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Abstract

In this paper, we consider a sink location in a dynamic network which consists of
a graph with capacities and transit times on its arcs. Given a dynamic network with
initial supplies at vertices, the problem is to find a vertex v as a sink in the network
such that we can send all the initial supplies to v as quickly as possible. We present
an O(n log2 n) time algorithm for the sink location problem, in a dynamic network of
tree structure where n is the number of vertices in the network. This improves upon the
existing O(n2)-time bound. As a corollary, we also show that the quickest transshipment
problem can be solved in O(n log2 n) time if a given network is a tree and has a single
sink. Our results are based on data structures for representing tables (i.e., sets of intervals
with their height), which may be of independent interest.

1. Introduction

We consider dynamic networks that include transit times on arcs. Each arc a has the transit
time τ(a) specifying the amount of time it takes for flow to travel from the tail to the head
of a. In contrast to the classical static flows, flows in a dynamic network are called dynamic.
In the dynamic setting, the capacity of an arc limits the rate of the flow into the arc at each
time instance. Dynamic flow problems were introduced by Ford and Fulkerson [6] in the
late 1950s (see e.g. [5]). Since then, dynamic flows have been studied extensively. One of
the main reasons is that dynamic flow problems arise in a number of applications such as
traffic control, evacuation plans, production systems, communication networks, and financial
flows (see the surveys by Aronson [2] and Powell, Jaillet, and Odoni [15]). For example, for
building evacuation [7], vertices v ∈ V model workplaces, hallways, stairwells, and so on,
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and arcs a ∈ A model the connection link between the adjacent components of the building.
For an arc a = (v, w), the capacity u(a) represents the number of people who can traverse the
link corresponding to a per unit time, and τ(a) denotes the time it takes to traverse a from v
to w.

This paper addresses the sink location problem in dynamic networks: given a dynamic
network with the initial supplies at vertices, find a vertex, called a sink, such that the comple-
tion time to send all the initial supplies to the sink is as small as possible. In this setting of
building evacuation, for example, the problem models the location problem of an emergency
exit together with the evacuation plan for it.

Our problem is a generalization of the following two problems. First, it can be regarded
as a dynamic flow version of the 1-center problem [14]. In particular, if the capacities are suf-
ficiently large, our problem represents the 1-center location problem. Secondly, our problem
is an extension of the location problems based on flow (or connectivity) requirements in static
networks, which have received much attention recently [1, 11, 17, 18].

We consider the sink location problem in dynamic tree networks. This is because some
production systems and underground passages form almost-tree networks. Moreover, one of
the ideal evacuation plans makes everyone to be evacuated fairly and without confusion. For
such a purpose, it is natural to assume that the possible evacuation routes form a tree. We
finally mention that the multi-sink location problem can be solved by solving the (single-
)sink location problem polynomially many times [13]. It is known [12] that the problem can
be solved in O(n2) time by using a double-phase algorithm, where n denotes the number of
vertices in the given network. We show that the problem is solvable in O(n log2 n) time.

Our algorithm is based on a simple single-phase procedure, but uses sophisticated data
structures for representing tables g i.e., sets of time intervals [θ1, θ2) with their height g(θ1)
to perform three operations Add-Table (i.e., adding tables), Shift-Table (i.e., shifting a table),
and Ceil-Table (i.e., ceiling a table by a prescribed capacity). We generalize interval trees
(standard data structures for tables) by attaching additional parameters and show that using
the data structures, we can efficiently handle the above-mentioned operations. Especially, we
can merge tables gi in O((

∑
i di) log2(

∑
i di)) time, where we say that tables gi are merged

if gi’s are added into a single table g after shifting and ceiling tables are performed, and di

denotes the number of intervals in gi. This result implies an O(n log2 n) time bound for the
location problem. We mention that our data structures may be of independent interest and
useful for some other problems which manage tables.

We remark that our location problem for general dynamic networks can be solved in poly-
nomial time by solving the quickest transshipment problem n times. Here the quickest trans-
shipment problem is to find a dynamic flow that zeroes all given supplies and demands within
the minimum time, and is polynomially solvable by an algorithm of Hoppe and Tardos [9].
However, since their algorithm makes use of submodular function minimization [10, 16] as a
subroutine, it requires polynomial time of high degree. As a corollary of our result, this paper
shows that the quickest transshipment problem can be solved in O(n log2 n) time if the given
network is a tree and has a single sink.

The rest of the paper is organized as follows. The next section provides some preliminaries
and fixes notation. Section 3 presents a simple single-phase algorithm for the sink location
problem, and Section 4 describes and discusses our data structures. In Section 5, we analyze
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the complexity of our single-phase algorithm with our data structures. Finally, we give some
conclusions in Section 6.

2. Definitions and Preliminaries

Let T = (V, E) be a tree with a vertex set V and an edge set E. Let N = (T, c, τ, b) be a
dynamic flow network with the underlying undirected graph being a tree T , where c : E →
R+ is a capacity function representing the least upper bound for the rate of flow through each
edge per unit time, τ : E → R+ a transit time function, and b : V → R+ a supply function.
Here, R+ denotes the set of all nonnegative reals and we assume the number of vertices in T
is at least two.

This paper addresses the problem of finding a sink t ∈ V such that we can send given
initial supplies b(v) (v ∈ V \ {t}) to sink t as quickly as possible. Suppose that we are given
a sink t in T . Then, T is regarded as an in-tree with root t, i.e., each edge of T is oriented
toward the root t. Such an oriented tree with root t is denoted by �T (t) = (V, �E(t)). Each
oriented edge in �E(t) is denoted by the ordered pair of its end vertices and is called an arc.
For each edge {u, v} ∈ E, we write c(u, v) and τ(u, v) instead of c({u, v}) and τ({u, v}),
respectively. For any arc e ∈ �E(t) and any θ ∈ R+, we denote by fe(θ) the flow rate entering
the arc e at time θ which arrives at the head of e at time θ + τ(e). We call fe(θ) (e ∈ �E(t),
θ ∈ R+) a continuous-time dynamic flow in �T (v∗) (with a sink v∗) if it satisfies the following
three conditions, where δ+(v) and δ−(v) denote the set of all arcs leaving v and entering v,
respectively.

(a) (Capacity constraints): For any arc e ∈ �E(t) and θ ∈ R+,

0 ≤ fe(θ) ≤ c(e). (2.1)

(b) (Flow conservation): For any v ∈ V \ {v∗} and Θ ∈ R,

∑
e∈δ+(v)

∫ Θ

0
fe(θ)dθ − ∑

e∈δ−(v)

∫ Θ

τ(e)
fe(θ − τ(e))dθ ≤ b(v). (2.2)

(c) (Demand constraints): There exists a time Θ ∈ R+ such that

∑
e∈δ−(v∗)

∫ Θ

τ(e)
fe(θ − τ(e))dθ − ∑

e∈δ+(v∗)

∫ Θ

0
fe(θ)dθ =

∑
v∈V \{v∗}

b(v). (2.3)

As seen in (b), we allow intermediate storage (or holding inventory) at each vertex. For
a continuous-time dynamic flow f , let θf be the minimum time θ satisfying (2.3), which is
called the completion time for f . We further denote by C(v∗) the minimum θf among all
continuous dynamic flows f in �T (v∗). We study the problem of computing a sink v∗ ∈ V
with the minimum C(v∗). This problem can be regarded as a dynamic version of the 1-center
location problem (for a tree) [14]. In particular, if c(v, w) = +∞ (a sufficiently large real) for
each edge {v, w} ∈ E, our problem represents the 1-center location problem [14].

We remark that dynamic flows can be restricted to those having no intermediate storage
without changing optimal sinks of our problem (see discussions in [6, 9, 12], for example).
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2.1. An O(n2) algorithm given in [12]

In this section, we review the outline of an O(n2) algorithm which has been proposed in [12],
in order to make our faster algorithm easily understood.

The algorithm consists of two phases, Phases I and II. Phase I arbitrarily chooses a vertex
t ∈ V as a candidate sink and compute the completion time C(t) and a dynamic flow f that
completes in C(t). Then Phase II computes an optimal sink t∗ by repeatedly picking up a new
candidate sink t̂ that is adjacent to the current one t and updating t := t̂ if C(t̂) < C(t).

In both phases, we keep two tables, Arriving Table Av and Sending Table Sv for each
vertex v ∈ V . Arriving Table Av represents the sum of the flow rates arriving at vertex v as a
function of time θ, i.e., ∑

e∈ �E(t):e=(u,v)

fe(θ − τ(e)) + ηθ(v), (2.4)

where fe(θ) = 0 holds for any e ∈ �E(t) and θ < 0, and ηθ(v) = b(v)
∆

if 0 ≤ θ < ∆; otherwise
0. Here, ∆ denotes a sufficiently small positive constant. Intuitively, ηθ(v) denotes the initial
supply at v Sending Table Sv represents the flow rate leaving vertex v as a function of time θ,
i.e.,

f(v,w)(θ), (2.5)

where (v, w) ∈ �E(t).
Let us consider a table g : R+ → R+ , which represents the flow rate in time θ ∈ R+.

Here, we assume g(θ) = 0 for θ < 0. Since our problem can be solved by sending out as
much amount of flow as possible from each vertex to its parent if a candidate sink t is chosen
in advance, we only consider the table g which is representable as

g(θ) =


0 if θ < θ1

g(θi) if θi ≤ θ < θi+1 for i = 1, · · · , k − 1
0 if θ ≥ θk,

(2.6)

where θi < θi+1 and g(θi) �= g(θi+1) for i = 1, . . . , k. Thus, we represent such tables g by a
set of intervals (with their height), i.e.,

((−∞, θ1), 0), ([θi, θi+1), g(θi)) (i = 1, 2, · · · , k), (2.7)

where θk+1 = +∞ and g(θk) = 0. A time θ is called a jump time of g if limx→−0 g(θ +x) �=
limx→+0 g(θ + x).

Figure 1 shows such a table g, where black circles denote g(θi)’s at jump time θi’s.
Let us now describe Phases I and II as follows.

Algorithm DOUBLE-PHASE

(Phase I)

Step 0: Choose a vertex t arbitrarily. Put T ′ ← �T (t).

Step 1: If T ′ consists of t alone, then go to Step 3. For each leaf v of T ′, construct Sending
Sv from Arriving Table Av by bounding Av by c(v, w), where w is a parent of v in T ′.
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θ1 θ2 θ3 θ4

Time

Figure 1: An example of a table that can be decomposed into intervals.

Step 2: For each internal node w whose children are all leaves, construct Arriving Table Aw

from Sending Tables Sv of its children v by shifting Av right by τ(v, w) and adding all
such shifted tables and the initial supply ηθ(w).
Remove all the leaves v( �= t) from T ′ and denote the resultant tree by T ′ again.
Go to Step 1.

Step 3: Compute the completion time C(t) from At.

(Phase II)

Step 0: Find a child v of root t that sends the last flow to t (i.e., the flow that arrives at time
C(t)). Put t̂← v and consider t̂ as a new sink. If v is not unique, then t∗ = t and halt.

Step 1: Compute the completion time C(t̂) and the corresponding tables as follows.
(1-1) Compute new Arriving Table Ãt by subtracting from At the table obtained from

St̂ by shifting it right by τ(t̂, t).
(1-2) Compute from new Ãt Sending Table St to go through (t, t̂) (as in Step 1 of

Phase I).
(1-3) Compute new Arriving Table Ãt̂ by adding At̂ and the table constructed from St

by shifting it right by τ(t, t̂). Compute the completion time C(t̂).

Step 2:
(2-1) If C(t) < C(t̂), then return t∗ = t and halt.
(2-2) If C(t) ≥ C(t̂) and the last flow reaches sink t̂ from t, then return t∗ = t̂ and halt.
(2-3) Otherwise, put t← t̂ and go to Step 0. �

Note that tables Av and Sv can be constructed by adding, shifting, and/or bounding the
other tables. Now, we more formally describe how to compute them.

In Step 1 of Phase I, Arriving Table Av for a leaf v of the original �T (t) is given as

((−∞, 0), 0), ([0, ∆), b(v)/∆), ([∆, +∞), 0), (2.8)

and Sending Table Sv for a leaf v of T ′ can be constructed from Av as follows. Let Av be
represented as

((−∞, θ1), 0), ([θi, θi+1), hi) (i = 1, 2, · · · , k),

where θk+1 = +∞ and hk = 0, and let Ri = (hi − c(v, p(v)))(θi+1 − θi).

Step 1: Output ((−∞, θ1), 0) and i := 1
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Step 2: If Ri < 0, then output ([θi, θi+1), hi), and i := i + 1. Otherwise, let α be the
index such that

∑j
�=i R� ≥ 0 for any j ≤ α − 1 and

∑α
�=i R� < 0 and let β = θα +∑α−1

�=i R�/(c(v, p(v)) − hα). Then output ([θi, β), c(v, p(v))) and([β, θα+1), hα), and
i := α + 1.

Step 3: If i = k + 1, then halt. Otherwise, go to Step 2.

Step 2 of Phase I computes Arriving Table Aw from Sv for children v’s of w and the initial
supply of w as follows.

For a child v of w, let Sv be represented as

((−∞, θv
1), 0), ([θv

i , θ
v
i+1), h

v
i ) (i = 1, 2, · · · , kv),

where θv
kv+1 = +∞ and hv

kv
= 0, and let the initial supply of w be represented as in (2.8):

((−∞, 0), 0), ([0, b(w)/∆), ∆), ([b(w)/∆, +∞), 0).

From these tables, we first sort all the elements in
⋃

v: a child of w

{θv
i + τ(v, w) | i = 1, · · · , kv +

1} ∪ {0, b(w)/∆, +∞} as θ1 < θ2 < · · · < θk+1 (= +∞), and then output ((−∞, θ1), 0) and(
[θi, θi+1),

∑
v: a child of w

hv(θi − τ(v, w)) + hw(θi)
)

(i = 1, 2, · · · , k),

where hv(θ) and hw(θ) denote the height of the table Sv and the initial supply of w at time θ,
respectively.

By using similar methods, Phase II computes the tables.
It was shown in [12] that Algorithm DOUBLE-PHASE correctly computes an optimal sink

and it requires O(n2) time. The latter follows from the fact that each table g can be computed
in time linear in the total number of intervals in the tables from which g is constructed and the
number of intervals in each table is linear in n.1 Namely, we have the following theorem.

Theorem 2.1 ([12]): Algorithm DOUBLE-PHASE solves the sink location problem in O(n2)
time. �

3. A Single-Phase Algorithm

Algorithm DOUBLE-PHASE consists of two phases. This section presents a simple O(n2)
algorithm with a single phase. Because of the simplicity, it gives us a good basis for develop-
ing a faster algorithm. In fact, we can construct an Õ(n) algorithm based on this framework,
which is given in the next section.

Intuitively, our single-phase algorithm first constructs Sending Table Sv for each leaf v
to send b(v) to its adjacent vertex. Then the algorithm removes a leaf v∗ from T such that
the completion time of Sv is the smallest, since T has an optimal sink other than v∗. If some
vertex v becomes a leaf of the resulting tree T , then the algorithm computes Sending Table
Sv to send all the supplies that have already arrived at v to an adjacent vertex p(v) of the
resulting tree T , by using Sending Tables for the vertices w ( �= p(v)) that are adjacent to v
in the original tree. The algorithm repeatedly applies this procedure to T until T becomes a
single vertex t, and outputs such a vertex t as an optimal sink.

1It was shown in [12] that the number of intervals is at most 3n for discrete-time dynamic flows.
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Algorithm SINGLE-PHASE

Input: A tree network N = (T = (V, E), c, τ, b).
Output: An optimal sink t that has the minimum completion time C(t) among all vertices of

T .
Step 0: Let W := V , and let L be the set of all leaves of T . For each v ∈ L, construct

Arriving Table Av.
Step 1: For each v ∈ L, construct from Av Sending Table Sv to go through (v, p(v)), where

p(v) is an only vertex adjacent to v in T . Compute the time Time(v, p(v)) at which the
flow based on Sv is completely sent to p(v).

Step 2: Compute a vertex v∗ ∈ L minimizing Time(v, p(v)), i.e., Time (v∗, p(v∗))= minv∈L

Time (v, p(v)). Let W := W \ {v∗} and L := L \ {v∗}.
If there exists a leaf v of T [W ] such that v is not contained in L,

then:
(1) Let L := L ∪ {v}.
(2) Construct Arriving Table Av from the initial supply ηθ(v) and Sending Table Sv′

for the vertices v′ that are adjacent to v in T and have already been removed
from W .

(3) Compute from Av Sending Table Sv to go through (v, p(v)) where p(v) is a
vertex adjacent to v in T [W ], and compute Time(v, p(v)).

Step 3: If |W | = 1, then output t ∈W as an optimal sink. Otherwise, return to Step 2. �

Here T [W ] denotes a subtree of T induced by a vertex set W , and tables Av and Sv are
constructed as in Algorithm DOUBLE-PHASE.

Note that at most one leaf v of T [W ] is not contained in L in the if-statement of Step 2,
and L is always the set of all leaves of T [W ] before executing Step 2 in each iteration. By
removing edge (v, w) from T , T is partitioned into two disjoint trees. We denote the one
including v by T(v,w) and by T +

(v,w) the trees obtained by adding T(v,w) to edge (v, w). Then

we can see that Time(v, p(v)) in Step 1 or 2 represents the completion time for
−→
T+

(v,p(v))(p(v)).

Lemma 3.1: Algorithm SINGLE-PHASE outputs an optimal sink t.

Proof. We assume that a vertex u (�= t) is an optimal sink. Here, let w be a vertex adjacent
to t on the path from u to t. We denote by k1, k2 and k3 the completion time for

−→
T(t,w)(t),−→

T+
(t,w)(w) and

−→
T+

(w,t)(t), respectively. Then we have k2 = Time(t, w) and k3 = Time(w, t)
(see Figure 2).

It follows from the definitions that

k1 ≤ k2, C(t) = max{k1, k3}, C(u) ≥ k2. (3.1)

Note that k3 was chosen as k3 = Time(w, t) = minv∈L Time(v, t) in Step 2 of the algorithm.
This implies k3 ≤ k2, which together with (3.1) implies C(t) ≤ C(u). Hence t is also optimal
since u is optimal. �

Similarly as Algorithm DOUBLE-PHASE, it is not difficult to see that Algorithm SINGLE-
PHASE requires O(n2) time if we construct Arriving and Sending Tables explicitly. In Sec-
tion 4, we present a method to represent these tables implicitly, and develop an O(n log2 n)
time algorithm for our location problem.
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t w u
T(t,w)

T+
(t,w)

T+
(w,t)

Figure 2: T(t,w), T+
(t,w), and T+

(w,t).

4. Implicit Representation for Arriving and Sending Tables

Algorithm DOUBLE-PHASE and SINGLE-PHASE require Θ(n2) time if explicit representa-
tions are used for tables. For example, Figure 3 shows such a network N = (T = (V, E), c, τ, b),

−k −k + 1 −k + 2 · · · −2 −1 0 1 2 k − 2 k − 1 k

c ≡ 1, τ ≡ 2, b ≡ 1

· · ·

0

A−k

0

A−k+1

2 3 0

A0

2 3 4 5 2k 2k + 1

· · ·
· · ·

0

S−k

1

1 1

1

0

S−k+1

1

1

2 3 0

S0

2 3 4 5 2k 2k + 1

· · ·
· · ·

1

1

Figure 3: A dynamic network that achieves Θ(n2) time bound for our location problem.

where V = {−k,−k+1, · · · , k}, E = {(i, i+1) | i = −k, · · · , k−1}, c(e) = 1 and τ(e) = 2
for all e ∈ E, and b(v) = 1 for all v ∈ V . It follows from the symmetry of T that 0 is a unique
optimal sink. Both Arriving Table Aj and Sending Table Sj constructed by SINGLE-PHASE

algorithm have 2(k − |j|) + 3 intervals. Thus the total size of the tables is

2×
k∑

j=−k

(
2(k − |j|) + 3

)
= 4k2 + 12k + 6 = n2 + 4n + 1.
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This shows that Algorithm SINGLE-PHASE requires Θ(n2) time if explicit representations are
used for the tables. Similarly, Algorithm DOUBLE-PHASE requires Θ(n2) time in such a case.

Therefore, we need sophisticated data structures which can be used to represent Arriv-
ing/Sending Tables implicitly. We adopt interval trees for them, which are standard data
structures for a set of intervals. Note that SINGLE-PHASE only applies to tables Av and/or
Sv the following three basic operations (see Figure 4) : Add-Table (i.e., adding tables), Shift-
Table (i.e., shifting a table), and Ceil-Table (i.e., ceiling a table by a prescribed capacity). It
is known that interval trees can efficiently handle operations Add-Table and Shift-Table (see
Section 4.1). However, standard interval trees cannot efficiently handle operation Ceil-Table.
This paper develops new interval trees which efficiently handle all the three operations.

Time

Time

Time

+

Add-Tabel

Time

c

Time

c

Ceil-Table

Time Time
τ

Shift-Table

Figure 4: 3 basic operations
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4.1. Data Structures for Implicit Representation

This section explains our data structure for representing tables which is obtained from interval
tree by attaching several parameters to handle the three operations efficiently. Let g be a table
represented as

Ii = ([θi, θi+1), g(θi)) (i = 0, 1, · · · , k), (4.1)

where θ0 = −∞, θk+1 = +∞, and g(θ0) = g(θk) = 0,2 and let BTg denote a binary tree for
g. We denote the root by rBT and the height of BT by height(BT ). The binary tree BTg has
an additional parameter tbase to represent how much g is shifted right. This tbase is used for
operation Shift-Table by updating tbase to tbase + µ, where µ denotes the time to shift the table
right. Moreover, each node x in BTg has five nonnegative parameters base(x), ceil(x), he(x),
tr(x), and tl(x) with tl(x) ≤ tr(x), and each leaf has e(x) in addition, where these parameters
will be explained later. A leaf x is called active if tl(x) < tr(x) and dummy otherwise. The
time intervals of a table g correspond to the active leaves of BTg bijectively. We denote by
#(BT ) the number of active leaves of BT .

Initially (i.e., immediately after constructing BTg by operation MAKETREE given below),
BTg contains no dummy leaf and hence there exists a one-to-one correspondence between the
time intervals of g and leaves of BTg. Moreover, for each leaf x corresponding to Ii in (4.1),
we have tl(x) = θi, tr(x) = θi+1, base(x) = g(θi) and ceil(x) = +∞, and for each internal
node x, tl(x)= miny∈Leaf (x) tl(y), tr(x)= maxy∈Leaf (x) tr(y), base(x) = 0 and ceil(x) = +∞.
Here, Leaf (x) denotes the set of all leaves which are descendants of x. Namely, tl(x) and
tr(x), respectively, represent the start and the end points of the interval corresponding to x,
and base(x) and ceil(x), respectively, represent the flow rate and the upper bound for the flow
rate in the time interval corresponding to x.

Operation MAKETREE (g: table)

Step 1: Let tbase := 0.

Step 2: Construct a binary balanced tree BTg whose leaves xi correspond to the time interval
Ii of g in such a way that the leftmost leaf corresponds to the first interval I0, the next
one corresponds to the second interval I1, and so on.

Step 3: For each leaf xi corresponding to interval Ii = [θi, θi+1), base(x) := g(θi), tl(x) :=
θi and tr(x) := θi+1.

Step 4: For each internal node x, base(x) := 0, and tl(x) := miny∈Leaf (x) tl(y) and tr(x) :=
maxy∈Leaf (x) tr(y).

Step 5: For each node x, ceil(x) := +∞.

Step 6: For each leaf x, set e(x), and for each node x, set he(x), where e(x) and he(x) shall
be explained later. �

We can easily compute a table g from BTg constructed by MAKETREE. It should also be
noted that a binary tree BT g is not unique, i.e., distinct trees may represent the same table g.

As mentioned in this section, Shift-Table can easily be handled by updating tbase. We now
consider Add-Table, i.e., constructing a table g by adding two tables g1 and g2, where we

2For simplicity, we write the first interval I0 as ([−∞, θ1), 0) instead of ((−∞, θ1), 0).

10



regard an addition of k tables as k − 1 successive additions of two tables. Let us assume that
#(BTg1) ≥ #(BTg2), that is, g1 has at least as many intervals as g2. Our algorithm constructs
BTg by adding all intervals (corresponding to active leaves) of BTg2 one by one to BTg1 . Each
addition of an interval ([θ1, θ2), c) to BTg1 , denoted by ADD(BT1; θ1, θ2, c), can be performed
as follows.

We first modify BTg1 to B̃Tg1 that has (active) leaves x and y such that tl(x) = θ1 and
tr(y) = θ2 if there exist no such leaves, as shown in Figure 5. Then we add an interval
([θ1, θ2), c) to the resulting B̃Tg1 . One of the simplest way is to add c to all leaves of B̃Tg1

such that the corresponding intervals are included in [θ1, θ2). However, this takes O(n) time,
since BTg1 may have O(n) such intervals. We therefore add c only to their representatives.

θ1 θ2

BTg1 B̃Tg1

θ1 θ2

Figure 5: Modification of BTg1 .

Note that the time interval [θ1, θ2) can be represented by the union of disjoint maximal
intervals in B̃Tg1 , i.e., the set of incomparable nodes in B̃Tg1 , denoted by rep(θ1, θ2) (see
Figure 6). We thus update base of B̃Tg1 as follows

base(x) := base(x) + c for all x ∈ rep(θ1, θ2). (4.2)

We remark that this is a standard technique for interval tree. By successively applying this
procedure to new interval tree B̃Tg1 and each of the remaining intervals in BTg2 , we can
construct BTg with g = g1 + g2.

For an interval tree BT and an active leaf x of BT , let y1(= x), y2, · · · , ys(= rBT ) denote
the path from x to the root rBT . The procedure given above shows that the height of an active
leaf x representing the flow rate of the corresponding interval can be represented as

h(x) =
s∑

i=1

base(yi). (4.3)

Operation ADD(BTg1; θ1, θ2, c) can be handled in O(height(BTg1)) time, since |rep(θ1, θ2)| ≤
2height (BTg1). This means that BTg can be constructed from BTg1 and BTg2 in O (#(BTg2)
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θ1 θ2

+c

+c

+c +c

+c

Figure 6: Black nodes represent rep(θ1, θ2).

log n) time by taking balancing of the tree after each addition.Moreover, operations Add-Table
in Algorithm SINGLE-PHASE can be performed in O(n log2 n) time in total, since we always
add a smaller table to a larger one (see Section 4.3 for the details). Thus Add-Table can be
performed efficiently.

However, operations Ceil-Table in Algorithm SINGLE-PHASE require Θ(n2) time in total,
since the algorithm contains Θ(n) Ceil-Table, each of which requires Θ(n) time, even if we
use interval trees as data structures for tables (see Figure 4 for example). Therefore, when we
bound BT by a constant c, we omit modifying tl, tr, and base, and keep c as ceil(rBT ) = c.
Clearly, this causes difficulties to overcome as follows.

First, h(x) in (4.3) does not represent the actual height any longer. Roughly speaking, the
actual height is c if c ≤ h(x), and h(x), otherwise. We call h(x) the tentative height of x in
BT , and denote by ĥ(x) the actual height of x. If c is small, some adjacent intervals can have
the same height. In this case, there exists no one-to-one correspondence between active leaves
and intervals, and hence we have to merge these intervals into a single one. We will explain
how to handle this later.

Let us consider a scenario that an interval ([θ1, θ2), c
′) is added to BT after bounding it by

c. Let x be an active leaf such that (i) the corresponding interval is contained in [θ1, θ2) and
(ii) the actual height is c, immediately after bounding BT by c. Then we note that the actual
height of x is c + c′ after the scenario, which is different from both h(x) and c. To deal with
such scenarios, we update ceil to compute the actual height ĥ(x) efficiently (See more details
in the subsequent sections). The actual height ĥ(x) can be computed as

ĥ(x) = h(x)− max
y∈path(x,rBT )

{0,
( ∑

z∈path(x,y)

base(z)
)
−ceil(y)}, (4.4)

where path(x, y) denotes the path from x to y. Intuitively, for a node yk in BT , ceil(yk)
represents the upper bound of the height of active leaves x ∈ Leaf (yk) within the subtree of
BT whose root is yk. Thus

∑k
i=1 base(yi) − ceil(yk) has to be subtracted from the height

h(x) if
∑k

i=1 base(yi) − ceil(yk) > 0, and the actual height ĥ(x) is obtained by subtracting

12



their maximum. Note that ĥ(x) = h(x) holds for all active leaves x of a tree constructed by
MAKETREE.

We next note that there exists no one-to-one correspondence between active leaves in BT
and time intervals of the table that BT represents, if we just set ceil(rBT ) = c. See Figure
4, for example. In this case, the table is updated too drastically to efficiently handle the
operations afterwards. Thus by modifying BT (as shown in the subsequent subsections), we
always keep the one-to-one correspondence, i.e., the property that any two consecutive active
leaves x and x′ satisfy

ĥ(x) �= ĥ(x′). (4.5)

We finally note that, for an active leaf x, tl(x) and tr(x) do not represent the start and
the end points of the corresponding interval. Let x be an active leaf in BT that does not
correspond to the first interval or the last interval. For such an x, let x− and x+ denote active
leaves in BT which are left-hand and right-hand neighbors of x, respectively, i.e.,

tr(x−) = tl(x), tl(x+) = tr(x). (4.6)

Then the start and the end points of the corresponding interval can be obtained by

t̂r(x) = tbase + tr(x) + (tr(x)− tl(x))× h(x)− ĥ(x)

ĥ(x)− ĥ(x+)
(4.7)

t̂l(x) = t̂r(x−). (4.8)

Here t̂r(x) and t̂l(x) are well-defined from (4.5). For active leaves x and y corresponding to
the first interval and the last interval, we have t̂l(x) = −∞, t̂r(x) = tl(x+), t̂l(y) = t̂r(y) and
t̂r(y) = +∞.

It follows from (4.4), (4.7), and (4.8) that ĥ(x), t̂r(x), and t̂l(x) can be computed from
base, ceil, tr(x), and tl(x) in O(height(BT )) time. In order to check (4.5) efficiently, each
active leaf x has

e(x) =

 max{0, h(x)− h(x+)} × tr(x+)− tr(x)

tr(x+)− tl(x)
if x+ exists,

+∞ otherwise
(4.9)

and each node x has
he(x) = max

y∈Leaf A(x)
{
( ∑

z∈path(x,y)

base(z)
)
−e(y)}, (4.10)

where Leaf A(x) denotes the set of active leaves that are descendants of x, and path(x, y)
denotes the set of nodes on the path from x to y. As can be seen from Figure 7, we have the
following lemma.

Lemma 4.1: Let BT be a binary tree in which ĥ(x) �= ĥ(x+) holds for every active leaf x.
After bounding BT by a constant c,

(i) ĥ(x) �= ĥ(x+) holds for an active leaf x if and only if x satisfies h(x)− e(x) < c,

(ii) all active leaves x in BT satisfy ĥ(x) �= ĥ(x+) if and only if he(r
BT ) < c.
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Moreover, we can compute an active leaf x with ĥ(x) = ĥ(x+) in O(height(BT )) time by
scanning he(x) from the root rBT . Note that he(x) can be obtained by the following bottom-up
computation.

he(x) =

{
base(x) − e(x) if x is a leaf
max{he(x1), he(x2)}+ base(x) otherwise,

(4.11)

where x1 and x2 denote the children of x. This means that preparing and updating he’s can be
handled efficiently.

tl(x)

e(x)

tr(x)

x x+

tl(x) tr(x)

x x+

t̂r(x)

h(x)

ĥ(x)

Figure 7: e(x) and t̂(x).

In summary, we always keep the following conditions for binary trees BTg to represent
tables g. Note that BT satisfies the conditions.

(C0) For any node x, BT maintains tl(x), tr(x), ceil(x), base(x), and he(x). For any leaf x,
BT maintains e(x) in addition.

(C1) Any node x satisfies tl(x) ≤ tr(x). Any internal node x satisfies tl(x) = miny∈Leaf (x) tl(y),
and tr(x) = maxy∈Leaf (x) tr(y).

(C2) Any active leaf x satisfies tr(x) = tl(x+).

(C3) Any active leaf x satisfies ĥ(x) �= ĥ(x+),

(C4) Any active leaf x satisfies ĥ(x) ≥ h(x)− e(x).

A binary tree BT is called valid if it satisfies conditions (C0)∼ (C4). For example, a binary
tree BT constructed by MAKETREE is valid.

4.2. Operation NORMALIZE

As discussed in Section 4.1, we represent a table g as a valid binary balanced tree BT . For an
active leaf x, our algorithm sometimes need to update BT to get one having accurate x, i.e.,
base and ceil are updated so that

base(y) :=

{
0 for a proper ancestor y of x− or x

ĥ(y) for y = x− or x
(4.12)

ceil(y) := +∞ for an ancestor y of x− or x (4.13)

tr(y) = tl(y+) := t̂r(y) for y = x− or x

In fact, we perform this operation, when we insert a leaf x or change the parameters ceil(x),
base(x), tr(x), and tl(x) of a leaf x. The following operation, called NORMALIZE, updates
BT as above, and also maintains the balance of BT (i.e., height(BT ) = O(log n)).
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Operation NORMALIZE(BT, x : an active leaf)

Step 1: Update base and ceil by the following top-down computation along the path from
rBT to the parent of y for y = x− or x. For a node z on the path and its children z1 and
z2,

base(zi) := base(zi) + base(z), ceil(zi) := min{ceil(zi) + base(z), ceil(z)},
base(z) := 0, ceil(z) := +∞.

Step 2: If x was added to BT immediately before this operation, then rotate BT in order to
keep the balance of BT .

Step 3: For y = x, x−, if base(y) > ceil(y), then tr(y) = tl(y+) := t̂r(y) and base(y) :=
ceil(y). Otherwise ceil(y) := +∞.

Step 4: For y = x−, x, x+, update tl, tr, e, and he by the bottom-up computation along the
path from y to rBT . �

Note that nodes may be added to BT (by operation SPLIT in the next section), but are
never removed from BT , although some nodes become dummy. This simplifies the analysis
of the algorithm, since removing a node from BT requires the rotation of BT that is not easily
implemented.

It is not difficult to see that the tree BT ′ obtained by NORMALIZE is valid, satisfies (4.13),
and represents the same table as BT . Moreover, since the lengths of the paths in Steps 1 and 4
are O(height(BT )), BT ′ can be computed from BT in O(height(BT )) time. Thus we have
the following lemma.

Lemma 4.2: Let BT be a valid binary balanced tree representing a table g, and let x be an
active leaf of BT . Then BT ′ obtained by NORMALIZE(BT, x) is a valid binary balanced
tree that represents g and satisfies (4.13). Furthermore, BT ′ is computable from BT in
O(height(BT )) time.

4.3. Add-Table

This section shows how to add two binary balanced trees BTg1 and BTg2 for tables g1 and g2.
We have already mentioned an idea of our Add-Table after describing operation MAKETREE.
Formally it can be written as follows.

Input: Two valid binary balanced trees BTg1 and BTg2 for tables g1 and g2.

Output: A valid binary balanced tree BTg for g = g1 + g2.

Step 1: If #(BTg1) ≥ #(BTg2), then BT1 := BTg1 and BT2 := BTg2 . Otherwise BT1 :=
BTg2 and BT2 := BTg1 .

Step 2: For each active leaf x ∈ BT2, compute t̂l(x), t̂r(x) and ĥ(x), and call operation ADD

for BT1, t̂l(x), t̂r(x), and ĥ(x). �

Operation ADD(BT, θ1, θ2, c)

Step 1: Call SPLIT(BT, θ1 − tBT
base) and SPLIT (BT, θ2 − tBT

base), where tBT
base denotes the pa-

rameter tbase for BT .
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Step 2: For a node x in rep(θ1 − tBT
base, θ2 − tBT

base), base(x) := base(x) + c, ceil(x) :=
ceil(x) + c, and he(x) := he(x) + c.

Step 3: For a node x such that tl(x) = θ1 − tBT
base, call NORMALIZE(BT, x).

If base(x−) = base(x) (i.e., ĥ(x−) = ĥ(x)), then

y := x−,

tr(y) := tr(y+) , (4.14)

tl(y+) := tr(y+) (i.e., y+ becomes dummy).

and call NORMALIZE(BT, y) and NORMALIZE(BT, y+).

Step 4: For a leaf y such that tr(y) = θ2 − tBT
base, call NORMALIZE(BT, y).

If base(y) = base(y+) (i.e., ĥ(y) = ĥ(y+)), then update base(y), tr(y), tl(y+) and
tr(y+) as (4.14), and call NORMALIZE(BT, y) and NORMALIZE(BT, y+). �

Steps 3 and 4 are performed to keep (4.5). Note that he(x) is updated in Step 2 for all
nodes in rep(θ1 − tBT

base, θ2 − tBT
base). It follows from (4.11) that he(y) must be updated for all

proper ancestors y of a node in rep(θ1 − tBT
base, θ2 − tBT

base). Since a proper ancestor y of some
node in rep(θ1− tBT

base, θ2− tBT
base) is a proper ancestor of the node x such that tl(x) = θ1− tBT

base

or tr(x) = θ2− tBT
base, all such he(y)’s are updated in Steps 3 and 4 by operation NORMALIZE.

Operation SPLIT(BT, t : a nonnegative real)

Step 1: Find a node x such that tl(x) ≤ t < tr(x).

Step 2: Call NORMALIZE(BT, x−) and NORMALIZE(BT, x).

Step 3: If tl(x) = t, then halt.

Step 4: For the node y ∈ {x−, x} such that tl(y) ≤ t < tr(y), construct the left child y1 with
tl(y1) := tl(y), tr(y1) := t, base(y1) := 0 and ceil(y1) := +∞, and construct the right
child y2 with tl(y2) := t, tr(y2) := tr(y), base(y2) := 0 and ceil(y2) := +∞.

Step 5: Call NORMALIZE(BT, y1) and NORMALIZE(BT, y2). �

We can see that the following two lemmas hold.

Lemma 4.3: Let BT be a valid binary balanced tree representing a table g, and let t be a
nonnegative real. Then BT ′ obtained by operation SPLIT(BT, t) is a valid binary balanced
tree representing g in O(height(BT )) time. �

Lemma 4.4: Let BT be a valid binary balanced tree representing a table g, and let I =
([θ1, θ2), c) be a time interval. Then ADD(BT, θ1, θ2, c) produces a valid binary balanced
tree representing the table g + I , and moreover, it can be handled in O(height(BT )) time. �
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4.4. Operation Ceil-Table

This section considers operation Ceil-Table. Let BT be a a valid binary balanced tree rep-
resenting a table g and let c be an upper bound of BT . As mentioned in Section 4.1, we set
ceil(rBT ) = c, and modify BT so that ĥ(x) �= ĥ(x+) holds for any two consecutive active
leaves x and x+.

Operation CEIL(BT, c : a positive real)

Step 1: Compute the leftmost active leaf y such that h(y)− e(y) ≥ c by using he. If BT has
no such node, then go to Step 4.

Step 2: Call NORMALIZE(BT, y), NORMALIZE(BT, y+), and

base(y) :=
base(y)(tr(y)− tl(y)) + base(y+)(tr(y+)− tl(y+))

tr(y+)− tl(y)
,

tr(y) = tl(y+) := tr(y+).

Step 3: Call NORMALIZE(BT, y) and NORMALIZE(BT, y+). Return to Step 1.

Step 4: For a root rBT , ceil(rBT ) := c. �

Lemma 4.5: Let BT be a valid binary balanced tree representing a table g, and let c be a
nonnegative real. Then BT ′ obtained by operation CEIL(BT, c) is a valid binary balanced
tree representing the table obtained from g by ceiling it by c. �

Step 3 concatenates two consecutive active leaves x and x+, where x+ becomes dummy.
We notice that the active leaf x (which has already been concatenated) may further be con-
catenated. This means that ĥ(x) = ĥ(x+) may hold after successive concatenations, even if
original BT satisfies ĥ(x) �= ĥ(x+).

5. Time complexity of SINGLE-PHASE with our data struc-
tures

In this section, we analyze the complexity of Algorithm SINGLE-PHASE with our data struc-
tures. Recall that the algorithm only applies to tables Av and/or Sv the following three basic
operations: Add-Table (i.e., adding tables), Shift-Table (i.e., shifting a table), and Ceil-Table
(i.e., ceiling a table by a prescribed capacity c).

Lemma 5.1: All Shift-Table’s in SINGLE-PHASE require O(n) time in total.

Proof. Each Shift-Table can be handled by updating tbase , which requires O(1) time. Since
we have n Shift-Table in the algorithm, All Shift-Table’s require O(n) time in total. �

Lemma 5.2: All Add-Table’s in SINGLE-PHASE require O(n log2 n) time in total.
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Proof. Assume that our algorithm output t as an optimal sink. It holds that arriving table of t
has O(n) intervals (see [12] for discrete-time dynamic flows), and more precisely, the number
of intervals in t plus the number of nodes which become dummy by our algorithm is linear in
n. Since Add-Table adds a smaller table to a larger one, each interval is added O(log n) times
before the corresponding node becomes dummy. Thus we have O(n log n) ADD’s. Since
each ADD for BT can be executed in O(height(BT )) = O(log n) time by Lemma 4.4, all
Add-Table’s require O(n log2 n) time in total. �

Lemma 5.3: All Ceil-Table’s in SINGLE-PHASE require O(n log n) time in total.

Proof. Each CEIL for BT can be executed in O(nd ·height(BT )) time, where nd denotes the
number of the nodes which become dummy by this CEIL. Since O(n) nodes become dummy
by our algorithm, all Ceil-Table’s require O(n log n) time in total.

�

From Lemmas 5.1, 5.2, and 5.3, we have the following result.

Theorem 5.4: The sink location problem on dynamic tree networks can be solved in O(n log2 n)
time. �

If a given network is a tree and has a single sink, we can show the following corollary.

Corollary 5.5: If a given network is tree and has a single sink, SINGLE-PHASE can solve the
quickest transshipment problem in O(n log2 n) time.

6. Conclusions

In this paper, we have developed an O(n log2 n) time algorithm for a sink location problem
for dynamic flows in a tree network. This improves upon an O(n2) time algorithm in [12].

We have considered continuous-time dynamic flows that allow intermediate storage at
vertices. We note that optimal sinks remain the same, even if we do not allow intermediate
storage, and moreover, our algorithm can also be applicable for discrete-time dynamic flows.
Therefore, our sink location problem is solvable in O(n log2 n) time for dynamic continuous-
time/discrete-time flows with/without intermediate storage.

We leave as an open problem to reduce the time complexity to O(n log n). For example, if
successive k insertions/searches for a binary tree with n leaves can executed in O(k log(n/k))
time, this can be achieved.
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