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We show several systematic construction of representations
of the Cuntz-Krieger algebras from transformations on mea-
sure spaces as a generalization of permutative representation
of the Cuntz algebras. We introduce these examples of them
and their properties.

1. Introduction

Representation theory of the Cuntz algebras is studied by [4, 6, 7, 8, 9,
16, 17]. It is remarkable that representations of the Cuntz algebras in some
class satisfy the uniqueness of irreducible decomposition. Furthermore these
representations are related to quantum filed theory([1, 2, 3]), dynamical
systems([11, 13, 14, 15]) and fractals([12]), and their branching laws are
computed by automata([18]). We generalize these results for the Cuntz-
Krieger algebras.

In this paper, we start to show general properties and systematic con-
structions of representations of the Cuntz-Krieger algebras by embedding of
the Cuntz-Krieger algebras in [10].

Let N ≥ 2 and (X, µ) be a measure space. Assume that there are
a family {Di}N

i=1 of non µ-null subsets of X and a family f = {fi}N
i=1 of

measurable maps such that fi is an injective map from Di to Ri ≡ f(Di) ⊂ X
and the Radon-Nikodým derivative Φi of µ◦ fi with respect to µ is non zero
for each i = 1, . . . , N . Define a partial isometry S(fi) on L2(X,µ) by

(1.1) (S(fi)φ)(x) ≡




{
Φi

(
f−1

i (x)
)}−1/2

φ(f−1
i (x)) (x ∈ Ri),

0 (otherwise)

for φ ∈ L2(X,µ) and x ∈ X. We consider a C∗-algebra C∗< {S(fi)}N
i=1 >

generated by operators S(f1), . . . , S(fN ).

e-mail:kawamura@kurims.kyoto-u.ac.jp.
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Theorem 1.1. Let A = (aij) be an N × N matrix which has entries in
{0, 1} and has no rows or columns identically equal to zero. For a family
f = {fi}N

i=1 of maps on a measure space (X,µ) in the above,

C∗< {S(fi)}N
i=1 >∼= OA

if all the followings are µ-null subsets of X:
X \R1 ∪ · · · ∪RN , Di \

⋃
j:aij=1 Rj (i = 1, . . . , N), Ri ∩Rj (i 6= j).

Theorem 1.1 is shown by checking that S(f1), . . . , S(fN ) satisfy relations
of canonical generators of OA in § 3. f in Theorem 1.1 is called an A-
branching function system on (X, µ). Although we do not know what C∗<
{S(fi)}N

i=1 > is for general f1, . . . , fN , our aim is not to create a new example
of C∗-algebra but to study representation (L2(X, µ), πf ) of OA arising from
f = {fi}N

i=1 in Theorem 1.1. Therefore problems are i) what the condition
for f is so that (L2(X, µ), πf ) is irreducible, and ii) what the condition for
f and g is so that (L2(X,µ), πf ) ∼ (L2(Y, ν), πg).

In § 2, we show general theory of representations of OA. We treat
construction and decomposition of representation of OA, and review results
about the Cuntz algebras. In § 3, we show properties of partial isometries
in (1.1) and a general construction of representations of OA from branching
function systems. In § 4, we show the standard constructions of representa-
tion of OA on l2(N), l2(Z), L2[0, 1], L2(T1) and L2(R) by using represen-
tations of the Cuntz algebras. In § 5, we show examples branching function
systems and representations of the Cuntz-Krieger algebras.

2. General theory of representations of OA

2.1. Multiindices. We introduce several sets of multiindices which consist
of numbers 1, . . . , N for N ≥ 2.

Put {1, . . . , N}0 ≡ {0}, {1, . . . , N}k ≡ {(jl)k
l=1 : jl = 1, . . . , N, l =

1, . . . , k} for k ≥ 1 and {1, . . . , N}∞ ≡ {(jn)n∈N : jn ∈ {1, . . . , N}, n ∈ N}.
Denote {1, . . . , N}∗ ≡ ∐

k≥0{1, . . . , N}k, {1, . . . , N}∗1 ≡
∐

k≥1{1, . . . , N}k,
{1, . . . , N}# ≡ {1, . . . , N}∗1 t {1, . . . , N}∞. For J ∈ {1, . . . , N}#, the length
|J | of J is defined by |J | ≡ k when J ∈ {1, . . . , N}k. For J1, J2 ∈ {1, . . . , N}∗
and J3 ∈ {1, . . . , N}∞ J1∪J2 ≡ (j1, . . . , jk, j

′
1, . . . , j

′
l), J1∪J3 ≡ (j1, . . . , jk, j

′′
1 , j

′′
2 , . . .)

when J1 = (j1, . . . , jk), J2 = (j
′
1, . . . , j

′
l ) and J3 = (j

′′
n)n∈N. Specially, we

define J ∪ {0} = {0} ∪ J = J for J ∈ {1, . . . , N}# and (i, J) ≡ (i) ∪ J
for convenience. For J ∈ {1, . . . , N}∗ and k ≥ 2, Jk ≡ J ∪ · · · ∪ J︸ ︷︷ ︸

k

and

J∞ = J ∪ · · · ∪ J ∪ · · · ∈ {1, . . . , N}∞. For J = (j1, . . . , jk) ∈ {1, . . . , N}k

and τ ∈ Zk, denote τ(J) = (jτ(1), . . . , jτ(k)).
In order to treat representations of OA, we modify multiindices with

respect to A. Let MN ({0, 1}) be the set of all N × N matrices in which
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have entries in {0, 1} and have no rows or columns identically equal to zero.
A = (aij) ∈ MN ({0, 1}) is full if aij = 1 for each i, j = 1, . . . , N . For
A = (aij) ∈ MN ({0, 1}), define

{1, . . . , N}∗A ≡
∐

k≥0

{1, . . . , N}k
A,

{1, . . . , N}0
A ≡ {0}, {1, . . . , N}1

A ≡ {1, . . . , N},
{1, . . . , N}k

A ≡ {(ji)k
i=1 ∈ {1, . . . , N}k : aji−1ji = 1, i = 2, . . . , k} (k ≥ 2),

{1, . . . , N}∗A,c ≡
∐

k≥1

{1, . . . , N}k
A,c,

{1, . . . , N}k
A,c ≡ {(ji)k

i=1 ∈ {1, . . . , N}k
A : ajkj1 = 1},

{1, . . . , N}∞A ≡ {(jn)n∈N ∈ {1, . . . , N}∞ : ajn−1jn = 1, n ≥ 2},
{1, . . . , N}#

A,c ≡ {1, . . . , N}∗A,c t {1, . . . , N}∞A .

For example, if A =
(

1 1
1 0

)
, then {1, 2}A = {1, 2}, {1, 2}2

A = {(11), (21),

(12)}, {1, 2}3
A = {(111), (211), (121), (112), (212)}, {1, 2}4

A = {(1111), (2111),
(1211), (1121), (2121), (1112), (2112), (1212)}.

J ∈ {1, . . . , N}∗1 is periodic if there are m ≥ 2 and J0 ∈ {1, . . . , N}∗1
such that J = Jm

0 . For J1, J2 ∈ {1, . . . , N}∗1, J1 ∼ J2 if there are k ≥ 1
and τ ∈ Zk such that |J1| = |J2| = k and τ(J1) = J2. For (J, z), (J

′
, z
′
) ∈

{1, . . . , N}∗1 × U(1), (J, z) ∼ (J
′
, z
′
) if J ∼ J

′
and z = z

′
where U(1) ≡

{z ∈ C : |z| = 1}. Specially, any element in {1, . . . , N} is non periodic.
J ∈ {1, . . . , N}∞ is eventually periodic if there are J0, J1 ∈ {1, . . . , N}∗1
such that J = J0 ∪ J∞1 . For J1, J2 ∈ {1, . . . , N}∞, J1 ∼ J2 if there are
J3, J4 ∈ {1, . . . , N}∗ and J5 ∈ {1, . . . , N}∞ such that J1 = J3 ∪ J5 and
J2 = J4 ∪ J5.

2.2. Construction and decomposition of representations of OA. For
A = (aij) ∈ MN ({0, 1}), OA is the Cuntz-Krieger algebra by A if OA([5]) is
a C∗-algebra which is universally generated by partial isometries s1, . . . , sN

satisfying:

(2.1) s∗i si =
∑N

j=1 aijsjs
∗
j (i = 1, . . . , N),

∑N
i=1 sis

∗
i = I.

Specially, OA is the Cuntz algebra ON when A is full.
We denote the canonical U(1)-action(=gauge action) on OA by γ and

the canonical U(N)-action on ON by α. For a multiindex J = (j1, . . . , jk) ∈
{1, . . . , N}k and canonical generators s1, . . . , sN of OA, we denote sJ =
sj1 · · · sjk

and s∗J = s∗jk
· · · s∗j1 . When J ∈ {1, . . . , N}∗, sJ 6= 0 if and only if

J ∈ {1, . . . , N}∗A.
In this paper, a representation always means a unital ∗-representation

on a complex Hilbert space. (H1, π1) ∼ (H2, π2) means the unitary equiva-
lence between two representations (H1, π1) and (H2, π2) of OA.
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For a representation (H, π) ofOA and a unitary operator U on a Hilbert
space K, we have a new representation (K⊗H, U £π) of OA which is defined
by

(2.2) (U £ π)(si) ≡ U ⊗ π(si) (i = 1, . . . , N).

Lemma 2.1. For a representation in (2.2), the followings hold:

(i) If U has an eigenvalue c ∈ U(1) on K, then (K ⊗ H, U £ π) has a
subrepresentation which is equivalent to (H, π ◦ γc).

(ii) If a unitary V on K is conjugate with U by a unitary, then U £ π ∼
V £ π.

(iii) If there are p ∈ Z and a complete orthonormal basis {en : n ∈ Z}
of K such that Uen = en+p for each n ∈ Z, then (K ⊗ H, U £ π) is
decomposed as





∫ ⊕

U(1)
(H, π ◦ γwp) dη(w) (p 6= 0),

(H, π)⊕∞ (p = 0)

where η is the Haar measure of U(1).
(iv) If there is p ≥ 2 such that Up = I, U i 6= I for i = 1, . . . , p− 1, then

U £ π ∼
(

p⊕

i=1

π ◦ γξi

)⊕ν

where ν ≡ (dimK)/p and ξi ≡ e2π
√−1(i−1)/p.

(v) If K is decomposed into eigenspaces of U and U has eigenvalues {zλ}λ∈Λ

with multiplicities {νλ}λ∈Λ, then

U £ π ∼
⊕

λ∈Λ

(π ◦ γzλ
)⊕νλ .

Proof. (i) Let v ∈ K be an eigenvector of U such that Uv = cv. Put
H′ ≡ Cv ⊗H. Then we see that (U £ π)(si)(v ⊗ φ) = v ⊗ (π ◦ γc)(si)φ for
each i = 1, . . . , N . Therefore (U £ π)|H′ ∼ π ◦ γc.
(ii) If W is a unitary on K such that WUW ∗ = V , then (W ⊗ I)(U £
π)(si)(W ⊗ I)∗ = (V £ π)(si) for each i = 1, . . . , N .
(iii) This is obtained by slightly generalizing Lemma 2.4 in [15].
(iv) Put Ei ≡ 1

p

∑p
j=1 ξ̄j−1

i U j−1. Then UEi = ξiEi, E∗
i Ei = Ei and E∗

i = Ei.
Hence K = K1 ⊕ · · · ⊕ Kp where Ki ≡ EiK for i = 1, . . . , p. From this,
(Ki ⊗H, (U £ π)|Ki⊗H) ∼ (H, π ◦ γξi)

⊕ν .
(v) This follows from the proof of (iv). ¤
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Proposition 2.2. For a representation (H, π) of OA, put a new represen-
tation (L2(R,H), π̂) of OA by

(π̂(si)φ)(r) ≡ 1√
2π

∫

R
e−
√−1trπ(si)φ(t) dt (φ ∈ L2(R,H), r ∈ R)

for i = 1, . . . , N . Then

π̂ ∼ {π ⊕ π ◦ γ√−1 ⊕ π ◦ γ−1 ⊕ π ◦ γ−√−1}⊕∞.

Proof. We see that π̂ = F £ π for the Fourie unitary operator F on
L2(R). Because F4 = I and F j 6= I for j = 1, 2, 3, the statement holds by
Lemma 2.1. ¤

We review results in [10].

Definition 2.3. For A = (aij) ∈ MN ({0, 1}), a data {(Mi, qi, Bi)}N
i=1 is

called the (canonical)A-coordinate if

Bi ≡ { j ∈ {1, . . . , N} : aij = 1 } , Mi ≡ ai1 + · · ·+ aiN ,

qi : Bi → {1, . . . , Mi}; qi(j) ≡ #{k ∈ Bi : k ≤ j}
for i = 1, . . . , N .

Lemma 2.4. Let A = (aij) ∈ MN ({0, 1}) with the A-coordinate {(Mi, qi, Bi)}N
i=1

and M0 ≡ N . Assume that a unital C∗-algebra B satisfies the following con-
dition: B contains OMi for each i = 0, . . . , N when Mi ≥ 2 as C∗-subalgebras
with common unit. Let tMi,1, . . . , tMi,Mi be canonical generators of OMi for
i = 0, . . . , N as elements in B, respectively where we put O1 = CI and
t1,1 = I. Under these assumptions, put si ≡ tM0,i( ai1tMi,qi(1)t

∗
M0,1 + · · · +

aiN tMi,qi(N)t
∗
M0,N ). Then {si}N

i=1 satisfies (2.1) with respect to A.

By these preparation, we show a method to construct representations of OA

from representations of the Cuntz algebras as follows:

Lemma 2.5. Let A ∈ MN ({0, 1}) with the A-coordinate {(Mi, qi, Bi)}N
i=1

and M0 ≡ N and s1, . . . , sN , tM,1, . . . , tM,M be canonical generators of OA

and OM , respectively for M = M0, . . . ,MN . Let π(Mi) be representation of
OMi on a Hilbert space H where t1,1 ≡ I, π(1)(I) ≡ I when Mi = 1, then
there is a representation π(A) of OA on H defined by

π(A)(si) ≡
N∑

j=1

aijπ
(N)(tN,i)π(Mi)(tMi,qi(j))π

(N)(tN,j)∗ (i = 1, . . . , N).

Proof. By Lemma 2.4, it holds. ¤
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2.3. Permutative representations and GP representations of ON .
A representation (H, π) of ON is permutative if there is a complete orthonor-
mal basis {en}n∈Λ of H which satisfies ∀(n, i) ∈ Λ× ∈ {1, . . . , N}, ∃m ∈ Λ
s.t. π(si)en = em. Any permutative representation is completely reducible.
We generalize this class of representation as generalized permutative rep-
resentations =(GP representations) in [8, 9, 16, 17]. In order to explain
easily, we show GP representations of the Cuntz algebras with a 1-cycle. Let
S(CN ) ≡ {z ∈ CN : ‖z‖ = 1} be the complex sphere in a complex vector
space CN .

Definition 2.6. Let (H, π) be a representation of ON .

(i) (H, π) is P (J ; z) for J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1 and a phase
z ∈ U(1) if there is a cyclic unit vector Ω ∈ H such that π(sJ)Ω = zΩ
and {π(sjl

· · · sjk
)Ω : l = 1, . . . , k} is an orthonormal family in H.

(ii) (H, π) is GP (z) for z = (z1, . . . , zN ) ∈ S(CN ) if there is a cyclic unit
vector Ω ∈ H such that π(z1s1 + · · ·+ zNsN )Ω = Ω.

(iii) (H, π) is P (J) for J = (jn)n∈N ∈ {1, . . . , N}∞ if there is an orthonor-
mal family {en}n∈N in H such that π(sjn)∗en = en+1 for each n ∈ N.

For J ∈ {1, . . . , N}∗1, denote P (J) ≡ P (J ; 1). For any J ∈ {1, . . . , N}#,
P (J) is equivalent to a cyclic permutative representation.

We review results about P (J) here: For J ∈ {1, . . . , N}∗1 and z ∈ U(1),
P (J ; z) is irreducible if and only if J is non periodic. For J ∈ {1, . . . , N}∞,
P (J) is irreducible if and only if J is non eventually periodic. For J1, J2 ∈
{1, . . . , N}∗1 and z1, z2 ∈ U(1), P (J1; z1) ∼ P (J2; z2) if and only if (J1, z1) ∼
(J2, z2) where P (J1; z1) ∼ P (J2; z2) means the unitary equivalence of two
representations which satisfy the condition P (J1; z1) and P (J2; z2), respec-
tively. For J1, J2 ∈ {1, . . . , N}∞, P (J1) ∼ P (J2) if and only if J1 ∼ J2.
If J ∈ {1, . . . , N}k, k ≥ 1 and z ∈ U(1), then P (J ; 1) ◦ γz = P (J ; zk). If
J ∈ {1, . . . , N}∞ and z ∈ U(1), then P (J)◦γz = P (J). For J ∈ {1, . . . , N}∗1,
z ∈ U(1) and p ≥ 1,

(2.3) P (Jp; z) =
⊕p

j=1 P (J ; ξj−1z1/p)

where ξ ≡ e2π
√−1/p. (2.3) is unique up to unitary equivalences. Especially

we have P (Jp; 1) =
⊕p

j=1 P (J ; ξj−1). For each J ∈ {1, . . . , N}∗1,

P (J∞) =
∫ ⊕

U(1)
P (J ; z) dη(z).

For any z ∈ S(CN ), GP (z) exists uniquely up to unitary equivalences.
For any z ∈ S(CN ), GP (z) is irreducible. For z, z

′ ∈ S(CN ), GP (z) ∼
GP (z

′
) if and only if z = z

′
. For z = (z1, . . . , zN ) ∈ S(CN ), GP (z) is

equivalent to the GNS-representation by a state ρ of ON which is defined by
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ρ(sJs∗
J ′

) ≡ zJzJ ′ where J, J
′ ∈ {1, . . . , N}∗, |J | + |J ′ | ≥ 1, zJ ≡ zj1 · · · zjk

when J = (j1, . . . , jk), and sJ = I, zJ = 1 when J = ∅.
We see that GP (zεj) = P (j; z̄) for j = 1, . . . , N and z ∈ U(1) where

{εj}N
j=1 is the canonical basis of CN .
Eigenequations are important to classify representations of the Cuntz-

Krieger algebras. For J ∈ {1, . . . , N}∗A, there is a representation (H, π) of
OA such that π(sJ) has eigenvalue if and only if J ∈ {1, . . . , N}∗A,c. This is
proved in [19].

About states of GP representations of ON , see [8, 16]. About type III
representations of OA, see [21].

3. Representations of OA by branching function systems

Representations of the Cuntz-Krieger algebras are constructed by partial
isometries on L2(X, µ) for a measure space (X, µ). We introduce a simple
method to construct partial isometries from maps on measure spaces([12,
13, 14, 15]).

3.1. A-branching function systems. Let (X, µ) and (Y, ν) be measure
spaces and f be a measurable map from X to Y which is injective and there
exists the Radon-Nikodým derivative Φf of ν ◦ f with respect to µ and Φf

is non zero almost everywhere in X. We denote the set of such maps by
RN(X, Y ) and put RNloc(X, Y ) ≡ ⋃

X0⊂X RN(X0, Y ). We simply denote
G(X,Y ) ≡ {ϕ ∈ RN(X, Y ) : ∃ϕ−1 ∈ RN(Y,X)}, RN(X) ≡ RN(X, X)
and G(X) ≡ G(X, X). For f ∈ RNloc(X), we denote the domain and the
range of f by D(f) and R(f), respectively. If f ∈ RN(Y ), then f−1 ∈
RN(R(f)). RNloc(X), RN(X) and G(X) are a groupoid, a semigroup and
a group by composition of maps, respectively. We denote X×Y and X ∪Y ,
the direct product and the direct sum of (X, µ) and (Y, ν) as measure space,
respectively. For f ∈ RN(X1, Y1) and g ∈ RN(X2, Y2), f ⊕ g ∈ RN(X1 ∪
X2, Y1 ∪ Y2) is defined by (f ⊕ g)|X1 ≡ f , (f ⊕ g)|X2 ≡ g.

Definition 3.1. For a measure space (X, µ) and A ∈ MN ({0, 1}), a family
f = {fi}N

i=1 of measurable maps on X is an A-branching function system
on (X, µ) if f satisfies the following conditions:

(i) fi ∈ RNloc(X) for each i = 1, . . . , N .
(ii) µ(R(fi) ∩R(fj)) = 0 when i 6= j.
(iii) µ(D(fi) \

⋃
j:aij=1 R(fj)) = 0 for each i = 1, . . . , N .

(iv) µ(X \⋃N
i=1 R(fi)) = 0.

Specially, if A is full, then we call A-branching function system by (N -
)branching function system simply. We denote the set of all A-branching
function systems, branching function systems on (X, µ) by BFSA(X), BFSN (X),
respectively.
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The notion of original branching function system was introduced in order to
construct a representation of ON from a family of transformations by [4].
Definition 3.1 coincides with originals when A is full.

Definition 3.2. Let (X, µ) and (Y, ν) be measure spaces.
(i) F is the coding map of f = {fi}N

i=1 ∈ BFSA(X) if F is a map on X
such that (F ◦ fi)(x) = x almost everywhere in X and i = 1, . . . , N .

(ii) For f = {fi}N
i=1 ∈ BFSA(X) and g = {gi}N

i=1 ∈ BFSA(Y ), f ∼ g if
there is ϕ ∈ G(X,Y ) such that ϕ ◦ fi ◦ ϕ−1 = gi for i = 1, . . . , N .

(iii) For ϕ ∈ G(X) and g = {gi}N
i=1 ∈ BFSA(Y ), we denote ϕ £ g ≡

{ϕ× gi}N
i=1 ∈ BFSA(X × Y ).

(iv) For f = {fi}N
i=1 ∈ BFSA(X) and g = {gi}N

i=1 ∈ BFSA(Y ), we denote
f ⊕ g ≡ {fi ⊕ gi}N

i=1 ∈ BFSA(X ∪ Y ).

The following are easily proved by checking the axiom in 3.1:

Lemma 3.3. Let (X,µ) be a measure space and A ∈ MN ({0, 1}) with the A-
coordinate {(Mi, qi, Bi)}N

i=1 and M0 ≡ N . If there is f (Mi) = {f (Mi)
j }Mi

j=1 ∈
BFSMi(X) for each i = 0, . . . , N , then a family f (A) ≡ {f (A)

i }N
i=1 of maps

on X defined as follows is an A-branching function system on X:

f
(A)
i (x) ≡

{
f

(N)
i ◦ f

(Mi)
qi(j)

◦ (f (N)
j )−1

}
(x) (when x ∈ f

(N)
j (X), j ∈ Bi)

for i = 1, . . . , N where we put BFS1(X) ≡ {idX} for convenience.

By Lemma 3.3, if we find sufficiently many branching function systems on
a measure space, we can construct an A-branching function system from
them.

For f = {fi}N
i=1 ∈ BFSA(X), denote fJ ≡ fj1 ◦ · · · ◦ fjk

when J =
(j1, . . . , jk) ∈ {1, . . . , N}k

A, k ≥ 1, and define f0 ≡ id. For X0 ⊂ X, put
< X0 >f≡ {fJ(x), Fn(x) ∈ X : J ∈ {1, . . . , N}∗A, n ∈ N, x ∈ X0} where F
is the coding map of f .

Definition 3.4. For A ∈ MN ({0, 1}), let f ∈ BFSA(X).
(i) For X0 ⊂ X, f is X0-cyclic if µ(X\ < X0 >f ) = 0. Specially, we call

that f is cyclic if f is {x0}-cyclic for some x0 ∈ X.
(ii) For J = (j1, . . . , jk) ∈ {1, . . . , N}k

A,c, {Yi}k
i=1 is a µ-cycle by J if

fJ(x) = x almost everywhere in Y1, Yi is a non µ-null subset of X,
µ(Yi ∩ Yi′ ) = 0 when i 6= i

′
and µ(fji−1(Yi) \ Yi−1) = 0 for i = 2, . . . , k

and µ(fjk
(Y1) \ Yk) = 0.

(iii) For J = (jn)n∈N ∈ {1, . . . , N}∞A , {Yn}n∈N is a µ-chain by J if Yn is a
non µ-null subset of X, µ(Yn∩Ym) = 0 when n 6= m and µ(fjn−1(Yn)\
Yn−1) = 0 for n ≥ 2.

(iv) For J ∈ {1, . . . , N}∗A,c(resp. J ∈ {1, . . . , N}∞A ), f has a MP (J)-
component if f has a µ-cycle(resp. a µ-chain) by J .
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(v) For J = (ji)k
i=1 ∈ {1, . . . , N}k

A,c(resp. J = (jn)n∈N ∈ {1, . . . , N}∞A ), f

is MP (J) if there is a subset Y ⊂ X such that f is Y -cyclic and {Yi}k
i=1

is a µ-cycle by J where Yi ≡ (fji ◦ · · · ◦ fjk
)(Y ) for i = 1, . . . , k(resp.

{Yn}n∈N is a µ-chain by J where Yn ≡ (fj1 ◦· · ·◦fjn)−1(Y ) for n ≥ 1).

3.2. Representations of OA by A-branching function systems. For
f ∈ RNloc(X, Y ), define an operator S(f) from L2(X, µ) to L2(Y, ν) by

(3.1) (S(f)φ)(x) ≡




{
Φf

(
f−1(x)

)}−1/2
φ(f−1(x)) (x ∈ R(f)),

0 (otherwise)

for φ ∈ L2(X, µ) and x ∈ X. S(f) is a partial isometry from L2(X, µ)
to L2(Y, ν) with the range projection MχR(f)

and the domain projection
MχD(f)

where Mg is the multiplication operator of g ∈ L∞(X, µ) and χW is
the characteristic function on W ⊂ X. Furthermore we see that S(f)∗ =
S(f−1), S(idX) = I and S(f)L2(Ω) = L2(f(Ω)) for Ω ⊂ X.

Let PIso(H) be the groupoid of all partial isometries on a Hilbert space
H by the ordinary product of operators. Let (Xi, µi) be measure spaces for
i = 1, 2, 3, 4. Let f ∈ RNloc(X1, X2) and g ∈ RNloc(X2, X3). If µ(D(g) ∩
R(f)) 6= 0, then g ◦ f ∈ RNloc(X1, X3) and

(3.2) S(g)S(f) = S(g ◦ f).

Specially, a map S from RNloc(Xi) to PIso(L2(Xi, µi)) is a groupoid homo-
morphism for i = 1, 2, 3, 4. For f ∈ RN(X1, X2) and g ∈ RN(X3, X4),

S(f × g) = S(f)⊗ S(g), S(f ⊕ g) = S(f)⊕ S(g)

where we identify L2(Xi×Xj , µi×µj) and L2(Xi, µi)⊗L2(Xj , µj), L2(Xi∪
Xj , µi ∪ µj) and L2(Xi, µi)⊕ L2(Xj , µj) for i, j = 1, 2, 3, 4, respectively.

Theorem 3.5. Let A ∈ MN ({0, 1}). For a family f = {fi}N
i=1 of maps on

a measure space (X, µ), C∗< {S(fi)}N
i=1 >∼= OA if f ∈ BFSA(X).

Proof. We can easily verify that S(f1), . . . , S(fN ) satisfy (2.1) by us-
ing (3.2). ¤

By Theorem 3.5, Theorem 1.1 is shown and we see that

πf (si) ≡ S(fi) (i = 1, . . . , N)

defines a representation (L2(X,µ), πf ) of OA.
Let (X, µ) and (Y, ν) be measure spaces. For f ∈ BFSA(X) and g ∈

BFSA(Y ), if f ∼ g, then πf ∼ πg. For ϕ ∈ G(X), f ∈ BFSA(X) and
g = {gi}N

i=1 ∈ BFSA(Y ), the followings hold:

(3.3) πϕ�g ∼ S(ϕ) £ πg, πf⊕g ∼ πf ⊕ πg

where S(ϕ) £ πg is in (2.2).
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Remark that g ◦ f in rhs of (3.2) is the ordinary composition of two
transformations f and g but not special product of them. By (3.2), we see
that the map S realizes the iteration of transformations on a measure space
as the product of operators on a Hilbert space naturally. In fact, if F is the
coding map of f in Definition 3.2, then

(πf (si)φ)(x) = χR(fi)(x)
√

ΦF (x)φ(F (x)) (i = 1, . . . , N)

for φ ∈ L2(X, µ) and x ∈ X. We denote (L2(X,µ), πf ) by πf simply. From
this, πf (sJ) = S(fJ) for each J ∈ {1, . . . , N}∗A and

πf (sJ)φ = χR(fJ ) ·
√

ΦF k · φ ◦ F k (|J | = k).

In this sense, πf realizes the action of a semigroup {Fn : n ≥ 1} generated
by F .

Proposition 3.6. Let f = {fi}N
i=1 ∈ BFSA(X).

(i) Let σr be the shift on Z for r ∈ Z which is defined by σr(n) ≡ n − r
for n ∈ Z. Then the following holds:

πσr�f ∼





∫ ⊕

U(1)
πf ◦ γwr dη(w) (r 6= 0),

(πf )⊕∞ (r = 0).

(ii) If σ is the shift of Zp for p ≥ 1, then

πσ�f ∼
⊕p

j=1 πf ◦ γξj

where ξ ≡ e2π
√−1/p.

Proof. By Lemma 2.1, (3.3) and a slightly generalization of Proposi-
tion 3.9 in [15], they hold. ¤

Theorem 3.7. Let (X, µ) be a measure space and f ∈ BFSA(X).
(i) If f is X0-cyclic for X0 ⊂ X, then πf (OA)L2(X0) = L2(X, µ). Spe-

cially, if f is cyclic, then (L2(X, µ), πf ) is cyclic.
(ii) If there is a µ-cycle {Yn}k

n=1 by J ∈ {1, . . . , N}k
A,c, then (L2(X, µ), πf )

contains a P (J)⊕ν-component where ν ≡ dimL2(Y1).
(iii) If there is a µ-chain {Yn}n∈N by J ∈ {1, . . . , N}∞A , then (L2(X, µ), πf )

contains a P (J)⊕ν-component where ν ≡ dimL2(Y1).

Proof. (i) Since πf (sJ)L2(X0) = L2(fJ(X0)) for each J ∈ {1, . . . , N}∗A,
πf (OA)L2(X0) ⊃ L2(< X0 >f ). By the choice of X0, the statement holds.
(ii) By assumption, πf (sJ)φ = φ for each φ ∈ L2(Y1). Let {ea}a∈Λ be
a complete orthonormal basis of L2(Y1) such that #Λ = ν. Then Va ≡
πf (OA)ea is P (J) and {Va}a∈Λ is a mutually orthogonal family. Hence
L2(X,µ) ⊃ ⊕

a∈Λ Va ∼ P (J)⊕ν .
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(iii) By assumption, S(fjn)∗L2(Yn) = L2(Yn+1) for each n ∈ N. Let
{e(1)

a }a∈Λ be a complete orthonormal basis of L2(Y1). Put e
(m)
a ≡ S(fjm−1)

∗ · · ·
S(fj1)

∗e(1)
a ∈ L2(Ym) for m ≥ 2. Then {e(m)

a }a∈Λ be a complete orthonormal
basis of L2(Ym). Therefore Va ≡ πf (OA)e(1)

a is P (J). In the same way as
the case (ii), we have the statement. ¤

Examples of Theorem 3.7 is shown in [20].
When (X, µ) is atomic, then (L2(X, µ), πf ) is well-studied. We treat

these as permutative representations of the Cuntz-Krieger algebras in [19].

4. Standard constructions of representations of the
Cuntz-Krieger algebras

We show the standard construction of A-branching function system on mea-
sure spaces X = N,Z, [0, 1],T1,R for any A ∈ MN ({0, 1}). By Lemma 3.3,
it is sufficient to give a family {f (M)}M≥1 of branching function systems on a
measure space for each M ≥ 2 in order to construct an A-branching function
system f (A) on X. The meaning of “standardness” of f (A) is understood
from that of {f (M)}M≥1.

In this section, we fix N ≥ 2 and A = (aij) ∈ MN ({0, 1}) with the
A-coordinate {(Mi, qi, Bi)}N

i=1.

4.1. Standard representations on l2(N). For M ≥ 1, define f (M) =
{f (M)

i }M
i=1 ∈ BFSM (N) by

(4.1) f
(M)
i (n) ≡ M(n− 1) + i (i = 1, . . . , M, n ∈ N).

Then
(l2(N), πf (M)) ∼ P (1) (M ≥ 2).

Specially, the permutative representation of OM by f (M) is called the stan-
dard representation of OM in [1, 2]. We denote (l2(N), πf (M)) by (l2(N), πS).
The standard representation OM is irreducible for each N ≥ 2. This is well-
known in [4, 6, 7, 8]. The restriction (l2(N), πf (M) |UHFM

) is irreducible, too

where UHFM ≡ OU(1)
M . When M = 2, (l2(N), πf (M) |CAR) is equivalent to

the Fock representation of CAR = OU(1)
2 under the standard embedding of

CAR into O2([1]).
f (A) = {f (A)

i }N
i=1 ∈ BFSA(N) in Lemma 3.3 is given by

f
(A)
i (N(m− 1) + j) = N(Mi(m− 1) + qi(j)− 1) + i (m ∈ N, j ∈ Bi)

where R(f (A)
i ) = {N(n− 1) + i : n ∈ N} and D(f (A)

i ) =
∐

j∈Bi
R(f (A)

j ) for
i = 1, . . . , N . f (A) is a permutative representation of OA([19]).
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4.2. Representations on l2(Z). For M ≥ 1, define f (M) = {f (M)
i }M

i=1 ∈
BFSM (Z) by

(4.2) f
(M)
i (n) ≡ Mn + i− 1 (i = 1, . . . , M, n ∈ Z).

Then f (A) = {f (A)
i }N

i=1 ∈ BFSA(Z) in Lemma 3.3 is given by

f
(A)
i (Nm + j − 1) = NMim + N(qi(j)− 1) + i− 1

where R(f (A)
i ) = {Nn + i − 1 : n ∈ Z} and D(f (A)

i ) =
∐

j∈Bi
R(f (A)

j ) for
i = 1, . . . , N . There is no general theory of classification of πf for f in the
above.

Next, we show a classification of some representations of ON on l2(Z).

Proposition 4.1. For M ≥ 2 and j ∈ Z, let g[j] = {g[j]
i }M

i=1 ∈ BFSM (Z) by

g
[j]
i (n) ≡ Mn + i + j (n ∈ Z, i = 1, . . . , M).

For the representation (l2(Z), πg[j]) of OM by g[j], the followings hold:

(i) When M = 2, (l2(Z), πg[j]) ∼ P (1)⊕ P (2) for each j ∈ Z.
(ii) When M ≥ 3 and j ≡ r mod M − 1 for r = 0, . . . ,M − 2,

(l2(Z), πg[j]) ∼




P (1)⊕ P (M) (r = M − 2),

P (N − 1− r) (r 6= M − 2).

Proof. g
[j]
i is monotone increasing(resp. decreasing) on {n ∈ Z : n >

−(j + 1)/(M − 1)} (resp. {n ∈ Z : n < −(j + M)/(M − 1)}.) Therefore
g[j] has neither cycle nor chain in Z \ W . From these, g[j] has cycles in
W ≡ {n ∈ Z : α ≥ n ≥ α− 1} = {[α], [α]− 1} where α ≡ −(j + 1)/(M − 1).
(i) If M = 2, then α = −(j + 1) and g

[j]
i (α) = −j − 2 + i. From these, we

see that g
[j]
1 (α) = α. g

[j]
i (α − 1) = −j − 4 + i. Hence g

[j]
2 (α − 1) = α − 1.

(l2(Z), πg[j]) ∼ P (1)⊕ P (2) for each j ∈ Z.
(ii) If M ≥ 3, then put j = (M − 1)k − l − 1 where 0 ≤ l ≤ M − 2.
Then α = −k + l/(M − 1) and [α] = −k. g

[j]
i ([α]) = [α] − l − 1 + i.

Hence i = 1 + l ∈ {1, . . . , M − 1} if and only if g
[j]
1+l([α]) = [α]. By taking

r = M−2− l, (l2(Z), πg[j]) always has a component P (l+1) = P (M−1−r).

Furthermore g
[j]
i ([α]−1) = −M +[α]− l−1+ i. Hence M + l = i if and only

if g
[j]
M ([α]−1) = [α]−1. Therefore (l2(Z), πg[j]) has a P (M)-component only

when l = 0. In consequence, (l2(Z), πg[j]) ∼ P (1)⊕ P (M) when r = M − 2.
¤
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For example,

M = 3 M = 4

j odd even
πg[j] P (1)⊕ P (3) P (2)

j 3k 3k − 1 3k − 2
πg[j] P (3) P (1)⊕ P (4) P (2)

Corollary 4.2. For f (M) ∈ BFSM (Z) in (4.2),

πf (M) ∼ P (1)⊕ P (M) (M ≥ 2).

Proof. Because f (M) = g[−1] and −1 ≡ M − 2 mod M − 1, the state-
ment holds. ¤

By Corollary 4.2, the irreducible decomposition of πf (M) can be described
as a same style. This shows that the definition in (4.2) seems standard.

4.3. Representations on L2[0, 1]. For M ≥ 1, put f (M) ≡ {f (M)
i }M

i=1 ∈
BFSM ([0, 1]) by

(4.3) f
(M)
i (x) ≡ (x + i− 1)/M (i = 1, . . . , M, x ∈ [0, 1]).

Then f (A) = {f (A)
i }N

i=1 ∈ BFSA([0, 1]) in Lemma 3.3 is given by

(4.4) f
(A)
i (x) =

1
Mi

x +
Mi(i− 1) + qi(j)− j

MiN
(x ∈ R(f (A)

j ), j ∈ Bi)

where R(f (A)
i ) = [(i − 1)/N, i/N ] and D(f (A)

i ) =
⋃

j∈Bi
R(f (A)

j ) for i =

1, . . . , N and j ∈ Bi. Note that f
(A)
i is defined on D(f (A)

i ) up to measure-
zero subset in [0, 1]. That is, f

(A)
i is well-defined as a function in L∞[0, 1].

We see that the representation (L2[0, 1], πf (A)) of OA on L2[0, 1] is given by

(πf (A)(si)φ)(x) = χ
R(f

(A)
i )

(x)
√

Miφ((f (A)
i )−1(x))

for i = 1, . . . , N and φ ∈ L2[0, 1]. Hence πf (A)(si)1 =
√

MiχR(f
(A)
i )

for

i = 1, . . . , N where 1 is the constant function on [0, 1] with value 1.

Proposition 4.3. For M ≥ 2 and f (M) in (4.3),

(L2[0, 1], πf (M)) ∼ GP (M−1/2, . . . ,M−1/2).

Proof. Let a unit vector z ≡ (M−1/2, . . . , M−1/2) ∈ CM . Then 1 is a
cyclic vector of (L2[0, 1], πf (M)) and πf (M)(s(z))1 = 1. ¤

Proposition 4.3 is a special case of Theorem 2.8 in [12].
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4.4. Representations on L2(T1). We show two kinds of representations
of OA on L2(T1) for T1 ≡ {z ∈ C : |z| = 1}.

(i) Let RM and V be operators on L2(T1) by

(RMφ)(z) ≡ φ(zM ), (V φ)(z) ≡ zφ(z) (φ ∈ L2(T1), z ∈ T1)

and TM,i ≡ V i−1RM for i = 1, . . . ,M . Put

π(M)(si) ≡ TM,i (i = 1, . . . , M).

Then (L2(T1), π(M)) ∼ P (1) ⊕ P (M) ∼ (l2(Z), πf (M)) in (4.2). Then
the representation (L2(T1), π(A)) of OA in Lemma 2.5 from {π(Mi)}N

i=0
is as follows:

π(A)(si) = TN,i

∑

j∈Bi

TMi,qi(j)T
∗
N,j (i = 1, . . . , N).

(ii) Put f (M) = {f (M)
i }M

i=1 ∈ BFSM (T1) by

f
(M)
i (z) ≡ z1/Me2π

√−1(i−1)/M (z ∈ T1, i = 1, . . . , M).

Then πf (M) ∼ GP (M−1/2, . . . , M−1/2) and this is equivalent to that by

(4.3) for each M ≥ 2. Then f (A) = {f (A)
i }N

i=1 ∈ BFSA(T1) in Lemma
3.3 is given by

f
(A)
i (z) = z1/Mie2π

√−1{(qi(j)−1)/NMi+(i−1)/N} (z ∈ T1, i = 1, . . . , N).

4.5. Representations on L2(R). For M ≥ 1, put f (M) ≡ {f (M)
i }M

i=1 ∈
BFSM (R) by

(4.5) f
(M)
i (x) ≡ x + (M − 1)[x] + i− 1 (i = 1, . . . , M, x ∈ R)

where [x] is the Gauss symbol. Then f (A) = {f (A)
i }N

i=1 ∈ BFSA(R) in
Lemma 3.3 is given by

f
(A)
i (x + (N − 1)[x] + j − 1) = x + (NMi − 1)[x] + N(qi(j)− 1) + i− 1

for i = 1, . . . , N , x ∈ R(f (A)
j ), j ∈ Bi where D(f (A)

i ) ≡ ⋃
j∈Bi

R(f (A)
j )

and R(f (A)
i ) ≡ ∐

k∈Z[Nk + i − 1, Nk + i] for i = 1, . . . , N . For example,
when N = 2, R(f (2)

1 ) =
∐

k∈Z[2k, 2k + 1], R(f (2)
2 ) =

∐
k∈Z[2k + 1, 2k + 2].

f
(2)
1 (x) = x + [x], f

(2)
2 (x) = x + [x] + 1. Then f

(2)
1 (x) = x for x ∈ [0, 1] and

f
(2)
2 (x) = x for x ∈ [−1, 0].

Theorem 4.4. For M ≥ 2 and λ ∈ R, put

g
[λ]
i (x) ≡ x + (M − 1)[x] + i + λ (x ∈ R, i = 1, . . . ,M).

Then g[λ] = {g[λ]
i }M

i=1 ∈ BFSM (R) and the followings hold:

14



(i) When M = 2,

(L2(R), πg[λ]) ∼




(P (1)⊕ P (2))⊕∞ (λ ∈ Z),

(P (11)⊕ P (22))⊕∞ (λ ∈ R \ Z).

(ii) When M ≥ 3,

(L2(R), πg[λ]) ∼





(P (1)⊕ P (M))⊕∞ (λ ∈ Z, r = M − 2),

(P (M − 1− r))⊕∞ (λ ∈ Z, r 6= M − 2),

(P (11)⊕ P (MM))⊕∞ (λ ∈ R \ Z, r = M − 2),

(P (M − 1− r,M − 1− r))⊕∞ (λ ∈ R \ Z, r 6= M − 2)

where r ∈ {0, . . . , M − 2} such that [λ] ≡ r mod M − 1.

Proof. Assume M ≥ 3. When λ = j ∈ Z, then g
[λ]
i (x) = x + (M −

1)[x] + i + j. Put a map Ψ from R to Z × [0, 1) by Ψ(x) ≡ ([x], x − [x]).
Then Ψ ◦ g

[λ]
i ◦Ψ−1 = hi× id where hi(n) ≡ Nn + i + j. Hence πg[λ] ∼ π⊕∞h

and πh = P (1) ⊕ P (M) when j ≡ M − 2 mod M − 1, πh = P (M − 1 − r)
when j ≡ r mod M−1 and r 6= M−2 by Proposition 4.1. When λ ∈ R \ Z,
put θ ≡ λ− [λ] and a map Ψ from R to Z× Z2 × [0, θ) by

Ψ(x) ≡




([x], 1, x− [x]) (when x− [x] ∈ [0, θ)),

([x], 2, x− [x]− θ) (when x− [x] ∈ [θ, 1)).

Then Ψ ◦ g
[λ]
i ◦ Ψ−1 = hi × σ × id where σ is a shift on Z2 ≡ {1, 2}. From

this, πg[λ] ∼ (S(σ)£πh)⊕∞, S(σ)£πh ∼ πh⊕ (πh ◦γ−1). πh ∼ P (M −1−r)
by Proposition 4.1. By Proposition 3.6 and (2.3), the statement holds. The
case M = 2 follows from the proof of that of M ≥ 3. ¤

This is an example of Theorem 3.7 (ii) when A is full and ν = ∞.

Corollary 4.5. For f (M) in (4.5),

(L2(R), πf (M)) ∼ P (1)⊕∞ ⊕ P (M)⊕∞ (M ≥ 2).

5. Examples

We show examples of representations of OA for matrices in p 268, [5] and
their open problems. In this section, s1, . . . , sN are canonical generators of
OA for A ∈ MN ({0, 1}).
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5.1. Example 1. Put a matrix A1 ∈ M3({0, 1}) by

A1 ≡



0 0 1
1 0 1
1 1 1


 .

There is an isomorphism ϕ from O4 to OA1 as follows:

(5.1) ϕ(v1) ≡ s1s3, ϕ(v2) ≡ s3, ϕ(v3) ≡ s2s3, ϕ(v4) ≡ s2s1s3

where v1, . . . , v4 are canonical generators of O4([10]). We see that ϕ−1(s1) =
v1v

∗
2, ϕ−1(s2) = v4v

∗
1 + v3v

∗
2, ϕ−1(s3) = v2.

Example 5.1. Define operators T1, T2, T3 on l2(N) by

T1e4(n−1)+i ≡ δ2,ie4(n−1)+1, T2e4(n−1)+i ≡ δ1,ie4(n−1)+4 + δ2,ie4(n−1)+3,

T3en ≡ e4(n−1)+2

for i = 1, 2, 3, 4 and n ∈ N. Then the followings hold:
(i) Put π0(si) ≡ Ti, i = 1, 2, 3. Then a representation (l2(N), π0) of OA1

is irreducible.
(ii) Any representation (H, π) of OA1 with a cyclic vector Ω which satisfies

(5.2) π(s1s3)Ω = Ω

is equivalent to (l2(N), π0) in (i). Specially, a representation (H, π) of
OA1 with a cyclic vector Ω which satisfies (5.2) is unique up to unitary
equivalences.

Proof. For the standard representation (l2(N), πS) of O4 in § 4.1 and ϕ is
in (5.1), we see that π0 = πS ◦ϕ−1. Since πS is irreducible, π0 is, too. Since
πS is uniquely characterized by πS(v1)Ω = Ω, π0 is, too by ϕ(v1) = s1s3 for
Ω ≡ e1. ¤

Example 5.2. Let g1, g2, g3 be functions on [0, 1] as follows:

-

6

���
���

���
���

�
�
�

�
�
�

�
�
�

13/40 1/21/4

1/4

1/2

3/4

1




g1(x) = χ[1/4,1/2](x) · (x− 1/4),

g2(x) = χ[0,1/4](x) · (x + 3/4)
+χ[1/4,1/2](x) · (x + 1/4),

g3(x) = (x + 1)/4.
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Then g = {g1, g2, g3} is an A1-branching function system on [0, 1] and the
followings hold:

(i) A representation (L2[0, 1], πg) of OA1 is irreducible and it is equivalent
to a representation (H, π) with a cyclic vector Ω which satisfies π(s1s3+
s3 + s2s3 + s2s1s3)Ω = 2Ω.

(ii) (L2[0, 1], πg) is inequivalent to (l2(N), π0) in Example 5.1.

Proof. Let f = {fi}4
i=1 ∈ BFS4([0, 1]) by fi(x) ≡ (x + i − 1)/4 for i =

1, . . . , 4, Ω ≡ 1 and ϕ in (5.1), then πf (vi) = πg(ϕ(vi)) for i = 1, . . . , 4.
Since πf 6∼ π0 ◦ϕ, πg 6∼ π0. Because (L2[0, 1], πf ) is an irreducible represen-
tation of O4, (L2[0, 1], πg) is irreducible, too. Furthermore πg(s1s3 + s3 +
s2s3 + s2s1s3)Ω = πf (v1 + v2 + v3 + v4)Ω = 2Ω. ¤

Example 5.3. We have the following f = {f1, f2, f3} ∈ BFSA1([0, 1]) in §
4.3:
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f1(x) = x− 2/3 (x ∈ [2/3, 1]) ,

f2(x) =





x/2 + 1/3 (x ∈ [0, 1/3]),

x/2 + 1/6 (x ∈ [2/3, 1]),

f3(x) = x/3 + 2/3.

From this, we have the following representation (L2[0, 1], πf ) of OA1 :





(πf (s1)φ)(x) = χ[0,1/3](x)φ(x + 2/3),

(πf (s2)φ)(x) =
√

2{χ[1/3,1/2](x)φ(2x− 2/3) + χ[1/2,2/3](x)φ(2x− 1/3)},

(πf (s3)φ)(x) =
√

3χ[2/3,1](x)φ(3x− 2)

for φ ∈ L2[0, 1] and x ∈ [0, 1].

Question 5.4. Show the property of πf , whether πf is irreducible or not,
whether πf is equivalent to representations in Example 5.1 or Example 5.2.

5.2. Example 2. Put a matrix A2 ∈ M3({0, 1}) by

A2 ≡



0 1 1
1 0 1
1 1 1


 .
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There is an isomorphism ψ from O5 ⊗M2(C) to OA2 as follows:

(5.3)





ψ(t1 ⊗ I) ≡ s1s2s1s
∗
1 + s2s1,

ψ(t2 ⊗ I) ≡ s1s2s3s1s
∗
1 + s2s3s1,

ψ(t3 ⊗ I) ≡ s1s2s3s
∗
1 + s2s3s

∗
1s1,

ψ(t4 ⊗ I) ≡ s1s3s1s
∗
1 + s3s1,

ψ(t5 ⊗ I) ≡ s1s3s
∗
1 + s3s

∗
1s1,

ψ(I ⊗ E12) ≡ s1

where t1, . . . , t5 are canonical generators of O5 and {Eij}i,j=1,2 is the matrix
unit of M2(C)([10]). On the contrary, we see that ψ−1(s1) = I ⊗ E12,
ψ−1(s2) = t1 ⊗E21 + (t2t∗4 + t3t

∗
5)⊗ E22, ψ−1(s3) = t4 ⊗E21 + t5 ⊗ E22.

Example 5.5. Define operators π(s1), π(s2), π(s3) on l2(N× {1, 2}) by




π(s1)en,i ≡ δ2,ien,1,

π(s2)e5(n−1)+m,i ≡ δ1,ie5(5(n−1)+m−1)+1,2

+δ2,i(δ4,me5(n−1)+2,2 + δ5,me5(n−1)+3,2),

π(s3)en,i ≡ δ1,ie5(n−1)+4,2 + δ2,ie5(n−1)+5,2

for i = 1, 2, m = 1, . . . , 5 and n ∈ N where en,i ≡ e
′
n ⊗ e

′′
i and e

′
n, e

′′
i are

canonical basis of l2(N) and C2, respectively. Then the followings hold:
(i) (l2(N× {1, 2}), π) is an irreducible representation of OA2 .
(ii) Any cyclic representation (H, π

′
) of OA2 with a cyclic vector Ω which

satisfies
π
′
(s1s2s1s

∗
1 + s2s1)Ω = Ω

is equivalent to (l2(N× {1, 2}), π).
Proof. (i) Let π0 be the standard representation of O5 on l2(N) and ι is the
canonical representation of M2(C) on C2. Then ((π0⊗ ι) ◦ψ−1)(si) = π(si)
on l2(N × {1, 2}) ∼= l2(N) ⊗C2 for i = 1, 2, 3 where ψ is in (5.3). Because
π0 ⊗ ι is an irreducible representation of O5 ⊗M2(C), π is irreducible, too.
(ii) By (i), the characterization of π is uniquely given by the equation
(π0 ⊗ ι)(t1 ⊗ I)e1,1 = e1,1. By (5.3), π(s1s2s1s

∗
1 + s2s1) = (π0 ⊗ ι)(t1 ⊗ I).

Hence the statement holds. ¤

Example 5.6. For 0 < a < b < 1, consider a map F (a,b) on X = [0, 1] which
graph is given as follows:
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F (a,b) is the coding map of f (a,b) = {f (a,b)
1 , f

(a,b)
2 , f

(a,b)
3 } ∈ BFSA2([0, 1])

given as follows: f
(a,b)
i : Di → Ri, i = 1, 2, 3,





f
(a,b)
1 (x) = a(x− a)/(1− a) (x ∈ D1),

f
(a,b)
2 (x) =




−αx + b, (x ∈ R1),

−α(x− 1) + a (x ∈ R2),

f
(a,b)
3 (x) = (1− b)x + b (x ∈ [0, 1])

where α ≡ (b−a)/(1−b+a), R1 ≡ [0, a], R2 ≡ [a, b], R3 ≡ [b, 1], D1 ≡ [a, 1],
D2 ≡ [b, 1], D3 ≡ [0, 1]. Let π(a,b) ≡ πf (a,b) .

Question 5.7. Classify a representation π(a,b) of OA2 by a, b.

This is not so simple as its appearance. For example, a family of slope pa-
rameters of a branching function system on a closed interval is the complete
invariant(up to unitary equivalence) of representations in Theorem 2.8 in
[12].
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