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Abstract

The property of “substitutability” plays a key role in guaranteeing the existence of a
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the concept of Mi-convexity, introduced by Murota—Shioura (1999) for functions defined
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1 Introduction

Since the pioneering work on the stable marriage problem by Gale Shapley [7], various general-
izations and extensions of the stable marriage model have been proposed in the literature (see
1,2, 3,4, 6,15, 17], etc.), where the property of “substitutability” for preferences plays a key role
in guaranteeing the existence of a stable solution. On the other hand, the concept of M-convexity,
introduced by Murota [8, 9] for functions defined over the integer lattice, enjoys a number of nice
properties that are expected of “discrete convexity;” subsequently, its variant called MP-convexity
was introduced by Murota-Shioura [11]. Whereas M*-convex functions are conceptually equivalent
to M-convex functions, the class of Mf-convex functions is strictly larger than that of M-convex
functions. Furthermore, Mf-concave functions provide with a natural model of utility functions
[10, 14, 18]. In particular, it is known that M*-concavity is equivalent to the gross substitutes prop-
erty, and that Mf-concavity implies submodularity. In this note, we discuss the close relationship
between substitutability and M?-convexity /M*-concavity.

Recently, Eguchi-Fujishige-Tamura [3] extended the stable marriage model to the framework
with preferences represented by Mf-concave utility functions, and showed the existence of a stable
solution in their model (see also [2]). Their proof is based on the fact that M"-convex functions
f:ZY — RU{+o0} satisfy the following properties:

(SCY) V21,2, € ZV with 21 > 2, and argmin{f(2') | ' < 20} # 0,

Vay € argmin{ f(2') | 2’ < 21}, g € argmin{ f(2’) | 2’ < 29} such that 2o Azy <
T2,
(SC?) V21,2 € ZV with z; > 2 and argmin{f(2') | 2/ < 21} # 0,

Ve € argmin{ f(2') | 2’ < 2z}, Jx; € argmin{ f(2’) | ' < 21} such that zo Az; <
ZTo.

These properties can be regarded as substitutability for utility functions f; indeed, (SC') and
(SC?) can be seen as generalizations of substitutability (persistence) in the sense of Alkan-Gale
[1] for the choice function C(z) = argmin{ f(y) | y < z}.

Following the work by Eguchi-Fujishige-Tamura [3], Fujishige-Tamura [6] presented a common
generalization of the stable marriage model and the assignment game model with MB-concave
utility functions. It is shown in [6] that the existence of a stable solution in this model is guaranteed
by the following properties of MP-convex functions which are stronger versions of substitutability

(SCt) and (SC?):

(SCY) Vp e RY, f[p] satisfies (SC'),
(SCZ) Vp e RY, f[p] satisfies (SC?),

where for p € RY the function f[p]: Z¥ — R U {+oc0} is defined by

fl(@) = f(2) + ) pw)z(w)  (z€ZY).

weV

The main aim of this note is to prove that each of (SCg) and (SC%) characterizes Mé-convexity
of a function.



Theorem 1.1. Let f : ZV — R U {+oo} be a function such that dom f is bounded or f is
convez-extensible. Then,

fis Mi-conver <= (SC§) <= (SC3).

This theorem shows that MP-concavity of utility functions is an essential assumption in the model
of Fujishige-Tamura [6]. The equivalence in Theorem 1.1 was proven by Farooq—Tamura [5] in
the special case where dom f C {0,1}V, i.e., f is a set function. In this note, we give a proof for
the general case.

2 Preliminaries on M%convexity

In this section, we review the definition and fundamental properties of Mf-convex functions.

Throughout this paper, we assume that V' is a nonempty finite set. The sets of reals and
integers are denoted by R and by Z, respectively. For a vector z = (z(w) | w € V) € ZY, we
define

suppt(z) = {w € V | z(w) > 0}, supp (z) ={w eV | z(w) <0}, supp(x)={w eV |z(w)+# 0},
(p.a) =Y pw)z(w) (peRY), 2(8)=>Y =zw) (SCV).

weV weS

For any u € V, the characteristic vector of u is denoted by x, (€ {0,1}"), i.e., xu(w) =1ifw =u
and Y, (w) = 0 otherwise. We also denote by Yo the zero vector. For z,y € Z" with z <y, we
denote [z,ylz = {z € Z"V |z < 2 < y}.

Let f:ZY — RU{+o0} be a function. We denote the effective domain of f by dom f = {z €
Z"V | f(z) < +oo} and the set of minimizers of f by argmin f = {x € Z" | f(z) < f(y) (Vy €
Z")}, which can be the empty set. For a vector z € Z", we denote

X*(f.2) = argmin{ f(2) |2 < 2} (= {z € 2" |2 < 2, f(2) < f(y) (Vy € Z¥ with y < 2)}).

The convex extension f: RV — R U {Zoo} of f is defined by

fa) = s {para

peRY, a€R

py)+a<fly) (ye ZV)}-

A function f is said to be convez-extensible if f(z) = f(x) for all z € ZV.
We call a function f : Z¥ — R U {+o0} M-convex if it satisfies dom f # () and (ME-EXC):

(MP-EXC) Va,y € dom f, Yu € supp* (z—y), Jv € supp~ (z—y) U {0}:
f(@)+ fy) > f(@ = xu+ Xo) + FY+ Xu = Xo)-

See [11] for the original definition. Note that any Mi-convex function is convex-extensible [12].



We also define the set version of Mf-convexity. A nonempty set B C Z" is said to be M?-convex
if its indicator function ép : Z¥ — {0, +o0o} defined by

0 ifx € B,
400 otherwise

oale) ~ {

is Mf-convex. Equivalently, an M*-convex set is defined as a nonempty set satisfying the exchange
property (B-EXC.):

(B*-EXC.) Vz,y € B, Yu € supp*(z — y), Jv,w € supp (z — y) U {0} such that
T = Xu T+ Xv eBandy+XU_Xw € B.

Theorem 2.1 ([11, 19]). A nonempty set B C ZV is M:-convex if and only if it satisfies (B*-
EXC.).

An MEf-convex function can be characterized by the sets of minimizers.

Theorem 2.2 ([10, Th. 6.30]). Let f : ZV — R U {+oo} be a function such that dom f is
bounded or f is convex-extensible. Then, f is M*-convez if and only if for each p € RV the set
argmin f[p] is Mf-convex if it is nonempty.

3 Proofs

The implications “f is Mi-convex = (SC&)” and “f is Mf-convex = (SC%)” are shown in
[3, B, 6] (see also Section 4).

Theorem 3.1. An M -convex function f : ZV — R U {+oo} satisfies (SCL) and (SC%).
In this section, we prove the implications “(SC%) = (SCg)” and “(SCY) == f is Mi-convex.”

Theorem 3.2. Let f: ZY — R U {+o0}.

(i) If f satisfies (SCZ), then f also satisfies (SCg).

(i) Suppose that dom f is bounded or f is convex-extensible. If [ satisfies (SCE), then f is
Mt -convex.

Combining Theorems 3.1 and 3.2 yields Theorem 1.1, our main result.

3.1 Proof of “(SC%) = (SCy)”

We prove Theorem 3.2 (i).

Suppose that f satisfies (SC%). Let p € RY, 21,20 € ZY be any vectors with z; > 2z,
and x7 € X*(f[p],z1). Let a5 € X*(f[p|,22) be a vector minimizing the the cardinality of the
set suppt (x5 — z7), and put ST = suppt (25 — x}). We assume that xj maximizes the value
x5(V'\ ST) among all vectors y € X*(f[p], z2) with supp™(y —3) = S*. We show that 3 satisfies
the inequality zo A 27 < 23.



For w € S*, we have min{z(w), z;(w)} = zi(w) < zj(w) since zi(w) < z5(w) < zo(w).

Hence, it suffices to prove that
min{z](w), zo(w)} < x5(w) (weV\St). (3.1)
To show this, we define z;, 2, € ZV by
Z1 =] V T3, Zog = (2] V 23) A z2.

For i = 1,2, 7 € X*(f[pl,z:) € X*(f[pl, z;) holds since xf < Z; < z. As shown below, there
exists a vector ¢ € RV satisfying the following conditions:
r(w) =2 (w) (w e V\ST) for all x € X*(f[q],21), (3.2)
7 € X*(flg). )

Then, it follows from (SC%) that there exists some z € X*(f[g], 21) such that 2 AZy < z3, implying

min{z](w), z2(w)} = min{z(w), Za(w)} < 25(w) (weV\St,

where the equality is by (3.2) and the definition of Z;. Hence, we have the desired inequality (3.1).
We now show that there exists a vector ¢ € RY satisfying (3.2) and (3.3). Let k be a sufficiently
large positive number such that k& > z;(w) — 23(w) (w € S*). Define d € RV by

For ¢ = 1,2, we define a value n; € R by

ni = max{(d,z) |z e X*(f[pl,Z)}-

Since the set Y; = {y € ZV | (d,y) > mi, y < %} is finite and satisfies f[p](y) > flp|(z?) (y € Y)),
we have

X*(fla].z) ={z |z € X*(flpl 2), {d,z) =m}  (i=12) (3.4)
by putting ¢ = p — ed with a sufficiently small positive number .

To show that the condition (3.2) holds, let z € X*(f[g],z1). For w € V \ S*, we have
z(w) < Z(w) = a2} (w), implying (V' \ ST) —a3(V \ ST) < 0. By (3.4), we have

0 < (da)—{dai) = kw D few) = ai(w)} + o(V\ 57) —ai(V\ 57)
weSt
< ’flS*lw;le —ai(w)} +a(V\ %) — (V).

Since (1/k|S*|) > es+ iz (w) —2j(w)} < 1and z(V \ S*) —27(V \ ST) is a nonpositive integer,
we have z(V '\ ST) — z3(V'\ ST) = 0, implying (3.2).



We next prove that the condition (3.3) holds. It suffices to show that (d,y) < (d,z3) for all
y € X*(f[pl,z2). By the definition of Z, we have y(ST) < Z(ST) = 25(ST) and y(w) < Z(w) <
zi(w) (w € V' \ ST), where the latter implies supp™(y — x7) C ST. By the choice of 3, it holds
that supp™(y — 23) = ST and y(V \ ST) < z5(V \ ST). Therefore,

y(57) —a3(57)

<d7 y> - <d7 ZL’;> = ]{7|S+|

+{y(V\ST) =z (VA ST} <0.

This concludes the proof of Theorem 3.2 (i).

3.2 Proof of “(SCL) = f is M*-convex”

We prove Theorem 3.2 (ii).

Let f : Z¥ — R U {+o0} be a function such that either dom f is bounded or f is convex-
extensible, and suppose that f satisfies (SCg). We prove the Mf-convexity of f by using Theorem
2.2, a characterization of M¥-convex functions by the sets of minimizers. Since f[p] satisfies (SC§)
for all p € RY, it suffices to show that argmin f is an Mf-convex set. To prove the MP-convexity
of argmin f, we use Theorem 2.1; we first consider the case where x < y or z > y (Lemma 3.3),
then the case where x —y = x5 + Xu — Xr — X¢ for some r, s, t,u € VU{0} (Lemmas 3.4, 3.6, 3.7),
and finally the general case (Lemma 3.9).

Lemma 3.3. For any x,y € argmin f with x <y, we have [z,y|z C argmin f.

Proof. We show that any T € [z,y]z is contained in argmin f. Since y € X*(f,y) and = < v,
(SC) implies that there exists some x5 € X*(f,T) (C argmin f) such that 7 =2 Ay < 25 < 7,

i.e., Ty = T.

O

Lemma 3.4. For any x,y € argmin f with x —y = 2x, — X» for some distinct u,v € V', we have
T— Xus T — Xut Xo € argminf.

Proof. We firstly prove that x—x,+x, € argmin f. If x+x, € argmin f, then Lemma 3.3 implies
T — Xu + Xo € argmin f since x — x,, + X» € [¥, 7 + Xu]z. Hence, we assume x + y,, € argmin f.
Let M be a sufficiently large positive number, and ¢ be a sufficiently small positive number. We
define p € RV by
—2e it w=u,
plw)=<¢ =3¢ ifw=uv,
—M  otherwise.

Assume, to the contrary, that = — x, + x, € argmin f. Then, we have X*(f[p],z — xu+ Xx») = {y}

and X*(f[p],z + x») = {z}. Since z — xu + X» < T + Xy, it follows from (SC) that z — x, =

(x—xu+ Xo) ANz < y, a contradiction since z(u) —1 > y(u). Hence, x — x, + x, € argmin f holds.
We then prove that = — x,, € argmin f. Put

X ={2 €cargminf |2 <z+ x,, 2'(w)=2(w) (weV\{uv}}
0. =sup{er| 7+ X, — ax, € ergmin f}, B = sup{B | ¢ + x» — Bxa € argmin £,



Assume that o = +00 or = 400. Then, the convex closure of X contains z — y,. Since dom f
is unbounded, f must be convex-extensible. In particular, integral vectors in the convex closure
of X are contained in argmin f. Hence, x — x,, € argmin f.

We then assume that a and § are finite. If there exists some 2’ € argmin f with 2’ < z — x,,
then Lemma 3.3 implies = — x,, € argmin f since x — x,, € [2/,2]z. Hence, we assume that there
exists no such 2’ € argmin f, and derive a contradiction.

Put z, = 2 + Xy — uXo and ¥ = = + Xy — BuXu. We define p € RV by

EQuy if w=u,
Aw)={ e +1) fw=v.
-M otherwise.

Then, we have X*(f[pl,z + x») = {z.} and X*(f[P, = — Xu + Xo) = {v+}. By (SC), we have
T — Xu = (T — Xu + Xo) A Ts < Y, a contradiction since z,(u) — 1 = z(u) — 1 > y(u) > y.(u). O

Lemma 3.5. Let z,y € argmin f be any distinct vectors with x(V)) > y(V'). Suppose that there
exists no z € argmin f satisfying z < x Vy, supp(x — z) C supp(x —y), and z(V') > z(V'). Then,
for any u € supp™ (x — y) there exists v € supp™ (x — y) U {0} such that x — x, + x» € argmin f.

Proof. Let u € supp™(z —y). Since z € X*(f,zVy), it follows from (SC&) that there exists some
9 € X*(f, (xVy) — xu) (C argmin f) such that ((z Vy) — xu) Az < zo. This inequality implies

Ta(u) = 2(u) — 1, 22(w) ==z(w) (w €V \ [supp™ (z — y) U {u}]),
zo(w) > z(w) (w € supp™ (x — y)),

from which follows z(V) > zo(V) > x(V) — 1. Hence, 29 = = — x, + X, holds for some v €

supp~(z —y) U {0}. O
Lemma 3.6. For any x,y € argmin f with © —y = Xs + Xu — Xo for some distinct s,u,v € V,
we have T — Xs + Xu, T — Xu € argmin f or x — Xy + X, & — Xs € argmin f (or both).

Proof. 1t suffices to show the following claims hold:

(a)  — Xu + X» € argmin f or z — x,, € argmin f,

(b) x — xs + X» € argmin f or £ — x5 € arg min f,

(¢) x — x5+ Xo € argmin f or x — x, + X, € argmin f,
(d) x — x5 € argmin f or x — x,, € argmin f.

We firstly prove the claims (a) and (b). If x + x, € argmin f, then Lemma 3.3 implies
{— Xu+ Xor T —Xs + Xo} C [y, 7+ Xo|z € argmin f. If 2+ x, € argmin f, then Lemma 3.5 for
x and y implies (a) and (b) since supp~(z — y) = {v}.

We then prove (c¢). Assume, to the contrary, that both of  — x s+ x, and & — x, + X, are not in
argmin f. Then, we have z — x,, € argmin f by (a). Since x — x, < T — X0 + Xo < T+ Xo, Lemma
3.3 implies = + x, € argmin f. Put z; = 2 + x, and 25 =  — x, + Xu- Let M be a sufficiently
large positive number, and € be a sufficiently small positive number. We define p € RV by

—2¢ ifw e {s,u},
plw)=4¢ —3¢ ifw=uv,
—M  otherwise.



Then, X*(f[p|,z1) = {z}. By (SC}), there exists some zo € X*(f[p], z2) with z — x, = 20 Az <
To < T — Xy + Xo, 1.€., To is either x — y,, or x — Y\, + X». However, we have

fpl(x —xu) = flply) = e+ flo—xu)— fly) > 0,
flpl(@ = xu + x0) — flPl(y) = =26+ f(z —xu+Xxo) — f(y) > 0

since y € argmin f and z—x,+X, &€ argmin f. This shows that xo & X*(f[p], 22), a contradiction.
Hence, the claim (c¢) holds.

We finally prove (d). Assume, to the contrary, that both of x — x5 and z — x, are not in
argmin f. Since {z,x — xu + XosT — Xs + Xo} C argmin f by (a) and (b), Lemma 3.4 implies
T—2Xu+ Xos T—2Xs+ Xos T— Xo € argmin f. By Lemma 3.3, if 2/ € Z" satisfies at least one of the
inequalities @’ <z — xu, @' <2 — X, ¥ <2 — X0, T’ <2 —2Xy + X0, and &' < 2 — 2), + Yo, then
2’ ¢ argmin f. This shows that argmin fN{2’ | 2’ <z} C{z,y,2— Xu+Xo, T—Xs + Xos T+ Xo }+
where z; = x + x,. We define p € R" by

e ifw e {s,u},
plw) = 3¢ ifw=wo,
—M  otherwise.

Then, we have X*(f[p], z1) = {z} and X*(f[p], 22) = {y}, where 25 = x — x, + X,. By (SC}), we
have  — x, = 22 Az <y, a contradiction since z(s) > y(s). Hence, the claim (d) holds. O

Lemma 3.7. Let z,y € dom f be any vectors satisfying ||z — y||1 = 4 and z(V) = y(V), and
u € supp™(x —y). Then, there exist v,w € supp (z—1y)U{0} such that x — Xy + Xvs Y+ Xu— Xw €
arg min f.

Proof. Suppose that ¥y = x — xs — Xu + X» + X¢ for some 7, s,t,u € V with {s,u}N{r,t} = 0. We
show that = — x, + x» € argmin f and y + Xy — Xw € argmin f hold for some v, w € {r,¢,0}.
We firstly consider the case where there exists some z € argmin f satisfying

z<zVy, supp(z — z) C supp(z — ), z2(V) > (V). (3.5)
This assumption implies

{z+xr 24+ x40, 2+ X + Xt Y+ Xso Y+ X} Nargmin f # 0.

We first claim that z + x, € argmin f or  + x; € argmin f holds. If x + x, + x; € argmin f,
then Lemma 3.3 implies {z + x,, z+ x:} C argmin f. If y+ x,, € argmin f, then Lemmas 3.4 and
3.6 for y + xu, =2 — xs + X + x¢ and z imply x + x, € argmin f or x + y; € argmin f. The case
where y + x5 € argmin f can be dealt with similarly.

We, w.l.o.g., assume that x + x, € argmin f. Lemmas 3.4 and 3.6 for .+ x, = ¥+ xu+ Xs — X¢
and y imply {y + xu, ¥ + Xs — x¢} C argmin f or {y + X5, ¥ + Xu — X¢} C argmin f. If the former
holds, then we are done since y + xs — x¢t = T — Xu + Xo- If the latter holds, then we can apply
Lemmas 3.4 and 3.6 to ¥y + xs = * — xu + X» + X+ and x to obtain & — x,, + X, € argmin f or
T — Xu + Xt € argmin f.



We then consider the case where there exists no z € argmin f satisfying (3.5). By Lemma 3.5,
we have £ — x, + Xp € argmin f and & — x5 + X € argmin f for some v, v’ € {r,t,0}. If v/ # 0,
then we have & — x5+ Yo = Y+ Xu — Xw for some w € {r,t}. If v’ = 0, then we can apply Lemmas
3.4 and 3.6 to y and z — x, to obtain y + x, — X, € argmin f or y + x, — Xx¢ € argmin f. O

Lemma 3.8. Let x,y,2 € ZV be any distinct vectors with z < xVy and (V) > max{z(V),y(V)}.
Then, we have ||z — x||1 < ||z — y||1 and ||z —y||]1 < ||z — y||1

Proof. We prove ||z — z||; < ||z — y||; only. Put A = supp*(z —y) (C suppt(z — y)), B =

supp*(z—y)\A, C' = supp™ (z—=2) (C supp (z—y)), D = supp™ (z—y)\C, and & = V\supp(z—y).
Then,

lz—ylhi—|lt—21 = 2(AUBUDUE)+y(CUD)—-y(AUB)—2C)—2z(D) —z(E)
> 2[y(C) — 2(C)] +2[y(C) —2(D)] = 0,

where the first inequality is by 2(V) > y(V) and y(F) = x(F), and the second by y(C) > z(C)
and y(D) > z(D). O

Lemma 3.9. arg min f satisfies (B*-EXCL), i.e., argmin f is an MP-convex set if it is nonempty.

Proof. Let z,y € argmin f and u € supp™(z — y). We show by induction on ||z — y||; that

T — Xu + Xo € argmin f (Fv € supp (z —y) U{0}), (3.6)
Y+ Xu — Xw € argmin f (Jw € supp™ (z —y) U {0}). (3.7)

By Lemmas 3.3, 3.4, and 3.6, we may assume supp™(z—y) # 0, supp™ (z—y) # 0, and |[x—y||; > 4.
We first claim that the following (3.8) or (3.9) holds:

¥ =x— x5+ x € argmin f (Is € suppt(z —y), 3t € supp (z —y) U{0}), (3.8)
Y =y+xi—x; €argminf  (Ji €supp’(z —y)U{0}, 3j €supp”(z —y)). (3.9)

If there exists no z € argmin f satisfying z < x V gy, supp(x — z) C supp(x — y), and z(V) >
max{z(V),y(V)}, then Lemma 3.5 implies (3.8) or (3.9) according as z(V) > y(V) or (V) <
y(V). Hence, we assume that such z € argmin f exists. We may also assume z # z V y, since
otherwise (z V y) — xu € argmin f (Yw € supp(z — y)) holds by Lemma 3.3. Therefore, we have
supp™ (z—z)Nsupp™ (z—y) # 0 or supp~ (2 —y)Nsupp~ (z—y) # 0. Note that ||z —=z|[; <|lz—ylh
and ||y — z||1 < ||z — y||1 by Lemma 3.8. If supp™(z — z) Nsupp™ (z — y) # 0, then the induction
hypothesis for z and z implies = — x5 + x; € argmin f for some s € supp™(z — z) Nsupp™*(z — y)
and ¢ € supp (xz — 2z) U {0} C supp™(z — y) U {0}, ie., (3.8) holds. Similarly, (3.9) holds if
supp~(z —y) Nsupp™ (z — y) # 0.

In the following, we assume that (3.8) holds; the case where (3.9) holds can be dealt with
similarly and therefore the proof is omitted.
(Case 1: supp®(2/ —y) = 0) We have supp™(z — y) = {u}, implying 2’ =z — x, + x¢ (3t €
supp~ (z—y)U{0}), i.e., (3.6) holds. Since 2’ <y, it follows from Lemma 3.3 that y—x; € argmin f
for j € supp~ (¢’ — y) € supp~(z — y). Since [z — (y — x;)|[L < ||z — y[[1 and supp™(z —

8



(y — xj)) = {u}, the induction hypothesis implies (y — x;) + xu — Xx» € argmin f for some
h € supp (x—(y—x;))U{0} C supp (z—y)U{0}. We apply Lemma 3.4 or 3.6 to y — X; + Xu— Xn
and y to obtain {y + xu — Xj, ¥ + Xu — Xa} Nargmin f # 0, i.e., (3.7) holds.

(Case 2: supp™ (2’ —y) # 0, u & supp™ (2’ —y)) Since u € supp™(z—y), we have 2/ = z— x, +x¢
for some t € supp~(z — y) U {0}, i.e., (3.6) holds. Since ||z’ — y||1 < ||z — y||1, the induction
hypothesis for 2/ and y implies ¥ = y + x; — x; € argmin f for some i € suppt(z’ — y) C
supp™ (v —y) \ {u} and j € supp~ (2’ —y) U{0} C supp~(z —y) U{0}. Since ||z — ||, < [[z —y]|1,
the induction hypothesis for x, ¥, and v € supp*(z — ¥) implies ¥ + x, — x» € argmin f for
some h € supp~(z — y) U {0} C supp~(x — y) U {0}. Applying Lemma 3.3, 3.4, 3.6, or 3.7 to
Y+ Xu—Xn =Y+ Xi+ Xu—X; — Xn and y, we have {y + Xu — X;,¥ + Xu — Xn} Nargmin f # 0,
i.e., (3.7) holds.

(Case 3: u € supp™ (2 —y)) Since [|2' — y|l1 < ||z — yl|1, the induction hypothesis for 2/, y,
and u € supp™ (2’ — y) implies y + Xu — Xw € argmin f for some w € supp~ (2’ — y) U {0} C
supp~(x — y) U {0}, i.e., (3.7) holds. By using this fact we can show (3.6) in a similar way as in
Case 2. O

4 Concluding Remarks

It is shown in [3, 5, 6] that M-convexity of a function f : Z¥ — R U {+oco} implies the properties
(SC') and (SC?). Theorem 3.1 is an immediate consequence of this fact since f[p] is M¥-convex for
any p € RV if f is MP-convex. In fact, the properties (SC!) and (SC?) hold true under a weaker
assumption than Mi-convexity. We call a function f semistrictly quasi M -convex if dom f # ()
and it satisfies (SSQM?):

(SSQM?) Vz,y € dom f, Vu € supp™(z — y), v € supp~(z —y) U {0}:
(1) flz —xutx0) = f(2) = [y +Xu— X0) < [(Y), and
(i) f(¥+xu = Xo) = [(y) = f(@ — xu+ x0) < f(2).

It is easy to see that any Mi-convex function satisfies (SSQM"). See [13] for more accounts on
semistrictly quasi M*-convex functions.

Theorem 4.1. A function f : ZV — R U {+oo} with (SSQM") satisfies (SC') and (SC?).

Proof. We prove (SC!) only; (SC?) can be shown similarly and the proof is omitted.

Let 21,20 € ZY be any vectors with z; > 2y and X*(f, z0) # 0. Also, let 1 € X*(f,2). We
choose x9 € X*(f, z2) minimizing the value > {z1(w)—za(w) | w € supp™ ((x1A22)—22)}. Assume,
to the contrary, that supp™ ((x1 A z2) —22) # 0. Let u € supp™ ((x1 A z2) —x2) (C supp™ (21 — x2)).
By (SSQM"), there exists v € supp~ (21 — 22) U {0} such that if f(z; — xu + Xo) = f(21) then
flxe 4+ xu — Xo) < f(x2). Since x1 — xu + Xo < 21 V29 < 21, we have f(z1 — xu + x0) > f(x1).
Hence, f(2o+ Xu—Xo) < f(x2) follows. By the choice of u we have x5+ Y, — X» < 29. This implies
that zo + xu — Xo € X*(f, 22), which contradicts the choice of xo. Hence we have x1 A zy < x9. O
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