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‘We show several systematic construction of representations
of the Cuntz-Krieger algebras from transformations on mea-
sure spaces as a generalization of permutative representation
of the Cuntz algebras. We introduce these examples of them
and their properties.

1. Introduction

Representation theory of the Cuntz algebras is studied by [4, 6, 7, 8, 9,
16, 17]. It is remarkable that representations of the Cuntz algebras in some
class satisfy the uniqueness of irreducible decomposition. Furthermore these
representations are related to quantum filed theory([1, 2, 3]), dynamical
systems([11, 13, 14, 15]) and fractals([12]), and their branching laws are
computed by automata([18]). We generalize these results for the Cuntz-
Krieger algebras.

In this paper, we start to show general properties and systematic con-
structions of representations of the Cuntz-Krieger algebras by embedding of
the Cuntz-Krieger algebras in [10].

Let N > 2 and (X,u) be a measure space. Assume that there are
a family {D;}¥, of non p-null subsets of X and a family f = {f;}}¥, of
measurable maps such that f; is an injective map from D; to R; = f(D;) C X
and the Radon-Nikodym derivative ®; of po f; with respect to p is non zero
for each i =1,..., N. Define a partial isometry S(f;) on La(X, i) by

(0 (@)} P o(f7(2) (e Ry,

0 (otherwise)

(L1 (S(fi)e)(x) =

for ¢ € Lo(X, p) and x € X. We consider a C*-algebra C*< {S(f;)}¥, >
generated by operators S(f1),...,S(fn).
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Theorem 1.1. Let A = (ai;) be an N x N matriz which has entries in
{0,1} and has no rows or columns identically equal to zero. For a family
f=1{fi}X, of maps on a measure space (X, ) in the above,

C*< {S(fi)}L >= 04

if all the followings are p-null subsets of X :
X\RiU---URpy, Di\Uj:aijlej (t=1,...,N), RiNR; (i#j).

Theorem 1.1 is shown by checking that S(f1),...,S(fn) satisfy relations
of canonical generators of O4 in § 3. f in Theorem 1.1 is called an A-
branching function system on (X, u). Although we do not know what C*<
{S(fi)}X, > isfor general f1,..., fy, our aim is not to create a new example
of C*-algebra but to study representation (La(X, p),7¢) of O4 arising from
f={fi}Y, in Theorem 1.1. Therefore problems are i) what the condition
for f is so that (Lo(X,u),ms) is irreducible, and ii) what the condition for
fand g is so that (La(X,u), 7f) ~ (La(Y,v), 7).

In § 2, we show general theory of representations of O4. We treat
construction and decomposition of representation of O 4, and review results
about the Cuntz algebras. In § 3, we show properties of partial isometries
in (1.1) and a general construction of representations of O4 from branching
function systems. In § 4, we show the standard constructions of representa-
tion of 04 on l3(N), I2(Z), L2[0,1], Lo(T!) and La(R) by using represen-
tations of the Cuntz algebras. In § 5, we show examples branching function
systems and representations of the Cuntz-Krieger algebras.

2. General theory of representations of Oy4y

2.1. Multiindices. We introduce several sets of multiindices which consist
of numbers 1,..., N for N > 2.

Put {1,...,N}° = {0}, {1,..., N} = {(G)r, : 7 =1,....,N, 1l =
1,...;k}for k>1and {1,...,N}* ={(jn)nen : jn € {1,...,N}, n € N}.
Denote {1,...,N}* = szo{l,...,N}k, {1,...,N}; = ]_[kZI{l,...,N}k,
{1,...,N}Y*={1,..., N} u{l,...,N}>®. For J € {1,..., N}*, the length
|J| of J is defined by |J| = k when J € {1,...,N}*. For J;, Jo € {1,...,N}*
and J3 € {1,..., N} J1UJ2 = (Ji,- - Jks 15 - - 01)s JIUT3 = (G, - -+ ks G1 5 Gors - -)
when J; = (j1,...,jk), J2 = (j1,---.4;) and Js = (j,)nen. Specially, we
define JU {0} = {0}uJ = J for J € {1,...,N}¥# and (i,J) = (i) U J
for convenience. For J € {1,...,N}* and k > 2, J¥ = JU---UJ and

—_—

k
J® =JuU---UJuU---€{l,...,N}>®. For J = (j1,...,j5x) € {1,...,N}¥
and 7 € Zy, denote 7(J) = (jr(1),- - Jr(k))-
In order to treat representations of O4, we modify multiindices with
respect to A. Let Mn({0,1}) be the set of all N x N matrices in which
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have entries in {0, 1} and have no rows or columns identically equal to zero.
A = (aiy;) € My({0,1}) is full if a;; = 1 for each i,j = 1,...,N. For
A = (a;5) € Mn({0,1}), define

{1,... Ny =]J{L. . N,
k>0
{1,...,N}% ={o}, {1,....N}Y,={1,...,N},
{1,..., N ={G)r,e{1,... ;N raj,_;,=1,i=2,....k} (k>2),
{1,.... Ny . =[J{L. . N
E>1
{1 N ={0)i € (1, N ag = 1),
{17---3N}%0 = {(]n)neN € {L---vN}OO C Qg _1gn = Iin=> Q}a
{1,... . NYi.={1,...,N}3 . U{l,...,N}¥.
For example, if A — < Lo ) then {1,2}4 = {1,2}, {1,2}% = {(11), (21),

(12)}, {1,2}3 = {(111), (211), (121), (112), (212)}, {1,2}4 = {(1111), (2111),
(1211), (1121), (2121), (1112), (2112), (1212)}.

J € {1,...,N}} is periodic if there are m > 2 and Jp € {1,...,N};
such that J = JJ*. For Ji,Jo € {1,...,N}], Ji ~ Jo if there are k > 1
and 7 € Zy, such that |J1| = |Jo| = k and 7(J1) = Jo. For (J,2),(J,%) €
{1,..., NV xUQ), (J,z) ~ (J,2)if J ~J and z = 2z’ where U(1) =
{z € C : |z| = 1}. Specially, any element in {1,..., N} is non periodic.
J e {1,...,N}> is eventually periodic if there are Jy,J; € {1,...,N}}
such that J = Jy U J°. For Ji,Jo € {1,...,N}*, J; ~ Jy if there are
J3,Jy € {1,...,N}* and J5 € {1,...,N}* such that J; = J3 U J5 and
Jo = Jy U Js.

2.2. Construction and decomposition of representations of O 4. For
A = (aij) € Mn({0,1}), O4 is the Cuntz-Krieger algebra by A if O4([5]) is

a C*-algebra which is universally generated by partial isometries s1,...,sy
satisfying:

N < N
(2.1) spsi =1 aisis; (I=1,...,N), 3Ly sisp =1

Specially, Q4 is the Cuntz algebra Op when A is full.

We denote the canonical U(1)-action(=gauge action) on O4 by v and
the canonical U(N)-action on Oy by «. For a multiindex J = (ji,...,jk) €
{1,...,N}* and canonical generators si,...,sy of O, we denote s; =
8j, ++ - 8j, and 8% = s7 ---s7 . When J € {1,...,N}*, s; # 0 if and only if
Je{l,...,N};.

In this paper, a representation always means a unital *-representation
on a complex Hilbert space. (H1,m1) ~ (He,m2) means the unitary equiva-
lence between two representations (Hi,71) and (Hg, m2) of O4.
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For a representation (H, 7) of O 4 and a unitary operator U on a Hilbert
space K, we have a new representation (X ®@H, UK ) of O 4 which is defined
by

(2.2) (URT)(s;) =Umn(s;)) (i=1,...,N).

Lemma 2.1. For a representation in (2.2), the followings hold:

(i) If U has an eigenvalue ¢ € U(1) on K, then (K ® H,U X m) has a
subrepresentation which is equivalent to (H, T o .).
(ii) If a unitary V' on K is conjugate with U by a unitary, then U X m ~
VX
(iii) If there are p € Z and a complete orthonormal basis {e, : n € Z}
of K such that Ue,, = eyyp for each n € Z, then (K @ H, U K ) is
decomposed as

D
/ (H, 7o) dn(w)  (p#0),

U(1)

(H, m)®= (»=0)

where 1 is the Haar measure of U(1).
(iv) If there is p > 2 such that UP =1, U* # I fori=1,...,p— 1, then

P v
UN7 ~ (@Woy&>

i=1

where v = (dimK) /p and & = >™V=10-1/p,
(v) If K is decomposed into eigenspaces of U and U has eigenvalues {z)}aea
with multiplicities {vy}xen, then

URm~ @D (rom.,) ™.
AEA

Proof. (i) Let v € K be an eigenvector of U such that Uv = cv. Put
H = Cv ® H. Then we see that (UK 7)(s;)(v ® ¢) = v ® (w0 7.)(s)¢ for
each i =1,..., N. Therefore (UX7)|,/ ~ 7o ~.
(ii) If W is a unitary on K such that WUW* = V, then (W ® I)(U X
m)(si)(W®I)"=(VRm)(s;) foreachi=1,...,N.
(iii) This is obtained by slightly generalizing Lemma 2.4 in [15].
(iV) Put Ez = % Z?:l E,Lj-_lUjil. Then UEZ = &Ez, E:Ez = Ez and Ez* = Ez
Hence K = K1 @ --- ® K, where K; = E;K for ¢ = 1,...,p. From this,
(’Cl ®@H, (U X w)’/@-@%) ~ (Ha ™o 7§z‘)®y'
(v) This follows from the proof of (iv). O



Proposition 2.2. For a representation (H,n) of O4, put a new represen-
tation (L2(R,H), 7) of O by

(V) () = [ eV T .
()00 = <= [ VT r(s)oldt (6 € LA, 7 € R)
fori=1,...,N. Then

ﬁ'rv{TFEBWO’Y\/jEBWO’Y—l@TrO’Yf\/j}@OO'

Proof.  We see that # = F K 7 for the Fourie unitary operator F on
Ly(R). Because F* = I and F/ # I for j = 1,2, 3, the statement holds by
Lemma 2.1. (]

We review results in [10].

Definition 2.3. For A = (a;;) € Mn({0,1}), a data {(M;,q;, B;)}}¥, is
called the (canonical)A-coordinate if

Bi= {je{l,...,N}:a;j=1}, M;=apn+- -+ an,

¢ Bi—{l,....Mi}; q(j)=#{k€Bi:k<j}
fori=1,...,N.

Lemma 2.4. Let A = (a;j) € Mn({0,1}) with the A-coordinate {(M;, i, B;)}Y 4
and Mo = N. Assume that a unital C*-algebra B satisfies the following con-
dition: B contains Oy, for eachi =0,..., N when M; > 2 as C*-subalgebras
with common unit. Let tar 1,...,tm;, M, be canonical generators of Opy, for

1 =0,...,N as elements in B, respectively where we put O = CI and
t11 = I. Under these assumptions put s; = tu, i(az‘ltMZ qz(l)t}k\/lo 1+t
aiNta, g (N Eh v )- Then {8}V, satisfies (2.1) with respect to A.

By these preparation, we show a method to construct representations of O 4
from representations of the Cuntz algebras as follows:

Lemma 2.5. Let A € My({0,1}) with the A-coordinate {(M;,q;, Bi)}}X,
and My = N and s1,...,5N, tmi, ...t m be canonical generators of Oa
and Oy, respectively for M = My, ..., My. Let 7™ be representation of
Owm, on a Hilbert space H where t11 = I, w(l)(I) = I when M; = 1, then
there is a representation #™) of O4 on H defined by

Zaw tn )7 ™M (s, i)™V (tny)* (i=1,...,N).

Proof. By Lemma 2.4, it holds. U



2.3. Permutative representations and GP representations of Oy.
A representation (H, 7) of Oy is permutative if there is a complete orthonor-
mal basis {e,}ner of H which satisfies ¥(n,i) € Ax € {1,...,N}, 7m € A
s.t. 7(s;)en = €. Any permutative representation is completely reducible.
We generalize this class of representation as generalized permutative rep-
resentations =(GP representations) in [8, 9, 16, 17]. In order to explain
easily, we show GP representations of the Cuntz algebras with a 1-cycle. Let
S(CN) ={z € CV : |z|| = 1} be the complex sphere in a complex vector
space CV.

Definition 2.6. Let (H,m) be a representation of On .

() (H,7) is P(J;2) for J = (j1,..., k) € {1,..., N}, k> 1 and a phase
z € U(1) if there is a cyclic unit vector Q € H such that w(sy)Q2 = 20
and {m(s;, ---s5,):1=1,...,k} is an orthonormal family in H.
(ii) (H,7) is GP(2) for z = (21,...,2n5) € S(CY) if there is a cyclic unit
vector Q € H such that w(z151 + -+ + znsn)2 = Q.
(iii) (H,m) is P(J) for J = (jn)nen € {1,..., N} if there is an orthonor-
mal family {en}nen in H such that w(sj,)*en = ent1 for each n € N.

ForJ € {1,...,N}%, denote P(J) = P(J;1). Forany J € {1,..., N}#,
P(J) is equivalent to a cyclic permutative representation.

We review results about P(J) here: For J € {1,...,N}] and z € U(1),
P(J; z) is irreducible if and only if J is non periodic. For J € {1,..., N}*,
P(J) is irreducible if and only if J is non eventually periodic. For Ji, Jo €
{1,...,N}; and z1,22 € U(1), P(J1;21) ~ P(J2; 22) if and only if (Jy,21) ~
(J2,22) where P(Jy;21) ~ P(J2;22) means the unitary equivalence of two
representations which satisfy the condition P(J1;21) and P(J2; 22), respec-
tively. For Ji,Jo € {1,...,N}*, P(J;) ~ P(J) if and only if J; ~ Js.
If J€{l,...,N}* k>1and z € U(1), then P(J;1)o~, = P(J;2F). If
Je{l,...,N}®and z € U(1), then P(J)ory, = P(J). For J € {1,..., N},
z€eU(l)and p > 1,

(2.3) P(J7;2) = @l P(J;67712117)

where £ = e2mV=1/p, (2.3) is unique up to unitary equivalences. Especially
we have P(J?;1) = @)_, P(J;¢/7"). For each J € {1,..., N},

(S5
PLI®) = / P(J:2) dn(2).

u(1)

For any z € S(C"), GP(z) exists uniquely up to unitary equivalences.
For any z € S(CV), GP(z) is irreducible. For z,2" € S(CN), GP(z) ~
GP(Z') if and only if z = 2. For z = (z1,...,2y) € S(CN), GP(2) is
equivalent to the GNS-representation by a state p of O which is defined by
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p(s18%) = Zjzy where JJ e {1, .. NV, [T+ >1, 25 = zj, - 2j,
when J = (j1,...,Jk), and sy = I, z; = 1 when J = ().

We see that GP(zej) = P(j;2) for j =1,...,N and z € U(1) where
{e; }é\le is the canonical basis of CV.

Eigenequations are important to classify representations of the Cuntz-
Krieger algebras. For J € {1,...,N}%, there is a representation (H, ) of
O such that 7(s;) has eigenvalue if and only if J € {1,..., N}7 .. This is
proved in [19].

About states of GP representations of Oy, see [8, 16]. About type I1]
representations of Oy, see [21].

3. Representations of O4 by branching function systems

Representations of the Cuntz-Krieger algebras are constructed by partial
isometries on Lo(X, 1) for a measure space (X, ). We introduce a simple
method to construct partial isometries from maps on measure spaces([12,
13, 14, 15)).

3.1. A-branching function systems. Let (X, u) and (Y, v) be measure
spaces and f be a measurable map from X to Y which is injective and there
exists the Radon-Nikodym derivative ®; of v o f with respect to p and @,
is non zero almost everywhere in X. We denote the set of such maps by
RN(X,Y) and put RNjoe(X,Y) = Ux,cx RN (Xo,Y). We simply denote
G(X,Y) = {p € RN(X,Y) : 3p7! € RN(Y,X)}, RN(X) = RN(X, X)
and G(X) = G(X,X). For f € RNj).(X), we denote the domain and the
range of f by D(f) and R(f), respectively. If f € RN(Y), then f~! €
RN(R(f)). RNioe(X), RN(X) and G(X) are a groupoid, a semigroup and
a group by composition of maps, respectively. We denote X xY and X UY,
the direct product and the direct sum of (X, 1) and (Y, ) as measure space,
respectively. For f € RN(X;,Y1) and g € RN(X2,Y2), f@ g € RN(X3 U
X3, Y1 UY?) is defined by (f@ g)[x, = f, (f @ 9)|lx, = 9.

Definition 3.1. For a measure space (X, ) and A € Myn({0,1}), a family
f = {fi}X, of measurable maps on X is an A-branching function system
on (X, ) if f satisfies the following conditions:

(i) fi € RNjpe(X) for eachi=1,...,N.

(i) p(R(f:) N R(F;)) = 0 when i # j.
(iii) u(D(fi) \ Uj:aij:1 R(f;)) =0 for eachi=1,...,N.

(iv) w(X\UL R(f:) = 0.
Specially, if A is full, then we call A-branching function system by (N -
)branching function system simply. We denote the set of all A-branching
function systems, branching function systems on (X, u) by BESA(X), BFSy(
respectively.

X),



The notion of original branching function system was introduced in order to
construct a representation of Oy from a family of transformations by [4].
Definition 3.1 coincides with originals when A is full.

Definition 3.2. Let (X, p) and (Y,v) be measure spaces.
(i) F is the coding map of f = {fi}, € BFSA(X) if F is a map on X
such that (F o f;)(x) = = almost everywhere in X and i =1,...,N.
(i) For f = {fi}, € BFSA(X) and g = g}, € BESA(Y), [ ~ g if
there is ¢ € G(X,Y) such that po fiop ™t =g; fori=1,...,N.
(iii) For ¢ € G(X) and g = {g:}Y, € BFSA(Y), we denote p K g =
{ox g}, € BFS4(X x Y).
(iv) For f = {fi}, € BFSA(X) and g = {g:}}, € BFSA(Y), we denote
feg={fi®a}l, € BFS4(XUY).

The following are easily proved by checking the axiom in 3.1:

Lemma 3.3. Let (X, ) be a measure space and A € My ({0,1}) with the A-
coordinate {(M;, q;, B))}N., and My = N. If there is f(M) = {fj(MZ)}j\/izl €

BFSy, (X) for each i = 0,...,N, then a family fA = {fi(A)}f\Ll of maps
on X defined as follows is an A-branching function system on X :

fi(A) (x) = {fi(N) o fq(j\éi)) o (fj(N))fl} () (when x € f;N) (X), 7€ B;)
fori=1,...,N where we put BFS1(X) = {idx} for convenience.

By Lemma 3.3, if we find sufficiently many branching function systems on
a measure space, we can construct an A-branching function system from
them.

For f = {fi}¥, € BFSA(X), denote f; = fj, o---o fj, when J =
(j1s---57k) € {1,...,N}5, k > 1, and define fy = id. For Xo C X, put
< Xo>={fs(x), F'(x) e X: Je{l,...,N}},n € N,z € Xo} where F
is the coding map of f.

Definition 3.4. For A € Myn({0,1}), let f € BFS4(X).

(i) For Xo C X, f is Xo-cyclic if p(X\ < Xo >¢) = 0. Specially, we call
that f is cyclic if f is {xo}-cyclic for some xy € X.

(ii) For J = (ji,...,Jk) € {1,...,N}§17C, {Y;}r | is a p-cycle by J if
fir(x) = x almost everywhere in Y1, Y; is a non p-null subset of X,
p(Y;NYs) =0 when i # i and p(f, ,(Yi)\Yie1) =0 fori=2,...k
and pu(f;, (Y1) \ Yi) = 0.

(i) For J = (jn)nen € {1,....N}%, {Ya}nenN is a p-chain by J if Yy, is a
non p-null subset of X, (Y, NY,,) = 0 when n # m and p(fj,_, (Yn)\
Yo-1) =0 forn > 2.

(iv) For J € {1,...,N}} (resp. J € {1,....N}¥), f has a MP(J)-
component if f has a p-cycle(resp. a p-chain) by J.
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(V) For J = (]%)5:1 € {1’ s ,N}IIZ,C(T'ESP. J = (]n)nEN € {la SRR N},oqo)} f
is M P(J) if there is a subset Y C X such that f is Y -cyclic and {Y;}F_,
is a p-cycle by J where Y; = (fj,0---0 f;)(Y) fori=1,... k(resp.
{Y,}nen is a p-chain by J where Yy, = (fj, 00 f;,) " (Y) forn >1).

3.2. Representations of 04 by A-branching function systems. For
f € RNjpe(X,Y), define an operator S(f) from Lo(X, p) to La(Y,v) by

(37 (fU2)} P o(f Hx)  (x€R()),

0 (otherwise)

for ¢ € Lo(X,p) and x € X. S(f) is a partial isometry from Lo(X, p)
to Lo(Y,v) with the range projection MXRW and the domain projection
MXDm where M, is the multiplication operator of g € Lo (X, p) and xw is
the characteristic function on W C X. Furthermore we see that S(f)* =
S(f7Y), S(idx) = I and S(f)La(2) = La(f(Q)) for Q C X.

Let PIso(H) be the groupoid of all partial isometries on a Hilbert space
H by the ordinary product of operators. Let (Xj, i;) be measure spaces for
1=1,2,3,4. Let f € RN[OC(Xl,XQ) and g € RN[OC(XQ,XQ,). If ,u(D(g) N
R(f)) #0, then go f € RNjpe(X1, X3) and

(3.2) S(9)S(f) = S(ge f).

Specially, a map S from RNj,.(X;) to PIso(La(Xj, 1)) is a groupoid homo-
morphism for i =1,2,3,4. For f € RN(X;,X>2) and g € RN (X3, Xy),

S(fxg)=5(f)©S(g), S(feg)=5()eS)
where we identify L2(Xz X Xj, i X ,uj) and LQ(Xi, uz) ®L2(Xj, ,uj), LQ(Xz U
Xj,,ui U Mj) and LQ(X“/.LZ) S, LQ(Xj, [Lj) for 7,7 = 1,2, 3, 4, respectively.
Theorem 3.5. Let A € My({0,1}). For a family f = {fi}., of maps on
a measure space (X, pn), C*< {S(fi)}X, >=2 Oy if f € BFSA(X).

Proof. We can easily verify that S(f1),...,S(fn) satisfy (2.1) by us-
ing (3.2). O

3.1 (5(fe)(z) =

By Theorem 3.5, Theorem 1.1 is shown and we see that

mr(si)) =S(fi) (i=1,...,N)
defines a representation (La(X, u),7f) of O4.

Let (X, ) and (Y, v) be measure spaces. For f € BFS4(X) and g €
BFSA(Y), if f ~ g, then 7y ~ 7. For ¢ € G(X), f € BFS4(X) and
g = {9}, € BFS4(Y), the followings hold:

(3.3) Tomg ~ S(p) W7y, Trag ~mr @My
where S(¢) M, is in (2.2).



Remark that g o f in rhs of (3.2) is the ordinary composition of two
transformations f and g but not special product of them. By (3.2), we see
that the map S realizes the iteration of transformations on a measure space
as the product of operators on a Hilbert space naturally. In fact, if F' is the
coding map of f in Definition 3.2, then

(my(s:)0)(2) = Xr(s,) (@) V Pr(z)d(F (i=1,...,N)
for ¢ € La(X, ) and z € X. We denote (Lg(X, ,u),Wf) by ¢ simply. From
this, 7¢(sy) = S(fy) for each J € {1,...,N}} and

wi(50)¢ = XR(f,) - VO - po F* (lJ] = k).
In this sense, 7y realizes the action of a semigroup {F" : n > 1} generated
by F'.
Proposition 3.6. Let f = {f;}, € BFSA(X).

(i) Let o, be the shift on Z for r € Z which is defined by op(n) =n —r
forn € Z. Then the following holds:

D
/ 7oy dn(w)  (r#0),
7TO'7—|XfN U(l)

(7Tf)®°o (r=0).
(ii) If o is the shift of Z, for p > 1, then

ToRf ~ @5:1 TfOYei
where £ = e2mV=1/p,

Proof. By Lemma 2.1, (3.3) and a slightly generalization of Proposi-
tion 3.9 in [15], they hold. (]

Theorem 3.7. Let (X, u) be a measure space and f € BFS4(X).
(i) If f is Xo-cyclic for Xo C X, then m(Oa)La(Xo) = La(X, ). Spe-
cially, if f is cyclic, then (Lo(X, p),m¢) is cyclic.
(ii) If there is a p-cycle {Y,}e_ by J € {1,... ,N}ZC, then (La(X, p),m¢)
contains a P(J)®"-component where v = dimLy(Y7).
(ili) If there is a p-chain {Y, tnen by J € {1,...,N}¥, then (Lo(X, p), 7¢)
contains a P(J)®"-component where v = dimLy(Y7).

Proof. (i) Since m¢(s7)La(Xo) = La(f7(Xo)) foreach J € {1,..., N}%,
7r(0a)L2(Xo) D La(< Xo >). By the choice of X, the statement holds.
(ii) By assumption, ms(sj)¢ = ¢ for each ¢ € La(Y1). Let {es}acn be
a complete orthonormal basis of La(Y7) such that #A = v. Then V, =
7r(Oa)eq is P(J) and {V,}een is a mutually orthogonal family. Hence
La(X, 1) > Boer Va ~ P()
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(iii) By assumption, S(fj,)"L2(Yn) = La(Yn41) for each n € N. Let
{egl)}ae,\ be a complete orthonormal basis of La(Y7). Put el = S(fjmoa) -
S(fjl)*el(zl) € Ly(Y,,) for m > 2. Then {e&m)}ae,\ be a complete orthonormal

basis of La(Y;,). Therefore V, = Wf(OA)egl) is P(J). In the same way as
the case (ii), we have the statement. (]

Examples of Theorem 3.7 is shown in [20].
When (X, ) is atomic, then (Lo(X, ), 7y) is well-studied. We treat
these as permutative representations of the Cuntz-Krieger algebrasin [19].

4. Standard constructions of representations of the
Cuntz-Krieger algebras

We show the standard construction of A-branching function system on mea-
sure spaces X = N, Z, [0,1], T!, R for any A € My ({0,1}). By Lemma 3.3,
it is sufficient to give a family { f(M)} m>1 of branching function systems on a
measure space for each M > 2 in order to construct an A-branching function
system f(4) on X. The meaning of “standardness” of f(4) is understood
from that of {f(M)} 5.

In this section, we fix N > 2 and A = (a;;) € My ({0,1}) with the
A-coordinate {(M;, i, B;)} Y

i=1"

4.1. Standard representations on I3(N). For M > 1, define f(M) =
(MM € BFS(N) by

(4.1) FfMmy=Mn-1)+i (i=1,...,M,neN).

Then
(l2(N), mpan) ~ P(1) (M = 2).
Specially, the permutative representation of Oy; by f(M) is called the stan-
dard representation of Opr in [1, 2]. We denote (I2(N), 7y ) by (I2(N), 7s).
The standard representation Oy is irreducible for each N > 2. This is well-
known in [4, 6, 7, 8]. The restriction (I2(N), 7 jon[vmF,,) is irreducible, too
where UHF)y = 011{4(1). When M = 2, (I2(N), 7an|car) is equivalent to
the Fock representation of CAR = (’)g @
CAR into O([1]).
(A) _ (AN . .
WY ={f""}L, € BES4(N) in Lemma 3.3 is given by

under the standard embedding of

FONm-1) 4+ ) = NMi(m - 1)+ q(j)— 1) +i (meN,jeB)

where R(f{V)) = {N(n— 1) +i:n € N} and D(f\V)) = [[;cp, R(f\") for

i=1,...,N. f® is a permutative representation of O ([19]).
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4.2. Representations on ly(Z). For M > 1, define FOM) — {fi(M)}i]\il €
BFSy(Z) by

(4.2) fMmy=Mn+i-1 (i=1,...,M,neZ).
Then fA) = {fi(A)}f\Ll € BFS4(Z) in Lemma 3.3 is given by
FYNm 4§ —1) = NMym + N(q:(§) — 1) +i — 1

where R(fi(A)) ={Nn+i—1:n € Z} and D(fl.(A)) = [jen, R(f](A)) for
t=1,...,N. There is no general theory of classification of 7; for f in the
above.

Next, we show a classification of some representations of Oy on l3(Z).

Proposition 4.1. For M > 2 and j € Z, let gl = {gz[j]}i]‘il € BFSy(Z) by
gl[j](n)EMn+i+j (neZ,i=1,...,M).

For the representation (I2(Z), ;1) of Om by gVl the followings hold:

(i) When M =2, (I2(Z), 7 ;1) ~ P(1) © P(2) for each j € Z.
(i) When M >3 and j=r mod M — 1 forr=0,...,M — 2,

P(ly® P(M)  (r=M-2),

(12(Z), 7 yiy) ~ {
P(N—-1-r) (r# M —2).

Proof. gl[j] is monotone increasing(resp. decreasing) on {n € Z : n >
—(G+1)/(M—-1)} (resp. {n€Z:n< —(j+M)/(M —1)}.) Therefore
gVl has neither cycle nor chain in Z \ W. From these, gVl has cycles in
W={neZ:a>n>a—-1} ={la],[a] =1} where a = —(j +1)/(M —1).
(i) If M =2, then « = —(j + 1) and gz[.]](a) = —j — 2+ . From these, we
see that ggj](a) = a. gz[j](a —1) = —j —4+1i. Hence gg](a —1)=a-1
(12(Z), m 1) ~ P(1) & P(2) for each j € Z.

(ii) If M > 3, then put j = (M — 1)k — 1 —1 where 0 < [ < M — 2.
Then o = =k +1/(M — 1) and [a] = —k. gzm([a]) =[a] -1l—-1+1.
Hence i =1+1 € {1,...,M — 1} if and only if g[ﬂrl([a]) = [a]. By taking
r=M-2-1, (I5(Z), ;) always has a component P(I+1) = P(M —1-r).
Furthermore gzm([a] —1)=—-M+[a]—1—1+1i. Hence M +1 = i if and only
if g][\]/[}([a] —1) = [a] — 1. Therefore (I5(Z), 7,1 ) has a P(M)-component only
when [ = 0. In consequence, (I2(Z), ;) ~ P(1) & P(M) when r = M — 2.

]
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For example,

M=3 M=4

j | odd | even j | 3k | 3k—-1 |3k-2
T, | P(1) @ P(3) | P(2) T, | P(3) | P(1) @ P(4) | P(2)

Corollary 4.2. For fM) € BFSy/(Z) in (4.2),
Tran ~ P(1) & P(M) (M = 2).

Proof. Because fM) = gl=1 and —1 = M — 2 mod M — 1, the state-
ment holds. O

By Corollary 4.2, the irreducible decomposition of 7 can be described
as a same style. This shows that the definition in (4.2) seems standard.

4.3. Representations on Ly[0,1]. For M > 1, put fM) = {fi(M) M e
BFS([0,1]) by

(4.3) fM@y=@+i—1)/M (i=1,...,M, z<[0,1)).
Then f(A) = {fi(A)},f\;l € BFS4([0,1]) in Lemma 3.3 is given by

D) = Ly Mil=D4ai) —J

(1) 1@ =4 T

(v € R(FY), j € By)

where R(f{"") = [(i — 1)/N, i/N] and D(f\")) = U,cp, R(f}Y) for i =

7

1,...,N and j € B;. Note that fi(A) is defined on D( fi(A)) up to measure-

zero subset in [0, 1]. That is, fi(A) is well-defined as a function in L[0,1].
We see that the representation (Ls[0, 1],7Tf(A)) of O4 on Ls|0, 1] is given by

(o (5)8) (@) = X o (@) VMg ((£) 7 (@)

for i = 1,...,N and ¢ € L»[0,1]. Hence mpu)(s;)1 = \/MiXR(f;A)) for

i=1,...,N where 1 is the constant function on [0, 1] with value 1.
Proposition 4.3. For M > 2 and f™) in (4.3),
(L2[0, 1], 7 pan) ~ GP(M T2 M2,

Proof. Let a unit vector z = (M~1/2 ... M~Y2)c CM. Then 1 is a
cyclic vector of (L2[0, 1], myar) ) and mpan (s(2))1 = 1. O

Proposition 4.3 is a special case of Theorem 2.8 in [12].
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4.4. Representations on Ly(T!). We show two kinds of representations
of Oy on Lo(Th) for T' = {2z € C: |z| = 1}.
(i) Let Ry and V' be operators on Ly(T') by

(Ru9)(2) = ¢(z"),  (Vo)(2) = 26(2) (¢ € Lo(TY), z € T")
and Tyr; = Vi iRy fori=1,..., M. Put
M () =Ty (i=1,...,M).

Then (Lo(T!), 7M) ~ P(1) & P(M) ~ (I2(Z), 7 ;0n) in (4.2). Then
the representation (La(T'), 74)) of O 4 in Lemma 2.5 from {7(M)1N
is as follows:
7@ () =Tni Y TarqupTay (i=1,...,N).
JEB;
(i) Put fO) = (MM € BFS(T!) by
f.(M)(z) = /M 2ny/=1(i-1)/M (zeThi=1,...,M).

Then 7 ¢ar) ~ GP(M~2, ..., M~2) and this is equivalent to that by
(4.3) for each M > 2. Then f(4) = {fi(A) N | € BFS4(T!) in Lemma
3.3 is given by
f,-(A)(Z) — /M; 27/ =1{(qi(45)—1)/N Mi+(i—1)/N} (zeThi=1,...,N).
4.5. Representations on Ly(R). For M > 1, put fM = {fi(M) M e
BFSy/(R) by
(4.5) fM@)=a+ (M -Dz]+i-1 (i=1,....M,z€R)

where [z] is the Gauss symbol. Then f(4) = {fi(A)}fil € BFS4(R) in
Lemma 3.3 is given by

F @+ (N =Da]+j—1) =2+ (NM; — Dfa] + N(gi(j) = 1) +i— 1

fori =1,...,N, z € R(f](A)),j € B, where D(fz.(A)) = Ujes, R(fJ(A))
and R(fi(A)) = [pezg[Nk +i—1, Nk +i] fori = 1,...,N. For example,
when N = 2, R(f?) = [1,cz2k, 2k + 1), R($) = [Liegl2k + 1,2k +2).
1(2) (x) =z + [z], f2(2) () =z + [z] + 1. Then f1(2) (x) =z for z € [0,1] and
2(2)(:1;) =z for z € [-1,0].
Theorem 4.4. For M > 2 and X\ € R, put
gzm(a;) =zx+(M-1)z]+i+X (zeR,i=1,...,M).
Then g = {gz[)‘]}i]‘il € BFS)/(R) and the followings hold:
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(i) When M =2,
(P(1) & P(2))®> (A eZ),
(L2(R), g ) ~
(P(11) @ P(22))5% (A€ R\ Z).

(ii) When M > 3,

(P(1) @ P(M))®> ANeZ,r=M-2),

(P(M —1—1))%® (ANeZ,r# M —2),
(La(R), o) ~

(P(11) @& P(MM))®> AeR\Z r=M-2),

(P(M —1—1,M—1-7))®°  (AeR\Z r#M-—2)

where r € {0, ..., M — 2} such that [\ =r mod M — 1.

Proof. Assume M > 3. When A\ = j € Z, theng @) =2+ M
1)[x] + i+ j. Put amap ¥ from R to Z x [0,1) by ¥(z) = ([z],z — [])
Then \I/OQE]O\II ! = h; x id where h;(n) = Nn+i+j. Henceﬂg[]ww,?
and 7, = P(1) ® P(M) when j =M —2mod M — 1, 7, = P(M — 1 —r)
when j = r mod M —1 and r # M — 2 by Proposition 4.1. When A € R\ Z,
put 8 = XA — [\] and a map ¥ from R to Z x Zs x [0,0) by

([x], 1,2 — [z]) (when z — [z] € [0, 0)),

U(z) =
([x],2,2 — [z] — 0) (when x — [z] € [0,1)).

Then \I/og[ o W=1 = h; x o x id where o is a shift on Zy = {1,2}. From
this, 7, ~ (S(0)R®m,)9%, S(o) Wy, ~ 1 @ (TR 0y-1). 7T ~ P(M —1—7)
by Proposition 4.1. By Proposition 3.6 and (2.3), the statement holds. The
case M = 2 follows from the proof of that of M > 3. O

This is an example of Theorem 3.7 (ii) when A is full and v = cc.
Corollary 4.5. For fM) in (4.5),
(L2(R), mpon) ~ P(1)¥ @& P(M)*> (M > 2).

5. Examples

We show examples of representations of O4 for matrices in p 268, [5] and
their open problems. In this section, si,...,sy are canonical generators of
Oy for A € My({0,1}).



5.1. Example 1. Put a matrix 4; € M3({0,1}) by

0 01
AlE 1 01
1 11

There is an isomorphism ¢ from O4 to O4, as follows:

(5.1) o(v1) = s183, ©(v2) =583, ©(v3) = 5283, ©(v4) = 525153
where vy, ..., vy are canonical generators of O4([10]). We see that p~!(s1) =
v1v3, 9~ (82) = vav] + V303, 9~ (s3) = V2.

Example 5.1. Define operators 71,75, T3 on lo(N) by

T164(n71)+i = 52,i€4(n71)+17 T2€4(n71)+i = 51,164(n71)+4 + 52,i64(n71)+37

Tzen = €4(n—1)42
fori=1,2,3,4 and n € N. Then the followings hold:
(i) Put mo(s;) = T, i = 1,2,3. Then a representation (I2(IN),m) of Oa,
is irreducible.
(ii) Any representation (H, ) of O4, with a cyclic vector © which satisfies

(5.2) 7(s153) =

is equivalent to (l2(N), ) in (i). Specially, a representation (H, ) of
O 4, with a cyclic vector €2 which satisfies (5.2) is unique up to unitary
equivalences.
Proof.  For the standard representation (I2(IN),mg) of Oy in § 4.1 and ¢ is
in (5.1), we see that my = mg o ¢~ !. Since g is irreducible, 7 is, too. Since
mg is uniquely characterized by mg(v1)Q2 = Q, 7 is, too by ¢(v1) = s1s3 for
0= el. O

Example 5.2. Let g1, g2, g3 be functions on [0, 1] as follows:

1 A
91(z) = X[1/4,1/2)(®) - (x — 1/4), 3/4
92() = X[o,1/4)(@) - (x + 3/4)
+X[1/4,1/2 (%) - (z +1/4), 1/2
g3(x) = (z +1)/4. 1/4
. .
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Then g = {g1,92,93} is an Aj-branching function system on [0, 1] and the
followings hold:

(i) A representation (L3[0,1],m4) of Oy, is irreducible and it is equivalent
to a representation (H, ) with a cyclic vector §2 which satisfies 7(s1s3+
S3 + S253 + s25153)§2 = 2Q).

(ii) (L2]0,1],mg) is inequivalent to (l2(N),mp) in Example 5.1.

Proof. Let f = {fi}}_, € BFS4([0,1]) by fi(z) = (x +i —1)/4 for i =
1,...,4, Q@ = 1 and ¢ in (5.1), then my(v;) = my(p(vy)) for i = 1,...,4.
Since 7y ob mo 0, Ty o mo. Because (L]0, 1], 7¢) is an irreducible represen-
tation of Oy, (L2[0,1],7,) is irreducible, too. Furthermore my(s1s3 + s3 +
8983 + 528183)Q = 7Tf(’l)1 + vg + vz + ’U4>Q = 2Q). O

Example 5.3. We have the following f = {f1, f2, f3} € BFS4,(]0,1]) in §
4.3:

y

fi(z) =2 —2/3 (e [2/3,1), !
x/2+41/3  (z€[0,1/3), 3

fa(x) =
x/2+1/6 (x €[2/3,1]), 1

fa(w) = 2/3+2/3.

From this, we have the following representation (L2[0, 1],77) of Oy, :
(mr(s1)8)(x) = X[o1/3)(2)d(z +2/3),
(mp(s2)0) (@) = V2{X1/3,1/2) () D22 — 2/3) + X(1/2,2/3) (€) (22 — 1/3)},
(mr(s3)0)(x) = V3xp2/3.1(2)¢(3z — 2)

for ¢ € L5[0,1] and € [0, 1].

Question 5.4. Show the property of my, whether wy is irreducible or not,
whether my is equivalent to representations in Example 5.1 or Example 5.2.

5.2. Example 2. Put a matrix Ay € M3({0,1}) by

AQE

== O
_ O =
—



There is an isomorphism 1 from Os @ M3(C) to O4, as follows:
([ Yt ®I)= sises18] + s2s1,

¢(t2 X I) = 818283818T + $28381,
Y(ts @ 1) = 5152838 + s2535781,
Y(ts @ 1) = s1535187 + S351,

Y(ts @ 1) = s15387 + s357s1,

Y[ ® Ei2) = 51

where t1,...,t5 are canonical generators of Os and {E;;}; j—1,2 is the matrix
unit of My(C)([10]). On the contrary, we see that ¢~1(s1) = I ® Fja,
Y (s2) = t1 ® Eop + (tot] + t3tl) ® Eaa, ¥ 1(s3) = t4 ® Fay + t5 ® Eg.

Example 5.5. Define operators 7(s1), m(s2),7(s3) on lo(IN x {1,2}) by

m(s1)eni = 02i€n1,

T(52)€5(n—1)4m;i = 01,i€5(5(n—1)+m—1)+1,2
+62,i(04,me5(n—1)+2,2 + 05,m€5(n—1)+32)>

\ m(s3)eni = O1,i€5(n—1)4+4,2 T 02,i€5(n—1)+5.2

/

fori =1,2, m=1,...,5and n € N where e,; = e;L ®e;, and e,,, e;/ are
canonical basis of I3(IN) and C2, respectively. Then the followings hold:
(i) (l2(N x {1,2}),7) is an irreducible representation of O4,.
(ii) Any cyclic representation (H, 7 ) of O 4, with a cyclic vector  which
satisfies
71'/(5152518’{ + 5251)2 = Q
is equivalent to (lo(IN x {1,2}), ).
Proof. (i) Let my be the standard representation of Os on l3(N) and ¢ is the
canonical representation of Ms(C) on C2. Then ((mg® ) op~1)(s;) = 7(s;)
on lo(N x {1,2}) =2 I5(N) ® C? for i = 1,2,3 where ¢ is in (5.3). Because
7o ® ¢ is an irreducible representation of O5 ® Ms(C), 7 is irreducible, too.
(ii) By (i), the characterization of 7 is uniquely given by the equation
(mo®@)(t1 ® I)er1 = e11. By (5.3), m(si1s25157 + s251) = (m0 ® ¢)(t1 @ I).
Hence the statement holds. O

Example 5.6. For 0 < a < b < 1, consider a map F(®? on X = [0, 1] which
graph is given as follows:
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0

F@b is the coding map of f(®) = {fl(a’b),fz(a’b),féa’b)} € BFS4,([0,1])
given as follows: fi(a’b) D — R;,1=1,2,3,

@) = a(e—a)/(1-a) (ze D),
—ax + b, (x € Ry),

—a(z—1)+a  (z € Ry),

Ay = 1—ba+b (ze]0,1])

where a = (b—a)/(1—b+a), R1 =[0,al], Re = [a,b], R3 = [b,1], D1 = [a, 1],
Dy = [b,1], D3 = [0,1]. Let n(®?) = T plab) -

Question 5.7. Classify a representation ©(%b) of Oa, by a,b.

This is not so simple as its appearance. For example, a family of slope pa-
rameters of a branching function system on a closed interval is the complete
invariant(up to unitary equivalence) of representations in Theorem 2.8 in
[12].

(1]

2l

3]
(4]
(5]
(6]
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