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Abstract

We announce a generalization of the reduction theorem for 0-

parameter solutions of the traditional (i.e., second order) Painlevé

equations with a large parameter to those of some higher order Painlevé

equations, i.e., each member of the Painleve hierarchies (PJ) (J =I,

II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability

of the reduction theorem ([KT1], [KT2]) has been substantially en-

larged; only six equations were covered by our previous result, while

the result reported here applies to infinitely many equations.
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§0. Introduction

The purpose of this article is to report that a 0-parameter solution of
a higher order Painlevé equation (PJ)m (J = I, II -1, II -2; m = 1, 2, . . .) can
be formally reduced to a 0-parameter solution of (PI)1, i.e., the traditional
Painlevé equation (PI) with a large parameter, near its turning point of the
first kind (in the sense of [KKNT]). This is a substantial generalization of our
earlier result ([KT2]; its core part was announced in [KT1]), which is con-
cerned with the traditional (i.e., second order) Painlevé equations; thus it
covers only six equations (PJ) (J = I, II, . . . , VI), while the result announced
in this article applies to infinitely many equations, i.e., each member of the
Painlevé hierarchy (PJ)m (J = I, II -1, II -2; m = 1, 2, . . .) with a large param-
eter η. Here and in what follows we use the same notions and notations as in
[KKNT]. In order to give the reader some idea of the “higher order Painlevé
equations” discussed here, we recall the definition of (PI)m together with
the underlying Lax pair (LI)m, i.e., a system of linear differential equations
whose compatibility condition is described by (PI)m. See [KKNT] for (PJ)m

and (LJ)m (J = II -1, II -2). See also [S], [GJP] and [GP] for the equations
without the large parameter.

Definition 0.1. The m-th member of PI-hierarchy with a large parameter
η is the following system of non-linear differential equations:

(0.1) (PI)m :





duj

dt
= 2ηvj (j = 1, . . . , m) (0.1.a)

dvj

dt
= 2η(uj+1 + u1uj + wj) (j = 1, . . . , m) (0.1.b)

um+1 = 0,

where wj is a polynomial of uk and vl (1 ≤ k, l ≤ j) that is determined by
the following recursive relation:

wj =
1

2
(

j∑

k=1

ukuj+1−k) +

j−1∑

k=1

ukwj−k(0.2)

− 1

2
(

j−1∑

k=1

vkvj−k) + cj + δjmt (j = 1, . . . ,m).

Here cj is a constant and δj,m stands for Kronecker’s delta.
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Remark 0.1. The system (PI)m is seen to be equivalent to a single 2m-th
order differential equation. For example, (PI)1 is equivalent to

(0.3) u′′1 = η2(6u2
1 + 4c1 + 4t),

the traditional Painlevé equation (PI), and (PI)2 is equivalent to the following
fourth order equation:

(0.4) u
(4)
1 = η2(20u1u

′′
1 + 10(u′1)

2) + η4(−40u3
1 − 16c1u1 + 16c2 + 16t).

The underlying Lax pair (LI)m of (PI)m is given by the following:

(0.5) (LI)m :





(
∂

∂x
− ηA

)→
ψ = 0 (0.5.a)

(
∂

∂t
− ηB

)→
ψ = 0 (0.5.b)

where
→
ψ = t(ψ1, ψ2),

A =

(
V (x)/2 U(x)

(2xm+1 − xU(x) + 2W (x))/4 −V (x)

)
,(0.6)

and

B =

(
0 2

u1 + x/2 0

)
,(0.7)

with

U(x) = xm −
m∑

j=1

ujx
m−j,(0.8)

V (x) =
m∑

j=1

vjx
m−j,(0.9)

and

W (x) =
m∑

j=1

wjx
m−j.(0.10)
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See [KKNT, Proposition 1.1.1] for the proof of the fact that (PI)m is the
compatibility condition for (LI)m.

As in the case of the traditional Painlevé equations (cf. [KT2]), we can
construct the so-called 0-parameter solution (ûj, v̂j) of (PI)m of the following
form:

ûj(t, η) = ûj,0(t) + η−1ûj,1(t) + · · · ,(0.11)

v̂j(t, η) = v̂j,0(t) + η−1v̂j,1(t) + · · · .(0.12)

In what follows we always substitute the 0-parameter solution into the co-
efficients of (LI)m. Accordingly the matrices A and B are also expanded in
powers of η−1; their top degree parts are respectively denoted by A0 and B0.

In studying the structure of 0-parameter solutions, we can readily find
the structure of v̂j from that of ûj, thanks to (0.1.a). Hence we concentrate
our attention to ûj’s, or rather the solutions

bj(t, η) = bj,0(t) + η−1bj,1(t) + · · · (1 ≤ j ≤ m)(0.13)

of the equation U(bj(t, η)) = 0, that is,

bj(t, η)m −
m∑

j=1

ûj(t, η)bj(t, η)m−j = 0.(0.14)

We note that {bj}j=1,...,m appear as a straightforward counterpart of the
traditioal Painlevé transcendents in the original formulation of Shimomura
([S]) of higher order Painlevé equations from the viewpoint of the Garnier
system. The passage from {bj} to their elementary symmetric polynomials
{uj} seems to ameliorate the global behavior of functions in question, which
is not our immediate concern here. (Cf. [S])

Now, our goal (Theorem 3.1 below) is to relate bj(t, η) with a 0-parameter
solution of the traditional Painlevé-I equation through a formal transforma-
tion. In constructing the required transformation, we first rewrite (LJ)m

(J =I, II-1, II-2) as a pair of a Schrödinger equation (SLJ)m and its defor-
mation equation (DJ)m (Section 1) and then analyze solutions of the Riccati
equation associated with (SLJ)m near x = bj,0(t), the top order part of
bj(t, η) (Section 2). Making full use of the results in Section 2, we construct
an appropriate semi-global transformation that brings (SLJ)m to (SLI)1 and
the constructed transformation is used to reduce bj to a 0-parameter solution
of (PI)1.

The details of this article shall be published elsewhere.
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§1. Derivation of a Schödinger equation (SLJ)m
and its deformation equation (DJ)m

If we let ψ denote

(1.1) exp(−
∫ x Ux

2U
dx)ψ1 =

1√
U

ψ1

for the first component ψ1 of the unknown vector
→
ψ of (0.5.a), we find ψ

satisfies the following Schödinger equation (SLI)m:

(SLI)m
∂2ψ

∂x2
= η2Q(I,m)ψ

where

Q(I,m) =
1

4
(2xm+1U − xU2 + 2UW ) +

1

4
V 2(1.2)

− η−1V Ux

2U
+

η−1Vx

2
+

3η−2U2
x

4U2
− η−2Uxx

2U
.

Making use of (0.5.b), we can find its deformation equation (DI)m, an equa-
tion compatible with (SLI)m:

(DI)m
∂ψ

∂t
= a(I,m)

∂ψ

∂x
− 1

2

∂a(I,m)

∂x
ψ,

where

(1.3) a(I,m) =
2

U
.

Now we note that Q(I,m),0, the highest degree term in η of Q(I,m), has the
form

(1.4)
1

4
(x + 2û1,0)U0(x)2 =

1

4
(x + 2û1,0)(x

m −
m∑

j=1

ûj,0x
m−j)2.

(See [KKNT, §2.1] for the details.) Hence x = bj,0(1 ≤ j ≤ m) is a
double turning point of (SLI)m. Similar observations are made also for
(SLJ)m(J = II -1 and II -2). Thus, it is natural to expect that the setting of
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[KT2] may be also applicable to (SLJ)m(J = I, II -1, II -2), and this expecta-
tion is really validated as is discussed below. For the reference we note that
the deformation equation (DJ)m(J = II -1, II -2) for ψ = x1/2T

−1/2
m ψ1 (in the

case of (LII -1)m) and ψ = T
−1/2
m ψ1 (in the case of (LII -2)m; for the sake of

simplicity we assume cj = 0(1 ≤ j ≤ m− 1) in (1.3.9) of [KKNT]. To avoid
some degeneracy we also assume c 6= 0 in (1.2.1) (resp., δ 6= 0 in (1.3.1)) of
[KKNT]) is given respectively with

a(II -1,m) =
2gx

Tm

(1.5)

and

a(II -2,m) =
g

2Tm

,(1.6)

where g is a constant and Tm is a polynomial of degree m in x whose coeffi-
cients are given in terms of (0-parameter) solutions of (PJ)m.

§2. Regularity of Sodd near x = bj,0(t)

In this section we omit the suffix (J,m) of Q(J,m) and a(J,m). Let S± re-
spectively denote the solution of the Riccati equation associated with (SLJ)m,
i.e.

(2.1) (S±)2 +
∂S±

∂x
= η2Q,

that begins with ±η
√

Q. Then Sodd is, by definition,

(2.2) Sodd =
1

2
(S+ − S−).

We note that this definition of Sodd is different from that used in [KT2]; one
important point is that Sodd thus defined may contain a term whose degree
in η is even. Although we do not discuss the details here, Sodd thus defined
is free from even degree terms for J = I, just like Sodd in [KT2], but not for
J = II -1 or II -2. As is shown in [AKT, §2], we can verify

(2.3)
∂Sodd

∂t
=

∂

∂x
(aSodd)

for Sodd thus defined. Using (2.3), we can prove the following
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Theorem 2.1. The series Sodd and aSodd are holomorphic on a neighborhood
of x = bj,0(t)(1 ≤ j ≤ m) in the sense that each of their coefficients as formal
power series in η−1 is holomorphic on a neighborhood of x = bj,0(t).

§3. Reduction of bj(t, η) (j = 1, · · · ,m) to a 0-

parameter solution of (PI)1
Let t = τ be a turning point of the first kind of (PJ)m (J =I, II-1, II-2) in

the sense of [KKNT]. (We note that every turning point is of the first kind
if m = 1, i.e., for the traditional Painlevé equations.) Let us further assume
that τ is simple in the sense of [AKKT] (with using a local parameter of
the Riemann surface R of the 0-parameter solution as independent variable.
Note that, as is explained in [KKNT] and [NT], the Stokes geometry of (PJ)m

lies on R and that a turning point of the first kind is in general a square-root
type branch point of R.) Then there exist a double turning point bj,0(t) and
a simple turning point a(t) of (SLJ)m which merge at τ , and there exists an
analytic function νj(t) for which

(3.1)

∫ t

τ

νj(s)ds = 2

∫ bj,0(t)

a(t)

√
Q(J,m),0(x, t)dx

holds. (See [KKNT, §2] for the proof.) Note that a Stoke curve of (PJ)m

that emanates from τ is, by definition, given by

(3.2) Im

∫ t

τ

νj(s)ds = 0.

It follows from (3.1) that

(3.3) Im

∫ bj,0(t)

a(t)

√
Q(J,m),0(x, t)dx = 0

holds if t lies in the Stokes curve of (PJ)m. Otherwise stated, if t lies in
the Stokes curve of (PJ)m, the double turning point bj,0(t) and a simple
turning point a(t) of (SLJ)m are connected by a Stokes segment γ. Using
Theorem 2.1, we can prove the following Proposition 3.1 in this geometrical
setting:
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Proposition 3.1. Let τ be a simple turning point of the first kind of (PJ)m

(J = I, II -1, II -2), and let σ(6= τ) be a point that is sufficiently close to τ and
that lies in a Stokes curve of (PJ)m which emanates from τ . Then there exist
a neighborhood Ω of the above mentioned Stokes segment γ, a neighborhood
ω of σ and holomorphic functions x̃j(x, t) (j = 0, 1, 2, · · · ) on Ω×ω and t̃j(t)
(j = 0, 1, 2, · · · ) on ω so that the following relations may hold:
(i) The function t̃0(t) satisfies

(3.4)

∫ t

τ

νj(s)ds =

∫ t̃

0

√
12λ0(s̃)ds̃

∣∣∣
t̃=t0(t)

,

where λ0 =
√
−s̃/6, and, in particular, dt̃0/dt 6= 0 holds on ω, if ω is chosen

sufficiently small.
(ii) x̃0(bj,0(t), t) = λ0(t̃0(t)) and x̃0(a(t), t) = −2λ0(t̃0(t)).
(iii) ∂x̃0/∂x 6= 0 on Ω× ω .
(iv) Letting x̃(x, t, η) and t̃(t, η) respectively denote

∑
j≥0 x̃j(x, t, η)η−j and∑

j≥0 t̃j(t)η
−j, we find the following relation:

Q(J,m)(x, t, η) =

(
∂x̃

∂x

)2

Q̃(x̃(x, t, η), t̃(t, η), η)(3.5)

− 1

2
η−2{x̃(x, t, η); x},

where {x̃; x} denotes the Schwarzian derivative and Q̃(x̃, t̃) is the potential
of the Schrödinger equation (SLI) in [KT2], i.e.,

Q̃(x̃, t̃) = 4x̃3 + 2t̃x̃ + ν2
I − 4λ3

I − 2t̃λI(3.6)

− η−1 νI

x̃− λI

+ η−2 3

4(x̃− λI)2
,

with

λI(t̃, η) being a 0-parameter solution of (PI),(3.7)

i.e., λ
′′
I = η2(6λ2

I + t̃), and νI being η−1dλI/dt̃.

Using the transformations x̃(x, t, η) and t̃(t, η) constructed above, we can
show

(3.8) S(J,m),odd(x, t) =

(
∂x̃

∂x

)
SI,odd(x̃(x, t, η), t̃(t, η), η).

This relation and Theorem 2.1 entail the following
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Theorem 3.1. In the situation of Proposition 3.1, we have

(3.9) x̃(x, t, η) |x=bj(t,η)= λI(t̃(t, η), η).
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[KT2] : WKB analysis of Painlevé transcendents with a large pa-
rameter, Adv. in Math., 118 (1996), 1-33.

[NT] Nishikawa, Y. and Y. Takei: On the strucure of the Riemann surface
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