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Abstract

We announce a generalization of the reduction theorem for 0-
parameter solutions of the traditional (i.e., second order) Painlevé
equations with a large parameter to those of some higher order Painlevé
equations, i.e., each member of the Painleve hierarchies (Py) (J =I,
II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability
of the reduction theorem ([KT1], [KT2]) has been substantially en-
larged; only six equations were covered by our previous result, while

the result reported here applies to infinitely many equations.
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§0. Introduction

The purpose of this article is to report that a 0-parameter solution of
a higher order Painlevé equation (Py),, (J = LII-1,11-2;m = 1,2,...) can
be formally reduced to a O-parameter solution of (F;)i, i.e., the traditional
Painlevé equation (FP;) with a large parameter, near its turning point of the
first kind (in the sense of [KKNT]). This is a substantial generalization of our
earlier result ([KT2]; its core part was announced in [KT1]), which is con-
cerned with the traditional (i.e., second order) Painlevé equations; thus it
covers only six equations (Py) (J = LI, ..., VI), while the result announced
in this article applies to infinitely many equations, i.e., each member of the
Painlevé hierarchy (Py),, (J = 1,11-1,11-2;m = 1,2,...) with a large param-
eter . Here and in what follows we use the same notions and notations as in
[KKNT]. In order to give the reader some idea of the “higher order Painlevé
equations” discussed here, we recall the definition of (P),, together with
the underlying Lax pair (Lj),, i.e., a system of linear differential equations
whose compatibility condition is described by (P;).,. See [KKNT] for (Py)
and (Lj),, (J = II-1,11-2). See also [S], [GJP] and [GP] for the equations
without the large parameter.

Definition 0.1. The m-th member of P-hierarchy with a large parameter
7 is the following system of non-linear differential equations:

dus
it] = 2nv; (j=1,...,m) (0.1.a)
) dv; .
(0.1) (P d_tﬂ = (uje1 +wuy +w;) (j=1,....m)  (0.Lb)
Um41 = 07

where w; is a polynomial of wj, and v; (1 < k,[ < j) that is determined by
the following recursive relation:
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Here ¢; is a constant and 9, ,,, stands for Kronecker’s delta.



Remark 0.1. The system (P),, is seen to be equivalent to a single 2m-th
order differential equation. For example, (F); is equivalent to

(0.3) uf = n?(6u? + 4ey + 4t),

the traditional Painlevé equation (F;), and (F;)s is equivalent to the following
fourth order equation:

0.4)  ul = 220wy 4 10())?) + n*(—40u? — 16¢1u1 + 16¢; + 16t).

The underlying Lax pair (Ly),, of (P), is given by the following:

a% . nA) b =0 (0.5.a)
(0.5) (L) 4 Y5 -
a—nB)zﬁ:o (0.5.b)

where J = t(w17¢2)7
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(0.8) U(x):xm—Zujxm 7
j=1
(0.9) V(z) = Z v;x™
j=1
and
(0.10) W)=Y wa™.
j=1



See [KKNT, Proposition 1.1.1] for the proof of the fact that (FP;),, is the
compatibility condition for (Lp),,.

As in the case of the traditional Painlevé equations (cf. [KT2]), we can
construct the so-called O-parameter solution (u;, 0;) of (P)., of the following
form:

(0.11) a;(t,n) = a0(t) +n i (t) + -,
(0.12) 0j(t,m) = 0j0(t) + 07 050 (8) + - -

In what follows we always substitute the O-parameter solution into the co-
efficients of (Lp),,. Accordingly the matrices A and B are also expanded in
powers of 7! their top degree parts are respectively denoted by Ay and B,.

In studying the structure of 0-parameter solutions, we can readily find
the structure of v; from that of @;, thanks to (0.1.a). Hence we concentrate
our attention to ;’s, or rather the solutions

(0.13) bi(t,m) = bjo(t) + 07 0ja(t) + -+ (1<) <m)
of the equation U(b;(t,n)) = 0, that is,

(0'14) bj(t’ n)m - Z aj (tv n)bj (t’ n)m_j =0.

We note that {b;};=1, m appear as a straightforward counterpart of the
traditioal Painlevé transcendents in the original formulation of Shimomura
([S]) of higher order Painlevé equations from the viewpoint of the Garnier
system. The passage from {b;} to their elementary symmetric polynomials
{u;} seems to ameliorate the global behavior of functions in question, which
is not our immediate concern here. (Cf. [S])

Now, our goal (Theorem 3.1 below) is to relate b;(t,n) with a 0-parameter
solution of the traditional Painlevé-I equation through a formal transforma-
tion. In constructing the required transformation, we first rewrite (L),
(J =1, 1I-1, 1I-2) as a pair of a Schrodinger equation (SLj),, and its defor-
mation equation (D), (Section 1) and then analyze solutions of the Riccati
equation associated with (SLj),, near x = b,o(t), the top order part of
b;(t,n) (Section 2). Making full use of the results in Section 2, we construct
an appropriate semi-global transformation that brings (SL,),, to (SL;); and
the constructed transformation is used to reduce b; to a 0-parameter solution
of (Pl)l-

The details of this article shall be published elsewhere.



§1. Derivation of a Schédinger equation (SLj),,
and its deformation equation (D),
If we let ¢ denote

1

ﬁ%

(1.1) exp(— /$ g—édm)@bl =

for the first component 1; of the unknown vector ¢ of (0.5.a), we find ¥
satisfies the following Schodinger equation (SLy),:

0%
(SLI)m @ = nQQ(I,m)w
where
| 2 Lo
(1.2) Q(Lm) 21(21’ U—aU*+2UW) + ZV
VU Ve 302U 0 U
2U 2 4U? 2U

Making use of (0.5.b), we can find its deformation equation (Dy),,, an equa-
tion compatible with (SLy),,:

a@D _ 8¢ 1 6a(1,m)
(D) R R T
where
2
(13) a(Lm) - ﬁ

Now we note that ()0, the highest degree term in n of Q,,), has the
form

1 ~ 1 ~ m - ~ m—j
(1.4) yiGhs 21y 0)Up(x)? = 7 (0 2i ) (2" — > ™),
j=1

(See [KKNT, §2.1] for the details.) Hence z = b;p(l < j < m) is a
double turning point of (SLi),. Similar observations are made also for
(SLj)m(J =1I-1 and II-2). Thus, it is natural to expect that the setting of



[KT2] may be also applicable to (SLy),,(J = I,1I1-1,11-2), and this expecta-
tion is really validated as is discussed below. For the reference we note that
the deformation equation (D), (J = II-1,11-2) for ¢ = 22T "%y (in the
case of (Lyr.1)n,) and ¢ = T,;l/le (in the case of (Li.2)m; for the sake of
simplicity we assume ¢; = 0(1 < j <m — 1) in (1.3.9) of [KKNT]. To avoid
some degeneracy we also assume ¢ # 0 in (1.2.1) (resp., § # 0 in (1.3.1)) of
[KKNT]) is given respectively with

2gx
(1.5) A1) = 7
and

g
1.6 2m) = S
( ) ar-2,m) o

where ¢ is a constant and 7,,, is a polynomial of degree m in = whose coeffi-
cients are given in terms of (0-parameter) solutions of (Py),.

§2. Regularity of S,qq near x = b;(t)

In this section we omit the suffix (J,m) of Q;m) and a(m). Let St re-
spectively denote the solution of the Riccati equation associated with (SL ),
ie.

0S*
21 +\2 et 2
21 )
that begins with £1+/Q. Then S,qq is, by definition,
1
(2.2) Sed = 5(5% = 57).

We note that this definition of Syqq is different from that used in [KT2]; one
important point is that Syqq thus defined may contain a term whose degree
in 7 is even. Although we do not discuss the details here, S,qq thus defined
is free from even degree terms for J = I, just like Syqq in [KT2], but not for

J =1I-1 or II-2. As is shown in [AKT, §2], we can verify

0Seaa O
raial M CRtL)

for Syqq thus defined. Using (2.3), we can prove the following

(2.3)
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Theorem 2.1. The series Soqq and aSyqq are holomorphic on a neighborhood
of x =b,o(t)(1 < j < m) in the sense that each of their coefficients as formal
power series in ' is holomorphic on a neighborhood of x = b;(t).

§3. Reduction of b;(t,n) (j = 1,---,m) to a 0-
parameter solution of (F);

Let t = 7 be a turning point of the first kind of (Py),, (J =I, 1I-1, II-2) in
the sense of [KKNT]. (We note that every turning point is of the first kind
if m =1, i.e., for the traditional Painlevé equations.) Let us further assume
that 7 is simple in the sense of [AKKT] (with using a local parameter of
the Riemann surface R of the O-parameter solution as independent variable.
Note that, as is explained in [KKNT] and [NT], the Stokes geometry of (P;),,
lies on R and that a turning point of the first kind is in general a square-root
type branch point of R.) Then there exist a double turning point b;(¢) and
a simple turning point a(t) of (SLy),, which merge at 7, and there exists an
analytic function v;(t) for which

t bj)()(t)
(3.1) / vi(s)ds =2 /( | \/ Qimyo(x, t)dx
T a(t

holds. (See [KKNT, §2] for the proof.) Note that a Stoke curve of (Pj),,
that emanates from 7 is, by definition, given by

(3.2) Im /t vj(s)ds = 0.

It follows from (3.1) that

bjo(t)
(3.3) Im /( | \/ Qumyo(x, t)de =0
a(t

holds if ¢ lies in the Stokes curve of (Pj),,. Otherwise stated, if ¢ lies in
the Stokes curve of (Pj),,, the double turning point b;¢(t) and a simple
turning point a(t) of (SLy),, are connected by a Stokes segment 7. Using
Theorem 2.1, we can prove the following Proposition 3.1 in this geometrical
setting:



Proposition 3.1. Let 7 be a simple turning point of the first kind of (Pj)m
(J =1L11-1,11-2), and let o(# 7) be a point that is sufficiently close to T and
that lies in a Stokes curve of (Py)m, which emanates from 7. Then there exist
a neighborhood §2 of the above mentioned Stokes segment 7y, a neighborhood
w of o and holomorphic functions 7;(z,t) (j =0,1,2,--+) on QX w and t;(t)
(7=0,1,2,--+) onw so that the following relations may hold:

(i) The function to(t) satisfies

(3.4) /Tt vi(s)ds = /Of V12X (5)d3

where \g = \/—3/6, and, in particular, dty/dt # 0 holds on w, if w is chosen
sufficiently small.

(i) Zo(bjo(t),t) = No(fo(t)) and Zo(a(t),t) = —2Xo(fo(t))-

(11i) O0%o/0x #0 on QX w .

(iv) Letting Z(x,t,n) and t(t,n) respectively denote >0 Tj(@, t,m)n~7 and
Zj>0 t;(t)n~7, we find the following relation:

i=tg(t)’

35) Qualanten) = (57 ) Qatet. e,

I 5 .
- 5” 2{x<x7t77]>;x}7

where {&;x} denotes the Schwarzian derivative and Q(Z,t) is the potential
of the Schridinger equation (SLy) in [KT2], i.e.,
(3.6) Q&) = 43° + 267 + 1 — 4N} — 2t

-1 9
- v S A TF IS WEE

with
(3.7) Mi(t,n) being a 0-parameter solution of (P;),
e, N =02 (6X2 +1), and vy being n~ dA;/dL.

Using the transformations (z,¢,n) and #(¢,7) constructed above, we can
show

or B -
(3.8) S(J7m)7odd(x, t) = <£) SLodd(x(x: L, 77)7 t(t, 77)7 77)'

This relation and Theorem 2.1 entail the following

8



Theorem 3.1. In the situation of Proposition 3.1, we have

(3.9)

i’(ZE, ta 77) |z=bj(t,7)): )‘I (E(t7 n)a 77)
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