uniquely determined convex combination. That is, (A, | z € S(y) N N(y))
is the barycentric coordinate of y in S(y) N N(y). Then, we define v(y) by

W= > (e (15)
2€S(y)NN(y)
Since 7p(z) € X for all z € X, we have y(y) € X for all y € X. Moreover, since S
is a simplicial decomposition, v is continuous. By Brouwer’s fixed point theorem,
7 has a fixed point, say, y € X.
We next show that v has an integral fixed point. We have

Yo Xz=y=9y= D Awr(z). (16)
2€S(y)NN(y) 2€S(y)NN(y)
This says that
Nimr(z)—2)= Y Ar(2)=0. (17)
z€S(y)NN(y) z€S(y)NN(y)

Since T is direction preserving, we have 7(z) = 0 if A, > 0. Therefore, there exists
at least one z € S(y) N N(y) with 7(2) = 0. Such z is a fixed point of I" by
Lemma 2. |



We finally show Lemma 1. Before giving a proof, we define the integral convex-
ity of functions. For f : Z™ — R U {+o0}, its conver closure f : R" — R U {+o0}
is defined by

peR" vyeR
(p,y) +v < fly) (Vy € Z7)

f(z) = Sup{(p,x> +

} (Vz € R"). (18)

The local convex extension f of f is defined by

f(z) Zsup{(p,va peR”, yeR

(p,y) +v < fly) (Vy € N(x))

A function f : Z" — R U {+oc} is said to be integrally conver if f = f (Favati
and Tardella (1990)). We note that a set X C Z" is integrally convex if and only
if its indicator function dx is integrally convex, where 6y is defined as 6x(x) =0
if x € X; otherwise 6x(z) = +o0.

} (Vz e R"). (19)

Proof of Lemma 1. Let 6x be the indicator function of X and d be an integer
vector such that if z # y then (d,z) # (d,y) for all z,y € X (there exists such d
because X is a finite set). We consider the function h, : Z" — R U {+o0} with
parameter € defined as

n

he(z) = bx (@) + ) _(2(0))* + eexp{(d, z)} (Vo € Z"). (20)
i=1

We first show that h. is integrally convex for a sufficiently small positive number
e. Tt is known that g(z) = 6x(x) + X ,(z(4))? is integrally convex (e.g., see
Proposition 3.24 in Murota (2003)). Let us consider the convex closure g of g,
which is a piecewise linear function. Since the second term of g is a separable
quadratic function, we have that for any p € R", arg min g[—p] is in the intersection
of X with a hypercube {x € R" | 2 < 2 < 2 + 1} for some z € Z". Since X is a
finite set and arg min g[—p] is included in a hypercube for any p € R™, there exists
a sufficiently small positive number € such that arg min h.[—p] is also included in
the hypercube. This says that arg min h[—p] is an integrally convex set for any
p € R™ Tt is known that a function f : Z" — R U {400} with a nonempty
bounded effective domain is integrally convex if and only if argmin f[—p| is an
integrally convex set for each p € R"™ (see Theorem 3.29 in Murota (2003)). Thus,

he is integrally convex for a sufficiently small positive number e.
This integrally convex function h, gives a decomposition S of X such that (a)
S € § if and only if there exists p € R" with S = argmin h [—p], (b) if S € S and
S"is a face of S then S" € S, (c) if 51,5, € S and S1N Sy # 0 then S;NS; € S, (d)
the vertices of S belong to X for any S € S, and (e) z € SN N(z) for any x € X
and S € S with z € S, where (b) and (c¢) follow from (a), (d) follows from the
fact that h, is the convex closure of h,, and (e) follows from the integral convexity
of he. By (c), there exists the smallest simplex S(y) € S for any y € X. Suppose
to the contrary that there exists a vertex x of S(y) with x ¢ N(y). Since S(y) is
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included in a hypercube and x € X, there exists a proper face of S(y) including
y. However, this together with (b) contradicts the minimality of S(y). Hence, the
vertices of S(y) belong to N(y).

We next show that arg min A [—p] is a simplex. Suppose to the contrary that
arg min h.[—p| is not a simplex. Let z € Z" be such that argmin h[—p] C {z €
R" | z < x < z+4 1}. Then, there exist disjoint families Z and J of subsets of
{1,...,n} and families {\; | I € Z} and {\; | J € J} of positive rational numbers
such that

Z)\IXI = Z)\JXJa (21)

ez JeT
S Ath(z+x1) = D Ashe(z+ x1), (22)
ez JeT
Z)\I - Z Ay = 1 (23>
ez JeT
z4+xr,2+xy € argminh[—p] VIeZ,VJ]eT), (24)
where x; denotes the characteristic vector of I C {1,...,n}. Since g(z) is an

integer for each x € X and e is sufficiently small, we have

> Arexp{{d.xi)} = > Asexp{{d, xs)}. (25)
IeT Jeg
However, this contradicts that the base of the natural logarithm is a transcendental
number, because Z and J are disjoint, A; and A; are rational, and (d, xs) are
mutually distinct integers for all S € Z U J. Thus argmin h.]—p] must be a
simplex. [ |

Concluding remark

After the completion of the manuscript, the authors learned that a Russian group
of V. Danilov and G. Koshevoy also noticed the incorrectness of limura’s proof in
limura (2003).
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