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1 Introduction

Consider the tensor product of finite dimensional vector spaces V ⊗ W .
We have an action of GL(V ) on V ⊗ W induced by standard action on V .
Similarly the action of GL(W ) on W gives us an action on V ⊗ W . These
actions of GL(V ) and GL(W ) on V ⊗W clearly commute with one another,
so we have a joint action of GL(V ) × GL(W ) on V ⊗ W .

Let S•(V ) and Λ•(V ) denote the symmetric and exterior algebras on
V , respectively. It is standard that the action of GL(V ) gives rise to an
action on S•(V ) and Λ•(V ) by algebra homomorphism. We can consider
the restriction of the action of GL(V ⊗ W ) on S•(V ⊗ W ) (or Λ•(V ⊗ W ))
to GL(V ) × GL(W ). For this action we have explicit decompositions of
S•(V ⊗ W ) and Λ•(V ⊗ W ) into irreducible modules (see, for example [5]):

S•(V ⊗ W ) ∼=
∑

λ

Vλ ⊗ Wλ, (1)

Λ•(V ⊗ W ) ∼=
∑

λ

Vλ ⊗ Wλ′ , (2)

where summation is running over all partitions λ = (λ1 ≥ λ2 ≥ . . . ≥ λn ≥
0) with at most n non-zero parts, λ′ denotes the conjugate partition (i.e.
the shape of the transpose Young diagram)1, and Vλ denotes the irreducible
representation of GL(V ) corresponding to λ.

The isomorphisms (1) and (2) are known as (GL(V ), GL(W ))-duality.
We are going to present the crystal variants of these isomorphisms.

The notion of crystals was initiated by Kashiwara (see [8] and the litera-
ture cited there), which influences a lot in combinatorics and representation

1The conjugate partition λ′ consists of λ1 parts and there holds λ′
j = #{i : λi ≥ j},

j = 1, . . . , λ.
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theory. In [2] we invented the array model for A-type crystals. The set of
integer n × m arrays2, denoted by A(n, m), we endowed with three crys-
tal structures of An-type, Am-type and An×m-type. The set A(n, m) as an
An×m-crystal corresponds to the representation S•(V ⊗W ) of GL(V ⊗W ).
The An-type and Am-type crystal structures on A(n, m) commute. This
provides the bi-crystal structure on A(n, m) and the corresponding decom-
position into irreducible bi-crystals takes the form

A(n, m) ∼=
∑

λ

BV (λ)⊗̂BW (λ), (3)

where BV (λ) denotes a crystal which corresponds to the irreducible represen-
tation Vλ of GL(V ), correspondingly BW (λ) denotes that for W (n = dim V ,
m = dimW ).

This decomposition is the crystal version of (GL(V ), GL(W ))-duality.
On this bi-crystal way we obtain a bijection between the set of arrays

A(n, m) and the set of pairs of semistandard Young tableaux. This bijec-
tion slightly differs from the well-known Robinson-Schensted-Knuth bijec-
tion. Specifically, one of the tableau (Q-symbol) has to be replaced by the
Schützenberger involution to it. Let us note that in [3] it was established that
the combinatorics of the crystal structure corresponding to the representa-
tion V ⊗n of GL(V ) is served by the Robinson-Schensted correspondence.
The reason why, in this case, there is no needs to replace Q-symbol by its
Schützenberger involution, is that there is no second crystal structure on the
set of {0, 1}-arrays with at most one 1 in each row, or there is no bi-crystal
structure on the crystal corresponding to V ⊗n. The case of S•(V × W ) is
more subtle, and this forces the modification of the RSK-correspondence.

The array model for A-type crystals allows to imbed normal An-crystals
into A(n,∞). Namely, the irreducible An-crystal BV (λ) has infinitely many
isomorphic embeddings in A(n,∞), and each such an embedding is charac-
terized by a ”highest weight vector”, which, via our bijection, is identified
to a semistandard Young tableau of shape λ in the alphabet 1, . . .. Because
of this any An-type crystal might be imbedded in A(n, m) for an appro-
priate m in such a manner that each irreducible summand takes its own
highest vector. Thus via such an embedding we can distinguish the iso-
morphic irreducible components of any normal An-crystal. Of course, there
exist many isomorphic embeddings of the same crystal. On this way, we get
a a tensor category An which is equivalent to the tensor category of normal

2We do not call them matrices, since we write them in the usual Cartesian coordinates,
and do not add them.
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crystals. Our conjecture is that the category An is a braided category in-
deed. Namely, we define a natural isomorphism R : B1⊗B2 → B2⊗B1, B1,
B2 ∈ Ob(An), and claim that R satisfies the Yang-Baxter equation. Note
that this isomorphism is a kind of a generalization of the Schützenberger
involution (see Section 5).

To Λ•(V ⊗W ) we associate the An×m-crystal B(n, m), which is isomor-
phic (as a set) to the set of Boolean (or, equivalently, {0, 1}-) arrays. Despite
B(n, m) ⊂ A(n, m), the crystal structures, which make the set B(n, m) a bi-
crystal, differ of what structures in A(n, m). In Section 6 we present details
of the construction of commuting An- and Am-crystal structures on B(n, m).
The corresponding bi-crystal decomposition takes the form

B(n, m) ∼=
∑

λ

BV (λ)⊗̂BW (λ′), (4)

where λ′ denotes the form of the conjugate diagram to λ. On this way,
we obtain a bijection between the set B(n, m) and the set of pair of semi-
standard Young tableaux of the conjugate shapes. This correspondence also
differs from the Knuth correspondence ([4]) by inverting one of tableau by
the Schützenberger involution.

Again any normal An-crystal might be imbedded into B(n,∞). However,
here we obtain a bijection between the highest weight vectors of irreducible
crystals of the weight λ and semi-standard Young tableaux of the conju-
gate shape λ′ in the alphabet 1, . . . ,. This Boolean model provides us with
another category Bn which is equivalent to the category of normal crystals.

“Commutative” versions of (3) and (4) (as well as (1) and (2)), i.e.
understanding the isomorphisms as isomorphisms of sets, take the form of
Cauchy type formulae, and might be served by the usual RSK- and Knuth
correspondences. Bi-crystal isomorphisms force the modifications of the
above correspondences.

The categories An and Bn provide several combinatorial interpretations
of the coefficients of the decomposition into irreducibles the tensor product
of irreducible crystals, the Littlewood-Richardson coefficients. In particular,
we obtain the classical interpretation of LR-coefficients, as semi-standard
skew tableaux with lattice reading, and two new characterizations (see Sec-
tion 8).

The set of real-valued arrays AR(n, m) has the structure of continuous
bi-crystal. Namely, we introduce the notion of continuous An-crystal and
define two commuting continuous An- and Am-structures on AR(n, m). The
irreducible continuous An-crystal of the weight λ, Bc

V (λ), is isomorphic as
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a set to the Gelfand-Ceitlin polytope GC(λ). The bi-crystal decomposition
of AR(n, m) into irreducibles takes the form

AR(n, m) ∼=
∐
λ

Bc
V (λ)⊗̂Bc

W (λ), (5)

where the union is running over all vectors λ ∈ W (Rn), W (Rn) := {x ∈
Rn : x1 ≥ x2 ≥ . . . , xn}.

On this way, we obtain continuous variants of the modified RSK-correspondence
and the Schützenberger involution.

An intriguing difference between continuous and usual An-crystals is
that, in the continuous case, the crystal operations Ea

i , F a
i , a ≥ 0, i =

1, . . . , n − 1, infinitesimally satisfy the Verma relations, while the crystal
operations Ea

i , F a
i , a = 1, 2, . . ., i = 1, . . . , n − 1, do not satisfy the Verma

relations.
Acknowledgements. We would like to thank M. Kashiwara, A. Las-

coux, J.-C. Novelli, and J.-Y.Tibon for fruitful discussions. A portion of this
paper was written during a stay of G.Koshevoy at the Research Institute
for Mathematical Sciences at Kyoto University. G.Koshevoy thanks them
for their hospitality and support during January-March 2004. The research
is partially supported by the RFFI 00-15-98873 grant and G.Koshevoy is
partially supported by LIFR MIIP.

2 A-type crystals

The notion of crystals is initiated by Kashiwara (see [8] and the literature
cited there).

We adopt the definition of An-crystals in a slightly different setting cor-
responding to the weight lattice of the reductive group GLn(C). In this case
the weight lattice is the lattice Zn of integer points of Rn, the Weyl group
is the symmetric group Sn acting on Rn by permuting the coordinates.

An-crystal is a (finite) set B endowed with operations Ei : B �→ B,
Fi : B �→ B, i = 1, . . . , n − 1, and functions εi : B → Z, φi : B → Z,
i = 1, . . . , n − 1, wt : B → Zn, such that there holds

Ei(b) = b′ ⇔ Fi(b′) = b if b 
= b′; (6)

wt(Ei(b)) = wt(b) + ei − ei+1 if Ei(b) 
= b; (7)

wt(b)i − wt(b)i+1 = φi(b) − εi(b), (8)
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where ei denotes the standard basis vector and wt(b)i denotes the i-th co-
ordinate of the vector wt(b).

Obviously, crystals due to our definition might be transformed into
Kashiwara’s crystal.

Crystals form a category with a morphism f : B1 → B2 of crystals B1

and B2 being a mapping which commutes with the action of operations Ei,
Fi, i = 1, . . . , n − 1, and the weight function, wt(f(b)) = wt(b).

This definition of morphisms is a bit stronger than Kashiwara’s one,
since due to the Kashiwara definition, we might have wt(f(b)) − wt(b) =
k(1, . . . , 1) with some k ∈ Z.

An element b of a crystal B is said to be a highest weight vector if
Ei(b) = b for any i = 1, . . . , n − 1. An irreducible crystal contains a unique
highest weight vector and the functions φi and εi of such a crystal B satisfy
φi(b) = max{n : Fn

i (b) 
= Fn−1
i (b) and εi(b) = max{n : En

i (b) 
= En−1
i (b)

for any b ∈ B and i = 1, . . . , n − 1. Normal crystals are direct sums of
irreducible crystals.

Crystals are nice combinatorial objects and due to the tradition they
were treated using combinatorics of semi-standard Young tableaux [8]. How-
ever in [2] we demonstrated that main tools of combinatorics of Young
tableaux, such as bumping procedure, jeu de taquin, Schützenberger’s in-
volution, plactic relations, might be considered as combinations of some
crystal operations. Specifically, the crystal, corresponding to S•(V ⊗ W ),
has two commuting An- and Am-type crystal structures. Any normal An-
crystal might be embedded (via a crystal morphism) into this crystal with an
appropriate W , and the basic combinatorial operations take forms of prod-
ucts of crystal operations with respect to the second (!) Am-type crystal
structure.

The involution

si(b) =

{
E

−(αi,wt(b)
i b if (αi, wt(b)) ≤ 0,

F
(αi,wt(b)
i b if (αi, wt(b)) ≥ 0

defines the Weil group action (here the symmetric group Sn action). Namely,
s2
i = 1, and the Coxeter-Moore relations sisi+1si = si+1sisi+1, sisj = sjsi

for |i − j| ≥ 2 ([2, 8, 12]).
There are two Hecke algebra Hn(0) actions on crystals. Namely, define

the operations
Ei(b) = E

εi(b)
i (b),

Fi(b) = F
φi(b)
i (b).
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Then E2
i = Ei and the Coxeter-Moore relations hold true, similarly, F2

i = Fi

and the Coxeter-Moore relations hold true. In [8] these facts are proven using
a decomposition theorem (Theorem 9.3.1) for crystals, in [2] is presented a
pure combinatorial proof using commuting crystal structures.

The category of crystals is endowed with tensor product. Namely, as a
set B1 ⊗B2 equals the set B1 ×B2, the weight function is equal to the sum
of the weight functions, wt(b1⊗b2) = wt(b1)+wt(b2), the operations Ei and
Fi are set by the rule

Ea
i (b ⊗ b′) = Ea′

i (b) ⊗ Ea′′
i (b′), (9)

a′′ = min{a, φi(b) − εi(b′)}, a′ = a − a′′;

F a
i (b ⊗ b′) = F ã

i (b) ⊗ F
˜̃a
i (b′), (10)

ã = min{a, φi(b) − εi(b′)}, ˜̃a = a − ã.

3 Bi-crystals

In [2] we proved that two natural crystal structures of An-type and Am-type
on A(n, m) commute. These two structures naturally come via two crystal
decompositions

A(n, m) = (A(n, 1))⊗dim(W ) = (A(1, m))⊗dim(V ),

where A(n, 1), the set of one-row arrays (of length n = dim(V )), denotes
the crystal corresponding to the GL(V ) representation S•(V ), correspond-
ingly, A(1, m) denotes a crystal corresponding to the GL(W ) representa-
tion S·(W ), that is the set of one-column arrays (the column is of length
dim(W )).

Let us endow A(n, 1) ∼= Zn
+ with the crystal structure. For a ∈ A(n, 1),

we set wt(a) = a; φi(a) = a(i), εi(a) = a(i + 1); Li(a) − a = ei − ei+1

if a(i + 1) 
= 0 and Li(a) = a, otherwise, and Ri(a) − a = ei+1 − ei if
a(i) 
= 0 and Ri(a) = a, otherwise. It is easy to see, that these operations
and mapping endow A(n, 1) with the An-crystal structure.

Now, the first decomposition

A(n, m) = (A(n, 1))⊗dim(W )

endows A(n, m) with the An-type crystal structure of the form of the tensor
product of m copies of An-crystal A(n, 1). We will precisely define the
crystal action a bit later.
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It is clear, that the second decomposition

A(n, m) = (A(1, m))⊗dim(V )

endows A(n, m) with the Am-type crystal structure of the form of the tensor
product of n copies of Am-crystal A(1, m)3. The Am-crystal structure on
A(1, m) is defined using the transposition t : A(1, m) → A(m, 1).

In [2] we proved the following

Theorem 1. The two above defined crystal structures commutes.

Here are some comments to the proof.
Firstly, we explicitly define the action of the two types crystal opera-

tions (recall, that the column’s sums is the weight functions for the An-type
structure, and the row’s sums is that for the Am-type and the functions φi

and εi are specified as for the normal crystals). Column-wise operations for
An-type crystal operations we denote Li and Ri, i = 1, . . . , n − 1, respec-
tively: the action of the operator Li sends an array a to the array Li(a)
which either differs from a only in two adjacent places (i, j) and (i + 1, j),
Li(a)(i, j) = a(i, j)+1, Li(a)(i+1, j) = a(i+1, j)− 1 (of course, the tensor
product entry j is determined by the array a), or Li(a) = a.

Row-wise operations for Am-type crystal operations, we denote Dj and
Uj , j = 1, . . . , m − 1, respectively: the action of the operator Dj sends an
array a to the array Dj(a) which either differs from a only in two adjacent
places (i, j) and (i, j + 1), Dj(a)(i, j) = a(i, j) + 1, Dj(a)(i, j + 1) = a(i, j +
1) − 1 (of course, the tensor product entry i is determined by the array a),
or Dj(a) = a.

Operations Dj and Uj might be defined as Dj(a) = (Lj(at))t, where at

denotes the transposition, at(i, j) = a(j, i).
Thus, we will specify the definition of these operation action by defining

the operations L1, R1 on the two-column arrays. Consider an array a




a(1, m) a(2, m)
...

...
a(1, 2) a(2, 2)
a(1, 1) a(2, 1)




In order to define the action of L1, consider the following function la : [m] →
3The double crystal structure on the set of bi-words introduced by Lascoux ([10]) differs

from this structure.
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Z,

la(j) = a(2, 1) +
j∑

j′=2

(a(2, j′) − a(1, j′ − 1)).

Denote j∗ the smallest element of the set Argmax la(j). If fa(j∗) = 0, then
L1(a) = a, otherwise L1(a) takes the form




a(1, m) a(2, m)
...

...
a(1, j∗ + 1) a(2, j∗ + 1)
a(1, j∗) + 1 a(2, j∗) − 1
a(1, j∗ − 1) a(2, j∗ − 1)

...
...

a(1, 1) a(2, 1)




In order to define the action of R1, consider a function ra : [m] → Z,

ra(j) = a(1, m) +
m−1∑
j′=j

(a(1, j′) − a(2, j′ + 1)).

Denote ĵ the smallest element of the set Argmax ra(j). If ra(ĵ) = 0, then
R1(a) = a, otherwise R1(a) takes the form



a(1, m) a(2, m)
...

...
a(1, ĵ + 1) a(2, ĵ + 1)
a(1, ĵ) − 1 a(2, ĵ) + 1
a(1, ĵ − 1) a(2, ĵ − 1)

...
...

a(1, 1) a(2, 1)




These operations endow the set of two columns arrays with the A2-type
crystal structure ([2]).

The following property of the above defined functions play an important
role for proving the theorem: firstly, a(2, j∗) > a(1, j∗ − 1); secondly, if
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a(2, j∗) > a(1, j∗) − 1, then, for the array




a(1, m) a(2, m)
...

...
a(1, j∗ + 1) a(2, j∗ + 1)

a(1, j∗) a(2, j∗) − 1
a(1, j∗ − 1) a(2, j∗ − 1) + 1

...
...

a(1, 1) a(2, 1)




L1 acts at the j∗-s row; finally, if a(2, j∗) = a(1, j∗)− 1, then, for the above
array, L1 acts at the j∗ − 1 row.

Now we have two decompositions of A(n, m): the first one consists of
irreducible An-crystals, i.e., connected orbits under Li, Ri actions, and the
second one consists of Am-crystals, connected orbits under Dj , Uj actions.

The ”highest weight vectors” in A(n, m) under An-crystal structure, i.e.
arrays a ∈ A(n, m) such that Li(a) = a for any i = 1, . . . , n − 1, are called
L-tight. Correspondingly, ”highest weight vectors” in A(n, m) under Am-
crystal structure, i.e. arrays a ∈ A(n, m) such that Dj(a) = a for any
j = 1, . . . , m − 1, are called D-tight. For each array a there exists a unique
L-tight array in the orbit through a under actions Li, Ri, i = 1, . . . , n − 1
(correspondingly, a unique D-tight array in the Dj , Uj-orbit). This follows
from the Coxeter-Moore relations among crystal operations Li := L∞

i , i =
1, . . . , n − 1 ([2]).

As a corollary of the following proposition, we obtain that an irreducible
crystal with the highest weight vector of weight λ ∈ Zn as a set is isomorphic
to the set of semi-standard Young tableaux of shape λ, as it has to be ([3, 8]).

Proposition 1. 1) There is one-to-one correspondence between the set
of L-tight arrays in A(n, m) and the set of semi-standard Young tableaux
with at most n rows and filled from an the alphabet on m letters.

2) There is one-to-one correspondence between the set of D-tight arrays
in A(n, m) and the set of semi-standard Young tableaux with at most m
rows and filled from an n letters alphabet.

For proof see [2].
Here we explain this proposition by an example.
Example.
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Consider the following L-tight array in A(3, 4)


3 4 3
2 0 0
1 4 0
5 0 0




To get a semi-standard Young tableaux we have to read this array from
bottom to top and from left to right. Reading each column gives us filling of
a corresponding row in the Young tableau, the content a(i, j) is exactly the
number of repetitions of the letters j in the i-th row of the Young tableaux
(we consider the French style of drawing Young diagrams and tableaux, that
is the Young diagram for a partition λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 is a collection
of boxes in the grid N × N with north-east corners (i, j) such that j ≤ n,
i ≤ λj , and a Young tableau is a filling of the diagram from some alphabet
increasingly along each row (from left to right) and strictly increasing from
bottom to top). Thus, for the above array, we get

4 4 4
2 2 2 2 4 4 4 4
1 1 1 1 1 2 3 3 4 4 4

Given an array a, we denote L(a) the tight array which is obtained by the
rule Ln−1 . . . (L2 . . .Ln−1(L1L2 . . .Ln−1(a))). Because of the Coxeter-Moore
relations between Li, L(a) does not depend on a sequence of applications
of the operations Li, i = 1, . . . , n−1, in order to get an L-tight array from a.
We denote D(a) the D-tight array Dm−1 . . . (D2 . . .Dm−1(D1D2 . . .Dm−1(a))).

Because the operations Li and Dj commute, for any array a ∈ A(n, m),
the semi-standard Young tableaux, which correspond to the tight arrays
L(a) and D(a), have the same shapes.

Denote by LA, DA and PA the set of L-tight arrays, D-tight arrays
and LD-tight (or perfect arrays), respectively. Perfect arrays might have
non-zero entries at the diagonal only (they correspond to the Yamanouchi
tableau). Thus, we get a mapping

(L,D) : A → LA×LDA DA (11)

which sends the set of arrays A into the fiber product LA and DA over PA
(we have in mind the natural mappings D : LA → DLA L : DA → LDA).

The mapping (L,D) agrees with the crystal operations Li, Dj , if we set
them by the rule. Let (l, d) be a point of the fiber product, i.e. l is an
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L-tight array, d is an D-tight array and there holds Dl = Ld. Then, we set

Li(l, d) = (Lil, Lid) = (l, Lid).

In [2], we proved that (11) is a bijection indeed. It is slightly differs from
the well-known RSK correspondence (see, for example, [4]). Namely, the
semi-standard tableaux for D(a) coincides with the P -symbol of a, while
the semi-standard tableaux for L(a) is the Schützenberger involution to the
Q-symbol of a.

Resume. We want to point out that there is no bi-crystal structure on
A, which agrees with the tensor product and corresponds to the classical
RSK.

4 Irreducible bi-crystals

Let us consider irreducible bi-crystals of A(n, m) and when decompose of
the set of arrays as a sum of such irreducible ones.

An irreducible bi-crystal takes the form of orbit of an array a under the
operations Li, Ri, i = 1, . . . , n − 1, and Dj , Uj , j = 1, . . . , m − 1. Because
these pairs of operators commute, this set is determined by the shape of a,
that is irreducible bi-crystals of A(n, m) are in one-to-one correspondence
with the set of partitions with at most min(n, m) non-zero parts.

In fact, since the pairs of the operators Li, Ri, i = 1, . . . , n− 1, and Dj ,
Uj , j = 1, . . . , m−1, commute, we can first consider the orbit of a under the
pair of operations Li, Ri, i = 1, . . . , n− 1, and than to consider orbits of all
element of this orbit under the pair of operations Dj , Uj , j = 1, . . . , m − 1.
Obviously, this bi-orbit contains a unique perfect array D(L(a)) (which is,
of course, equals L(D(a))). Let λ be the diagonal of this perfect array
(obviously, λ is a partition). Now, consider the orbit of this perfect array
under the action of operations Ri, i = 1, . . . , n − 1, as a result we get
the collection of semi-standard Young tableaux of shape λ filled from the
alphabet 1 < 2 < . . . , < n. Thus, we get the crystal BV (λ) for the irreducible
representation of GL(V ) of weight λ.

Now, considering the crystal BV (λ) ⊂ A(n, m) as a ”point”, we get that
the orbit of this ”point” under the action of the operations Uj , j = 1, . . . , m−
1, is isomorphic to the set of semi-standard Young tableaux of shape λ filled
from the alphabet 1 < 2 < . . . , m, and moreover it is isomorphic to the
crystal BW (λ) for the irreducible representation of GL(W ) of the highest
weight λ.
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Thus, the bi-orbit of a, an irreducible bi-crystal, takes the form of the
exterior tensor product

BV (λ)⊗̂BW (λ).

We get the following bi-crystal multiplicity-free decomposition

A(n, m) ∼=
∑

λ

BV (λ)⊗̂BW (λ). (12)

The decomposition (12) is the crystal version of the Howe GL(V ), GL(W )-
duality.

5 Combinatorial R-matrix and Schützenberger’s
involution

According to Theorem 9.3.1 in [8], any normal An crystal might be embedded
into A(n, m) for an appropriate m. In fact, let B be a normal crystal and
let λ(1), λ(2), . . . , λ(k) be a tuple of the highest weights of the irreducible
components of B, that is a tuple of partitions. Let us pick a tuple without
repetitions of semi-standard Young tableaux of shapes λ(1), λ(2), . . . , λ(k),
obviously we can always do that with an appropriate alphabet 1 < 2 < . . . <
m. Now we consider the L-tight arrays corresponding to these tableaux,
than we consider the orbits of these arrays under the action of operations
Ri, i = 1, . . . , n − 1. The resulting set of arrays provide an embedding of B
and this embedding is a crystal isomorphism. Of course, such an embedding
is not unique.

Now, we specify a category An which corresponds to crystals of A(n,∞).
The set Ob(An) of objects of the category is constituted of finite subsets

of A(n,∞) stable under actions of operations Li, Ri, i = 1, . . . , n − 1. We
will consider such sets modulo the following equivalence: two objects B and
B′ ∈ Ob(An) are equivalent if there exists B′′ ∈ A, such that B and B′

might be obtained by inserting some zero rows to B′′. The set of morphisms
Mor(B′, B′′), B′, B′′ ∈ Ob(An) consists of all crystal morphisms from B′

to B′′. One can check that we obtain a category indeed. (Note, that,
due to Proposition 1, the set of objects of the category An, is in one-to-
one correspondence to the set of finite tuples without repetitions of semi-
standard Young tableaux whose diagrams have at most n rows. A morphism
of two such tuples is a mapping h : {Λ1, . . .} → {Λ′

1, . . .} such that the shape
of Λi coincides with the shape of h(Λi).)

The zero element of this category is the zero array.

12



The category An is a tensor category. Namely, let B, B′ ∈ Ob(An), then
B ⊗B′ is a subset of A(n,∞) obtained by putting B′ on the top of B, that
is let B ⊂ A(n, m), for an appropriate m, and B′ ⊂ A(n, m′), for some m′,
then B ⊗ B′ ⊂ A(n, m + m′) and the elements of the tensor product are
n × (m + m′) arrays of the form of concatenation of n × m arrays of B and
n × m′ arrays of B′.

Now we define an involution on the category ∗ : An → An. Namely,
let B ∈ Ob(An) be an object of the category, that is an invariant (under
Li, Ri, i = 1, . . . , n − 1) finite subset of A(n,∞), and let m be minimal
integer such that B ⊂ A(n, m). Then we define ∗B ⊂ A(n, m) to be a
set constituted of the arrays centrally symmetric to arrays of B, that is, to
a ∈ B is corresponded the centrally symmetric array a∗ ∈ ∗B, such that
a∗(i, j) = a(n − i + 1, m − j + 1), i = 1, . . . , n, j = 1, . . . , m.

Lemma. Let B be an invariant finite subset of A(n,∞). Then ∗B is an
invariant subset of A(n,∞).

Proof. One can check that there hold Li(a∗) = (Rn−i(a))∗ and Ri(a∗) =
(Ln−i(a))∗. Q.E.D.

Note, that the mapping B → ∗B, a → a∗, a ∈ B ⊂ A(n, m), is not a
crystal morphism. For example, let a ∈ B be a highest weight vector (i.e.
Lia = a, i = 1, . . . , n − 1), then Ri(a∗) = a∗, i = 1, . . . , n − 1.

Let us define a crystal isomorphism S : B → ∗B. This isomorphism
might be seen as a generalization of the Schützenburger involution. Namely,
let a ∈ B and let w be an effective word for a, that is a word Lis . . . Li1 in
the alphabet L1, . . . , Ln−1 such that
1) wa = L(a);
2) for any t = 1, . . . , s − 1, Lit . . . Li1 a 
= Lit+1Lit . . . Li1 a.

Then the reading w from left to right and simultaneous replacing Li by
Ri, i = 1, . . . , n − 1, produce the word w′ = Ri1 . . . Ris in the alphabet
R1, . . . , Rn−1, such that a = w′(L(a)). Then the mapping a → w′(L(a∗)) is
a crystal isomorphism, which we will denote S : B → ∗B. (Note that S(a)
does not depend on the effective word for a.)

Example. Let

a =




5 1 0
3 2 4
1 3 0
2 1 3


 , then L3

1L
5
2L

3
1 is a reading word for a and
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S(a) =




3 1 2
0 3 1
8 0 1
0 3 3


 .

Note that this crystal isomorphism S : A(n, m) → A(n, m) sends an
L-tight array a to the L-tight array L(a∗). Using the bijection between
L-tight arrays of A(n, m) and semi-standard Young tableaux in the alpha-
bet {1, . . . , m} with at most n rows (Proposition 1), we established ([2])
that the above defined crystal isomorphism coincides with the well-known
Schützenberger involution on tableaux (for the original definition of the
Schützenberger involution see, for example, [4]).

This crystal isomorphism gives rise to an interesting isomorphism B ⊗
B′ ∼= B′ ⊗ B.

Namely, we set R(B⊗B′) = S(S(B)⊗S(B′)). Obviously the set S(B⊗
B′) coincides with the set ∗B′×∗B, and the latter set equals S(B′)×S(B).
Since S is an involution, we get the isomorphism

R : B ⊗ B′ ∼= B′ ⊗ B.

Conjecture. The isomorphism R is an involution and there holds the
Yang-Baxter equation

R12R23R12(B ⊗ B′ ⊗ B′′) = R23R12R23(B ⊗ B′ ⊗ B′′).

Here some evidences supporting this conjecture.
Let B = BV (k), B′ = BV (l), B′′ = BV (m) be crystals corresponding

to the irreducible representations Sk(V ), Sl(V ) and Sm(V ) of GL(V ), re-
spectively. Then, since there exists unique isomorphism BV (k) ⊗ BV (l) ∼=
BV (l) ⊗ BV (k), R coincides with this isomorphism. Moreover, this isomor-
phism is exactly the symmetric group involution σ : A(n, 2) → A(n, 2),
σ(a) = Dε′1(a)−φ′

1(a)(a) if ε′1(a) ≥ φ′
1(a), and σ(a) = Uφ′

1(a)−ε′(a)(a) over-
wise. Since the generators of the symmetric group satisfy the Coxeter-
Moore relation, the Yang-Baxter equation holds true in the case B = BV (k),
B′ = BV (l), B′′ = BV (m).

Lemma. Let B, B′ ∈ Ob(A3). Then the isomorphism R : B ⊗ B′ ∼=
B′ ⊗ B is an involution.

Proof. We have to check the following diagram is commutative.

B ⊗ B′ →S⊗S S(B) ⊗ S(B′)
↓ ↓

S(B ⊗ B′) →S⊗S B′ ⊗ B

14



In the case n ≤ 3, this might be done by routine verification for irreducible
orbits. Let B and B′ be the orbit of the weights (λ1, λ2, λ3) and (ν1, ν2, ν3),
respectively. To check the commutativity, it suffices to do that for highest
weight vectors of B⊗B′, i.e. L-tight arrays of the form b

b′ , with some b ∈ B,
b′ ∈ B′ (obviously, b is L-tight). These arrays take the form

0 0 ν3

0 ν2 − c c
ν1 − a − b a b

0 0 λ3

0 λ2 0
λ1 0 0

where a ≤ λ1 − λ2 and max{b, b + c − a} ≤ λ2 − λ3.
There are several cases for checking. For a ≤ c, we have S(S(b)⊗S(b′)) =

S ⊗ S(S(b ⊗ b′)) =

0 0 λ3

0 λ2 − (b + c − a) b + c − a
λ1 − a − b b a

0 0 ν3

0 ν2 0
ν1 0 0

Other cases are left to the reader. Q.E.D.

Remark. There is the isomorphism R′ : BV (λ) ⊗ BV (ν) ∼= BV (ν) ⊗
BV (λ) which obtains via degenerations of quantum deformations of the ten-
sor product of the irreducible representations of GL(V ), Vµ ⊗ Vν , at q = 0
and q = ∞ (see [3]). It is interesting to compare R and R′.

6 Bi-crystal structure of Λ•(V ⊗ W )

The subset B(n, m) of Boolean arrays of A(n, m), that is the set of arrays
with {0, 1} entries might be seen as the ground set for the An×m-type
crystal corresponding to Λ•(V ⊗ W ). We introduce two commuting crystal
structures on B(n, m). These structures will be different of what structures
in A(n, m). (Obviously, B(n, m) is not stable under the crystal operations
Li, Ri and Dj , Uj , i = 1, . . . , n − 1, j = 1, . . . , m − 1.)

Let us define the operations L̂1 and R̂1 in two column’s arrays B(2, m).
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Consider such an array a 


a(1, m) a(2, m)
...

...
a(1, 2) a(2, 2)
a(1, 1) a(2, 1)




In order to define the action of L̂1, consider the following function l̂a : [m] →
Z,

l̂a(j) =
m∑

j′=j

(a(2, j′) − a(1, j′)).

Denote j∗ the greatest element of the set Argmax l̂a(·). If l̂a(j∗) ≤ 0, then
L̂1(a) = a, otherwise L̂1(a) takes the form



a(1, m) a(2, m)
...

...
a(1, j∗ + 1) a(2, j∗ + 1)
a(1, j∗) + 1 a(2, j∗) − 1
a(1, j∗ − 1) a(2, j∗ − 1)

...
...

a(1, 1) a(2, 1)




Note, that in this case, since we consider Boolean arrays, we get a(1, j∗) = 0
and a(2, j∗) = 1 from the definition of j∗. In order to define the action of
R̂1, consider a function r̂a : [m] → Z,

r̂a(j) =
j∑

j′=1

(a(1, j′) − a(2, j′)).

Denote ĵ the least element of the set Argmax r̂a(·). If r̂a(ĵ) ≤ 0, then
R̂1(a) = a, otherwise R̂1(a) takes the form



a(1, m) a(2, m)
...

...
a(1, ĵ + 1) a(2, ĵ + 1)
a(1, ĵ) − 1 a(2, ĵ) + 1
a(1, ĵ − 1) a(2, ĵ − 1)

...
...

a(1, 1) a(2, 1)



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It is easy to check that these operations set A2-type crystal structure on the
set of two columns arrays B(2, m) with the weight function being column’s
sum.

The pair of commuting operations D̂j and Ûj do not come of the form
of the transposition as it was in the case of arrays of A(n, m). Specifically,
we set U1 on the two-row’s array as follows: firstly we transform a two-row’s
array a ∈ B(n, 2)

a =
(

a(1, 2) a(2, 2) . . . a(n, 2)
a(1, 1) a(2, 1) . . . a(n, 1)

)

into two-column’s array a� ∈ B(2, n) with entries

a� =




a(1, 1) a(1, 2)
a(2, 1) a(2, 2)

...
...

a(n, 1) a(n, 2)




Then, we consider the inverse array in Z(n, 2) for the array L1(a�), that
array we set as D1(a), i.e.

D̂1(a) = (L̂1(a�))−�. (13)

Of course, U1(a) = (R̂1(a�))−�. Thus, we get two crystal structures on
the set B(n, m). We claim that these A-type crystal structures commute.
Namely, there holds

Theorem 2. The operation L̂i commutes with the operation D̂j .

Proof. We have to check the proposition for two cases. The first one,
the operation L̂i acts identically and D̂j act either in the column i, or i + 1.
The second case, when L̂i acts either in the row j + 1, or j.

We will imagine 1 at the (l, k)-th place as a ball in the corresponding
box.

In the first case, all balls in the i + 1-th column could be matched with
the balls in the i-th column such that each ball of the i + 1-th column has a
paired partner located west or west-north of it. Assume that D̂j transforms a
west-located partner down. Then the corresponding function r̂j attains first
maximum at ĵ = i, that forces the identity a(i + 1, j) = a(i + 1, j + 1) = 1.
Now L̂iD̂j = D̂jL̂i follows since, L̂i also does not acts on D̂j(a), since
a(i+1, j) and a(i+1, j+1) will exchange their partners in D̂j(a), comparing
the partnerships in a.
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In the second case, either Li acts in the j-th or (j+1)-th rows (otherwise
commuting is obvious). In the first case, we have a(i, j +1) = a(i+1, j +1),
and one can check that L̂iD̂j = D̂jL̂i. In the second case, a(i, j) ≥ a(i+1, j),
and again it is easy to check L̂iD̂j = D̂jL̂i. Q.E.D.

Because of this theorem, we can consider bi-invariant subsets of B(n, m),
and such subsets have bi-crystal structure. Let us consider D̂-tight, L̂-tight
and L̂D̂-tight arrays of B(n, m).

Proposition 2. 1) A L̂D̂-tight array of B(n, m) takes the form of an
array which has 1’s located at nodes of a Young diagram and 0’s outside.

2) There is a canonical bijection between D̂-tight (and L̂-tight) and
semi-standard Young tableaux.

3) If the tableau for L̂(a) has the shape λ = (λ1 ≥ λ2 ≥ . . . ≥ λk), then
the tableau for D̂(a) has the transposed shape λ′. Moreover, the shape of
L̂(a) coincides with the shape of the Young diagram constituted of the 1’s
of the array L̂(D̂(a)).

Proof. We start from proving the item 2. The bijection is set by the
following rule. Given a D̂-tight array a, we associate to it a tableau such
that the j-th column of this tableau is obtained by reading from left to right
the j-th row of a in the alphabet 1 < 2 < . . . < n. Namely if a(j, i) = 1
then we insert the letter i in the column, otherwise we go to a(j, i + 1).
For example, the row 110001010100 reads as the column (1 2 6 8 10)t. Thus,
we have to verify that the result of such a transforming rows of arrays into
columns of a tableau will get a semi-standard Young tableau. Because of
the reading rule and since the arrays are Boolean, we get strict increasing
along the columns. So, we have to check that each row of such a tableau
is weakly increasing. It suffices to check this for a pair of adjoint rows, or,
equivalently, for two row’s arrays. Due to the definition of D̂-tightness, there
exists a matching such that each ball in the second row has a partner in the
south-west or south direction in the first row. This implies weak increasing
along the row of the corresponding column. Obviously, this construction
reverses, and, thus, the claimed bijection is established.

We associate a semi-standard tableau to an L̂-tight array of B(n, m) as
follows. We fill up the i-th column of the tableau by reading i-th column of a
from top to bottom in the alphabet 1 < 2 < . . . < m. Namely, if a(i, j) = 1,
then we fill the letter m− j + 1, overwise we go to a(i, j − 1). For example,
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the L̂-tight array
1 1 0 0
0 0 1 0
1 0 0 1
0 1 1 1
1 0 0 0

produces the tableaux
5
3 4 4 4
1 1 2 3

Thus we established the item 2.

The item 3 follows from the above construction and the item 1. To
establish the item 1, we show that L̂D̂-tight arrays can not have “holes”, i.e.
in such an array it can not happen that a(i, j) = 0 and either a(i, j +1) = 1
or a(i + 1, j) = 1. In fact, assume that such a hole exists, say a(i, j) = 0
and a(i, j + 1) = 1 for some (i, j). We call such a hole vertical. Then, for
some i′ < i, there holds a(i′, j + 1) = 0 and a(i′ + 1, j + 1) = 1. We call
such a hole horizontal. In fact, if a(i′, j + 1) = 1 with any i′ < i, then
Ûj(a) 
= a. Furthermore, there holds a(i′, j′) = 1 with some j′ > j + 1,
otherwise L̂i′(a) 
= a. That implies existence of a vertical hole being located
strictly north-west to (i, j), that is a(i′, j̃) = 0 and a(i′, j̃ +1) = 1 with i′ < i
and j̃ > j. Hence, we can get an infinite sequence of vertical holes, that is
not the case. Q.E.D.

Let us illustrate this proposition by the following example. Consider the

array a =

0 0 1
1 1 0
1 0 1
0 1 1

. Then D̂(a) =
0 0 1
1 1 1
1 1 1

and the corresponding Young

tableau is
3 3
2 2
1 1 3

, L̂(a) =

1 0 0
1 1 0
1 0 1
0 1 1

and the corresponding tableau is

3
2 4 4
1 2 3

, and, finally,

D̂L̂(a) =
1 0 0
1 1 1
1 1 1

.
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Remark. There is a bijection between the set of D̂-tight arrays of
B(n, m) and functions f : [m] → 2[n] which are monotone with respect
to the following partial order4 on 2[n]: for subsets K = {i1, . . . , ik} and
L = {j1, . . . , jl} of [n], we set

K �� L if k ≤ l and it ≥ jt for t = 1, . . . , k.

In fact, let a be a D̂-tight array. Then D̂j(a) = a is equivalent to that we
can provide to each 1 in the j + 1-th row of a its own partner 1 located
south or south-west in the j-th row. Thus, the collection fa(j) := {i ∈ [n] :
a(i, j) = 1}, j = 1, . . . , m, of subsets of [n] is monotone, fa(j + 1) �� fa(j),
j = 1, . . . , m − 1.

Similarly L̂-tight arrays of B(n, m) are in bijection with monotone func-
tions g : [n] → 2[m]. Specifically, a → ga, where ga(i) := {m − j + 1 :
a(i, j) = 1}, i = 1, . . . , n.

There is a bijection ∗c : B(n, m) → B(n, m), which is the composition
of two mappings: the first one sends a Boolean array a to its complement
ac, ac(i, j) = 1 iff a(i, j) = 0 and ac(i, j) = 0 iff a(i, j) = 1, and the second
sends an array a to its middle-axe symmetry as(i, j) = a(n− i + 1, j). Thus

(∗ca)(i, j) = ac(n − i + 1, j), i = 1, . . . , n, j = 1, . . . , m.

Proposition 3. The mapping ∗c sends the set of L̂-tight arrays to itself.
Proof. The proposition follows from the above remark and the following
property of the ordering ��:
Let K, L be subsets of [n]. Then K �� L if and only if Lc �� Kc, where
Kc = [n] \ K denotes the complement. Q.E.D.

As a consequence of this proposition and Proposition 3, we get the fol-
lowing bijection (noted in [6])

The mapping ∗c provides is a bijection between the set of semi-standard
Young tableaux of shape λ, n ≥ λ1 ≥ . . . ≥ λm ≥ 0, filled out from the
alphabet 1, . . . , m, of weight (µ1, . . . , µm) and the set of semi-standard Young
tableaux of the dual shape λd := (n − λm, . . . , n − λ1) and the dual weight
(n − µ1, . . . , n − µm).

Now we are going to define less trivial bijection. The mapping a →
(L̂(a), D̂(a)) is a bijection. We have to show how to invert this mapping.
The inversion procedure is parallel to that for the case of A(n, m) ([2]).
Namely, a word w = L̂i1 . . . L̂is in the alphabet L̂1, . . . , L̂n−1 is said to be

4This order was considered in [7].
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effective for an array a ∈ B(n, m) if
1) wa = L̂(a);
2) for any t = 1, . . . , s − 1, L̂it . . . L̂is(a) 
= L̂it+1 . . . Lis(a).

Let l be an L̂-tight array, let d be an D̂-tight array and D̂(l) = L̂(d) (that
is we take a pair of semi-standard Young tableaux of conjugate shapes). Let
w = L̂i1 . . . L̂is be an effective word for d. Then we set

a = R̂is . . . R̂i1(l).

We claim that l = L̂(a) and d = D̂(a). The first equality is obvious, the
second holds due to commutativity of the operations L̂i and D̂j , and due to
D̂(l) = L̂(d).

Any bi-invariant subset of B(n, m) contains a unique L̂D̂-tight array, and
its shape completely characterizes that subset. Moreover, the bi-invariant
subset of B(n, m) of the shape λ takes the form of the external tensor product
BV (λ)⊗̂BW (λ′), and so, we get the decomposition

B(n, m) ∼=
∑

λ

BV (λ)⊗̂BW (λ′),

where summations is take over partitions with at most n columns and m
rows.

Remarks. 1) The bijection a → (L̂(a), D̂(a)) resembles the Knuth bi-
jection5 between the set of 0, 1-matrices and pairs of semi-standard tableaux
of conjugate shapes. Alike, the RSK bijection and the bi-crystal decomposi-
tion A differ by the Schützenberger involution one of tableaux, this bijection
also has the same difference from the Knuth bijection.

2) Similarly to the case of integer arrays A(n, m) ([2]), there exists two
pairs of commuting crystal structures on B(n, m), crystal structures in each
pair are related via the crystal isomorphism S : A(n, m) → A(n, m) (see
Section 5), while there is no even relations between shapes of an array a
with respect to crystal structures from different pairs.

3) Let us note, that due to the definitions of the crystal structures (and
we have yet seen that in the proof of the above proposition), tensor product
of Am-crystals B(n, m)⊗B(n′, m) is obtained by putting arrays of B(n′, m) to
the right B(n, m), while the tensor product of An-crystals B(n, m)⊗B(n, m′)
is obtained by putting arrays of B(n, m′) to the bottom B(n, m), i.e. b ⊗ b′

5The Knuth bijection is also known under the name dual RSK correspondence. Our
constructions do not revealed any duality.
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reads as the array
b
b′ . Because of this and the above established isomorphism

between L̂-tight 0, 1-arrays and semistandard tableaux, B(∞,∞) has to be
the set of 0, 1-arrays (with finite support) located in the ortant x ≥ 0, y ≤ 0.

4) Similarly to the case of A(n,∞), any normal An-type crystal might
be embedded into B(n,∞). This gives rise to the category Bn constituted of
L̂i, R̂i-invariant (finite) subsets of B(n,∞). The set of objects of Bn might
be parametrized by finite tuples without repetitions of semistandard Young
tableaux with at most n columns. The same reasoning as for the category
An take place in the category Bn. Thus, this category has the involution
∗ : Bn → Bn and hypothetical R-matrix. So, we get another tensor category
equivalent to the category of normal crystals.

7 Continuous crystals

Here we introduce the notion of continuous An-type crystals, and show that
the set of arrays AR(n, m) with non-negative real entries has two commuting
An and Am-continuous crystal structures. Thus, AR(n, m) is a continuous
bi-crystal. It is interesting to note that there are no relations among usual
crystal operations Ei and Ei+1, while, for continuous normal crystal, the
Verma relations hold true infinitesimally. This could provide a link between
the continuous crystals and geometric crystals due to Berenstein and Kazh-
dan [1].

Definition. A set B is said to be a continuous An-type crystal if, for
any α ≥ 0, there are operations Eα

i : B �→ B, Fα
i : B �→ B, i = 1, . . . , n− 1,

and functions εi : B → R, φi : B → R, i = 1, . . . , n − 1, wt : B → Rn, such
that there holds

Eα
i (b) = b′ ⇔ Fα

i (b′) = b if, for any δ > 0, Eα−δ
i b 
= b′; (14)

wt(Eα
i (b)) = wt(b) + α(ei − ei+1) if , for any δ > 0, Eα−δ

i b 
= Eα
i (b); (15)

wt(Fα
i (b)) = wt(b) − α(ei − ei+1) if , for any δ > 0, Fα−δ

i b 
= Fα
i (b); (16)

wt(b)i − wt(b)i+1 = φi(b) − εi(b), (17)

where εi(b) = max{α : for any δ > 0, Eα−δ
i b 
= Eα

i (b)}, and φi(b) =
max{β : for any δ > 0, F β−δ

i b 
= Eβ
i (b)}.

A continuous crystal is irreducible if it is a connected set with respect to
the action of operators Eα

i , Fα
i , α ≥ 0, i = 1, . . . , n − 1.

Any irreducible crystal B is characterized by the weight wt(uB) of its
”highest weight vector”, i.e. Eα

i (uB) = uB with any i = 1, . . . , n− 1, α ≥ 0.
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Due to (17) and definition of the functions εi, i = 1, . . . , n − 1, we get that
wt(uB) belongs to the Weil chamber W (Rn) := {x1 ≥ . . . ≥ xn}.

Alike the set of semi-standard Young tableaux of shape λ ∈ W (Zn)
might be endowed with crystal operations of An-type, the set of ”continuous”
Young tableaux, or, equivalently, the set of all points of the Gelfand-Ceitlin
polytope might be endowed with continuous crystal operations of An-type.
Namely, according to Proposition 1, we may identify the set of semi-standard
Young tableaux of shape λ with the orbit of LD-tight array with λ on the
diagonal under the action of operations Ri, i = 1, . . . , n − 1. Similarly, the
orbit of LD-tight array with λ ∈ W (Rn) on the diagonal under the action
of operations Ra

i , a ≥ 0, i = 1, . . . , n − 1, is in bijection with the points of
the Gelfand-Ceitlin polytope GC(λ). Denote by Bc

V (λ) this crystal.

Remark. Note that Bc
V (λ) extends the crystal BQ(λ) due to Definition

8.1.7 [8], that is, due to the Kashiwara definition λ ∈ Qn and crystal oper-
ations are taken in rational powers, while due to ours λ ∈ Rn and crystal
operations are taken in real powers.

Now we introduce several notions. A continuous crystal is simple if it
contains finitely many connected components (with respect to the action of
operators Eα

i , Fα
i , α ≥ 0, i = 1, . . . , n − 1).

A measurable G-C crystal takes the form of the direct sum∐
λ∈W (Rn)

C(λ) × Bc
V (λ)

with a measurable set-valued function C : Rn → R+.
A mapping f : B1 → B2 of continuous crystals B1 and B2 is a morphism

if f commutes with the crystal operations.
A crystal is measurable if it is isomorphic to a measurable G-C crystal.
Tensor product B1 ⊗ B2 of continuous crystals is the set B1 × B2 with

operations wt(b1, b2) = wt(b1) + wt(b2) and

Ea
i (b ⊗ b′) = Ea′

i ⊗ Ea′′
i (b′), (18)

where a′′ = min{a, φi(b) − εi(b′)}, a′ = a − a′′, and

F a
i (b ⊗ b′) = F ã

i ⊗ F
˜̃a
i (b′), (19)

where ã = min{a, φi(b) − εi(b′)}, ˜̃a = a − ã.
The same formulae as in the case of usual crystals define the action of

Weil group and Hecke algebra Hn(0) for continuous crystals.
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We are going to endow the set of real-valued arrays AR(n, m) with the
structure of continuous An-crystal (Am-crystal and bi-crystal).

Similarly to the case of A(n, m), to define the operators Eα
i , Fα

i , α ≥ 0,
i = 1, . . . , n − 1. we have to define operations Lα := Eα

1 and Rα := Fα
1 for

two columns’ arrays AR(2, m).
Consider an array a




a(1, m) a(2, m)
...

...
a(1, 2) a(2, 2)
a(1, 1) a(2, 1)




In order to define the action of Lα
1 , consider the function la : [m] → R,

la(j) = a(2, 1) +
j∑

j′=2

(a(2, j′) − a(1, j′ − 1)).

Define ε1(a) = maxj la(j). Since for α ≥ ε1(a), Lα
1 = L

ε1(a)
1 (a), we consider

the case α ≤ ε1(a). Obviously, if ε1(a) = 0, then Lα
1 (a) = a for any α.

Denote j∗1 the smallest element of the set Argmax la(j), denote j∗2 the
smallest element of the set Argmaxj<j∗1 la(j) and so on, denote j∗t the smallest
element of the set Argmaxj<j∗t−1

la(j). A resulting sequence is j∗1 > . . . >

j∗k = 1. Denote δj∗t = la(j∗t ) − la(j∗t+1), t = 1, . . . , k − 1. Let t∗ be the first
occurrence of δj∗1 + . . . δj∗t ≥ α. Then L1(a) takes the form




a(1, m) a(2, m)
...

...
a(1, j∗1) + δj∗1 a(2, j∗1) − δj∗1
a(1, j∗ − 1) a(2, j∗ − 1)

...
...

a(1, j∗2) + δj∗2 a(2, j∗2) − δj∗1
...

...
a(1, j∗t∗) + α − (δj∗1 + . . . + δj∗

t∗−1
) a(2, j∗t∗) − α + (δj∗1 + . . . + δj∗

t∗−1
)

...
...

a(1, 1) a(2, 1)



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For example, if t∗ = 1, then L1(a) takes the form


a(1, m) a(2, m)
...

...
a(1, j∗1) + α a(2, j∗1) − α
a(1, j∗ − 1) a(2, j∗ − 1)

...
...

a(1, 1) a(2, 1)




In order to define the action of R1, consider a function ra : [m] → R,

ra(j) = a(1, m) +
m−1∑
j′=j

(a(1, j′) − a(2, j′ + 1)).

Since for α ≥ φ1(a), Rα
1 = R

φ1(a)
1 (a), we consider the case α ≤ φ1(a). We

set φ1(a) = maxj ra(j).
Denote j∗1 the smallest element of the set Argmaxra(j), denote j∗2 the

smallest element of the set Argmaxj>j∗1 la(j) and so on, denote j∗t the smallest
element of the set Argmaxj>j∗t−1

la(j). A resulting sequence is j∗1 < . . . <

j∗k = m. Denote κj∗t = la(j∗t ) − la(j∗t+1), t = 1, . . . , k − 1. Let s∗ be the first
occurrence of κj∗1 + . . . κj∗s ≥ α. Then R1(a) takes the form


a(1, m) a(2, m)
...

...
a(1, j∗m∗) + α − (δj∗1 + . . . + δj∗

m∗−1
) a(2, j∗m∗) − α + (δj∗1 + . . . + δj∗

m∗−1
)

a(1, j∗2) + δj∗2 a(2, j∗2) − δj∗1
...

...
a(1, j∗ + 1) a(2, j∗ + 1)

...
...

a(1, j∗1) + κj∗1 a(2, j∗1) − κj∗1
...

...
a(1, 1) a(2, 1)




It is not difficult to check that these operations and the functions ε1, φ1 and
wt(a) = (

∑
j a(1, j),

∑
j a(2, j) endow the set of two-columns arrays with

the structure of a continuous A2-type crystal. Thus we get the continuous
An-type crystal structure on AR(n, m).

Using transposition a(i, j) → a(j, i), we get the continuous Am-type
crystal structure on AR(n, m).

25



The proof of Theorem 1 ([2]) provide the following results
Theorem 3. The above defined continuous An- and Am-crystal struc-

tures on AR(n, m) commute.

The Weil group Sn acts on columns of AR(n, m) as follows. The trans-
positions are set by

si(a) =

{
L

εi(a)−φi(a)
i (a) if εi(a) − φi(a) ≥ 0

R
φi(a)−εi(a)
i (a) if εi(a) − φi(a) ≤ 0

Correspondingly, elementary transpositions of the Weil group Sm action on
rows of AR(n, m) takes the form

sj(a) =

{
D

εj(a
∗)−φj(a

∗)
i (a) if εj(a∗) − φj(a∗) ≥ 0

U
φj(a

∗)−εj(a
∗)

j (a) else

Two Hecke algebras’ Hn(0) acts on on columns of AR(n, m) as ti(a) =
L

εi(a)
i (a), i = 1, . . . , n − 1, and t′i(a) = R

φi(a)
i (a) , i = 1, . . . , n − 1, corre-

spondingly.
Two Hecke algebras’ Hm(0) acts on on rows of AR(n, m) as tj(a) =

D
εj(a

∗)
i (a), i = 1, . . . , m − 1, and t′j(a) = U

φi(a
∗)

i (a) , i = 1, . . . , m − 1.

Corollary. a) The Weil groups’ Sn and Sm actions on AR(n, m) com-
mute6;

b) The Hecke algebras’ Hn(0) and Hm(0) actions on AR(n, m) commute.

Denote by LAR, DAR and PAR the sets of L-tight arrays, D-tight arrays
and LD-tight (or perfect arrays), respectively. Perfect arrays might have
non-zero entries at the diagonal only (they correspond to the continuous
Yamanouchi tableaux). Thus, we get a mapping

(L,D) : AR → LAR ×LDAR DAR (20)

The following proposition is the continuous (modified) RSK bijection.

Proposition 4. This mapping is a bijection.

Proposition 5. There is a bijection between the set of L-tight arrays
of shape λ and the set of points of the Gelfand-Cetlin polytope GC(λ).

The bi-crystal decomposition of AR(n, m) takes the form

AR(n, m) ∼=
∐
λ

Bc
V (λ)⊗̂Bc

W (λ). (21)

6In [9] is constructed another pair of commuting actions of Sn and Sm on AR(n, m).
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We say that a (continuous) crystal B is normal if, for some W , or m =
dim W , it is isomorphic (crystally) to sub-crystal of AR(n, m) of the form∐

λ∈Λ

D(λ) × Bc
V (λ),

where Λ is a polytope in W (Rn) and D(λ) is a polytope (or a finite disjoint
union of polytopes) in Bc

W (λ).
Here is a continuous variant of the generalized Schützenberger involution

(see Section 5).
Lemma. Let B be an invariant subset of AR(n, m). Then ∗B is an

invariant subset of AR(n, m).

Then S(a) = w′(L(a∗)) is the continuous generalized Schützenberger
involution, where w is an effective word for a in the alphabet Lt

i, 0 < t ≤ 1,
i = 1, . . . , n − 1, and w′ its reverse reading in the alphabet Rt

i, 0 < t ≤ 1,
i = 1, . . . , n − 1. On this way, we, hypothetically, get an R-matrix

Rc : Bc
V (λ) ⊗ Bc

V (ν) ∼= Bc
V (ν) ⊗ Bc

V (λ), Rc(b ⊗ b′) = S(S(b) ⊗ S(b′)).

7.1 Infinitesimal Verma relations

The following proposition shows that, for sub-crystals of AR(n, m) (m ≥ n),
the Verma relations hold true infinitesimally.

Proposition 6. Let B be a sub-crystal of AR(n, m) and let b ∈ B.
Then, there exists κ(b) > 0 such that, for any i = 1, . . . , n − 2,

Eα
i Eα+β

i+1 Eβ
i = Eβ

i+1E
α+β
i Eα

i+1 (22)

holds with any α, β ≤ κ(b).

Proof. One has directly to verify several possible configurations. We will
do this for one of them, leaving other cases to the reader. Namely, let εi(b) >
0 and εi+1(b) > 0. Let j∗i+1 be such that (Eα

i+1(b))(i+1, j∗i+1) = b(i+1, j∗i+1)−
α, let j∗i be such that (Eα+β

i (Eα
i+1(b)))(i, j

∗
i ) = b(i, j∗i )−(α+β), and let j∗∗i+1

be such that (Eβ
i+1((E

α+β
i (Eα

i+1(b)))))(i + 1, j∗∗i+1) = b(i + 1, j∗∗i+1)− β. Such
row numbers exist for appropriate choice of α and β. Consider a case j∗∗i+1 >

j∗i ≥ j∗i+1. Then, j∗i is that row number that (Eβ
i (b))(i, j∗i ) = b(i, j∗i )−β; j∗∗i+1

is that row number that (Eβ
i+1(E

β
i (b)))(i+1, j∗∗i+1) = b(i+1, j∗∗i+1)−β and j∗i+1

is that row number that (Eα
i+1(E

β
i+1(E

β
i (b))))(i + 1, j∗i+1) = b(i + 1, j∗i+1) −

α; and, finally, j∗i is that row number that (Eα
i (Eα+β

i+1 (Eβ
i (b))))(i, j∗i ) =
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(Eα+β
i+1 (Eβ

i (b(i, j∗i ))−α. All this together yields the validity of (22). Q.E.D.

Remark. The Verma relations do not hold globally. For example
E1E

2
2E1(b) 
= E2E

2
1E2(b) for the array

b =
0 0 1
0 0 1
1 0 0

.

In fact,

EiE
2
i+1Ei(b) =

1 0 0
0 1 0
1 0 0

Ei+1E
2
i Ei+1(b) =

0 1 0
0 1 0
1 0 0

.

8 Littlewood-Richardson rule

One of important problems is the decomposition into irreducibles the tensor
product of irreducible representations. The Weil formula provides an answer,
however, because the formula is of an alternating form and many simplifying
cancellations might be done, it is not easy to use this formula to analyze
these coefficients.

For the case of GL(n), combinatorial rule for computing these coeffi-
cients is given by the Littlewood-Richardson rule [11, 4]. Using the crystals
A(n,∞) and B(n,∞), we provide several reformulations of this rule.

Recall, that the tensor product of an An-type crystal B1 ⊂ A(n, m1)
and a crystal B2 ⊂ A(n, m2) is isomorphic to the crystal in A(n, m1 + m2)

obtained by putting arrays of B2 on the top of arrays of B1, i.e. b1⊗b2 =
b2

b1
.

And the tensor product of an An-type crystal B1 ⊂ B(n, m1) and a crystal
B2 ⊂ B(n, m2) is isomorphic to the crystal in B(n, m1 + m2) obtained by

putting arrays of B1 on the top of arrays of B2, i.e. b1 ⊗ b2 =
b1

b2
.

Now, in order to decompose B(µ) ⊗ B(ν) ⊂ A(n, 2n) into irreducibles,
we have to find L-tight arrays in B(µ) ⊗ B(ν). Denote by L(B(λ) ⊗ B(µ))
this set of arrays. Then the decomposition formula takes the form

B(µ) ⊗ B(ν) =
∑

a∈L(B(µ)⊗B(ν))

B(wt(a)).

Thus, the Littlewood-Richardson coefficient cλ
µ,ν equals the cardinality of

the set of L-tight arrays in B(µ) ⊗ B(ν) of the weight λ. We will describe
this set in several languages.
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On the crystal language this might be rewritten as follows

B(µ) ⊗ B(ν) =
∑

b∈B(ν) : µi≥εi(b)∀ i

B(µ + wt(b)).

This formula coincides with that asserted in Corollary 4.1.7 [8]. This imme-
diately gives the well-known PKV-formula (see, for example, [13])

cλ
µ,ν = dim{v ∈ V λ−µ

ν : eµi+1
i v = 0},

where V κ
ν denotes the subspace of vectors of weight κ, and ei, i = 1, . . . , n−1,

denote the e’s part of the Chevalley generators for gl(n).
On the language of discretely concave functions the set L-tight arrays

in B(µ) ⊗ B(ν) reads as the set DC(λ; µ, ν) of integer-valued discretely
concave functions on the grid ∆(n) with the boundary increments µ, ν and
λ correspondingly. Specifically, by the (two-dimensional triangular) grid of
size n, we mean the following subset ∆(n) in Z2 (see Fig. 1):

∆(n) = {(i, j) ∈ Z2, 0 ≤ i, j ≤ n, j ≤ i}.

In other words, this is integer points in the triangle with vertices (0, 0), (n, 0)
and (n, n) in the plane R2 (we call it the triangle of ∆(n)). We are interested
in functions defined at the points of ∆(n). (If desired, we can assume that
they are defined at all points of Z2 but take the value −∞ outside ∆(n).)
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λ2

λ3

λ4

Figure 1.

A function f on the grid ∆(n) is called discretely concave (or a DC
function) if, for any integers i and j, the following inequalities hold:

(i) f(i, j) + f(i + 1, j + 1) ≥ f(i + 1, j) + f(i, j + 1);
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(ii) f(i + 1, j) + f(i + 1, j + 1) ≥ f(i, j) + f(i + 2, j + 1);
(iii) f(i, j + 1) + f(i + 1, j + 1) ≥ f(i, j) + f(i + 1, j + 2).
The terminology can be partially justified as follows. Let us cut the plane

R2 into parts by lines of three sorts: x = a, where a are integers; y = b,
where b are integers; and x − −y = c, where c are integers. We obtain a
standard triangulation of the plane (see Fig. 2). Let us extend our function
over each triangle by linearity; as a result of such a linear interpolation, we
obtain a function f̃ . The function f is discretely concave if and only if f̃ is
concave.

For example, any affine function is discretely concave. For such a func-
tion, all inequalities (i)–(iii) are equalities.

There exist more interesting quasi-separable functions. Suppose given
three discretely concave functions f , g, and h of one (integer) variable. Then,
the function

F (x, y) = f(x) + g(y) + h(x − y),

of two (integer) variables is, obviously, a DC function.

Integer-valued discretely concave functions in the language of skew tableaux
are nothing but L-R skew tableaux precisely. Namely, to a function f ∈
DC(λ; µ, ν) we associate the array

af ∈ A(n, n), such that af (i, j) = f(i, j) − f(i, j − 1), 1 ≤ i ≤ j ≤ n.

To this array af we associate a skew tableau Tf of shape λ \ µ such that
the word 1af (i,1)2af (i,2) . . . ia(i,i) comes as the reading of the i-th row of Tf .
Then the conditions (i) and (ii) imply that the corresponding skew tableau
is semistandard and the condition (iii) implies that this tableau is an L-R
tableau. Recall, that a semistandard tableau is a L-R tableau if the reading
of this tableau from right to left and from bottom to top produces a lattice
word, that is a word with the property that, having read this word until any
place the number of occurrences of i is inferior than that of i + 1 for any
letter i of the alphabet. (For details, see [2].)

Vice versa, L-R tableau T of shape λ \ µ and of the weight ν gives rise
to a function fT ∈ DC(λ; µ, ν) by the rule

fT (i, j) =
∑
i′≤i

µi′ +
∑

i′≤i,j′≤j

wti
′

T (j′),

where wti
′

T (j′) equals the multiplicity of the letter j′ in the reading word of
the i′-th row of T .
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Thus we obtain the famous L-R rule: the set of integer-valued discretely
concave function on ∆(n) with boundary increments µ, ν and λ is isomor-
phic to the set of L-R skew tableaux of shape λ \ µ and of weight ν.

Another interpretation of the set DC(λ; µ, ν) of discretely concave func-
tions on the grid ∆(n) with given boundary increments take the form of the
set of semi-standard skew tableaux of the shape µ ∗ ν, that is a skew dia-
gram obtained by concatenation of the diagram of shape µ and the diagram
of shape ν (see Picture 2), such that the restriction of the tableau to the
diagram µ yields the Yamanuchi tableaux and the reading of µ∗ν (as above)
produces a lattice word.

µ

ν

µ ∗ ν

Figure 2.

Now we come to the interpretation of the set of L̂-tight arrays in B(µ)⊗
B(ν) ⊂ B(n, µ∗

1 + ν∗
1). (Recall that the L̂D̂-tight array of B(n,∞) of shape

κ produce the crystal B(κ) ⊂ B(n, (κ)′1).) Denote by L(B(µ) ⊗ B(ν)) this
set of arrays.

Now we use imbedding of irreducible An-type crystals into B(n,∞) for
another combinatorial interpretation of L-R coefficients.

Recall, that a D̂-tight array of B(n, m) might be set as a ≺≺-monotone
functions f : [m] → 2[n]. In view of this, we can identify arrays of L(B(µ)⊗
B(ν)) of shape λ′ with the set of skew semi-standard tableaux T of shape
λ′ \ µ′ and of the weight w0(ν ′) := (ν ′

ν1
, . . . , ν′

1), where w0 is the longest
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permutation, such that the set constituted of the columns of T in which j
is placed dominates (with respect the order ��) that set for j + 1, j =
1, . . . , ν′

1 − 1. This combinatorial rule for counting the coefficients cλ
µ,ν is a

new one and has a flavour of the Schützenbereger involution to the classical
combinatorial rule of L-R rule.

8.1 L-R rule for continuous crystals

For describing the decomposition of the tensor product of continuous crystals
into irreducibles, the necessity to count crystals by means of sets and not
numbers, the cardinality of the corresponding sets, comes naturally. Thus,
we will describe the sets Cλ

µ,ν of a decomposition

Bc(µ) ⊗ Bc(ν) ∼=
∐
λ

Cλ
µ,ν × Bc(λ) (23)

For the decomposition Bc(µ) ⊗ Bc(ν) of the tensor product of irreducible
continuous crystals, the same recipe as for the case of A(n, m) has sense.
Namely, L-tight arrays of Bc(µ) ⊗ Bc(ν) ⊂ AR(n, 2n) of the weight λ is
isomorphic to the set DC(λ; µ, ν) of discretely concave functions on the
triangle greed ∆(n) with the boundary increments µ, ν, and λ Moreover,
the set DC(λ; µ, ν) is naturally isomorphic to a convex polytope. Since
Bc(λ) is isomorphic to the G-C polytope GC(λ), we obtain the following
polytopal decomposition

GC(µ) ⊗ GC(ν) ∼=
∐
λ

DC(λ; µ, ν) × GC(λ). (24)

Note, that this isomorphism together with the isomorphism Rc : GC(µ) ⊗
GC(ν) ∼= GC(ν)⊗GC(µ) provide an isomorphism DC(λ; µ, ν) ∼= DC(λ; ν, µ).
The latter isomorphism is a refinement of the symmetry cλ

µ,ν = cλ
ν,µ of LR

coefficients.

For integer λ, µ, ν, we pointed out above that the set of L-tight arrays
of B(µ) ⊗ B(ν) ⊂ A(n, 2n) of the weight λ is isomorphic to the set of
integer-valued discretely concave function DCZ(λ; µ, ν). Since, for integer
λ, µ and ν, DCZ(λ; µ, ν) is constituted of the integer points of the polytope
DC(λ; µ, ν), we get

GC(µ)(Z) ⊗ GC(ν)(Z) ∼=
∐
λ

DCZ(λ; µ, ν) × GC(λ)(Z), (25)
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where, for a polytope P ⊂ Rn, P (Z) := P ∩ Zn. Since B(λ) ∼= GC(λ)(Z),
we can rewrite (25) as

B(µ) ⊗ B(ν) ∼=
∐
λ

DCZ(λ; µ, ν) × B(λ). (26)
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