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Abstract

We cstablish the sccond main theorem with the best truncation level once

Ty(r; L(D)) < Nu(rs; f*D) + €Ty(r)]|e

for an entire holomorphic curve f : C — A into a semi-abelian variety A and an
arbitrary effective reduced divisor D on A; the low truncation level is important for
applications. We will actually prove this for the jet lifts of f. Finally we give some
applications, including the solution of a problem posed by Mark Green.

1 Introduction and main result

Let f : C — V be a holomorphic curve into a complex projective manifold V' with Zariski
dense image and let D be an effective reduced divisor on V. Under some ampleness
condition for the space H°(V, i, (log D)) of logarithmic 1-forms along D we proved in
[N77], [N81] the following inequalities of the second main theorem type,

£Tp(r) = N(r; f*D) + Ologr) + O(log Ty (7)) |,
K'Tp(r) = Nu(r; f*D) + O(logr) + O(log Ty(r))I;

where T;(r) denotes the order function of f, N(r; f*D) (resp. Ni(r; f*D)) the counting
function (resp. truncated to level I) of the pull-backed divisor f*D, and & and &' are
positive constants (cf. §2). Tt is an interesting and fundamental problem to determine the
constant x or «’. In the case where V is the compactification of a semi-abelian variety A
this problem is related to what kind of compactification V of A we take. In our former
paper [NWY02] we proved that for a holomorphic curve f : C — A into a semi-abelian

variety A and an algebraic divisor D on A,

(1.1) T¢(r; L(D)) < Ni(r; f*D) 4+ O(logr) + O(log Ty(r; L(D)))||-



Here we used a compactification A of A such that the maximal affine subgroup (C*)* of
A was compactified by (P*(C))¢, and we assumed a boundary condition (Condition 4.11
in [NWY02]) for the closure D of D in A; this roughly meant the divisor D + (4 \ A4)
to be in general position and has been expected to be removed by a suitable choice of
a compactification of A. It is an important and very interesting problem to take the
truncation level [ as small as possible.

Let X, (f) denote the Zariski closure of the image of the k-jet lift of f in the k-jet space
Jr(A) over A. The purpose of this paper is to prove (cf. §§2, 3 for notation)

Main Theorem. Let A be a semi-abelian variety. Let f : C — A be a holomorphic
curve with Zariski dense image. Let D be an effective reduced Cartier divisor on Xy(f)
(k = 0). Then there exists a compactification Xy(f) of Xix(f) such that

(12) T(r;wp ) S Nors Je(£) D) + €Ty ()]s Ve >0,

where D 1is the closure of D in X (f).
In the case of k = 0 the compactification A of A can be chosen as smooth, equivariant

with respect to the A-action, and independent of f; furthermore, (1.2) takes the form

(1.3) Ty(r; L(D)) < Ni(r; f*D) + Ty(r; L(D))||., Ve > 0.

Note that in the above estimate (1.2) or (1.3) the small error term “€T;(r)” cannot be
replaced by “O(logr) + O(logTy(r))” (see [NWY02] Example (5.36)).

The Main Theorem is an advancement of [NWY02] and [Y04]. When A is an abelian
variety, the above Main Theorem was proved by [Y04], where the case of k£ > 0 was
implicit (see [Y04] (3.1.8)). There is a related result due to Siu-Yeung [SY03]. They
obtained (1.1) with a truncation level = (D) dependent only on the Chern numbers of
D; in [SY03] the key was Claim 1 at p. 443, same as [NYW02] Lemma 5.6 in the abelian
case but for the improved dependence of the order (D) of jets.

It is interesting to observe that the error term being “O(logr) + O(log T} (r; L(D)))||”,
the truncation level [ in (1.1) has to depend on D, but the error term being allowed to be
“eTt(r; L(D)))||¢”, L can be one, the smallest possible.

To deal with semi-abelian varieties the main difficulties are caused by the following two

points:
(i) Semi-abelian varieties are not compact and need some good compactifications.

(ii) There is no Poincaré reducibility theorem for semi-abelian varieties.
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It is also noted that a part of the proof of the Main Theorem for abelian varieties in
[Y04] does not hold for semi-abelian varieties ([Y04] §3 Claim), and that a different and
considerably simpler proof for that part will be provided (see Lemma 6.1).

In §7 we will give two applications of the Main Theorem. The first is a complete
affirmative answer to a conjecture of M. Green [G74] pp. 229-230 (cf. Theorem 7.2). The
second 1is a non-existence theorem for some differential equations defined over semi-abelian
varieties (cf. Theorem 7.6).

Acknowledgement. We learned the conjecture of M. Green [G74] from Professor A.E.

Eremenko, to whom we are very grateful.

2 Notation

The notation here follows that of [NWYO02]. For a general reference of this section, cf.
[NO% . For convenience we recall some of definitions. Let M be a compact complex
manifold and let w be a smooth (1,1)-form on M. Let f : C — M be a holomorphic curve
into M. We define the order function of f with respect to w by

(2.1) T (rw) = /1 B )

b S o<t

If M is Kahler and dw = 0,
Ti(r;w) = Tp(r;w') + O(1)

for a d-closed (1,1)-form «' in the same cohomology class [w] € H*(M,R). Therefore we
set, up to O(1)-term,

(2:2) Ty(r; [w]) = Ty(r; w).
Let L — M be a hermitian line bundle with Chern class ¢;(L). Then we set

Ty(r; L) = Ty(r; eu(L))

which is defined again up to O(1)-term.
For a divisor D on M we denote by L(D) the line bundle determined by D.
Let =37, v,z, be a divisor on C with distinct 2, € C. Then we set

ord, E={ "% 7w
0, zé&{z.}



We define the counting functions of E truncated to [ < oc by

m(t; E) = Z min{r,, [},
{lzu] <t}

m(t; E)

1

We define the counting functions of E by

n(t; B) = no (6 E),  N(r; E) = Noo(r; E).

3

Definition of small terms. (i) For a line bundle L — M and a holomorphic curve

f: C — M we denote by S;(r; L) such a small term as
Sg(r; L) = O(logr) + O(log™ Ty(r; L))},

where “||” stands for the inequality to hold for every r > 1 outside a Borel set of finite
Lebesgue measure.
(ii) Let A(r) (r > 1) be a real valued function. We write

h(r) < eTy(r; D, Ve >0,

if the stated inequality holds for every r > 1 outside a Borel set of finite Lebesgue measure,
dependent on an arbitrarily given € > 0.

Definition. When M is an algebraic variety, we say that f : C — M is algebraically
(resp. non-) degenerate if the image f(C) is (resp. not) contained in a proper algebraic
subset of M.

The following follows from general properties of order functions ([NO]).

Lemma 2.3 Let f: C — M be a holomorphic curve into a compler projective manifold
M and H a line bundle on M. Assume that H is big, and that f is algebraically non-

degenerate. Then
Ty(r, L) = O(T¢(r, H))
for every line bundle L on M.

If f: C — M is algebraically degenerate, we may consider the Zariski closure N of
f(C) and a desingularization 7 : N — N. Then f lifts to a map to N and 7*(H|y) is big

on N for every ample line bundle H on M. As a consequence we obtain:



Lemma 2.4 Let f: C — M be a holomorphic curve into a compler projective manifold
M. Let h(r) be a non-negative valued function in r > 1. Then h(r) = S;(r; H) holds for
every ample line bundle if and only if it holds for at least one ample line bundle.

Similarily the statement h(r) < €T¢(r; H)||., Ve > 0, respectively h(r) = O(T;(r; H))
holds for every ample line bundle H if and only if it holds for at least one ample line
bundle.

If one of these conditions holds for one and therefore for all ample line bundles H, we
simply write h(r) = S¢(r) (resp. h(r) < €Tp(r)||e, h(r) = O(T§(r))).

For a quasi-projective manifold V' and for a holomorphic curve f : C — V we write
simply T¢(r) = Ty(r; H) for the order function with respect to an ample line bundle H
over a projective compactification M of M if the choice of M and H do not matter.

The following related property of order functions will be frequently used ([NO$5] Lemma
(6.1.5)).

Lemma 2.5 Let n:V — W be a rational mapping between quasi-projective manifolds V
and W. Then for an algebraically non-degenerate holomorphic curve f : C —=V

Tpos(r) = O(Ty(r))-

Moreover, if 1 is generically finite, then

Ti(r) = O(Tyos(7))-

We define the proximity function m;(r;Z) not only for divisors but also for a coherent
ideal sheaf Z of the structure sheaf Oy, over M. Let {U,} be a finite open covering of M
such that

(i) there is a partition of unity {c¢;} associated with {U;},

(ii) there are finitely many sections o, € I'(U;,7),k = 1,2, ..., generating every fiber
1, over xz € Uj.
1/2
Setting pr(z) = (Z] ci(®) D ok (:U)|2> , we take a positive constant C' so that
Cpr(z) £ 1, x € M.

Using the compactness of M, one easily verifies that, up to addition by a bounded con-
tinuous function on M, logpr is independent of the choices of the open covering, the

partition of unity, the local generators of the ideal sheaf Z, and the constant C.
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We define the proximity function of f for Z or for the subspace (may be non-reduced)
Y = (Supp On/Z,O/I) by

(2.6 mplrY) =i T) = [ log st (20)

provided that f(C) ¢ SuppY. Note that if Z is the ideal sheaf defined by an effective
divisor D on M, my(r;Z) coincides ms(r; D) defined in [NWY02] up to O(1)-term. The
function pr o f(z) is smooth over C\ f~1(SuppY). For z; € f~(SuppY’) choose an open
neighborhood U of zp and a positive integer v such that f*Z = ((z — zp)”). Then

logpro f(z) =vlog|z — 2| + ¥(2), ze€U.

for some smooth function ¢(z) defined on U. We define the counting function N(r; f*7)
and Ny(r; f*Z) by using v in the same way as using ord,,(F) in the definition of N(r; E)
and Ny(r; E). Moreover we define

(2.7) wrp = Wy = —dd(z) = —%881#(,2)

= dd°log (z€eU)

3

1
pzo f(2)
which is well-defined on C as a smooth (1,1)-form. The order function of f for Z or Y is
defined by

"dt
(2.8) T(r;wr,f) = T(r;wy,y) 2/ —/ Wz, f-
1 U St
When 7 defines a divisor D on M, we see that
T(r;wzp) = Ty(r; L(D)) + O(1).

Let Z; (i = 1,2) be coherent ideal sheaves of Oy and let Y; be the subspace defined by
Z;. Wewrite Y, D Y5 if 7, C IT,.

Theorem 2.9 Let f: C — M and Z be as above. Then we have the following:
(i) (First Main Theorem)

T(r;wr,p) = N(r; f*'I) + mp(r;Z) — my(L1; Z).

(ii) If M is projective, ms(r,I) = O(Ty(r)).
(iii) Let Z; (i = 1,2) be coherent ideal sheaves of Oy and let Y; be the subspace defined

by Z;. If I, C Iy or equivalently Y, D Y5, then
my(r; Iz) < mp(r; 1) + O(1)

3
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or equivalently,
my(r; Yz) < mp(r; Y1) + O(1).

(iv) Let ¢ : My — My be a holomorphic mappings between compact complex manifolds.
Let 7y, C Opy, be a coherent ideal sheaf and let Ty C Opy be the coherent ideal sheaf
generated by ¢*Zy. Then

my(r; 11) = mgap(r; I2) + O(1).

(v) Let I;, i = 1,2 be two coherent ideal sheaves of Our. Suppose that f(C) ¢
Supp (Op/Z1 @ Iy). Then we have

T(riwnen,t) = T(r;wr,f) + T(r;wr,r) + O(1).

Proof. (i) This immediately follows from the well-known Jensen formula (cf. [NOS
Theorem (5.2.15)).

(ii) Let Y be the subvariety defined by Z. There is an ample divisor D on M such that
D DY (counting multiplicities). It follows from Theorem (2.9) (iii) that

my(r;Y) S my(r; D) £ Tp(r; L(D)) = O(Ty(r))-

(iii) (iv) (v) These are immediate by definition. Q.E.D.

3 (eneral position

Conwention 3.1 Unless explicitly stated otherwise, all varieties, morphisms, group ac-

tions, compactifications, divisors etc. are assumed to be algebraic.

3.1 General position

Let A be a semi-abelian variety and let X be a complex algebraic variety (possibly sin-
gular) on which A acts:
(a,2) e AX X —a-z€X.

Let Y be a subvariety embedded into a Zariski open subset of X.
Definition 3.2 We say that Y is generally positioned in X if the closure Y of ¥ in X

contains no A-orbit. If the support of a divisor £ on a Zariski open subset of X is generally

positioned in X, then F is said to be generally positioned in X.



Let 7 : X; — X be a blow-up of smooth projective manifolds on which A acts. Let D
be a divisor on X and let D; be its strict transform. Then D; ~ 7*D — E| where E' is
an effective divisor with support contained in the exceptional locus of the blow-up. If 7
is the blow-up along a smooth connected submanifold C' C X, then F is empty unless
CcD.

Lemma 3.3 Assume that D is generally positioned in X. Let m : X1 — X be an equiv-

ariant blow-up. Then Dy = 7n*D, i.e., E is emply.

Proof. Since the blow-up is assumed to be equivariant, its center C' must be an invariant
subset, i.e., C' is a union of A-orbits. Now D is assumed to be generally positioned in
X. This implies that D contains no A-orbit. Therefore no irreducible component of C is
contained in D. Q.E.D.

Corollary 3.4 Assume that D is big and generally positioned in X. Then Dy is big, too.

Proof. This is immediate from D, = n*D. Q.E.D.

Unfortunately the assumption of being generally positioned can not be dropped. For
example, let us consider X = P?(C). Let D be a line and let X; — X be the blow-
up of a point p on the line D. Then X; is a ruled surface. It admits a fibration 7 :
X, — PY(C) which arises as follows: We may identify P!(C) with P(7,P?(C)). Then
for x € P%(C)\ {p} we set 7(z) to be the tangent line at p of the unique line in P?(C)
connecting p and z. Now the strict transform D, of D turns out to be a fiber of 7. As
a fiber of a holomorphic map, it can not be big. However, D, as an effective divisor on
P?(C), is big.

To give another example, consider the blow-up of P?(C) in two points p, ¢ € D. A blow-
up decreases the self-intersection number of a curve by 1. Therefore the self-intersection
number of the strict transform Dy of D under this blow-up Xo — X is a curve with
self-intersection number —1. As a consequence we have dim H%(X,, L(nD,)) = 1 for all
n € N.

Note that these examples are equivariant for a suitably chosen action of A = (C*)2, but
D is not generally positioned in P%(C).

On the other hand, bigness can only be destroyed, not created via blow-up. This
follows from the following fact: Dy = n*D — E where E is effective. Thus fixing a section

o € H%( X, E) we obtain an injection

H(X,, L(nD,)) < HY(X,, L(nm*D)) = H(X, L(nD)) (Vn e N)



given by mapping a section to its tensor product with o". Therefore the litaka D-

dimension can only decrease ([I71]).

Lemma 3.5 Let 7 : X1, — X be an equivariant blow-up, let D be a divisor on X which
s generally positioned in X, and let Dy be its strict transform. Then Dy is generally

positioned in X1, too.

Proof. If Dy would contain an A-orbit €2, we could infer that 7(£2) C #(D;) = D. Since
7 is assumed to be equivariant, this would imply that D contains an A-orbit, namely
m(Q). Q.E.D.

3.2 Stabilizer

Let A be a semi-abelian variety such that
(3.6) 0T — AL A =0,

where T 2 (C*)! and A, is an abelian variety. Let D be a divisor on A. The stabilizer of
D is defined by

(3.7) St(D)={a€ A:a+ D = D}°,
where {-}° denotes the identity component.

Lemma 3.8 Let D be an effective divisor on A and let D be its closure in an equivariant
compactification A of A. Let Ly € Pic(Ay) and let E be an A-invariant divisor on A such

that L(D) =2 L(E) ® 7*Ly. Assume that St(D) is contained in T. Then Ly is ample on
Ao.

Proof. By [NW04] Lemma 5.2 we obtain ¢;(Lg) 2 0. We may regard ¢; (L) as a bilinear
form on a vector space V which can be interpreted as the Lie algebra Lie(Ag) or the dual
of cotangent bundle Q'(Ay)* over Ay. Assume that L is not ample. Then there is a vector
v € V \ {0} such that ¢;(Lo)|cy = 0. Choose a direct sum decomposition (orthogonal
with respect to ¢1(Lo)) V = Cv @ V' and let w be a (1, 1)-form which is positive on V",
but annihilates Cv. Then ¢ (L) A w9 = 0 where ¢ = dim 4y = dimV. Let Q be a
(1,1)-form on A which is positive along the fibers of A — A4, as constructed in [NW03]
Lemma 5.1. Then

0= / QAT (e(Lo) Aw?h) = /DQS AT (W)

a
By construction of w this implies that v is everywhere tangent to D. But in this case
v € Lie(Ayp) is in the Lie algebra of the stabilizer St(D). This is a contradiction. Q.E.D.



Proposition 3.9 Let A be a smooth equivariant compactification of a semi-abelian variety
A. Let D be an effective divisor on A and let D be its closure in A. Then the following
properties hold.

(i) A\ A is a divisor with only simple normal crossings.
(i) If St(D) = {0}, then D is big on A.

Proof. (i) This is [NW04] Lemma 3.4.

(ii) Due to [NWO04] there is a line bundle Ly on Ay and an A-invariant divisor E on
A such that L(D) 2 L(F) @ 7*Ly. By Lemma 3.8 the triviality of St(D) implies the
ampleness of Lg.

Now consider the T-action. Evidently E' is T-invariant. Since T  acts only along the
fibers of m : A — Ay, the line bundle 7* Ly is also T-invariant. It follows that for every
g € T the pull-back g*D is linearly equivalent to D.! Next we define sets S, for x € A as

follows:
Sy = MgeT:g(x)en g*D.

By this definition we know that for every y & S, there is a section ¢ in L(D) such that
o(x) = 0 # o(y). From the definition it follows furthermore that S, is an algebraic
subvariety of A. Using the A-invariant trivialization of the tangent bundle TA = A x
Lie(A) we can identify T,(S,) with a vector subspace of Lie(A4). In this identification we

obtain

T:(Sz) = Nyergyen 9" D = Nger:gwien Tow)D = Nyer—1@a(@pnp Ty(D)-

Thus 7,(S;) depends only on 7(z). Let F, = 7 *(n(z)). Then all the points in F, N S,
have the same tangent space. It follows that F,,NS, is an orbit under a Lie subgroup of 7.
On the other hand, F,, NS, is an algebraic subvariety. Therefore F,, NS, is an orbit under
an algebraic subgroup of 7. A priori this subgroup may depend on the point . However,
T = (C*)® contains only countably many algebraic subgroups. For this reason it follows
that this algebraic subgroup must be the same for almost all points x € A. Thus there is
an algebraic subgroup H C T such that each connected component of S, N F, is a H-orbit
for almost all € A. But this implies that D is invariant under H. Since St(D) = {0},
H is finite. Thus S, — A is generically finite for almost all x € A. Combined with the
ampleness of Ly this implies that D is big. Q.E.D.

L Actually g*D ~ D holds for every g € T and every T' = (C*)*-action on a projective manifold. This
can be deduced from the fact that the Picard variety of a projective manifold contains no rational curves.
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Proposition 3.10 Let D be an effective divisor on A and let D be its closure in a smooth
equivariant compactification A of A. If St(D) = {0}, then there is an equivariant blow-up
At — A such that the strict transform of D is generally positioned in At.

In particular, there exists a smooth equivariant compactification of A in which D 1is

generally positioned.

Proof. Using a result of Vojta ([V99] Theorem 2.4 (2)) we obtain a (possibly singular)
completion 1 : A < A such that D is generally positioned in A. Consider the diagonal
embedding j : A < A x A given by j = (i,1) and let A’ denote the closure of the image
j(A). Let AT — A’ be an equivariant desingularization (cf. [Hi64], [BM97]). Then the
composed map AT — A is a blow-up of A. Considering the natural projection At — A,
we conclude, as in Lemma 3.5, that D is generally positioned in Af. Q.E.D.

Proposition 3.11 Let A be a semi-abelian variety, let A — A be an equivariant com-
pactification and let D be o divisor on A. Then there is an equivariant blow-up A A
such that the quotient A/St(D) exists.

Proof. St(D) is an algebraic subgroup of A. Hence there is a quotient morphism
g: A — A/St(D). Let A/St(D) C Z be an A-equivariant smooth compactification.
Then ¢ is a morphism from an Zariski open subset of A to Z and thus defines a rational
map from A to Z. Now we just blow up A and Z to remove the indeterminacies and
obtain a regular morphism. Since ¢ : A — A/St(D) is equivariant, it is clear that the
indeterminacies on A are A-invariant subvarieties. Therefore the blow-up can be done

equivariantly. Q.E.D.

3.3 Finitely many orbits
We will need the following auxiliary result.

Lemma 3.12 Let A be a semi-abelian variety and A — A a smooth equivariant algebraic

compactification. Then there are only finitely many A-orbits in A.

Proof. Let 7 : C* — A denote the universal covering. Then A = C"/I', where
I = 7 1{0}. Note that I" generates C" as complex vector space.

Let H be an algebraic subgroup of A. Then H is a semi-abelian variety, too. It follows
that the connected component H of 77Y(H) coincides with the complex vector subspace
of C" generated by HNT. Evidently there are only countably many finitely generated
subgroups of I'. It follows that there are only countably many algebraic subgroups H of
A.
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Let p be a point in A and let H = 4, be its isotropy group. Let Ap denote the A-
orbit through p. Let A¥ denote the fixed point set of H-action, i.e., A# = {z € A :
ar = z,Ya € H}. Then A¥ is a closed algebraic subvariety of 4. Let T,(Af) be its
Zariski tangent space at p. Because H is reductive, the H-action on T,(4) is almost
effective. On the other hand, because H acts trivially on A, the action on T,(Af) is
likewise trivial. Therefore there is an almost effective H-action on the quotient vector
space T,(A)/T,(A¥). Since H is abelian, this implies dim H < dim (7,(A4)/T,(A")).

From this we deduce
dim(Ap) = dim A — dim H 2 dim X — dim (7,,(A4)/T,(A")) = dim T, (A")

Since Ap C AH | it follows that A¥ is smooth at p and Ap is open in A¥. In particular,
there is an open neighborhood W of p in A such that Ap is the only A-orbit in W with H
as isotropy group. Using algebraicity it follows that there are only finitely many A-orbits
in A with H as isotropy group.

Since there are only countably many algebraic subgroups of A, we obtain as a conse-
quence that there are only countably many A-orbits in A.

Thus A is an algebraic group acting on an algebraic variety A with only countably many

orbits. This implies that there are actually only finitely many orbits. Q.E.D.

3.4 Action

Let A be a semi-abelian variety and let PY(C) be the complex projective N-space. Then
A acts on the product A x P¥(C) by the group action of the first factor:

(a,(b,x)) € AX (AxPY(C)) = a-(b,z)=(a+bx) € AxPN(C).

Let p: A x PY(C) — A be the first projection. Let X be an irreducible algebraic subset
of A x PY¥(C) such that p(X) = A. We set

B=St(X)={a€ 4;a-X = X}°,

and assume that dim B > 0. Set C = A/B.

Taking direct products with PY¥(C) the projection A — C extends to 7 : Ax PY(C) —
C xPY(C). This is a B-principal bundle. The subvariety X of A x P¥(C) is B-invariant;
therefore X = 771(7(X)). Tt follows that 7(X) is a closed subvariety of C' x P¥(C) which
we can regard as the quotient X/B of X with respect to the B-action. In particular
m=7|x : X = Y =7(X) is a B-principal bundle such that the B-action on X is simply

the principal right action of B for this bundle structure.
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Let B be a smooth equivariant compactification of B. Then we have a relative com-
pactification A — C of A — C arising as the B-bundle associated to the B-principal
bundle A — C. In other words: A = A x B B where A x B B denotes the quotient of
A x B with respect to the equivalence relation for which (a, b) ~ (&', ¥) if and only if there
exists an element ¢ € B such that ag = o’ and b = ¢b'. The projection map p extends
top: Ax PN(C) - A. Let X be the closure of X in A. Then X = X xp B. The
compactness of B implies that the projection map 7 : X5 VYis proper.

Let &Y C X be an irreducible algebraic subset such that

(3.13) BN StE) = {0}.

Proposition 3.14 Let X', X, E, etc. be as above. Assume in addition that E ts of

codimension one, i.e., a divisor. Then there is a B-equivariant blow-up
v Xt X
with center in X \ X such that X' has a stratification by B-invariant strata
Xt =u,l,
satisfying the following properties:
(i) Th =2 X/B, (x€T)) where By ={b€ B :b-x=x} is the isotropy group at x.
(ii) The closure of E in X' contains none of the strata Ty.

(iii) The open subset X of X' coincides with one of the strata Ty,

Proof. Before starting the proof we make a remark: Since X — Y is a B-principal
bundle, we can define quotient varieties X/ H for all algebraic subgroups H of B. Therefore
statement (i) of the proposition makes sense.

Now we start the proof. We will only consider blow-ups X — X which arise in the
following way: We take an equivariant blow-up Bt — B and define XT = X x5 Bf. We
recall that there are only finitely many B-orbits in BT (Lemma 3.12) and that X xp BT
is defined as a quotient of X x Bf. Let {{2,}, be the family of B-orbits in B'. Then a
stratification {I'y}, of XT is induced as follows: For each \ we define I’y is the image of
X x Q, under the projection X x Bt — X xz Bf = XT. Each of these B-orbits {2, can

be written as quotient of B by some closed algebraic subgroup H):
2\ = B/H,.
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Then H) is the isotropy group of the B-action on ' at any point x € 'y and 'y = X/H,.
Thus the stratification {I"y} of X has the properties required by (i), for every choice of
an equivariant blow-up Bt — B.

By construction, the open subset X of X' coincides with the open B-orbit in B, hence
(iii).

Let us now verify that Bf — B can be chosen in such a way that property (ii) holds,
too. Fory € Y let B, be defined as £, = {p € £ : m(p) = y}. We observe that
E, =7 Y(y) N E for almost all y € 7(E). Using [N81], Lemma 4.1., we infer from (3.13)
that for a generic point y € 7(F) the fiber E, has a discrete stabiliser with respect to the
B-action on X. Thus we may invoke Proposition 3.10 and deduce that there exists an
equivariant blow-up Bt — B such that E, is generally positioned in Bf. Let Xt — X be
the associated blow-up of X. Now E, being generally positioned in B implies that the
closure of E in X' contains none of the strata I'y. Q.E.D.

4 Second main theorem for jet lifts

Let A be a semi-abelian variety of dimension n and let 7" be the maximal affine subgroup

of A. Then T = (C*)* and there is an exact sequence of rational homomorphisms
0—+T—A— Ay —0,

where Ay is an abelian variety. Let A be a smooth equivariant compactification of A. Set
0A = A\ A and let Ji(A,logdA) be the logarithmic k-jet bundle along dA (cf. [N86]).

Then A acts on Ji(4, log &A) and there is an equivariant trivialization
Ji(A,log0A) 2 A X Jya,

where A acts trivially on the second factor Jy 4 = Ckn. Let J_k, A be a projective com-
pactification of J; 4. With the trivial action of A on jk, 4 and the usual action on A (by

translations) and A this yields an A-equivariant compactification
Ji(A,logdA) = A X Jy 4
of Ji(A) with an open A-invariant subset
Je(A) = A x Jy 4.

For example, we may set J; 4 = P™(C) or J; 4 = (P™(C))*. Then Ji,(A) = Ju(A,logdA)|4
is a Zariski open subset of J;(A, logdA) and

Jk(A) = A X Jk,A-
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We set

Ji%(A,log 0A) = {ji(9) € Jiu(A,logdA); ji(g) #0} = A x Jess
S8 (A) = J%(A4,1og 0A)|4 =2 A x Ji i

of which elements are called regqular jets.

Let f: C — A be a holomorphic curve and Ji(f) : C — Ji(A) be the k-jet lift of f. We
denote by X, (f) (resp. Xi(f)) the Zariski closure of the image Ji,(f)(C) in Jy(A) (resp.
jk(A)):

(4.1) Xe(f) CJ(4),  Xi(f) C J(A).

Theorem 4.2 (Second Main Theorem) Let f : C — A be an algebraically non-degenerate
holomorphic curve. Let D be an effective reduced Cartier divisor on Xi(f). Then there

exists a natural number ly and a compactification X, (f) of Xp(f) such that for the closure
D OfD m )Zk(f)

(4.3) M) (r; D) = Sy(r),

(44) T(T;WD,Jk(f)) §Nlo(7“; Jk(f)*D)+Sf(T)

In the case of k = 0 the compactification A of A can be chosen smooth, equivariant, and

independent of f; moreover, (4.3) and (4.4) take the following forms, respectively:

(4.5) my(r; D) = Sy (r; L(D)),
(16) T(r: L(D)) < Ny(r: £*D) + S;(r: L(D)).

Proof. Since the very basic idea of the proof is the same as that of the Main Theorem
of [NWY03], it will be helpful to confer it.

We extend the divisor D to the closure in X (f) which is denoted by the same D.

We first prove (4.3) and (4.5). Set B = St(X,(f)). Then we have the quotient maps:

B.A— A/B=C,
ap : J(A) = J(A)/B 2 C x Jy 4,
~1? : jk(A) — C x jk,A-

By [N98] and [NW03] Lemma 2.3

(4.7) dim B >0, Typoyp(r) = Si(r).
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Setting Y, = X, (f)/B, we have a quotient map:
T Xk(f) — i};c Cc Cx jk,A-

Let B be a smooth equivariant compactification of B. Define A, X,(f), D, etc. as the
partial compactifications of A, Xk( f), D, etc. as in subsection 3.3. We then have proper

maps,

(j,?:/—i)( J_k:,A_)CXJ_k:,A;

Te = d 2,0 : Xi(f) = Ve CC x Jya,

whose fibers are isomorphic to B.

There are two cases, B C St(D) and B ¢ St(D), which we consider separately.

(a) Suppose that B C St(D). Set F = #(D) = D/B. Then F is of codimension one in
Yy. Let T 22 (C*)* be the maximal affine subgroup of A and let S be that of B. Then S is

a subgroup of T’ and there is a splitting, 7' = S x S’. Take an equivariant compactification

S’ of S’ and set
A = A Xgr g’.

Then A is an equivariant compactification of 4 and A. We have an algebraic exact
sequence
058 —=C—=Cy—0,

where Cj is an abelian variety, and an equivariant compactification C = C xg S'. Thus
G2 extends to

QI?ZAXJkiA—)C_'XJkiA;

Let X, (f) (resp. Yi, F) be the closure of Xy (f) (resp. Y, F) in A x Jy 4 (resp. C X Jy, 4).

Thus we have the restriction
T = Q]?|Xk(f) : X0 (f) = Vi
Note that 7y is surjective and
(4.8) F#Y,.
It follows from Theorem 2.9 (ii) and (4.7) that
(4.9) m (13 D) £ maosyn(r; F) + O(1)

= O(Trpon(y(1)) = Sg (7).
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(b) Suppose that B ¢ St(D). We set

B'=Bnst(D), D' =D/B', X.(f)=Xw(f)/B', A'=A/B, B"=B/B.

3

Moreover, we define F' as the image of D under the quotient X’,’C(f) — X’,’C(f)/B” =Y.

We have the following commutative diagram and quotient maps:

D ; Xk(f) C Ax J_k,A
(codim=1})

4 4 Lo

D ; Xl’c(f) Cc A'x jk,A
(codim=1)

A 1 T

F C Vi C CxJya

Since codimg D =1, F is Zariski dense in V. Note that
(4.10) St(X,.(f)) = B", St(DYyn B" = {0}.
Let B" be a smooth equivariant compactification of B”. We have
/_ir — A X g BII=
A" = A"\ A,
R1(f) = XU(f) <o B,
D'=D' (the closure of D' in X4(f)),
OX,(f) = Xu(H\ X (h).
(4.11)

Note that the boundary divisor A4’ has only normal crossings (Proposition 3.9 (i)). We

obtain proper maps

D S Xf) € A xJpa
(codim=1)

APy $ -

F = Y/;C Cc Cx J_k,A s

where ' = iy (D’ ). By Proposition 3.14 we have a blow-up
¥ X)) = Xi(f)
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with center in X +.(f), the strict transform D' of D' and the boundary
I = X ()\ Xi(f)
with stratification I' = U,I"y such that

(4.12) Ty 2 X[ (f)/Iso.(B") (x €Ty)
(4.13) LyNDT£T,.

3

Here, if & = 0, we use Proposition 3.10 in place of Proposition 3.14, and deduce the
stated property for A.
Let 1, : JZ(X','CT(f), logT') — JZ(X',’C(f), log (’A)X,’C(f)) be the morphism naturally induced

by 1. We consider a sequence of morphisms

J(D logT) CA(XI(f), logT) 2% J(XL(F), log OXL(f))
— Jy(A" x Jyp 4, 10g(DA X Ji.4))
>~ Ji(A' log DAY x Jy(Jy,4)
>~ A x Ji(Jkar) X Ji(Jia)

proj.

— Jl(Jk,A’) X Jl(jk,A)-
Thus we have a morphism
ﬁl : JZ(X]’CT(f)IOgF) — Jl(Jk,A’) X Jl(jk,A)-

Let py : (X, (f)) = X;1(f) be the projection to the base space. Henceforth we obtain a
proper morphism

= (Fpoop) x Bt (X (f)logT) = Vi x Ji(Jear) X Jo(Ji,0)-
We claim that for some [y = 1

(414) ’Ylo(‘]lo (D’)) 7é ’Ylo(‘]lo (Xl’c(f)))

Assume contrarily that 7, (J;(D") = % (J(XL(f))) for all L > 1. Then for an arbitrary
z2e€C

(4.15) Tilg o Ju(£))(2) € n((D",1ogT)).
Take 2o € C so that 7x o Ju(f)(20) € f/k" and set
&= Jila o Ju(£))(20) € n(L(D'T,logT)), l=z1.
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Set Z; = v, '(&) for I = 0. Then the restriction p;|z, is proper and plz, : 5 — pi(Z)) is
an isomorphism. We set
Al:pl(El): Z:]_‘Q‘

The sequence of Ay D Apq, L =1,2,... terminates to Aye = Ajy = Agyu1 =+ (C X’,’J(f))
for some ly. Then Ay Z 0. If A, N X’,’C (f) # 0, there is an element a € A’ such that

a- (Ji(g? o () () € J(D), VI=o0.

By the identity principle we deduce that a - XI(f) C D'; this is absurd.
Now assume that A, NT # (. There is a point xy € As N T such that

(xO:gl) € JZ(D,T)LE(]: [ Z 1.

Let T, be the boundary stratum containing 2o. Let a : X4(f) = XL(f)/Tsog,(B") = Ty,

be the quotient map. Then there exists an element ayg € A such that

e}

a-(aogf o Jy(f)(2)) € Th,n D't

in a neighborhood of 2; and hence for all z € C. Henceforth a contradiction follows from
this, (4.13) and the image Ji(f)(C) being Zariski dense in X (f).

This proves the claim.

By making use of the assumption for D to be Cartier, we infer (4.4) and (4.6) as in the
proof of the Main Theorem of [NWY02] p. 152 (cf. [NWYO02] (5.12)).

Let us now prove the additional statements for the case £ = 0. In this case we take the
quotient, ¢ : A — A/St(D) and we deal with the holomorphic curve go f : C — A/St(D)
and the divisor D/St(D).

In this way we may assume St(D) = {0}. Then Proposition 3.9 (ii) implies that D is
big and we can deduce (4.5) with the help of Lemma 2.4. Q.E.D.

5 Higher codimensional subvarieties of Xj(f)

Let f : C — A be a holomorphic curve in a semi-abelian variety A. We use the same
notation, X,(f), St(Xx(f)), etc. as in the previous section.

The purpose of this section is to prove the following.

Theorem 5.1 Let f : C — A be a holomorphic curve and let Z C Xy (f) be a subvariety
Of COdika(f)Z Z 2. Then

Ny(rs Ju(f)*Z) < €Tp(r)les - Ve > 0.
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Remark. For an abelian variety A this was proved by [Y04].

It suffices to prove Theorem 5.1 for irreducible Z. Hence, we assume throughout this
section that Z is #rreducible.

Our proof naturally divides into three steps (a)~(c). Before going to discuss the details,
we give an outline of the proof.

(a) First, we reduce the case to the one that A admits a splitting A = B x C' where B

and C are semi-abelian varieties such that
(5.2) B CSt(X;(f)) foralll=0

and the composition of f and the second projection ¢% : A — A/B = C satisfies

(53) Ty (r) = S5(0r)

By this reduction, we may assume that the variety X;(f) has splitting X;(f) = B X
(Xi(f)/B) for all 1 2 0.

We also make a reduction such that the image of Z under the second projection 7y, :
X (f) = X(f)/B has a Zariski dense image. Hence by the assumption codimy, s Z 2 2,
we may assume codimwk_l(m)Z N, ' (z) = 2 for general z € Xy (f)/B.

(b) The second step is the main part of the proof. Using the above reduction, we
shall construct auxiliary divisors F; C B X (X,.4(f)/B) for all | = 0 with the following

properties:
() L+ VN5 Ju(F)'Z) £ N3 Tl £)" FY) + €T ()|, Ve > 0:

(11) TJk+l(f) (7“; L(E)) § TL(Z)TfYof(T; DB) + 6Tf(7“; D)||E,V6 > 0,

where v : A — B is the first projection, D is an ample line bundle over A4, D is an

ample line bundle over B and n(l) is a positive integer such that lim; .., n(l)/l = 0.

(c) Finally, by (i) and (ii) above we have

" 1 .
Nalrs J(F)' 2) £ g NG Jual ) ) + = T D)l
< O (i D) + - Tl D)l

for all € > 0 and all integer [ 2 0. Since n(l)/l — 0 (I = oc), we have
N(r; Ju(£)*Z) < e(Tyos(r; D) + Ty(r; D) ls Ve > 0.
Since T, (r; Dg) = O(Ty(r; D)), the proof is completed.
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(a) Reduction. Let f: C — A be as above. Let I : Xip(f) (= A X Jpa) = Jia be
the jet projection. It follows from [N77] (or [NWYO02] Lemma 3.8) that

(5.4) Tronpy(r) = Sp(r).

We need the following.

Lemma 5.5 Let the notation be as above. Let G = MyxoSt(X,(f)) and let ¢° : A — A/G
be the quotient map. Then

Tyeop(r) = O(Trosn)(r) (= S5 (r))-

Proof. This is essentially the same as (4.7) and follows from the jet projection method;
cf. [NW03] Lemma 2.4, [NWY02] Lemma 3.8 and their proofs. Q.E.D.

Lemma 5.6 Let B C A be a semi-abelian subvariety. Put B' = B N (N;zoSt(X;(f)). Let
¢®:A— A/B and ¢% : A — A/B' be quotient mappings. Then we have

T oo (1) = O(Tysog(r)) + Sip(7).

Proof. We write G = M;»St(X;(f)). Taking the natural embedding A/B’ — (A/B) x
(A/G), we see that
TqB’of(T) = O(TqBof(T) + TqGof(T))'

Thus the claim follows from Lemma 5.5. Q.E.D.

Lemma 5.7 Let A and A" be semi-abelian varieties with a surjective homomorphism
p:A— A Let g: C— A’ be a holomorphic curve. Then we have a holomorphic curve
g:C — A such that po g =g and

Proof. Set n =dimA and ' = dim A’ Let w: A= C* —» A and A' = C" — A’ be
the universal covering. Then there is a surjective linear homomorphism p : A A Let
G : C — A’ be the lifting of g. Let g(z) = Z?I:l g;(z)€; with basis {e}} of A'. Take a
basis {e;} of A such that p(e;) = €, 1 < j < n'. Then we set §(z) = w(Z?Izl g;(2)e;).
It immediately follows from the definition of order functions (see [NWYO02] §3) that ¢

satisfies the requirement. Q.E.D.
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Now we are going to reduce our proof to the case such that A = B x C and that B
and C are semi-abelian subvarieties satisfying (5.2) and (5.3). Let B be the set of all

semi-abelian subvarieties B C A such that

Tyap(r) = Sg(r).

Then since M>oSt(X;(f)) € B, we have B # (). Let B € B be a minimal element of B;
ie., if B C B and B’ € B, then B’ = B. If B; € B,i = 1,2, we deduce from Lemma 5.6
that B; N By € B. Thus we get

B C MizoSt(Xa(f))-

Put C = A/B and let ¢® : A — C be the quotient map. By Lemma 5.7 we may take a
holomorphic curve ¢ : C — A such that ¢® o g = ¢® o f and

(5.8) Tg(r) = Sf(r)'

We may assume that the Zariski closure of the image ¢g(C) is a semi-abelian subvariety
C' C A ([N77], [N81]). Define the semi-abelian variety A by the following pull-back.

A P4
PIJ' J'qB
B
C, q ‘C’ C
Then A = {(c,a) € C' x A : ¢%(c) = ¢
map 7 : C' — A defined by 7(z) = («,i(z)). Note that this morphism 7 is a section for

p1: A — C'. Hence this bundle is trivial, i.e. A=~ B x C' and 4/B = C".
Put f =g x f:C— A. Then by (5.8) we have

B(a)}. The inclusion map 7 : C' — A yields a

(5.9) Ty(r) = O(Txr)),  THr)=O(Ty(r)),
(5.10) Tplof(T) = Sf(?“).

Put

(5.11) B'=BnN (ﬂngSt(Xl(f)))

and p} : A — A/B' be the quotient map. By Lemma 5.6 and (5.10), we have

(5.12) T, #(r)=S:r).



Put ¢ : A — A/B' be the quotient map. Then we have

(5.13) T oo s(r) = O(T,, (1))

q

Hence by (5.9), (5.12) and (5.13) we conclude B' € B. Since B is minimal in B, we

b

get B' = B. By (5.11) we have B C NpzoSt(Xi(f)). Let pay : Xi(f) — Xi(f) be the
morphism induced from p, : 4 — A. Set

Z = pax(Z) C Xi(f).

Note that
N (r; Jo(f)*Z) = N (r; Jo(f)* Z)

and that (5.9) holds.

For the reduction we need codim X f)Z 2 2. By Lemma 5.6 we see that

B  (MizoStOG(£) N (NzoStOG(f) ) -

Thus po; - Xi(f) = Xi(f) is B-equivariant, and induces a morphism

phy : Xo(f)/B — Xi(f)/B.

Let m; : X;(f) — Xi(f)/B be the quotient map. Then it follows from (5.3) and (5.4) that

(5.14) Trpon(p)(1) = Sp(r).

If the image m¢(Z) is not Zariski dense in X(f)/B, there is a Cartier divisor H on
Xi(f)/B containing 7 (Z). Then, making use of (5.14) and the natural embedding
Xi(f)/B — (A/B) x Ji.4 we get

(5.15) Ny (75 Je(f)*Z) £ N(r; (mi 0 ol £)) H) = O(Tposen(r))
= S¢(r).

Therefore the proof of Theorem 5.1 is finished in this case.

We assume that 7, (2) is Zariski dense in X (f), and has a relative dimension at most
dim B — 2. Therefore the relative dimension of Z — X, (f)/B is at most dim B — 2, and
hence codimy, f)Z > 2.

Hence, by replacing A by A, C by C', f by f and Z by p; Y(Z), we may reduce our
problem to the desired situation (5.2) and (5.3).

Therefore we assume the following in the sequel:
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(i) Let B C A be a semi-abelian subvariety satisfying

(5.16) B C NizoStXi(f)),
(517) TqBof(T) = Sf(?“),
(5.18) A B x (A/B),

where ¢® : A — A/B is the quotient map.
(ii) m,(Z) is Zariski dense in X, (f)/B.

(b) Auxiliary divisor. Let the notation and the assumption be as above. Set C =
A/B. We have

(5.19) A2 BxC.
Then it naturally induces
Xi(f) =B x(X(f)/B) (20).
Let B be an equivariant compactification of B and set X;(f) = B x (X;(f)/B). Let

At Xi(f) = B,
0 Xo(f) = Xu(f)/B

be the natural projections.
We denote by Z™ the set of non-singular points of Z.

Lemma 5.20 Let L — B be an ample line bundle. Then there is a sequence of natural

numbers n(1),n(2),n(3), ... satisfying the following:

(i) limy o 2 = 0.

(i1) There ezist effective Cartier divisors Fy C X’kﬂ( f) and line bundles My on Xy i(f)/B

such that Fy is defined by a non-zero element of
HY(Xia(f), A LB @ (fiy20)" M)
and that for every point a € C with Ji(f)(a) € Z™

ord, Jew(f) ' F 214 1.
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Proof. Let fg : C — B be the holomorphic curve defined by the composition of f and
the first projection A — B. Let fo : C — C be the holomorphic curve defined by the
composition of f and the second projection A — C. Then fg and fo have Zariski-dense
images. Let [ 2 0 be an integer, let pyiix @ Jk+1,4 — Ji,4 be the natural projection, and
let

TCJpra(A) x O X Jpa =2 BXxC X JppaxCxJpa

be the Zariski closed subset defined by
T ={(b,cv,d,v) € BXC X JypyaXxCXJpab=0, c=,v' = ps(v)}.

Let A: B x C X Jyppa X C % Jpa— C x Jyiq,a be the product of the second projection
and the third projection. We recall the following from [Y04] Proposition 2.1.1.

Lemma 5.21 There exists a closed subscheme T C Jyi(A) X C X Jy_ 4 with the following

properties:
(i) SuppT =T.

(i) The restriction X' = A7 : T — C X Jyi4 is a finite morphism. Furthermore the
restriction of the direct image sheaf X, (Or) to C % le(fl, 4 1 arank 41 locally free

Ocx T -module.
(iii) Let f: C — A be a holomorphic curve such that fg(a) = 0. Then

OrdaJk+l(f)*7;oJk(f)(a) Z I+ 1.

Let r; : ZT — Z be a desingularization of Z such that r; gives an isomorphism over
Z". Put Yy, = X,(f)/B. Consider the sequence of morphisms

(5.22) 788 7t I 28 X () B v

Here ry, 71 o 7y are open immersions and r, is a closed immersion. Put the composition
of morphisms to be r = 7,001 : ZT — Y} Let Ykﬁ be a Zariski open subset of Y
such that Y;! is non-singular and the fibers of 7 : ZT — Y} over V! are all of the same
dimension dim Zt — dim Yj,. Then the restriction of the family 7 : ZT — ¥}, to Y}! is a flat
family.

Consider the pull back of the sequence of morphisms (5.22) by the natural projection
BxY,— Y

BxZ S8 BxZI 3 Bx ZS3 Bx Xu(f) 3 Bx Y,
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Again put the composition of these morphisms to be s =s30s505,: Bx Zt = B x Y},

Then s maps as
s:(a,2) € Bx ZI — (a,r(2)) € B x Y},

Let L be an ample line bundle on B and set

(5.23) ¢ : (a,w) € B x Xi(f) = a+y(w) € B.

Let LI be the line bundle on B x Z! which is the pull back of L by the composition of

morphisms
Bx Z'%' B x X,(f) % B.

Since the restriction of s over B x Y, (i.e., S|pxys + B X (ZT|Y]§) — B x V) is a flat
family, the semi-continuity theorem [H77] p. 288 implies that there is a Zariski open
subset U, C B x V! (n > 0) such that H°((B x ZT)|p, LE?P”) are all the same dimensional
C-vector spaces for P € U,,. Put this dimension as G,,. Here (B x Z)|p denotes the fiber
of the morphism s : B x Z! — B x Y; over P € B x Y}, and L% is the induced line
bundle. Since the intersection M,>1U, is non-empty, put (a,w) € N,>;U, and replacing

L by the pull back by the morphism
B>x—x+a€eB

we may assume a =0 € B.
Now for a positive integer [ > 0, let '7? C A X Jgug 4 X C x Ji 4 be the closed subscheme,
and let A : 7? — C X Ji41,4 be the morphism obtained in Lemma 5.21. Then A has the

following properties;
(i) Ais finite,

(ii) the direct image sheaf )\*OTZT is locally generated by [+ 1 elements as Oc¢x,., 4,

reg
module on €' x Ji. 5 4,

(iii) A induces an isomorphism of the underlying topological spaces of 7?L and C X Jy1.4-

Since Y}, is a Zariski closed subset of C' x Jx.y 4, we denote oy : Yy — C for the
composition with the first projection C' x Jy; 4 — C and denote 1 : Yy — Jpi,4 for

the composition with the second projection. We have the closed immersion

(5.24) BxY,uxY,CBXCXJyaxCxJpa=AXJaxCxJyga,
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where the first inclusion is given by
B x Yy x Y3 (b,v,0") = (b, 0r1(v), Nt (v), 0 (v), e (v)) € BXC X Jyiya X C X Jga
and the second identification is given by

BxC X JaxCx Jyad(beud,u)— ((bc),u,d,u)€Ax JsxCxJga.

Let S; C B X Y1 X Y} be the closed subscheme obtained by the pull-back of 7ZT by (5.24).
Let ¢ : §; — Yy be the composition with the second projection B X Y. X Yy, — Y.
We put

Vi = Yeu N (C x JE ),

which is the Zariski open subset of Y;;. Then by the above properties of A\, we have the

corresponding properties for ¢;
(i) q is finite,

(ii) the direct image image sheaf ¢,Og, is locally generated by [ + 1 elements as Oy, ,-

reg
module on Y, 5,

(iii) ¢ gives the isomorphism of under lying topological spaces of & and Y.

We consider the following commutative diagram (5.25) obtained by the base change of

(5.22) with a sequence of morphisms
S BXxY, y xY,—>BxY, =Y,
Here B x Yy X Yy, — B X Y}, is the natural projection:
B x Y XY, 3 (a,w,w') — (a,w) € BXY;.
28 y BxViyxZ® —— BxZ® — ZW

ug to 50 70

2zl —— BxYuxZl —— BxZzZl —— 2t

Ul t1 81 1

! — — —

(5.25) 2z Y% BxYyayxZ —— BxZ — Z
uz to 82 T2

—— BXx Yo x Xi(f) —— B x Xp(f) —— Xi(f)

u3 t3 53 Tk

S —— BxY,,yxY, —— BxY, — Y
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Let £} be the line bundle on Z obtained by the pull back of L{ by the morphisms in
the above diagram (5.25). Let S;, be the non-empty Zariski open subset of S; obtained
by the inverse image of U,. Since dim H°((B x Z1)|p, LI?PR) =G, for P € U,, the direct

image sheaf s*LIm is a locally free sheaf of rank G,, on U,, and the natural map
s.LI%" ® C(P) — H°((B x Z")|p, L%

is an isomorphism for P € U,. This follows by the Theorem of Grauert [H77] p.288,
since U, is reduced and irreducible. Here s : B x Z! — B x Y} is the natural map;
i.e., s = s30 89 051. Let u be the morphism u : ZlT — &; obtained by the composition
U = U3 0 Uy 0 Uy, where uy,us,us are the morphisms in the above diagram (5.25). Then the

natural map
w L] ® C(P) = H(Z[|r, LI7)

is also surjective, so an isomorphism on P € &;,,. This follows by the Theorem of Coho-
mology and Base Change [H77] p. 290. Hence u*L',ZT@” is locally generated by G, elements
as an Og,-module on S;,, C &;. Let Yiy, = ¢(S;,) be a non-empty Zariski open sub-
set of Yj; (note that the under lying topological spaces of S; and Yy are the same).
Then by the above properties of ¢, the direct image sheaf (¢ o u)*q@n is locally gener-
ated by (I + 1)G, elements as a Oy,,,-module on Yy, NY,5. Here, note that Y15 is
non-empty (otherwise f must be constant) and Y. is irreducible. Hence Y,;, N Ykrigl 18
also non-empty.

Now look at the following commutative diagram

ns
Zl

I |

Z 2 BV x Xu(f) —2+ Bx Yy —2 B

J' qou J' 2nd proj J'T

where p is the first projection, 7 is the second projection and v is the morphism
Y : B x Y X Xie(f) 3 (a,v,w) = (a+ ve(w),v) € B x Vi

Since (pootyov oup)*L = L}L; we have a natural morphism

(5.26) T.p L®" = HY(B, L®") ®c Oy,,, — (g0 u).L{%".

Here, note that po = ¢ o 8 where §: B X Y X Xk(f) — B x Xk(f) is the morphism
in the diagram (5.25) and ¢ was defined by (5.23).
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Now put I, = dimc H°(B, L®"). Then there is a positive integer ny and positive
constants C, C5 such that

I, > C’lndimB, G, < C’grflimB_2 for n > ny.

Here note that G,, = dimgc H°(B x ZT|p,LI§Dn) for P € My31Uy, and B x Zf|p = s71(P)
has dimension < dim B —2, for codim X f)Z > 2 and 7y ory : Z — Y, is dominant. Hence
for a positive integer [, we can take a positive integer n(l) (e.g. ~ [%/) such that
l
In(l) > (l -+ 1)Gn(l); lim w =0.

lyoc |

Let F be the kernel of (5.26) for n = n(l);
0= F = np LW 5 (go u)*ﬁjmw (exact).

Then we have F # 0. By taking the tensor of a sufficiently ample line bundle Af; on Y
with F, we may assume that H°(Y;;, F ® M;) # 0. Since we have

H(Yist, F @ My) C H(Yis, (1op* L") @ M)
= HO(Yesr, (9" L5"D © 7°M)))
= H*(B % Yiuy, p' L&Y @ 7 M))

3

we may take a divisor F; C B X Y, which is defined by a non-zero global section of
H(Y}.;, F ® M;). Then we have
Z° C YR

) ) ) toov’ - )
Here note that 2 C Z; is an open immersion and 2 & B x Vi X Xi(f) is a closed

subscheme.

Using the decomposition A = B x C, we let fg : C — B be the holomorphic curve
obtained by the composition of f and the first projection A — B, and let fo : C — C
be the holomorphic curve obtained by the composition of f and the second projection
A — C. Now let a € C be a point such that Ji(f)(a) € Z™. Put f:Cc— B><Yk+l><)2k(f)

as

f(z) = (f8(2) — fB(a), Fsi 0 Turi(f)(2), k() (@)).

Then we have

FIC)CBxYiuxZ, fla)€Supp 2=, o f=Juulf),

where the last equality holds under the identification B x Y;,.; = X k-1(f)-
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Since v’ is the base change of v in (5.25) and f factors through t,, we have
ord, f* 2, = ord,(t3 o f)*Sl,
hence by the construction of §; and Lemma 5.21, we have
ord, f*2; = orda(Jet(F) = F@) Ty pana 21+ 1
Hence we have
ordeJi+i(f) Fiy = ordo f*¢* Fy 2 orda f* 2™ = orda f*2; 2 1+ 1.

Here note that we consider F; as the divisor on X k-1(f) by the identification B X Yy, =
X k1(f), and 7 correspond to 7, by this identification. Q.E.D.

(c) The end of the proof. It suffices to show
(5.27) Ni(r; Jo(f)*2") < €Ty(r)lle, Ve > 0.
For we have
Ni(r; Ji(f)*Z) = Ni(r; Je(f)*Z%) + Nu(rs T(£)(Z \ Z7))

and the second term of the right hand side is estimated to be at most “€Ty(r)||” by
induction on dimension of Z. Here note that dim Z > dim(Z \ Z™).
It follows from Lemma 5.20 and (5.14) that

(5.28) (+ DNu(r; Je(f)"Z2") < N(r5 Jea( ) F) S Ty iy (13 L))

n(Z)T’YkHOJkH(f) (T; L) + T7rk+l°']k+l(f) (T; Ml)
W(O)T (15 L) + (r).

A

Using lim;,ocn(l)/(l +1) = 0 and Ty, (r; L) = O(T¢(r; D)), we obtain (5.27) and our

Theorem 5.1.

6 Proof of Main Theorem

(a) Let the notation be as in the Main Theorem. Set B = St(Xy.1(f)), which has a

positive dimension (cf. (4.7)).

Lemma 6.1 Assume that D is irreducible and B ¢ St(D). Taking an embedding Xy 1(f) —
Ji(Xk(f)), we have
COdika+1(f)(Xk+1(f) M Jl(D)) Z 2.
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Proof. Let k = 0. Tt is first noted that J;(A) is the holomorphic tangent bundle T(A)
over A, and X;(f) C T(A).

Assume that codimy, ;(X1(f) N J1(D)) = 1. Let Z be an irreducible component of
codimension 1 of X (f) N Ji(D).

Let 7 : X1(f) — A be the natural projection. Then Z is an irreducible component of
X1(f) N7 (D). Notice that B - Z (resp. B - D) contains an open subset of X (f) (resp.
A).

Let p € f(C) be a point with the property that the orbit B - p intersects D \ Sing(D)
transversely in a point ¢. Then we choose an analytic 1-dimensional disk A C B which
contains the unit element eg of B and we choose a non-empty open subset U of the

non-singular part D™ of D containing ¢ such that
(i) A x U — A is an open embedding.

(ii) The subbundle UceaT({¢} x U) C T(A x U) with T({¢} x U) = T(U) gives rise

to a holomorphic foliation.
(iii) The union UceaT({¢} x U) contains an open subset of X (f).

Consider f(z) = b- f(z — 2) with b € B such that b-p = ¢ and p = f(z). Since B
stabilizes X1(f), there is an open neighbourhood W of 0 in C such that f'(z) is tangent to
the leaves of the above defined foliation for all z € U. This implies f(C) = b- f(C) C D
which is absurd, since f is algebraically non-degenerate.

The proof for k = 1 is similar to the above. Q.E.D.

(b) Proof of the Main Theorem. Let D =} . D; be the irreducible decomposition. By
making use of Theorem 4.2 we have

(6.2) T(r;wp,g.5) S Niol(r; J(f)* D) + Sy(r)
< Ni(r; Jo(f)™D) + ko D Ni(r; Ju(f)*(D: N Dy))

i<j

+ ko ZNl(TE T () J1(Dy)) + Sy (r).

Since codimy, s D; N D; 2 2 for i # j, it follows from Theorem 5.1 that

ko Y Ni(r; Ju(f)"(Ds N D;)) S €Ty(r)||e; Ve > 0.
i<j
Note that Ji1(f)*J1(Ds) = ki1 (f ) (Xir (f) N J1(Dy)). If B C St(D;), then the image
of D; by X (f) — Xi(f)/B is contained in a divisor on X, (f)/B. Then as in (4.9) we
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infer that
Ni(r; Joa (F)"Ji(Dy)) = N(r; Ji(f)"Ds) = Sf(r)'

Suppose that B ¢ St(D;). It follows from Lemma 6.1 and Theorem 5.1 that
Ni(r; Je1 (F)* (D)) = Ni(r; Jen (f ) (X1 (f) N J1(Dy)) S €Tp(r)lle, Ve > 0.
Combining these with (6.2), we obtain
T(r;wpgpy) = Nu(r; f*D) + €CTy(r)|le,  Ve>0,
where C' is a positive constant independent of ¢. Now the proof of the Main Theorem is
completed. Q.E.D.

7 Applications

(a) In [G74] M. Green discussed the algebraic degeneracy of a holomorphic curve f : C —
P"(C) omitting an effective reduced divisor D on P"(C) with normal crossings and of
degree > n + 2. He proved the following theorem and conjectured that it would hold
without the condition of finite order for f:

Theorem 7.1 (M. Green [G74]) Let f : C — P?(C) be a holomorphic curve of finite
order and let [xg, x1, 22| be the homogeneous coordinate system of P?(C). Assume that f
omits two lines {x; = 0},i = 1,2 , and the conic {x3 + 2? + x5 = 0}. Then the image

f(C) lies in a line or a conic.
Here we answer his conjecture in more general form:

Theorem 7.2 Let f : C — P"(C) be a holomorphic curve and let [xo, ... ,x,| be the

homogeneous coordinate system of P*(C). Assume that f omils hyperplanes given by
(7.3) x; =0, 1<5iSn,

and a hypersurface defined by

Then f is algebraically degenerate.
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Proof. Let f(z) = [fo(2),-.., fn(2)] be a reduced representation of f. Then f;(z) have

no zero for 1 < ¢ £ n. The assumption implies the existence of an entire function h(z)
such that
Jie) + o+ fiz) = 9.

Write the above equation as
(fo(2)e ™) 4o (ful2)e M) = 1.
Changing the reduced representation of f, we may have that

(7.4) fi(z) + -+ flz) = 1 = = f3(2).

Now we take a holomorphic curve into a semi-abelian variety A = (C*)™ with the natural

coordinate system (x1,... ,x,) defined by

Define a divisor D on A by
B+ o+l —1=0.

Let A be a equivariant compactification in which D is generally positioned. Let D be the
closure of D in A. Note that St(D) = {0} and that ord,¢g*D = 2 for all z € ¢~ (D) by
(7.4). Combining this with the Main Theorem (k = 0), we see that for arbitrary € > 0

Ty(r; L(D)) = Ni(r; 9" D) + €Ty (r; L(D))] e

1
< N(r;g"D) + €Ty (r; (D)l

1+ ge ~
. Ty(r; L(D))]|-

[IA

This leads to a contradiction for € < (¢ — 1)/¢. Q.E.D.

Remark. The Zariski closure of the image f(C) can be more specified in terms of ¢
defined in the above proof. It follows from [N98] that the Zariski closure of ¢(C) is a
translate X of a proper semi-abelian subvariety of A such that X N D = {.

(b) Let A be a semi-abelian variety as above and let X C Ji(A4) be an irreducible
algebraic subvariety. We consider the existence problem of an algebraically nondegenerate
entire holomorphic curve f : C — A such that J,(f)(C) € X and Ji(f)(C) is Zariski
dense in X. This is a problem of a system of algebraic differential equations described by

the equations defining the subvariety X.
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The first necessary condition for the existence of such solution f is that St(X) # {0}
(cf. (4.7)). Now we assume the existence of such f. Then we take a big line bundle L — X
and a section o € H°(X, L) which defines a reduced divisor on X. We arbitrarily fix a

trivialization
(7.5) Je(f)'L=CxC,
and regard Ji(f)*c as an entire function.

Theorem 7.6 Let the notation be as above. Then there is no entire function ¥ (z) such

that every zero of 1¥(z) has degree =2 2 and

(7.7) T(f)o(z) =v(z), zeC.

(7.8) Ju(f)'o(z) = (¥(2))?,  z€C,
where ¢ = 2 is an integer.

Remark. The property given by (7.7) or (7.8) is independent of the choice of the
trivialization (7.5).

Proof. Suppose that there is an entire function ¢(z) satisfying (7.7) or (7.8). Then it
follows that

Ni(r; Jo(f)"D) = SN (r; Je(f)* D).

DN —

Combining this with the Main Theorem, we infer the following contradiction:
1
T L) = ST (15 L) + €Dy (13 L) [l

Q.E.D.

(c) The truncation level one in the Second Main Theorem ((1.3)) allows the following

immediate improvement of Theorem 6.1. in [NWY02].

Theorem 7.9 Let A be a compact compler torus and D a divisor which contains no
positive-dimensional translate of a subtorus of A. Let m : X — A be a finite ramified

covering which is ramified at all points in 7= (D). Then X is Kobayashi hyperbolic.

Further applications to Kobayashi hyperbolicity question will be discussed in a future

article.
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