
Representations of the Cuntz-Krieger algebras. II
—Permutative representations—

Katsunori Kawamura
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan

We generalize permutative representations of the Cuntz al-
gebras for the Cuntz-Krieger algebra OA for any A. We char-
acterize cyclic permutative representations by notions of cycle
and chain, and show their existence and uniqueness. We show
necessary and sufficient conditions for their irreducibility and
equivalence. In consequence, we have a complete classification
of permutative representations of OA for any A. Further-
more we show that the uniqueness of irreducible decomposi-
tion holds for permutative representation and decomposition
formulae.

1. Introduction

Permutative representations of the Cuntz algebras are completely classified
by [1, 3, 4]. We generalize their works to the Cuntz-Krieger algebra OA

for any A in this paper. Remarkable points is that the uniqueness of irre-
ducible decomposition holds for permutative representations of OA for any
A. Therefore the decomposition formulae make sense.

Let N ≥ 2 and A be an N ×N matrix which has entries in {0, 1} and
has no rows or columns identically equal to zero.

Theorem 1.1. Let (H, π) be a representation of OA and s1, . . . , sN be
canonical generators of OA. Assume that there are a complete orthonor-
mal basis {en}n∈Λ of H and a family {Λi}N

i=1 of subsets of Λ such that
∀i ∈ {1, . . . , N}, ∀n ∈ Λi, ∃(zi,n,mi,n) ∈ U(1)× Λ s.t.

(1.1) π(si)en =





zi,nemi,n (n ∈ Λi),

0 (otherwise).

Then the followings hold:
(i) (H, π) is uniquely decomposed into the direct sum of cyclic representa-

tions which satisfy (1.1).
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(ii) If (H, π) is cyclic, then there is a unit cyclic vector Ω ∈ H such that
either of the followings holds:
a) There are (j1, . . . , jp) ∈ {1, . . . , N}p and c ∈ U(1) such that

π(sj1 · · · sjp)Ω = cΩ.
b) There is (kn)n∈N ∈ {1, . . . , N}∞ such that {π(s∗kn

· · · s∗k1
)Ω}n∈N is

an orthonormal family in H where N ≡ {1, 2, 3, . . .}.
We denote cases a) and b) by P ((jn)p

n=1; c) and P ((kn)n∈N), respec-
tively.

(iii) P ((jn)p
n=1; c) (resp. P ((kn)n∈N)) is irreducible if and only if there is

no σ ∈ Zp \{id} such that (jσ(1), . . . , jσ(p)) = (j1, . . . , jp)(resp. there is
no (q, n0) ∈ N×N such that kn+q = kn for each n ≥ n0.)

(iv) P ((jn)p
n=1; c) 6∼ P ((kn)n∈N). P ((jn)p

n=1; c) ∼ P ((j
′
n)p

′

n=1; c
′
) if and

only if p = p
′
, c = c

′
and there is σ ∈ Zp such that j

′
σ(n) = jn for

each n = 1, . . . , p. P ((kn)n∈N) ∼ P ((k
′
n)n∈N) if and only if there is

(q, n0) ∈ Z×N such that kn+q = k
′
n for each n ≥ n0.

Specially, a representation of OA in Theorem 1.1 such that zi,n = 1 for every
(i, n) ∈ {1, . . . , N} ×Λ in (1.1) is called a permutative representation of OA.

In § 2, we prepare multiindices associated with a matrix A and intro-
duce A-branching function systems and show their properties. In § 3, we
give another definition of permutative representation and show their prop-
erties by multiindices. The existence of cyclic representations appearing in
Theorem 1.1 (ii) is shown for each multiindex in § 2. We show the con-
struction of the canonical basis of a given permutative representation. In
§ 4, we show uniqueness, irreducibility and equivalence of them. In § 5,
we show decomposition formulae of permutative representations. Theorem
1.1 is shown here. In § 6, we show states and spectrums of OA associated
with permutative representations. In § 7, we show decomposition formulae
of standard representations of the Cuntz-Krieger algebras. In § 8, we show
examples.

2. A-branching function systems

2.1. Multiindices. We introduce several sets of multiindices which consist
of numbers 1, . . . , N for N ≥ 2 in order to describe invariants of representa-
tions of OA.

Put {1, . . . , N}0 ≡ {0}, {1, . . . , N}k ≡ {(jl)k
l=1 : jl = 1, . . . , N, l =

1, . . . , k} for k ≥ 1 and {1, . . . , N}∞ ≡ {(jn)n∈N : jn ∈ {1, . . . , N}, n ∈ N}.
Denote {1, . . . , N}∗ ≡ ∐

k≥0{1, . . . , N}k, {1, . . . , N}∗1 ≡
∐

k≥1{1, . . . , N}k,
{1, . . . , N}# ≡ {1, . . . , N}∗1 t {1, . . . , N}∞. For J ∈ {1, . . . , N}#, the length
|J | of J is defined by |J | ≡ k when J ∈ {1, . . . , N}k. For J1, J2 ∈ {1, . . . , N}∗
and J3 ∈ {1, . . . , N}∞, J1∪J2 ≡ (j1, . . . , jk, j

′
1, . . . , j

′
l ), J1∪J3 ≡ (j1, . . . , jk, j

′′
1 , j

′′
2 , . . .)

when J1 = (j1, . . . , jk), J2 = (j
′
1, . . . , j

′
l ) and J3 = (j

′′
n)n∈N. Specially, we
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define J ∪ {0} = {0} ∪ J = J for J ∈ {1, . . . , N}# and (i, J) ≡ (i) ∪ J
for convenience. For J ∈ {1, . . . , N}∗ and k ≥ 2, Jk ≡ J ∪ · · · ∪ J︸ ︷︷ ︸

k

and

J∞ ≡ J ∪J ∪J ∪ · · · ∈ {1, . . . , N}∞. For J = (j1, . . . , jk) ∈ {1, . . . , N}k and
τ ∈ Zk, denote τ(J) = (jτ(1), . . . , jτ(k)).

For N ≥ 2, let MN ({0, 1}) be the set of all N ×N matrices in which
have entries in {0, 1} and has no rows or columns identically equal to zero.
A = (aij) is full if aij = 1 for each i, j = 1, . . . , N . For A = (aij) ∈
MN ({0, 1}), define

{1, . . . , N}∗A ≡
∐

k≥0

{1, . . . , N}k
A,

{1, . . . , N}0
A ≡ {0}, {1, . . . , N}1

A ≡ {1, . . . , N},
{1, . . . , N}k

A ≡ {(ji)k
i=1 ∈ {1, . . . , N}k : aji−1ji = 1, i = 2, . . . , k} (k ≥ 2),

{1, . . . , N}∗A,c ≡
∐

k≥1

{1, . . . , N}k
A,c,

{1, . . . , N}k
A,c ≡ {(ji)k

i=1 ∈ {1, . . . , N}k
A : ajkj1 = 1},

{1, . . . , N}∞A ≡ {(jn)n∈N ∈ {1, . . . , N}∞ : ajn−1jn = 1, n ≥ 2},
{1, . . . , N}#

A,c ≡ {1, . . . , N}∗A,c t {1, . . . , N}∞A .

J ∈ {1, . . . , N}∗1 is periodic if there are m ≥ 2 and J0 ∈ {1, . . . , N}∗1
such that J = Jm

0 . For J1, J2 ∈ {1, . . . , N}∗1, J1 ∼ J2 if there are k ≥ 1
and τ ∈ Zk such that |J1| = |J2| = k and τ(J1) = J2. For (J, z), (J

′
, z
′
) ∈

{1, . . . , N}∗1×U(1), (J, z) ∼ (J
′
, z
′
) if J ∼ J

′
and z = z

′
where U(1) ≡ {z ∈

C : |z| = 1}. J ∈ {1, . . . , N}∞ is eventually periodic if there are J0, J1 ∈
{1, . . . , N}∗1 such that J = J0∪J∞1 . Specially, if J ∈ {1, . . . , N}∞A , then J0 ∈
{1, . . . , N}∗A and J1 ∈ {1, . . . , N}∗A,c in the above. For J1, J2 ∈ {1, . . . , N}∞,
J1 ∼ J2 if there are J3, J4 ∈ {1, . . . , N}∗ and J5 ∈ {1, . . . , N}∞ such that
J1 = J3 ∪ J5 and J2 = J4 ∪ J5. If J ∈ {1, . . . , N}∞A is eventually periodic,
then there is J1 ∈ {1, . . . , N}∗A,c such that J ∼ J∞1 . For J, J

′ ∈ {1, . . . , N}#,
J ∼ J

′
if J, J ∈ {1, . . . , N}∗1 and J ∼ J

′
, or J, J ∈ {1, . . . , N}∞ and J ∼ J

′
.

For J1 = (j1, . . . , jk), J2 = (j
′
1, . . . , j

′
k) ∈ {1, . . . , N}k, k ≥ 1, J1 ≺ J2

if
∑k

l=1(j
′
l − jl)Nk−l ≥ 0. J ∈ {1, . . . , N}∗1 is minimal if J ≺ J

′
for each

J
′ ∈ {1, . . . , N}∗1 such that J ∼ J

′
. Specially, any element in {1, . . . , N} is

non periodic and minimal. Put

< 1, . . . , N >∗
A≡ {J ∈ {1, . . . , N}∗A,c : J is minimal},

< 1, . . . , N >∞
A ≡ {1, . . . , N}∞A /∼,

[1, . . . , N ]∗A ≡ {J ∈< 1, . . . , N >∗
A: J is non periodic}.

[1, . . . , N ]∞A ≡ {[J ] ∈< 1, . . . , N >∞
A : J is non eventually periodic}
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where [J ] ≡ {J ′ ∈ {1, . . . , N}∞A : J ∼ J
′}. Then [1, . . . , N ]∗A is in one-

to-one correspondence with the set of all equivalence classes of non periodic
elements in {1, . . . , N}∗A,c. We denote an element [K] of both < 1, . . . , N >∞

A

and [1, . . . , N ]∞A by a representative element K if there is no ambiguity. Put

(2.1)





< 1, . . . , N >#
A≡< 1, . . . , N >∗

A t < 1, . . . , N >∞
A ,

[1, . . . , N ]#A ≡ [1, . . . , N ]∗A t [1, . . . , N ]∞A .

We show a systematic construction of non eventually periodic element in
{1, . . . , N}∞A . For J1, J2 ∈ {1, . . . , N}#

A , we denote J1J2 ≡ J1 ∪ J2 simply.

Definition 2.1. Let A = (aij) ∈ MN ({0, 1}).
(i) A family {J1, . . . , Jl} ⊂ {1, . . . , N}∗A,c is freely jointable if JaJb ∈

{1, . . . , N}∗A,c for each a, b = 1, . . . , l.
(ii) J1 and J2 in {1, . . . , N}∗A,c are strongly inequivalent if there are no

a, b ∈ N such that Ja
1 ∼ Jb

2.
(iii) For a freely jointable family {Ji}l

i=1 ⊂ {1, . . . , N}∗A,c and K = (kn)n∈N ∈
{1, . . . , l}∞, JK ∈ {1, . . . , N}∞A is defined by JK ≡ Jk1Jk2Jk3 · · · .

By these preparations, we have the following proposition:

Proposition 2.2. Assume that J1, . . . , Jl ∈ {1, . . . , N}∗A,c, l ≥ 2, are freely
jointable and Ja and Jb are strongly inequivalent for any 1 ≤ a < b ≤ l.
Then if K = (kn) ∈ {1, . . . , l}∞ is non eventually periodic, then JK is non
eventually periodic.

Fix J1, J2 ∈ {1, . . . , N}∗A,c. Assume that both J1 = (j1, . . . , jk) and J2 =
(j
′
1, . . . , j

′
m) are non periodic, they are inequivalent and a

jkj
′
1

= aj′mj1
= 1.

From this, J1J2, J2J1 ∈ {1, . . . , N}∗A,c. For a non eventually periodic element
K = (12112211122211112222 · · · ) ∈ {1, 2}∞,

JK = J1J2J1J1J2J2J1J1J1J2J2J2 · · · .
Then JK ∈ {1, . . . , N}∞A is non eventually periodic.

2.2. A-branching function systems. In [7], we introduce the A-branching
function system on a measure space in order to define a representation of
OA. Let X be a possibly uncountably infinite set. We consider an atomic
measure µ on X by µ({x}) ≡ 1 for each x ∈ X. Then L2(X,µ) = l2(X).
In this paper, we state about A-branching function systems on an atomic
measure space with the normalized measure at each point and associated
representations of the Cuntz-Krieger algebras for more detail.

We denote the set of injective maps from X to Y by RN(X, Y ) and put
RNloc(X,Y ) ≡ ⋃

X0⊂X RN(X0, Y ). We simply denote RN(X) ≡ RN(X, X).
For f ∈ RNloc(X), we denote the domain and the range of f by D(f) and
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R(f), respectively. RNloc(X) and RN(X) are a groupoid and a semigroup
by composition of maps, respectively. We denote X × Y and X ∪ Y , the
direct product and the direct sum of X and Y as sets, respectively. For
f ∈ RN(X1, Y1) and g ∈ RN(X2, Y2), f ⊕ g ∈ RN(X1 ∪ X2, Y1 ∪ Y2) is
defined by (f ⊕ g)|X1 ≡ f , (f ⊕ g)|X2 ≡ g.

Definition 2.3. For A = (aij) ∈ MN ({0, 1}), f = {fi}N
i=1 is an A-branching

function system on a set X if f satisfies the followings:
(i) There is a family {D(fi)}N

i=1 of subsets of X such that fi is an injective
map from D(fi) to X with the image R(fi) for each i = 1, . . . , N .

(ii) R(fi) ∩R(fj) = ∅ when i 6= j.
(iii) D(fi) =

∐
j:aij=1 R(fj) for each i = 1, . . . , N .

(iv) X =
∐N

i=1 R(fi).
Specially, if A is full, then we call A-branching function system by (N -
)branching function system simply. We denote the set of all A-branching
function systems, branching function systems on X by BFSA(X), BFSN (X),
respectively.

By definition, BFSA(X) 6= ∅ if and only if #X = ∞. The notion of original
branching function system was introduced in order to construct a represen-
tation of ON from a family of transformations in [1]. Definition 2.3 coincides
with originals when A is full.

Let X and Y be sets. F is the coding map of f = {fi}N
i=1 ∈ BFSA(X) if

F is a map on X such that (F ◦ fi)(x) = x for each x ∈ X and i = 1, . . . , N .
For f = {fi}N

i=1 ∈ BFSA(X) and g = {gi}N
i=1 ∈ BFSA(Y ), f ∼ g if there

is a bijection ϕ from X to Y such that ϕ ◦ fi ◦ ϕ−1 = gi for i = 1, . . . , N .
For a bijection ϕ on X and g = {gi}N

i=1 ∈ BFSA(Y ), we denote ϕ £ g ≡
{ϕ×gi}N

i=1 ∈ BFSA(X × Y ). For f = {fi}N
i=1 ∈ BFSA(X) and g = {gi}N

i=1 ∈
BFSA(Y ), we denote f ⊕g ≡ {fi⊕gi}N

i=1 ∈ BFSA(X ∪ Y ). Let {Xω}ω∈Ξ be
a family of sets. For f [ω] = {f [ω]

i }N
i=1 ∈ BFSA(Xω) for ω ∈ Ξ, f is the direct

sum of {f [ω]}ω∈Ξ if f = {fi}N
i=1 ∈ BFSA(X) for a set X ≡ ∐

ω∈Ξ Xω which
is defined by fi(n) ≡ f

[ω]
i (n) when n ∈ Xω for i = 1, . . . , N and ω ∈ Ξ.

For f ∈ BFSA(X), f =
⊕

ω∈Ξ f [ω] is a decomposition of f into a family
{f [ω]}ω∈Ξ if there is a family {Xω}ω∈Ξ of subsets of X such that f is the
direct sum of {f [ω]}ω∈Ξ.

For f = {fi}N
i=1 ∈ BFSA(X), denote fJ ≡ fj1 ◦ · · · ◦ fjk

when J =
(j1, . . . , jk) ∈ {1, . . . , N}k

A, k ≥ 1, and define f0 ≡ id. When we denote
fi(x), we assume x ∈ D(fi) automatically. Define

Cx ≡ {fJ(x) ∈ X : J ∈ {1, . . . , N}∗A s.t. x ∈ D(fJ)} ∪ {Fn(x) ∈ X : n ∈ N}
where F is the coding map of f .

Definition 2.4. For A ∈ MN ({0, 1}), let f ∈ BFSA(X).
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(i) f is cyclic if there is x ∈ X such that Cx = X.
(ii) For J = (j1, . . . , jk) ∈ {1, . . . , N}k

A,c, k ≥ 1, {xi}k
i=1 is a cycle of f by

J if fjl
(xl+1) = xl for l = 1, . . . , k − 1 and fjk

(x1) = xk.
(iii) For J = (jn)n∈N ∈ {1, . . . , N}∞A , {xn}n∈N is a chain of f by J if

fjn−1(xn) = xn−1 for each n ≥ 2.

For x ∈ X, if y ∈ Cx, then Cy = Cx. For each x ∈ X and f ∈ BFSA(X),
f |Cx ∈ BFSA(Cx) and f |Cx is cyclic.

Lemma 2.5. For A ∈ MN ({0, 1}), let f ∈ BFSA(X).
(i) If f is cyclic, then f has either only a cycle or a chain.
(ii) If f is cyclic and has two chains {xn}n∈N and {yn}n∈N, then there are

p and M ≥ 0 such that xp+n = yn or xn = yn+p for each n > M .
(iii) For any f ∈ BFSA(X), there is a decomposition X =

∐
λ∈Λ Xλ such

that f |Xλ
is cyclic for each λ ∈ Λ.

Proof. Let F be the coding map of f .
(i) For x ∈ X, consider Ωx ≡ {Fn(x) : n ∈ N}. If there is x ∈ X such that
#Ωx < ∞, then Ωx contains a cycle C. If there is other cycle C

′
in X, then

there is no path from C and C
′
by f . Therefore such C

′
must not exist by

cyclicity. Hence f has only one cycle. If #Ωx = ∞ for each x ∈ X, then
there is no cycle in X. Ωx itself is a chain.
(ii) We see that {yn}n∈N ⊂ Cy1 = X = Cx1 . Hence either y1 = fJ(x1) for
|J | = k or y1 = Fm(x1) for m ≥ 0. If y1 = fJ(x1), then yk+1 = F k(y1) = x1

and yk+n = xn for each n ≥ 1. If y1 = Fm(x1), y1 = xm+1 and and
yn = xn+m for each n ≥ 1. In consequence, the statement holds.
(iii) Put Λ ≡ X/∼ where x ∼ y if and only if Cx = Cy. Then we have the
statement for Xλ ≡ λ ∈ Λ. ¤

Definition 2.6. For A ∈ MN ({0, 1}), let f ∈ BFSA(X).
(i) For J ∈ {1, . . . , N}∗A,c(resp. J ∈ {1, . . . , N}∞A ), f has a P (J)-component

if f has a cycle(resp. a chain) by J .
(ii) For J ∈ {1, . . . , N}#

A,c, f is P (J) if f is cyclic and has a P (J)-
component.

For J, J
′ ∈ {1, . . . , N}#

A,c, assume that f and f
′
are P (J) and P (J

′
), respec-

tively. Then f ∼ f
′
if and only if J ∼ J

′
. This follows from the uniqueness of

cycle and chain up to equivalences. From this and Lemma 2.5, the following
holds:

Theorem 2.7. Let X be a set. For any A ∈ MN ({0, 1}) and f ∈ BFSA(X),
there is decomposition X =

∐
λ∈Λ Xλ where f |Xλ

is P (Jλ) for some Jλ ∈
{1, . . . , N}#

A,c for each λ ∈ Λ. This decomposition is unique up to equivalence
of branching function systems.
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We can simply describe the statement in Theorem 2.7 as follows:

f ∼
⊕

J∈<1,...,N>#
A

P (J)⊕νJ

where νJ is the multiplicity of P (J) in f for J ∈< 1, . . . , N >#
A .

2.3. Construction of A-branching function system. In this subsec-
tion, we construct an A-branching function system which is P (J) for a given
J ∈ {1, . . . , N}#

A,c for any A ∈ MN ({0, 1}).
Fix A = (aij) ∈ MN ({0, 1}). For k ≥ 1, denote Zk ≡ {1, . . . , k} and σ

is the shift on Zk. Let

(2.2)





T (A; j) ≡ ∐
k≥1 T (k)(A; j),

T (k)(A; j) ≡ {(j1, . . . , jk) ∈ {1, . . . , N}k
A : ajkj = 1},

T (j;A) ≡ ∐
k≥1 T (k)(j; A),

T (k)(j;A) ≡ {(j1, . . . , jk) ∈ {1, . . . , N}k
A : ajj1 = 1}.

For J ∈ {1, . . . , N}k
A,c, k ≥ 1, put Jl ≡ (jl, . . . , jk) for l = 1, . . . , k,

(2.3) Λ(A, J) ≡ Λ1(A, J) t Λ2(A, J) t Λ3(A, J),

Λ1(A, J) ≡ {Jl : 1 ≤ l ≤ k}, Λ2(A, J) ≡
k∐

l=1

Λ2,l(A, J),

Λ2,l(A, J) ≡ {(j, Jl) : j ∈ T (1)(A; jl), j 6= jσ−1(l)},
Λ3(A, J) ≡

∐

(j,Jl)∈Λ2(A,J)

T (A; j)× {(j, Jl)}.

Lemma 2.8. Let a family {D(fi)}N
i=1 of subsets of Λ(A, J) by

D(fi) ≡ T (i; A) ∩ Λ(A, J) (i = 1, . . . , N)

and a family f = {fi}N
i=1 of maps by fi : D(fi) → Λ(A, J)

fi(J
′
) ≡





Jk (J
′
= J and i = jk),

(i, J
′
) (otherwise)

for i = 1, . . . , N . Then f is an A-branching function system on Λ(A, J) and
f is P (J).

Proof. We see that fi is injective on D(fi) for i = 1, . . . , N and

R(fi) = {(j′1, . . . , j
′
m) ∈ Λ(A, J) : j

′
1 = i} (i = 1, . . . , N).

From this, we can verify the axiom in Definition 2.3 for f . ¤

For J = (jn)n∈N ∈ {1, . . . , N}∞A , put

(2.4) Λ(A, J) ≡ Λ1(A, J) t Λ2(A, J) t Λ3(A, J),
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Λ1(A, J) ≡ N, Λ2(A, J) ≡ ∐
m∈N Λ2,m(A, J),

Λ2,1(A, J) ≡ {(j, 1) : j ∈ T (1)(A; j1)},
Λ2,m(A, J) ≡ {(j, m) : j ∈ T (1)(A; jm), j 6= jm−1} (m ≥ 2),

Λ3(A, J) ≡ ∐
(j,m)∈Λ2(A,J) T (A; j)× {(j, m)}.

Lemma 2.9. Let a family {D(fi)}N
i=1 of subsets of Λ(A, J) by

D(fi) ≡ {m ∈ N : aijm = 1} t (T (i; A)×N) ∩ Λ(A, J)

and a family f = {fi}N
i=1 of maps by fi : D(fi) → Λ(A, J),





fi(m) ≡




m− 1 (i = jm−1 and m ≥ 2),

(i,m) (otherwise)
(m ∈ Λ1(A, J) ∩D(fi)),

fi(J
′
,m) ≡ ({i} ∪ J

′
, m) ((J

′
, m) ∈ (Λ2(A, J) t Λ3(A, J)) ∩D(fi)).

Then f is an A-branching function system on Λ(A, J) and f is P (J).

Proof. We see that fi is injective on D(fi) for i = 1, . . . , N and
R(fi) = {m ∈ Λ1(A, J) : jm = i} t {((j′1, . . . , j

′
k),m) ∈ Λ2(A, J)tΛ3(A, J) :

j
′
1 = i} for i = 1, . . . , N . From this, we can verify the axiom in Definition

2.3 for f . ¤

Theorem 2.10. For each A ∈ MN ({0, 1}) and J ∈ {1, . . . , N}#
A,c, there is

an element in BFSA(N) which is P (J).

Proof. Because both Λ(A, J) in Lemma 2.8 and Lemma 2.9 are count-
ably infinite, hence there is a natural bijection ϕ from Λ(A, J) to N. By
using ϕ, we can define g ≡ {ϕ◦fi ◦ϕ−1}N

i=1 ∈ BFSA(N) which is P (J). ¤

3. Definition and existence of permutative representation

For A = (aij) ∈ MN ({0, 1}), OA is the Cuntz-Krieger algebra by A if OA([2])
is a C∗-algebra which is universally generated by partial isometries s1, . . . , sN

satisfying:

(3.1) s∗i si =
∑N

j=1 aijsjs
∗
j (i = 1, . . . , N),

∑N
i=1 sis

∗
i = I.

Specially, OA is the Cuntz algebra ON when A is full.
For g = (z1, . . . , zN ) ∈ TN (≡ U(1)N ), define αg ∈ AutOA by αg(si) ≡

zisi for i = 1, . . . , N . We denote the canonical U(1)-action(=gauge action)
on OA by γ. For a multiindex J = (j1, . . . , jk) ∈ {1, . . . , N}k and canonical
generators s1, . . . , sN of OA, we denote sJ = sj1 · · · sjk

and s∗J = s∗jk
· · · s∗j1 .

When J ∈ {1, . . . , N}∗, sJ 6= 0 if and only if J ∈ {1, . . . , N}∗A.

8



In this paper, a representation always means a unital ∗-representation
on a complex Hilbert space. (H1, π1) ∼ (H2, π2) means the unitary equiva-
lence between two representations (H1, π1) and (H2, π2) of OA.

3.1. Definition. For f = {fi}N
i=1 ∈ BFSA(X), a representation (l2(X), πf )

of OA is given by

(3.2) πf (si)en = χD(fi)(n) · efi(n) (i = 1, . . . , N, n ∈ X)

where χD(fi) is the characteristic function on D(fi). By the following propo-
sition, we see that (3.2) is a generalization of permutative representation of
ON by [1].

Proposition 3.1. For a representation (H, π) of OA, the followings are
equivalent:

(i) There are a complete orthonormal basis {en}n∈X of H and a family
{Xi}N

i=1 of subsets of X which satisfy: ∀i ∈ {1, . . . , N}, ∀n ∈ Xi,
∃mi,n ∈ X s.t.

π(si)en = χXi(n) · emi,n (n ∈ X).

(ii) There are a complete orthonormal basis {en}n∈X of H and f = {fi}N
i=1 ∈

BFSA(X) such that π = πf in (3.2) under identification H ∼= l2(X).

Proof. (ii)⇒(i) is trivial. Assume (i) for (H, π). Then we have a
family f = {fi}N

i=1 of maps on X such that π(si)en = efi(n) by assumption.
We can verify axioms in Definition 2.3 for f from conditions π(si)∗π(si) =∑N

j=1 aijπ(sj)π(sj)∗ and
∑N

j=1 π(sj)π(sj)∗ = I. Hence we obtain (i)⇒(ii).
¤

Definition 3.2. (H, π) is a permutative representation of OA if (H, π) sat-
isfies the statement (i) or (ii) in Proposition 3.1.

In [7], we define an A-branching function system f on a measure space
(X, µ) and define a representation (L2(X,µ), πf ) associated with f . Assume
that (X,µ) is an atomic measure space, that is, µ({x}) > 0 for each x ∈ X
so that µ is possibly not normalized at each point. If f ∈ BFSA(X) and X

is countably infinite, then there is f
′ ∈ BFSA(N) such that (L2(X, µ), πf )

is unitarily equivalent to (l2(N), πf ′ ). Therefore it is sufficient to consider
a permutative representation on (direct sum of)l2(N) for a representation
associated with A-branching function system on an atomic measure space.

For a representation (H, π) ofOA and a unitary operator U on a Hilbert
space K, we have a new representation (K⊗H, U £π) of OA which is defined
by

(3.3) (U £ π)(si) ≡ U ⊗ π(si) (i = 1, . . . , N).
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Let X and Y be sets. For f ∈ BFSA(X) and g ∈ BFSA(Y ), if f ∼ g,
then πf ∼ πg. For any bijection ϕ on X, f ∈ BFSA(X) and g ∈ BFSA(Y ),
the followings hold:

(3.4) πϕ�g ∼ S(ϕ) £ πg, πf⊕g ∼ πf ⊕ πg

where S(ϕ) is a unitary operator on l2(X) defined by S(ϕ)en ≡ eϕ(n) for
n ∈ X.

Definition 3.3. Let (H, π) be a representation of OA.

(i) (H, π) is P (J ; z) for J = (j1, . . . , jk) ∈ {1, . . . , N}k
A,c, k ≥ 1 and z ∈

U(1) if there is a cyclic unit vector Ω ∈ H such that π(sJ)Ω = zΩ and
{π(sjl

· · · sjk
)Ω : l = 1, . . . , k} is an orthonormal family. {π(sjl

· · · sjk
)Ω :

l = 1, . . . , k} is called a cycle of π by J . Specially, we denote P (J) ≡
P (J ; 1).

(ii) (H, π) is P (J) for J = (jn)n∈N ∈ {1, . . . , N}∞A if there is a cyclic unit
vector Ω ∈ H such that {π(s∗jn

· · · s∗j1)Ω}n∈N is an orthonormal family.
{π(s∗jn

· · · s∗j1)Ω}n∈N is called a chain of π by J .

Ω in (i) and (ii) is called the GP vector of (H, π).

We denote (l2(X), πf ) by πf simply.

Theorem 3.4. Let f ∈ BFSA(X).

(i) If σr is the shift on Z for r ∈ Z which is defined by σr(n) ≡ n− r for
n ∈ Z, then the following holds:

πσr�f ∼





∫ ⊕

U(1)
πf ◦ γwr dη(w) (r 6= 0),

(πf )⊕∞ (r = 0).

(ii) If σ is the shift of Zp for p ≥ 1, then

πσ�f ∼
⊕p

j=1 πf ◦ γξj

where ξ ≡ e2π
√−1/p.

(iii) If f is cyclic, then (l2(X), πf ) is cyclic.
(iv) If f contains a P (J)-component for J ∈ {1, . . . , N}#

A,c, then (l2(X), πf )
contains a P (J)-component, too.

Proof. About (i) and (ii), see Proposition 3.6 in [7]. About (iii) and
(iv), see Theorem 3.7 in [7]. ¤

In this way, characterizations of permutative representations are given by
terminology of branching function systems.
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Lemma 3.5. (i) For J = (j1, . . . , jk) ∈ {1, . . . , N}k
A,c, g = (zi)N

i=1 ∈ TN

and w ∈ U(1), P (J ; w) ◦ αg = P (J ; wzJ) where zJ ≡ zj1 · · · zjk
. Spe-

cially, for z, w ∈ U(1), P (J ;w) ◦ γz = P (J ; wzk) and P (J) ◦ γz =
P (J ; zk).

(ii) For each J ∈ {1, . . . , N}∞A and g ∈ TN , P (J) ◦ αg = P (J).

Proof. (i) Let (H, π) be P (J ;w) with GP vector Ω. Because αg(sJ) =
zJsJ , (π◦αg)(sJ)Ω = zJwΩ. Because (H, π◦αg) is cyclic, too, the statement
holds.
(ii) Let (H, π) be P (J) with GP vector Ω, g = (zi)N

i=1, J = (jn)n∈N and
zJn ≡ zj1 · · · zjn for n ≥ 1. Then {z̄Jnπ(s∗Jn

)Ω}n∈N is a chain of π by J and
Ω is a cyclic vector. Hence the statement holds. ¤

Proposition 3.6. Let A ∈ MN ({0, 1}).
(i) For an infinite set Λ, f ∈ BFSA(Λ) and J ∈ {1, . . . , N}#

A,c, if f is
P (J), then (l2(Λ), πf ) is P (J), too.

(ii) For each J ∈ {1, . . . , N}#
A,c, there exists a representation (H, π) which

is P (J).
(iii) For each J ∈ {1, . . . , N}∗A,c and z ∈ U(1), there exists a representation

(H, π) which is P (J ; z).

Proof. (i) This holds from definition of branching function system
immediately.
(ii) By (i), Lemma 2.8 and Lemma 2.9, the statement holds.
(iii) By (i) and Lemma 3.5, the statement holds. ¤

Proposition 3.7. For any permutative representation (H, π) of OA, there
is a family {(Hλ, πλ)}λ∈Λ of cyclic permutative representations of OA such
that (H, π) =

⊕
λ∈Λ(Hλ, πλ). Furthermore (Hλ, πλ) is P (Jλ) for some Jλ ∈

{1, . . . , N}#
A,c for each λ ∈ Λ.

Proof. By Theorem 2.7, Proposition 3.1, (3.4) and Proposition 3.6, it
holds. ¤

Lemma 3.8. For A ∈ MN ({0, 1}) and J ∈ {1, . . . , N}#
A,c, let (H, π) be

P (J) with the GP vector Ω. Then the followings hold:
(i) When J = (j1, . . . , jk) ∈ {1, . . . , N}k

A,c, k ≥ 1,

π(sJ
′ )∗Ω = δJ

′
,J [1,ak+p]π(sJ [p+1,k])Ω (J

′ ∈ {1, . . . , N}ak+p
A ).

where J [m, . . . , n] ≡ (jm, . . . , jn) for 1 ≤ m ≤ n ≤ k and

J [m, . . . , ak + p] ≡ (jm, . . . , jk) ∪ Ja−1 ∪ (j1, . . . , jp)
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for a ≥ 1, 1 ≤ m, p ≤ k − 1.
(ii) When J = (jn)n∈N ∈ {1, . . . , N}∞A ,

π(sJ ′ )
∗Ω = δJ ′ ,J [1,n]en+1 (J

′ ∈ {1, . . . , N}n
A)

where J [1, n] ≡ (j1, . . . , jn) and en ≡ π(s∗J [1,n])Ω for n ∈ N.

Proof. (i) Recall π(sJ)Ω = Ω. When J
′ ∈ {1, . . . , N}ak+p

A , π(s∗
J
′ )Ω =

π(s∗
J ′

sJa+1)Ω = δJ ′ ,J [1,ak+p]π(sJ [p+1,k])Ω.
(ii) Because Ω = π(sJ [1,n])en+1 for each n ∈ N, the statement holds. ¤

3.2. Canonical basis of permutative representation. For a given per-
mutative representation (H, π) of OA which is P (J) for J ∈ {1, . . . , N}#

A,c,
we construct a complete orthonormal basis of H in a canonical way.

For J ∈ {1, . . . , N}∗A,c, let (H, π) be P (J) with the GP vector Ω. Put

ex ≡ π(sx)Ω (x ∈ Λ(A, J))

where Λ(A, J) is in (2.3).

Lemma 3.9. For J ∈ {1, . . . , N}∗A,c, {ex : x ∈ Λ(A, J)} is a complete
orthonormal basis of H.

Proof. Recall notation Jl = (jl, . . . , jk) for l = 1, . . . , k and note that
J1 = J , eJ1 = Ω and π(sJ1)eJ1 = eJ1 . We simply denote π(si) by si. For
J
′

and J
′′ ∈ Λ(A, J) such that J

′
= J

′
1 ∪ J

′
2, |J

′
1| = |J ′′ |, < eJ ′ |eJ ′′ >=

δ
J
′
1,J ′′ < e

J
′
2
|Ω >. Therefore it is sufficient to show that < Ω|ex >= 0 for

each x ∈ Λ(A, J) \ {J}.
(i)When x ∈ Λ1(A, J), by definition of P (J), {eJl

}Jl∈Λ1(A,J) is or-
thonormal. (ii)When x ∈ Λ2(A, J), x = (j, Jl) for some l ∈ {1, . . . , k} and
j ∈ T (1)(A; jl) \ {jl−1} where T (1)(A; jl) is in (2.2). Hence < ex|Ω >=<
sjsJl

Ω|sJ1Ω >= δj,j1 < sJl
Ω|sJ2Ω >= δj,j1δl,2. If j = j1, then, l 6= 2 by

the choice of x. Hence < ex|Ω >= 0 for each x ∈ Λ2(A, J). In the same
way, we see that < ex|sJl

Ω >= 0 for each x ∈ Λ2(A, J) and l = 1, . . . , k.
(iii)When x ∈ Λ3(A, J), there are J

′ ∈ {1, . . . , N}∗A and y ∈ Λ2(A, J) such
that x = J

′ ∪ y, |J ′ | = mk + l − 1. Then < ex|Ω >=< sJ ′ey|Ω >=
δJ ′ ,Jm

1 ∪(j1,...,jl−1) < ey|sJl
Ω >= 0 by (ii). By (i),(ii),(iii), {ex : x ∈ Λ(A, J)}

is an orthonormal family in H.
By cyclicity of Ω, X ≡ {sJs∗

J
′Ω : J, J

′ ∈ {1, . . . , N}∗} spans H. On the
other hand, X = {ex : x ∈ Λ(A, J)}. Hence {ex : x ∈ Λ(A, J)} is complete.

¤

For J = (jn)n∈N ∈ {1, . . . , N}∞A , let (H, π) be P (J) with the GP vector
Ω. Let

en ≡ π(sJ [1,n])
∗Ω (n ∈ N)
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where J [1, n] ≡ (j1, . . . , jn). Then {en}n∈N is an orthonormal family by
definition. Put

eJ
′
,n ≡ π(sJ

′ )en (J
′ ∈ T (A; jn) \ {jn−1}).

Define

Λ̃(A, J) ≡ T (A; j1) t
∐

n≥1

T out
n (A; J), T out

n (A; J) ≡ T (A; jn) \ {jn−1}

where T (A; jn) is in (2.2).

Lemma 3.10. {ex : x ∈ Λ̃(A, J)} is a complete orthonormal basis of H.

Proof. For x, y ∈ Λ̃(A, J), assume that x = (J
′
, n) and y = (J

′′
,m).

If |J ′ | = |J ′′ |, then < ex|ey >= δJ ′ ,J ′′ δn,m. If |J ′ | > |J ′′ |, then there are
l ∈ N and J

′′′
such that < ex|ey >= δJ

′
,J
′′∪J

′′′ < en|el >. If J
′
= J

′′ ∪ J
′′′

,
then n 6= l if and only if x 6= y. Hence {ex}x∈eΛ(A,J)

is an orthonormal family.
By cyclicity of Ω, X ≡ {π(sJ1s

∗
J2

)Ω : J1, J2 ∈ {1, . . . , N}∗A} spans H. On
the other hand, X = {ex : x ∈ Λ̃(A, J)}. Hence the statement holds. ¤

4. Uniqueness, irreducibility and equivalence

Let A ∈ MN ({0, 1}).
4.1. Uniqueness up to unitary equivalences.

Lemma 4.1. For J ∈ {1, . . . , N}#
A,c, if both (H, π) and (H′

, π
′
) are P (J),

then (H, π) ∼ (H′
, π

′
).

Proof. By Lemma 3.9 and Lemma 3.10, there is the canonical basis
of P (J) and the action of OA on them is always same. Therefore the cor-
respondence among canonical basis of (H, π) and that of (H′

, π
′
) gives a

unitary U from H to H′
such that AdU ◦ π = π

′
. ¤

Theorem 4.2. (i) For J ∈ {1, . . . , N}#
A,c, P (J) exists uniquely up to uni-

tary equivalences.
(ii) For J ∈ {1, . . . , N}∗A,c and z ∈ U(1), P (J ; z) exists uniquely up to

unitary equivalences.

Proof. (i) By Proposition 3.6 and Lemma 4.1, the statement holds.
(ii) By Proposition 3.6, the existence follows. Assume that J ∈ {1, . . . , N}k

A.
If both (H, π) and (H′

, π
′
) are P (J ; z), then both (H, π ◦γz̄1/k) and (H′

, π
′ ◦

γz̄1/k) are P (J) by Lemma 3.5. By Lemma 4.1, (H, π◦γz̄1/k) ∼ (H′
, π

′◦γz̄1/k).
Therefore the statement holds. ¤

By Theorem 4.2, symbols P (J) and P (J ; z) make sense as equivalence classes
of representation.
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4.2. Sufficient condition of irreducibility.

Lemma 4.3. Let (H, π) be P (J) with the GP vector Ω for J = (j1, . . . , jk) ∈
{1, . . . , N}k

A,c, k ≥ 1 and Ωl ≡ π(sjl
· · · sjk

)Ω for l = 1, . . . , k. Assume that
J is non periodic. Then the followings hold:

(i) If J
′ ∈ {1, . . . , N}∗A is not in {Jn : n ≥ 1}, then there is n0 ∈ N such

that π(s∗J)nπ(sJ ′ )Ω = 0 for some n ≥ n0.
(ii) If v ∈ H satisfies < v|Ω >= 0, then limn→∞ π(s∗J)nv = 0.

Proof. We simply denote π(si) by si for i = 1, . . . , N .
(i) If J

′ ∈ {1, . . . , N}l
A for 1 ≤ l < k, then the non-periodicity of J implies

s∗Jπ(sJ ′ )Ω = δ(j1,...,jl),J
′ · s∗jl+1,...,jk

Ω = 0. If J
′
= J

′
1 ∪ J

′
2 and |J ′1| = nk and

|J ′2| = l for l = 1, . . . , k − 1, then (s∗J)n+1sJ
′Ω = δ

Jn,J
′
1
s∗Js

J
′
2
Ω = 0 by the

last case.
(ii) By Lemma 3.9, there is a family {J ′m ∈ {1, . . . , N}∗A : m ∈ N} such
that {sJ

′
m

Ω}m∈N is a complete orthonormal basis of H and J
′
1 = J . When

< v|Ω >= 0, we can denote v =
∑∞

n=2 ansJ ′n
Ω. If m ≥ 2, then J

′
m 6∈ {Jn :

n ≥ 1}. Therefore there is n0 ∈ N such that (s∗J)nsJ
′
m

Ω = 0 for n ≥ n0 by
(i). Hence ‖(s∗J)nv‖ is monotone decreasing and the statement holds. ¤

Lemma 4.4. Let (H, π) be P (J) for J ∈ {1, . . . , N}∗A,c and Ω, Ω
′
be vectors

of H such that π(sJ)Ω = Ω and π(sJ)Ω
′
= Ω

′
. If J is non periodic, then

Ω
′
= cΩ for some c ∈ C.

Proof. By assumption and Lemma 3.9, there is a set Λ ⊂ {1, . . . , N}∗A
such that Ω

′
is written as cΩ+

∑
J ′′∈Λ aJ ′′π(sJ ′′ )Ω where < π(sJ ′′ )Ω|Ω >= 0

for each J
′′ ∈ Λ, and π(sJ)∗Ω′

= Ω
′
. By Lemma 4.3, Ω

′
= cΩ. ¤

Theorem 4.5. If J ∈ {1, . . . , N}∗A,c is non periodic, then P (J ; z) is ir-
reducible for any z ∈ U(1). Specially, if J is non periodic, then P (J) is
irreducible.

Proof. Assume that J is non periodic and (H, π) is P (J) with the
GP vector Ω. For v ∈ H, v 6= 0, there is J

′ ∈ {1, . . . , N}∗A such that
< π(s∗

J
′ )v|Ω >6= 0. Therefore we can always replace v and π(s∗

J
′ )v. Assume

that v = Ω + y such that < y|Ω >= 0. Then limn→∞ π((s∗J)n)y = 0 by
Lemma 4.3. Hence limn→∞ π((s∗J)n)v = Ω and Ω ∈ π(OA)v. Because Ω is
a cyclic vector, π(OA)v = H. Therefore (H, π) is irreducible. By this and
Lemma 3.5, P (J ; z) is, too for each z ∈ U(1). ¤
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Lemma 4.6. Let (H, π) be P (J) with the GP vector Ω for J = (jn)n∈N ∈
{1, . . . , N}∞A . Assume that J is non eventually periodic and put Jn ≡
(j1, . . . , jn) for n ∈ N. Then the followings hold:

(i) For each m, k ≥ 1 and J
′ ∈ {1, . . . , N}k

A so that J
′ 6= Jk, there is

n0 ∈ N such that π(sJns∗Jn
sJ ′s

∗
Jm

)Ω = 0 for each n ≥ n0.
(ii) For each k ≥ 1 and J

′ ∈ {1, . . . , N}k
A so that J

′ 6= Jk, there is n0 ∈ N
such that π(sJns∗Jn

sJ ′ )Ω = 0 for each n ≥ n0.
(iii) For each m ≥ 1, there is n0 ∈ N such that π(sJns∗Jn

s∗Jm
)Ω = 0 for each

n ≥ n0.
(iv) If y ∈ H satisfies < y|Ω >= 0, then limn→∞ π(sJns∗Jn

)y = 0.

Proof. We simply denote π(si) by si.
(i) and (ii) follow by assumption for J

′
.

(iii) Since J is non eventually periodic, there is n0 ∈ N such that s∗Jn
s∗Jm

sJn+m

= 0 for each n ≥ n0. Therefore s∗Jn
s∗Jm

Ω = s∗Jn
s∗Jm

sJn+ms∗Jn+m
Ω = 0 for each

n ≥ n0. Hence the statement holds.
(iv) Denote e1 ≡ Ω and em ≡ s∗Jm−1

Ω for m ≥ 2. By Lemma 3.10, there
is a family {Kn,m}n,m∈N ⊂ {1, . . . , N}∗A such that {sKn,mem}n,m∈N is a
complete orthonormal basis of H. If y ∈ H satisfies < y|Ω >= 0, then we
can denote y =

∑
m≥2

∑
n≥1 an,msKn,mem. Therefore ‖sJns∗Jn

y‖ is monotone
decreasing by (i),(ii),(iii) and the statement holds. ¤

Theorem 4.7. If J ∈ {1, . . . , N}∞A is non eventually periodic, then P (J) is
irreducible.

Proof. Let (H, π) be P (J) with the GP vector Ω for J = (jn)n∈N ∈
{1, . . . , N}∞A . Denote Jn ≡ (j1, . . . , jn). Put v ∈ H, v 6= 0. We can as-
sume that < v|Ω >6= 0 by replacing v by π(sJ ′s

∗
J
′′ )v for suitable J

′
, J

′′ ∈
{1, . . . , N}∗A if it is necessary. We can assume that v = Ω+y for some y ∈ H
such that < y|Ω >= 0. By Lemma 4.6, Ω = limn→∞ π(sJns∗Jn

)y ∈ π(OA)y.
Because Ω is a cyclic vector, π(OA)y = H and the statement holds. ¤

The necessary condition of irreducibility of permutative representation is
given in § 5.

4.3. Equivalence. Recall the equivalence among multiindices in § 2.1.

Lemma 4.8. Let (H, π) be P (J) with the GP vector Ω for J ∈ {1, . . . , N}∗A,c.
Assume that J is non periodic and choose J

′ ∈ {1, . . . , N}∗ such that J
′ 6∼ J .

(i) If Ω
′ ∈ H such that π(sJ ′ )Ω

′
= Ω

′
, then < Ω|Ω′

>= 0.
(ii) If v ∈ H, then limn→∞ π(s∗

J ′
)nv = 0.
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Proof. (i) Assume that |J | = k and |J ′ | = l. Because of the non-
periodicity of J , J l 6= (J

′
)k. Hence < Ω|Ω′

>=< π(sk
J)Ω|π(sl

J
′ )Ω

′
>=

δJ l,(J ′ )k < Ω|Ω′
>= 0.

(ii) If v = π(sJ
′′ )Ω, then π((s∗

J ′
)n0+n)v = δ(J

′
)m,J

′′ · π((s∗
J ′

)n)Ω → 0 when
n → ∞ by Lemma 4.3 and (i). Because any v ∈ H is a limit of linear
combination of {π(sJ ′′ )Ω : J

′′ ∈ {1, . . . , N}∗A}, the statement holds. ¤

Lemma 4.9. Let J, J
′ ∈ {1, . . . , N}∗A,c.

(i) If J, J
′
are non periodic and J 6∼ J

′
, then P (J) 6∼ P (J

′
).

(ii) For z, z
′ ∈ U(1), if (J, z) ∼ (J

′
, z
′
), then P (J ; z) ∼ P (J

′
; z
′
). Spe-

cially, if J ∼ J
′
, then P (J) ∼ P (J

′
).

Proof. (i) Assume that P (J) ∼ P (J
′
). Then there is a representation

(H, π) of OA which is P (J) and P (J
′
). Assume that Ω, Ω

′ ∈ H are GP
vectors with respect to P (J) and P (J

′
), respectively. Then < Ω

′ |v >=<

π(sn
J ′

)Ω
′ |v >=< Ω

′ |π((s∗
J ′

)n)v >→ 0 when n → ∞ by Lemma 4.8. Hence
Ω
′
= 0. Therefore this is contradiction. Hence the statement holds.

(ii) Assume that J ∼ J
′

and J = (j1, . . . , jk) ∈ {1, . . . , N}k
A,c for k ≥

1. Let (H, π) be P (J) with the GP vector Ω. Then π(sJ)Ω = Ω. By
assumption there is σ ∈ Zk such that J

′
= σ(J) = (jσ(1), . . . , jσ(k)). Put

Ω
′ ≡ π(sjσ(1)

· · · sk)Ω. Then π(sJ
′ )Ω

′
= Ω

′
and Ω

′
is a cyclic vector of (H, π).

By Lemma 4.1, P (J) ∼ (H, π) ∼ P (J
′
).

If (J, z) ∼ (J
′
, z
′
), then J ∼ J

′
and z = z

′
by definition. Then P (J) ∼

P (J
′
) by the last result. By Lemma 3.5, the statement holds. ¤

Theorem 4.10. For J, J
′ ∈ {1, . . . , N}∗A,c, assume that J, J

′
are non peri-

odic. Then the followings hold:
(i) P (J) ∼ P (J

′
) if and only if J ∼ J

′
.

(ii) For z, z
′ ∈ U(1), P (J ; z) ∼ P (J

′
; z
′
) if and only if (J, z) ∼ (J

′
, z
′
).

Proof. (i) By Lemma 4.9, the statement holds.
(ii) If P (J) and P (J

′
; z) are equivalent, then J ∼ J

′
by the proof of Lemma

4.9. If P (J) and P (J ; z) are equivalent, then there is a representation (H, π)
which is P (J) and P (J ; z) with GP vectors Ω and Ω

′
, respectively. Then

π(sJ)Ω = Ω and π(sJ)Ω
′

= zΩ
′
. Hence < Ω|Ω′

>=< π(sJ)Ω|Ω′
>=<

Ω|π(sJ)∗Ω′
>= z̄ < Ω|Ω′

>. Therefore z̄ = 1 or < Ω|Ω′
>= 0. If z̄ 6= 1,

then < Ω|Ω′
>= 0 implies that π((s∗J)n)Ω

′ → 0 when n → ∞. This is
contradiction. Therefore P (J) 6∼ P (J ; z) when z 6= 1. On the other hand,
P (J ; z) ∼ P (J

′
; z
′
) if and only if P (J) ∼ P (J

′
; z
′
) ◦ γz̄1/k = P (J

′
; z
′
z̄l/k)

when |J | = k and |J ′ | = l. Therefore P (J ; z) ∼ P (J
′
; z
′
) if and only if
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J ∼ J
′
and z

′
z̄ = 1. This implies the statement. ¤

In § 5.1, we show the statement in Theorem 4.10 without assumption non
periodicity.

Lemma 4.11. For J, J
′ ∈ {1, . . . , N}∞A , P (J) 6∼ P (J

′
) if J 6∼ J

′
.

Proof. Assume that J = (jn)n∈N, J
′
= (j

′
n)n∈N, J 6∼ J

′
and P (J) ∼

P (J
′
). Then there is a representation (H, π) which is P (J) and P (J

′
) with

GP vectors Ω and Ω
′
, respectively. Put en ≡ π(s∗jn

· · · s∗j1)Ω and e
′
n ≡

π(s∗
j′n
· · · s∗

j
′
1

)Ω
′
where Jn ≡ (j1, . . . , jn) and J

′
n ≡ (j

′
1, . . . , j

′
n) for n ≥ 1. Then

< Ω|Ω′
>=< π(sJn)en+1|π(sJ ′n

)e
′
n+1 >= 0 for some n ∈ N because J 6∼ J

′
.

In the same way, we see that < em|e′n >= 0 for each n,m ∈ N. From this,
< π(sK)em|e′n >= 0 for each K ∈ {1, . . . , N}∗A and n,m ∈ N. Therefore
< v|e′n >= 0 for each v ∈ H and n ∈ N. Hence e

′
n = 0 for each n ∈ N. This

contradicts with the choice of {e′n}n∈N. Therefore P (J) 6∼ P (J
′
). ¤

Theorem 4.12. For J, J
′ ∈ {1, . . . , N}∞A , P (J) ∼ P (J

′
) if and only if

J ∼ J
′
.

Proof. By Lemma 4.11, it is sufficient to show that J ∼ J
′

implies
P (J) ∼ P (J

′
). Assume that J = (jn)n∈N and J

′
= (j

′
n)n∈N and J ∼ J

′
.

Then there are p ∈ Z and M ≥ 1 such that j
′
n = jn+p for each n ≥ M .

If (H, π) is P (J) with the GP vector Ω, then put J
′
0 ≡ (j

′
1, . . . , j

′
M ), J0 ≡

(j1, . . . , jM+p) and Ω
′ ≡ π(s

J
′
0
sJ∗0 )Ω. Then

π(s∗
j
′
M+n

· · · s∗
j
′
M+1

s∗
j
′
M

· · · s∗
j
′
1

)Ω
′
= π(s∗jM+n+p

· · · s∗jM+1+p
s∗jM+p

· · · s∗j1)Ω

for each n ≥ 1. Therefore {π(s∗
j
′
l

· · · s∗
j
′
1

)Ω
′}l≥1 is a chain of π by J

′
. Because

Ω is a cyclic vector, Ω
′
is, too. Hence P (J) ∼ (H, π) ∼ P (J

′
). ¤

5. Decomposition and complete reducibility

5.1. Decomposition of cycle.

Theorem 5.1. For (J, c) ∈ {1, . . . , N}∗A,c × U(1) and p ≥ 1,

(5.1) P (Jp; c) ∼
p⊕

j=1

P (J ; c1/pξj)
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where ξ ≡ e2π
√−1/p. Specially,

(5.2) P (Jp) ∼
p⊕

j=1

P (J ; ξj).

Proof. Assume that J = (j1, . . . , jk) ∈ {1, . . . , N}k
A,c. Let (Hj , πj) be

P (J ; ξj) with the GP vector Ωj for j = 1, . . . , p. Put Ω ≡ p−1/2
∑p

j=1 Ωj ∈
H ≡ H1 ⊕ · · · ⊕ Hp and π ≡ π1 ⊕ · · · ⊕ πp. Then π(sJp)Ω = Ω and
{π(sjl

· · · sjk
sJa)Ω : a = 0, . . . , p − 1, l = 1, . . . , k} is an orthonormal fam-

ily. Therefore V ≡ π(OA)Ω is a P (Jp)-component of H. On the other
hand, Lin < {π(sJq)Ω : q = 1, . . . , p} >= Lin < Ωq : q = 1, . . . , p} >.
Hence Ωi ∈ V and Hi ⊂ V for i = 1, . . . , p. Therefore H = V and
(H, π) is P (Jp). From this, we obtain (5.2). By Lemma 3.5 and (5.2),
P (Jp; c) = P (Jp) ◦ γc1/kp ∼

(⊕p
j=1 P (J ; ξj)

)
◦ γc1/kp ∼ ⊕p

j=1 P (J ; c1/pξj).
(5.1) is obtained. ¤

Corollary 5.2. (i) For (J, z) ∈ {1, . . . , N}∗A,c × U(1), P (J ; z) is irre-
ducible if and only if J is non periodic. Specially, for J ∈ {1, . . . , N}∗A,c,
P (J) is irreducible if and only if J is non periodic.

(ii) For J, J
′ ∈ {1, . . . , N}∗A,c and z, z

′ ∈ U(1), P (J ; z) ∼ P (J
′
; z
′
) if and

only if (J, z) ∼ (J
′
, z
′
).

(iii) The decomposition in (5.1) is multiplicity free.

Proof. (i) By Theorem 4.5 and Theorem 5.2, the statement holds.
(ii) If (J, z) ∼ (J

′
, z
′
), then P (J ; z) ∼ P (J

′
; z
′
) by Lemma 4.9.

Assume that P (J ; z) ∼ P (J
′
; z
′
). If J and J

′
are non periodic, then

the statement is shown in Theorem 4.10. If J is periodic, then P (J ; z) is
not irreducible by (i) and decomposed into direct sum of finite irreducible
components by Theorem 5.2. Therefore P (J

′
; z
′
) must not irreducible. By

(i), J
′

is periodic. By comparing irreducible components of P (J ; z) and
those of P (J

′
; z
′
) and Theorem 4.10, we see that their sets of irreducible

components coincide up to unitary equivalences. From this, (J, z) ∼ (J
′
, z
′
).

(iii) By (ii), the assertion holds. ¤

By Theorem 4.12 and Corollary 5.2, we have the following:

Theorem 5.3. For J, J
′ ∈ {1, . . . , N}#

A,c, P (J) ∼ P (J
′
) if and only if

J ∼ J
′
.

5.2. Decomposition of chain. In this subsection, an equality among rep-
resentations means their unitary equivalence. Recall U £ π in (3.3).
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Lemma 5.4. Let ϕ ∈ L∞(U(1)) such that |ϕ(w)| = 1 almost everywhere in
U(1), Mϕ be the multiplication operator on L2(U(1)) by ϕ, and (H, π) be a
representation of OA. Then we have the followings:

(i)

Mϕ £ π =
∫ ⊕

U(1)
π ◦ γϕ(w) dη(w)

where η is the Haar measure of U(1). Specially, when ϕ(w) ≡ w1/p

for w ∈ U(1) where w1/p = e2π
√−1θ/p for w = e2π

√−1θ, 0 ≤ θ < 1, we
denote Mϕ by Mw1/p. Then

Mw1/p £ π =
∫ ⊕

U(1)
π ◦ γw1/p dη(w).

(ii) Mϕ £ π = Mϕ £ π where ϕ̄(w) ≡ ϕ(w) for w ∈ U(1).

Proof. These follow from a slight generalization of Lemma 5.7 in [6].
¤

Lemma 5.5. Let (H, π) be P (J) with the GP vector Ω for J = (j1, . . . , jp) ∈
{1, . . . , N}p

A,c for p ≥ 1. Denote Ωl ≡ π(sjl
· · · sjp)Ω for l = 1, . . . , p.

(i) π(sj1 · · · sjl
)∗Ω = Ωl+1 for l = 1, . . . , p− 1.

(ii) Let ζc(w) ≡ wc for c ∈ R and w ∈ U(1), K ≡ J∞ and

(5.3) vnp+l−1 ≡ ζn+(l−1)/p ⊗ Ωl

for l = 1, . . . , p, n ∈ Z. If π
′ ≡ Mw̄1/p £ π, then π

′
(sKn)∗v0 = vn

for each n ∈ N where we denote K = (kn)n∈N, Kn ≡ (k1, . . . , kn) for
n ∈ N.

(iii) If π
′ ≡ Mw̄1/p £ π, then ζn ⊗ π(sJ

′ )Ωl−1 = π
′
(sJ

′ )vnp+l−1 for J
′ ∈

{1, . . . , N}∗A, n ∈ Z and l = 1, . . . , p.
(iv) Mw̄1/p £ π is cyclic.

Proof. (i) By direct computation, we see the statement.
(ii) Since Knp = Jn, (π

′
(sJ)(φ⊗Ω))(w) = w̄φ(w)Ω for φ ∈ L2(U(1)) and w ∈

U(1). Hence π(sKnp+l−1
)∗Ω1 = π(sj1 · · · sjl−1

)∗π(sp
J)∗Ω = π(sj1 · · · sjl−1

)∗Ω =
Ωl for n ∈ N and l = 2, . . . , p by (i). Therefore

π
′
(sKnp+l−1

)∗v0 = π
′
(sKnp+l−1

)∗(1⊗ Ω) = ζn+(l−1)/p ⊗ Ωl = vnp+l−1.

From this, the statement holds.
(iii) For w ∈ U(1), J

′ ∈ {1, . . . , N}k
A, k ≥ 1, c ∈ R, and l = 1, . . . , p,

(π
′
(sJ ′ )(ζc ⊗ Ωl))(w) = w̄k/pζc(w)⊗ π(sJ ′ )Ωl = ζc−k/p(w)⊗ π(sJ ′ )Ωl.

From this, ζc⊗π(sJ ′ )Ωl = π
′
(sJ ′ )(ζc+k/p⊗Ωl). Hence we have the assertion.
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(iv) Put π
′ ≡ Mw̄1/p £ π. We extend K = {kn}n∈N as K = {kn}n∈Z

by k−np+l ≡ jl for n ≥ 1 and l = 1, . . . , p. Note π
′
(sKn)v0 = v−n for

n ≥ 1. Hence {vn}n∈Z ⊂ V. Since Lin< {π(sJ
′ )Ωl : J

′ ∈ {1, . . . , N}∗A, l =
1, . . . , p} > is dense inH, Lin< {ζn⊗π(sJ

′ )Ωl : n ∈ Z, J
′ ∈ {1, . . . , N}∗A, l =

1, . . . , p} > is dense in L2(U(1))⊗H. By (iii), V = L2(U(1))⊗H. Therefore
π
′
is cyclic. ¤

Proposition 5.6. If J ∈ {1, . . . , N}p
A,c, p ≥ 1, then

P (J∞) =
∫ ⊕

U(1)
P (J ;w) dη(w).

Proof. When (H, π) = P (J), we denote U £P (J) instead of U £π for
convenience. Let vn be in (5.3). By Lemma 5.5 (iii), vn ∈ V ≡ π(OA)v0 for
each n ∈ N. Since {vn}n≥1 is an orthonormal family, π

′
contains P (J∞) as a

subrepresentation. By Lemma 5.5 (iv), Mw̄1/p £P (J) = P (J∞). By Lemma
5.4 (ii), Mw̄1/p £ P (J) = Mw1/p £ P (J). Hence Mw1/p £ P (J) = P (J∞). By
this, Lemma 5.4 and Lemma 3.5, the statement holds. ¤

Corollary 5.7. (i) If K ∈ {1, . . . , N}∞A is eventually periodic , then there
is J ∈ {1, . . . , N}∗A,c such that J is non periodic and

(5.4) P (K) =
∫ ⊕

U(1)
P (J ;w) dη(w).

(ii) If there is J
′ ∈ {1, . . . , N}∗A,c which satisfies the statement (i) with

respect to K, then J
′ ∼ J .

(iii) The decomposition in (5.4) is multiplicity free.

Proof. (i) If K is eventually periodic then there is a non periodic
element J ∈ {1, . . . , N}∗A,c such that K ∼ J∞. Hence P (K) ∼ P (J∞) by
Theorem 4.12. By Proposition 5.6, the statement holds.
(ii) By Proposition 5.6, P ((J

′
)∞) =

∫ ⊕
U(1) P (J

′
;w) dη(w) = P (K) = P (J∞).

By Theorem 4.12, (J
′
)∞ ∼ J∞. Because both J and J

′
are non periodic,

J
′ ∼ J .

(iii) This follows from Corollary 5.2 (ii). ¤

Theorem 5.8. For K ∈ {1, . . . , N}∞A , P (K) is irreducible if and only if K
is non eventually periodic.

Proof. By Theorem 4.7 and Corollary 5.7, the statement holds. ¤
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5.3. Completely reducibility and uniqueness of decomposition.

Theorem 5.9. For A ∈ MN ({0, 1}), let (H, π) be a permutative represen-
tation of OA, and < 1, . . . , N >#

A and [1, . . . , N ]#A be in (2.1).
(i) The following decomposition into cyclic subspaces holds:

(5.5) (H, π) ∼
⊕

J∈<1,...,N>#
A

P (J)⊕νJ

where νJ is the multiplicity of P (J) for J ∈< 1, . . . , N >#
A . Further-

more (5.5) is unique up to unitary equivalences.
(ii) The following irreducible decomposition holds:

H =
⊕

J∈[1,...,N ]∗A

HJ ⊕
⊕

K∈[1,...,N ]∞A

HK ,

HJ =
⊕

p≥1





p⊕

j=1

HJ,p,j





⊕νJ,p

⊕
{∫ ⊕

U(1)
HJ,∞,z dm(z)

}⊕νJ,∞

,

HK = H⊕νK
K,0

where

HJ,p,j ∼ P (J ; e2π
√−1j/p), HJ,∞,z ∼ P (J ; z), HK,0 ∼ P (K)

and νJ,p and νK are multiplicities.

Proof. (i) By Theorem 2.7, (3.4) and Theorem 5.3, the statement
holds.
(ii) Theorem 5.1 and Corollary 5.7 imply the decomposition. ¤

Assume that there are two irreducible decompositions of a given permu-
tative representation (H, π) of OA. If there is no direct integral component,
then the uniqueness follows. If there is a direct integral decomposition on
U(1) as a style in (5.4), then the uniqueness holds in a sense of Corollary 5.7
(ii). In consequence, the irreducible decomposition of permutative represen-
tation as a form in Theorem 5.9 (ii) is unique up to unitary equivalences.

Theorem 5.10. For any A ∈ MN ({0, 1}), any permutative representation
of OA is completely reducible and irreducible decomposition as a form in
Theorem 5.9 (ii) is unique up to unitary equivalences.

5.4. Decomposition of permutative representation with phases.
(H, π) is a permutative representation of OA with phases if there are a com-
plete orthonormal basis {en}n∈Λ of H and a family {Λi}N

i=1 of subsets of Λ
such that ∀i ∈ {1, . . . , N}, ∀n ∈ Λi, ∃(zi,n,mi,n) ∈ U(1)× Λ s.t.

π(si)en = zi,n · χΛi(n) · emi,n (n ∈ Λ).
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Proposition 5.11. For A ∈ MN ({0, 1}), let (H, π) be a permutative repre-
sentation of OA with phases. Then the following unique decomposition into
cyclic representations up to unitary equivalences holds:

(H, π) ∼
⊕

(J,c)∈[1,...,N ]∗A×U(1)

P (J ; c)⊕νJ,c ⊕
⊕

K∈<1,...,N>∞A

P (K)⊕νK

where νJ,c and νK are multiplicities. Specially, if (H, π) is cyclic, then (H, π)
is equivalent to either P (J ; c) or P (K) for some (J, c) ∈< 1, . . . , N >∗

A
×U(1) or K ∈< 1, . . . , N >∞

A .

Proof. By assumption, there are a complete orthonormal basis {en}n∈Λ

of H, {Λi}N
i=1 and {(zi,n,mi,n) ∈ U(1) × Λ : (i, n) ∈ {1, . . . , N} × Λi} such

that π(si)en = zi,nχΛi(n) · emi,n for each (i, n) ∈ {1, . . . , N} × Λ. Define a
new permutative representation (H, π0) of OA by π0(si)en ≡ χΛi(n) · · · emi,n

for (i, n) ∈ {1, . . . , N} × Λ. By Theorem 5.9 (i), π0 is decomposed into the
direct sum of permutative representations:

π0 ∼
⊕

J∈<1,...,N>∗A

P (J)⊕νJ ⊕
⊕

K∈<1,...,N>∞A

P (K)⊕νK .

Therefore π0|V ∼ P (J) or π0|V ∼ P (K) for some subspace V ⊂ H. If
π0|V ∼ P (J), then there is a cyclic unit vector Ω ∈ V such that π0(sJ)Ω = Ω.
By definition of π0, there is cJ ∈ U(1) such that π(sJ)Ω = cJΩ. Because
(V, π0|V ) is cyclic, (V, π|V ) is, too. Therefore π|V ∼ P (J ; cJ). If π0|V ∼
P (K), then we see that π|V ∼ P (K) by checking the condition of chain. In
consequence

π ∼
⊕

J∈<1,...,N>∗A

P (J ; cJ)⊕νJ ⊕
⊕

K∈<1,...,N>∞A

P (K)⊕νK .

When J is periodic, P (J ; cJ) is decomposed into the direct sum of elements
in {P (J

′
; c
′
) : (J

′
, c
′
) ∈ [1, . . . , N ]∗A × U(1)} by Theorem 5.2. Hence the

statement holds. ¤

By Proposition 5.11 and results of permutative representation of OA in §
4, § 5, Theorem 1.1 is proved. Proposition 5.11 for OA = ON is shown in
[3, 4].

6. States and spectrums

Fix A ∈ MN ({0, 1}).

6.1. States of permutative representations. Operator algebraists pre-
fer states than representations. Therefore we show states of the Cuntz-
Krieger algebras associated with permutative representations.
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Theorem 6.1. Let (H, π) be P (J) with the GP vector Ω for J ∈ {1, . . . , N}#
A,c.

Define a state ω of OA by ω ≡< Ω|π(·)Ω >. Then the followings hold:
(i) When J = (j1, . . . , jk) ∈ {1, . . . , N}k

A,c, k ≥ 1,

(6.1) ω(sJ ′s
∗
J ′′ ) =





1 (0 ≤∃ p ≤ k − 1, s.t. J
′
, J

′′ ∈ Ip(J)),

0 (otherwise)

where Ip(J) ≡ {Ja ∪ (j1, . . . , jp) ∈ {1, . . . , N}∗A : a ≥ 0}.
(ii) When J = (jn)n∈N ∈ {1, . . . , N}∞A ,

(6.2) ω(sJ ′s
∗
J
′′ ) =





1 (∃n ∈ N s.t. J
′
= J

′′
= (j1, . . . , jn)),

0 (otherwise).

(iii) The GNS representation of OA by a state ω which satisfies (6.1) or
(6.2) is equivalent to P (J).

(iv) ω is pure if and only if J is non periodic or non eventually periodic.

Proof. (i) Assume that J
′ ∈ {1, . . . , N}ak+p

A and J
′′ ∈ {1, . . . , N}bk+q

A .
By Lemma 3.8 and its notations,

ω(sJ ′s
∗
J
′′ ) = < Ω|π(sJ ′s

∗
J
′′ )Ω >

= < π(s∗
J ′

)Ω|π(s∗
J ′′

)Ω >

= δJ ′ ,J [1,...,ak+p]δJ ′′ ,J [1,...,bk+q] < π(sJ [p+1,k])Ω|π(sJ [q+1,k])Ω >

= δJ ′ ,J [1,...,ak+p]δJ ′′ ,J [1,...,bk+q]δp,q

=





1 (J
′
, J

′′ ∈ Ip(J)),

0 (otherwise).

(ii) By Lemma 3.8 and the same way in (i), the statement holds.
(iii) The statement follows from the uniqueness of the GNS representation.
(iv) Corollary 5.2 and Theorem 5.8 imply the assertion. ¤

6.2. Spectrums. We consider the spectrum of OA associated with permu-
tative representations of OA. SpecOA is the spectrum of OA which consists
of all unitary equivalence classes of irreducible representations of OA. Put
PSpecOA the subset of SpecOA which consists of all unitary equivalence
classes of irreducible permutative representations. By Theorem 4.2, Corol-
lary 5.2 and Theorem 5.8, the following one-to-one correspondence holds:

PSpecOA
∼= [1, . . . , N ]#A .

Specially, PSpecON
∼= [1, . . . , N ]#. By regarding phase factor, {[1, . . . , N ]∗A×

U(1)} t [1, . . . , N ]∞A is identified with a subset of SpecOA.
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When A =
(

1 1
0 1

)
, we see that {1, 2}∗A,c = {(1)n, (2)n : n ≥ 1}

and {1, 2}∞A = {(1)∞, (1)n−1 ∪ (2)∞ : n ≥ 1}. Hence [1, 2]∗A = {(1), (2)},
[1, 2]∞A = ∅ and #PSpecOA = 2.

When A =
(

1 1
1 0

)
, {(1)n∪(2) : n ≥ 1} is a proper subset of [1, 2]∗A,c.

From this, #PSpecOA = ∞.

7. Decomposition of standard representation

We introduced the standard representation ofOA for each A in [7], which is a
kind of permutative representation. In this section, we show decomposition
formulae of them.

7.1. Definition and decomposition formula. We review the standard
A-branching function system and the standard representation of OA for a
given A ∈ MN ({0, 1}).
Definition 7.1. Let A = (aij) ∈ MN ({0, 1}).

(i) A data {(Mi, qi, Bi)}N
i=1 is called the (canonical)A-coordinate if

Bi ≡ { j ∈ {1, . . . , N} : aij = 1 } , Mi ≡ ai1 + · · ·+ aiN ,

qi : Bi → {1, . . . , Mi}; qi(j) ≡ #{k ∈ Bi : k ≤ j}
for i = 1, . . . , N .

(ii) An A-branching function system f (A) = {f (A)
i }N

i=1 on N defined by

f
(A)
i (N(m− 1) + j) ≡ N(Mi(m− 1) + qi(j)− 1) + i (m ∈ N, j ∈ Bi),

R(f (A)
i ) ≡ {N(n− 1)+ i : n ∈ N}, D(f (A)

i ) ≡ ∐
j∈Bi

R(f (A)
j ) (i = 1, . . . , N)

is called the standard A-branching function system. (iii)
(iii) (l2(N), π(A)

S ) is the standard representation of OA if (l2(N), π(A)
S ) is a

representation of OA defined by

π
(A)
S (si)en ≡ χ

D(f
(A)
i )

(n)e
f
(A)
i (n)

(n ∈ N, i = 1, . . . , N)

where f (A) = {f (A)
i }N

i=1 is the standard A-branching function system.

In order to show the decomposition formula of the standard represen-
tation, we define cycles arising from some finite dynamical system associated
with A. For A = (aij) ∈ MN ({0, 1}), put a map ϕA on {1, . . . , N} by

(7.1) ϕA(i) ≡ min{j ∈ {1, . . . , N} : aij = 1} (i = 1, . . . , N).

Then {1, . . . , N} contains cycles by ϕA, that is, C = {ni ∈ {1, . . . , N} : i =
1, . . . , m} is a cycle in {1, . . . , N} by ϕA if ϕA(ni) = ni+1 for i = 1, . . . ,m−1
and ϕA(nm) = n1.

24



Definition 7.2. (i) {Ci}k
i=1 is the A-cycle set if {Ci}k

i=1 is the set of all
cycles in {1, . . . , N} by ϕA. Put mi ≡ #Ci and ji,1 ≡ minCi for
i = 1, . . . , k.

(ii) JA ≡ {Ji}k
i=1 ⊂ {1, . . . , N}∗ is the A-cyclic index set if Ji ≡ (ji,c)mi

c=1 ∈
{1, . . . , N}mi and ji,c ≡ ϕc−1

A (ji,1) for c = 1, . . . , mi where ji,1 ∈
{1, . . . , N} and mi are in (i).

(iii) An element J = (j1, . . . , jm) ∈ JA is isolated if

aji,l = δl,ji+1 (i = 1, . . . , m− 1), ajm,l = δl,j1

for l = 1, . . . , N . We denote the set of all isolated elements in JA by
JA,∞ and JA,1 ≡ JA \ JA,∞.

Theorem 7.3. For A ∈ MN ({0, 1}), let (l2(N), π(A)
S ) be the standard rep-

resentation of OA. Then the followings hold:
(i)

(l2(N), π(A)
S ) ∼

⊕

J∈JA,1

P (J)⊕




⊕

K∈JA,∞

P (K)





⊕∞

where JA,1 and JA,∞ are in Definition 7.1.
(ii) π

(A)
S is multiplicity free if and only if JA,∞ = ∅. Under this condition,

π
(A)
S is irreducible if and only if #JA,1 = 1.

If A is full, that is, OA = ON , then π
(A)
S ∼ P (1) for each N ≥ 2. We prove

Theorem 7.3 in § 7.2.

7.2. Proof of Theorem 7.3. In Definition 7.2, we see Ci = {ϕl−1
A (ji,1) :

l = 1, . . . , mi}. Because Ci ∩ Cj = ∅ when i 6= j, any two elements in JA

are inequivalent.

Lemma 7.4. Let A ∈ MN ({0, 1}), JA be the A-cyclic index set and f (A) be
the standard A-branching function system. Then the followings hold:

(i) JA ⊂ {1, . . . , N}∗A,c.
(ii)

⊕
J∈JA

P (J) is a component of f (A).
(iii) If J ∈ JA,∞, then f (A) contains a P (J)⊕∞-component.

Proof. We simply denote f (A) = {f (A)
i }N

i=1 by f = {fi}N
i=1. Put

JA = {Ji}k
i=1 and Ji = (ji,1, . . . , ji,mi) for i = 1, . . . , k. Let {(Mi, qi, Bi)}N

i=1
be the A-coordinate. We see that qi(ϕA(i)) = 1 for each i = 1, . . . , N .
(i) By definition of ϕA, aji,1,ji,2 = · · · = aji,mi−1,ji,mi

= 1. Because Ci is a
cycle, ϕA(ji,mi) = ϕmi

A (ji,1) = ji,1 and aji,mi
,ji,1 = 1. Hence the statement

holds.
(ii) Note that qji,c(ji,c+1) = 1 for c = 1, . . . , mi−1 and qji,mi

(ji,1) = 1. From
this, fji,c(ji,c+1) = N(qji,c(ji,c+1) − 1) + ji,c = ji,c and fji,mi

(ji,1) = ji,mi .
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Then fJi(ji,1) = (fji,1 ◦ · · · ◦ fji,mi
)(ji,1) = · · · = fji,1(ji,2) = ji,1. Therefore

P (Ji) is a component of f . Because each two elements in the A-cycle set
{Ci}k

i=1 are disjoint, P (J1)⊕ · · · ⊕ P (Jk) is a component of f .
(iii) Note that J = (j1, . . . , jm) ∈ JA,∞ if and only if Mjc = 1 for each
c = 1, . . . ,m. D(fji,c) = {N(m− 1) + ji,c+1 : m ≥ 1}, D(fji,ml

) = {N(m−
1)+ji,1 : m ≥ 1} and fji,c(N(m−1)+ji,c+1) = N(m−1)+ji,c, fji,mi

(N(m−
1) + ji,1) = N(m − 1) + il,ml

. Hence fJi(N(m − 1) + ji,1) = (fji,1 ◦ · · · ◦
fji,mi

)(N(m − 1) + ji,1) = N(m − 1) + ji,1. In consequence, fJi(n) = n for

each n ∈ {N(m − 1) + ji,1 : m ≥ 1}. Therefore C
(m)
i ≡ {N(m − 1) + ji,c :

c = 1, . . . , mi} is a cycle of f by Ji for each m ≥ 1. Hence the statement
holds. ¤

In order to decompose the permutative representation associated with
the standard A-branching function system, we show decomposition formula
of the standard A-branching function system. We denote f (A) by f simply.

Lemma 7.5. For A ∈ MN ({0, 1}), let {(Mi, qi, Bi)}N
i=1 be the A-coordinate,

f be the standard A-branching function system and J = (j1, . . . , jk) ∈
{1, . . . , N}k

A,c. Then the followings hold:
(i) For m ≥ 1 and j0 ∈ {1, . . . , N} ∩D(fjk

),

(7.2) fJ(N(m− 1) + j0) = N(Lk(m− 1) + α− 1) + j1

where Li ≡ Mj1 · · ·Mji for i = 1, . . . , k and

α ≡





qj1(j0) (k = 1),

qj1(j2) + Mj1(qj2(j0)− 1) (k = 2),

qj1(j2) +
∑k−2

i=1 Li(qji+1(ji+2)− 1) + Lk−1(qjk
(j0)− 1) (k ≥ 3).

(ii) If there is n0 ∈ N such that fJ(n0) = n0, then there is m ≥ 1 such
that n0 = N(m− 1) + j1 and

(7.3) qji(ji+1) = 1 (i = 1, . . . , k − 1), qjk
(j1) = 1,

and

(7.4) m = Lk(m− 1) + 1.

(iii) Assume that there is a cycle C of f by J . If C 6⊂ {1, . . . , N}, then
Mji = 1 for each i = 1, . . . , k.

(iv) Assume that there is a cycle C of f by J . If Mji ≥ 2 for some i ∈
{1, . . . , k}, then C ⊂ {1, . . . , N}.
Proof. (i) By direct computation, we have the statement.

(ii) By definition of f1, the first statement holds. By (i), N(m − 1) + j1 =
N(Lk(m − 1) + α − 1) + j1. From this, we have m = Lk(m − 1) + α.
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If m = 1, then α = 1. By definition of α, (7.3) holds. If m ≥ 2, then Lk = 1
and α = 1. Therefore (7.3) holds, too. In consequence, we have (7.4).
(iii) By assumption, there is n0 ∈ C ⊂ N such that n0 = N(m − 1) + i

for some m ≥ 2. Then there is J
′
= (j

′
1, . . . , j

′
k) ∈ {1, . . . , N}k

A,c such that
J
′ ∼ J and fJ

′ (n0) = n0. By (7.4) and proof of (ii), Lk = 1 and the
statement holds.
(iv) By (iii), the statement holds. ¤

Lemma 7.6. Let A ∈ MN ({0, 1}) with the A-coordinate {(Mi, qi, Bi)}N
i=1.

For J = (j1, . . . , jk) ∈ {1, . . . , N}k
A,c, the standard A-branching function

system has a P (J)-component if and only if qji(ji+1) = 1 for each i =
1, . . . , k − 1 and qjk

(j1) = 1.

Proof. By Lemma 7.4 and Lemma 7.5, the statement holds. ¤

Lemma 7.7. For any A ∈ MN ({0, 1}), the standard A-branching function
system has no chain.

Proof. Let f = {fi}N
i=1 be the standard A-branching function system.

Assume that there is a chain C = {mn}∞n=1 ⊂ N of f by J = (jn)n∈N ∈
{1, . . . , N}∞A . Denote Jk ≡ (j1, . . . , jk) for k ≥ 1. Put x = N(m−1)+j0 ∈ C.
By Lemma 7.5, fJk

(x) = Lk(x − j0) + N(α − 1) + j1. From this, for each
y ∈ C and k ≥ 1, there are jy,k ∈ {1, . . . , N} and αy,k ≥ 1 such that

zk(y) ≡ f−1
Jk

(y) = L−1
k (y − (N(αy,k − 1) + j1)) + jy,k.

Note #{zk(y) : k ∈ N} = ∞. Because zk(y) ∈ C ⊂ N for each k ≥ 1 and
Lk+1 ≥ Lk ≥ 1 for each k ≥ 1, there is k0 ∈ N such that Lk = 1 for each
k ≥ k0. Put J

′ ≡ (jn)∞n=k0
. Then J

′ ∼ J . By replacing J and J
′
, we can

assume that zk(y) = y − (N(αy,k − 1) + j1) + jy,k for k ≥ 1. In this case,

αy,k = qj1(j2) +
∑k−2

i=1 (qji+1(ji+2)− 1) + (qjk
(jy,k)− 1) (k ≥ 3).

Because αy,k+1 ≥ αy,k ≥ 1 for each k ≥ 1 and zk(y) ∈ C ⊂ N for each
k ≥ 1, there is k0 ≥ 1 such that qjk

(jk+1) = 1 for each k ≥ k0. By
replacing J and {jn}∞n=k0

, we can assume that qjk
(jk+1) = 1 for each k ≥ 1.

Then αy,k = 1 for each k ≥ 1. In consequence, zk(y) = y − j1 + jy,k for
k ≥ 1. Therefore {zk(y) : k ∈ N} ⊂ {y − j1 ± n : n = 0, . . . , N} and
#{zk(y) : k ∈ N} ≤ 2N < ∞. This contradicts the choice of y and J .
Therefore there is no chain of f . ¤

Theorem 7.8. For A ∈ MN ({0, 1}), if JA is the A-cyclic index set and
JA,1, JA,∞ are in Definition 7.1, then the standard A-branching function
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system is decomposed as

⊕

J∈JA,1

P (J)⊕




⊕

K∈JA,∞

P (K)





⊕∞

.

Proof. Let f be the standard A-branching function system. By The-
orem 2.7 and Lemma 7.7, f is decomposed into only cycles. On the other
hand, any cycle component of f is one of {P (J) : J ∈ JA} by Lemma 7.6.
Therefore f is decomposed as a direct sum of {P (J) : J ∈ JA} with multi-
plicities. If J ∈ JA,∞, then f has a P (J)⊕∞-component by Lemma 7.4. If
J ∈ JA,1, then the cycle of f by J is a subset of {1, . . . , N}. By definition of
JA, P (J) appears in {1, . . . , N} at only once. In consequence, the statement
holds. ¤

Proof of Theorem 7.3: (i) By Theorem 7.8 and (3.4), the statement holds.
(ii) By (i), the first statement holds immediately. If J = (j1, . . . , jm) ∈ JA,1,
then ji 6= ji′ when i 6= i

′
. Therefore, any element in JA,1 is non periodic.

Hence the second statement holds. ¤

8. Examples

8.1. Examples by naive observation. We compute two permutative rep-
resentations directly. Put matrices A1, A2 ∈ M3({0, 1}) by

A1 ≡



0 0 1
1 0 1
1 1 1


 , A2 ≡




0 1 1
1 0 1
1 1 1


 .

(i) Define a representation (l2(N), π) of OA1 by

π(s1)e4(n−1)+i ≡ δ2,ie4(n−1)+1, π(s2)e4(n−1)+i ≡ δ1,ie4(n−1)+4 + δ2,ie4(n−1)+3,

π(s3)en ≡ e4(n−1)+2

for n ∈ N and i = 1, 2, 3, 4. Then

(l2(N), π) ∼ P (13).

Proof. Put D1 ≡ {4(n − 1) + 2 : n ∈ N}, D2 ≡ {4(n − 1) + 1, 4(n −
1) + 2 : n ∈ N}, D3 ≡ N and f = {f1, f2, f3} by π(si)en ≡ efi(n)

for i = 1, 2, 3 and n ∈ Di. Then f ∈ BFSA1(N). Note that fi(n) >
n for any n ∈ X ≡ {n ∈ N : n ≥ 3} i = 2, 3. f1(n) = n − 1
for n ∈ D(f1), R(f1) ⊂ D(fi) for i = 2, 3 and R(f1) ∩ D(f1) = ∅.
(f2 ◦ f1)(4(n− 1)+2) = f2(4(n− 1)+1) = 4(n− 1)+4 > 4(n− 1)+2.
(f3 ◦ f1)(4(n− 1) + 2) = f3(4(n− 1) + 1) = 4(4(n− 1)) + 2. Therefore
(fi ◦ f1)(n) > n for n ∈ D(f1) ∩ X and i = 2, 3. From these, f has
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neither chain nor cycle in X. Therefore f has only cycles in N \X =
{1, 2} and f is cyclic. We see that (f1 ◦ f3)(1) = 1. This implies that
π(s1s3)e1 = e1. Therefore (l2(N), π) has one cycle {e1, e2}. ¤

(ii) Define a representation (l2(N× {1, 2}), π) of OA2 by




π(s1)en,i ≡ δ2,ien,1,

π(s2)e5(n−1)+m,i ≡ δ1,ie5(5(n−1)+m−1)+1,2

+δ2,i(δ4,me5(n−1)+2,2 + δ5,me5(n−1)+3,2),

π(s3)en,i ≡ δ1,ie5(n−1)+4,2 + δ2,ie5(n−1)+5,2

for i = 1, 2, m = 1, . . . , 5 and n ∈ N where en,i ≡ e
′
n ⊗ e

′′
i and e

′
n, e

′′
i

are canonical basis of l2(N) and C2, respectively. Then

(l2(N× {1, 2}), π) ∼ P (12).

Proof. We see that π(s1s2)e1,1 = e1,1 and there is no cycle except X ≡
{e1,1, e1,2}. Hence π has only a cycle in X. Furthermore {π(sJ)e1,1 :
J ∈ {1, . . . , N}∗A} = {en,i : n ∈ N, i = 1, 2}. Therefore the statement
holds. ¤

8.2. Examples of standard representation. We show examples of the
standard representation π

(A)
S of OA for A ∈ MN ({0, 1}) by Theorem 7.3.

In order to this aim, we use s1, . . . , sN as canonical generators of OA and
define operators t1, t2, k1, k2, k3, u1, u2, u3, u4 on l2(N) by

tien ≡ e2(n−1)+i, kien ≡ e3(n−1)+i, uien ≡ e4(n−1)+i

where {en : n ∈ N} is the canonical basis of l2(N). Then the followings
hold:

(i) Put A3 ≡



0 1 1
1 0 1
1 1 0


. Then the standard representation (l2(N), π(A3)

S )

of OA3 is given by

π
(A3)
S (s1) ≡ k1(t1k∗2 + t2k

∗
3), π

(A3)
S (s2) ≡ k2(t1k∗1 + t2k

∗
3),

π
(A3)
S (s3) ≡ k3(t1k∗1 + t2k

∗
2).

Then ϕA3 in (7.1) is given by

ϕA3 : {1, 2, 3} → {1, 2, 3}; ϕA3(1) = 2, ϕA3(2) = 1, ϕA3(3) = 1.

From this, we see that ϕ2
A3

(1) = 1 and JA3 = JA3,1 = {(12)}. There-
fore

(l2(N), π(A3)
S ) ∼ P (12).
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In fact, π
(A3)
S (s1s2)e1 = e1 is the only one cycle on {en : n ∈ N}. This

implies the statement.

(ii) Put A4 ≡



1 0 1
0 1 1
1 1 1


. The standard representation of OA4 is as

follows:

π
(A4)
S (s1) ≡ k1(t1k∗1 + t2k

∗
3), π

(A4)
S (s2) ≡ k2(t1k∗2 + t2k

∗
3), π

(A4)
S (s3) ≡ k3.

Then ϕA4 is given by

ϕA4 : {1, 2, 3} → {1, 2, 3}; ϕA4(1) = 1, ϕA4(2) = 2, ϕA4(3) = 1.

From this, we see that ϕA4(1) = 1 and ϕA4(2) = 2. Hence JA4,1 =
{(1), (2)}. These are related that π

(A4)
S (s1)e1 = e1 and π

(A4)
S (s2)e2 =

e2. Therefore

(l2(N), π(A4)
S ) ∼ P (1)⊕ P (2).

Next, we show the decomposition of the standard representation π
(A)
S

of OA for every 2× 2 matrices without proof as follows:

A

(
1 1
1 1

) (
0 1
1 1

) (
1 0
1 1

) (
1 1
0 1

) (
1 1
1 0

)

π
(A)
S P (1) P (12) P (1)⊕∞ P (1)⊕ P (2)⊕∞ P (1)

A

(
1 0
0 1

) (
0 1
1 0

)

π
(A)
S (P (1)⊕ P (2))⊕∞ P (12)⊕∞

In this way, the standard representation of OA depends on the form of A.
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We show other examples as follows:

A π
(A)
S




0 1 0 1
0 1 0 1
1 1 0 1
0 1 1 1




π
(A)
S (s1) = u1(t1u∗2 + t2u

∗
4),

π
(A)
S (s2) = u2(t1u∗2 + t2u

∗
4),

π
(A)
S (s3) = u3(k1u

∗
1 + k2u

∗
2 + k3u

∗
4),

π
(A)
S (s4) = u4(k1u

∗
2 + k2u

∗
3 + k3u

∗
4),

π
(A)
S ∼ P (2).




0 1 0 1
0 0 1 1
1 1 0 1
0 1 1 1




π
(A)
S (s1) = u1(t1u∗2 + t2u

∗
4),

π
(A)
S (s2) = u2(t1u∗3 + t2u

∗
4),

π
(A)
S (s3) = u3(k1u

∗
1 + k2u

∗
2 + k3u

∗
4),

π
(A)
S (s4) = u4(k1u

∗
2 + k2u

∗
3 + k3u

∗
4),

π
(A)
S ∼ P (123).




0 0 1 1
1 0 1 1
0 1 0 1
0 1 1 1




π
(A)
S (s1) = u1(t1u∗3 + t2u

∗
4),

π
(A)
S (s2) = u2(k1u

∗
1 + k2u

∗
3 + k3u

∗
4),

π
(A)
S (s3) = u3(t1u∗2 + t2u

∗
4),

π
(A)
S (s4) = u4(k1u

∗
2 + k2u

∗
3 + k3u

∗
4),

π
(A)
S ∼ P (132).

For N ≥ 4,



0 1 1 1 · · · 1 1
0 0 1 1 · · · 1 1
0 0 0 1 · · · 1 1

...
...

0 0 0 0 · · · 0 1
1 1 1 1 · · · 1 1




,
· · · · · · · ·

· · · · · · · ·




0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
1 1 1 1 · · · 1 1

...
...

...
...

1 1 1 1 · · · 1 1
0 0 0 0 · · · 0 1




,




0 1 1 1 · · · 1 1
0 0 1 1 · · · 1 1
0 0 0 1 · · · 1 1

...
...

0 0 0 0 · · · 0 1
0 1 1 1 · · · 1 1




,
· · · · · · · ·

· · · · · · · ·

A
(N)
1 = A

(N)
2 =

A
(N)
3 =

π
(A

(N)
1 )

S ∼ P (12 · · ·N),

π
(A

(N)
2 )

S ∼ P (23 · · ·N),

π
(A

(N)
3 )

S ∼ (P (12)⊕ P (N))⊕∞.

8.3. Shift representation. We show the shift representation of OA as an
example of permutative representation which is multiplicity free, and prove
its decomposition formula.
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For A = (aij) ∈ MN ({0, 1}), let

XA ≡ {1, . . . , N}∞A .

Define an A-branching function system f = {fi}N
i=1 on XA by

(8.1) fi : D(fi) → R(fi); fi(j1, j2, . . .) ≡ (i, j1, j2, . . .),

R(fi) ≡ {(j1, j2, . . .) ∈ XA : j1 = i}, D(fi) ≡
∐

j;aij=1

R(fj)

for i = 1, . . . , N .
The permutative representation (l2(XA), πf ) of OA associated with f

in (8.1) is called the shift representation of OA.

Proposition 8.1. There is the following irreducible decomposition of l2(XA)
by πf

l2(XA) =
⊕

J∈[1,...,N ]∗A

HJ ⊕
⊕

K∈[1,...,N ]∞A

KK

where

HJ ≡ Lin< {ex : x ∈ YJ∞} >, KK ≡ Lin< {ex : x ∈ YK} >,

{ex : x ∈ XA} is the canonical basis of l2(XA), and YL ≡ {L′ ∈ XA : L ∼ L
′}

for L ∈ XA. Furthermore

HJ ∼ P (J), KK ∼ P (K).

That is, any irreducible permutative representation appears as a component
of (l2(XA), πf ) once for all. Specially, (l2(XA), πf ) is multiplicity free.

Proof. Let K ∈ XA. Then K is either eventually periodic or not.
Denote XA,ep by the set of all eventually periodic elements in XA and
XA,nep ≡ XA \XA,ep.

If K ∈ XA,ep, then there are J0 ∈ {1, . . . , N}∗A and J ∈ {1, . . . , N}∗A,c

such that J is non periodic and J = J0 ∪ J∞. Therefore YK = YJ∞ and
YJ∞ = {J0 ∪ J∞ : J0 ∈ {1, . . . , N}∗A, J0 ∪ J ∈ {1, . . . , N}∗A}. From this,
XA,ep =

⊕
J∈[1,...,N ]∗A

YJ∞ , f |YJ∞ is a cyclic A-branching function system on
YJ∞ and fJ(J∞) = J∞. Therefore f |YJ∞ is P (J). We have the following
decomposition

f |XA,ep
=

⊕

J∈[1,...,N ]∗A

f |YJ∞ ∼
⊕

J∈[1,...,N ]∗A

P (J).

Assume that K = (kn)n∈N ∈ XA,nep and xn ≡ (kn, kn+1, kn+2, . . .) ∈
XA for n ≥ 1. Then xn ∈ YK and YK =

⋃
n≥1{J0∪xn : J0 ∈ {1, . . . , N}∗A, J0∪

{kn} ∈ {1, . . . , N}∗A}. Then XA,nep =
⊕

K∈[1,...,N ]∞A
YK , f |YK

is a cyclic A-
branching function system on YK and {xn}n∈N is a chain of f |YK

by K in
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YK . In consequence,

f |XA,nep
=

⊕

K∈[1,...,N ]∞A

f |YK
∼

⊕

K∈[1,...,N ]∞A

P (K).

Because XA = XA,ep tXA,nep, we have a cyclic decomposition of f into the
direct sum of {P (J) : J ∈ [1, . . . , N ]#A}. From this and (3.4), the statement
holds. ¤

By Proposition 8.1, we obtain

(l2(XA), πf ) ∼
⊕

J∈[1,...,N ]#A

P (J).

By this and § 6.2, (l2(XA), πf ) is just the atomic representation([5]) of OA

within the compass of a class of permutative representations.
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