Representations of the Cuntz-Krieger algebras. I —General theory—

KATSUNORI KAWAMURA Research Institute for Mathematical Sciences Kyoto University, Kyoto 606-8502, Japan

We show several systematic construction of representations of the Cuntz-Krieger algebras from transformations on measure spaces as a generalization of permutative representation of the Cuntz algebras. We introduce these examples of them and their properties.

1. Introduction

Representation theory of the Cuntz algebras is studied by [4, 6, 7, 8, 9, 16, 17]. It is remarkable that representations of the Cuntz algebras in some class satisfy the uniqueness of irreducible decomposition. Furthermore these representations are related to quantum filed theory([1, 2, 3]), dynamical systems([11, 13, 14, 15]) and fractals([12]), and their branching laws are computed by automata([18]). We generalize these results for the Cuntz-Krieger algebras.

In this paper, we start to show general properties and systematic constructions of representations of the Cuntz-Krieger algebras by embedding of the Cuntz-Krieger algebras in [10].

Let $N \ge 2$ and (X, μ) be a measure space. Assume that there are a family $\{D_i\}_{i=1}^N$ of non μ -null subsets of X and a family $f = \{f_i\}_{i=1}^N$ of measurable maps such that f_i is an injective map from D_i to $R_i \equiv f(D_i) \subset X$ and the Radon-Nikodým derivative Φ_i of $\mu \circ f_i$ with respect to μ is non zero for each $i = 1, \ldots, N$. Define a partial isometry $S(f_i)$ on $L_2(X, \mu)$ by

(1.1)
$$(S(f_i)\phi)(x) \equiv \begin{cases} \left\{ \Phi_i\left(f_i^{-1}(x)\right) \right\}^{-1/2} \phi(f_i^{-1}(x)) & (x \in R_i), \\ 0 & (\text{otherwise}) \end{cases}$$

for $\phi \in L_2(X, \mu)$ and $x \in X$. We consider a C*-algebra $C^* < \{S(f_i)\}_{i=1}^N >$ generated by operators $S(f_1), \ldots, S(f_N)$.

e-mail:kawamura@kurims.kyoto-u.ac.jp.

Theorem 1.1. Let $A = (a_{ij})$ be an $N \times N$ matrix which has entries in $\{0,1\}$ and has no rows or columns identically equal to zero. For a family $f = \{f_i\}_{i=1}^N$ of maps on a measure space (X, μ) in the above,

$$C^* < \{S(f_i)\}_{i=1}^N > \cong \mathcal{O}_A$$

if all the followings are μ -null subsets of X: $X \setminus R_1 \cup \cdots \cup R_N, \ D_i \setminus \bigcup_{j:a_{ij}=1} R_j \ (i = 1, \dots, N), \ R_i \cap R_j \ (i \neq j).$

Theorem 1.1 is shown by checking that $S(f_1), \ldots, S(f_N)$ satisfy relations of canonical generators of \mathcal{O}_A in § 3. f in Theorem 1.1 is called an Abranching function system on (X, μ) . Although we do not know what $C^* < \{S(f_i)\}_{i=1}^N > is$ for general f_1, \ldots, f_N , our aim is not to create a new example of C^* -algebra but to study representation $(L_2(X, \mu), \pi_f)$ of \mathcal{O}_A arising from $f = \{f_i\}_{i=1}^N$ in Theorem 1.1. Therefore problems are i) what the condition for f is so that $(L_2(X, \mu), \pi_f)$ is irreducible, and ii) what the condition for f and g is so that $(L_2(X, \mu), \pi_f) \sim (L_2(Y, \nu), \pi_g)$.

In § 2, we show general theory of representations of \mathcal{O}_A . We treat construction and decomposition of representation of \mathcal{O}_A , and review results about the Cuntz algebras. In § 3, we show properties of partial isometries in (1.1) and a general construction of representations of \mathcal{O}_A from branching function systems. In § 4, we show the standard constructions of representation of \mathcal{O}_A on $l_2(\mathbf{N})$, $l_2(\mathbf{Z})$, $L_2[0,1]$, $L_2(\mathbf{T}^1)$ and $L_2(\mathbf{R})$ by using representations of the Cuntz algebras. In § 5, we show examples branching function systems and representations of the Cuntz-Krieger algebras.

2. General theory of representations of \mathcal{O}_A

2.1. Multiindices. We introduce several sets of multiindices which consist of numbers $1, \ldots, N$ for $N \ge 2$.

Put $\{1, ..., N\}^0 \equiv \{0\}, \{1, ..., N\}^k \equiv \{(j_l)_{l=1}^k : j_l = 1, ..., N, l = 1, ..., k\}$ for $k \ge 1$ and $\{1, ..., N\}^\infty \equiv \{(j_n)_{n \in \mathbb{N}} : j_n \in \{1, ..., N\}, n \in \mathbb{N}\}$. Denote $\{1, ..., N\}^* \equiv \coprod_{k\ge 0} \{1, ..., N\}^k, \{1, ..., N\}_1^* \equiv \coprod_{k\ge 1} \{1, ..., N\}^k, \{1, ..., N\}^\# \equiv \{1, ..., N\}_1^* \sqcup \{1, ..., N\}^\infty$. For $J \in \{1, ..., N\}^\#$, the length |J| of J is defined by $|J| \equiv k$ when $J \in \{1, ..., N\}^k$. For $J_1, J_2 \in \{1, ..., N\}^*$ and $J_3 \in \{1, ..., N\}^\infty J_1 \cup J_2 \equiv (j_1, ..., j_k, j_1', ..., j_l'), J_1 \cup J_3 \equiv (j_1, ..., j_k, j_1'', j_2'', ...)$ when $J_1 = (j_1, ..., j_k), J_2 = (j_1', ..., j_l')$ and $J_3 = (j_1'')_{n \in \mathbb{N}}$. Specially, we define $J \cup \{0\} = \{0\} \cup J = J$ for $J \in \{1, ..., N\}^\#$ and $(i, J) \equiv (i) \cup J$ for convenience. For $J \in \{1, ..., N\}^*$ and $k \ge 2, J^k \equiv \underbrace{J \cup \cdots \cup J}_k$ and $J^\infty = J \cup \cdots \cup J \cup \cdots \in \{1, ..., N\}^\infty$. For $J = (j_1, ..., j_k) \in \{1, ..., N\}^k$ and $\tau \in \mathbb{Z}_k$, denote $\tau(J) = (j_{\tau(1)}, ..., j_{\tau(k)})$.

In order to treat representations of \mathcal{O}_A , we modify multiindices with respect to A. Let $M_N(\{0,1\})$ be the set of all $N \times N$ matrices in which have entries in $\{0, 1\}$ and have no rows or columns identically equal to zero. $A = (a_{ij}) \in M_N(\{0, 1\})$ is *full* if $a_{ij} = 1$ for each i, j = 1, ..., N. For $A = (a_{ij}) \in M_N(\{0, 1\})$, define

$$\begin{split} \{1,\ldots,N\}_A^* &\equiv \coprod_{k\geq 0} \{1,\ldots,N\}_A^k, \\ \{1,\ldots,N\}_A^0 &\equiv \{0\}, \quad \{1,\ldots,N\}_A^1 \equiv \{1,\ldots,N\}, \\ \{1,\ldots,N\}_A^k &\equiv \{(j_i)_{i=1}^k \in \{1,\ldots,N\}^k : a_{j_{i-1}j_i} = 1, \ i = 2,\ldots,k\} \quad (k\geq 2), \\ \{1,\ldots,N\}_{A,c}^k &\equiv \coprod_{k\geq 1} \{1,\ldots,N\}_{A,c}^k, \\ \{1,\ldots,N\}_{A,c}^k &\equiv \{(j_i)_{i=1}^k \in \{1,\ldots,N\}_A^k : a_{j_kj_1} = 1\}, \\ \{1,\ldots,N\}_A^\infty &\equiv \{(j_n)_{n\in\mathbb{N}} \in \{1,\ldots,N\}_{A,c}^\infty : a_{j_{n-1}j_n} = 1, n \geq 2\}, \\ \{1,\ldots,N\}_{A,c}^\# &\equiv \{1,\ldots,N\}_{A,c}^* \sqcup \{1,\ldots,N\}_A^\infty. \end{split}$$

For example, if $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then $\{1, 2\}_A = \{1, 2\}, \{1, 2\}_A^2 = \{(11), (21), (12)\}, \{1, 2\}_A^3 = \{(111), (211), (121), (212)\}, \{1, 2\}_A^4 = \{(1111), (2111), (1211), (1211), (2121), (1112), (2112), (1212)\}.$

 $J \in \{1, \ldots, N\}_1^*$ is periodic if there are $m \ge 2$ and $J_0 \in \{1, \ldots, N\}_1^*$ such that $J = J_0^m$. For $J_1, J_2 \in \{1, \ldots, N\}_1^*$, $J_1 \sim J_2$ if there are $k \ge 1$ and $\tau \in \mathbf{Z}_k$ such that $|J_1| = |J_2| = k$ and $\tau(J_1) = J_2$. For $(J, z), (J', z') \in \{1, \ldots, N\}_1^* \times U(1), (J, z) \sim (J', z')$ if $J \sim J'$ and z = z' where $U(1) \equiv \{z \in \mathbf{C} : |z| = 1\}$. Specially, any element in $\{1, \ldots, N\}$ is non periodic. $J \in \{1, \ldots, N\}^\infty$ is eventually periodic if there are $J_0, J_1 \in \{1, \ldots, N\}_1^*$ such that $J = J_0 \cup J_1^\infty$. For $J_1, J_2 \in \{1, \ldots, N\}^\infty$, $J_1 \sim J_2$ if there are $J_3, J_4 \in \{1, \ldots, N\}^*$ and $J_5 \in \{1, \ldots, N\}^\infty$ such that $J_1 = J_3 \cup J_5$ and $J_2 = J_4 \cup J_5$.

2.2. Construction and decomposition of representations of \mathcal{O}_A . For $A = (a_{ij}) \in M_N(\{0,1\}), \mathcal{O}_A$ is the Cuntz-Krieger algebra by A if $\mathcal{O}_A([5])$ is a C*-algebra which is universally generated by partial isometries s_1, \ldots, s_N satisfying:

(2.1)
$$s_i^* s_i = \sum_{j=1}^N a_{ij} s_j s_j^*$$
 $(i = 1, \dots, N), \quad \sum_{i=1}^N s_i s_i^* = I.$

Specially, \mathcal{O}_A is the Cuntz algebra \mathcal{O}_N when A is full.

We denote the canonical U(1)-action(=gauge action) on \mathcal{O}_A by γ and the canonical U(N)-action on \mathcal{O}_N by α . For a multiindex $J = (j_1, \ldots, j_k) \in$ $\{1, \ldots, N\}^k$ and canonical generators s_1, \ldots, s_N of \mathcal{O}_A , we denote $s_J =$ $s_{j_1} \cdots s_{j_k}$ and $s_J^* = s_{j_k}^* \cdots s_{j_1}^*$. When $J \in \{1, \ldots, N\}^*$, $s_J \neq 0$ if and only if $J \in \{1, \ldots, N\}_A^*$.

In this paper, a representation always means a unital *-representation on a complex Hilbert space. $(\mathcal{H}_1, \pi_1) \sim (\mathcal{H}_2, \pi_2)$ means the unitary equivalence between two representations (\mathcal{H}_1, π_1) and (\mathcal{H}_2, π_2) of \mathcal{O}_A . For a representation (\mathcal{H}, π) of \mathcal{O}_A and a unitary operator U on a Hilbert space \mathcal{K} , we have a new representation $(\mathcal{K} \otimes \mathcal{H}, U \boxtimes \pi)$ of \mathcal{O}_A which is defined by

(2.2)
$$(U \boxtimes \pi)(s_i) \equiv U \otimes \pi(s_i) \quad (i = 1, \dots, N).$$

Lemma 2.1. For a representation in (2.2), the followings hold:

- (i) If U has an eigenvalue $c \in U(1)$ on \mathcal{K} , then $(\mathcal{K} \otimes \mathcal{H}, U \boxtimes \pi)$ has a subrepresentation which is equivalent to $(\mathcal{H}, \pi \circ \gamma_c)$.
- (ii) If a unitary V on K is conjugate with U by a unitary, then $U \boxtimes \pi \sim V \boxtimes \pi$.
- (iii) If there are $p \in \mathbf{Z}$ and a complete orthonormal basis $\{e_n : n \in \mathbf{Z}\}$ of \mathcal{K} such that $Ue_n = e_{n+p}$ for each $n \in \mathbf{Z}$, then $(\mathcal{K} \otimes \mathcal{H}, U \boxtimes \pi)$ is decomposed as

$$\begin{cases} \int_{U(1)}^{\oplus} (\mathcal{H}, \pi \circ \gamma_{w^p}) \, d\eta(w) \qquad (p \neq 0), \\ (\mathcal{H}, \pi)^{\oplus \infty} \qquad (p = 0) \end{cases}$$

where η is the Haar measure of U(1).

(iv) If there is $p \ge 2$ such that $U^p = I$, $U^i \ne I$ for i = 1, ..., p-1, then

$$U \boxtimes \pi \sim \left(\bigoplus_{i=1}^p \pi \circ \gamma_{\xi_i} \right)^{\oplus \nu}$$

where $\nu \equiv (\dim \mathcal{K})/p$ and $\xi_i \equiv e^{2\pi\sqrt{-1}(i-1)/p}$.

(v) If \mathcal{K} is decomposed into eigenspaces of U and U has eigenvalues $\{z_{\lambda}\}_{\lambda \in \Lambda}$ with multiplicities $\{\nu_{\lambda}\}_{\lambda \in \Lambda}$, then

$$U \boxtimes \pi \sim \bigoplus_{\lambda \in \Lambda} (\pi \circ \gamma_{z_{\lambda}})^{\oplus \nu_{\lambda}}$$

Proof. (i) Let $v \in \mathcal{K}$ be an eigenvector of U such that Uv = cv. Put $\mathcal{H}' \equiv \mathbb{C}v \otimes \mathcal{H}$. Then we see that $(U \boxtimes \pi)(s_i)(v \otimes \phi) = v \otimes (\pi \circ \gamma_c)(s_i)\phi$ for each $i = 1, \ldots, N$. Therefore $(U \boxtimes \pi)|_{\mathcal{H}'} \sim \pi \circ \gamma_c$. (ii) If W is a unitary on \mathcal{K} such that $WUW^* = V$, then $(W \otimes I)(U \boxtimes I)$

(ii) If W is a unitary on K such that $WUW^* = V$, then $(W \otimes I)(U \boxtimes \pi)(s_i)(W \otimes I)^* = (V \boxtimes \pi)(s_i)$ for each i = 1, ..., N.

(iii) This is obtained by slightly generalizing Lemma 2.4 in [15].

(iv) Put $E_i \equiv \frac{1}{p} \sum_{j=1}^{p} \overline{\xi_i^{j-1}} U^{j-1}$. Then $UE_i = \xi_i E_i$, $E_i^* E_i = E_i$ and $E_i^* = E_i$. Hence $\mathcal{K} = \mathcal{K}_1 \oplus \cdots \oplus \mathcal{K}_p$ where $\mathcal{K}_i \equiv E_i \mathcal{K}$ for $i = 1, \dots, p$. From this, $(\mathcal{K}_i \otimes \mathcal{H}, (U \boxtimes \pi)|_{\mathcal{K}_i \otimes \mathcal{H}}) \sim (\mathcal{H}, \pi \circ \gamma_{\xi_i})^{\oplus \nu}$.

(v) This follows from the proof of (iv).

Proposition 2.2. For a representation (\mathcal{H}, π) of \mathcal{O}_A , put a new representation $(L_2(\mathbf{R}, \mathcal{H}), \hat{\pi})$ of \mathcal{O}_A by

$$(\hat{\pi}(s_i)\phi)(r) \equiv \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} e^{-\sqrt{-1}tr} \pi(s_i)\phi(t) \, dt \quad (\phi \in L_2(\mathbf{R}, \mathcal{H}), \, r \in \mathbf{R})$$

for $i = 1, \ldots, N$. Then

$$\hat{\pi} \sim \{\pi \oplus \pi \circ \gamma_{\sqrt{-1}} \oplus \pi \circ \gamma_{-1} \oplus \pi \circ \gamma_{-\sqrt{-1}}\}^{\oplus \infty}$$

Proof. We see that $\hat{\pi} = \mathcal{F} \boxtimes \pi$ for the Fourie unitary operator \mathcal{F} on $L_2(\mathbf{R})$. Because $\mathcal{F}^4 = I$ and $\mathcal{F}^j \neq I$ for j = 1, 2, 3, the statement holds by Lemma 2.1.

We review results in [10].

Definition 2.3. For $A = (a_{ij}) \in M_N(\{0,1\})$, a data $\{(M_i, q_i, B_i)\}_{i=1}^N$ is called the (canonical)A-coordinate if

$$B_{i} \equiv \{ j \in \{1, \dots, N\} : a_{ij} = 1 \}, \quad M_{i} \equiv a_{i1} + \dots + a_{iN},$$
$$q_{i} : B_{i} \to \{1, \dots, M_{i}\}; \quad q_{i}(j) \equiv \#\{k \in B_{i} : k \leq j\}$$

for i = 1, ..., N.

Lemma 2.4. Let $A = (a_{ij}) \in M_N(\{0,1\})$ with the A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$ and $M_0 \equiv N$. Assume that a unital C*-algebra \mathcal{B} satisfies the following condition: \mathcal{B} contains \mathcal{O}_{M_i} for each $i = 0, \ldots, N$ when $M_i \geq 2$ as C*-subalgebras with common unit. Let $t_{M_i,1}, \ldots, t_{M_i,M_i}$ be canonical generators of \mathcal{O}_{M_i} for $i = 0, \ldots, N$ as elements in \mathcal{B} , respectively where we put $\mathcal{O}_1 = \mathbb{C}I$ and $t_{1,1} = I$. Under these assumptions, put $s_i \equiv t_{M_0,i}(a_{i1}t_{M_i,q_i(1)}t^*_{M_0,1} + \cdots + a_{iN}t_{M_i,q_i(N)}t^*_{M_0,N})$. Then $\{s_i\}_{i=1}^N$ satisfies (2.1) with respect to A.

By these preparation, we show a method to construct representations of \mathcal{O}_A from representations of the Cuntz algebras as follows:

Lemma 2.5. Let $A \in M_N(\{0,1\})$ with the A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$ and $M_0 \equiv N$ and $s_1, \ldots, s_N, t_{M,1}, \ldots, t_{M,M}$ be canonical generators of \mathcal{O}_A and \mathcal{O}_M , respectively for $M = M_0, \ldots, M_N$. Let $\pi^{(M_i)}$ be representation of \mathcal{O}_{M_i} on a Hilbert space \mathcal{H} where $t_{1,1} \equiv I$, $\pi^{(1)}(I) \equiv I$ when $M_i = 1$, then there is a representation $\pi^{(A)}$ of \mathcal{O}_A on \mathcal{H} defined by

$$\pi^{(A)}(s_i) \equiv \sum_{j=1}^N a_{ij} \pi^{(N)}(t_{N,i}) \pi^{(M_i)}(t_{M_i,q_i(j)}) \pi^{(N)}(t_{N,j})^* \quad (i = 1, \dots, N).$$

Proof. By Lemma 2.4, it holds.

2.3. Permutative representations and GP representations of \mathcal{O}_N . A representation (\mathcal{H}, π) of \mathcal{O}_N is *permutative* if there is a complete orthonormal basis $\{e_n\}_{n\in\Lambda}$ of \mathcal{H} which satisfies $\forall (n,i) \in \Lambda \times \in \{1,\ldots,N\}$, $\exists m \in \Lambda$ s.t. $\pi(s_i)e_n = e_m$. Any permutative representation is completely reducible. We generalize this class of representation as *generalized permutative representations* = (*GP representations*) in [8, 9, 16, 17]. In order to explain easily, we show GP representations of the Cuntz algebras with a 1-cycle. Let $S(\mathbf{C}^N) \equiv \{z \in \mathbf{C}^N : \|z\| = 1\}$ be the complex sphere in a complex vector space \mathbf{C}^N .

Definition 2.6. Let (\mathcal{H}, π) be a representation of \mathcal{O}_N .

- (i) (\mathcal{H}, π) is P(J; z) for $J = (j_1, \ldots, j_k) \in \{1, \ldots, N\}^k$, $k \ge 1$ and a phase $z \in U(1)$ if there is a cyclic unit vector $\Omega \in \mathcal{H}$ such that $\pi(s_J)\Omega = z\Omega$ and $\{\pi(s_{j_l} \cdots s_{j_k})\Omega : l = 1, \ldots, k\}$ is an orthonormal family in \mathcal{H} .
- (ii) (\mathcal{H}, π) is GP(z) for $z = (z_1, \ldots, z_N) \in S(\mathbb{C}^N)$ if there is a cyclic unit vector $\Omega \in \mathcal{H}$ such that $\pi(z_1s_1 + \cdots + z_Ns_N)\Omega = \Omega$.
- (iii) (\mathcal{H}, π) is P(J) for $J = (j_n)_{n \in \mathbb{N}} \in \{1, \ldots, N\}^{\infty}$ if there is an orthonormal family $\{e_n\}_{n \in \mathbb{N}}$ in \mathcal{H} such that $\pi(s_{j_n})^* e_n = e_{n+1}$ for each $n \in \mathbb{N}$.

For $J \in \{1, \ldots, N\}_1^*$, denote $P(J) \equiv P(J; 1)$. For any $J \in \{1, \ldots, N\}^{\#}$, P(J) is equivalent to a cyclic permutative representation.

We review results about P(J) here: For $J \in \{1, \ldots, N\}_1^*$ and $z \in U(1)$, P(J; z) is irreducible if and only if J is non periodic. For $J \in \{1, \ldots, N\}^{\infty}$, P(J) is irreducible if and only if J is non eventually periodic. For $J_1, J_2 \in \{1, \ldots, N\}_1^*$ and $z_1, z_2 \in U(1)$, $P(J_1; z_1) \sim P(J_2; z_2)$ if and only if $(J_1, z_1) \sim (J_2, z_2)$ where $P(J_1; z_1) \sim P(J_2; z_2)$ means the unitary equivalence of two representations which satisfy the condition $P(J_1; z_1)$ and $P(J_2; z_2)$, respectively. For $J_1, J_2 \in \{1, \ldots, N\}^{\infty}$, $P(J_1) \sim P(J_2)$ if and only if $J_1 \sim J_2$. If $J \in \{1, \ldots, N\}^k$, $k \ge 1$ and $z \in U(1)$, then $P(J; 1) \circ \gamma_z = P(J; z^k)$. If $J \in \{1, \ldots, N\}^{\infty}$ and $z \in U(1)$, then $P(J) \circ \gamma_z = P(J)$. For $J \in \{1, \ldots, N\}_1^*$, $z \in U(1)$ and $p \ge 1$,

(2.3)
$$P(J^{p};z) = \bigoplus_{j=1}^{p} P(J;\xi^{j-1}z^{1/p})$$

where $\xi \equiv e^{2\pi\sqrt{-1}/p}$. (2.3) is unique up to unitary equivalences. Especially we have $P(J^p; 1) = \bigoplus_{j=1}^p P(J; \xi^{j-1})$. For each $J \in \{1, \ldots, N\}_1^*$,

$$P(J^{\infty}) = \int_{U(1)}^{\oplus} P(J;z) \, d\eta(z).$$

For any $z \in S(\mathbf{C}^N)$, GP(z) exists uniquely up to unitary equivalences. For any $z \in S(\mathbf{C}^N)$, GP(z) is irreducible. For $z, z' \in S(\mathbf{C}^N)$, $GP(z) \sim GP(z')$ if and only if z = z'. For $z = (z_1, \ldots, z_N) \in S(\mathbf{C}^N)$, GP(z) is equivalent to the GNS-representation by a state ρ of \mathcal{O}_N which is defined by $\rho(s_J s_{J'}^*) \equiv \overline{z_J} z_{J'} \text{ where } J, J' \in \{1, \ldots, N\}^*, |J| + |J'| \ge 1, z_J \equiv z_{j_1} \cdots z_{j_k}$ when $J = (j_1, \ldots, j_k)$, and $s_J = I, z_J = 1$ when $J = \emptyset$.

We see that $GP(z\varepsilon_j) = P(j; \overline{z})$ for j = 1, ..., N and $z \in U(1)$ where $\{\varepsilon_j\}_{j=1}^N$ is the canonical basis of \mathbf{C}^N .

Eigenequations are important to classify representations of the Cuntz-Krieger algebras. For $J \in \{1, \ldots, N\}_A^*$, there is a representation (\mathcal{H}, π) of \mathcal{O}_A such that $\pi(s_J)$ has eigenvalue if and only if $J \in \{1, \ldots, N\}_{A,c}^*$. This is proved in [19].

About states of GP representations of \mathcal{O}_N , see [8, 16]. About type III representations of \mathcal{O}_A , see [21].

3. Representations of \mathcal{O}_A by branching function systems

Representations of the Cuntz-Krieger algebras are constructed by partial isometries on $L_2(X,\mu)$ for a measure space (X,μ) . We introduce a simple method to construct partial isometries from maps on measure spaces([12, 13, 14, 15]).

3.1. A-branching function systems. Let (X, μ) and (Y, ν) be measure spaces and f be a measurable map from X to Y which is injective and there exists the Radon-Nikodým derivative Φ_f of $\nu \circ f$ with respect to μ and Φ_f is non zero almost everywhere in X. We denote the set of such maps by RN(X,Y) and put $RN_{loc}(X,Y) \equiv \bigcup_{X_0 \subset X} RN(X_0,Y)$. We simply denote $G(X,Y) \equiv \{\varphi \in RN(X,Y) : \exists \varphi^{-1} \in RN(Y,X)\}, RN(X) \equiv RN(X,X)$ and $G(X) \equiv G(X,X)$. For $f \in RN_{loc}(X)$, we denote the domain and the range of f by D(f) and R(f), respectively. If $f \in RN(Y)$, then $f^{-1} \in$ RN(R(f)). $RN_{loc}(X), RN(X)$ and G(X) are a groupoid, a semigroup and a group by composition of maps, respectively. We denote $X \times Y$ and $X \cup Y$, the direct product and the direct sum of (X,μ) and (Y,ν) as measure space, respectively. For $f \in RN(X_1, Y_1)$ and $g \in RN(X_2, Y_2), f \oplus g \in RN(X_1 \cup$ $X_2, Y_1 \cup Y_2)$ is defined by $(f \oplus g)|_{X_1} \equiv f, (f \oplus g)|_{X_2} \equiv g$.

Definition 3.1. For a measure space (X, μ) and $A \in M_N(\{0, 1\})$, a family $f = \{f_i\}_{i=1}^N$ of measurable maps on X is an A-branching function system on (X, μ) if f satisfies the following conditions:

- (i) $f_i \in RN_{loc}(X)$ for each $i = 1, \dots, N$.
- (ii) $\mu(R(f_i) \cap R(f_j)) = 0$ when $i \neq j$.
- (iii) $\mu(D(f_i) \setminus \bigcup_{j:a_{ij}=1} R(f_j)) = 0$ for each $i = 1, \dots, N$.
- (iv) $\mu(X \setminus \bigcup_{i=1}^{N} R(f_i)) = 0.$

Specially, if A is full, then we call A-branching function system by (N-)branching function system simply. We denote the set of all A-branching function systems, branching function systems on (X, μ) by $BFS_A(X)$, $BFS_N(X)$, respectively.

The notion of original branching function system was introduced in order to construct a representation of \mathcal{O}_N from a family of transformations by [4]. Definition 3.1 coincides with originals when A is full.

Definition 3.2. Let (X, μ) and (Y, ν) be measure spaces.

- (i) F is the coding map of f = {f_i}^N_{i=1} ∈ BFS_A(X) if F is a map on X such that (F ∘ f_i)(x) = x almost everywhere in X and i = 1,..., N.
 (ii) For f = {f_i}^N_{i=1} ∈ BFS_A(X) and g = {g_i}^N_{i=1} ∈ BFS_A(Y), f ~ g if there is φ ∈ G(X, Y) such that φ ∘ f_i ∘ φ⁻¹ = g_i for i = 1,..., N.
- (iii) For $\varphi \in G(X)$ and $g = \{g_i\}_{i=1}^N \in \operatorname{BFS}_A(Y)$, we denote $\varphi \boxtimes g \equiv \{\varphi \times g_i\}_{i=1}^N \in \operatorname{BFS}_A(X \times Y)$.
- (iv) For $f = \{f_i\}_{i=1}^N \in BFS_A(X)$ and $g = \{g_i\}_{i=1}^N \in BFS_A(Y)$, we denote $f \oplus g \equiv \{f_i \oplus g_i\}_{i=1}^N \in BFS_A(X \cup Y)$.

The following are easily proved by checking the axiom in 3.1:

Lemma 3.3. Let (X, μ) be a measure space and $A \in M_N(\{0, 1\})$ with the Acoordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$ and $M_0 \equiv N$. If there is $f^{(M_i)} = \{f_j^{(M_i)}\}_{j=1}^{M_i} \in$ $BFS_{M_i}(X)$ for each i = 0, ..., N, then a family $f^{(A)} \equiv \{f_i^{(A)}\}_{i=1}^N$ of maps on X defined as follows is an A-branching function system on X:

$$f_i^{(A)}(x) \equiv \left\{ f_i^{(N)} \circ f_{q_i(j)}^{(M_i)} \circ (f_j^{(N)})^{-1} \right\} (x) \quad (when \ x \in f_j^{(N)}(X), \ j \in B_i)$$

for i = 1, ..., N where we put $BFS_1(X) \equiv \{id_X\}$ for convenience.

By Lemma 3.3, if we find sufficiently many branching function systems on a measure space, we can construct an A-branching function system from them.

For $f = \{f_i\}_{i=1}^N \in BFS_A(X)$, denote $f_J \equiv f_{j_1} \circ \cdots \circ f_{j_k}$ when J = $(j_1, \ldots, j_k) \in \{1, \ldots, N\}_A^k, \ k \ge 1, \text{ and define } f_0 \equiv id. \text{ For } X_0 \subset X, \text{ put} < X_0 >_f \equiv \{f_J(x), F^n(x) \in X : J \in \{1, \ldots, N\}_A^*, \ n \in \mathbf{N}, \ x \in X_0\} \text{ where } F$ is the coding map of f.

Definition 3.4. For $A \in M_N(\{0,1\})$, let $f \in BFS_A(X)$.

- (i) For $X_0 \subset X$, f is X_0 -cyclic if $\mu(X \setminus \langle X_0 \rangle_f) = 0$. Specially, we call that f is cyclic if f is $\{x_0\}$ -cyclic for some $x_0 \in X$.
- (ii) For $J = (j_1, \ldots, j_k) \in \{1, \ldots, N\}_{A,c}^k$, $\{Y_i\}_{i=1}^k$ is a μ -cycle by J if $f_J(x) = x$ almost everywhere in Y_1 , Y_i is a non μ -null subset of X, $\mu(Y_i \cap Y_{i'}) = 0$ when $i \neq i'$ and $\mu(f_{j_{i-1}}(Y_i) \setminus Y_{i-1}) = 0$ for i = 2, ..., kand $\mu(f_{j_k}(Y_1) \setminus Y_k) = 0.$
- (iii) For $J = (j_n)_{n \in \mathbb{N}} \in \{1, \dots, N\}_A^\infty$, $\{Y_n\}_{n \in \mathbb{N}}$ is a μ -chain by J if Y_n is a non μ -null subset of X, $\mu(Y_n \cap Y_m) = 0$ when $n \neq m$ and $\mu(f_{j_{n-1}}(Y_n) \setminus$ Y_{n-1}) = 0 for $n \ge 2$.
- (iv) For $J \in \{1, ..., N\}_{A,c}^{*}$ (resp. $J \in \{1, ..., N\}_{A}^{\infty}$), f has a MP(J)component if f has a μ -cycle(resp. a μ -chain) by J.

(v) For $J = (j_i)_{i=1}^k \in \{1, \ldots, N\}_{A,c}^k$ (resp. $J = (j_n)_{n \in \mathbb{N}} \in \{1, \ldots, N\}_A^\infty$), fis MP(J) if there is a subset $Y \subset X$ such that f is Y-cyclic and $\{Y_i\}_{i=1}^k$ is a μ -cycle by J where $Y_i \equiv (f_{j_i} \circ \cdots \circ f_{j_k})(Y)$ for $i = 1, \ldots, k$ (resp. $\{Y_n\}_{n \in \mathbb{N}}$ is a μ -chain by J where $Y_n \equiv (f_{j_1} \circ \cdots \circ f_{j_n})^{-1}(Y)$ for $n \ge 1$).

3.2. Representations of \mathcal{O}_A by A-branching function systems. For $f \in RN_{loc}(X, Y)$, define an operator S(f) from $L_2(X, \mu)$ to $L_2(Y, \nu)$ by

(3.1)
$$(S(f)\phi)(x) \equiv \begin{cases} \left\{ \Phi_f \left(f^{-1}(x) \right) \right\}^{-1/2} \phi(f^{-1}(x)) & (x \in R(f)), \\ 0 & \text{(otherwise)} \end{cases}$$

for $\phi \in L_2(X,\mu)$ and $x \in X$. S(f) is a partial isometry from $L_2(X,\mu)$ to $L_2(Y,\nu)$ with the range projection $M_{\chi_{R(f)}}$ and the domain projection $M_{\chi_{D(f)}}$ where M_g is the multiplication operator of $g \in L_{\infty}(X,\mu)$ and χ_W is the characteristic function on $W \subset X$. Furthermore we see that $S(f)^* = S(f^{-1}), S(id_X) = I$ and $S(f)L_2(\Omega) = L_2(f(\Omega))$ for $\Omega \subset X$.

Let $\operatorname{PIso}(\mathcal{H})$ be the groupoid of all partial isometries on a Hilbert space \mathcal{H} by the ordinary product of operators. Let (X_i, μ_i) be measure spaces for i = 1, 2, 3, 4. Let $f \in RN_{loc}(X_1, X_2)$ and $g \in RN_{loc}(X_2, X_3)$. If $\mu(D(g) \cap R(f)) \neq 0$, then $g \circ f \in RN_{loc}(X_1, X_3)$ and

$$(3.2) S(g)S(f) = S(g \circ f).$$

Specially, a map S from $RN_{loc}(X_i)$ to $PIso(L_2(X_i, \mu_i))$ is a groupoid homomorphism for i = 1, 2, 3, 4. For $f \in RN(X_1, X_2)$ and $g \in RN(X_3, X_4)$,

$$S(f \times g) = S(f) \otimes S(g), \quad S(f \oplus g) = S(f) \oplus S(g)$$

where we identify $L_2(X_i \times X_j, \mu_i \times \mu_j)$ and $L_2(X_i, \mu_i) \otimes L_2(X_j, \mu_j)$, $L_2(X_i \cup X_j, \mu_i \cup \mu_j)$ and $L_2(X_i, \mu_i) \oplus L_2(X_j, \mu_j)$ for i, j = 1, 2, 3, 4, respectively.

Theorem 3.5. Let $A \in M_N(\{0,1\})$. For a family $f = \{f_i\}_{i=1}^N$ of maps on a measure space (X, μ) , $C^* < \{S(f_i)\}_{i=1}^N > \cong \mathcal{O}_A$ if $f \in BFS_A(X)$.

Proof. We can easily verify that $S(f_1), \ldots, S(f_N)$ satisfy (2.1) by using (3.2).

By Theorem 3.5, Theorem 1.1 is shown and we see that

$$\pi_f(s_i) \equiv S(f_i) \quad (i = 1, \dots, N)$$

defines a representation $(L_2(X, \mu), \pi_f)$ of \mathcal{O}_A .

Let (X, μ) and (Y, ν) be measure spaces. For $f \in BFS_A(X)$ and $g \in BFS_A(Y)$, if $f \sim g$, then $\pi_f \sim \pi_g$. For $\varphi \in G(X)$, $f \in BFS_A(X)$ and $g = \{g_i\}_{i=1}^N \in BFS_A(Y)$, the followings hold:

(3.3)
$$\pi_{\varphi \boxtimes g} \sim S(\varphi) \boxtimes \pi_g, \quad \pi_{f \oplus g} \sim \pi_f \oplus \pi_g$$

where $S(\varphi) \boxtimes \pi_g$ is in (2.2).

Remark that $g \circ f$ in rhs of (3.2) is the ordinary composition of two transformations f and q but not special product of them. By (3.2), we see that the map S realizes the iteration of transformations on a measure space as the product of operators on a Hilbert space naturally. In fact, if F is the coding map of f in Definition 3.2, then

$$(\pi_f(s_i)\phi)(x) = \chi_{R(f_i)}(x)\sqrt{\Phi_F(x)}\phi(F(x)) \quad (i = 1, \dots, N)$$

for $\phi \in L_2(X,\mu)$ and $x \in X$. We denote $(L_2(X,\mu),\pi_f)$ by π_f simply. From this, $\pi_f(s_J) = S(f_J)$ for each $J \in \{1, \ldots, N\}_A^*$ and

$$\pi_f(s_J)\phi = \chi_{R(f_J)} \cdot \sqrt{\Phi_{F^k}} \cdot \phi \circ F^k \quad (|J| = k).$$

In this sense, π_f realizes the action of a semigroup $\{F^n : n \geq 1\}$ generated by F.

Proposition 3.6. Let $f = \{f_i\}_{i=1}^N \in BFS_A(X)$.

(i) Let σ_r be the shift on **Z** for $r \in \mathbf{Z}$ which is defined by $\sigma_r(n) \equiv n - r$ for $n \in \mathbb{Z}$. Then the following holds:

$$\pi_{\sigma_r \boxtimes f} \sim \begin{cases} \int_{U(1)}^{\oplus} \pi_f \circ \gamma_{w^r} \ d\eta(w) \qquad (r \neq 0), \\ \\ (\pi_f)^{\oplus \infty} \qquad (r = 0). \end{cases}$$

(ii) If σ is the shift of \mathbf{Z}_p for $p \geq 1$, then

$$\pi_{\sigma \boxtimes f} \sim \bigoplus_{j=1}^p \pi_f \circ \gamma_{\xi^j}$$

where $\xi \equiv e^{2\pi\sqrt{-1}/p}$.

Proof. By Lemma 2.1, (3.3) and a slightly generalization of Proposition 3.9 in [15], they hold.

Theorem 3.7. Let (X, μ) be a measure space and $f \in BFS_A(X)$.

- (i) If f is X_0 -cyclic for $X_0 \subset X$, then $\pi_f(\mathcal{O}_A)L_2(X_0) = L_2(X,\mu)$. Specially, if f is cyclic, then $(L_2(X,\mu),\pi_f)$ is cyclic. (ii) If there is a μ -cycle $\{Y_n\}_{n=1}^k$ by $J \in \{1,\ldots,N\}_{A,c}^k$, then $(L_2(X,\mu),\pi_f)$
- contains a $P(J)^{\oplus \nu}$ -component where $\nu \equiv \dim L_2(Y_1)$.
- (iii) If there is a μ -chain $\{Y_n\}_{n \in \mathbb{N}}$ by $J \in \{1, \dots, N\}_A^{\infty}$, then $(L_2(X, \mu), \pi_f)$ contains a $P(J)^{\oplus \nu}$ -component where $\nu \equiv \dim L_2(Y_1)$.

Proof. (i) Since $\pi_f(s_J)L_2(X_0) = L_2(f_J(X_0))$ for each $J \in \{1, \dots, N\}_A^*$, $\pi_f(\mathcal{O}_A)L_2(X_0) \supset L_2(\langle X_0 \rangle_f)$. By the choice of X_0 , the statement holds. (ii) By assumption, $\pi_f(s_J)\phi = \phi$ for each $\phi \in L_2(Y_1)$. Let $\{e_a\}_{a \in \Lambda}$ be a complete orthonormal basis of $L_2(Y_1)$ such that $\#\Lambda = \nu$. Then $V_a \equiv$ $\pi_f(\mathcal{O}_A)e_a$ is P(J) and $\{V_a\}_{a\in\Lambda}$ is a mutually orthogonal family. Hence $L_2(X,\mu) \supset \bigoplus_{a \in \Lambda} V_a \sim P(J)^{\oplus \nu}.$

(iii) By assumption, $S(f_{j_n})^*L_2(Y_n) = L_2(Y_{n+1})$ for each $n \in \mathbb{N}$. Let $\{e_a^{(1)}\}_{a\in\Lambda}$ be a complete orthonormal basis of $L_2(Y_1)$. Put $e_a^{(m)} \equiv S(f_{j_{m-1}})^* \cdots S(f_{j_1})^* e_a^{(1)} \in L_2(Y_m)$ for $m \ge 2$. Then $\{e_a^{(m)}\}_{a\in\Lambda}$ be a complete orthonormal basis of $L_2(Y_m)$. Therefore $V_a \equiv \pi_f(\mathcal{O}_A)e_a^{(1)}$ is P(J). In the same way as the case (ii), we have the statement.

Examples of Theorem 3.7 is shown in [20].

When (X, μ) is atomic, then $(L_2(X, \mu), \pi_f)$ is well-studied. We treat these as *permutative representations of the Cuntz-Krieger algebras* in [19].

4. Standard constructions of representations of the Cuntz-Krieger algebras

We show the standard construction of A-branching function system on measure spaces $X = \mathbf{N}, \mathbf{Z}, [0, 1], \mathbf{T}^1, \mathbf{R}$ for any $A \in M_N(\{0, 1\})$. By Lemma 3.3, it is sufficient to give a family $\{f^{(M)}\}_{M\geq 1}$ of branching function systems on a measure space for each $M \ge 2$ in order to construct an A-branching function system $f^{(A)}$ on X. The meaning of "standardness" of $f^{(A)}$ is understood from that of $\{f^{(M)}\}_{M>1}$.

In this section, we fix $N \ge 2$ and $A = (a_{ij}) \in M_N(\{0,1\})$ with the A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$.

4.1. Standard representations on $l_2(\mathbf{N})$. For $M \ge 1$, define $f^{(M)} =$ $\{f_i^{(M)}\}_{i=1}^M \in \mathrm{BFS}_M(\mathbf{N})$ by

(4.1)
$$f_i^{(M)}(n) \equiv M(n-1) + i \quad (i = 1, \dots, M, n \in \mathbf{N}).$$

Then

$$(l_2(\mathbf{N}), \pi_{f^{(M)}}) \sim P(1) \quad (M \ge 2).$$

Specially, the permutative representation of \mathcal{O}_M by $f^{(M)}$ is called the standard representation of \mathcal{O}_M in [1, 2]. We denote $(l_2(\mathbf{N}), \pi_{f^{(M)}})$ by $(l_2(\mathbf{N}), \pi_S)$. The standard representation \mathcal{O}_M is irreducible for each $N \geq 2$. This is wellknown in [4, 6, 7, 8]. The restriction $(l_2(\mathbf{N}), \pi_{f^{(M)}}|_{UHF_M})$ is irreducible, too where $UHF_M \equiv \mathcal{O}_M^{U(1)}$. When M = 2, $(l_2(\mathbf{N}), \pi_{f^{(M)}}|_{CAR})$ is equivalent to the Fock representation of $CAR = \mathcal{O}_2^{U(1)}$ under the standard embedding of CAR into $\hat{\mathcal{O}}_2([\mathbf{1}])$. $f^{(A)} = \{f_i^{(A)}\}_{i=1}^N \in BFS_A(\mathbf{N})$ in Lemma 3.3 is given by

$$f_i^{(A)}(N(m-1)+j) = N(M_i(m-1)+q_i(j)-1)+i \quad (m \in \mathbf{N}, \ j \in B_i)$$

where $R(f_i^{(A)}) = \{N(n-1) + i : n \in \mathbf{N}\}$ and $D(f_i^{(A)}) = \coprod_{j \in B_i} R(f_j^{(A)})$ for $i = 1, \ldots, N$. $f^{(A)}$ is a permutative representation of $\mathcal{O}_A([\mathbf{19}])$.

4.2. Representations on $l_2(\mathbf{Z})$. For $M \ge 1$, define $f^{(M)} = \{f_i^{(M)}\}_{i=1}^M \in BFS_M(\mathbf{Z})$ by

(4.2)
$$f_i^{(M)}(n) \equiv Mn + i - 1 \quad (i = 1, ..., M, n \in \mathbf{Z}).$$

Then $f^{(A)} = \{f_i^{(A)}\}_{i=1}^N \in BFS_A(\mathbf{Z})$ in Lemma 3.3 is given by

$$f_i^{(A)}(Nm+j-1) = NM_im + N(q_i(j)-1) + i - 1$$

where $R(f_i^{(A)}) = \{Nn + i - 1 : n \in \mathbf{Z}\}$ and $D(f_i^{(A)}) = \coprod_{j \in B_i} R(f_j^{(A)})$ for i = 1, ..., N. There is no general theory of classification of π_f for f in the above.

Next, we show a classification of some representations of \mathcal{O}_N on $l_2(\mathbf{Z})$.

Proposition 4.1. For $M \ge 2$ and $j \in \mathbf{Z}$, let $g^{[j]} = \{g_i^{[j]}\}_{i=1}^M \in BFS_M(\mathbf{Z})$ by

$$g_i^{[j]}(n) \equiv Mn + i + j \quad (n \in \mathbf{Z}, i = 1, \dots, M).$$

For the representation $(l_2(\mathbf{Z}), \pi_{q^{[j]}})$ of \mathcal{O}_M by $g^{[j]}$, the followings hold:

- (i) When M = 2, $(l_2(\mathbf{Z}), \pi_{a^{[j]}}) \sim P(1) \oplus P(2)$ for each $j \in \mathbf{Z}$.
- (ii) When $M \ge 3$ and $j \equiv r \mod M 1$ for $r = 0, \ldots, M 2$,

$$(l_2(\mathbf{Z}), \pi_{g^{[j]}}) \sim \begin{cases} P(1) \oplus P(M) & (r = M - 2), \\ P(N - 1 - r) & (r \neq M - 2). \end{cases}$$

 $\begin{array}{l} Proof. \quad g_i^{[j]} \text{ is monotone increasing}(resp. \ \text{decreasing}) \ \text{on } \{n \in \mathbf{Z} : n > -(j+1)/(M-1)\} \ (resp. \ \{n \in \mathbf{Z} : n < -(j+M)/(M-1)\}.) \ \text{Therefore } g^{[j]} \ \text{has neither cycle nor chain in } \mathbf{Z} \setminus W. \ \text{From these, } g^{[j]} \ \text{has cycles in } W \equiv \{n \in \mathbf{Z} : \alpha \ge n \ge \alpha - 1\} = \{[\alpha], [\alpha] - 1\} \ \text{where } \alpha \equiv -(j+1)/(M-1). \ (\text{i) If } M = 2, \ \text{then } \alpha = -(j+1) \ \text{and } g_i^{[j]}(\alpha) = -j - 2 + i. \ \text{From these, we see that } g_1^{[j]}(\alpha) = \alpha. \ g_i^{[j]}(\alpha-1) = -j - 4 + i. \ \text{Hence } g_2^{[j]}(\alpha-1) = \alpha - 1. \ (l_2(\mathbf{Z}), \pi_{g^{[j]}}) \sim P(1) \oplus P(2) \ \text{for each } j \in \mathbf{Z}. \ (\text{ii) If } M \ge 3, \ \text{then put } j = (M-1)k - l - 1 \ \text{where } 0 \le l \le M - 2. \ \text{Then } \alpha = -k + l/(M-1) \ \text{and } [\alpha] = -k. \ g_i^{[j]}([\alpha]) = [\alpha] - l - 1 + i. \ \text{Hence } i = 1 + l \in \{1, \dots, M-1\} \ \text{if and only if } g_{1+l}^{[j]}([\alpha]) = [\alpha]. \ \text{By taking } r = M - 2 - l, \ (l_2(\mathbf{Z}), \pi_{g^{[j]}}) \ \text{always has a component } P(l+1) = P(M-1-r). \ \text{Furthermore } g_i^{[j]}([\alpha] - 1) = -M + [\alpha] - l - 1 + i. \ \text{Hence } M + l = i \ \text{if and only if } g_M^{[j]}([\alpha] - 1) = [\alpha] - 1. \ \text{Therefore } (l_2(\mathbf{Z}), \pi_{g^{[j]}}) \ \text{has a } P(M)$-component only when } l = 0. \ \text{In consequence, } (l_2(\mathbf{Z}), \pi_{g^{[j]}}) \sim P(1) \oplus P(M) \ \text{when } r = M - 2. \ \square \\ \end{bmatrix}$

For example,

7.1

4

Corollary 4.2. For $f^{(M)} \in BFS_M(\mathbf{Z})$ in (4.2),

$$\pi_{f^{(M)}} \sim P(1) \oplus P(M) \quad (M \ge 2).$$

Proof. Because $f^{(M)} = g^{[-1]}$ and $-1 \equiv M - 2 \mod M - 1$, the statement holds.

By Corollary 4.2, the irreducible decomposition of $\pi_{f^{(M)}}$ can be described as a same style. This shows that the definition in (4.2) seems standard.

4.3. Representations on $L_2[0,1]$. For $M \ge 1$, put $f^{(M)} \equiv \{f_i^{(M)}\}_{i=1}^M \in BFS_M([0,1])$ by

(4.3)
$$f_i^{(M)}(x) \equiv (x+i-1)/M \quad (i=1,\ldots,M, x \in [0,1]).$$

Then $f^{(A)} = \{f_i^{(A)}\}_{i=1}^N \in BFS_A([0,1])$ in Lemma 3.3 is given by

(4.4)
$$f_i^{(A)}(x) = \frac{1}{M_i}x + \frac{M_i(i-1) + q_i(j) - j}{M_i N}$$
 $(x \in R(f_j^{(A)}), j \in B_i)$

where $R(f_i^{(A)}) = [(i-1)/N, i/N]$ and $D(f_i^{(A)}) = \bigcup_{j \in B_i} R(f_j^{(A)})$ for $i = 1, \ldots, N$ and $j \in B_i$. Note that $f_i^{(A)}$ is defined on $D(f_i^{(A)})$ up to measurezero subset in [0, 1]. That is, $f_i^{(A)}$ is well-defined as a function in $L_{\infty}[0, 1]$. We see that the representation $(L_2[0, 1], \pi_{f^{(A)}})$ of \mathcal{O}_A on $L_2[0, 1]$ is given by

$$(\pi_{f^{(A)}}(s_i)\phi)(x) = \chi_{R(f_i^{(A)})}(x)\sqrt{M_i}\phi((f_i^{(A)})^{-1}(x))$$

for i = 1, ..., N and $\phi \in L_2[0, 1]$. Hence $\pi_{f^{(A)}}(s_i)\mathbf{1} = \sqrt{M_i}\chi_{R(f_i^{(A)})}$ for i = 1, ..., N where **1** is the constant function on [0, 1] with value 1.

Proposition 4.3. For $M \ge 2$ and $f^{(M)}$ in (4.3),

$$(L_2[0,1], \pi_{f^{(M)}}) \sim GP(M^{-1/2}, \dots, M^{-1/2}).$$

Proof. Let a unit vector $z \equiv (M^{-1/2}, \ldots, M^{-1/2}) \in \mathbf{C}^M$. Then **1** is a cyclic vector of $(L_2[0, 1], \pi_{f^{(M)}})$ and $\pi_{f^{(M)}}(s(z))\mathbf{1} = \mathbf{1}$.

Proposition 4.3 is a special case of Theorem 2.8 in [12].

4.4. Representations on $L_2(\mathbf{T}^1)$. We show two kinds of representations of \mathcal{O}_A on $L_2(\mathbf{T}^1)$ for $\mathbf{T}^1 \equiv \{z \in \mathbf{C} : |z| = 1\}$.

(i) Let R_M and V be operators on $L_2(\mathbf{T}^1)$ by

$$(R_M \phi)(z) \equiv \phi(z^M), \quad (V\phi)(z) \equiv z\phi(z) \quad (\phi \in L_2(\mathbf{T}^1), z \in \mathbf{T}^1)$$

and $T_{M,i} \equiv V^{i-1}R_M$ for $i = 1, \dots, M$. Put
 $\pi^{(M)}(s_i) \equiv T_{M,i} \quad (i = 1, \dots, M).$

Then $(L_2(\mathbf{T}^1), \pi^{(M)}) \sim P(1) \oplus P(M) \sim (l_2(\mathbf{Z}), \pi_{f^{(M)}})$ in (4.2). Then the representation $(L_2(\mathbf{T}^1), \pi^{(A)})$ of \mathcal{O}_A in Lemma 2.5 from $\{\pi^{(M_i)}\}_{i=0}^N$ is as follows:

$$\pi^{(A)}(s_i) = T_{N,i} \sum_{j \in B_i} T_{M_i,q_i(j)} T^*_{N,j} \quad (i = 1, \dots, N).$$

(ii) Put
$$f^{(M)} = \{f_i^{(M)}\}_{i=1}^M \in BFS_M(\mathbf{T}^1)$$
 by
 $f_i^{(M)}(z) \equiv z^{1/M} e^{2\pi\sqrt{-1}(i-1)/M} \quad (z \in \mathbf{T}^1, i = 1, \dots, M).$

Then $\pi_{f^{(M)}} \sim GP(M^{-1/2}, \dots, M^{-1/2})$ and this is equivalent to that by (4.3) for each $M \geq 2$. Then $f^{(A)} = \{f_i^{(A)}\}_{i=1}^N \in BFS_A(\mathbf{T}^1)$ in Lemma 3.3 is given by

$$f_i^{(A)}(z) = z^{1/M_i} e^{2\pi\sqrt{-1}\{(q_i(j)-1)/NM_i + (i-1)/N\}} \quad (z \in \mathbf{T}^1, \, i = 1, \dots, N).$$

4.5. Representations on $L_2(\mathbf{R})$. For $M \ge 1$, put $f^{(M)} \equiv \{f_i^{(M)}\}_{i=1}^M \in BFS_M(\mathbf{R})$ by

(4.5)
$$f_i^{(M)}(x) \equiv x + (M-1)[x] + i - 1 \quad (i = 1, \dots, M, x \in \mathbf{R})$$

where [x] is the Gauss symbol. Then $f^{(A)} = \{f_i^{(A)}\}_{i=1}^N \in BFS_A(\mathbf{R})$ in Lemma 3.3 is given by

$$f_i^{(A)}(x + (N-1)[x] + j - 1) = x + (NM_i - 1)[x] + N(q_i(j) - 1) + i - 1$$

for i = 1, ..., N, $x \in R(f_j^{(A)}), j \in B_i$ where $D(f_i^{(A)}) \equiv \bigcup_{j \in B_i} R(f_j^{(A)})$ and $R(f_i^{(A)}) \equiv \coprod_{k \in \mathbf{Z}} [Nk + i - 1, Nk + i]$ for i = 1, ..., N. For example, when N = 2, $R(f_1^{(2)}) = \coprod_{k \in \mathbf{Z}} [2k, 2k + 1]$, $R(f_2^{(2)}) = \coprod_{k \in \mathbf{Z}} [2k + 1, 2k + 2]$. $f_1^{(2)}(x) = x + [x], f_2^{(2)}(x) = x + [x] + 1$. Then $f_1^{(2)}(x) = x$ for $x \in [0, 1]$ and $f_2^{(2)}(x) = x$ for $x \in [-1, 0]$.

Theorem 4.4. For $M \ge 2$ and $\lambda \in \mathbf{R}$, put

$$g_i^{[\lambda]}(x) \equiv x + (M-1)[x] + i + \lambda \quad (x \in \mathbf{R}, i = 1, \dots, M).$$

Then $g^{[\lambda]} = \{g_i^{[\lambda]}\}_{i=1}^M \in BFS_M(\mathbf{R})$ and the followings hold:

(i) When M = 2,

$$(L_2(\mathbf{R}), \pi_{g^{[\lambda]}}) \sim \begin{cases} (P(1) \oplus P(2))^{\oplus \infty} & (\lambda \in \mathbf{Z}), \\ \\ (P(11) \oplus P(22))^{\oplus \infty} & (\lambda \in \mathbf{R} \setminus \mathbf{Z}). \end{cases}$$

(ii) When $M \geq 3$,

$$(L_{2}(\mathbf{R}), \pi_{g^{[\lambda]}}) \sim \begin{cases} (P(1) \oplus P(M))^{\oplus \infty} & (\lambda \in \mathbf{Z}, r = M - 2), \\ (P(M - 1 - r))^{\oplus \infty} & (\lambda \in \mathbf{Z}, r \neq M - 2), \\ (P(11) \oplus P(MM))^{\oplus \infty} & (\lambda \in \mathbf{R} \setminus \mathbf{Z}, r = M - 2), \\ (P(M - 1 - r, M - 1 - r))^{\oplus \infty} & (\lambda \in \mathbf{R} \setminus \mathbf{Z}, r \neq M - 2), \end{cases}$$

where $r \in \{0, \dots, M-2\}$ such that $[\lambda] \equiv r \mod M-1$.

Proof. Assume $M \geq 3$. When $\lambda = j \in \mathbf{Z}$, then $g_i^{[\lambda]}(x) = x + (M - 1)[x] + i + j$. Put a map Ψ from \mathbf{R} to $\mathbf{Z} \times [0, 1)$ by $\Psi(x) \equiv ([x], x - [x])$. Then $\Psi \circ g_i^{[\lambda]} \circ \Psi^{-1} = h_i \times id$ where $h_i(n) \equiv Nn + i + j$. Hence $\pi_{g^{[\lambda]}} \sim \pi_h^{\oplus \infty}$ and $\pi_h = P(1) \oplus P(M)$ when $j \equiv M - 2 \mod M - 1$, $\pi_h = P(M - 1 - r)$ when $j \equiv r \mod M - 1$ and $r \neq M - 2$ by Proposition 4.1. When $\lambda \in \mathbf{R} \setminus \mathbf{Z}$, put $\theta \equiv \lambda - [\lambda]$ and a map Ψ from \mathbf{R} to $\mathbf{Z} \times \mathbf{Z}_2 \times [0, \theta)$ by

$$\Psi(x) \equiv \begin{cases} ([x], 1, x - [x]) & (\text{when } x - [x] \in [0, \theta)), \\ ([x], 2, x - [x] - \theta) & (\text{when } x - [x] \in [\theta, 1)). \end{cases}$$

Then $\Psi \circ g_i^{[\lambda]} \circ \Psi^{-1} = h_i \times \sigma \times id$ where σ is a shift on $\mathbb{Z}_2 \equiv \{1, 2\}$. From this, $\pi_{g^{[\lambda]}} \sim (S(\sigma) \boxtimes \pi_h)^{\oplus \infty}$, $S(\sigma) \boxtimes \pi_h \sim \pi_h \oplus (\pi_h \circ \gamma_{-1})$. $\pi_h \sim P(M-1-r)$ by Proposition 4.1. By Proposition 3.6 and (2.3), the statement holds. The case M = 2 follows from the proof of that of $M \geq 3$.

This is an example of Theorem 3.7 (ii) when A is full and $\nu = \infty$.

Corollary 4.5. For $f^{(M)}$ in (4.5),

$$(L_2(\mathbf{R}), \pi_{f^{(M)}}) \sim P(1)^{\oplus \infty} \oplus P(M)^{\oplus \infty} \quad (M \ge 2).$$

5. Examples

We show examples of representations of \mathcal{O}_A for matrices in p 268, [5] and their open problems. In this section, s_1, \ldots, s_N are canonical generators of \mathcal{O}_A for $A \in M_N(\{0, 1\})$. **5.1. Example 1.** Put a matrix $A_1 \in M_3(\{0, 1\})$ by

$$A_1 \equiv \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} \right).$$

There is an isomorphism φ from \mathcal{O}_4 to \mathcal{O}_{A_1} as follows:

(5.1)
$$\varphi(v_1) \equiv s_1 s_3, \quad \varphi(v_2) \equiv s_3, \quad \varphi(v_3) \equiv s_2 s_3, \quad \varphi(v_4) \equiv s_2 s_1 s_3$$

where v_1, \ldots, v_4 are canonical generators of $\mathcal{O}_4([10])$. We see that $\varphi^{-1}(s_1) = v_1 v_2^*, \ \varphi^{-1}(s_2) = v_4 v_1^* + v_3 v_2^*, \ \varphi^{-1}(s_3) = v_2$.

Example 5.1. Define operators T_1, T_2, T_3 on $l_2(\mathbf{N})$ by

$$T_1 e_{4(n-1)+i} \equiv \delta_{2,i} e_{4(n-1)+1}, \quad T_2 e_{4(n-1)+i} \equiv \delta_{1,i} e_{4(n-1)+4} + \delta_{2,i} e_{4(n-1)+3},$$

$$T_3 e_n \equiv e_{4(n-1)+2}$$

for i = 1, 2, 3, 4 and $n \in \mathbb{N}$. Then the followings hold:

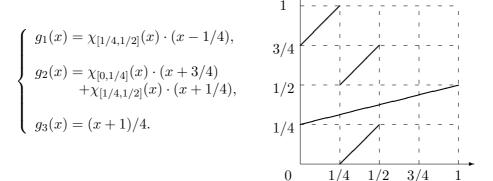
- (i) Put $\pi_0(s_i) \equiv T_i$, i = 1, 2, 3. Then a representation $(l_2(\mathbf{N}), \pi_0)$ of \mathcal{O}_{A_1} is irreducible.
- (ii) Any representation (\mathcal{H}, π) of \mathcal{O}_{A_1} with a cyclic vector Ω which satisfies

(5.2)
$$\pi(s_1 s_3)\Omega = \Omega$$

is equivalent to $(l_2(\mathbf{N}), \pi_0)$ in (i). Specially, a representation (\mathcal{H}, π) of \mathcal{O}_{A_1} with a cyclic vector Ω which satisfies (5.2) is unique up to unitary equivalences.

Proof. For the standard representation $(l_2(\mathbf{N}), \pi_S)$ of \mathcal{O}_4 in § 4.1 and φ is in (5.1), we see that $\pi_0 = \pi_S \circ \varphi^{-1}$. Since π_S is irreducible, π_0 is, too. Since π_S is uniquely characterized by $\pi_S(v_1)\Omega = \Omega$, π_0 is, too by $\varphi(v_1) = s_1s_3$ for $\Omega \equiv e_1$.

Example 5.2. Let g_1, g_2, g_3 be functions on [0, 1] as follows:



Then $g = \{g_1, g_2, g_3\}$ is an A_1 -branching function system on [0, 1] and the followings hold:

- (i) A representation $(L_2[0, 1], \pi_g)$ of \mathcal{O}_{A_1} is irreducible and it is equivalent to a representation (\mathcal{H}, π) with a cyclic vector Ω which satisfies $\pi(s_1s_3 + s_3 + s_2s_3 + s_2s_1s_3)\Omega = 2\Omega$.
- (ii) $(L_2[0,1], \pi_g)$ is inequivalent to $(l_2(\mathbf{N}), \pi_0)$ in Example 5.1.

Proof. Let $f = \{f_i\}_{i=1}^4 \in BFS_4([0,1])$ by $f_i(x) \equiv (x+i-1)/4$ for $i = 1, \ldots, 4$, $\Omega \equiv \mathbf{1}$ and φ in (5.1), then $\pi_f(v_i) = \pi_g(\varphi(v_i))$ for $i = 1, \ldots, 4$. Since $\pi_f \not\sim \pi_0 \circ \varphi, \pi_g \not\sim \pi_0$. Because $(L_2[0,1], \pi_f)$ is an irreducible representation of \mathcal{O}_4 , $(L_2[0,1], \pi_g)$ is irreducible, too. Furthermore $\pi_g(s_1s_3 + s_3 + s_2s_1 + s_2s_1s_3)\Omega = \pi_f(v_1 + v_2 + v_3 + v_4)\Omega = 2\Omega$.

Example 5.3. We have the following $f = \{f_1, f_2, f_3\} \in BFS_{A_1}([0, 1])$ in § 4.3:

$$\begin{cases} f_1(x) = x - 2/3 & (x \in [2/3, 1]), & 1 \\ f_2(x) = \begin{cases} x/2 + 1/3 & (x \in [0, 1/3]), & \frac{2}{3} \\ x/2 + 1/6 & (x \in [2/3, 1]), & \frac{1}{3} \\ f_3(x) = x/3 + 2/3. & 0 & \frac{1}{2} - \frac{2}{2} - 1 \end{cases}$$

From this, we have the following representation $(L_2[0,1], \pi_f)$ of \mathcal{O}_{A_1} :

$$\begin{cases} (\pi_f(s_1)\phi)(x) = \chi_{[0,1/3]}(x)\phi(x+2/3), \\ (\pi_f(s_2)\phi)(x) = \sqrt{2}\{\chi_{[1/3,1/2]}(x)\phi(2x-2/3) + \chi_{[1/2,2/3]}(x)\phi(2x-1/3)\}, \\ (\pi_f(s_3)\phi)(x) = \sqrt{3}\chi_{[2/3,1]}(x)\phi(3x-2) \end{cases}$$

for $\phi \in L_2[0, 1]$ and $x \in [0, 1]$.

Question 5.4. Show the property of π_f , whether π_f is irreducible or not, whether π_f is equivalent to representations in Example 5.1 or Example 5.2.

5.2. Example 2. Put a matrix $A_2 \in M_3(\{0,1\})$ by

$$A_2 \equiv \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

There is an isomorphism ψ from $\mathcal{O}_5 \otimes M_2(\mathbf{C})$ to \mathcal{O}_{A_2} as follows:

(5.3)
$$\begin{cases} \psi(t_1 \otimes I) \equiv s_1 s_2 s_1 s_1^* + s_2 s_1, \\ \psi(t_2 \otimes I) \equiv s_1 s_2 s_3 s_1 s_1^* + s_2 s_3 s_1, \\ \psi(t_3 \otimes I) \equiv s_1 s_2 s_3 s_1^* + s_2 s_3 s_1^* s_1, \\ \psi(t_4 \otimes I) \equiv s_1 s_3 s_1 s_1^* + s_3 s_1, \\ \psi(t_5 \otimes I) \equiv s_1 s_3 s_1^* + s_3 s_1^* s_1, \\ \psi(I \otimes E_{12}) \equiv s_1 \end{cases}$$

where t_1, \ldots, t_5 are canonical generators of \mathcal{O}_5 and $\{E_{ij}\}_{i,j=1,2}$ is the matrix unit of $M_2(\mathbf{C})([\mathbf{10}])$. On the contrary, we see that $\psi^{-1}(s_1) = I \otimes E_{12}$, $\psi^{-1}(s_2) = t_1 \otimes E_{21} + (t_2t_4^* + t_3t_5^*) \otimes E_{22}, \ \psi^{-1}(s_3) = t_4 \otimes E_{21} + t_5 \otimes E_{22}$.

Example 5.5. Define operators $\pi(s_1), \pi(s_2), \pi(s_3)$ on $l_2(\mathbf{N} \times \{1, 2\})$ by

$$\pi(s_1)e_{n,i} \equiv \delta_{2,i}e_{n,1},$$

$$\pi(s_2)e_{5(n-1)+m,i} \equiv \delta_{1,i}e_{5(5(n-1)+m-1)+1,2} + \delta_{2,i}(\delta_{4,m}e_{5(n-1)+2,2} + \delta_{5,m}e_{5(n-1)+3,2}),$$

$$\pi(s_3)e_{n,i} \equiv \delta_{1,i}e_{5(n-1)+4,2} + \delta_{2,i}e_{5(n-1)+5,2}$$

for i = 1, 2, m = 1, ..., 5 and $n \in \mathbf{N}$ where $e_{n,i} \equiv e'_n \otimes e''_i$ and e'_n, e''_i are canonical basis of $l_2(\mathbf{N})$ and \mathbf{C}^2 , respectively. Then the followings hold:

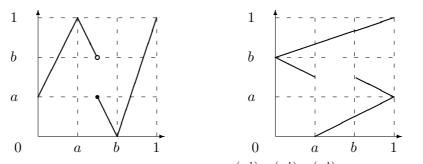
- (i) $(l_2(\mathbf{N} \times \{1, 2\}), \pi)$ is an irreducible representation of \mathcal{O}_{A_2} .
- (ii) Any cyclic representation (\mathcal{H}, π') of \mathcal{O}_{A_2} with a cyclic vector Ω which satisfies

$$\pi'(s_1s_2s_1s_1^* + s_2s_1)\Omega = \Omega$$

is equivalent to $(l_2(\mathbf{N} \times \{1, 2\}), \pi)$.

Proof. (i) Let π_0 be the standard representation of \mathcal{O}_5 on $l_2(\mathbf{N})$ and ι is the canonical representation of $M_2(\mathbf{C})$ on \mathbf{C}^2 . Then $((\pi_0 \otimes \iota) \circ \psi^{-1})(s_i) = \pi(s_i)$ on $l_2(\mathbf{N} \times \{1, 2\}) \cong l_2(\mathbf{N}) \otimes \mathbf{C}^2$ for i = 1, 2, 3 where ψ is in (5.3). Because $\pi_0 \otimes \iota$ is an irreducible representation of $\mathcal{O}_5 \otimes M_2(\mathbf{C})$, π is irreducible, too. (ii) By (i), the characterization of π is uniquely given by the equation $(\pi_0 \otimes \iota)(t_1 \otimes I)e_{1,1} = e_{1,1}$. By (5.3), $\pi(s_1s_2s_1s_1^* + s_2s_1) = (\pi_0 \otimes \iota)(t_1 \otimes I)$. Hence the statement holds.

Example 5.6. For 0 < a < b < 1, consider a map $F^{(a,b)}$ on X = [0,1] which graph is given as follows:



 $F^{(a,b)}$ is the coding map of $f^{(a,b)} = \{f_1^{(a,b)}, f_2^{(a,b)}, f_3^{(a,b)}\} \in BFS_{A_2}([0,1])$ given as follows: $f_i^{(a,b)}: D_i \to R_i, i = 1, 2, 3,$

$$\begin{cases} f_1^{(a,b)}(x) = a(x-a)/(1-a) & (x \in D_1), \\ \\ f_2^{(a,b)}(x) = \begin{cases} -\alpha x + b, & (x \in R_1), \\ -\alpha(x-1) + a & (x \in R_2), \end{cases} \\ \\ f_3^{(a,b)}(x) = (1-b)x + b & (x \in [0,1]) \end{cases}$$

where $\alpha \equiv (b-a)/(1-b+a), R_1 \equiv [0,a], R_2 \equiv [a,b], R_3 \equiv [b,1], D_1 \equiv [a,1], D_2 \equiv [b,1], D_3 \equiv [0,1].$ Let $\pi^{(a,b)} \equiv \pi_{f^{(a,b)}}.$

Question 5.7. Classify a representation $\pi^{(a,b)}$ of \mathcal{O}_{A_2} by a, b.

This is not so simple as its appearance. For example, a family of slope parameters of a branching function system on a closed interval is the complete invariant(up to unitary equivalence) of representations in Theorem 2.8 in [12].

References

- M.Abe and K.Kawamura, Recursive Fermion System in Cuntz Algebra. I Embeddings of Fermion Algebra into Cuntz Algebra—, Comm. Math. Phys. 228, 85-101 (2002).
- [2] M.Abe and K.Kawamura, Recursive Fermion System in Cuntz Algebra. II Endomorphism, Automorphism and Branching of Representation—, preprint RIMS-1362 (2002).
- [3] M.Abe and K.Kawamura, Pseudo Cuntz Algebra and Recursive FP Ghost System in String Theory, Int. J. Mod. Phys. A18, No. 4 (2003) 607-625.
- [4] O.Bratteli and P.E.T.Jorgensen, Iterated function Systems and Permutation Representations of the Cuntz algebra, Memories Amer. Math. Soc. No.663 (1999).
- [5] J.Cuntz and W.Krieger, A class of C^{*}-algebra and topological Markov chains, Invent.Math., 56 (1980) 251-268.
- K.R.Davidson and D.R.Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math.Ann. 311, 275-303 (1998).

- [7] K.R.Davidson and D.R.Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc. (3) 78 (1999) 401-430.
- [8] K.Kawamura, Generalized permutative representations of the Cuntz algebras. I Generalization of cycle type—, preprint RIMS-1380 (2002).
- K.Kawamura, Generalized permutative representations of the Cuntz algebras. II Irreducible decomposition of periodic cycle—, preprint RIMS-1388 (2002).
- [10] K.Kawamura, Polynomial embedding of Cuntz-Krieger algebra into Cuntz algebra, preprint RIMS-1391 (2003).
- [11] K.Kawamura, Representations of the Cuntz algebra \mathcal{O}_2 arising from real quadratic transformations, preprint RIMS-1396 (2003).
- [12] K.Kawamura and O.Suzuki, Construction of orthonormal basis on self-similar sets by generalized permutative representations of the Cuntz algebras, preprint RIMS-1408 (2003).
- [13] K.Kawamura, Representations of the Cuntz algebra \mathcal{O}_3 arising from real cubic transformations, preprint RIMS-1412 (2003).
- [14] K.Kawamura, Three representations of the Cuntz algebra \mathcal{O}_2 by a pair of operators arising from a \mathbb{Z}_2 -graded dynamical system, preprint RIMS-1415 (2003).
- [15] K.Kawamura, Representations of the Cuntz algebra \mathcal{O}_2 arising from complex quadratic transformations —Annular basis of $L_2(\mathbf{C})$ —, preprint RIMS-1418 (2003).
- [16] K.Kawamura, Generalized permutative representations of the Cuntz algebras. III Generalization of chain type—, preprint RIMS-1423 (2003).
- [17] K. Kawamura, Generalized permutative representations of the Cuntz algebras. IV Gauge transformation of representation—, preprint RIMS-1425 (2003).
- [18] K.Kawamura, Polynomial endomorphisms of the Cuntz algebras arising from permutations. III — Branching laws and automata—, preprint RIMS-1442 (2004).
- [19] K.Kawamura, Representations of the Cuntz-Krieger algebras. II Permutative representations—, in preparation.
- [20] K.Kawamura, Representations of the Cuntz algebras arising from interval dynamical systems, in preparation.
- [21] R.Okayasu, Type III Factors Arising from Cuntz-Krieger Algebras, Proc. Amer. Math. Soc. 131 (2003), no.7, 2145–2153.