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Abstract
We report about some results, interesting examples, problems and conjectures re-
volving around the parabolic Kostant partition functions, the parabolic Kostka polyno-
mials and “saturation” properties of several generalizations of the Littlewood—Richardson
numbers. The Contents contains the titles of main topics we are going to discuss in the
present paper.
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1 Introduction

This note is based on a series of lectures given by the author during 1998-2003 years concern-
ing the interrelations between the saturation properties of the Littlewood—Richardson num-
bers and their several generalizations, parabolic ¢-Kostant partition functions and parabolic
Kostka polynomials.

In spite of the title “An invitation to the Generalized Saturation Conjecture”, we will



state a big amount of conjectures (about 30) and problems (about 15) revolving around a
very mysterious behavior of the coefficients, and the leading term especially, of a parabolic
Kostka polynomial.

Remember that, by definition, a function f :  C Z" — Z satisfies the saturation property
(‘on the set © ), if the following condition holds:

f(Nw) # 0 for some integer N > 1 and w € §, then also f(w) # 0.

For example, any homogeneous function f on the set €2, i.e. that satisfying the condition
f(Nw) = N f(w) for some a € R, Vw € Q and all integers N > 1, possesses the saturation
property; a subset ) C Z" is called saturated if its characteristic function has the saturation
property.

To be more specific, let us introduce the numbers a(A, p||n), b(A, l|n), c(A, ||n) and
d(A, pl|n) which will play an important role in our paper. Namely, let A be a partition
and p, and n be compositions such that |A| = |p| and [I(g) < ||, see Section 2.1 for ex-
planation of notation. Let K),,(¢) be the corresponding parabolic Kostka polynomial. If
K\ ,,(q) # 0, the numbers above are defined from the decomposition

Kounl(q) = b, ptlln) ¢®# 4o d(\, ) geO#I),

where we assume that b(X, ul|n) # 0 and d(A, u||n) # 0, and a(X, p||n) < e(A, plln).
If Ky,,(q) =0, we put by definition a(X, g||n) = b(A, nl|n) = (X, plln) = d(X, g||n) = 0.

("I) We expect that d(\, plln) > 0 and d(A, pljn) > 0, or equivalently K,,(¢) # 0,
if and only if A — p € Y. In other words, we expect that K),,(¢) # 0, or equivalently
d(X, plln) > 0, if and only if Kgg,)(A — p) > 0, see Section 6, Positivity and Non-vanishing
conjectures.

() We regard the numbers d(A, p||n) as a generalization of the Littlewood—Richardson
coefficients, see comments after Theorem 1.4, and Section 5.2, (1°) for explanations.

Problem 1.1 Find combinatorial and/or algebro—geometric interpretations of the numbers

d(X, pe||m).

Remark 1.2 We expect that for given A, p and n there exists a rational convex polytope
AY , such that the number of integer points inside of AY  is equal to d(A, u||n).

One of our main observations is that the saturation property of the leading coefficient
d(X, ul|n), i.e. that

() d(NA Nyul|ln) # 0 for some integer N > 1 if and only if d(A, u||n) # 0,

is an easy consequence ( but not conversely ! ) of the statement that the maximal degree
c(X, plln) of ¢ in a parabolic Kostka polynomial Ky ,,(q) is a homogeneous degree 1 function
of A and p. In other words, we pose the following conjecture:

Conjecture 1.3 ( Generalized Saturation Conjecture )
Let X be a partition, p and n be compositions such that |X| = |p| and () < |n|. Then
the coefficient ¢(\, pl|n) is a homogeneous piecewise linear function of X and p. In particular,



o(NA, Nplln) = Ne(A, plln)
for any positive integer N.

Here [l(yt) denotes the fake length of a composition i, see Section 2.1 for the definition.

We would like to note here that, in general, the Generalized Saturation Conjecture ( G.SC
for short ) is false for the numbers a(A, p||n), see Examples 4.6.

(*I) However, we expect that if u is a partition, then the GSC does hold for the numbers
a(A, pl|n).

Conjecture 1.3 is obvious for the Kostka—Foulkes polynomials, since in this case

A u| (M) = n(p) =n(N) = Y min(uip) = Y min(Ai,A)

1<i<I<(p) 1<i<i<I(\)

is easily seen to be a homogeneous piecewise linear function of A and p. However, it seems
a difficult problem to prove the G:SC in general case, especially to find an explicit piecewise
linear formula for the numbers ¢(A, u||n).

We would like to add also that the saturation property of the coefficient d(A, y||n) is an
easy consequence of Non-vanishing conjecture as well. Indeed,

ANMNul|ln) 208 NA—p) €Y, & X—pucY, < d\ uln) £0.

Now let us explain briefly a connection between our Generalized Saturation Conjecture
and the Saturation Theorem by A. Knutson and T. Tao [43], see also [4], [9], [14], [65] for
other proofs.

Theorem 1.4 ( Saturation Theorem [43] )
Let X,y and v be partitions such that |\ + |p| = |v|. Then
C%KJW # 0 for some integer N > 1 if and only if 5 , # 0.

Here ¢ , denotes the Littlewood-Richardson number ( L R-number for short ) corresponding
to the partitions A, ¢ and v, see Section 2.4 for details.

Now we are going to explain how the Saturation Theorem follows from the GSC'.

First of all, we observe that ¢§ , = b(A, R) for some partition A and a dominant sequence
of rectangular shape partitions R, see Section 2 for the definition of a dominant sequence of
partitions. Namely, for given partitions A = (Ay,---,A,), g and v such that || + |g| = |v|,
define partition

A:(,M1+)\1,/L1+)\2,"',/L1+)\T,M),

and a dominant rearrangement R of the sequence of rectangular shape partitions R =

{(#%).v}. Then | |

(&) a(AR) > Eléjém vi — |pl|, and a(A, R) = EISJ'SM vi — |p| if and only if ¢§ , > 1;
in addition, b(A, R) = ¢ ,, see Section 5.2 for details.

In other words, the constant term of the polynomial

Ki,u(q) — q(|ﬂ|—z19§m vi) K\ r(q)
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is equal to the Littlewood-Richardson number ¢ . See Sections 5.2 and 6.8 where some
results and conjectures about the polynomials KY  (¢) and their generalizations K g 4(q),
and K'{a) 4 4(4), are presented.

The next step is to apply the Duality Theorem for parabolic Kostka polynomials K r(q)
corresponding to a dominant sequence of rectangular shape partitions R, see Section 4, (4.37),
Duality Theorem. As a corollary, we see that the coefficients a(A, R) and ¢(A, R) satisfy the
G SC simultaneously. Hence, it follows from our Theorem 1.5 that

() a(nA,nR) =na(A, R) for any integer n > 1.

Finally, let us deduce the Saturation Theorem from the above considerations. Indeed,
assume that C%KJW # 0, then

Na(A, R) = a(NA,NR) = N( > v, —|ul).

1<5<m

and therefore, a(A, R) = 21<J’<u1 v — |u|. The last equality means that c§ , # 0.

In fact, our arguments show that in the particular case under consideration, the Gener-
alized Saturation Conjecture is equivalent to the Saturation Theorem. However, our main
point is that, conjecturally, the GSC is still valid for any partition A and compositions g,
and 7.

Theorem 1.5 ( Saturation Theorem for the numbers ¢(\, R) )
Let X be a partition and R be a dominant sequence of rectangular shape partitions. Then
(&) c(NA,NR)= Ne¢(A, R) for any integer N > 1.

Our proof of Theorem 1.5 is based on an explicit homogeneous piecewise linear formula for
the Lascoux—Schiitzenberger statistics charge, obtained by A. Berenstein and A.N.K., see
[38], [36], and a fermionic formula for the parabolic Kostka polynomials Ky r(¢) correspond-
ing to a dominant sequence of rectangular shape partitions R, see e.g. Section 5.1, (5%). The
proof is rather technical and long. We assume to present it in a separate publication.

One of our main results, see Section 4, in support of the G.SC in general case is:

Theorem 1.6 ( Rationality theorem for parabolic Kostka polynomials, I )
The formal power series

Z Koy (0"

n>0

is a rational function in q and t of the form

P/\un(% t)/Q/\MU(% t)7

where Py, (q,t) and Qrum(q,t) are mutually prime polynomials in ¢ and t with integer coef-
fictents, P,,,(0,0) = 1.
Moreover,



() the denominator Q,,, has the following form

Q/\Am(q?t) = H(l - qj t)v

JjeJ

where J := Jy,, s a finile sel of non—negative integer numbers, not necessarily distinct;
(o) Py, (1,) = (1 =)t Py (t),) where (A, 1, ) € Lo, and Py,,(t) is a polynomial
with non—negative integer coefficients.

Problem 1.7 Find combinatorial and algebro-geometric interpretations of the set Jy,, and
the polynomial Jy,,(q) = EJ'EAW, q.

Corollary 1.8 ( Polynomiality theorem for parabolic Kostka numbers )
Let X be a partition and p,n be compositions such that |A| = |u| and U(p) < |n|. Then
there exists a polynomial Ky, () with rational coefficients such that for all integers N > 1

]CAM(N) = KNA,Num(l)'

Corollary 1.9 ( Polynomiality theorems for Kostka and L R-numbers )

(¢) Let X be a partition and p be a composition of the same size, then the Kostka number
Knanu(1) is a polynomial in N with rational coefficients.

(1¢) Let A\, and v be partitions, then the Littlewood—Richardson number C%KJW is a
polynomial in N with rational coefficients.

See Section 4, Theorem 4.14 and Corollary 4.15. We also give a multivariable generalization
of Theorem 1.6, see Theorem 4.17.

We want to emphasize here that the polynomiality property of the functions N —
Knynun(l) and N — C%KNM is an easy consequence of our Theorem 1.6, but not conversely:
one has to check that the (irredundant) denominator Q»,,(¢q,t) doesn’t have factors of the
form (1 — ¢*t') with I € Z+,.

Conjecture 1.10 If u is a partition, then the polynomial K,,(t) has non—negative ratio-
nal coefficients.

See Section 6, Conjecture 6.10, (#), for more general conjectures concerning the numbers
A\ ).

We would like to remark that the GSC does not follow immediately from Theorem 1.6,
see Section 6, Rationality Conjecture, for details.

The polynomials P,,,(¢,t) may have negative coefficients, and rather difficult to com-
pute. For example, we don’t know the explicit formula for polynomial Py 112) 112)(¢,1).
We expect that the polynomials Py,,(q,?) should have nice algebraic and algebro—geometric
interpretations.

Our proof of Theorem 1.6 is a pure algebraic and is based on the study of the parabolic
g-Kostant partition functions, see Section 3.



Corollary 1.9,(¢), has been proved independently by W. Baldoni-Silva and M.Vergne [2],
S. Billey, V. Guillemin and E. Rassart [8], ... . Corollary 1.9,(¢7), has been proved indepen-
dently by A Knutson (unpublished), H. Derksen and J. Weyman [15], E. Rassart [61], ... .

The main subject of investigation of our paper is the study of interrelations between the
saturation properties of the L R-numbers and their generalizations, and the leading coefficient
of the parabolic Kostka polynomials.

The paper does not contain complete proofs of the main theorems. Our goal is differ-
ent. The primary purpose of this note is to collect together several results, conjectures and
examples revolving around a mysterious behavior of the initial and the leading terms of a
parabolic Kostka polynomial.

Let us say a few words about the content of our paper.

In Section 2 we collect together a few definitions and notation which will be frequently
used in the subsequent Sections.

In Section 2.1 we remember the definitions of partitions and compositions and some
operations over them. We would like to point out here some non-standard conventions
about partitions and compositions used in our paper. We will denote by A = (Aq,---,\,) a
(proper) partition, so that if A # 0, then A, # 0. We always use n to denote a composition
without zero components. Contrary, we will use u to denote a composition or partition with
zero components and zeroes at the end allowed. A typical example is ¢ = (0,2,0,1,3,0,0).
Thus, according to our conventions, the compositions (0),(0,0),- - - are different and different
from the empty composition 0.

In Sections 2.2 and 2.3 we recall the definitions of Kostka—Foulkes and skew Kostka—
Foulkes polynomials. For more details, see [10], [16], [29], [35], [41], [42].

In Section 2.4 we remember the definition of the Littlewood—Richardson numbers and
state the Saturation Theorem , which has been proved by A. Knutson and T. Tao [43].

We refer the reader to interesting and clearly written papers by W. Fulton [20], [21]
for detailed account to the so—called Horn problem and its connections with the Saturation
Theorem.

In Section 2.5 we study the saturation properties of the internal product structural con-
stants g,p, and those of the plethysm aj . It is well-known that the L R-numbers cf & are
a special case of the internal product structural constants ¢,g,, and in turn, the numbers
Japy arve a special case of the plethysm structural constants aj y,, see Remark 2.13. However,
based on examples we arrived at the conclusion that, in the general case, both the numbers
Japy and a}, yp, do not satisty the saturation property.

(*I) Nevertheless, we expect that

e the numbers a], y, satisfy a weak form of Saturation Conjecture, i.e. for any finite
dimensional gl,-module W there exists a polynomial pw(¢) ( pw(t) =t 7?7 ) such that for all
partitions 7 and y one has

if a%ﬂw > pw(N), then a7y, # 0.

e for an interesting family of polynomials Lgﬂ(q) a certain analog of the GSC does hold,
see Conjecture 2.22.



It seems an interesting problem to study whether or not the GSC' is valid for polynomials
7w (q) which are defined via the decomposition of the plethysm W o s,

(Wos,) Z P.(X,q),

where X = (zq, -+, 2,), and P.(X,¢) stands for the Hall-Littlewood polynomials.

In Section 2.5 we also state several results about polynomials Lgﬂ(q) and give a few
examples supporting our conjectures.

In Section 2.6 we define the extended Littlewood—Richardson numbers as well as the level [
extended L R-numbers. The latter are a natural generalization of the restricted L R-numbers.

(") We expect that Saturation Theorem, the strong ¢-log concavity and Fomin-Fulton-
Li-Poon’s conjectures I and II are still valid for the level [ extended L R-numbers.

In Section 3 we study some algebraic properties of the parabolic ¢-Kostant partition
function Kg@)(y| ¢), mainly in a connection with the saturation properties of the latter.
For polynomlals Ko@)(v| ) we prove an analog of the :SC, Rationality and Polynomiality
theorems, and a new recurrence relation. Our proof of Rationality theorem is based on the
following simple observation:

Lemma 1.11 Let R(X,q) € Q [¢][X*'] be a rational function in ¢ and X = (2!, 2F").
Let

be a Laurent series expansion of R(X,q).
Let ay,---,a, € Z" be fized, then

N1 Ng
§ AN1a1‘|‘"'+Nkak(q) Ly Xy
(N1,~~~,Nk)€Z§0

is a rational function in q and xq,-- -, xy.

In Section 3 we also study the parabolic Kostant partition function Ke(,)(y) as a function of
~, see Theorems 3.23 and 3.25.

A detailed treatment of the properties of the parabolic ¢-Kostant and Kostant partition
functions lies at the heart of the approach to the GSC and to the study of parabolic Kostka
polynomials, presented in this paper. However, making an effort to keep the paper in a
reasonable size, we do not intend to consider in Section 3, and decided to postpone for
subsequent publications, many very interesting aspects of the theory of parabolic Kostant
partition function K (7) := Ko@) (7| ¢)|4=1 such as

(¢) The special values of parabohc Kostant partition function, see [68], [34], [35], [2];

(7¢) Connections with the flow polytopes, see [68], [2];

(¢¢2) Connections with the Orlik—=Solomon and Gelfand—Varchenko algebras, [37];

(1v) A g-analog of the generalized Kostant partition function, see [68].



In Section 4 we study, mainly, the “saturation properties” of parabolic Kostka polyno-
mials. Many examples, results and conjectures concerning with the parabolic Kostka poly-
nomials, have been already considered in our paper [35]. For the reader’s convenience, in
the present paper we remember some basic properties of the parabolic Kostka polynomials
K\ ,,(q), and give a sketch of proofs of Rationality and Polynomiality theorems for the latter,
see Theorems 4.14 and 4.17, and Corollaries 4.15, 4.18 and 4.19.

In the case when p and 5 correspond to a dominant sequence of rectangular shape parti-
tions R, we have obtained the following result:

Theorem 1.12 ( Polynomiality theorem for the numbers b(\, R) )
Let X be a partition and R be a dominant sequence of rectangular shape partitions, then

(&) B(NA, NR) is a polynomial in N with rational coefficients.

Our proof of Theorem 1.6 is a largely algebraic, whereas that of Theorem 1.12 is based on a
fermionic formula for the parabolic Kostka polynomials K r(q).

(") We expect that if g is a partition, then b(NX, Npul||n) is a polynomial in N with
non—negative rational coefficients, see Section 6, Polynomiality conjecture, for a more detailed
statement.

However, in general, b(NX, Ny||n) becomes a polynomial in N only starting from big
enough N, see Section 6, Conjecture 6.10, (44 4), and Remark 6.16.

In Section 4 we also study some natural multivariable analogues of Theorem 1.6, and
Corollaries 1.7 and 1.8. In particular, we give a sketch of proof of a theorem that for any

sequences of partitions AV, ... A*) and compositions g, .-, x® the formal power series
- N N,
Z KON A o N N ) e N9 (4) 27"

(N1,~~~,Nk)€Z§0

is a rational function in ¢ and a1, ---, 2, which has the denominator of some special form,
see Section 4, Theorem 4.17.
However, in general, if & > 2, the functions

(V15 Ni) = Ky Na®) Ny ) g N0 (1), and
N1 AD oo N (R
(va T aNk) T ON D e N Ny (D) e N ()

are only piecewise polynomial functions on the set {(Ny,---, N}) € Z 3}, see Example 4.23.

We want to emphasize here that the special form of the denominator of the rational
function Z(Nl,m,Nk)eZ’;O KN A0 4y A Ny u (D) et Ny 0 (1), se@ Theorem 4.17 (b)), is (in our
opinion) a key fact to explain a piecewise polynomiality of the “mixed” Kostka numbers
KN A0 4 g N Ny u(D et Ny 9 (1) and “mixed” Littlewood-Richardson coefficients.

(*I) Nevertheless, we expect that in the case of parabolic Kostant’s partition functions,
the function (nq,---,n;) — Key(n1v + - + npye) 1s a polynomial one on the whole set

’ ’ (n) 7 ~ poly

{(nlv T 7nk) € Zéo}

It is well-known that the Kostka—Foulkes number K ,(1) counts the number of integral
points in some rational convex polytope, the so-called Gelfand—Tsetlin polytope GT(A, ).



In this connection we would like to pose the following question (cf with mized lattice point
enumerator theorem for integer convex polytopes by P.McMullen [54], or Example 4.23) :

Question 1.13 Let Ay, ---, A, € Q? be rational convex polytopes, and L : Z¢ — Lo be a
continuous piecewise linear function.
Under what assumptions on L and polytopes Ay, ---, A, the denominator of rational

oY e

(N1 ,~~~,Nk)€Zl;0 aE(Nl A1+"'-|-NkAk)ﬂZd

function

has only the factors of the form (1 — q“(JJ)

are some non-negative integers ¢

xg), where J C[1,--- k], x5 = [[;c;7;, and af]j)

In Section 4, Remark 4.24, we state some preliminary results about the behavior of the
parabolic Kostka number K,,,(1) considered as a function of A and g on “the space of
parameters” Z, = {(A\, p) € ZLy X Z%; | Ay > -+ > A\, A — p € Y, }. Based on the properties
of the parabolic Kostant partition function, see Section 3, Theorem 3.25, one can show that
on the set 7, the parabolic Kostka number K,,(1) is a continuous piecewise polynomial
function in Ay, - -+, A, and g1, -+ -, gt,. The main problem about the function (A, ) — Ky, (1)
we are interested in, is to describe “the dominant chamber” for the latter function, i.e. to
describe the maximal domain ZF* in the set ZF := {(\,p) € Z, | A — p € Y} such that
Km(l)|z;,++ = Kog) (A — p).

In Section 4 we also introduce the parabolic Hall-Littlewood polynomials @, ,(X;¢), and
state the rationality theorem for the latter, see Remark 4.35. Details and proofs will appear
in a separate publication. Finally, we note that for the Kostka-Macdonald polynomials
K, ,.(q,1), see [53], Chapter VI, Section 8, for the definition, the generating function

Zyulgtie) =), Koyula,1) 2"

n>0

is a formal power series, which is not, in general, a rational function in ¢, t and =.

[t seems a very interesting problem to study the properties of the function 7, ,(¢,t,z),
especially in connections with the characters of affine Lie algebras of type A and the Virasoro
algebra.

In Section 5 we collect together several examples which might help to illuminate a mys-
terious nature of the leading term of a parabolic Kostka polynomial. See the Contents of
Section 5 for exposing with the list of these examples. In particular, we show that the one
dimensional sums (1D-sums for short) which frequently appear in Statistical Mechanics, see
e.g. [22], [46] and the literature quoted therein, are a special case of the parabolic Kostka
polynomials K, ,,(¢q) corresponding to a rectangular shape partition A, see Section 5.5 for
details. In Section 5.1 we give, among other things, a few comments about the Merris con-
jecture, and in Section 5.4 that about the L R-numbers cgmén.
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In Section 6 we state a few conjectures about the coefficients a(A, u||n), b(A, g||n), c(X, p]|n)
and d(A, g||n). In particular, we expect, see Conjectures 6.14, 6.17 and 6.23, that

e ( The generalized Fulton conjecture )

If d(nA,nu|ln) =1 for some integer n > 1, then d(NX, Ny|n) =1 for all N € Zy,.

e ( Generalized d(\, p||n) = 2 conjecture )

If d(nA,npulln) = n+1 for some integer n > 1, then d(NA, Nulln) = N+1 for all N € Zy,.

e ( Generalized d(\, p||n) = 3 conjecture )

(¢) If d(nA,nu|ln) =2n+1 for some integer n > 2, then d(NX, Np|n) =2N + 1 for all
N € Zsy;

(c2) I d(nA,nul|n) = <n—|2—2> for some integer n > 2, then d(NA Ny|n) =
(N;2 for all N € Zy,.

These two cases exhaust the all possibilities when d(\, ul|n) = 3.

¢ ( ¢-Log concavity conjecture )

Let A be a partition and R be a dominant sequence of rectangular shape partitions, then
for any integer n > 1,

(Kinnr(0))* 2 K n—1)r(@) Knpi)enr(q)-

See Section 6.7, Conjecture 6.17, for a more general and detailed statement of the latter
conjecture.

¢ ( The generalized Fomin-Fulton-Li-Poon’s conjecture I, cf [60], Conjecture 1,
[18], Conjecture 2.7 )

K,Z“m,...,g(k),@(@ > K,Zu),...,A(k),e(Q)-

e ( The generalized Fomin-Fulton-Li-Poon’s conjecture II, cf [18], Conjecture 5.1
)

[(,l:l*,B*,é’(Q) > I(ZLB,&((])'
See Section 6.8, Conjecture 6.24, for the explanation of notation we have used, further details
and more conjectures.

In the case of the L R-numbers the Fulton conjecture has been proved in [44].
Some special cases of the Fomin-Fulton-Li-Poon conjecture 11 have been proved in [18].

Problem 1.14 When does the number d(A, p||n) equal to 1 7

Finally, we would like to remark that our approach to the G'SC is purely algebraic and
combinatorial. It seems a very interesting problem to find an algebro—geometric explanation
of a still experimental observation that the coefficient ¢(A, y||n) is a homogeneous piecewise
linear function of A and . In this connection we would like to pose the following questions:

1As we learned from the referee, the extension of the original Fomin-Fulton-Li-Poon conjecture II,
[18],Conjecture 5.1, to the case of skew diagrams was also stated by F. Bergeron, R. Biagnoli and M. Rosas,
see e.g. [6], [7]; see also [65]. The paper [7] contains, among other things, many interesting results in support
of the FFLP-conjecture.

11



Question 1.15 { Parabolic Kostka polynomials and semi-invariants of quivers )
Let X be a partition and p, and n be compositions such that |X| = |u| and ll(p) < |n|.
Does there exist a quiver Q, dimensional vector 3 and GL(Q, B)-weight o such that

dim S1(Q, B)no = d(nX,nuln)

for all integersn > 1 ¢

Here SI(Q, 3), stands for the weight o subspace of the ring of semi-invariants

SI(Q, 5) == Q [Rep(Q, 5)]7H@D.

See [14] and [15], and the literature quoted therein, for more details about the ring of
semi—invariants of a quiver. It seems a very interesting problem to find an interpretation of
the numbers ¢(, p||n) and d(A, g||n) in terms of quivers.

Question 1.16 ( A g-analog of dimSI1(Q,() )

Does there exist a natural filtration
[0=FCRC-)

on the ring of semi—invariants S1(Q, 3) such that for a special quiver Q@ =T, ., and a special
dimensional vector 3, see [14], Section 3,

> dim(F/Fimr) ¢ =& L(q) ?

i>1

Here &, (q) denotes the g-analog of the LR-numbers, see e.g. [11], [{9]; for the meaning of

the symbol “==", see Section 1.1.

We would like to end this Introduction by the following remark. Throughout the paper we
use the term Conjecture to mean a statement for which we do not have a proof, but which
we have checked on a big body of examples (except for Conjectures from Section 6.9). On
the other hand, we use an expression “ We expect that ... “ to mean a statement which we
believe is bound to be true, but for which we don’t have the extensive supporting evidence.
Of course, not all plausible conjectures and reasonable guesses prove to be true. For example,
see Remark 4.22.

1.1 Notation

Throughout the paper we follow Macdonald’s book [53] as for notation related to the theory
of symmetric functions, and Stanley’s book [67] as for notation related to Combinatorics.
Below we give a list of some special notation which we will frequently use.

1) If P(q) and Q(q) are polynomials in ¢, the symbol P(q) = Q(¢) means that the ratio

P(q)/Q(q) is a power of q.
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2) If a,ko,...,k, are (non—negative) integers, the symbol ¢*(ko, ..., k,) stands for the
polynomial E;n:() kgt

3) We use the capital Latin letters A, B,C,--- to denote the skew diagrams/shapes,
and the small or capital Greek letters a, 3,v, A\, i, A, M,--- to denote either partitions or
compositions.

4) Let ny = (911,712, -+ 71,) and 1y be compositions, we say that ny is a subdivision
of 1y, if there exists a sequence of partitions p), 1 < j < p, such that || = n1,; and
ny = (pW, o @),

5) Let Pi(q) and Py(q) be polynomials with real coefficients. By definition, the inequality
Pi(q) > Py(q) means that the difference Py(q) — Py(q) is a polynomial with non—negative real
coefficients.
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2 Basic definitions and notation

2.1 Compositions and partitions

A composition
= (Mlvﬂ?v"'vﬂr) (21)

is a sequence of non-negative integers. The number r in (2.1) is called the fake length of the
composition g, and denoted by lI(x). In the sequel, it will be convenient for us to distinguish
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between two such sequences which differ only by a string of zeros at the end. Thus, for
example, we regard (2,0,1),(2,0,1,0),(2,0,1,0,0),---, as different compositions. The size
of a composition p is defined to be |u| = 1 + -+ + p,.

By definition, a composition A = (A, Ag, -+, A,) is called partition, if additionally it
satisfies the following condition:

A > Ay > >0, > 0. (2.2)

The non-zero A; in (2.2) are called the parts of A. The number of parts is the length of
A, denoted by I(A). Thus, we have [(A) < [I(A) := p. As in the case of compositions, we
distinguish between two sequences (2.2) if they differ only by a string of zeros at the end. If
|A| = n we say that A is a partition of n. Denote by P, the set of all partitions of n.
A partition A = (Aq, Az -+, A,) is called properif A, # 0.

The dominance partial ordering ”>" on the set of compositions of the same size n, or
that of partitions P,, is defined as follows:

A > p if and only if
M+ + N>+ +p forall i >1.
The conjugate of a partition A = (Aq,---, ;) is the partition X' = (A}, A}, ---), where
A= #{j|1\; = i}, In particular, A] = [(A) and Ay = I(\).
For each partition A = (Aq, Ay, -+, A,) we define

P
n(A)=> (i-1DA= > min(A;,N).
i=1 1<i<i<p
The concatenation p * v of two compositions y = (g, pig -+, pt,) and v = (vy, v, -+, V)
is defined to be the composition
:u*l/:(;ulvlu%"'v,urvl/lvl/%”'71/5)- (23)
For any compositions p and v we define ¢ + v to be the sum of the sequences y and v :
(n+v)i=pi+wvi (2.4)

Thus, for example, ny = (npq, npa, - np,).

Definition 2.1 We say that a sequence of partitions p = (™M, 1@ - 1) is a dominant
one, if the concatenation p™ * 1@ % - % 1) is a partition.

Definition 2.2 Let p = (p1, pto, -+ -, ft,) and n = (ny,1m2,- -+, n,) be compositions, we say that
the composition y is compatible with n if the all compositions

lu(l) = (lu771+~~~+77i—1+17 e 7:“771+~~~-I-77i)7 1<i< p (25)
appear to be partitions (possibly with zeros at the end), where by definition we put ny := 0.

In other words, the composition g is the concatenation of partitions p, 1 < ¢ < p.
Conversely, if a composition x is the concatenation of partitions p(?, 1 < i < p, then the
composition 1 can be reconstructed from that p as follows:

N = (”(ﬂ(l))7 ”(M@))7 .. .le(p)))_
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2.2 Kostka—Foulkes polynomials

In Sections 2.2 till that 2.6 we will assume that all partitions which will appear, are proper.

Definition 2.3 The Kostka—Foulkes polynomials are defined as the matriz elements of the
transition matriz

K(q) = M(s, P)
from the Schur functions s\(x) to the Hall-Littlewood functions P,(x;q):

si(®) =Y Kyu(q)Pu(ws q). (2.6)

It is well known, see e.g. [53], Chapter I, that if A and u are partitions, then

e K,,(q) #0if and only if A > p with respect to the dominance partial ordering ”>" on
the set of partitions.

o If A\ >y, K),(q) is a monic of degree n(u) — n(A) polynomial with non-negative integer
coefficients. This result is due to A. Lascoux and M.-P. Schiitzenberger [48].

o If (1) =n, then

Kyalg) = Y (=)™ Ko (w(A +6) — p = 6] q), (2.7)

WEX

where [(w) denotes the length of a permutation w € ¥,, 6 := 6, = (n —1,n —2,---,1,0),
and for any v € Z", |y| = 0, K,(v| ¢) stands for a ¢g-analog of the Kostant partition function
K, (%), see e.g. [53], Chapter III, Section 6, Example 4, or Section 3 of the present paper.

Theorem 2.4 Let A and p be partitions of the same size. There exists a polynomial €y (1)
with rational coefficients such that for any integer N > 1 one has

Exu(N) = Knynu(1)-

Corollary 2.5 The Ehrhart polynomial £, ,(t) of the Gelfand—Tsetlin polytope GT(X, ) is
a polynomial, even though the polytope GT(X, ) itself does not necessary appear to be an
integral one.

For a definition of the Gelfand-Tsetlin polytope see, e.g. [36], [8] or [12]. For a definition and
basic properties of the Ehrhart polynomial of a convex integral polytope see, e.g. [67] or [24].
Theorem 2.4 and Corollary 2.5 are a particular case of a more general result, see Section 4,
Corollary 4.15.
We refer the reader to a paper [12] which contains a rich information about vertices of
Gelfand-Tsetlin’s polytopes. In particular, one can find in [12] several examples of Gelfand-
Tsetlin’s polytopes with some non-integral vertices.

Conjecture 2.6 Let A and p be (proper) partitions of the same size, then the Ehrhart poly-
nomial €\ ,(t) has non—negative rational coefficients.
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We remark that Conjecture 2.6 is a special case of Polynomiality Conjecture from Section 6.

Polynomiality of the function N — Ky n,(1) has been proved independently by several
authors: W. Baldoni-Silva and M. Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], ... .

Problem 2.7 Find a fermionic, i.e. a positive linear combination of products of powers of
t and t-binomial coefficients, formula for the polynomials E,,(t).

This problem should be a very difficult one, however, since, for example, the polynomial

Emm)((n-1)m,1m) (1)

coincides with the Ehrhart polynomial of the Birkhoff polytope B, of doubly stochastic
matrices, see [35], Section 7.5. We refer the reader to a paper by M. Beck and D. Pixton [3]
and the literature quoted therein, for a further information about the Ehrhart polynomials

( for n <9 ) and the volumes ( for n < 10 ) of the Birkhoff polytope B,.

The (normalized) leading coefficient of Ehrhart’s polynomial £,,(t) is equal to the (nor-
malized) volume of Gelfand—Tsetlin’s polytope GT' (A, ), and is known in the literature, see
e.g. [23], [59], as a continuous analog of the weight multiplicity dim V\(p).

Finally, we would like to note that in general, the Ehrhart polynomial of a convex integral
polytope may have negative coefficients. The famous example is the Reeve tetrahedron, see
e.g. [35], Example 7.34, 6, and the literature quoted therein.

2.3 Skew Kostka—Foulkes polynomials
Let A, p and v be partitions, A D u, and |A| = || + |v].

Definition 2.8 The skew Kostka—Foulkes polynomials K\, ,(q) are defined as the transition
coefficients from the skew Schur functions sy\,(x) to the Hall-Littlewood functions P,(x;q):

Sxyul@ Z Kou( 1q)- (2.8)

It is clear that

AA\W Zc K..(q

where the coefficients ¢/ = Mult[V, : V,,@ V] stand for the Littlewood-Richardson numbers.

Let us remark that
A/\\M v Z q (2.9)

summed over all semistandard skew tableaux T' of shape A\ p and weight v, where ¢(T)
denotes the charge of a skew tableau T.

In the case g = (), the formula (2.9) is due to A. Lascoux and M.-P. Schiitzenberger [48]. See
also [10], Chapter II, for an extended exposition of [48]. We refer the reader to [53], Chapter
ITI, Section 6, for the definition of the Lascoux—Schiitzenberger statistics charge on the set
of semistandard Young tableaux.
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We will use also the cocharge version of the skew Kostka—Foulkes polynomials:

K Z & K., (2.10)

where K»,(¢) = ¢""W K\, (¢7").
(®) We will see in Section 5.1, example 3%, that the skew Kostka-Foulkes polynomials are
some special cases of the parabolic Kostka polynomials.

2.4 Littlewood—Richardson numbers and Saturation Theorem

The Littlewood—Richardson numbers ¢ ,, L R-numbers for short, are defined as the structural
constants of the multiplication of Schur functions. More specifically, let A and p be partitions,

then
5\S, = Zciﬂsy, (2.11)

14

_ E v
Sl,\M = C/\MS/\.

A

or equivalently,

We have ¢§ , = 0 unless [v| = |A|+|u| and v D A, 1. A pure combinatorial way to compute the
L R-numbers is given by the celebrated Littlewood-Richardson rule, see e.g. [53], Chapter I,
Section 9.

Saturation Theorem ( A. Knutson and T. Tao [43] )

ey ~u 7 0 for some integer N > 1 if and only if ¢ , # 0.

We refer the reader to interesting and nice written papers by W. Fulton [20], [21] and
A. Zelevinsky [74] for detailed account to an origin of Saturation Conjecture ( now a theorem
by A. Knutson and T. Tao ) and its connections with the so-called Horn Problem.

2.5 Internal product of Schur functions, and polynomials Lgﬁ(q)

The irreducible characters y* of the symmetric group X, are indexed in a natural way by
partitions A of n. If w € ¥,,, then define p(w) to be the partition of n whose parts are the
cycle lengths of w. For any partition A of m of length [, define the power—sum symmetric
function

Px = Pxy ---Pxp»

where p,(z) = >~ 2. For brevity write p,, := p,(). The Schur functions sy and power—sums
p,, are related by a famous result of Frobenius

Sy = % Z (W) pu. (2.12)

WEX
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For a pair of partitions a and 3, |a| = |3| = n, let us define the internal product s, * sz of
Schur functions s, and sg:

1
Sa ¥ 85 = — Z X (0) P (w0) . (2.13)
CweEE,

It is well-known, see e.g. [53],Chapter I, Section 7, that
Sq * S(n) = Su, Su ¥k S(ln) = Suf,

where o denotes the conjugate partition to a.
Let «, 3,7 be partitions of a natural number n > 1, consider the following numbers

o = 1 S0 X () () 0). (2.14)

The numbers ¢,3, coincide with the structural constants for multiplication of the characters
x® of the symmetric group X,:

N =D gap (2.15)

~

Hence, g,p, are non—negative integers. It is clear that
54 % S5 = Zgaﬁwsw (2.16)
v

Remark 2.9 More generally, let A and B be two skew diagrams and + be a partition all of
the same cardinality n. Define the coeflicients g4 .~ and the internal product s 4 * sp of skew
Schur functions s4 and sp as follows. Let y* and y” be the characters of representations
of the symmetric group ¥, which correspond to the skew diagrams A and B. The numbers
g4.B are defined via the decomposition

AP =D gama X7
¥
The internal product of the skew Schur functions s4 and sg is defined as follows

SAq4kSp = E JA B~y Sv-
il

Finally, let C' be one more skew diagram, define the number g4 g ¢ to be equal to (s4%*sg, s¢),
where ( ,) denotes the Redfield-Hall scalar product on the ring of symmetric functions, see
[53], Chapter I, Section 4.

Remark 2.10 It is one of the most fundamental open problems in Combinatorics and Rep-
resentation Theory of the symmetric group that to find a combinatorial rule for description
of the numbers g,3-.
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Theorem 2.11 Let o, B and v be partitions of the same size n.
(M) If gapy # 0, then gnang Ny £ O for any integer N > 1.

Remark 2.12 The converse statement, i.e.

it gno NgNy # O for some integer N > 2, then g5, # 0,

the so-called saturation property of the structural constants g,4,, is not true in general
if n > 7, even under the additional assumption that partitions «, 3,~ and their conjugate
ones o', 3,4, all have at least two different parts. For example,

9(6,1),(4,12),(3,3,1) = 0, but 9(12,2),(8,2%),(6,6,2) > 1, 9(5,2),(4,3),(4,13) = 0, but 9(10,4),(8,6),(8,2%) > 1,

9(6,12),(6,12),(4,3,1) — 0, but 9(12,22),(12,22),(8,6,2) > 1, 9(6,2),(6,12),(4,22) = 0,

but 9(12,4),(12,22),(8,42) > L.

On the other hand,

9(3,1,1),(3,2),(2,1%) — 1 and 9(6,2,2),(6,4),(4,2%) — 2, 9(2,1),(2,1),(12) — 1 and 9(4,2),(4,2),(23) = L,
92:2),22),2.2) = 1 and gy, (a4),4,4) = 1, 9(2,2),22),04) = 1 and gau),(4,4),24) = 1.
(*I) However, we expect that the formal power series

N
Y INaNsNy |
N>1

is a rational function of ¢ (with the only possible pole at t =1 77).

Remark 2.13 ( Plethysm structural constants )

Fix integer numbers k£ and n > 2, and a finite dimensional representation W of the Lie
algebra gl,. The k-th tensor power W%* of the gl,-module W has a natural structure of
Y. X gl,-module, where ¥, denotes the symmetric group of order k!. Let

W =3 "ary S* 0V, (2.17)

By

be the decomposition of the module W®* into irreducible ¥, x gl,-submodules. Here p is a
partition of size k, and S* stands for the irreducible representation of the symmetric group
Y, which corresponds to the partition p; 7 is a partition of length at most n and V. denotes
the irreducible g/,-module with the highest weight .

It W = V) is the irreducible g/,-module with the highest weight A, then the numbers

27‘/)\
plethysm, in the ring of symmetric functions A:

_ b
5,085, = g ay, Sr-

ks

ay, = a coincide with the structural constants of yet another multiplication, called

Note, that the plethysm is an associative, but not commutative operation.

It is well-known, see e.g. [69], that if « and 3 are partitions of the same size k such that
l{a) =71, [(B) = s and n > r + s, and furthermore, W = gl,, is the adjoint representation,
and

= (ktan, - ktapk.. . kk—PB k=)

n—r—s
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then
g, = [5" @ Ve 1 gl2¥] = gy

Hence, the inner product structure constants ¢,g-, and therefore the L R-numbers, see Sec-
tion 2.6, are certain special cases of the plethysm structural constants aj .

Conjecture 2.14 Let y and n, (%) < n, be partitions such that p has at least two different
parts. Let W be a ﬁnite dimensional gl,,-module.
If aj, w # 0, then aN™ o # 0, for any integer N > 1.

(*I) Moreover, we expect that if N; and N, are integers such that N; > Nj, then

Nim Nom :
any w2 Aoy and the formal power series

N
g aNM’W t

N>1

is a rational function of ¢ (with the only possible pole at t =1 77).

() We want to emphasize that the plethysm structural constants a7 B do not satisfy
the so-called saturation property, i.e. it’s not true, in general, that if aNM w # 0 for some
integer NV > 2, then af y, # 0.

Using the tables of plethysms from [1], we have checked that
agﬁ)ﬁ )2) =1, but “873)7(12)1) =0, ag 5)2()41 2 = 1, but aEz 2), ()21) = 0.
(") Based on several examples, we expect that if 37 > 2, then a7, i # 0.
On the other hand, Conjecture 2.14 is not true if a partition y has a form (1*). For
example,
(4,4,2,1,1)

a (8,8,4,2,2)
(2,1,1),(1,1,1)

(2,1,1),(2,2,2)

(8,6,6,2,2)

_ (4,3,3,1,1)
=0,a (2,1,1),(2,2,2)

=1, but a » %(2,1,1),(1,1,1)

=0, but « =1.

Question 2.15 Could it be true that for any finite dimensional gl,-module W there exists a
polynomial pw (1) (pw(t) =t 72 ) such that for all partitions © and y one has

if a%ﬂw > pw(N), then af, y # 0.

(&) It is one of the most fundamental problems of Algebraic Combinatorics, Representa-
tion Theory, Theory of Invariants, ... that to find a combinatorial rule for description of the
numbers aj, .

|

Definition 2.16 The polynomials L. ;(q) are defined via the decomposition of the internal
product of Schur functions s, * sz(x) in terms of the Hall-Littlewood functions:

S % 85 ZL L q). (2.18)

In a similar fashion one can define the polynomials L’ (q), where A and B are skew diagrams

and p is a partition:
sa % sg(x Z L 1q).
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Examples 2.17 (¢) Taken =4, a = (3,1) and B = (2,2).
Then the all non—zero polynomials L€3,1),(2,2)(q) are:

3,1 2,2 2,1,1
LE3,1;,(2,2)(Q) =1, LE3,1;,(2,2)(q) =49 LE3,1),()2,2)(Q) =149+,

LEZI’),I)),(2,2)(q) = Q(lv 17 27 17 1)
(1¢) Take n =6 and o = 3 = (3,2,1), then

L) =1, L5(0) =2+ q, LD () = (3.2.1), L3V (g) = (4.5.2,1) = (1 + q)(4.1,1),
L% (q) = (4,9,12,11,5,2,1) = (14¢)(4,5,7,4, 1, 1), L1 (q) = (149)? (14+4%)* (2,3,0,1).
1) Taken =6, a=(4,2) an =(3,2,1), then

i) Tak d h

L8V =1, L (q) =24 ¢, LV () = (2,3.1), L) () = (1,2,1),

L3 (0) = (L4 @)L g+ )2, 1,1), L8 (g) = (L4 P (L+ g+ ¢7)(2.0,1),
L) = (140’ + a+ @)1+ q+*)(1,1,0,1).
(iv) Take n =6, o = (4,2) and 3 = (2°). Then
L) = . L8D(q) = 0. L7V (9) = 1 + g + 2,
L q) = a(3,2,3,1,1). L83 (q) = (1,1.1)(1,0.2,1,2,0,1),

190(g) = (1,0.1,1,0,1) K, 19)(q).

Hereafter we shell use the notation [?’cw(q) to denote the polynomial ¢ =) K (¢71).

Remark 2.18 It is not true in general that if «, 3, u are partition and a > g, then the ratio
LL 5(1)/ Ko u(1) € Z.
For example, take o = 3 = (6,2,1) and g = (3,3,2,1). Then

Lgﬂ(q) = (2,17,44,63,64,48,29,15,6,2,1), [?’cw(q) =(1,2,2,1)

and L* (1) =291, L* ,(~1) = 1.
We see that [?’cw(q) is not a divisor of L ;(¢), and the ratio L. ;(1)/K.,(1) ¢ Z.

Not(? that L7 ;(0) = cgf)l()zl) = 2 and degL}, 5(q) = 10 = n(u) in a good agreement with
Conjecture 2.23.
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It follows from (2.6) and (2.16) that

= ZgaﬁwKwu(Q)- (2.19)

Thus, the polynomials Lgﬁ(q) have non—negative integer coefficients, and

Lgﬁ(o) = YaBu-

It follows from (2.18) that the number L/ (1) is equal to (s, * s, h,), where ( ,) denotes
the Redfield-Hall scalar product on the ring of symmetric functions, see [53]. In other words,

Salx) * sp(x ZL“ﬁ ym,(x

where m,(x) denotes the monomial symmetric function corresponding to partition p. There-
fore, the numbers L7 ;(1) and L) g(1) can be defined for any composition x.

Remark 2.19 There is a well-known connection between the structural constants ¢,5, and
the numbers L7 ;(1). Namely, let A, B and ' = I' \ v be skew diagrams such that the
partition I' has the length at most n, and |A| = |B| = |C|. Then

9dABC = Z( )( )Lwo O( )v

WEX

where w o C' stands for the composition w(I'+ é,) —~v — é,, and 6, = (n —1,n —2,---,1,0).

The polynomials Lgﬁ(q) can be considered as a generalization of the Kostka—Foulkes polyno-
mials. Indeed, if partition 3 consists of one part, 5 = (n), then

Lip(q) = Kaulq), Log(q) = Karul(g).

Proposition 2.20 Let o, § and p = (py > -+ > p,) be partitions of the same size n. Then

=3 Ko, w(1)K5, (1), (2.20)

where the sum runs over sequences of partitions p = (M, 1™ such that |9 = p,,
1 <a<r.

Corollary 2.21 [f p = (r,1°) is a hook partition, then

Z[XQ\A 1) [Xﬁ\/\ (1 )(1), (2.21)
[Al=r

where the sum runs over all partitions A of size r, A C an .
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In particular, Lglg)(l) = foff, where f® denotes the number of standard Young tableaux of
shape a. More generally [35],

L8(0) = Kpalq. ) Kaamy(0) = Karg(q.9) K 0m/(q), (2.22)

where B
Kap(q) = q"O7 Ko5(q™"), Kap(q,q) = Kap(q,1)]i=g,

and K,5(q,t) stands for the double Kostka polynomial introduced by I. Macdonald [53],
Chapter VI, (8.11).

Problem 2.22 Find a g—analog of the equality (2.21) .

Conjecture 2.23 ( Saturation conjecture for polynomials L] ;(¢) )

Let a, 8 and p be partitions of the same size such that Lgﬂ(q) # 0. Then

(#) For any integer N > 1,

® max degL%i ns(q) = N maxdegLy ;(q);

o If partition p either has at least two different parts, or u has a rectangular shape, but p
is different from the both partitions o and 3, and their conjugate ones o and [3', then

min degL%i nglq) = N mindegL (q).

(##) maxdegL? ;(q) = n(p) — Ala, 8), where A(a, 3) stands for the min deg K, 5(q, q),
i.c.

K, 3(q,q9) = B(a, 3)¢M*P + higher degree terms.

(#44) ( Saturation conjecture for polynomials K, 5(¢,q) )

For any integer N >1,  A(Na, N§) =N A(a,p).

Examples 2.24 (i) Take n = 3,
(3) _ (6) B
Linyen(@) =1, Ly un(0) =1,

Lol o @ =140+ + ¢ L) un(@=142¢+4¢ 43 +3¢" + ¢ + ¢,

(1%) _ (22) _
Loty a0 =a+ ¢, L (@) = (1,1,2,1,1).
(12) Take n =4,
4,4
),(272)(@ =4 LE6,2;,(4,4)(Q) =1+ 927

Q) =1+q+¢, Lighlyla) =(1,2,3,1,1),

LEZI’),I)),(2,2)(q) = Q(lv 17 27 17 )7 LE?;72))7(474)(q) = q2(27 27 67 57 77 47 47 17 1)

t~
—_
< al\')
—
—
~—
~~

The latter example shows that for the numbers g,3, an obvious generalization of the Fulton
conjecture, see Section 6, is false.
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Conjecture 2.25 ( Rationality conjecture for polynomials L[ ;(q) )
Let o, B and u be partitions of the same size. The generating function

Z L%Z,Nﬁ(Q) tN
N>0

is a rational function of ¢ and t.

Problem 2.26 Give a combinatorial interpretation of the integer numbers Lgﬁ(—l).

Problem 2.27 Find a fermionic type formula for the polynomials Lg“ﬁ)(q) which extends that
for the Kostka—Foulkes polynomials, see Section 5.1, Theorem 5.3.

2.6 Extended and Restricted Littlewood—Richardson numbers

(1°) ( Extended Littlewood—Richardson numbers )
Let A,u and v be partitions such that |A| 4 |u| > |v|. Choose an integer number N such
that N > Ng := max(|A| + Ay, || + 1, [v] + v1), and consider partitions

an = (N_ |)‘|7)‘)7 6]\7 = (N_ |:u|7:u)7 IN = (N_ |V|7V)‘

It is clear that |ayn| = |G| = |yn| = N.
According to results by F. Murnaghan [57], Y. Dvir [17] and E. Vallejo [70], if N > Nj,
then the number g, g, ~y does not depend on N.

Definition 2.28 The extended Littlewood—Richardson number CY  is defined to be equal to
the stable value of the numbers ¢, gy ~n-

More generally, the following statement is true:

Proposition 2.29 The sequence of polynomials {L} ; (q)}n>1 is stabilized to the polyno-
mial L% ,(q), i.e. if integer N is big enough, then the polynomial L. ; (q) does not depend
on N and equal to LY ,(q). The latter is a polynomial with non-negative integer coefficients,

and L% ,(0) = CY .
According to another result by Y. Dvir [17], the numbers CY  can be considered as a gener-

alization of the L R-numbers CKM.

Proposition 2.30 (Y. Dvir [17] ) If |\ + |u| = |v], then the number CY , coincides with
the Littlewood—Richardson number cX ..

Examples 2.31 (¢) Take A = = (2,1), then
o321 _ 321 _

A T A ’

0(3,1,1) _ 6, C/(\?f,l) _ 57 C/(\ill,l,l) _ 47 C/(\Z’ZZ) _ 57

A
2,2 3,1 2,1,1 21
el =6, 0V = P =9, eV = 0.

(i2) Take A = (2,1) and pp = (3,1), then
o =13, oY = .

A
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Problem 2.32 Find a combinalorial rule for calculating the extended LR-numbers C¥
which extends the Littlewood—Richardson rule.

Conjecture 2.33 ( Saturation conjecture for extended [ R-numbers )
C%K,Nu # 0 for some integer N > 1 if and only if CY , # 0.

(2°) ( Restricted Littlewood—Richardson numbers, cf. [26], Exercise 13.35 )
Fix positive integers [ and n > 2. Denote by X, ; the affine reflection group on R”
generated by the reflection

S0 = (@n + Lxg, -+ 2py_1,201 — 1)
and the symmetric group X,,.

Definition 2.34 ( Restricted Littlewood—Richardson numbers )
Let X\, and v be partitions such that [N + || = |v|. Define the level | restricted
Littlewood-Richardson number X [l] as follows

L= (=1,

WEYin 1
where w o v denotes the composition w(v + 6,) — 6, and 6, = (n —1,---,1,0).
It is well-known that
<& <<=

In a similar fashion one can define the level | extended Littlewood—Richardson numbers

SR

Conjecture 2.35 ( Saturation conjecture for the level [ extended L R-numbers )
Let M,y and v be partitions such that || + |p| > |v|. Then
C%K,Num # 0 for some integer N > 1 if and only if CY [l] # 0.

Conjecture 2.36 ( Polynomiality conjecture for level [ extended [ R-numbers )
Let M,y and v be partitions such that || + |p| > |v|. Then
C%K,Num is a polynomial in N with non—negative rational coefficients.
() Moreover , the formal power series

N>0
is a rational function in t of the form

Py (6)/(1 =ty Qe DFL P (0) =1, Py (1) # 0,

where v(\, p, v, 1) € Zso and P;i(t) is a polynomial with non—negative integer coefficients.
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3 Parabolic Kostant partition function and its ¢-analog

3.1 Definitions: algebraic and combinatorial

Let n = (91,712, -, 1) be a composition, 5, > 0, |n| = n. Denote by ®(n) the set of ordered
pairs (7, ) € Z* such that
1<i<m+-+4n<j<n (3.23)

for some r, 1 <r < p. For example, if n = (1"), then
O(n) = {(i,j) € Z°|1 i < j < n}.

Definition 3.1 Let v = (y1,72, %) € Z" be a sequence of integers such that |y| = 0,
define a parabolic q-Kostant partition function Ke(, (7| q) via the decomposition

T (= qaifa))” le (7] @) (3.24)

(4,5)€@(n)

where the sum runs over the all sequences v = (1, %2, ,Yn) € Z" such that |y| = 0.

Definition 3.2 Let Kg(,(v) denote the parabolic Kostant partition function, that is to say,
the value of the polynomial Kg) (7| q) at q := 1.

Remark 3.3 ( Combinatorial definition of ¢-Kostant partition function )

One can give an equivalent pure combinatorial definition of the parabolic ¢-Kostant par-
tition function Kg(,) (7| ¢) as follows.

Let n be a comp051t10n In| = n. Denote by SM, () the set of all skew—symmetric integer
matrices M = (m; j)1<ij<n such that
(()m;; >0, if1 <i<j<n;
(1) m;; =0, if rp_y <@ <j <rgforsomek, 1 <k <p, where rj, := Ej<k n;j, and ro := 0;
(20) D07y mi; =, for all 4,1 <4 <. -

For each M € SM,(v) we define the magnitude of M, denoted by ||M]|, to be the sum
2195]‘9 my ;. Then

Koyl q) =) o™, (3.25)

where the sum runs over all matrices M € SM, (7).
Therefore, Ko () = Card |SM,(v)|.

Remark 3.4 ( Generalized ¢-Kostant partition function [68] )
Let X C &(1") be a subset, following [68] one can define the generalized Kostant partition
function Kx(v) and its ¢g-analog Kx(v| ¢), from the decomposition

I @ —qaifep)™ Zﬁzvlq

(7,4)ex

26



where the sum runs over all sequences v € Z" such that |y| = 0. Moreover, by definition,

Ke(v) = Ks(v] @)lg=1-
Equivalently,

Ks(] q) Zq”M”

where the sum runs over the set of n by n skew—symmetric matrices M = (m, ;) such that

(z)m27]201f1<Z§]§n,

(22) mi; =0if (2,5) ¢ X,

(zu)z m;; = for alli, 1 <¢ <n.

(W) Most of our results about the parabolic ¢-Kostant partition function Ke(,;)(y| ¢),
including, for example, Theorems 3.17, 3.20, 3.23, 3.25, 3.30 and 3.31, with a small modlﬁ—
cations, are still valid for the function Kx (7| ¢). Since we don’t use the generalized Kostant
partition function in the present paper, we leave this interesting subject for subsequent pub-
lications.

3.2 Elementary properties, and explicit formulas for /(y) < 4

Using the above combinatorial definition of the function Kg(,)(y| ¢), one can describe some
elementary, but useful, properties of the latter.

Proposition 3.5 (i) Let n;, ¢« =1, 2, be two compositions and v; € Y,., ¢ =1, 2, then
[(<1>(771*772)(71 * 72| Q) = I(@(n1)(71| q) I(@(n2)(72| q)

(12) Let n be a composition and v € Y,, then

Ko7l 4) = Koy (=T 0) (3.26)

where for any composition = (B, -, Br—1, B,) the symbol ? stands for the composition
(67“7 ﬂ?“—lv e 7ﬂ1)-

(2i2) Let my and ny be compositions such that ny is a subdivision of ny, so that ny > 1.
Then

Koy (4) < Ko (q)-

See Section 1, Notation, for the definition when a composition 7, is a subdivision of that ;.
We remark that the last statement is false if one assumes only that n; > 1, with respect to
the dominance partial ordering on the set of compositions, see example below.

Example 3.6 Take v =(3,0,—1,—1,0,—1), then (2,3,1) > (2,2,2), but
- _ 3 4 - _ .3 4
Kap2( 4) = ¢ +2 ¢" < Kepan(vl ¢ = ¢ +3 ¢

On the other hand, Ko21.1,2)(7| ¢) = ¢ 3(1,3,2,1) > Ko@22) (7] q).
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Proposition 3.7 ( Recurrence relation for parabolic ¢-Kostant partition function

)

Let y = (n1,---,mp) be a composilion of size n, v € Y, Define j = (n1,--+,nr,_,). Then

Kogy(vl @) =q7™ ZM = B Ve = Brosl @), (3.27)

where the sum runs over 3 € ZTP ' such that |f| = —

The next proposition describes several particular cases of Theorem 3.31 below, namely, the
cases when a parabolic ¢-Kostant partition function admits an explicit simple expression.

Proposition 3.8 ( Explicit formulas for /(n) <4 )
(¢) Let 1 = (n1,1m2) be a two component composition and v € Y,. Let us introduce integer
vectors A = (1, -+, Y, ) and 1 = (=Y 41, s —Ym+np)- Lhen X and p are compositions of
the same size, and

Kowy(] @) = [Pal ¢, (3.28)

where Py, denotes the set of transportation matrices of type (A;p), i.e. the set of [(X) by [(p)
matrices with non—negative integer entries, and the row sums X;, and the column sums ;.
(ii) Let n = (1°) and v € Yizoy, i.e. v 20 and y; + v, 2 0. Then

< maxi(vyi1,V1 2 mln b —I_
Kqy(y] q) = gmexCrm+z) [ (1 +7)

1

q

(¢ii) Let n = (11,m2,7m3) be a three component composition of size n, and v € Y& belongs to
the dominant chamber. Then

m

Kopy(v] @) = ¢ HB (5 + 125 12), (3.29)
where forn > k
Bty =Y (T ) =y 0000 g - -0l a0

Il
=]

J
(2v) Let n = (1,02,13,14) be a four component composition of size n, gy = 1, and v € Y,

belongs to the dominant chamber. Then

n2+1

Ko@) (7] q)—qW"ZB B+ 133 m3) HB (B + 75 + na3 ma) g™,

7=2

where the sum runs over all vectors 3 € ZW—H such that |3| = 1.
In particular, if (v1,72, 73, 74) € )/(14); te. 71> 0,79 >0 and 43 > 0, then
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: e +2 _ +1—2
Koany(71,72,73,74) = ¢ { ¢ [ n , ] [ Vf n Z [ T J ] 7
1 S 25<m g
Y1 . _ ]
— 4 n J 71"’1_] "}/2—|—1—]
=q Zq [ X ] ! ‘
J=1 q L q

. 7 +3 +2
Therefore, if (v1, V2, V3, 74) € Y(Jll), then  Kge)(71,72, 73, 74) = ( n 5 ) +72 < N 9 )

We remark that B,(n;l)|,=1 = ( 7; )

Remark 3.9 It is well-known, see e.g. [67], [13] and the literature quoted therein, that on
the set of transportation matrices of size n by m, the function |P,,| is a continuous piecewise
polynomial function in Ay, -+, A, pig, -, fi,,, of degree (n —1)(m —1).

Question 3.10 [t follows from the above Proposition and the formula (5.41) from Sec-
tion 5.1, that if N is big enough integer such that vy = v 4+ Né, 4, is a partition, and
if we put by definition Ay := Né,, and pn =N (6, + (92,-..,12)), then

SN—_——

m

|7D/\u| =

/\NW«N

() Is it true that if N is a big enough integer, then

Prulq) = X5 (0);

where ¢ (q) denotes the g-analog of the LR-numbers, introduced C. Carre and B. Leclere,
and A. Lascouz, B. Leclerc and J.-Y. Thibon, see e.g. [47] ¢

For the definition of polynomials Py ,(¢) see Section 5.4, (5.48).

3.3 Non—vanishing, Degree and Saturation theorems

It is clear from the very definition that Kg(,)(v| ¢) is a polynomial in ¢ with non-negative
integer coefficients. For example, if n = (1 ) the function Kg(1n) (7] ¢) coincides with the
g-analog K, (7| ¢) of the Kostant partition function K,(v), see e.g [2]. It is not difficult to
see [35] that

K,(v | ¢)#0if and only if v € Y,,, where

k n
Vo= {(7, ) €2 7 >0, 1<k<n, Y 5 =0}
=1 =1

Our next goal is to generalize this result to the case of the parabolic ¢g-Kostant partition
function e (’y| q) corresponding to an arbitrary composition 7.
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Definition 3.11 Let n = (n1,...,n,) be a composition of size n, denote by Y, the set of
sequences (Y1,...,Yn) € Z", |y| =0, such that for each integer k,0 < k < p—1, the following
inequalities are valid:

Z’yj + Z Yo >0 for all subsets Qp Clnr+1,... 08 + Ner1],

7=1 a€fly

where ry, 1= Zj<k ni, if k> 1, and ro := 0; by definition, we put ng := 0.

In particular, we have vy > 0,---,v, >0, and 7v,,_,41 <0, -+, v, <0.
Definition 3.12 Denote by Y& the dominant chamber in the set Y,, i.e. the subset of Y},
consisting of all vectors v = (y1,...,v,) such that v > ... > v,—1 > 0.
(#) We want to stress that if v € Y77+7 then v, _ 41 == v,-1 =0, and v, <0.
Theorem 3.13 ( Non-vanishing and Degree Theorem for parabolic ¢-Kostant par-
tition function )

Letn = (n1,...,m,) be a composition of size n, and v € Z" such that |v| =0. Then
Kooy(v| ¢) #0, if and only of v €Y. Moreover

deg Ko (] ¢) = z—: (p =k i i)- (3.31)

Remember that r;, = Ej<k n; if k> 1, and ro = 0.

Example 3.14 Take v = (2,1,0,—1,0,—1,—1) and n = (1,2,2,1,1). Using formula (3.51),
let us compute the degree of the pambohc q-Kostant partition functwn Koy(v] q). Namely,
deg Ko, (’y| q)—2—|—(2—|—1)—|—(2—|—1—1)—|—(2—|—1—1—1)—8. ]nfact
Ko, (7| q) = ¢3(3,21,52,65,42,13).

If v €Y, so that Kg(,)(v| ¢) # 0, we denote by (7, n)g*0" its leading term. For example,

P (M) =1, s (1)) = (= i

r((3,0,—1,—-1,0,—1),(2,3,1)) =3, s((3,0,—1,—1,0,—1),(2,3,1)) = 4.

In general, the number r(v,7) can be equal to any positive integer. As for the number
5(7,n), it follows from Theorem 3.15 that s(v,7n) = (v, da(y) ), Where 0, denotes the vector
with components (0g(;))i =p—k if rp_y <@ <y k=1,---,p.

Moreover, the numbers s(v,7n) satisfy the so-called saturation property.

Corollary 3.15 ( Saturation theorem for parabolic Kostant partition functions )
For any positive number N we have

s(Nv,m) = Ns(v,n).
Conjecture 3.16 ( Unimodality conjecture for parabolic Kostant partition func-
tions )
Let n be a composition of size n, and v € Z" such that |y| = 0. Then, Kg@) (7| q) is a
unimodal polynomial in the variable q.
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3.4 Rationality and polynomiality theorems

Theorem 3.17 ( Rationality theorem for parabolic Kostant partition function, I

)

Let n be a composition and v € Y,. Then
Z[X@ n7| q PU’Y(Q? )/QN’V(Q7 )7
n>0

where P, (q,t) and Q,.(q,t) are mutually prime polynomials in q and t with integer coeffi-
cients, P, (0,0) =1.

Moreover,

(M) the denominator Q.. has the following form:

Quy(qt) = H(l —q' 1),
jeJ
where J := J,., is a finite sel of non—negative integer numbers, not necessarily distinct;

(doeb) m(l ) =(1- t)wm) P (t), Ppy(1) # 0, where t(n,7) € Zyo, and Ppy(t) is a

polynomial with non-negative integer coefficients.

(") We expect that if 74 and v, belong to the set Y, and 41 > 72, i.e. Ejgk T > Ejgk Y24
Vk > 1, then
sz(t) - P?M(t) = 0.

In other words, the latter difference is a polynomial with non—negative coefficients.

Corollary 3.18 ( Polynomiality theorem for parabolic Kostant partition function

)
Let i be a composition and v € Y,. There exists a polynomial K,.(t) with rational
coefficients such that for any integer number N > 1, K, (N) = Kg()(N7v).

Conjecture 3.19 The polynomials K,.,(t) have non—negative rational coefficients.

Theorem 3.20 ( Rationality theorem for parabolic Kostant partition function, II

)

Let n be a composition and vy,---,v; €Y,. Then the generating function

Z Koy(Niyi + -+ 4+ Neme| @) 2+

(N17"'7Nk)€Z§0

is a rational function in ¢ and the variables Xy = (xy, -+, x1) of the form P(q, Xy)/Q(q, Xy),
where P := P, . (¢, Xy) and Q(q, Xy) := Q... .0(q, Xi) are mutually prime polynomials
in ¢ and Xy with integer coefficients, P(0,0) = 1.

() Moreover, the denominator Q(q, X) has the following structure:

Qe X = ]I IT =q aw),

PAEWC{1,k} aw€Jw

where xw = [[,cp x4, and for each non—empty subset W C {1,---,k}, Jw denotes a certain
set, depending on W and vy, -+, vk, of non—negative integers, not necessarily distinct.
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(") We expect that if W = {b},1 < b <k, then Jy = J.

Vo1

Corollary 3.21 (Piecewise polynomiality theorem for parabolic Kostant partition
function )

Let n be a composition and 1, -,y € Y,. There exists a piecewise polynomial function
K(ty, - te) ==Ky, o (t1, -+ tp) with rational coefficients such that for any non—negative
integer numbers Ny, --- Ny, K(Ny,--, Np) = Koy (N + -+ Nove)-

(") We expect that the restriction of the function K(#y,-- -, ;) on “the dominant chamber”
Ne = {(Ny > Ny > -+ > Ny) € 7Z%,} is a polynomial with non—negative rational
coefficients.

Example 3.22 Take v, = (2,1,0,—1,—1,—1), 75 = (1,1,—1,—1) and = (1°). Then
Q%m(lv l’,y) = (1 - l’)7(1 - y)47 and
Py (L z,y) = (1,26,71,26) + (1, —57, —223, —93)y + (0, 33,224, 115)y> — (0,8, 66, 50)y°.

Therefore, in our example the function (n,m) — Kg@s)(n(2,1, =1, =1, =1)+m(1,1, -1, —-1))
is a polynomial one on the whole set {(n,m) € Z2,}.

(oI) We expect that in fact the function (nqy,---,np) = Ko@)(niy + -+ npye) is a
polynomial one on the whole set {(nq,---,nx) € Zéo}, cf mized lattice point enumerator

theorem by P.McMullen [54].

3.5 Parabolic Kostant partition function K4, (7) as function of v

In this Section we state a few theorems, problems and one conjecture about behavior of the
parabolic Kostant partition function Kg,)(v), considered as a function of v, on the set Y.

Theorem 3.23 ( Polynomial expression for the restriction of the parabolic Kostant
partition function Kg(,)(y) on the dominant chamber Y * )
Letn = (n1,---,mp), p >3, n, # 0, be a composition, consider vector | = (Iy,ly,-- -,

rpes )

where [; = Ef;llﬂ-l nj if ree1 <1<, 1<k <p—2. Let f = (1, -, mp—2). If v € YT, then
- - - s v+
Koy (1) =Y Ko (B — by B — o) [ 57 ) (3.32)
g j=1 7
where the sum runs over 3 € Zgo_z) such that |B] = |l| = El<i<j<p—1 ;-

Corollary 3.24 Being restricted on the dominant chamber Y, the function F,(7) := Kg(,)(7)
is a polynomial in vi,---,7,,_, of degree |I| =3, ;.. ninj —np(n —np) with rational co-
efficients. -

Theorem 3.25 ( Piecewise polynomiality theorem for function v — Ko (7) )
On the set Y, the function v — F(v) := Ko (7) is a continuous piecewise polynomial

function of degree Zl<i<j<p nin; —n+ 1.
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We see that if n, > 1, then the dominant chamber Y77+ is strictly contained in some maximal
polynomiality domains of the function Fj,.

Problem 3.26 Count the number and describe a structure of the polynomiality domains of
the function F,.

Conjecture 3.27 Restriction of the function |l|! F, on the dominant chamber Y, ", denoted
by FF, is a polynomial in ~y,---,7,,_, with non—negative integer coefficients.

Problem 3.28 Find a combinatorial interpretation of the coefficients of the polynomial I}f.

3.6 Reconstruction theorem

The leading term |I|! G,)(7) of the polynomial F*(v), i.e. the degree |/| homogeneous part of
FF(v), admits the following description.

Definition 3.29 For any composition n = (ny,---,n,), such that n, > 0 and p > 3, define
the operator

D, = IT (9707 —a/0v)),

1<i<m<j<rp—2

acting on the quotient ring of the ring of polynomials Q [y1, -+, 7v,] by the ideal generated by
the sum v1 4 -+ V..

Let Y= ('717"'7771) € va |7| = 0.

Theorem 3.30 ( Characterization of polynomials G,(v) )
The polynomials G,(y) are uniquely determined by the following properties

(z) G,(v) is a homogeneous polynomial of degree |I| = El§i<j§p—1 nin;,
(27) DnGn(V) = ;?1:1(77‘713_1/7719—1!) G(nz,~~~ﬂ7p)(7m+1a S Yn)s
(122) Gy (v) = 1.

Theorem 3.31 ( Reconstruction Theorem )

Let G(v) = 225 b,(8) H;p:_f ’yjﬁj/ﬂj!, summed over [3 € Zgo_z) such that |B| = |l|. Then

P2 1
ne=ne (750,
SULR
]_
Corollary 3.32 Let | be the vector defined in Theorem 3.23, then
by(5) = Kog)(8 —1).

In particular, G, () is a polynomial with non—negative rational coefficients.

Finally, we state a result which is a refinement of Proposition 3.7, and gives partly a
g-analog of the recurrence relation (3.32).
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Theorem 3.33 ( A g-analog of Theorem 3.23 )

Let n= (7717"' 77727)} p > 3; Np 7£ 0} be a composition. Deﬁne :7\ = (717" " Vrp—s 07 70)
——

Np—2

and = (- ym,). [y € Vi, then

KoYl @) = ¢ 25 Kawy(3 — Bl ) T By(By + mp—rinp—1) 115 41 Bolvi + 85 +
Mp—13Tp-1)5

where the sum runs over vectors B € ZZy° such that |B| = E;p:_f’ v, and polynomials
B,(n; k) are defined in Proposition 3.8, formula (3.30).

Remark 3.34 The “classical” case n = (1") and ¢ = 1, which corresponds to the Kostant
partition function K,(v), has been studied by F. Berezin and .M Gelfand [5], B. Kostant
[45], B.V. Lidskii [50],[51], D. Peterson, A.N. K. [34], [35], A. Postnikov and R. Stanley [68],
W. Baldoni-Silva and M. Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], J. De Loera
and B. Sturmfels [13], ... . In particular, if n = (1") and ¢ = 1, Theorem 3.19 has been
proved by B.V. Lidskii [50] in 1984, and by D. Peterson (unpublished). The case of arbitrary
n and ¢ has been studied by the author (unpublished, but see [35]). The case of generalized
Kostant partition functions and ¢ = 1 has been studied by A. Postnikov and R. Stanley
(unpublished, but see [68]).

4 Parabolic Kostka polynomials:
Definition and basic properties

Definition 4.1 ([35],[41]) Let X be a partition and p and n be compositions such that |A| =
ll, |n|=n and ll(x) < n. Define the parabolic Kostka polynomial Ky ,,(q) as follows:

K@) = ) (=) K (w(d +8) — i = 8] q), (4.33)

WEX
where 6 := 6, = (n—1,n—2,...,1,0).

If a composition u is compatible with n and corresponds to the sequence of partitions
(possibly with zeros at the end) g = (™, @ ... 4 we will denote the parabolic
Kostka polynomial K,,(¢) by K\ u(q) or K, (.0 42, .m)(q). If a sequence of partitions
p=(pW, - ) consists of only rectangular shape partitions u(® = (%) := R,, 1 <a <
r, we will write R = (Rq, R,, ..., R,) instead of g, and K, p(q) instead of K, ,(q).

Let us elucidate Definition 4.1 by a simple, but interesting example.

Example 4.2 Take A = (6,2,2,2), p = (2°) and n = (2%). There are 4 contributions to the
RHS(},33), namely,

-

Krun(q) = Kopy(n| @) = Kagy(v2l @) — Kapy(s] 0) + Kagy(val @),
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where vy = A — p = (4,0,0,0,—2, =2), v, = (4,0,0,0,—3,—1), v3 = (4,0, —1,1,—2,-2)
and 4 = (4,0,—1,1,-3,—1). It is not difficult to see that Kew,)(11| ¢) = ¢*(1,4,10,12,9),
Ko (2l @) = ¢*(1,4,7,10,8), Kop) (] ¢) = ¢°(2,7,10,7) and Keg)(v4] ¢) = ¢°(2,5,8,6)
Hence, Kyu,(q) = ¢°, and degK,,(q) =6 < degKop)(A — ] ¢) = 8.

Remark 4.3 Using in Definition 4.1 the ¢-analog Kz (7| ¢) of the generalized Kostant par-
tition function, see Section 3.1, Remark 3.4, one can define the “generalized” Kostka poly-
nomials K, x (7] ¢). They form an interesting family of polynomials to study.

Theorem 4.4 ([64]) Let X be a partition, and p be a composition compatible with n. Then
K, u(l) = [X’/\7(M(1)7M(2)7,,,7M(r))(1) = Mult[v/\ : ®§:1VM(1‘)], (4.34)

ie. Ky () u . iy (1) is equal to the multiplicity of the irreducible highest weight A gl(n)-
module Vi in the tensor product of irreducible highest weight 1) representations Vi,
1 < <r, of the Lie algebra gl(n).

In the case when all partitions p(? have rectangular shapes, Theorem 4.4 has been proved in
[28].

Remark 4.5 We expect that K, ,,(1) > 0 for any partition A and compositions g and 7. It
seems a challenge problem to find a combinatorial and/or representation-theoretic interpre-
tations of the numbers K,,,(1) and K),,(—1) for general A, i and 5. In particular,

(%) When does the number K),,(1) equal to 1 ?

Examples 4.6 In these examples we will use notation Py,,(q,t), Qrum(q,t) and Jy,,(q),
which will be explained in Theorem 4.14.
(¢) Take N = (3,2,1), p = (2,2,2) and n = (1°). Then Kyu,(q) = K\.(q) = ¢+ ¢*, and

> Koypn(@) 17 = (1= qt) (1 = ¢*t)7".

n>0
(i2) Take the same X, but pp = (0,2,2,2) and n = (
5

[(/\;m(Q) = q3(_17 —1,0,1,2, 1); [(2/\72M777(q) =4
Moreover,

1*). Then
(1,0,-2, —4,-4,-1,0,3,3,4,2,1).

Pun(q,t) =1 —¢*(1,3,2, )t + - -- + ¢**(=1,1,1,0,—1,—1) 17,

Q/\MU(%t) = (1 - q?)t)(l - q7t) H(l - qj t)v J/\Mﬁ(q) = q2(1727 17 17 1727 1)7

J=2

see Theorem 4.1/, (#), for the definition of polynomials Jy,um(q).
(¢i2) Take again A = (3,2,1), but p = (0,2,0,2,2) and n = (1,2,1,1). Then
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Kiim(q) = ¢*(1,0,—4 —3,2,4,2), Ko 2,.,(9) = ¢ (3,5,6,—3,—13,—17,—11,3,9,12,6, 3).
Moreover,

Pr(q,t) =1 —¢%(1,2,6,5,0, =2)t + -+ +¢"°(1,—1,-2,1,2) 2,

9
Qrunlq,t) = H(l —q’ 1), Inn(@) = €°(2,2,2,2,2,2,2),
7=3

(tv) Take the same X\ = (3,2,1), but p = (0,2,0,2,0,2) and n = (1,2,2,1). Then
Kyu(q) = ¢*(1,2,-8,-6,8,5), Kor2,,(q) = —q¢" —2¢8 + -+ 22¢" 4+ 12¢'®. Moreover,
Py(g,t)=1— q3(2, 3,2,11,10,—4,=2) t +--- + q132(1, -1,-2,1,2) 122, and
Taun(q) = ¢%(2,4,4,3,4,4,3). In other words,

Quun(q:1) = (1= ¢"1)*(1 = ¢") (1 = ¢"1)*(1 = ¢")°(1 = ¢"1)'(1 — ") (1 — ¢°1)".
() We would like to remark that the reasons for the equality below are elusive.

" Paza),02022),021,0)(¢ ]2 = Pa2)020202),0221)(¢:1)]e2.
(#) These examples show that for general A, p and 5, the polynomials K, ,,(¢) may have
negative coefficients, the numbers a(A, i||n) may be negative and may not be a homogeneous
function in n, and those b(A, p||n) may not satisfy the (generalized) Fulton conjecture.

Our nearest goal is to describe several cases when the polynomials K ,,(¢) have only
non—negative coefficients. However, we want to point out that there are many other cases
when the all coefficients of a parabolic Kostka polynomial are non—negative.

Example 4.7 Take A = (6,3,2,1), p = (2,1,2,1,2,1,2,1) and n = (2*). Then K,,,(q) =
¢ (4,18,24,14,4). It is interesting to compare the polynomial Ky, (q) with the g-analog of the
LR-numbers ci(l) MT)(q) introduced by C. Carre, A. Lascoux, B. Leclerc and J.-Y. Thibon,

i, Ve, en(@) =¢%(2,7,12,15,14,9.4, 1).

see e.g. [47]. Namely, one can show that o) (21

Proposition 4.8 Let A be a partition and p = (O, -+, 1)) be a sequence of partitions.
If inequalities 11(u%) > 1(X) holds for all i, then

Ky, u(q) = Mult[Vy : @/, V,»). (4.35)

Proposition 4.9 Let A be a partition and p = (pV, 4®) be o dominant sequence of par-
titions. Then

- [ A
Ky, ulq) = CL(I),M?)' (4.36)

See Introduction, Section 1.1, for the explanation of the meaning of the symbol “==".

Positivity Theorem ([29],[42]) Let A be a partition, and p = (M), Ry, - -+, R,) be a sequence
of (proper) partitions such that
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(a) (Ry,--+, R,) is a dominant sequence of rectangular shape partitions,

(b) either 1I(u™M)) > I(N),

or A D uV and the complement A\ p\V is a disjoint union of partitions AV, A@) ... A\(@),

Then the parabolic Kostka polynomial KA’(W)’R%...’RT)(q) has non-negative integer coeffi-
cients.

Conjecture 4.10 (Positivity conjecture for parabolic Kostka polynomials, cf [32],[41]

)

Let X be a partition and p = (™, - 1)) be a sequence of (proper) partitions such
that (u@,--- 4" is a dominant sequence of partitions. Assume that

either A O ) and the complement N\ p\Y) is a disjoint union of partitions \(V, A2 ... \(®)
or [I(u™M) > 1(N).

Then

Y

K, u(q) € N [q].

(*I) In particular, we expect [32], [41] that if A and u are partitions and 7 is a composition,
then

KMU(Q) €N [Q]

Remark 4.11 According to (4.34) and Conjecture 4.10, if x is a (proper) partition, then the
parabolic Kostka polynomials K, ,,(¢) may be considered as a g—analog of the tensor product
multiplicities. Another ¢g—analog of the tensor product multiplicities has been introduced by
C. Carre and B. Leclerc [11], and A. Lascoux, B. Leclerc and J.-Y. Thibon [47]. Formulas
(4.35) and (4.36) show that in general these two g—analogs are different. However, it was
conjectured in [32], Conjecture 6.5 and in [41], Conjecture 5, that, in fact, these two ¢—
analogs coincide in the case when a partition p and a composition n correspond to a dominant
sequence of rectangular shape partitions.

Duality Theorem ([33, 41]) Let A be a partition, and R be a dominant sequence of rectangu-
lar shape partitions, R = ((p2*))._;. Denote by R" a dominant rearrangement of the sequence
of rectangular shape partitions ((n'<))"_, obtained by transposing each of the rectangular in

R. Then
Kyvr(q) = qn(R)KAR(q_l)a (4.37)

where n(R) = Z min( g, 1) MIn(na, 7).

1<a<b<p

Note that the left hand side of (4.37) is computed in gl(m), where m = > u, is the total
number of columns in the rectangles of R, whereas the right hand side of (4.37) is computed
in gl(n), where n = > n, is the total number of rows in the rectangles of R.

Corollary 4.12 We have
(1) a(A, B) = n(R) — c(X, R'),
(i2) b(X, R) = d(N, R')
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Conjecture 4.13 Let A and p be partitions, and n; and ny be compositions such that ny is
a subdivision of n1. Then

Kium (Q) < Ko, (Q)

We remark that Conjecture 4.13 is false if one assumes only that n; > 1y with respect to the
dominance partial ordering on the set of compositions, see Example 3.6.

Theorem 4.14 ( Rationality theorem for parabolic Kostka polynomials, I )
The formal power series

Z Koy (0"

n>0

is a rational function in q and t of the form

PAMU(Q? t)/Q/\MU(Q? t)v

where Py, (q,t) and Qy.,(q,t) are mutually prime polynomials in ¢ and t with integer coef-
ficients and Py,,(0,0) = 1.

Moreover,

(M) the denominator Q. has the following form:

Q/\Am(q?t) = H(l - qj t)v

JjeJ

where J := Jy,, s a finite set of non—negative integer numbers, not necessarily distinet;
(dodb) P/\un(lvt) = (1 — t)t(/\%??) P/\un(t)v where (A, j1,m) € L5, P/\un(l) # 0, and P/\un(t)

is a polynomial with non—negative integer coefficients.

(#) It is convenient to depict the set J,,, in the polynomial J,,,(¢) = EjeJAW, q.
(") We expect that if yy and g are partitions such that p; > po with respect to the
dominance partial ordering, see e.g. Section 2.1, then

PA,uz)m(t) - Pkmm(t) >0,
i.e. the latter difference is a polynomial with non—negative coefficients.

Corollary 4.15 ( Polynomiality theorem for parabolic Kostka numbers )

Let X be a partition, and pp and n be compositions such that X — p € Y,. There exists a
polynomial K., (1) with rational coefficients such that

(M) for any integer number N > 1, K, n(N) = Ky nun(1).

Conjecture 4.16 [f y is a partition and n is a composition, then the polynomial K., (1) has
non—negative rational coefficients.

Theorem 4.14 is a corollary of the corresponding theorem for parabolic Kostant’s partition
function ( Theorem 3.17 ) . In Section 6, Rationality Conjecture, we state a few conjectures
about the structure of the numerator Py,,(q,1).
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Theorem 4.17 ( Rationality theorem for parabolic Kostka polynomials, II)

Let X = (AW oo X)) be a sequence of partitions, p = (pM,---, ™) be a sequence
of compositions and n be a composition such that (N = || and (D) < || for all
1 <3 < k. Then the generating function

- n n
Y KOt A B D et u0, (6) T
(n1 7...7nk)eZ’§0

is a rational function in ¢ and the variables Xy, := (xq, -+, xy) of the form P(q, Xy)/Q(q, Xy),
where P(q, Xi) := P x, un(q, Xi) and Q(q, Xi) := Q », nn(q, Xi) are mutually prime polyno-
mials in ¢ and X, with integer coefficients, P(0,0) = 1.

() Moreover, the denominator Q(q, Xy) has the following structure:

Qe X = ]I IT =q aw),

PAEWC{1,k} aw€Jw

where xw = [[,cp x4, and for each non—empty subset W C {1,--- k}, Jw denotes a certain
set, depending on W and X, m,n, of non—negative integer numbers, not necessarily distinct.

(") We expect that in general, all the sets Jy, 0 # W C {1,---,k}, are non trivial, i.e.
each contain at least one positive element.

Corollary 4.18 ( Piecewise polynomiality theorem for parabolic Kostka numbers
Letd = (A0

)

, )\(k)) be a sequence of partitions, p = (,u(l),---,,u(k)) be a sequence
of compositions and 1 be a compositions such that [N = || and 11(xD) < || for all
1 < j < k. There exists a piecewise polynomial function K(ty,---,t;) = Ky un(te, %)
with rational coefficients such that for any non-negative integer numbers Ny, ---, N,

KNy, Ni) = Ky g g Na® Ny (D oot Ny 0 (1)

() We expect that if all g, .- u*) are partitions, then the restriction of the function
K a pn(ti, -, tx) on “the dominant chamber” Ny := {(Ny > Ny > --- > N;) € Zéo} is
a polynomial with non—negative rational coefficients.

Corollary 4.19 ( Piecewise polinomiality theorem for L R-numbers )

Let X = (AW oo AXO) = (W oy ®) and v = (bW, - v ®)Y) be three sequences of
partitions. There exists a piecewise polynomial function LR | (ty,--- 1) such that for any
non—negative integers Ny, ---, Ny,

v o Ny N (R
LR A, H(Nl’ » Ni) = ENIAD) o N AR Ny D) oo N )

(") We expect that the restriction of the function LRY (#,---,%;) on “the dominant
chamber” N := {(Ny > Ny > -+ > Ny) € Zéo} is a polynomial with non—negative
rational coeflicients.
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Problem 4.20 Describe the polynomiality domains of the function

Ny gy N (R
(va e 7Nk) - CN1A(1)+..._|_NZA(1€),N1M(1)+..._|_Nw(k)'
Examples 4.21 (i) Take A = (5,3,3,2), p = (3,3,3,2,1,1) and n = (1°).
One can check that
[(/\Mﬁ(q) = ](/\M(Q) = q3(37 57 87 67 57 27 1)7 P/\W?(Q7t) = 1 —I_ q4(37 5747 37 1) t -
q7(1,3,2,1,0 1,3,3,2,1) — q12(2,9, 14,18,18,20,17,14,8,4,1, 1) 3

7Y Y Yy =

+¢'%(3,6,10,17,28,35,39,36,30,24,19,11,5, 1)t* — ¢*'(—1,0,4,3,6,6,13,16,16,10,5,1,1)
—¢%(1,2,7,10,16,19,22,23,23,20,17,10,6,4, 1)+ ¢*3(1,4,8,14,17,20, 23,23, 19, 16,6, 1)
- q40(_17 _17 174767773) t8 - q48 (1 + q + q2)2 t97

Dun(q) = ¢%(3,2,3,2,2,1,1). In other words,
Quun(,t) = (L =" (1= ¢" ) (1 =" 1) (L =" )* (A = ¢" 1)*(1 = ¢ )(1 = ¢" 1)
Therefore, the dimension of the Gelfand—Tsetlin polytope GT (A, 1) is equal to 9, and

Y K1) 1= (1421 4+ 78 464 £° 4+ 9 ") /(1 — )",

n>0

D Konau(=1) "= (1 =3t +61° — 482 + 11) /(1 = 1) (1 +1).

n>0

(17) Take A = (3,2,1) and p =n = (1°). Then K,.(q) = ¢*(1,2,2,3,3,2,2,1),
Pyg(g,t) =1+ q6(1, 2,2,1, 1)t + q12(1, 2,5,4,6,4,3,1, 1)t2
+ q20(1, 1,1,0,1,—-2,—1,—-2, -1, —1)t3 — q29(2, 2,4,4.4.3.3, 1)t4 — q37(1, 1,2,1,2,1, l)ts,

‘]/\W?(q) = q4(17 27 17 17 17 17 17 1)
Therefore, the dimension of the Gelfand—Tsetlin polytope GT (A, ) is equal to 7, and

Y Koyl 1" = (148 1+35 2 +32 5+ 9 1Y) /(1 —1)°,

n>0

Y Ko=) 1" = (145 243 t4)/(1 — )™,

n>0

Remark 4.22 We see that in both examples J),,(¢) < K\.;(¢), and the initial and the
leading terms of the polynomials J,,(¢) and K),,(¢q) are the same. These observations may
be mnot true if p is an arbitrary composition, e.g. if A = (3,2,1), ¢ = (0,2,0,2,0,2) and

n=(1,2,2,1), then
Kyu(q) = q*(1,2,-8,-6,8,5), but Jy,,(¢) = ¢°(2,4,4,3,4,4,3), see Examples 4.6.

(#) It was the surprising and unexpected thing for the author to find that even though

i and n are partitions, the above inequality

JMU(Q) < KMU(Q)
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may be wrong. For example, take A = (2,2,2,1,1) and ¢ = n = (1®). Then

Kym(q) =¢°(1,1,2,2,3,3,4,3,3,2,2,1,1), but Jy,,(q) =¢°(1,1,2,8,2,2,2,1,1,1,1,1,1).

Y ) PEIEYEY Y Y Y Y

Furthermore, one can show that P2 2;1.1),15),15)(¢,1) =
1+ q6(—1, 1,2,2,2, 1, 1)t 4+ -+ q117(1, 1,2,2,2,1,1, —1)t13 + ¢34,
see Section 5.4 for more details about the polynomials Pk 1ny q264n) (1254n) (¢, 1).

(*I) However, we expect that if g is a partition, then the initial and the leading terms
of the polynomials Jy,,(¢) and K, ,,(q) are the same.
(*I) Moreover, we expect that if g is an arbitrary composition, then

jmax = maX{j | ] € J/\;m} = c()‘vlan) and #{] € J/\M? | ] = jmax} S d()‘vlan)v see
Section 6.4, Rationality conjecture, for more detailed statements.

Examples 4.23 (1) Take AV = (3,2,1), A® = (2,2), x = (19), u® = (1*) and n = (15).
Then one can check that

Qq,2,y) = Q2.1),06),06)(¢, ) Qa2),a4),a4(¢.¥)(1 — ¢"2y)(1 — ¢*zy),

where Qs 2.1),1¢),1¢)(¢, ) = (1 — q°z) H};(l — ¢’x), see Example 4.20, (i1), and

Q22),11),04(¢:9) = (1 = ¢*y)(1 = ¢"y), Py an,an(gy) = 1.

The expression for P(q,x,y) is rather long, so we give here only the formula for its value
at ¢ = 1. Namely,

P(l,z,y) = [1 + 8z + 352 + 322° + 92* + (62 — 442? — 1182° — 81a? — 182 )y

+(—32% 4 402° + 1432* + 662° + 92°)y? — (162" 4 482° + 212%)y°](1 — =).

Let us remark that in our case Q(1,z,y) = (1 —2)?(1 — y)*(1 — 2y)?, and because of the
well-known identity

(1 —ay-ap)™!

J

ke
(1 _x])_l = Z min(nlv"'vnk)x?l xzkv

=1 (n17...7nk)€Z§0

this example shows that the Kostka number K,321)4m(2,2),n¢)+(m*) (1) considered as a
Junction of n and m on the set {(n,m) € Z3,}, has at least two different polynomiality
region, namely, “the dominant chamber” Ny = {(n,m) | n > m} and that {(n,m) | n < m}.
Moreover, since

- _ n(6,5,4,3,2,1)4m(4,3,2,1)
An(37271)+m(272)7(n6)+(m4)(1) = Cn(5,4,3,2,1)4m(3,2,1),n(3,2,1)+m(2,2)’

we see that if

AW = (3,2,1),A = (2,2),uM) = (5,4,3,2,1), @ = (3,2,1), vV = (6,5,4,3,2,1) and
B = (4,3,2,1), then

» Y

. . 1 2 . .
(M) the Littlewood—Richardson number cZiiliiTrZ;((;),m(leu(?) considered as a function of

n and m on the set {(n,m) € Z%,}, has the same ( at least) two different polynomiality
reqLons.
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(2) Now take XV = (3,2,1), \? = (2,2,1), uM = (1), u® = (1°) and n = (1°). Then

one can check that
Q(g, z,y) = Q2.1),00),09)(¢: %) Qz,2,1),05),05) (¢ Y),

where Q2.2,1),09),09)(¢:¥) = (1 = ¢*y)(1 — ¢’y)(1 — ¢*y)(1 — ¢’y)(1 — ¢°y).
Therefore, in this case the function (n,m) — K321 4m(2,2,1)m(18)4m(15)(1) @5 a polyno-
mial function in n and m on the whole set {(n,m) € ZQZO}.

It seems interesting to compare the above-described examples with the following result by
P. McMullen [54]:

Let Ay, ---, A, C R? be integer convex polytopes, and ¢y, -- -, t;, € Nf. Given any integer
polytope I' C R, denote by N(T') := #(I'n Z4).

(#)Mixed lattice point enumerator theorem (P. McMullen, [54])

N(t Ay +- - -+1,Ag) is a polynomial in ¢y, - - -, #; with rational coefficients of total degree
at most d. Moreover, the terms of degree d are given by Vol(t; A1 + - - - +1;Ay), the so-called
mixed volume of the polytopes Aq, -+, Ay.

In other words, the generating function E(nhm ek, N(ni A+ 4 npAg)a™ 27" is a

STk
rational function in xq, - - -, 2 with the (irredundant) denominator of the form Hle(l —x)Y
for some non—negative integers a, - -, a;.

Remark 4.24 ( Parabolic Kostka number K, (1) as a function of A and p )
Let n be a composition, {(n) = p. It follows from Theorem 3.25 that on the set

Zy={(Ap) € Loy X Zig | Ay 2 Xa> -2 A,y A—p €Y}

the function (A, ) — K, ,,(1) is a continuous piecewise polynomial function K, (A, i) in
Ayt y Apy i1, - -y oy, of degree El§i<j§p nin; —n—+ 1.

It is a challenge problem to describe the polynomiality domains of the function (A, u) —
K,,,(1), and find the corresponding polynomials K0, (A, p). In the case n = (1") a partial
solution to this problem has been done by B.V. Lidskii [51]. To the best of our knowledge, if
n >4, an explicit description of the polynomiality domains of the function (A, ) — K ,,(1)
is not known.

Examples 4.25 (i) Take n = 3, so that A = (A > Ay > A3 > 0) and pu = (py, po, pi3). If p
is a partition, then

! . Ny +1
Kyu(q) = ¢"™" [ e ] :
q

where

a(A, p) = max{A; — gy, Ay + Ay — g1 — pro, A+ 200 — 2p0 — pio, 200 + As — 2p0 — po},
Ny =min{Ay — Ay, Ay — Ag, Ay — s Ay 4+ Ay — g — po )
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() In particular, we see that a(A, u) is a homogeneous piecewise linear function in
)\17)‘27)‘3 and M1, pg-
Now let us define “the dominant chamber”

Z(-Iij;) ={(\pn) e Z(13) | Az < g <Ay <y SALA — A+ A3 <}

If 1 is a partition, then
. . o A — g+ 1
]X/\M(q)|Z(tg-) = [XCI)(IB’)()\ — Iu| q) — q/\1+/\2 H1—H2 |: 1 ,fl :| ]
q

() One can check that the domain Z(J;j) is the mazimal one among domains D such that
Kasy(A p)lp = 14+ A — pa.

(1¢) Take n = 4. In this case we don’t have a complete description of the polynomiality
domains of the function (A, p) — Ky, (1). Instead, we are going to describe “the dominant
chamber” Z}+ for the latter function, i.e. the maximal domain D in the set

ZF i ={(A\p) € Z, | A= p e Y} such that Ky,,(1)|p = K,(A, p)|p = Ke@p(A — p).

Proposition 4.26 Assume that n = (1*), and consider the sets

WiV = {(\ 1) € Ziay | e = mign,i = 1,2,3; 200 > Ay + As}, and

W4(2) ={(A\,pu) € Z(J%) | pri > mipr,1=1,2,3; 2p0 < Ao+ A3, A+ A3 <+ pa )

Then

- max(A1 + As — fi1 — p2,0) + 2
]C(“)(A’“”Wi”:f‘@uﬂ@—u)_( e - #2,0) )

IC(14)()\, /L)|Wiz) = [(@(14)()\ — ,u).
Proposition 4.27 We have
288 = A1) € Zaay | i = miga,i = 1,2,30 M+ As < g+ oo,

and furthermore, KM(Q)|Z(+I) = Ko (A — uf q).

Problem 4.28 Describe explicitly “the dominant chamber” Z;’"’ in general case.

At the end of this Remark we would like to say a few words about the Littlewood—Richardson
numbers ¢} , considered as a function of A, and v. To start with, let us consider the following
set:

Z, = {()\71u71/) EZ;% | )‘1 > 2 )‘nvlul 2 2 gy 2 2 Vn7|)‘|+|:u| = |V|}
The next Proposition is an easy corollary of Theorem 3.25.

Proposition 4.29 The Littlewood-Richardson number ¢ , is a continuous piecewise poly-
nomial function in Ay, -, Ay iy s fhny Viyc 5 Vy on the set Z,.
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Problem 4.30 Describe “the dominant chamber” for the function (\,u,v) — ¢ ,, i.e. the
mazimal domain D,, C Z,, such that the restriction c§7u|p
rational coefficients.

Problem 4.31 Generalize the results obtained by B.V. Lidskii [51] for the function (A, u) —
K\u(1), to the case of the function (A, u,v) — .

is a polynomial with non-negative

n

Remark 4.32 It is not difficult to see that Rationality Theorems 4.14 and 4.17, Polynomi-
ality Theorem (Corollary 4.15) and Corollary 4.18, are still valid for the level [ restricted

parabolic Kostka numbers K (1) and the level [ restricted parabolic Kostka polynomials

Aun
K;l}m(q). Remember that the latter can be defined as follows
(1 w) 1
K@) = D (=1 K oun(a). (4.38)
wezn,l

See Section 2.6 for a explanation of notation we have used.

Remark 4.33 In Section 4 we have studied a behavior of the parabolic Kostka polynomials
Kixnpn(q) as a function of n. We always have assumed that a composition 5 is fixed. Here
we would like to discuss briefly what happens if a composition 7 is also varied. A naive way
to vary 7, say to consider n7, gives rise to a trivial result. We suggest the following way. In
order to start, we need one definition, namely, let g = (p1, g2, -+ -) be a composition. Define

(n)

“ :(”17"'7:“17#27---,,M2,'--).

Let us remark that (nu)’ = pt™.

Theorem 4.34 There exists the limit

c(nx, ™) K

lim ¢ XnAM(n)m(n)(q_l) 1= Xoun(q),

n—00
which is a formal power series in q.

) We expect that if i is a partition, then the formal power series X has non—negative
p © P ) P pun\q g
integer coefficients. For example,

X2),00),00(0) = [1: (1 —¢")7%

However, we would like to remark that the limit
lim q_a(m’“(n)”n(n))

n—odo

Kooy utn) oo ()

does not exist in general.
Finally, it looks as an interesting problem to study the generating functions

Z [{A(n)7u(n)7n(n)(q) " and Z ]{A(n)7u(n)7nn(q) ",

n>0 n>0

(") We expect that the latter generating function is a rational function in ¢ and t.
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Remark 4.35 ( Parabolic Hall-Littlewood polynomials @, ,(X;q) )
Let ¢ and n be compositions such that |n| > (), and X = (xq,---,2,) be the set of
variables. Define the modified parabolic Hall-Littlewood polynomials @7, ,(X;¢) as follows:

Qn(X50) =D Kiu(g) sr(X),

and the parabolic Hall-Littlewood polynomial @, ,(X; ¢) using the plethystic transformation:

Qua(X5q) = Q. (X(1—q);q).

Theorem 4.36 ( Rationality theorem for parabolic Hall-Littlewood polynomials

)

The generating function Y o Quun(Xiq) t™ is a rational function in ¢,t and X.

In particular, the generating function ) J;s,\(X) " for Schur functions is a rational
function in ¢ and X. -

On the other hand, the generating function for the double Kostka polynomials
Znalasts) =3 Kuvuula:t) 2"
n>0

is a formal power series in ¢, ¢ and = which, in general, cannot be equal to any rational
function.

5 Parabolic Kostka polynomials:
Examples

5.1 Parabolic Kostka and Kostka—Foulkes polynomials

1° [Kostka—Foulkes and parabolic Kostka polynomials |
Let A be a partition and R = (Ry, Ry,---, R,) be a dominant sequence of rectangular shape
partitions.

(¢) Let R, be the single row (p,) for all a, and g := (p1, g2, ...) is a partition of length
at most n. Then

Kir(q) = Kxu(q), (5.39)

i.e. K\gr(q) coincides with the Kostka—Foulkes polynomial K,(q).
(i1) Let R, be the single column (17*) for all a, and n = (9y,72,...). Then

[X’/\R(q) = FA'U"’ (q), (540)

the cocharge Kostka—Foulkes polynomial, where A is the conjugate of the partition A, and
nT is the partition obtained by sorting the parts of 5 into weakly decreasing order. Formula
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(5.40) follows from that (5.39) and Duality Theorem for parabolic Kostka polynomials.

2° [ Parabolic Kostka polynomials and Kostant partition function ]

Lety € Z", |y| = 0, N be an integer such that N+n(y;—vi41) > 0 forall 1 < ¢ < n, where
we put 7,41 = 0. Consider partitions Ay = N(n,n—1,...,2,1)+~, uy = N(n,n—1,...,2,1)
and composition n, |n| = n. Then

Kowy(7] ¢) = Ky i in(9)- (5.41)

3% [ Skew Kostka—Foulkes and parabolic Kostka polynomials]
Let A D g be partitions, I[(A) = n, and » be a sequence of partitions.
Define po = (p,0,---,0)). Then

N——

n—I(u)

K, v(0) = K (4, 0)(q)-

It ¢ is a rectangular shape partition and R is a dominant sequence of rectangular shape
partitions, then

Kur(@) = Koy (0) == Ko .1 (4):
where (1, R)" denotes a dominant rearrangement of the sequence of rectangular shape par-

titions (u, R).

Example 5.1 Let A and i be partitions, u C A, |AN\p| = N, and the complement A\ g = [ A®
is a disjoint union of partitions N, ]NO| =n;, i =1,---,s5. Then Kyw,,av)(q)=

T N oL .
¢ T Ko gm(9) [nl . ] = "EIINYY T Hao(9) = Ko guamy(9),
i=1 2 2 S q .

where for any partition X\, H\(q) denotes the hook polynomial corresponding to X\, see e.g.
[53], p.45.
. . . n
> 4 m — .
In particular, if n > m, then Kq, uy n1m)(q) [ - L

Example 5.2 Let A and o be partitions, p C A, |M\ | = I, and the complement A\ = [[ A?)
is a disjoint union of partitions X |NO| = n;, i = 1,--- 5. Define partitions A\ = (NI+|u|, )

and = (I, p). Then
, e 17 N
Kxmamy = |1 [ N ] :
=1 q

We would like to emphasize that, in general, the parabolic Kostka polynomial K} (,, ,y(¢)
is different from the skew Kostka-Foulkes polynomial Ky, »(q).

For example, take A = (2,2), ¢ = (1) and R = (3). Then Ky, r(q) = K\ (u,r)(q) =0,
but K .,z (q) = —1+¢q.
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49 [ Principal specialization of skew Schur functions]
Let A D u be partitions, |A\ g| =r, and N > 1 be an integer number. Then

swlL g5 ) = K, oo ), s+ 1)(0)-

——
N
If o =0, then
N-1y ® - e | N
sa(lgy g7 ) = K, v, @y m(@) = [ \ ] : (5.42)
S—— q

N+1

The second equality in (5.42) together with the fermionic formula (5.44) for the Kostka—
Foulkes polynomials, is a crucial step in a combinatorial proof of unimodality of the general-

ized ¢-Gaussian coefficients [ Z)\\[ ] , see [30] for details.
q

Example 5.3 ( A g-analogue of Merris’ conjecture, cf [56], [33] )

Let X and p be partitions such that A > X' with respect to the dominance partial ordering,
see Section 2.1. Then

o a(A p) > a(N, p).
e ( g-Analogue of Merris’ conjecture )

Ky,(q) = "MKy L(q).

Question: If the above inequalily is true, what is the case of equality ¢
For example, the equality holds for any partition X if p = (1"). It’s not difficult to see
that the equality also holds if

A= (n,m,1""%) and p= (2”_1+[m/2],6m)

or some positive integers n > m and m < 4. Here ¢,, = 0 or 1 according to the parity of m.
p ) g p Y
Question: Could it be true that these two examples are the only infinite families of
partitions A and p such that X 2 N and K, = Ky, ?
(") Moreover, we expect that the difference

Kyu(q) — "KL (g)

is a unimodal polynomial (with non-negative integer coefficients). In particular,
("H) we expect that if A > X, then for any positive integer N the difference

[ N ] g [ N ]
A N
q q

is a unimodal polynomial (with non-negative integer coefficients).

5° [ Fermionic formula for polynomials K, r(q) |
Let A be a partition and R = ((p7*))?_, be a sequence of rectangular shape partitions

such that
A =D (R = ptana
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Definition 5.4 A configuration of type (\; R) is a sequence of partitions v = (v, v )

such that
|—Z)\ —ZﬂamaX — k,0) Z)\ —I-Z,uammkna

i>k a>1 i<k a>1

for each k> 1.

Note that if k£ > I(A) and k > n, for all a, then v is empty. So that each configuration
contains only a finite number of partitions. In the sequel (except Corollary 5.7) we make the
convention that »(? is the empty partition.

For a partition u define the number Q.. (p) = g} + -+ -+ p/,, which is equal to the number
of cells in the first n columns of u.

The vacancy numbers Pr(bk)(l/) = ng)(l/; R) of a configuration v of type (; R) are defined

PO (1) = Qu(v* ) = 2Q,(v™) + Q™) + ) “min(pra, n)éy,

for k,n > 1, where ¢; ; is the Kronecker delta.
Definition 5.5 A configuration v of type (X\; R) is called admissible, if
Pr(bk)(l/;R) >0 forall k,n>1.

We denote by C(X; R) the set of all admissible configurations of type (A; R), and call a
vacancy number Pék)(l/; R) essential, if m,(v®™) > 0.
Finally, for a configuration v of type ()\; R) let us define its charge

cwzz(ﬂ" B+ 5, o “B0e ) )

and cocharge

(k—1) (k)

W= ().

kn>1

where ozgf) = (1/(’“));1 denotes the size of the n—-th column of the k—th partition vF) of the

configuration v; thus, ol = 0,¥n > 1. For any real number # € R we put 0(z) =1, if « > 0,
and 0(x) =0, if  <O0.

Theorem 5.6 ( Fermionic formula for parabolic Kostka polynomials [33, 42] )
Let X be a partition and R be a dominant sequence of rectangular shape partitions. Then
PP (v R) + my (v9)
K " ’ " 5.43
X/\R Zq H |: mn(l/(k)) ( )

kn>1 q

summed over all admissible configurations v of type (A\; R); m,(A) denotes the number of
parts of the partition \ of size n.
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Corollary 5.7 (Fermionic formula for Kostka—Foulkes polynomials [29])
Let A and p be partitions of the same size. Then

pk) k
CRUED AL | § RO e

kn>1

summed over all sequences of partitions v = {vM, v} such that

o |vF |—Z]>k L k=1,2,...;
o PF )( ) = Qu (v ) =2Q, (v +Q, (v *FD) > 0 for all kyn > 1, where by definition

we pul 0 = I

o« (@)=Y ( (”(H))%Q_ (v, ) (5.45)

kn>1

5.2 Parabolic Kostka polynomials and Littlewood—Richardson num-
bers

(1°) Let A, u, v be partitions, |v| = |A| + |g|, () = p, {(¢) = s. Consider partition
X: ()\1 —|—IM1,...,)\1 —|—/L5,)\1,)\2,...,)\p)

and a dominant rearrangement R of the sequence of rectangular shape partitions

R=A{(\)),v}. Then

]X’:\"E( ) = q {C/\M -+ qn(u)—n(/\)—n(u)}7 (546)
where s, denotes the Littlewood—Richardson number, i.e. &, = Mult[V, : Vy @ V,].
Furthermore, a(xa E) > Z v; — |Al, and G(X, E) = Z vi — A if and only if ¢§ , # 0.

7<A1 J<A1
In other words, if a(\, R) = Z vi — |Al, then ¢§ , # 0, and
J<A
() the coefficient b(X, E) is equal to the Littlewood-Richardson number ¢, = c(AAiQ% -

(dodb) Moreover, K5 7(1) is equal to the number #|Tab? (AP, )] of semistandard domino
2

tableaux of the shape A® and content v, where A is a unique partition such that

(A, 1)

J(\, 1) can be constructed, see e.g. [18], as follows:
[(A), {(p)), then

A(z)()‘vﬂ) + (27“,27“ - 17' T 7271)

=2 42r—1, -2+ 2(r =)+ 1,- - 20 + 1)U (2p1 + 2, -+, 205 + 2(r — ), 2pr + 2).
Remember, [53], p.6, that if A\ and u are partitions, then A U 1 denotes the partition whose

o 2-core(A?)) = @,
o 2-quotient (Al ) =
The partition A® := A®

Take an integer r > max(

parts are those of A and p, arranged in descending order.
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Example 5.8 Take A = p = (2,1) andv = (3,2,1). Then A = (4,3,2,1), R = (3,(2,2),2,1)
and K3 g(q) = q*(2,3,1). More generally,

Y K saale) = (1= ¢)/(1 = 01— 1)’ (1 = ¢t).

n>0

It is easy to see that a(x, R)=3=|v|— |u| and b(X, R)=2= A
Furthermore, A := A® = (4,4,2,2), and the spin polynomial [11], and the charge-spin
polynomial KY (q,t) [35] are equal to:

> =2l K (e t) = )y et = gr(1gt)(1+i4gt).
TeTab(2)(A,v) TeTabl2)(A,v)

Thus, ¢ (1) = KX, (q,t)|; = t+1%, where X, (t) denotes the LLT t-analog of the L R-number
CKM.
(#) Finally we want to remark that KX,R(Q) = ¢Zi>M v Kxﬁ(q),

and deg, [{@(A171|y|)(3\/ — (AL, v) | @) = n(X) + deg, KX,R(Q)'

(2°) More generally, let A D u be partitions such that the complement A \ x is a disjoint
union of partitions A, ... A® and I(u) = m. Let v be a partition, define composition
v = (u,v) and partition 5 = (m, 1"). Then
(5.47)

Y

i N ()= (AD)) e A(P)
K@) = 4" () o + o4 "7 )

.....

where

01(1) Ap) T Mlﬂt[‘/u : V/\(l) @ ® V/\(P)]

denotes the (multiple) Littlewood-Richardson coeflicient, and a(X, y, v) € Z>o.

() Moreover, Kyz,(1) = #|Tab® (A®), )| is equal to the number of semistandard p-rim
hook tableaux of shape A® and content v, where A is a unique partition such that

o p-core(AP) = .

o p-quotient(AP) = (AW A@ ... \F)),

Similar to the case p = 2, the partition A can be constructed as follows:

Take an integer > max({(A(M), -+ I(A®))), then

A(p) —I_(prvpr_ 17 e 727 1) = UZ:I(p)‘gk) —|—p(T— 1) —I_k? T 7p)\;k) —I_p(r_])—l_k? T 7p)‘£°k) —I_k)

We refer the reader to [53], Chapter I, Section 1, Example 8, for definitions of the p-
core and p-quotient of a partition A, and [47] for the definition of semistandard p-rim hook
tableaux (domino tableaux in the case p = 2).

(#) Note also, that the order of parts in the definition of composition ¥ is important.
(3%) Let A=A\ X and B = M \ u be skew diagrams and v be a partition. Define partitions

a=((MM)+ M)« M, n= (N 4+ M, 1),y = (MY +2)*p)
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and composition
B = (M4 ) o, 0875 ),
Assume that |A| + |B| = |v|, Then

(&) K.p,(q) = g Koyw(q) = g {ch g + higher degree terms in qj}.

Therefore, a(a, 8||n) = |v|, and a(a, B]|n) = |v| if and only if ¢} 5 # 0. In this case

b(Oé,ﬂH?]) = CQ,B = <SA83751/>7

where b(a, 3]|n) denotes the initial coefficient of the polynomial K,z,(¢), see Definition 6.1,
s4 and sp denote the skew Schur functions corresponding to the skew diagrams A and B,
and (e, e), denotes the scalar product ( the so—called Redfield—Hall scalar product ) on the
ring of symmetric functions, see e.g. [53], Chapter I, Section 4.
We don’t know any “nice” combinatorial interpretation of the numbers K,z,(1) or Kyp,(—1).
For a nice combinatorial description of the numbers ¢/ 5 in terms of “pictures”, see [73].
See also Section 6.8 for a slightly different exposition of connections between the Littlewood—
Richardson numbers and the parabolic Kostka polynomials.

5.3 MacMahon polytope and rectangular Narayana numbers [35]
Take A = (n +k,n,n—1,...,2)and g = N = (ny,n,n — L,n—2,...,2,1%). Ifn >k > 1,

then for any positive integer N
e a(NA, Nu) = (2k —1)N;
VglN-I—kl N+i+j-1
k+1 k— 1 Z _I_ ] — 1 .
In other words, (N A, Ny) is equal fo the number of (weak) plane partitions of rectangular
shape ((n — k 4+ 1)*7!) whose parts do not exceed N, see e.g. [53], [67]. It is well-known,

see e.g. [67], [35], that the number b(NA, Nyu) is equal also to the number ¢(My—1 —g41; V)
of rational points x in the MacMahon polytope 9M_ ,, 41 such that the points Nx have

e bH(NA, Nu) = dim

integer coordinates. The generating function for the numbers b(nA, ny) has the following

form
(k—2)(n—k) 4
ST bt =S Nk —Lon— k4 1) | (1= ) E Dk
n>0 7=0

where N(k,n;5), 0 < j < (k—1)(n — 1), denote the rectangular Narayana numbers. For
definition of the rectangular Narayana numbers and the MacMahon polytope, see [35], Sec-
tion 2, Exercise 1.

For the reader’s convenience, we display the numbers b( N A, Ny ) for small values of k and V.

If £ =1, then b(NA, Nu) =1 for all integer numbers N > 1.

If k = 2, then b(N A, Nju) = ( N+/V”‘_1>.
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n

If N =1, then b(\, ) =

IfN_Zthean)\Qu_%< )(”Jﬁ
Thus, the number b(2A, 24) is equal to the Narayana number Nj_q ,41.

Note also, that
b(N)\, N,u) = [X’N(k71n_k+1)7N(1n)(1).

More generally, see e.g. [30],

K n—k+1 kN | | | | = qu
N(k,1 ),N 1 — qz—l—] T i1 o ’
q

=1 j=1

where a is a rectangular shape partition ((k — 1)"~%+1).
In particular, Ky n-k+1yn@an)(q) is a symmetric and unimodal polynomial in ¢.
This example and many others, suggests the following

Problem 5.9 Define a g-analog of the numbers d(X, ut||n), in particular the numbers b(A, R),
which generalizes the g-analog of the LR-numbers introduced by A. Lascoux, B. Leclerc and
J.-Y. Thibon, see e.g.[49].

5.4  Gelfand—Tsetlin’s polytope GT((2*,17), (12k*m))

Let A = (2%,1"), k > 0, be a two—column partition, and g = 5 = (12**"). In this Section we
are going to study in more details the polynomials Py (¢, 1) := Pr.y(¢, 1), Pen(t) := Pry,(1,1),
Jen(q) == Jru(q), as well as the Gelfand—Tsetlin polytope GTy ,, := GT(A, p).
We refer the reader to [38], [35], [12], [67], vol.2, for the definition and basic properties of
the Gelfand—Tsetlin polytope GT(\, i) corresponding to a partition A and composition .
First of all, let us remember [35] the formula for the dimension of Gelfand-Tsetlin’s
polytope GT'(X, 1), namely, if A and p are partitions, [(A) = r, I(p) = s, then

GmGT(\ ) = (r—1)(s — 1) — ( ; ) —; ( X ZM“ )

where Xl :=#{j | \; > i}.
In particular, dim GTy,, = n(2k — 1) + (k — 1)

Proposition 5.10 (1) deg, Py ,.(t) =dimGTy,, + 1 —k—n=(k—1)2n+ k — 2);

(2) Pon(g,1) = (— )b nonon Py (g 173,

where ay,, = (ZjeJk,n J) —dimGTy,, — 1, and by, and ¢, are certain non-negative
integers.

In particular, Py, (t) is a symmetric polynomial (with non—negative coefficients).
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(#) We will say that a polynomial P(q,t) is a reciprocal one if it satisfies the following
condition:

P(q,t) = (=1)" ¢" #* P(¢”",17")
for some non—negative integers a, b and .

Examples 5.11 (¢) Take k =4,n =0, then dim GTyo =9, K,,(q) = Juo(q) =
q*(1,0,1,1,2,1,2,1,2,1,1,0,1), and asg = 4,bso = 112, c40 = 10. Moreover,

Pyo(t) = 14 4t + 3187 + 4087 4 31¢* + 44° 4 ¢°.

In particular, the normalized volume of Gelfand-Tsetlin’s polytope GTyq is equal to

112 =2*.17.

It seems interesting to compare the above formulae with the corresponding formulae for
the the Gelfand-Tsetlin polytope corresponding to the conjugate partition N = (4,4) and
the same p and 1. It’s not difficult to see that AimGT((4,4),(1%)) = 5, Jay,a8),a5)(¢) =
{12,14,15,16,18,20,24}, P4y ,a5),05)(1) = (1,8,22,8,1) and P4y as),a5)(q,t) is a reciprocal
polynomial. In particular, the normalized volume of the polytope GT((4,4),(1®)) is equal to
40.

(12) Take k =3, n =2, then dimGT35 = 14, a3y = 10,035 = 130,¢32 = 14, J35(q) =
F(1,1,2,3,2,2,2 1,1, 1,1, 1, 1), but K 1205(q) = (1,1, 2,2,3,3,4,3,3,2,2, 1, 1). There-
Jore, the difference Ky 12)15)(q) — Js2(q) is a polynomial with one negative coefficient.
Moreover,

Psyo(t) =1 4 131 + 22517 4 13501° + 40881* 4 57681° + 40881° 4 13501 + 225(° + 1317 + ¢'°.

Therefore, the normalized volume of Gelfand—Tsetlin’s polytope G154 is equal to
17112 =2%.3.23 - 31.
On the other hand, for the conjugate partition N = (5, 3) we have dim GT'((5, 3), (1%)) = 6,
Ty o) = {13, 14,15, 16,17, 18, 19,22, 23,25} and Pls.5),10),00)(1) = (1,21, 105,98, 20),
and therefore, the polynomial P(5 3) 15),15)(q,1) does not satisfy the condition (2) of Propo-
sititon 5.7.
(vi2) Take k =5, n =0, then dim G754 = 16, and

Pso(t) = (1,25,718,8059, 43679, 116840, 161912, 116840, 43679, 8059, 718,25, 1).

In particular, the normalized volume of Gelfand-Tsetlin’s polytope GT5 4 is equal to
500556 = 22 -3-7-59-101.
Note that dim GT((5,5), (1)) = T, P 0y,10y(1) = (1,34, 295,565,295, 34, 1),
and Jis 5 10y a0y (g) = {20, 22,23, 24,25, 26,28, 30,32, 35, 40}.
In particular, the normalized volume of the polytope GT((5,5),(1'%)) is equal to
1225 = 35%. One can check that P 5) (110y,q10y(q,t) is a reciprocal polynomial.

() It is interesting to note that the polytopes GT'((n*), (1**)) and GT((n*~1,n—1),(1%"1))
have the same (normalized) volumes and the same h-polynomials, i.e.

P(nk)7(1kn)7(1kn)(t) = P(nk—l7n_1)7(1kn—1)7(1kn—1)(t).
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However, the polynomials Pxy qxn) (15n)(q, 1) and Pe-1 ,_1y (qkn-1) qrn-1)(q, 1) are differ-
ent.

For example, P(33) 16),1¢)(¢, ) =14 ¢"% + ¢*° t*, but Py as5),05)(¢,1) =1 —¢*° .
Moreover, J(s ) q0),( { 8,9,12}, but J(32)1%),1%) = 14,5,6,7,8}.

(#) It seems an interesting problem to find under what assumptions on A, g and n the
polynomial P),,(q,t) is a reciprocal one, i.e. satisfies the condition (2) of Proposition 5.7.
One necessary condition is clear: Py,,(t) have to be a symmetric polynomial.

(") We expect that the latter condition is also sufficient.

For example, the polynomials Pk jny (264n) (1264n)(q, ) are reciprocal; we expect that
polynomials (k) (1nk),1nky (¢, 1) are also reciprocal. However, there are plenty of other cases.
For example,

P(47372)7(27172717271) (23)( ) =1+4g¢ ( 3, 2) t— 3q11(1, -1, 1) 12+ 3q16(1, 1,1, —2)

$3¢2(—2,1,1,1) 1 — 3¢2(1, —1,1) £5 — ¢*5(—2,3) 1° + ¢*2 1".

We have also J(4,3.2),21,2,1,2,1), (23)(q) =3¢°(1,1,1).

(*I) On the other hand, we expect that the polynomials P, s (1n+x) (1n+#)(q,1) are recip-
rocal if and only if £ =0,1,n — 1,n.

In the case k = 2 we can say more:

Proposition 5.12 (1) deg; Py,(¢,1) = 2n, deg, Py,(q,1) = 2n(n +4);
(2) ¢ HIP,y (g7 1) = Pas(g,t);
(3) Prnlg.t) is a polynomial with non—negative integer coefficients;
(4) Py, (1,1) = C,, C,11. In other words, the (normalized) volume of the Gelfand—Tsetlin
polytope GT5,, is equal to the product of two consecutive Catalan numbers C,, and C,41;
(5) Jon(q) = ¢*(1,1,2,...,2,1,...,1), and
e’ e’

n—1 n+2

- n
[X(2271n)7(1n+4)(q) — J27n(q) = q6 |: 9 :| .
q

We end this Section by discussion of some properties of the Littlewood— Richardson coef-
ficients cgnﬁn, where 6, = (n — 1,n — 2,---,1,0) denotes the staircase partition of height
n—1.

Denote by k(n,m) the maximal value of the LR-number cgmén, where A runs over all
partitions such that [(A) < m. Let v, ,,(r) denote the number of partitions A, I[(A) < m, such
that cgnﬁn = r. It is well-known (theorem by Kostant) that v, ,(1) = 2”71

("H) We expect that if n < m < 2n — 2, then v, (1) = 3™~"/2m=2n+L,

Problem 5.13 [t is not difficult to see that v, ,(k(n,n)) =1, i.e. there exists a unique par-

tition A := Aoz, (X)) < my with the maximal value of the Littlewood—Richardson coefficient

A
€86
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Question: How does this unique partition A, look like ¢
(") We expect that if n =2k+ 1,k > 1, then

Ao = 3k +[(k+1)/2] — 1,3k — 1,3k — 2, -+, k + 1, [k/2] + 1).

5.5 One dimensional sums and parabolic Kostka polynomials
(#) Polynomials P,,(¢) and their interpretations [32]

In this Example we summarize different interpretations and some properties of an in-
teresting family of polynomials P,,(¢) which frequently appear in Combinatorics, Algebraic
Geometry, Representation Theory, Statistical Mechanics, ... .

Definition 5.14 The polynomials P»,(q) are defined as the transition coefficients between
the modified Hall-Littlewood polynomials and the monomial symmetric functions

QN X ) =D Prulq)mu(Xa). (5.48)

In other words,

PM(Q) = Z Kw(l)KnA(Q)- (5.49)

To put this another way, the polynomial P,,(¢q) is a g-analog of the multiplicity of weight A
in the tensor product @;V,,.

The polynomials P, ,(¢) admit the following interpretations:
(1°) [Inhomogeneous unrestricted one dimensional sum with ”special boundary
conditions”|

Pula) =" > ", (5.50)

summed over the set P,, of all transportation matrices m of type (A; ), i.e. the set of all
matrices of non—negative integers with row sums A; and column sums p;; E(m) stands for
the value of the energy function E(p) of the path p which corresponds to the transportation
matrix m under a natural identification, see [32], of the set of paths P, (bmax, A) with that of
transportation matrices P,,. We refer the reader to [46], or [32] Subsection 3.1, Example 1°,
for a definition of the set of paths P, (bpax, A).

(2°) [Generating function of a generalized mahonian statistics ¢ on the set of
transportation matrices P, ]
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For the definition and examples of generalized mahonian statistics see [32]. For example, the
energy function F(m) defines a generalized mahonian statistics on the set of transportation
matrices.

(3%) [The Poincare polynomial of the partial flag variety fj/C]

Puulg) = "V dim Hy(F); Z). (5.51)

>0

This result is due to R. Hotta and N. Shimomura [25].
(4°) [The number of F —rational points of the partial flag variety 7, /F ]

WPlg™h) = FA(F,). (5.52)
(5°) [The number of chains of subgroups
{yCHOCHD C...Cc H™ C ¢

in a finite abelian p—group G of type ), such that each subgroup H) has order
pu1+~~~+m‘ ]

ax(Sip) = p" NP7, (5.53)
where S := S(p) = (1, o + piay ooy i1 + pi2 4 -+ + i), and () =m + 1.

For more details, proofs and an interesting history of this result, see e.g [10].
(6%) [String function of affine Demazure’s module V,,(IA}) corresponding to the

element w =rp, 1rp,_o...7p49rp41rp of the affine Weyl group W(Afll_)l)]

Pueyulq) =Y dim Vi, (IAL)umnsq™ (5.54)

n>0

This result has been obtained in [46], where one can find necessary definitions, proofs and

further details. o
(7°) [Generalized {—supernomial coefficients [2] and t—multinomial coeffi-
£

cients T (\; ) |

D] Z[‘w[‘m Z[‘w[‘m (t™) (5.55)

TON\; p) = t~Bminpy (1), (5.56)

for some known constant £,,.

The coefficients (5.55) and (5.56) are natural generalizations of those introduced by
A. Schilling and S.O. Warnaar in the case I(pn) = 2, see [31], [62], [63], [71].

(8°) [Fermionic expression for polynomials P,,(¢)]
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Let A be a partition and y be a composition, [(x) = n, then

k—l—l

o) = Y ¢ HH[ l(/;)k))hl] , (5.57)

{v} k=1 i>1 s

summed over all flags of partitions v = {0 = v(@ c v c ... ¢ v = A}, such that
B =g+ 4 g, 1 <k <, and

n—1 ( k+1 (Z/(k)){>
k=0 ¢>1

See [32], Sections 3 and 4, and [22] , where further details and applications of the fermionic
formula (5.57) can be found.
In particular, the fermionic formula (5.57) gives an explicit expression for the number

|,7:3(Fq)| of rational points of the partial flag variety .7:3 over the finite field F,.

Problem 5.15 Deduce the fermionic formula (5.57) from the Lefschetz fized points formula,
applied to the Frobenius automorphism of the variety ,7:3.

(9?) [Truncated form or finitization of the characters and branching functions
of (some) integrable representations of the affine Lie algebra of type Afll_)l ]

The observation that certain special limits of polynomials Py,(¢q) and Kostka—Foulkes
polynomials may play an important role in the representation theory of affine Lie algebras
originally was made in [31]. It was observed in [31], that the character formula for the
level 1 vacuum representation V(Ag) of the affine Lie algebra of type Afll_)l (see, e.g., [26],
Chapter 13) can be obtained as an appropriate limit N — oo of the modified Hall-Littlewood

polynomials Qle)(Xn; q). The proof was based on the following well-known formula

| N

q

see [31], (2.28).
The latter observation about a connection between the character ch(V(Ag)) and modified
Hall-Littlewood polynomials Qle)(Xn;q), immediately implies that the level 1 branching

functions bﬁo(q) can be obtained as an appropriate limit Ay — oo of the "normalized”
Kostka—Foulkes polynomials q_ANKAM(lN)(q). We refer the reader to [26], Chapter 12, for
definitions and basic properties of the branching functions b} (q) corresponding to an inte-
grable representation V(A) of an affine Lie algebra.

It was conjectured in [31], Conjecture 4, that the similar result should be valid for the
branching functions b3 (q) corresponding to the integrable highest weight A irreducible rep-
resentation V(A) of the affine Lie algebra Sl( ). This conjecture has been proved in [31] in
the following cases: Sl( ) and A = Ao, Sl( ) and A = [Ay, and ;\l(n) and A = 2Aq. It had not
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been long before A. Nakayashiki and Y. Yamada [58] proved this conjecture in the case ;\l(n)
and A =1A;, 0 <7< n—1. See also [39] for another proof of the result by A. Nakayashiki
and Y. Yamada in the case ¢ = 0. The general case has been investigated in [22]. It hap-
pened that in general the so—called thermodynamical Bethe ansatz limit of Kostka—Foulkes
polynomials gives the branching function of a certain reducible integrable representation of
;\l(n), see details in [22].

(#@®) [Parabolic Kostka polynomials and 1D sums]

Let A, i be partitions, |A| = |u|, and n, N be natural numbers such that [(A) = r < n,
I(p) = s <n,and N > Ay + py. Define partitions ay = (N") and

6]\7:(N—)\T,N—)\T_l,...,N—)\1,,&1,,&2,...,,&5).

Theorem 5.16 ( Algebraic version of the Robinson-Schensted-Knuth correspon-
dence )
Let A\, u,n, N,an and By be as above. Then

Z) [(OZNBN(q) S [(OéN+1ﬁN+1 (Q);

i) If N>, then Kaypy(q) =Y Kpn(9)Kyu(q). (5.58)

Theorem 5.17 ( Algebraic version of the dual Robinson-Schensted-Knuth corre-
spondence )

Let X, p be partitions, |A| = |p|, I(A) = r < n, N > X\. Define the rectangular
shape partition ay = (nV) and dominant sequence of rectangular shape partitions Ry =
Lo, (AN (AIN=M) ). Then

Z) [(O‘NRN(q) < [(O‘N+1RN+1 (Q);

i) If N>\, then K, r,(q Z[xm VK (q). (5.59)

In particular, the following numbers

Knmy (-1 1y (1) = (K am(1))?
ARN, 1(\)<n

are equal to the number of permutations w € Yy such that the all increasing subsequences
in w have the length at most n.

Theorem 5.18 ( 1D sums and parabolic Kostka polynomials )
(¢) Let A and p be partitions of the same size n. Define partition ay = (N™) and sequence
of compositions

ay = (N =X, 0 (N =X, 077 H) e (N = AL, 077, ).

Then
ch MN Z[‘nk ) P%M(q)‘
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(it) Keep notation of the previous item, but define
I‘g\f) - (N )‘NN )‘T 17__‘7N_)\17(/“70(7“—1))7__‘7(M570(r—1)))‘

Then
K ~(J$)(Q) = Z Kn,A(Q)Kmu(l) = pk,u(Q)-

Example 5.19 Take n =6, A = (2,2,2) and p = (2,2,1,1). One can take N = 6. Then
(67676) o = (), (1), (4), (2), (20, (1), (1)), Fig = ((4.0,0), (£,0,0),(4,0,0, (2), (2), (1), (1))
= (1), (1), (4),(2,0,0),(2,0,0), (1,0,0),(1,0,0)), and

Z[(%/\(q)[(ﬁvﬂ(q) (1717373757476737372717071) [ ag, M(Q)v

> K@) K1) = ¢°(1,4,8,9.7.3,1) = K o(q).

> K a(D)K,,(q) = ¢"(3,6,9,7,5,2,1) = Koy 7,(q).

Conjecture 5.20 ( Summation formulas for parabolic Kostka polynomials )
(i) Let p = (p@ = (,uga),---,,u%a)))a 1 and v be two sequences of partitions such that
| = v|. Taken:=> _ 1, and N > |u|, and define the sequence of partitions

o=, r=v W), where

A= (N —p@ ... N — M(za)aN _ uﬁ“))-

Na 7

Then
Knny (&, v)(q) = ZKA, w(@) K 0 (q)-

(it) Define the sequence of partitions py = (,uéa = (,uga), e /Lq(i), O(N_”“)))::l and in a similar

way that vy. Then
K(vm) (& vo)(@) = ZKA, (@)K (1),

K(3vo),( g, v) ZAA LKy L (q).

6 Parabolic Kostka polynomials:
Conjectures

We keep notation of Section 2. Thus, A is a partition, g and n are compositions such that
Al = |ul, In| = n, and () < n. Let K),,(¢) denote the parabolic Kostka polynomial as
defined in Section 4.

59



Definition 6.1 Let A\, p and n be as above, and assume that K,,,(q) # 0. Introduce non-
zero numbers b(A, p||n) and d(X, p||n), and integer numbers a(A, y||n) and e(X, ul|n) via the

decomposition

Kaun(q) = b, pellm)g* ™ - d (A, ]| m) g1, (6.60)
If Ky,,(q) =0, we put by definition, a(A, p||n) = b(A, nl|n) = (X, plln) = d(X, x|ln) = 0.
If a composition p is the concatenation of partitions g™, 4@ .- (") we will use notation

a(A, ) == a(X, pmlln), b(A, p) := b(A, i||n). If compositions y and 5 correspond to a (dominant)
sequence of rectangular shape partitions R, we will write a(\, R) instead of a(A, u||n), b(A, R)
instead of b(A, i||n), and so on.

6.1 Non-vanishing conjecture

Conjecture 6.2 Let A be a partition, p and n be a composition, ll(p) < |n| =n. Then
Ky,(q) #0, ifand only if X—pey,.

(#) Moreover, Kyin(0) < Ko\ — 4] 0),

and the equality is attained on a certain polyhedral domain D, in “the space of parameters’

Zn:{(Aaﬂ)EZZOXZZO|>\1Z---Z>\n,A—uEK7}.

u

6.2 Positivity conjecture

Conjecture 6.3 Let A be a partition and w, and n be compositions such that |A\| = |ul,
U(p) < |n| . Then

d(A, plln) =0, and d(A,plln) >0 A —pey,

Remark 6.4 It may happen that the all coefficients of a parabolic Kostka polynomial
K, .(q), except that d(A,p), are negative. For example, take A = (2,2) and

p=((0),(1,0),(1,0),(1),(1)). Then

n

Koyoulg) = —¢" [+ Y (20 — 2k + 1)¢"] + (n +1)°¢™".
k=1

Note, that in our example b(nA,ng) = —n, a(nA,np) = Tn — 1, ¢(nX, np) = 8n, d(nA,nu) =
(n —I_ 1)27 ](n/\,n/t(l) =n —I_ 17 [(n/\,nu(_l) = (n —I_ 1)27 and

D Konau(g) " = (1= ¢*(143 ¢ = ¢*)t 43¢ — ¢*1) /(1 = ¢"1) (1 = ¢°t)°.
n>0

On the other hand,
[((Qn,Qn),(n,n,n,n)(Q) = q2n |: 1
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6.3 Generalized saturation conjecture for parabolic Kostka poly-
nomials

Conjecture 6.5 (#) ( Generalized Saturation Conjecture )
Let X be a partition, and @ and n be compositions, then for any integer N > 1

c(NA, Nplln) = Ne(X, plln). (6.61)
(#8) Let X and p be partitions and n be a composition, then for any integer N > 1
a(NX, Nplln) = N a(A, pln)

(004) More generally, let XV AP ... X®) be a4 sequence of partitions, 1 be a composition
and W, P oo 1) be a sequence of compositions such that |\ = [uD| and 1)) < |n|
for all y. Let N, pi,pg, -+, ps be positive integer numbers.

For each 1,1 <1 < N, define partitions

RO = (3 p A+ N — i)/ and 9= (S py? 4 N — )/ A]. (6.62)

i>1 i>1

Assume that (ND| = [@D] for all j. Then

s N
o QA9 1) = (A, @O ).
7=1 =1

() If A and p are partitions, then we expect the similar conjecture for the numbers

a(A, u||n).

Remember that for any real number @ the symbol [2] denotes the integer part of z.

Remark 6.6 It is not true in general that the inequality
degKom)(w(A+ 6) — p — 8] q) < degKawmy(A — ] q) (6.63)

holds for any permutation w € ¥, w # id, as it happens in the case n = (1"), see Exam-
ple 4.2. If it would be so, the Generalized Saturation Conjecture would follow easily from
Saturation Theorem for the parabolic ¢-Kostant partition function, see Corollary 3.14. It is
also not true in general that

(A, plln) = degKyy(q) = deg Kog) (A — ] q), (6.64)

even if p is a dominant sequence of rectangular shape partitions of the same length which is
compatible with n, see Example 4.2. In fact, it looks a difficult problem to find an explicit
formula for the numbers ¢(A, p]|n).

(*I) However, we expect the validity of the following inequality

KMU(Q) < K@(n)()‘ — ] q)v (6-65)

and if \ is a partition and R = (R, := (p*)?_,) is a dominant sequence of rectangular shape
partitions of the same length k, then d(\, R) = 1.

(*I) By duality, we expect that if R = (R, := (k"*)’_,) is a sequence of rectangular
shape partitions of the same width k, then b(\, R) = 1.
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6.4 Rationality conjecture

Conjecture 6.7 Let A be a partition, and p and n be compositions such that A — p € Y,
and (according to Theorem /.14 )
. Dm0 Wan (@) 17 = Pruy(¢:1) [/ Qun(¢:1),

where Py, (q,t) and Qy,,(q,t) are mutually prime polynomials with integer coefficients,
P/\W?(Ovo): L, 4

° Qrun(q, 1) = HjeJ (1 =g t)™
for some finite set of integers J := Sy = {Jmin = J1 < J2 < -+ < Js = Jmaz}, and a set of
non—negative integers {n;};c;.

(#) Let Pru(a.t) = Xpso P (@) 15, P (q) = 1, and (if P3)(q) #0 )

P(k)

Aun

(q) = 5k()\ﬂn)qak(kw) N 5k()\lm7)qw(km7)‘
Then, for all k > 0 such that P ( ) # 0, the following inequalities

’}/k()‘ﬂn) S kjmax

have to be valid. Moreover, if the equality is attained for some value of k, then for the
corresponding value of k one should have op(Aum) > 0.
(08) If X and p are partitions, then additionally, for all k > 0 such that PA (@) # 0, the

following inequalities

ar(Aun) = kjmin
have to be valid, and if the equality is attained for some k, then for the corresponding value
of k one should have — [r(Aun) > 0.
It follows from Remark 4.22, (®), that the polynomial Pk(i)n(q) may have negative integer
coefficients.

It is easily seen that Rationality Conjecture, item (i), implies both Positivity and Gen-
eralized Saturation Conjectures. Rationality Conjecture, item, (¢7), implies the item (¢2) of
Conjecture 6.5.

Question 6.8 Does there exist a “nice” combinatorial interpretation of the set J = J,,
and the exponents {n;};ecs which have appeared in Rationality Conjecture ¢

Examples 6.9 For the reader’s convenience, we list below a few examples of the set J,,.
(Z) J(337271) (2 172717271 23 = {32 43 53 62} degt P/\w((bt) = 8
(22) J, 4,2,2,1 (2,1,2,1,2,1),(2%) = {44 56 63} deg, Prm(q,t) = 10,
(l”) (5,4,2,1),(3,24,1),(22) = {4 52 6 72} deg, PAM(% )— 5.
(zv) (5,4,2,1),(3,24,1),(2,12,2) — {4 52 63 72 8? 92} deg, P/\MU(Q7 ) 9.
(v) J (2,2),(04,1,3),(16) = {5 6,7,8, 92 10, 11 12,13,15,17}, deg, Py (g, t) = 12.
(W) (4,4,2,2),(28),(18) = {4 6 837 10,12, 147 16}7 degt wa(q, ) =7
and Pa29),02 t) is a reciprocal polynomial.
( ),(28),(18)\ 4> P poty
(UZZ) J(4737271)7(2 7 15 = {3,4,5, 67 7,8,9, 10}, degt P/\w((bt) =6
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and Ji4321),25),15)(¢: 1) is a reciprocal polynomial.

(vieg) J(4321) (110 (25 = {10,117,12% 132,147 15,16, 17}, deg; Pyuy(g,t) = 8,

but Pa32.1y,110), )( t) is not a reczprocal polynomml

(i) Jigm iy 0y = 125,26,27,28,29,30, 31, 33, 34, 35,37, 40, 41, 43,45, 50},

deg, PAw(q, ) 6 and Pg sy 1), (111)( t) is a reciprocal polynomial.

(l‘) J(24 1),(1? ( ) (1,1,1,2,3,2,2,2 3 2,2,2,1,1,1,1,1) [((2471)7(19)(q)—J(2471)7(19)7(19)(q)

°(1,2,2, 1,2,2, 1,2, 1) deg; Pruy(q,t) =23, and Pt 1y 19y,012)(¢, 1) is a reciprocal poly-

nomml.

(") We expect that if n; and 5y are two compositions such that 5 is a subdivision of
i, then Jyun © S,

6.5 Polynomiality conjecture

Conjecture 6.10 (#) Let X be a partition, pn and n be compositions. Then

d(NX, Np||n) is a polynomial in N with non-negative rational coefficients of the following
form:

there exist a non-negative integer D and a sequence of non-negative integers

ho =1,h1,---,hp(#0) such that

N D 2
d(NA, Nplln) = Zm( * )

(#8) Let X be a partition, p and n be compositions, and

qc(m’an)KnA,num(q_l) = Z de(k; n) qu
k>0
so that dy,,(0; N) = d(NX, Nu|n).
Then for a firted k > 0, there exists a polynomial with rational coefficients D(Mm( ) of degree
depending only on A, i and n, but not k, such that if N > k, then dy,,(k; N) = Y (V).

. . . A/J/r]
Hence, there exists the limit

lim qc(m’”“””)[&'mmmn(q_l)/d(n)\, nu|n).

n—odo

("I) Moreover, we expect that D(;L)n(t) and D(;M)n(t) have non—negative coefficients.
(008) Let X and p be partitions, and

[(n/\,nu,n(q) = qa(n/\MMHN){Z b/\W?(k; n) qk}v

k>0

so that by,,(0; N) = b(NX, Npulln).
Then for a fired k > 0, there exists a polynomial with rational coefficients an( ) of degree

depending only on A, p and n, but not k, such that if N >k, then by,,(k; N) = B (N).

Aun
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Hence, there exists the limit

lim gm0l gy (@) /b, ).

n—odo

(k) Moreover, we expect that B(O) (1) and B(l) (1) have non—negative coefficients.
(#008) Let {(N,, ul )}( " be a collection of pairs (g, V), where for all a, 1 < a < r,

Ao is a partition and p\® is a composition of the fake length at most n. Let n be a composi-
tion of size n. Then, there exists a piecewise polynomial function M(tq,---,t,) with rational
coefficients such that for each r-tuples of non-negative integers (ny,---,n,) one has

M(nh e 7n7°) — d(nl)‘l + -+ nr)‘rvnllul + -+ nrﬂr”ﬁ)

() Moreover, we expect that if all compositions ' 's are in fact partitions, the the
restriction of M(ty,---,t,) on “the dominant chamber” {(ny > --- > n,) € ZL,} is a
polynomial wit non—negative rational coefficients.

Let us note that Polynomiality Conjecture, items (#)— (4#44), follow from Rationality
Conjecture, except the statements about non—negativity.

Example 6.11 Take A = (5,3,3,2), u = (3,3,3,2,1,1) and n = (1°). Based on formulas

Y A

from Example /.17 (i), one can find that

lim ¢ UM DK (@) /(A ) = (1 — )71+ ¢) 72

n—odo

Remark 6.12 Even in the case when g is a dominant sequence of rectangular shape par-
titions, the sequence (hg, hy,- - hD) does not necessarily turn out to be unimodal. For
example, take A = (5,4,3,2,1),u = (2,2,2) and v = (6,5,4,3,2,1). It is not difficult to

b b b b
compute the corresponding Littlewood—Richardson numbers:

. . n-+4 n-+2
Codnp = F (n(27272)7n(16))(1) = ( 1 ) + ( 1 ) = (n + 1)(n + 2)(n2 + 3n + 6)/12.
Hence, in this case D = 2 and (ho, h1, h2) = (1,0,1). It is not difficult to check that

Y Kupazaa(@)t" = (14" 2)/(1 = ¢®1)(1 — 1)(1 — ¢°t)(1 — ¢"t)(1 — ¢'1).

n>0

: 1
We see that in our example PA(u)n( ) = 0. We can show that P(( ))7(18)7( )( ) =0 as well.

(*I) However, we expect that if n > 5, then P(( )) (12n),(12n) (q) # 0.
1
For example, P((25))7(110)7(110)(Q) =q¢'"%(-1,1,1,2,2,2,2,3,1,2,1).

(6,5,4,3,2,1)
Let us observe that Cl54.3.2.1),(2,2,2)

generally, one can show that

2m,2n—1,-,2,1 . 1 2n
cgzn—l,2n—2,~~~,)2,1),(2") = A(Q")v(ﬁ")(l) = ( n ) =C,

= 5 is equal to the third Catalan number C5. More

n+1
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is equal to the n-th Catalan number.

For definition of unimodal sequences/polynomials see e.g. [66], where one can find a big
variety of examples of unimodal sequences which frequently appear in Algebra, Combinatorics
and Geometry.

Remark 6.13 In the particular case when b(A, R) = ¢} ,, see Section 5.2, the fact that
the function fY (N) := C%KJW is a polynomial in N with rational coefficients follows from
Polynomiality Theorem for parabolic Kostka polynomials, see Corollary 4.15, and has been
proved independently by the several authors: A. Knutson (unpublished), H. Derksen and
J. Weyman [15], E. Rassart [61], ... .

We would like to state separately two particular cases of Conjecture 6.10.

6.6 The generalized Fulton, d(\, p||n) =2 and d(\, pf|n) = 3 conjec-
tures

Conjecture 6.14 (#) ( The generalized Fulton conjecture )

If d(kX, ku||n) = 1 for some positive integer k, then d(NA, Ny|ln) = 1 for all positive
integers N.

(08) Ifd(X p||ln) = 2, then d(NX, Npul||n) = N 4+ 1 for all positive integers N.

If d(X, pl|n) = 3, we expect that there are only two possibilities:

either d(NX, Npul|n) =2N 4+ 1, or d(NX, Nyl|n) = N;_2

(*I) Therefore, we expect that the cases d(NA, Npul|n) = < N;— : ) +k ( Z;[ ) )
1 < k < 3,donot occur. For example, we don’t know whether or not there exist a partition

A and a dominant sequence of rectangular shape partitions R such that d(\, R) = 3,
but d(2X,2R) > 1.

Remark 6.15 In the case when the numbers (A, R) coincide with the Littlewood—Richardson
numbers, see Section 5.2, the Fulton conjecture has been proved by A. Knutson, T. Tao and

C. Woodward [44].

Remark 6.16 If x is a composition, but not a partition, then Conjecture 6.14 (4) is not,
in general, valid for the numbers b(A, g||n). For example, take A = (3,2,1) and p =
((0),(2,0),(2),(2)), see Examples 4.6. Then a(A,p) = 3,b(A,p) = 1, but a(2X,2p) =
7,6(2),2p) = 3 and a(3X,3p) = 8,b(3X,3p) = —1. In fact, if n > 3, then a(nA, nu) =
3n—1,b(nA,np) = 2—n. On the other hand, ¢(nA,ng) = 9n and d(nA,np) = n+1,Vn > 1.
In particular, we see that (N, Np) becomes a polynomial in N only starting from N = 3.
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6.7 ¢-Log concavity and P—positivity conjectures

Conjecture 6.17 ( ¢-Log concavity and P—positivity conjectures )
(#) ( ¢-Log concavity conjecture for parabolic Kostka polynomials )
(a) Let X and p be partitions and n be a composition. Consider the function gn(q) :=

QJAVM(Q) = KnaNun(q). Then

(gn(9))* > gn-1(q) gn+1(q).

(") Moreover, we expect that if a composition ny is a subdivision of that ny, then

(9" (@))* = 983 (a) 9N (9) = (o™ (0))* — 9N (9) 9w (a) 2 0.

(b) More generally, let XV X® ... X6 and u M - 49 be two sequences of partitions,
and 1 be a composition such that |\D| = [\ and l(pP) < |p[,1 < j < s. Let N,
D1 P2, Ps be positive integer numbers. Assume that |AV)| = |V for all 5. Then

S

N
[Tl < T Koz, (0)-
=1

i=1

See Conjecture 6.5, (44 #),(6.62), for the explanation of notation 2O and .
(L) In particular, we expect that if A\ := (AXM 4. 4 X)) /N and p = (V4 4p®)/N

are partitions, then

I 5o000(@) < (Knun(@)™
7=1

(¢) ( Strong ¢-log concavity conjecture for parabolic Kostka polynomials )
Letl >k >r > 1 be integers, A\, i and 1 be as in Conjecture 6.17 (a), g,(q) = Knx npn(q)-
Then

() 91(0) = ge—r(@Q)g14-(q).

(") Moreover, we expect that the difference gi(q)gi(q) — gr—r(@)gi4++(q) is a unimodal poly-
nomial.

(#4) ( P—positivity conjecture for parabolic Kostka numbers )

Let o O 3 be partitions, l(«) = r. Consider the following polynomial:

A
9a\3(q) = 9.\ 5(q) = det(ga,—p,-i+5 (@) hi<ij<r-

Then go\g(1) > 0. Equivalently, {g]AV“”(l)}NE is a Pélya frequency sequence.

Remark 6.18 If r > 3, then it’s not true, in general, that all the coefficients of polynomial
ga\s(q) are non-negative. For example, take A = (4,3,2,1), R = ((2,2),(2),(2),(1,1)) and
a=1(2,2,2). Then g¢,(q) = 4¢** +28¢** + -+ -+ 7¢** — ¢°*.

We want to state some special cases of Conjecture 6.17 in its own right.
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Conjecture 6.19 (¢) ( The generalized Okounkov conjecture, I )
Let X be a partition and R be a dominant sequence of rectangular shape partitions. Then

(BN, NR)? > (N — 1)\, (N — 1)R) b((N + 1)A, (N + 1)R).

(#8) More generally, let X\ and p be partitions, and n be a composition, then the power

Series
= b(nA, npln)t"

n>0

1s a P-series.

Remind that a power series B(t) = Y oo b,t" is called a P- series, if det(by,—iy;) > 0 for
any partition A. -

(444)
Let X\, u, v be partitions, then

Ut 1) /2[4 ) /2] = Cops (6.66)

For a more general conjecture, see Section 6.8.

In the case then (A4 p)/2 is a partition, Conjecture 6.19, (#44), was stated by A.Okounkov
[60], Section 2.5. More generally,
() we expect that for a sequence of partitions A, - A®) the difference of products

of Schur functions )

P
H (3, XD +p=k)/p] HSW) (6.67)
— j=1
is a Schur or s-positive, i.e. the latter difference can be written as a linear combination of
Schur functions with non—negative (integer) coefficients, cf Conjecture 6.23 (4).
In the case of the Littlewood—Richardson numbers Conjecture 6.18, (), was stated by
A. Okounkov [60].

Remark 6.20 The log-concavity of numbers

dim VAgl(n) =s\(1,...,1) = ( ;:L, ) \
——

n

which can be in a natural way identified with certain numbers b(A, R) for some partitions A
and dominant sequences of rectangular shape partitions R, see e.g [30], has been proved by
A .Okounkov [59].

The ¢-log-concavity of the generalized ¢-Gaussian coefficients for general partition A has
been proved by A. Okounkov [59], and earlier for some special cases, by L. Butler, C. Krat-
tenthaller, B. Sagan and others. In fact, A. Okounkov has proved more fine result, namely,
that not only the dimension of an irreducible representation (or its ¢-dimension), but the
whole skew Schur function is log-concave.

(") We expect, that the modified parabolic skew Hall-Littlewood function is ¢-log-
concave as well.
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6.8 The generalized Fomin-Fulton-Li-Poon conjectures

Let A=A\ )X and B = M\ i be skew diagrams and v be a partition. Let 6 be a composition
such that I(v) < |6|. Define partitions

o =a(A,B) = (M) + A, M),p = (A, + M],0)

and the composition 3 = (A, B) := ((MIAQ) + A, OMI=H1 ),

One can prove that the ratio

Ky polq) = ¢ Kopy(q)
is in fact a polynomial in ¢ with non— negative integer coeﬂicients.
More generally, cf Section 5.2, let AU DAWNE = AW\ AP be a k-tuples
of skew dlagrams v and 6 be Compos1t10ns such that ll( ) § |0|. Define new partitions
a=alAD ... AW and g = B(Al -, AW in the following way:

tf Y e A 12') <]<Ez<r A f0r50m61<r<k
then a; = Ef:?“-l—l A( ) + A] ” 6] - Ez r4+1 Ag) + )\5 )7
where we put by definition, A©®) = = (. In addition, define n = (Ek ! A() + )\( Y ,0).

One can prove that the ratio

K40 aom 5(0) = 47 Ko () (6.68)

is a polynomial in ¢ with non—negative integer coefficients.
The main intention of this Section is to state a few results, examples and conjectures
about the latter polynomials.

Proposition 6.21 If 6 = (1), then
(%) K%y o(0) = Sy a0
where CA(1) A = (S400) =S40, 8,). Remember, that s ) denotes the skew Schur func-

tion correspondmg to the skew diagram AY, and () denotes the scalar product ( the so—called
Redfield—Hall scalar product ) on the ring of symmetric functions, see e.g. [53], Chapter I,
Section 4.

In particular, if XV =0, then K, A) 0(0) is equal to the LR-number ¢k, AC)
(M) [f A = ... = XB) =0 then the number K% a0 (1) is equal to the number of

semistandard k-rim hook tableaux of content v and a certain shape, see details in Section 5.2,

Conjecture 6.22 (Strong ¢-log concavity conjecture for polynomials [&A(l) ne ()

)

{K™ A e ACK) (@) m>1 is a strong q-log concave sequence.
In partzcular,

v A(m+1)v A(m—1)v
(AmA(l) mA(k),e(q)) 2 [( 1)AM) .. (m+1)A(k)79(q) h (m_1),4(1),...7(m_1),4(k)79(q)-
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Now we are going to state a generalization of the Fomin-Fulton-Li -Poon conjectures I and 11,
concerning the L R-numbers ¢ g, see [60], [18]. To start with, we need a bit more notation
from the papers quoted above.

(#) For an ordered k-tuples (A, .- X)) of partitions with the same number of com-
ponents p, let v = Ule)\(j) = (71 > 92 > -+ > ) be the decreasing rearrangement of the

\G) 's, 1< j <k 1<i<p. Define partitions

K3

AL = (%%‘+k7%+2k, e 7%‘+(p—1)k)71 <j<k

Now suppose that (AM RAWIS = AW\ A®)Y s an ordered k-tuples of skew
diagrams and 6 is a comp081t10n. Construct a new ordered k-tuples (A1 . A®) from the
k-tuples (AM - AB) and (AM ... A )) from the k-tuples (A -+ AR Tt is easy to see
that X0) € AW, Vj. Finally, define AW = AW\XD, 1 < j < kand j = A7 + 325,47, 0).

It is useful to consider the followmg modlﬁcatlon of the above construction. Namely, for
any an ordered k-tuples (A(V), ... A%} of partitions with the same number of components,
define a new ordered k-tuples of partitions ()\T(l), e )\T(k)) = (AW (AW Ina
similar way, for an ordered k-tuples (A1 ... AP of skew diagrams one can define a new

an ordered k-tuples of skew diagrams (AT(I), e ,AT(k)).

Remember that for any partition A the symbol A’ stands for the conjugate of the partition
A.

(# @) For an ordered pair (A, i) of partitions with the same number of components, define
a new ordered pair (A\*, u*) as follows:

M=M=k + 3l —3 > =k} wi ==+ 1+ # R — k> 5 — )

One can show, see [18], that \* and p* are partitions and |A*| + |¢*| = |A| + |p]-

Now suppose that A = A\ A\, B = M \ u are two skew shapes and 6 is a composition.
Construct * A* and M* from the pair (A, M), and A* and g* from the pair (X, u). It is not
difficult to see that A* C A* and p* C M*. Finally, define A* = A*\ A\*, B* = M* \ p¢* and

= (A7 + M7, 90).

Similarly to the previous case (#), for an ordered pair (A, x) of partitions, construct a
new ordered pair of partitions (A, ¥) := ((V)*), ((#')*)’), and for an ordered pair (A, B) of
skew diagrams define a new pair of skew diagrams (A%, B¥).

() One can show, cf [18], Section 5.1, that

if (A%, B*) = (A, B), then (A%, B*) = 0(A,B); ((A),(B)") = (A, B), (6.69)

where o denotes the twist o(X,Y) = (Y, X). ?
Let us remark that the transformation (A, u) — (A*, u*) := (A, )" is not one-to-one in
general, e.g. ((4,4),(5,3,1))* = ((5,4),(4,2,1))" = ((4,3),(5,4,1))".

2As we learned from the referee, a similar construction was also considered by F. Bergeron, R. Biagnoli
and M. Rosas, see e.g. [6], [7], or [55].

3As it was pointed by the referee, the equalities (6.69) was also proved by F. Bergeron, R. Biagnoli and
M.Rosas, see e.g. [6], [7].

69



(MMM) For an ordered k-tuples (A, ... AR of partitions with the same number of
components p, define a new ordered k-tuples of partitions ([AMT],--- [ART), cf (6.65), as
follows:

(MO =1 A k= )k, 1< <k 1<i<p.
s=1

Now suppose that (A1) = AW\ XD oo 04K = AR\ AK)) s an ordered k-tuples of skew
diagrams and 6 is a composition. Construct in an obvious way a new ordered k-tuples of
skew diagrams ([AM], .-, [A®]) from the k-tuples (AM, - AP} and that (A, ... A)
and put n = (A + 3, AV, 0),

By analogy with the case (#), for any an ordered k-tuples (A, ... A*)) of partitions
with the same number of components, define a new ordered k-tuples of partitions

A#D A = (AW (AW,

In a similar way, for an ordered k-tuples (A1), ... AW of skew diagrams one can define
a new ordered k-tuples of skew diagrams (A#(l), e ,A#(k)).

Y

Theorem 6.23 For an ordered k-tuples of skew diagrams (AN, - AW we have the fol-
lowing equalities:

k) ~

) (AD AWy = g ™)

(TADT, - [AB]) = (4t afl A (6.70)

Y

Conjecture 6.24 (4) ( The generalized Fomin-Fulton-Li-Poon conjecture I, cf [60],
[18], and (6.66))

Let AW ... AW pe skew diagrams, 0 be a composition and v be a partition. Then
K,lz;“<1)7...7g<k)79(9) > K,Z(D,...,A(k),e(Q)- (6.71)
Equivalently,
Ky, pamn6(0) 2 Koy a0 6(9)-
In particular, C}<1>7...7g<k> > 02(1)7,,,714(@, CZT(”,...,ATW > 02(1)7,,,714(@.

() We see that the generalized Fomin-Fulton-Li-Poon conjecture I, (6.71), is equiva-
lent to our conjecture (6.67), which in turn, is a generalization of that (6.66). As it was

mentioned, in the case when (A + w)/2 is a partition, the conjecture (6.66) was stated by
A. Okounkov, [60].

(¢4) The generalized Fomin-Fulton-Li-Poon conjecture II, cf [18] ) *
Let A,B,A, M, )\, i and 6 be as in (MW), then

[(,l:l*,B*,é’(Q) > I(ZLB,&((])'

*As it was pointed by the referee, a generalization of the original Fomin—Fulton-Li-Poon conjecture II,
[18], Conjecture 5.1, to the case of skew diagrams has been stated also by F. Bergeron, R. Biagnoli and
M. Rosas, see e.g. [6], [7]; see also [55].
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In particular, ¢4 e 2> ¢ g, @it = Ca B

(#44) (The generalized Okounkov conjecture II )
Let (AW .. AW be an ordered k-tuples of skew diagrams, v be a partition and 6 be
a composition. Let py,---,pr be non—negative rational numbers, p1 + --- + pr = 1. Define
AW = Ele Pht1—iti AU 1 <4 < k. Assume that the all AY ... A®) qre skew diagrams.
Then
Koy a00.0(0) 2 Koy a0 6(9)-

In particular, ¢ >

A .. AR) AL . AR

Examples 6.25 We clucidate Conjecture 6.23 in the case k = 2. To simplify notation we
will write A, B,A, M, X and p instead of AW, A@ AW A@ X gnd X® correspondingly.
(¢) Take A = (5,1),M = (4,3,1),v (6,5,2,1) = (1*) and X = pu = 0. It is easy to
check that
(AvM) = (( ) (47 1)) = ( ) #)7 ( ) ((47 1)7 (5737 1));
<(A++441,[A+M>= ((5.2.1),(1,2)) = (47211
(A%, M3) = ((4.2),(5,2.1)) and n = (1,1%)
Using the fermionic formula (5.44) for Kostka-Foulkes polynomials, one can find that
Koaro(@) = K% 57 (0) = (3,11, 18,17, 11,4, 1), Kfy - (asgo9) =
K aro(g) = (1,6,12,14,10,4,1).
Therefore, the diﬁerence K% — (g (q) — KX ar0(q) is equal to (2,5,6,3,1).
Similar computations show that if we take 6, = (12, 2), then (with n, = 1, = (4,1%,2))
Kfoareo, (@) = K% 57, (a) = (3,9,13,10,5, 1), AAM& (¢) = (1,5,9,9,5,1) and

Kty an, e (@) = (3,10,14,11,5,1).

(17) Take A = (5,5,2,2)\ (3,1), B=(1,1)\ (1), v = (5,3,2,1) and 6 = (1*). It is easy
to check that

(A, B) = ((5,2,1)\ (3, 1),(5,2,1) \ (1)) = (A%, B¥);

(A% B7) = ((4,3,1)\(2),(3,2,2, 1)\ (2,1)); (A%, B*) = ((2,2,1)\ (1), (5,4,1,1)\ (3,1));

([A + B—| [A—I' B]) = ((3737 L, 1) \ (27 1) (3737 171) )) = (ATvBT)'

\ (2

Using the fermionic formula (5.44) for Kostka—Foulkes polynomials, one can find that
K4 peglq) = (33,82,86,53,21,6, 1), K¥y,pm Lapmpola) = (12.20,14,5,1),
K% 5 (q) = (20,86,139,131,86,43,17,5,1), K%, 5 () = (22,56,61,40,17,5,1),
[(ZlBé’( ) (479797471)
Similar computations show that if we take n, = (1,2, ) then
AA* ,B* 6’1( ) (3376474179)7 [(ZlBé’ ( ) (4 7 3))7 |'A-|—B'| [A-l—B],é’l(Q) = (1271575)7

(q) = (22,

K% - (q)=(20,73,87,49,13,1), KV, ) = (22,45,32,9).

A,B,6; A¥ B 6,

These examples show that, probably, there are no simple relationships between polynomials

K} geglq), K iB 9( ), Ky ,B1 e( ) and A[A-|—B'| [A-|—B],€(Q)'
(*I) However, based on examples, we expect that — max{c}j. g, C%M} > ClatB), [A+B]-
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(") We expect that if §; and 6, are compositions such that 6, is a subdivision of 6, see
Section 1, Notation, then

KZM) A(k),eQ() KA<1> A<k>,€2(q) KZW) A(k),é’l() AA(U A<k>,91(q)207

K e 92( ) — ‘AB@(Q) K« peg (q) — KB o, (q) >0,
AA+M+€( )= Kipo(q) = Ky B+9(Q) K4 g4 (q) 20,
Ky [A], [AP)], 6,(0) = Ky . a9, (@) = KY [AMT], [A)] 6 (9) = Kyewy .. am ,(q

)
K0y o aw.6,(0) = Koy a00.0,(0) = Koy joo 6, (@) — Ky aom g, (0) = 0.

Remark 6.26 We expect that Conjecture 6.3 ( Positivity), Conjecture 6.5 (Saturation),
Conjecture 6.7 (Rationality), Conjecture 6.10 (Polynomiality), Conjecture 6.17 (¢-Log
concavity and P-positivity), Conjecture 6.24 (Generalized Fomin-Fulton-Li-Poon’s
conjectures I and II) are still valid for the level [-restricted parabolic Kostka polynomials

K (¢), see Remark 4.28 for the definition of the latter.

Aun

6.9 Miscellany

Conjecture 6.27 ( Rationality conjecture for the LLT g-analog of LR-numbers )
Let A,y and v be partitions, and ¢} ,(q) stands for the q-analog of Littlewood-Richardson
numbers defined in [11], [47]. Then

> e ) =P g1/ Q% (q:1),

n>0

where PY (q,t) and QX ,(q,t) are mutually prime polynomials with integer coefficients.
Moreover

ety =] =g 0"
i€l

Jor some finite set of inlegers I = Iy, and a set of positive integers n;, 1 € I.

(") We expect the similar conjecture for the parabolic Kazhdan—Lusztig polynomials, see
e.g. [49] for the definition of the latter.

Conjecture 6.28 ( Saturation conjecture for the structural constants of the mul-
tiplication of the Schubert polynomials )

For each n > 1, let ¥ denote the set of all permutations w such that the code of w has
length at most n. Denote by ¥ the union U,,>1 DIN

Ifwe XM and N > 1 is an integer, define the permutation N xw € XV to be a unique
permutation with the code (Neq, - -+, Ncn), where (¢1, -+, ¢,) is the code of w.

For each w € ¥ denote by &,, € P, := Z[:L'l, oo x,] the corresponding Schubert poly-
nomial. It is well-known that the &, w € Z ), form a Z-basis of P,.
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Finally, if u,v are permutations which belong to the infinite symmetric group ¥, denote
by ¢/, the structural constants for the multiplication of Schubert polynomials:

Then
() C%IfN*U # 0 for some integer N > 1 if and only if ¢}, # 0.

(") We expect that the formal power series

Nxw
CNxy N*v

N>1

is a rational function in ¢ (with the only possible pole at ¢t = 1 77). In other words, the

function N — C%IfN*U is a polynomial in N with rational (non—negative 77) coefficients.

Problem 6.29 ( Generalized saturation problem for Kazhdan—Lusztig’s polyno-
mials )
Let u,w € Y, be two permutations, denote by

Pu,w(q) =14+ d(uv w) qC(%w)v d(uvw) 7£ 07

the corresponding Kazhdan—Lusztig polynomial [27].
() Prove (or disprove) that
(1) (N *xu,Nxw)=N clu,w) for any positive integer N
(2) d(N *u, N*w) =1 for some positive integer N if and only if d(u,w) = 1.

The similar Problem can be stated for the Kazhdan—Lusztig polynomials corresponding to
the affine symmetric group.
However, we didn’t extensively test Conjecture 6.27 and Problem 6.28 on a computer.

We want to end this Section by the following question and problem:

Question 6.30 ( A g-analog of the structural constants ¢},
Does there exist a natural g-analog ¢ (q) € N [q] of the Structuml constants ¢,
that ¢y, = ¢y (1), which for the grassmannian permutations u, v and w coincides with the

S0

g-analog cigf))ﬂv)(q) of the LR-numbers ?
Here M(w) denotes the shape of a permutation w, see [52] for a detailed account to the
theory of Schubert polynomials. As for a definition of the g-analog X ,(q) of the L R-numbers,

see e.q. [11], [47].

Problem 6.31 ( Define the polynomials ¢}  (¢) through the geometry of Schubert
varieties )

Let n > m be fized positive integers, and X\, u and v be three partitions such that
max(l(A), {(u), l(v)) < m, max(Ar, 1, 11) < n, and || + |p] = |v].
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It is well-known that the LR-number ¢, counts the number of (isolated) points in the
triple intersection & N&,NG,« of the Schubert varieties &y, &, and &,» in the Grassmannian
variety G(m,n + m), see e.g. [19] for the explanations of omitted notation, definitions and
details.

() Find a geometric way to attach to each intersection point x € &\N&, NG« an integer
number c¢(x) such that the generating function

Z qc(ac)

xE@AI’WGMﬂ@V*

coincides with the LLT q-analog cX ,(q) of the Littlewood— Richardson number cX .
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