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We generalize permutative representations of the Cuntz al-
gebras for the Cuntz-Krieger algebra O 4 for any A. We char-
acterize cyclic permutative representations by notions of cycle
and chain, and show their existence and uniqueness. We show
necessary and sufficient conditions for their irreducibility and
equivalence. In consequence, we have a complete classification
of permutative representations of Q4 for any A. Further-
more we show that the uniqueness of irreducible decomposi-
tion holds for permutative representation and decomposition
formulae.

1. Introduction

Permutative representations of the Cuntz algebras are completely classified
by [1, 3, 4]. We generalize their works to the Cuntz-Krieger algebra O4
for any A in this paper. Remarkable points is that the uniqueness of irre-
ducible decomposition holds for permutative representations of Q4 for any
A. Therefore the decomposition formulae make sense.

Let N > 2 and A be an N x N matrix which has entries in {0,1} and
has no rows or columns identically equal to zero.

Theorem 1.1. Let (H,7) be a representation of O4 and s1,...,SNn be
canonical generators of Oa. Assume that there are a complete orthonor-
mal basis {en}nen of H and a family {A\;}Y., of subsets of A such that
Vi e {1, e ,N}, Yn e A, H(Zi,nvmi,n) eU(l) x A s.t.

ZimCm; (n € Al),
(1.1) m(8i)en =
0 (otherwise).
Then the followings hold:
(i) (H,m) is uniquely decomposed into the direct sum of cyclic representa-
tions which satisfy (1.1).
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(i) If (H,m) is cyclic, then there is a unit cyclic vector Q € H such that
either of the followings holds:
a) There are (j1,...,7p) € {1,...,N}? and c € U(1) such that
(8, -+ 55,) = L.
b) There is (kn)nen € {1,..., N}°° such that {m (s}, ---s; )Q}neN is
an orthonormal family in H where N = {1,2,3,...}.
We denote cases a) and b) by P((jn)"_;;¢) and P((kp)nen), respec-
tively.
(iii) P((jn)h_y;¢) (resp. P((kn)nen)) is irreducible if and only if there is
no o € Zy\ {id} such that (jo1),---»Jo(p)) = (J1,-- -, Jp)(resp. there is
no (q,ng) € N x N such that kyyq = ky, for each n > nyg.)

(%) PUGnYie1:6) 7 P((knhnen). P(GYori) ~ PUGYAy:€) if and
only if p =p, c = ¢ and there is 0 € Z, such that jg(n) = jn for
eachn = 1,...,p. P((kn)nen) ~ P((k,)nen) if and only if there is
(g,n0) € Z x N such that kg = k. for each n > ny.

Specially, a representation of O4 in Theorem 1.1 such that z; , = 1 for every
(i,n) € {1,..., N} x Ain (1.1) is called a permutative representation of O 4.

In § 2, we prepare multiindices associated with a matrix A and intro-
duce A-branching function systems and show their properties. In § 3, we
give another definition of permutative representation and show their prop-
erties by multiindices. The existence of cyclic representations appearing in
Theorem 1.1 (ii) is shown for each multiindex in § 2. We show the con-
struction of the canonical basis of a given permutative representation. In
§ 4, we show uniqueness, irreducibility and equivalence of them. In § 5,
we show decomposition formulae of permutative representations. Theorem
1.1 is shown here. In § 6, we show states and spectrums of O 4 associated
with permutative representations. In § 7, we show decomposition formulae
of standard representations of the Cuntz-Krieger algebras. In § 8, we show
examples.

2. A-branching function systems

2.1. Multiindices. We introduce several sets of multiindices which consist
of numbers 1,..., N for N > 2 in order to describe invariants of representa-
tions of O4.

Put {1,...,N}° = {0}, {1,..., N} = {(G)r, : s =1,....,N, Il =
1,...,k} for k>1and {1,...,N}* ={(jn)neN : jn € {1,...,N}, n € N}.
Denote {1,...,N}* = [[so{l,. .-, N}, {1,..., N} = [Tisi {1 ..., N},
{1,...,N}Y* ={1,...,N}u{l,...,N}>®. For J € {1,..., N}#, the length
|J| of J is defined by |.J| = k when J € {1,..., N}*. For Jy, J € {1,...,N}*
and J3 € {1,..., N}, JiUJs = (1, s Gkr G -5 01)s J1UT3 = (G1s -+ o3 Jks G1 5 G- - )
when J1 = (j1,...,Jk), J2o = (jll,...,jl/) and Js = (j;;)neN- Specially, we
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define JU {0} = {0}uJ = J for J € {1,...,N}# and (i,J) = (i) U J
for convenience. For J € {1,...,N}* and k > 2, J¥ = JU---UJ and
—_—

k
J®=JUuJuJU---€{l,...,N}*®. For J = (j1,...,j%) € {1,...,N}* and
T € Zy, denote T(J) = (jT(1)7 e 7.]7'(](2))

For N > 2, let Mn({0,1}) be the set of all N x N matrices in which
have entries in {0,1} and has no rows or columns identically equal to zero.
A = (a) is full if a;; = 1 for each i,j = 1,...,N. For A = (a;5) €
Mn({0,1}), define

{1?"'7N}f4£ H{]""'?N}Z?
k>0
{1,...,N}% ={o}, {1,....N}Yy={1,...,N},
{1, N ={U) € {1,...,NY raj, o =1,i=2,....k} (k>2),
{1,..., N} = ]_[{1, L NYE
k>1
{17 s 7N}]1€4,c = {(]Z)le € {17' . 7N}];1 C Qg = 1}7
{1,...,N}IO40 = {(]n)neN S {1,...,N}Oo PG, g, = 1,n> 2},
(o N = {1, NV UL, N,

J e {1,...,N}] is periodic if there are m > 2 and Jy € {1,...,N}}
such that J = JJ*. For Ji,Jo € {1,...,N}j, Ji ~ Jo if there are k > 1
and 7 € Zy such that |Jy| = |Jo| = k and 7(J;) = Jo. For (J,2),(J,2) €
{1,..., NV xUQ), (J,2) ~(J,z)if J~J and z = 2’ where U(1) = {z €
C:|z| =1} J e {1,...,N}*®is eventually periodic if there are Jy,J; €
{1,..., N}j such that J = JyUJ°. Specially, if J € {1,..., N}, then Jy €
{1,...,N}j and Ji € {1,...,N}} , in the above. For Ji, Jo € {1,..., N},
J1 ~ Jo if there are J3,Jy € {1,...,N}* and J5 € {1,..., N}* such that
Ji=J3UJsand Jo = JyUJs. If J € {1,...,N}¥ is eventually periodic,
then there is J; € {1,..., N}} . such that J ~ Jp*. For J, J e{l,... N}¥#,
J~Jif g Je{l,...,N}fand J~J  or J,Je{l,... ,N}®and J ~ J.

FOI' Jl = (j17'~‘7jk)7J2 = (]177]]9) € {17"'aN}k7 k Z 17 Jl = J2
if Zle(]’l[ — j)N*t >0. J e {1,...,N}} is minimal if J < J for each
J € {1,...,N}j such that J ~ J'. Specially, any element in {1,...,N} is
non periodic and minimal. Put

<1l,...,N>3={Je{l,...,N}} . : J is minimal},
<1l,....,N>F={1,...,N}¥/~,
[1,...,N]3 ={J e<1,...,N >%:J is non periodic}.
[1,...,N|¥ ={[J] €< 1,...,N >%: J is non eventually periodic}
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where [J] = {J € {1,...,N}® : J ~ J'}. Then [1,...,NJ% is in one-
to-one correspondence with the set of all equivalence classes of non periodic
elements in {1,..., N}% .. We denote an element [K] of both < 1,..., N >
and [1,..., N|% by a representative element K if there is no ambiguity. Put

<L....N>j=<1...,N>u<l,...,N>%¥,
(2.1)
[1,...,N#=[1,...,N*Ul,...,N]®.

We show a systematic construction of non eventually periodic element in
{1,...,N}®. For Ji, Ja € {1,...,N}%, we denote Ji.Jo = J; U Jo simply.

Definition 2.1. Let A = (a;5) € Mn({0,1}).
(i) A family {Ji,...,J;} C {1,...,N}*A,C is freely jointable if J,Jp €
{1,...,N}j‘476 for each a,b=1,...,1.
(i) J1 and Jo in {1,...,N}}y . are strongly inequivalent if there are no
a,b € N such that J¢ ~ J&.
(iii) For a freely jointable family {J;}._, C {1,... ’N}*A,c and K = (kp)nenN €
{1,010, Jk € {1,...,N}¥ is defined by Jx = Jp, JiyJps -+ - -

By these preparations, we have the following proposition:

Proposition 2.2. Assume that Jy,...,J; € {1,.. -vN}Z,c: [ > 2, are freely
jointable and J, and Jy are strongly inequivalent for any 1 < a < b < [.
Then if K = (ky) € {1,...,1}* is non eventually periodic, then Jg is non
eventually periodic.

Fix Ji,J2 € {1,...,N}} .. Assume that both Jy = (j1,...,Jx) and Jp =

(ji, ...,j.) are non periodic, they are inequivalent and a; ; =ay ;. =1

1 m
From this, J;Jo, JoJ1 € {1,..., N}Z,c- For a non eventually periodic element
K = (12112211122211112222- - ) € {1, 2},

Jr = W Jo i 1o Jo 111 Jodods - - -
Then Ji € {1,..., N}°° is non eventually periodic.

2.2. A-branching function systems. In [7], we introduce the A-branching
function system on a measure space in order to define a representation of
O4. Let X be a possibly uncountably infinite set. We consider an atomic
measure p on X by u({z}) =1 for each z € X. Then Lo(X,u) = l2(X).
In this paper, we state about A-branching function systems on an atomic
measure space with the normalized measure at each point and associated
representations of the Cuntz-Krieger algebras for more detail.

We denote the set of injective maps from X to Y by RN (X,Y') and put
RNjoe(X,Y) = Ux,cx BN(Xo,Y). Wesimply denote RN (X) = RN (X, X).
For f € RNj,.(X), we denote the domain and the range of f by D(f) and
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R(f), respectively. RNj,.(X) and RN (X) are a groupoid and a semigroup
by composition of maps, respectively. We denote X x Y and X UY, the
direct product and the direct sum of X and Y as sets, respectively. For
f € RN(X1,Y1) and g € RN(X2,Y2), f®© g € RN(X;1 U X2,Y1 UYs) is
defined by (f @ g)lx, = £, (f @ 9)lx, = g.

Definition 2.3. For A = (a;;) € My ({0,1}), f = {fi}¥, is an A-branching
function system on a set X if f satisfies the followings:

(i) There is a family {D(f;)}X., of subsets of X such that f; is an injective

map from D(f;) to X with the image R(f;) for eachi=1,... N.

(i) R(f) N R(f;) = 0 when i # j.

(iii) D(f;) = Hj:aijzl R(f;) for eachi=1,...,N.

(iv) X =T, R()-
Specially, if A is full, then we call A-branching function system by (N -
)branching function system simply. We denote the set of all A-branching
function systems, branching function systems on X by BFS 4(X), BFSy(X),
respectively.

By definition, BFS4(X) # 0 if and only if #X = co. The notion of original
branching function system was introduced in order to construct a represen-
tation of Oy from a family of transformations in [1]. Definition 2.3 coincides
with originals when A is full.

Let X and Y be sets. F is the coding map of f = {f;}¥, € BFS4(X) if
F is a map on X such that (F'o f;)(z) = x foreachx € X andi=1,..., N.
For f = {fi}}¥, € BFSA(X) and g = {g;}, € BFSA(Y), f ~ g if there
is a bijection ¢ from X to Y such that o fiop ! =g; fori=1,...,N.
For a bijection ¢ on X and g = {g;}}¥, € BFSA(Y), we denote p X g =
{oxgi}L) € BFSA(X xY). For f = {fi}[L; € BFS4(X)andg = {g;}}\; €
BFS4(Y), we denote f ®g = {fi ®gi}}L; € BES4(X UY). Let {X,}wez be
a family of sets. For fl] = {fi[w]}i]\i1 € BFS4(X,) for w € E, f is the direct
sum of {f¥} ez if f = {fi}, € BFSa(X) for a set X =[] .z X. which
is defined by fi(n) = fi[w](n) when n € X, fori =1,...,N and w € E.
For f € BFSA(X), f = @, = s a decomposition of f into a family
{fl} ez if there is a family {X,}oecz of subsets of X such that f is the
direct sum of {1}, c=.

For f = {fi}¥, € BFSA(X), denote f; = fj, o---o fj, when J =
(1s---ydk) € {1,..., N}, k > 1, and define fo = id. When we denote
fi(z), we assume x € D(f;) automatically. Define

Co={fr/x) e X:Je{l,...,N}st.x e D(f;)} U{F"(z) € X : n € N}
where F' is the coding map of f.
Definition 2.4. For A € Myx({0,1}), let f € BFS4(X).
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(i) f is cyclic if there is x € X such that C, = X.
(ii) For J = (j1,...,Jk) € {17'--vN}I,Z,c7 k> 1, {z;} | is a cycle of f by
Jif fj,(xip1) = forl=1,...,k =1 and fj, (1) = zi.
(iii) For J = (jn)nen € {1,...,N}¥, {zn}nen is a chain of f by J if
fino1(xn) = xpn_1 for each n > 2.

For x € X, if y € C, then Cy = C,. For each z € X and f € BFS4(X),
fle, € BFSA(C,) and f|e, is cyclic.

Lemma 2.5. For A€ My({0,1}), let f € BFS4(X).

(i) If f is cyclic, then f has either only a cycle or a chain.
(ii) If f is cyclic and has two chains {x, }neNn and {yn }neN, then there are
p and M > 0 such that xp,, = Yn 0T Ty, = Yn4p for each n > M.
(iii) For any f € BFS4(X), there is a decomposition X = [[ycp Xx such
that f|x, is cyclic for each X € A.

Proof. Let F be the coding map of f.

(i) For z € X, consider Q, = {F"(x) : n € N}. If there is z € X such that
#Q, < 0o, then €, contains a cycle C. If there is other cycle C in X, then
there is no path from C and C' by f. Therefore such C' must not exist by
cyclicity. Hence f has only one cycle. If #£, = oo for each z € X, then
there is no cycle in X. €, itself is a chain.

(ii) We see that {yn}nen C Cy, = X = C;,. Hence either y; = f(z1) for
|J| =k or y; = F™(x1) form > 0. If y; = fs(x1), then yp 1 = FF(y1) = 21
and ygi, = x, for each n > 1. If y; = F™(x1), 11 = Tmy1 and and
Yn = Tpi+m for each n > 1. In consequence, the statement holds.

(iii) Put A = X/~ where x ~ y if and only if C, = C,. Then we have the
statement for X, = A € A. O

Definition 2.6. For A € My ({0,1}), let f € BFS4(X).
(i) ForJ e{l,...,N}} (resp. J€{L,....,N}¥), f has a P(J)-component
if f has a cycle(resp. a chain) by J.
(ii) For J € {1,...,N}jc, fis P(J) if f is cyclic and has a P(J)-
component.
For J,J €{1,..., N}ﬁ,w assume that f and f are P(J) and P(J'), respec-
tively. Then f ~ f if and only if J ~ J . This follows from the uniqueness of

cycle and chain up to equivalences. From this and Lemma 2.5, the following
holds:

Theorem 2.7. Let X be a set. For any A € My({0,1}) and f € BFSA(X),
there is decomposition X = [[ycp Xa where f|x, is P(Jy) for some Jy €

{1,..., N}fC for each A € A. This decomposition is unique up to equivalence
of branching function systems.



We can simply describe the statement in Theorem 2.7 as follows:

f~ @ P(J)EBVJ

Je<l,..,N>#*
where v is the multiplicity of P(J) in f for J €< 1,..., N >ﬁ.

2.3. Construction of A-branching function system. In this subsec-
tion, we construct an A-branching function system which is P(J) for a given
Je{l,...,N}% _for any A e My({0,1}).

Fix A = (a,;-j) € My({0,1}). For k > 1, denote Z, = {1,...,k} and o
is the shift on Zj. Let

T(Aj) = st TW(4: ),
(22) k)( ;j)E {(]h'”?]k)6{17"'7N}§1:ajkj:1}7
‘ 3A) = s T ) (j; 4),
T(k)(],A)E {(]1,...,jk)6{1,...,N}§1:a]‘j1:1}.

ForJE{l,...,N}]j‘,c, >1,put J; = (i, k) forl=1,...k,
(2.3) A(A, J) = A(A, J) U Ay (A4, J)UA3(A J),

T

AM(A D) ={J:1<1<k}, As(A) HAQZA J),

Aog(A, ) ={(, 1)+ € TV (A5 50), § 7& ja-lm},
AA D= T T < {6 )}

(4, J1)EN2(A,T)
Lemma 2.8. Let a family {D(f;)}}., of subsets of A(A,J) by
D(fi))=T(i;A)NAA,J) (i=1,...,N)
and a family f = {fi}, of maps by f; : D(f;) — A(A,J)
Ji (J =J and i = jp),

fi(J) = /
(2,J) (otherwise)

fori=1,....N. Then f is an A-branching function system on A(A,J) and
fis P(J).
Proof. We see that f; is injective on D(f;) for i =1,..., N and
R(fi) = {(1s -2 dm) € MAJ) Gy =i} (i=1,...,N).

From this, we can verify the axiom in Definition 2.3 for f. (]

For J = (jn)nen € {1,..., N}¥, put
(2.4) AAJ)=A(A, J) U A (A, J) U A3(A, J),
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M(AT) =N, Ay(A ) =] en A2m(A, ),
A21 (4, ) = {(7,1) 5 € TV (A 50)},
Non(A, ) = {(Gym) - j € TO(Asjm), § # -1} (m > 2),
As(A, J) = i myenscan T (4;5) x {(7,m)}.
Lemma 2.9. Let a family {D(f;)}} ., of subsets of A(A,J) by
D(f;)={m e N:a;, =1}U(T(i;A) x N)NA(A, J)
and a family f = {f:}"L, of maps by f; : D(fs) — A(A, J),

m—1 (1 = Jm—1 and m > 2),
film) = (m € Ar(A,J) N D(f:)),
(i,m) (otherwise)

fi(7m) = {iyu g, m) ((J';m) € (Aa(A, J) U A3(4,J) N D(f;).
Then f is an A-branching function system on A(A,J) and f is P(J).

Proof. We see that f; is injective on D(f;) for ¢ = 1,..., N and
R(fl) = {m € Al(A’ J) : ]m = ’L} U {((]1’ cee 7jk)am) S A2(A7 J) |—|A3(A7 J) :
j; =1} for i = 1,..., N. From this, we can verify the axiom in Definition
2.3 for f. O

Theorem 2.10. For each A € Mn({0,1}) and J € {1,.. .,N}jc, there is
an element in BES4(N) which is P(J).

Proof. Because both A(A, J) in Lemma 2.8 and Lemma 2.9 are count-
ably infinite, hence there is a natural bijection ¢ from A(A,J) to N. By
using ¢, we can define g = {¢o fiop 1}, € BFS4(N) which is P(J). O

3. Definition and existence of permutative representation

For A = (a;j) € Mn({0,1}), O4 is the Cuntz-Krieger algebra by A if O 4([2])

is a C*-algebra which is universally generated by partial isometries s1,..., sy
satisfying:
(3.1) stsi = SN agsjst (i=1,...,N), SN ssr=1

. 72t J=1"1°7°5 A ’ =1 °1"¢ :

Specially, Q4 is the Cuntz algebra On when A is full.
For g = (21,...,2n) € TN (= U(1)Y), define oy € AutOy by ay(si) =

zis; for i =1,..., N. We denote the canonical U(1)-action(=gauge action)
on O4 by 7. For a multiindex J = (ji,...,j%) € {1,..., N}* and canonical
generators si,...,sy of Oy, we denote s; = sj, ---s;, and s% = CHEEEE

When J € {1,...,N}*, sy #0if and only if J € {1,..., N}%.
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In this paper, a representation always means a unital *-representation
on a complex Hilbert space. (H1,m1) ~ (He,72) means the unitary equiva-
lence between two representations (Hj,m) and (Ha, m2) of Oa.

3.1. Definition. For f = {f;}Y, € BFS4(X), a representation (l3(X), /)
of O4 is given by

(3.2) mp(si)en = Xp() (M) e,y ((=1,...,N,n € X)

where X p(y,) is the characteristic function on D(f;). By the following propo-
sition, we see that (3.2) is a generalization of permutative representation of
On by [1].

Proposition 3.1. For a representation (H, ) of Oa, the followings are
equivalent:

(i) There are a complete orthonormal basis {e,}nex of H and a family
{X;}Y, of subsets of X which satisfy: i € {1,...,N}, "n € X,
Hmi,n € X s.t

W(Si)en = XX; (77,) “Cmy (TL € X)

(ii) There are a complete orthonormal basis {en }nex of H and f = {fi}, €
BFSA(X) such that m = 7wy in (3.2) under identification H = [5(X).

Proof. (ii)=(i) is trivial. Assume (i) for (H,w). Then we have a
family f = {f;}}¥, of maps on X such that 7(s;)e, = e f,(n) by assumption.
We can verify axioms in Definition 2.3 for f from conditions 7(s;)*m(s;) =
Z;VZI aijm(sj)m(s;)* and Z;VZI m(sj)m(sj)* = I. Hence we obtain (i)=-(ii).

U

Definition 3.2. (H, ) is a permutative representation of O4 if (H, ) sat-
isfies the statement (i) or (ii) in Proposition 3.1.

In [7], we define an A-branching function system f on a measure space
(X, 1) and define a representation (La(X, u), 7¢) associated with f. Assume
that (X, u) is an atomic measure space, that is, u({z}) > 0 for each z € X
so that u is possibly not normalized at each point. If f € BFS4(X) and X
is countably infinite, then there is f € BFS4(N) such that (La(X, u),7y)
is unitarily equivalent to (I2(N), 7). Therefore it is sufficient to consider
a permutative representation on (direct sum of)la(IN) for a representation
associated with A-branching function system on an atomic measure space.

For a representation (H, 7) of O 4 and a unitary operator U on a Hilbert
space K, we have a new representation (K®@H, UK ) of O 4 which is defined
by

(3.3) (URT)(s;) =U®m(s;) (i=1,...,N).
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Let X and Y be sets. For f € BFS4(X) and g € BFSA(Y), if f ~ g,
then 7y ~ m,. For any bijection ¢ on X, f € BFS4(X) and g € BFS4(Y),
the followings hold:

(3.4) Tomg ~ S(p) W7y, Tpgg ~mp @y

where S(p) is a unitary operator on l2(X) defined by S(p)en = ey for
neX.

Definition 3.3. Let (H,m) be a representation of O4.

(i) (H,m) is P(J;z) for J = (j1,-..,Jk) € {1,...,N}’f4,c, k>1andz €
U(1) if there is a cyclic unit vector Q € H such that w(s5)2 = zQ and
{m(sj, -+ s5,)Q:1=1,...,k} is an orthonormal family. {m(s;j, ---sj, ) :
l=1,...,k} is called a cycle of m by J. Specially, we denote P(J) =
P(J;1).

(ii) (H,m) is P(J) for J = (jn)nen € {1,..., N} if there is a cyclic unit
vector Q0 € H such that {n(s] -} )Q}nen is an orthonormal family.
{m(s} - 87,)Qnen is called a chain of m by J.

Qin (i) and (it) is called the GP vector of (H, ).
We denote (I3(X),7f) by 7y simply.

Theorem 3.4. Let f € BFS4(X).

(i) If o, is the shift on Z for r € Z which is defined by o.(n) =n —1r for
n € Z, then the following holds:

D
/ 7o yer dn(w)  (r#0),
T‘-O'r'ZfN U(l)

(p)®ee (r=0).
(ii) If o is the shift of Z, for p > 1, then
mowy ~ @1 T 0 e
where £ = e2mV=1/p,
(ili) If f is cyclic, then (I2(X),my) is cyclic.
(iv) If f contains a P(J)-component for J € {1,..., N}jc, then (l2(X),7y)
contains a P(J)-component, too.

Proof. About (i) and (ii), see Proposition 3.6 in [7]. About (iii) and
(iv), see Theorem 3.7 in [7]. O

In this way, characterizations of permutative representations are given by
terminology of branching function systems.
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Lemma 3.5. (i) For J = (j1,...,jx) € {1,...,N}y , g = (z)lL, € TV
and w € U(1), P(J;w) oag = P(J;wzy) where zy = zj, -+ - zj,. Spe-
cially, for z,w € U(1), P(J;w) o, = P(J;wz*) and P(J)o~, =
P(J; 2%).

(ii) For each J € {1,...,N}¥ and g € TV, P(J)oay, = P(J).

Proof. (i) Let (H,m) be P(J;w) with GP vector €. Because oy(s;) =
zysy, (moayg)(sy)Qd = zywd. Because (H, moay) is cyclic, too, the statement
holds.

(ii) Let (H,m) be P(J) with GP vector Q, g = (2:)~;, J = (jn)nen and

2y, = zj, -+ 24, for n > 1. Then {z,,7(s% )Q}nen is a chain of 7 by J and

) is a cyclic vector. Hence the statement holds. O

Proposition 3.6. Let A € My({0,1}).
(i) For an infinite set A, f € BFS4s(A) and J € {1,...,N}jc, if f s
P(J), then (I2(A),7y) is P(J), too.
(ii) For each J € {1,... ,N}jc, there exists a representation (H,m) which
is P(J).
(iii) For each J € {1,...,N}} . and z € U(1), there exists a representation
(H, ) which is P(J;z).
Proof. (i) This holds from definition of branching function system
immediately.

(ii) By (i), Lemma 2.8 and Lemma 2.9, the statement holds.
(iii) By (i) and Lemma 3.5, the statement holds. O

Proposition 3.7. For any permutative representation (H,m) of O4, there
is a family {(Hx, ™) }rea of cyclic permutative representations of O4 such
that (H,m) = @ ca(Ha, mx). Furthermore (Hx,my) is P(Jy) for some Jy €

{1,...,N}jC for each X € A.

Proof. By Theorem 2.7, Proposition 3.1, (3.4) and Proposition 3.6, it
holds. ([

Lemma 3.8. For A € My({0,1}) and J € {1,...,N}fyc, let (H,m) be
P(J) with the GP vector Q2. Then the followings hold:
(i) When J = (j1,....jk) € {1,...,N}q , k>1,

* 4 ak
TI'(SJ/) Q:5J’,J[17ak+p]7r(8=][p+1»k})Q (J S {]‘7"‘7N}A +p)'
where Jm,...,n] = (Jmy---,jn) for 1 <m <n <k and

Jim,. .. ak +pl = Gms - 1) UJ UGy -5 0p)
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fora>1,1<m,p<k-—1.
(ii) When J = (jn)nen € {1,..., N}%¥,

(s, ) Q= 5J/’J[17n]en+1 (J/ e{l,...,N}})
where J[1,n] = (j1,...,7n) and e, = W(sj‘,[l n])Q forn € N.

Proof. (i) Recall (s7)Q = Q. When J' € {1,... ,N}Zkﬂ), (8% ) =
(8% 8 gar1) = 6J/7J[17ak+p]7r(z9j[p+17k])Q.
(ii) Because Q = 7(sj(1,5))en+1 for each n € N, the statement holds. O

3.2. Canonical basis of permutative representation. For a given per-

mutative representation (H,7) of O4 which is P(J) for J € {1,... ,N}jc,

we construct a complete orthonormal basis of H in a canonical way. ’
For J € {1,...,N}} ., let (H,m) be P(J) with the GP vector Q. Put

ex =m(s:)Q0 (x € A(A,J))
where A(A, J) is in (2.3).

Lemma 3.9. For J € {1,...,N}*A7C, {ex : x € A(A,J)} is a complete
orthonormal basis of H.

Proof. Recall notation J; = (ji,...,jx) for [ =1,... k and note that
J1=J,e5, = Qand w(sy,)es, = ey,. We simply denote 7(s;) by s;. For
J and J' € A(A,J) such that J = J; U Jy, |J}| = |J |, < eplem >=
) S <e JQIQ >. Therefore it is sufficient to show that < Q|e, >= 0 for
each x € A(A, J)\ {J}.

(i)When z € Ay(A, J), by definition of P(J), {es}sen (a,.n is or-
thonormal. (ii)When x € A2(A,J), x = (4, J;) for some | € {1,...,k} and
§ e TW(A; )\ {ji—1} where TW(A;5) is in (2.2). Hence < e,|Q >=<
SjSJlQ|SJ19 >= 53‘7]'1 < SJZQ|SJQQ >= 5j,j15l,2- If j = ji1, then, | # 2 by
the choice of x. Hence < ez|Q2 >= 0 for each x € Aa(A,J). In the same
way, we see that < eg|s;,Q >= 0 for each € Ay(A,J) and [ = 1,... k.
(iii)When z € A3(A,J), there are J € {1,..., N} and y € Ay(A,J) such
that # = J Uy, |[J| = mk+1—1. Then < e,]Q >=< 5 ey >=
5J’,J{"U(j1,.--7jz_1) < eyl|s;, 2 >= 0 by (ii). By (i),(ii),(iii), {e; : z € A(A, J)}
is an orthonormal family in H.

By cyclicity of Q, X = {SJsj/Q J,J e {1,..., N}*} spans ‘H. On the
other hand, X = {e, : x € A(4,J)}. Hence {e; : x € A(A4,J)} is complete.

([

For J = (jn)nen € {1,..., N}¥, let (H, ) be P(J) with the GP vector
Q. Let
en =m(sy01,0)" 2 (R €N)
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where J[1,n] = (j1,...,Jn). Then {e,}nen is an orthonormal family by
definition. Put

€rm = (s )en (J/ € T(A;jn) \ {n-1})

Define

MAD) =T(A g u [T T4 ), T (A T) = T(Asjn) \ {1}

n>1
where 7 (A;jy) is in (2.2).
Lemma 3.10. {e, : € A(A, J)} is a complete orthonormal basis of H.
/Proof. ) For z,y € A(A,J), assume that x :’(J,,n)”and y=(J",m).

If [J)| = [J7|, then < egley >= 6y jwépm. If [J| > |J |, then there are
l €N and J" such that < eyley >= 0,y m <enley > It J =J UJ",
then n # [ if and only if 2 # y. Hence {e;} eR(AL) is an orthonormal family.
By cyclicity of Q, X = {m(s;,8%,)2: J1,J2 € {1,...,N}}} spans H. On
the other hand, X = {e, : € A(4, J)}. Hence the statement holds. O

4. Uniqueness, irreducibility and equivalence

Let A € My({0,1}).
4.1. Uniqueness up to unitary equivalences.
Lemma 4.1. For J € {1,.. .,N}ﬁc, if both (H,m) and (H ,7) are P(J),
then (H,m) ~ (H , 7).

Proof. By Lemma 3.9 and Lemma 3.10, there is the canonical basis
of P(J) and the action of O4 on them is always same. Therefore the cor-

respondence among canonical basis of (H,7) and that of (’Hl,wl) gives a
unitary U from H to H such that AdU o = 7. O

Theorem 4.2. (i) ForJ e {1,..., N}jc, P(J) exists uniquely up to uni-
tary equivalences.
(i) For J € {1,...,N}} . and z € U(1), P(J;2) exists uniquely up to
unitary equivalences.
Proof. (i) By Proposition 3.6 and Lemma 4.1, the statement holds.
(ii) By Proposition 3.6, the existence follows. Assume that J € {1, ... ,N}ﬁl.
If both (H,7) and (H ,7') are P(J;z), then both (H,7o~,,) and (K, 7 o
Yoi) are P(J) by Lemma 3.5. By Lemma 4.1, (M, movy,1) ~ (H , © 0v,1/x).
Therefore the statement holds. (]

By Theorem 4.2, symbols P(J) and P(J; z) make sense as equivalence classes
of representation.
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4.2. Sufficient condition of irreducibility.

Lemma 4.3. Let (H,n) be P(J) with the GP vector Q for J = (j1,...,jk) €
{1,...,N}f“47c, k>1and Q =m(sj---55,)Q forl =1,... k. Assume that
J is non periodic. Then the followings hold:
(1) If J € {1,...,N}¥ is not in {J" : n > 1}, then there is ng € N such
that 7(s%)"m(s ;)2 = 0 for some n > ng.
(ii) If v € H satisfies < v|Q2 >= 0, then lim, . 7(s%)"v = 0.

Proof. We simply denote 7(s;) by s; for i =1,..., N.

Q) IfJ e{1,..., N}, for 1 <1 < k, then the non-periodicity of J implies
sym(s Q=00 g S 52 =0. 1 J = J U Jy and |J;] = nk and
|Jy] =1 for I =1,...,k— 1, then (s%)""s,Q = 8 yn 58557 = 0 by the
last case.

(ii) By Lemma 3.9, there is a family {J,, € {1,...,N}% : m € N} such
that {s J;Q}meN is a complete orthonormal basis of H and J; = J. When
< v[2 >= 0, we can denote v = Y ", aps Q. If m > 2, then J & {J"
n > 1}. Therefore there is ng € N such that (s%)"s;» Q=0 for n > ng by
(i). Hence ||(s%)™v|| is monotone decreasing and the statement holds.  [J

Lemma 4.4. Let (H,m) be P(J) for J € {1,...,N}7 . and Q, Q' be vectors
of H such that ©(s;)Q = Q and n(s;)Q = Q. If J is non periodic, then
Q' = cQ for some ¢ € C.

Proof. By assumption and Lemma 3.9, thereis aset A C {1,..., N}%
such that ' is written as QU+ ep agnm(s ) where < (s i )QQ >=0
for each J" € A, and 7(s;)*Q = Q. By Lemma 4.3, Q" = ¢Q. O

Theorem 4.5. If J € {1,..., N}, . is non periodic, then P(J;z) is ir-
reducible for any z € U(1). Specially, if J is non periodic, then P(J) is
irreducible.

Proof. Assume that J is non periodic and (H,w) is P(J) with the
GP vector Q. For v € H, v # 0, there is J € {1,...,N}¥ such that
< m(s%)v[Q2 >7# 0. Therefore we can always replace v and m(s”, Jv. Assume
that v = Q + y such that < y|Q2 >= 0. Then lim, .o 7((s%)")y = 0 by
Lemma 4.3. Hence lim,, o 7((s%)")v = Q and Q € 7(O4)v. Because (2 is
a cyclic vector, m7(O4)v = H. Therefore (H, ) is irreducible. By this and
Lemma 3.5, P(J;2) is, too for each z € U(1). O
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Lemma 4.6. Let (H,n) be P(J) with the GP vector Q2 for J = (jn)neN €
{1,...,N}%. Assume that J is non eventually periodic and put J, =
(J1y---yJn) for n € N. Then the followings hold:

(i) For each m,k > 1 and J € {1,...,N}% so that J # Jy, there is
ng € N such that ﬂ(sjns}nsj/sjm)ﬁ =0 for each n > ng.
(i) For eachk > 1 and J € {1,...,NY¥ so that J # Jy, there is ng € N
such that w(s,s% s;) =0 for each n > ng.
(iii) For each m > 1, there is ng € N such that 7(s;,s% s% )Q =0 for each
n > ng.
(iv) If y € H satisfies < y|Q >= 0, then limy, o 7(5,,55 )y = 0.

Proof. We simply denote 7(s;) by s;.

(i) and (ii) follow by assumption for J .

(iii) Since J is non eventually periodic, there is ng € N such that s% s% s,
= 0 for each n > ng. Therefore 57 5 Q=575 5 s,y =0 foreach
n > ng. Hence the statement holds.

(iv) Denote e1 = Q and e, = s Q for m > 2. By Lemma 3.10, there
is a family {Kymlnmen C {1,...,N}} such that {sg, ,.em}tnmen is a
complete orthonormal basis of H. If y € H satisfies < y|Q2 >= 0, then we
candenotey = > o> <1 GnmSK, ,em- Therefore ||s;, % yl| is monotone
decreasing by (i),(ii),(iii) and the statement holds. O

Theorem 4.7. If J € {1,..., N} is non eventually periodic, then P(J) is
irreducible.

Proof. Let (H,w) be P(J) with the GP vector Q for J = (jp)neN €
{1,...,N}%. Denote J, = (ji,...,jn). Put v € H, v # 0. We can as-
sume that < v[€2 >7# 0 by replacing v by m(ss*,)v for suitable J,J" e
{1,..., N}¥ if it is necessary. We can assume that v = Q+y for some y € H
such that < y|Q >= 0. By Lemma 4.6, Q = lim,, oo 7(5.,57 )y € 7(Oa)y.
Because (Q is a cyclic vector, m(O4)y = H and the statement holds. O

The necessary condition of irreducibility of permutative representation is
given in § 5.

4.3. Equivalence. Recall the equivalence among multiindices in § 2.1.

Lemma 4.8. Let (H,m) be P(J) with the GP vector ) for J € {1,...,N}} ..

Assume that J is non periodic and choose J € {1,...,N}* such that J L J.
(i) If Q' € H such that m(s ) = Q, then < Q| >=0.

(ii) If v € H, then limp o 7(s7%,)"v = 0.



Proof. (i) Assume that |J| = k and |J'| = I. Because of the non-
periodicity of J, J' # (J)*. Hence < QQ >=< W(85)9|W(55,)Q, >=
Sty < QIQ >=0.

(i) If v = (s ;v )2, then 7((s%,)" ™ )v = 6 yrym y - 7((s%)")Q — 0 when
n — oo by Lemma 4.3 and (i). Because any v € H is a limit of linear
combination of {7 (s ;)S2: J" € {1,...,N}4}, the statement holds. O

Lemma 4.9. Let J,J € {1,...,]\7}270.

(i) If J, J' are non periodic and J + J', then P(J) £ P(J)
(i) For z,2 € U(1), if (J,2) ~ (J,2), then P(J;z) ~ P(J;2"). Spe-
cially, if J ~ J , then P(J) ~ P(J).

Proof. (i) Assume that P(J) ~ P(J'). Then there is a representation
(H,m) of O4 which is P(J) and P(J'). Assume that Q,Q € H are GP
vectors with respect to P(J) and P(J'), respectively. Then < Q'|v >=<
77(57},)Ql|v >=< Q/|W((sj,)")v >— 0 when n — oo by Lemma 4.8. Hence

/

Q' = 0. Therefore this is contradiction. Hence the statement holds.
(ii) Assume that J ~ J and J = (ji,...,j%) € {1,...,N}§LC for k >
1. Let (H,m) be P(J) with the GP vector Q. Then 7(s;)2 = Q. By
assumption there is o € Zj such that J = o(J) = (Jo(1)s - > o). Put
QO = (85,1 ++ 8k)S2 Then m(s,;)Q = Q and Q is a cyclic vector of (H, 7).
By Lemma 4.1, P(J) ~ (H,m) ~ P(J,).

If (J,2) ~ (J,2"), then J ~ J and z = 2’ by definition. Then P(J) ~
P(J/) by the last result. By Lemma 3.5, the statement holds. ([

Theorem 4.10. For J, J e {1,... ,N}*Aﬁ, assume that J, J are non peri-
odic. Then the followings hold:

(i) P(J)~ P(J') if and only if J ~ J .

(i) For z,z € U(1), P(J;z) ~ P(J ;%) if and only if (J,z) ~ (J ,2).

Proof. (i) By Lemma 4.9, the statement holds.
(ii) If P(J) and P(J ; z) are equivalent, then .J ~ J by the proof of Lemma
4.9. If P(J) and P(J; z) are equivalent, then there is a representation (H, )
which is P(J) and P(J;z) with GP vectors Q and Q', respectively. Then
m(s/)Q = Q and 7(s;)Q = 2Q". Hence < Q| >=< n(s,)QQ >=<
Qr(s))*Q >=z < Q|Q >. Therefore z =1 or < QQ >=0. If z # 1,
then < Q|Q" >= 0 implies that 7((s%)")Q — 0 when n — oco. This is
contradiction. Therefore P(J) o P(J;z) when z # 1. On the other hand,
P(J;z) ~ P(J';2") if and only if P(J) ~ P(J;2") o yam = P(J'; 2 3/%)
when |.J| = k and |J'| = I. Therefore P(J;z) ~ P(J';2') if and only if
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J ~ J and z'z = 1. This implies the statement. O

In § 5.1, we show the statement in Theorem 4.10 without assumption non
periodicity.

Lemma 4.11. For J,J € {1,..., N}, P(J) £ P(J ) if J £ J .

Proof. Assume that J = (jp)neN, J = (ju)nen, J % J and P(J) ~
P(J'). Then there is a representation (H,7) which is P(J) and P(.J') with
GP vectors Q and Q' respectively. Put e, = m(s; -85 ) and e, =
77(3;, . 'SZ)QI where J,, = (j1,...,jn) and J, = (ji, ..., j,) forn > 1. Then

< QI >=< 7T($Jn)€n+1‘7T(SJ7/Z)€,In+1 >= 0 for some n € N because J & J .
In the same way, we see that < em\e;1 >= 0 for each n,m € N. From this,
< m(sk)emle, >= 0 for each K € {1,...,N}% and n,m € N. Therefore
< vle,, >= 0 for each v € H and n € N. Hence e, = 0 for each n € N. This
contradicts with the choice of {e] }nen. Therefore P(J) o P(J). O

Theorem 4.12. For J,J € {1,...,N}%, P(J) ~ P(J) if and only if
J~ T

Proof. By Lemma 4.11, it is sufficient to show that J ~ J  implies
P(J) ~ P(J). Assume that J = (jn)nen and J = (j,)nenx and J ~ J'.
Then there are p € Z and M > 1 such that j;L = Jn4p for each n > M.
If (H, ) is P(J) with the GP vector Q, then put Jy = (j1,..-,41), Jo =
(j1,--->jmep) and Q' = 7T(SJ6$J6‘)Q. Then

/

(st -8t st -8 =7(s) e 8% §5 o e85 )0

IMan I Im 7 IM+n+p IM414p " IM+p J1

for each n > 1. Therefore {ﬂ(s;f, - s;f/ )Q' }1>1 is a chain of 7 by J'. Because
1 1

/

Q is a cyclic vector, Q' is, too. Hence P(J) ~ (H,x) ~ P(J"). O

5. Decomposition and complete reducibility

5.1. Decomposition of cycle.

Theorem 5.1. For (J,c) € {1,... ,N}ZC xU(1l) andp > 1,
p

(5.1) ~ P P(J;cPe)
j=1
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where £ = e2mV=1/p, Specially,

(5:2) P(J?) ~ D P(J;: &)
j=1

Proof. Assume that J = (j1,...,Jk) € {1,... ,N}Z’C. Let (H;,m;) be
P(J;&) with the GP vector ; for j = 1,...,p. Put Q = p~1/2 ?:1 Q€
H=Hi® - @®Hpand m =7 @ -+ P mp. Then w(sy») = Q and
{m(sj, -+ 84,850)2:a=0,...,p—1,1=1,...,k} is an orthonormal fam-
ily. Therefore V. = 7(04)Q is a P(JP)-component of H. On the other
hand, Lin< {m(s5) : ¢ = 1,...,p} >= Lin< Q; : ¢ = 1,...,p} >.
Hence Q; € V. and H; ¢ V for ¢« = 1,...,p. Therefore H = V and
(H,m) is P(JP). From this, we obtain (5.2). By Lemma 3.5 and (5.2),
PIPi¢) = P(I) 0 3uis ~ (@Ny PUEN) o510 ~ By P(Jsc/rgi),
(5.1) is obtained. O

Corollary 5.2. (i) For (J,z) € {1,..., N}, . x U(1), P(J;z) is irre-
ducible if and only if J is non periodic. Specially, for J € {1,..., N}ZW
P(J) is irreducible if and only if J is non periodic.

(i) For J,J € {1,... N}t and 2,2 € U(1), P(J;2) ~ P(J';2) if and
only if (J,2) ~ (J',2).
(iii) The decomposition in (5.1) is multiplicity free.

Proof. (i) By Theorem 4.5 and Theorem 5.2, the statement holds.
(i) If (J,2) ~ (J',2"), then P(J;z) ~ P(J';2) by Lemma 4.9.

Assume that P(J;z) ~ P(J';2'). If J and J are non periodic, then
the statement is shown in Theorem 4.10. If J is periodic, then P(J;z) is
not irreducible by (i) and decomposed into direct sum of finite irreducible
components by Theorem 5.2. Therefore P(J/; z/) must not irreducible. By
(i), J is periodic. By comparing irreducible components of P(J;z) and
those of P(J';z") and Theorem 4.10, we see that their sets of irreducible
components coincide up to unitary equivalences. From this, (.J,z) ~ (J', 2").
(iii) By (ii), the assertion holds. O

By Theorem 4.12 and Corollary 5.2, we have the following:

Theorem 5.3. For J,J € {1,...,N}jc, P(J) ~ P(J) if and only if
J~J

5.2. Decomposition of chain. In this subsection, an equality among rep-
resentations means their unitary equivalence. Recall U K 7 in (3.3).
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Lemma 5.4. Let ¢ € Loo(U(1)) such that |o(w)| = 1 almost everywhere in
U(1), M, be the multiplication operator on La(U(1)) by ¢, and (H, ) be a
representation of O4. Then we have the followings:

(i)
3
M,Xr = / T 0 Yp(w) dn(w)
U(1)
where 1 is the Haar measure of U(1). Specially, when o(w) = w'/?
for w € U(1) where w'/? = e2™V=10/p for = €2™V=10 0 <9 < 1, we
denote My, by M, 1/,. Then

S
Mgy @1 = [ 7090, dnfw).
Uu()

(i) My, X7 = MgXm where p(w) = p(w) for w e U(1).

Proof. These follow from a slight generalization of Lemma 5.7 in [6].
O

Lemma 5.5. Let (H, ) be P(J) with the GP vector Q for J = (j1,...,jp) €
{1,...,N}Q’C for p>1. Denote Q = m(sj,---55,)Q forl=1,...,p.

(i) m(sj,---55)* Q=4 forl=1,...,p—1.

(i) Let ((w) =w® force R and w € U(1), K = J* and

(5.3) Vnpti-1 = G (1=1)/p @

forl=1,....p,neZ Ifx = Mgip X7, then ﬂ/(SKn)*'UO = v,
for each n € N where we denote K = (kp)nen, Kn = (k1,...,kn) for
n € N.

(iii) If 7 = My, B 7, then {, ® (s, ) -1 = WI(SJ/)Uan,l for J e
{I,...,N}y,n€Zandl=1,...,p.

(iv) Mygip Rm is cyclic.

Proof. (i) By direct computation, we see the statement.
(i) Since Ky, = J™, (7' (57)(620Q))(w) = wp(w)Q for ¢ € Ly(U(1)) and w €
U(1). Hence (8K, )" = m(sjy - 55, ) m(s)" Q= m(s, - 55_,)"Q =
O forne Nand ! =2,...,p by (i). Therefore

’

™ (SKnprlfl)*vo =7 (SKnpﬁ»lfl)*(]‘ ® Q) = Cn—i-(l—l)/p ® Ql = Unp+l—1‘

From this, the statement holds.
(iii) For w € U(1), J € {1,..., N}, k>1,c€R,and | = 1,...,p,

(' (5,)(Ce ® Q) (w) = @*/PCe(w) @ (s ;1)U = Coppplw) @ (s 1) .
From this, (. ®@m(s ) = W,(SJ/)(CC+k/p®Ql). Hence we have the assertion.
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(iv) Put 7 = Mg, 7. We extend K = {kn}nen a8 K = {kn}nez
by k_ppii = ji forn > 1 and I = 1,...,p. Note W/(sKn)vo = wv_, for
n > 1. Hence {v}nez C V. Since Lin< {m(s ;) : J e{l,...,N}, 1=
1,...,p} >isdensein H, Lin< {¢,®n(s ;) : n € Z, J e {1,...,N}3, =
1,...,p} >isdensein Ly(U(1)) @ H. By (iii), V = L2(U(1)) ® H. Therefore
7 s cyclic. O

Proposition 5.6. If J € {1,...,N},  p>1, then

2]
P = / P(J:w) dy(w).
U(1)

Proof. When (H, ) = P(J), we denote UX P(J) instead of U X for
convenience. Let v, be in (5.3). By Lemma 5.5 (iii), v, € V = 7(O4)vy for
each n € N. Since {v, },>1 is an orthonormal family, 7 contains P(.J>) as a
subrepresentation. By Lemma 5.5 (iv), M1/, X P(J) = P(J*°). By Lemma
5.4 (ii), My 8 P(J) = M1/, ® P(J). Hence M./, K P(J) = P(J). By
this, Lemma 5.4 and Lemma 3.5, the statement holds. O

Corollary 5.7. (i) If K € {1,...,N}% is eventually periodic , then there
is Je{l,... ,N}jiLC such that J is non pertodic and

2
(5.4) P(K) :/ P(J;w) dn(w).
U(1)
(ii) If there is J € {1,..., N}, . which satisfies the statement (i) with
respect to K, then J ~J.
(iii) The decomposition in (5.4) is multiplicity free.

Proof. (i) If K is eventually periodic then there is a non periodic
element J € {1,...,N}7 . such that K ~ J*. Hence P(K) ~ P(J*) by
Theorem 4.12. By Proposition 5.6, the statement holds.

(ii) By Proposition 5.6, P((J)>®) = féB(l) P(J";w)dn(w) = P(K) = P(J>®).
By Theorem 4.12, (Jl)Oo ~ J>. Because both J and J are non periodic,
J ~ .

(iii) This follows from Corollary 5.2 (ii). O

Theorem 5.8. For K € {1,...,N}°, P(K) is irreducible if and only if K

s non eventually periodic.

Proof. By Theorem 4.7 and Corollary 5.7, the statement holds. [
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5.3. Completely reducibility and uniqueness of decomposition.
Theorem 5.9. For A € My({0,1}), let (H,m) be a permutative represen-
tation of O4, and < 1,...,N >ﬁ and [1,.. .,N]ﬁ be in (2.1).
(i) The following decomposition into cyclic subspaces holds:
(5.5) (H.m) ~ @ P
Je<l,.. ,N>#
where vy is the multiplicity of P(J) for J €< 1,...,N >% . Further-

-
more (5.5) is unique up to unitary equivalences.
(ii) The following irreducible decomposition holds:

H = P " o P Hx

JEL,..,N]% KE[L,..,N]¥
P @ij @ @VJ,OO
Hi = PBSPBHp, ® H 0.z dm(2) ,
p>1 (=1 va)

Hic = M3
where

Hip ~ P(J;¥™V7NP) My ~ P(J;2), Mo~ P(K)
and vy, and vi are multiplicities.

Proof. (i) By Theorem 2.7, (3.4) and Theorem 5.3, the statement
holds.

(ii) Theorem 5.1 and Corollary 5.7 imply the decomposition. O

Assume that there are two irreducible decompositions of a given permu-
tative representation (H, ) of Q4. If there is no direct integral component,
then the uniqueness follows. If there is a direct integral decomposition on
U(1) as a style in (5.4), then the uniqueness holds in a sense of Corollary 5.7
(ii). In consequence, the irreducible decomposition of permutative represen-
tation as a form in Theorem 5.9 (ii) is unique up to unitary equivalences.

Theorem 5.10. For any A € My ({0,1}), any permutative representation
of O4 is completely reducible and irreducible decomposition as a form in
Theorem 5.9 (ii) is unique up to unitary equivalences.

5.4. Decomposition of permutative representation with phases.
(H,7) is a permutative representation of O 4 with phases if there are a com-
plete orthonormal basis {e }nea of H and a family {A;}Y, of subsets of A
such that ¥i € {1,..., N}, "n € Ay, 2(2im, min) € U(1) x A s.t.

m(si)en = zin - XA, (M) - €m;,,  (n € A).
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Proposition 5.11. For A € Myx({0,1}), let (H,7) be a permutative repre-
sentation of O with phases. Then the following unique decomposition into
cyclic representations up to unitary equivalences holds:

(H,ﬂ') ~ @ P(J; C)@VJ,C ® @ P(K)EBVK

(J,e)€[L,...,N]% xU(1) Ke<l,.,N>%

where vy . and vi are multiplicities. Specially, if (H,m) is cyclic, then (H, )
is equivalent to either P(J;c) or P(K) for some (J,c) €< 1,...,N >%
xU(1) or K e<1,...,N >%.

Proof. By assumption, there are a complete orthonormal basis {e,, }nea
of H, {A;}Y, and {(2in, min) € U(1) x A: (i,n) € {1,...,N} x A;} such
that m(s;)en = 2zinXa,;(n) - €m,,, for each (i,n) € {1,...,N} x A. Define a
new permutative representation (7, m) of O4 by mo(si)en = xa; (1) - - €m,,
for (i,n) € {1,..., N} x A. By Theorem 5.9 (i), my is decomposed into the
direct sum of permutative representations:

m~ @ POH™e G PE)E

Je<l,..,N>% Ke<1,..,N>%

Therefore moly ~ P(J) or mo|ly ~ P(K) for some subspace V. C H. If
moly ~ P(J), then there is a cyclic unit vector 2 € V such that my(s7)Q2 = Q.
By definition of 7, there is ¢; € U(1) such that 7(s;)2 = ¢;Q. Because
(V,molv) is cyclic, (V,7|y) is, too. Therefore w|y ~ P(J;cy). If moly ~
P(K), then we see that 7|y, ~ P(K) by checking the condition of chain. In
consequence

T~ P PLe)™o fH  PE)EE
Je<1,...,N>% Ke<1,..,N>%

When J is periodic, P(J;cy) is decomposed into the direct sum of elements
in {P(J';¢): (J,¢) €[l,...,N]y x U(1)} by Theorem 5.2. Hence the
statement holds. O

By Proposition 5.11 and results of permutative representation of Q4 in §
4, § 5, Theorem 1.1 is proved. Proposition 5.11 for Oy = Oy is shown in
3, 4].

6. States and spectrums

Fix A € My({0,1}).

6.1. States of permutative representations. Operator algebraists pre-
fer states than representations. Therefore we show states of the Cuntz-
Krieger algebras associated with permutative representations.
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Theorem 6.1. Let (H,w) be P(J) with the GP vector ) for J € {1,... ,N}jc.
Define a state w of O4 by w =< Q|7(-)Q >. Then the followings hold:

(i) When J = (j1,...,jk) € {1,...,N}Yq , k>1,
1 (0<7p<k—1,st.J,J €IL,(J])),
(6.1) w(sysin) =
0 (otherwise)
where Ip(J) = {J*U (j1,...,4p) € {1,..., N} :a > 0}.
(ii) When J = (jn)ne~n € {1,..., N},
1 CneNst.J =J =01....Jn),
(6.2) w(sysin) =
0 (otherwise).
(iii) The GNS representation of Oy by a state w which satisfies (6.1) or
(6.2) is equivalent to P(J).
(iv) w is pure if and only if J is non periodic or non eventually periodic.
Proof. (i) Assume that J € {1,..., N}Y¥*Pand J" € {1,..., N}
By Lemma 3.8 and its notations,
w(systn) = <Qm(sys,)Q>
< W(S;/)Q|7T(83//>Q >
= 5J’,J[1,...,ak+p]5J”,J[1,...,bk+q] < 7T(<9J[;p+1,lc])9|7T(<‘>’J[q+1,/!c})Q >
- 5J’,J[l,...,ak+p}5J”,J[1,...,bk+q]5p,q

1 (J,J eL,))),

0 (otherwise).

(ii) By Lemma 3.8 and the same way in (i), the statement holds.
(iii) The statement follows from the uniqueness of the GNS representation.
(iv) Corollary 5.2 and Theorem 5.8 imply the assertion. O

6.2. Spectrums. We consider the spectrum of O 4 associated with permu-
tative representations of Q4. SpecO4 is the spectrum of O 4 which consists
of all unitary equivalence classes of irreducible representations of Q4. Put
PSpecO4 the subset of SpecO4 which consists of all unitary equivalence
classes of irreducible permutative representations. By Theorem 4.2, Corol-
lary 5.2 and Theorem 5.8, the following one-to-one correspondence holds:

PSpecO4 = [1,..., N]%.

Specially, PSpecOy 2 [1,..., N|#. By regarding phase factor, {[1,..., N|% x
U)}uUl,...,N]Y is identified with a subset of SpecO4.
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When A — ( ol ) we see that {1,2}%4, = {(1)",(2)" : n > 1}

and {1,2}5 = {(1)®, ("1 U(2) : n > 1}. Hence [1,2]3 = {(1),(2)}.
[1,2]% = 0 and #PSpecOy = 2.

When A = ( 1 (1) ), {(1)"U(2) : n > 1} is a proper subset of [1, 2]} ..
From this, #PSpecO4 = oo.

7. Decomposition of standard representation

We introduced the standard representation of O 4 for each A in [7], which is a
kind of permutative representation. In this section, we show decomposition
formulae of them.

7.1. Definition and decomposition formula. We review the standard
A-branching function system and the standard representation of O4 for a
given A € My ({0,1}).
Definition 7.1. Let A = (a;j) € My ({0,1}).

(i) A data {(M;,q;, B;)}}, is called the (canonical)A-coordinate if

Bi= {je{l,....,N}:a;j=1}, My;=an+--+an,

fori=1,...,N.
(ii) An A-branching function system f(4) = {fi(A)}fil on N defined by

FYWN(m—1)+ ) = N(Mi(m = 1) + qi(j) — 1) +i (meN, j € By),

R(AY) = {N(n—1) +i:ne N}, DY) = s, RUFY) (=1, N)

is called the standard A-branching function system. (iii)
(iii) (lg(N),wéA)) is the standard representation of O4 if (ZQ(N),WgA)) is a
representation of O, defined by
(A) - .
g (si)en = XD(fi(A))(n)efi(A)(n) (neN,i=1,...,N)

where fA) = {fi(A)}f\il is the standard A-branching function system.

In order to show the decomposition formula of the standard represen-
tation, we define cycles arising from some finite dynamical system associated
with A. For A = (a;;) € My({0,1}), put a map ¢4 on {1,...,N} by
(7.1) pa(t) =min{j € {1,...,N} :a;5 =1} (i=1,...,N).

Then {1,..., N} contains cycles by ¢4, that is, C = {n; € {1,...,N} :i =
1,...,m}isacyclein{1,... . N} by paif oa(n;) =njpq fori=1,...,m—1
and p4(ny) = ny.
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Definition 7.2. (i) {Ci}r_, is the A-cycle set if {C;}F_, is the set of all
cycles in {1,...,N} by pa. Put m;y = #C; and j;3 = minC; for
i=1,... .k

(i) Ja = {L}r, C {1,...,N}* is the A-cyclic index set if J; = (ji.)1", €
{1,...,N}™ and j;. = cpi(l(ji,l) for ¢ = 1,...,m; where j;1 €
{1,..., N} and m; are in (i).

(iii) An element J = (j1,...,Jm) € Ja is isolated if

ajhl = 6lvji+l (’L = 1, e, — 1), ajm’l = 517]‘1
forl=1,...,N. We denote the set of all isolated elements in Ja by
Taeo and Ta1 = T4\ TA,c0-

Theorem 7.3. For A € My({0,1}), let (lg(N),ng)) be the standard rep-
resentation of O4. Then the followings hold:

(i)
Doo
LM),x) ~ @ PHel @ PE)
JeTan KeTJa,co
where Ja1 and Ja~ are in Definition 7.1.
(ii) ng) is multiplicity free if and only if Ja 0o = 0. Under this condition,
7 is irreducible if and only if #Ja1 = 1.

If A is full, that is, O 4 = Oy, then W(SA) ~ P(1) for each N > 2. We prove
Theorem 7.3 in § 7.2.

7.2. Proof of Theorem 7.3.In Definition 7.2, we see C; = {¢ ' (ji1) :
l=1,...,m;}. Because C; N C; = () when i # j, any two elements in Jy
are inequivalent.

Lemma 7.4. Let A € My({0,1}), Ja be the A-cyclic index set and f4) be
the standard A-branching function system. Then the followings hold:

(i) JaC{l,....N},..

(i) D ez, P(J) is a component of A,

(iit) If J € Ta 0, then fA) contains a P(J)®®-component.

Proof. We simply denote f(4) = {fi(A)}i]\i1 by f = {fi}},. Put
Ta =i}y and Ji = (i, Jigm;) for i =1,... k. Let {(M;, g5, Bi) Y,
be the A-coordinate. We see that ¢;(p4(i)) =1 for each i =1,..., N.
(i) By definition of ¢4, aj, , = 1. Because C; is a

Ji2 — = Qi my—1,im;
cycle, pa(Jim;) = ¢4' (Jin) = jin and aj, . j,, = 1. Hence the statement
holds.

(ii) Note that gj, .(jie41) =1forc=1,...,m;—1and gj, ,, (ji1) = 1. From

this, fj, . (Jiet1) = N(@j,.(ier1) = 1) + Jie = Jiec and [, (Jin) = Jigm,-
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Then fy,(jin) = (fiin 00 fjim)Jin) = -+ = f5..(iz2) = jia. Therefore
P(J;) is a component of f. Because each two elements in the A-cycle set
{Ci}F_ are disjoint, P(J1) ®--- @ P(J}) is a component of f.

(iii) Note that J = (j1,...,Jm) € Jao if and only if M;, = 1 for each
c=1,...,m. D(f;.) ={N(m —1) +jict1 : m > 1}, D(fj,,,) = {N(m —
Dtjor s m = 1} and £, (N(m—1)+ice1) = N(m—1)+joer f0m, (N(m—
1) + jia) = N(m — 1) +iy4,. Hence f,(N(m —1) + ji1) = (fj,, 00
Fiim, )N (m — 1) + ji1) = N(m — 1) + ji1. In consequence, fj,(n) =n for
each n € {N(m — 1)+ ji1 : m > 1}. Therefore CZ-(m) ={Nm—1)+ jic:
c=1,...,m;} is a cycle of f by J; for each m > 1. Hence the statement
holds. g

In order to decompose the permutative representation associated with
the standard A-branching function system, we show decomposition formula
of the standard A-branching function system. We denote f(4) by f simply.

Lemma 7.5. For A € My ({0,1}), let {(M;, q;, B;)}}*, be the A-coordinate,
f be the standard A-branching function system and J = (j1,...,7k) €
{1,..., N}’KC. Then the followings hold:

(i) Form >1 and jo € {1,...,N} N D(fj.),

(7.2) fr(N(m —1) +jo) = N(Lg(m — 1) + a = 1) +j1
where Ly = Mj, ---M;, fori=1,...,k and
QJ'l(jO) (k = 1)7
a=< g (J2) + Mj (g5, (jo) — 1) (k =2),

071 (72) + 057 L@y (Givz) = 1) + Lioa(@ (o) = 1) (k> 3).

(i) If there is ng € N such that fj(no) = no, then there is m > 1 such
that ng = N(m — 1) 4+ j1 and

(7'3) q]z‘(ji-l-l):l (i:1,...,k—l), qjk(jl) =1,
and

(7.4) m = Li(m—1)+ 1.

(iii) Assume that there is a cycle C of f by J. If C ¢ {1,...,N}, then
M;, =1 for eachi=1,... k.

(iv) Assume that there is a cycle C of f by J. If M;, > 2 for some i €
{1,...,k}, then C C {1,...,N}.

Proof. (i) By direct computation, we have the statement.
ii) By definition of fi, the first statement holds. By (i), N(m — 1) + j1 =
N(Lg(m — 1) + a — 1) + j1. From this, we have m = Li(m — 1) + a.
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If m =1, then o = 1. By definition of «a, (7.3) holds. If m > 2, then Ly =1
and o = 1. Therefore (7.3) holds, too. In consequence, we have (7.4).

(iii) By assumption, there is ng € C' C N such that ng = N(m — 1) +1
for some m > 2. Then there is J = (j,...,5,.) € {1,... ,N}fi"c such that
J ~ J and fy(no) = ng. By (7.4) and proof of (ii), Ly = 1 and the
statement holds.

(iv) By (iii), the statement holds. O

Lemma 7.6. Let A € My({0,1}) with the A-coordinate {(Mj;,qi, B;)}Y,.
For J = (j1,...,Jk) € {1,... ,N}ff"c, the standard A-branching function
system has a P(J)-component if and only if q;;(ji+1) = 1 for each i =

L,....,k—1 and g, (j1) = 1.

Proof. By Lemma 7.4 and Lemma 7.5, the statement holds. U

Lemma 7.7. For any A € My({0,1}), the standard A-branching function
system has no chain.

Proof. Let f = {fi}¥, be the standard A-branching function system.
Assume that there is a chain C = {m,}22; C N of f by J = (jn)nen €
{1,...,N}%. Denote J, = (j1,...,Jjk) for k > 1. Put z = N(m—1)+jo € C.
By Lemma 7.5, fj, () = Li(x — jo) + N(av — 1) + j1. From this, for each
y € C and k > 1, there are j, € {1,..., N} and oy > 1 such that

() = 3, (y) = Ly (y = (N(ayr — 1) + 1)) + k-
Note #{zx(y) : k € N} = oo. Because z;(y) € C C N for each k¥ > 1 and
Lgiq > Ly > 1 for each k > 1, there is kg € N such that Ly = 1 for each
k> ko Put J = (jn);’f:ko. Then J ~ J. By replacing J and J', we can
assume that z;(y) =y — (N(ayr — 1) + j1) + jyr for £ > 1. In this case,

ayk = @i, (G2) + 0L (@ Gira) = 1) + (g5, Gyk) — 1) (k> 3).
Because oy 1 > ayp > 1 for each £ > 1 and 2z,(y) € C C N for each
k > 1, there is kg > 1 such that ¢, (jx+1) = 1 for each &k > kg. By
replacing J and {j,};2, , we can assume that gj, (jx+1) =1 for each k > 1.
Then ay; = 1 for each £ > 1. In consequence, z,(y) = y — ji + jy for
k > 1. Therefore {zx(y) : k € N} C {y —ji£n:n =0,...,N} and
#{z(y) : k € N} < 2N < oo. This contradicts the choice of y and J.
Therefore there is no chain of f. ([

Theorem 7.8. For A € My({0,1}), if Ja is the A-cyclic index set and
Ja1, Jaco are in Definition 7.1, then the standard A-branching function
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system is decomposed as

P rey P PE

JeTan KeTJa,co

Doo

Proof. Let f be the standard A-branching function system. By The-
orem 2.7 and Lemma 7.7, f is decomposed into only cycles. On the other
hand, any cycle component of f is one of {P(J) : J € J4} by Lemma 7.6.
Therefore f is decomposed as a direct sum of {P(J) : J € Ja} with multi-
plicities. If J € Ja o0, then f has a P(J)®*°-component by Lemma 7.4. If
J € Ja1, then the cycle of f by J is a subset of {1,..., N}. By definition of
Ja, P(J) appears in {1,..., N} at only once. In consequence, the statement
holds. ]

Proof of Theorem 7.3: (i) By Theorem 7.8 and (3.4), the statement holds.

(ii) By (i), the first statement holds immediately. If J = (j1,...,jm) € Ja1,
then j; # j, when i # i'. Therefore, any element in J4,1 is non periodic.
Hence the second statement holds. O

8. Examples

8.1. Examples by naive observation. We compute two permutative rep-
resentations directly. Put matrices A, Ay € M3({0,1}) by
0 0 1 01 1
Al = 1 0 1 N Ag = 1 0 1
1 11 1 1 1
(i) Define a representation (I2(IN), ) of O4, by

T(81)es(n—1)+i = 02,i€4(n—1)+1, T(52)€4(n—1)+i = 01,i€4(n—1)+4 T 02,i€4(n—1)+35

m(s3)en = €4(n—1)+2
forn e N and i = 1,2,3,4. Then
(l2(N), ) ~ P(13).

Proof. Put Dy ={4(n—1)+2:ne N}, Dy ={4(n—1)+1,4(n —
1)+2:n €N}, D3 = N and f = {f1, f2, f3} by 7(si)en = ef,m)
for i =1,2,3 and n € D;. Then f € BFSy4,(N). Note that f;(n) >
nforanyn € X ={ne N:n>3}i=23 filn)=n-1
for n € D(f1), R(f1) C D( ;) for i = 2,3 and R(f1) N D(f1) = 0.
(fao f)(A(n—1)+2) = fo(dln—1)+1) =d(n—1) +4 > 4(n— 1) +2.
(fsofi)(d(n—1)4+2) = f3(4(n—1)+1) =4(4(n — 1)) + 2. Therefore
(fio fi)(n) > n for n € D(f1) N X and i = 2,3. From these, f has
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neither chain nor cycle in X. Therefore f has only cycles in N\ X =
{1,2} and f is cyclic. We see that (fi o f3)(1) = 1. This implies that
m(s183)e1 = e1. Therefore (I3(IN), 7) has one cycle {ej,es}. O
(ii) Define a representation (lo(N x {1,2}),7) of O4, by
m(s1)eni = 02i€n1,

01,i€5(5(n—1)+m—1)+1,2
+02,i (04,m€5(n—1)+2,2 + 05,mE5(n—1)43,2)

7T(S2)es(n—l)er,z'

m(s3)eni = O1,i€5(n—1)44,2 T 02,i€5(n—1)+52

"

fori =1,2, m=1,...,5 and n € N where e,; = eln®e;/ and eln, e
are canonical basis of I3(N) and C?, respectively. Then

(Io(N x {1,2}),7) ~ P(12).

Proof. We see that 7'('(8182)6171 = e1,1 and there is no cycle except X =
{e1,1,e12}. Hence 7 has only a cycle in X. Furthermore {m(s;)e1 :
Je{l,...,N}4} ={eni:n €N, i=1,2}. Therefore the statement
holds. O

i

8.2. Examples of standard representation. We show examples of the

standard representation WgA) of O4 for A € My({0,1}) by Theorem 7.3.
In order to this aim, we use si,...,Sy as canonical generators of O and

define operators ty, to, k1, ko, k3, u1, uo, us, g on lQ(N) by

tien = €a(n—1)4i» Kien = €3(n—1)4is Ui€n = €4(n—1)4i

where {e, : n € N} is the canonical basis of [3(IN). Then the followings
hold:

1
1 |. Then the standard representation (I2(IN), WgAS)
0

0 1

(1) Put A3 = 10
11

of O4, is given by
(As) /.y _ . . (As) /.y _ . .

g U (s1) = ki(t1ks +t2k3), mg 7 (s2) = ka(t1k] + t2k3),

789 (59) = ka(t1k} + tak3).

Then ¢4, in (7.1) is given by
pag 1 {1,2,3} = {1,2,3Fs  wa,(1) =2, 9a,(2) =1, ¢a,(3)=1.

f1’31r0m this, we see that 90?43(1) =1 and Ja, = Jas1 = {(12)}. There-
ore

(1o(N), ")) ~ P(12).

29

)



In fact, WgA3)<8182)€1 = e; is the only one cycle on {e,, : n € N}. This
implies the statement.

1 01
(ii) Put Ay = | 0 1 1 |. The standard representation of Oy, is as
1 11
follows:
7§ (51) = k(0] +0ak5), w5 (s2) = Ra(tik3 + takg), s (s3) = k.

Then ¢4, is given by
PAy - {1>273} - {17273}? 90A4(1> =1, (PA4(2) =2, 90A4(3) = 1.

From this, we see that ¢4,(1) = 1 and ¢4,(2) = 2. Hence Ju,1 =

1),(2)}. These are related that A s1)e; = e; and A s9)es =
S S
es. Therefore

(la(N), m§")) ~ P(1) ® P(2).

Next, we show the decomposition of the standard representation WgA)
of O 4 for every 2 x 2 matrices without proof as follows:

In this way, the standard representation of @4 depends on the form of A.
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We show other examples as follows:

A )

(4) _ "

010 1 W?A)(Sl)—ul(t1u2+t2u4),

010 1 Tg (32)=uz(t1u§+t2u1),

1101 75 (s3) = us(kruf + kau + kzuj),
A * * *

01 11 W%A;(Szx)ZU4(k1u2+k2u3+k3U4),
g ~ P(2).

0101 W(S:)@l):“l(tl“%tw?o’

00 1 1 Wg)<32)=uQ(t1u§+t2uZ),

110 1 || s (ss) = us(kaui + ks + ksuj),
A * * *
rd? ~ P(123).

00 1 1 ng)<sl):“1(t1“§+t2u2),

1011 76 (83) = us(kruf + ko + k),

010 1 15" (s3) = us(trus + touf),
A * * *
rd? ~ P(132).

For N > 4,
r0 1 1 1 1 17 r0 1 1 1 1 17
0011 11 0011 11
000 1 11 000 1 11

N : N . .

A( )_ , Ag ): ’
0000 0 1 0000 --- 01
11 1 1 11 Lo 1 1 1 -~ 1 1|
r0 1 0 0 0 07
1 0 0 0 00 (AN
1111 11 s )~ P(12---N),

N (V)
A = , ) P3N,
AN
111 1 --- 1 1 Wfs*d )N(P(12)@P(N))@OO~
L0000 -~ 0 1]

8.3. Shift representation. We show the shift representation of 04 as an
example of permutative representation which is multiplicity free, and prove
its decomposition formula.
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For A = (aij) S MN({O, 1}), let
XA = {1,...,N}?4o.
Define an A-branching function system f = {f;}¥, on X4 by

(8.1) fi: D(fi) = R(fi);  fi(41,J2,---) = (4,71, J2, - - -),
R(f) ={(v.jo,--) € Xa: i =i}, D(f)= [ R()
Jiaij=1
fori=1,...,N.

The permutative representation (I2(X4),7¢) of O4 associated with f
in (8.1) is called the shift representation of O4.

Proposition 8.1. There is the following irreducible decomposition of la(X 4)

byﬂ'f
LXa)= P H, o P Kk

JE[L,...NT%, Ke[l,...,N|¢

where

Hyj=Lin<{e,:x €Yy} > Kg=Lin<{e,:x€Yg} >,

{ex : © € X4} is the canonical basis of lo(X ), and Y, = {L, eEXyg: L~ L/}
for L € X 4. Furthermore

My~ P(J), K~ P(K).

That is, any irreducible permutative representation appears as a component
of (I2(Xa),m¢) once for all. Specially, (I2(Xa),my) is multiplicity free.

Proof. Let K € X4. Then K is either eventually periodic or not.
Denote X4, by the set of all eventually periodic elements in X4 and

XA,nep =X \ XA,ep-

If K € X4e¢p, then there are Jo € {1,..., N} and J € {1,...,N}%
such that J is non periodic and J = Jy U J*°. Therefore Yg = Y and
Yyo ={JoUJ>® :Jy € {l,..., N}y, JoUJ € {1,...,N}%}. From this,
Xaep = @Je[l,...,N]*A Yjeo, fly,e is a cyclic A-branching function system on
Yjeo and f;(J>°) = J*°. Therefore fl|y,. is P(J). We have the following
decomposition

f|XA,ep = @ f|YJoo ~ @ P(J)
JEM,...NT, JEM,...NT,

Assume that K = (kp)neN € Xanep and z, = (kn, knt1, kngo,...) €
Xypforn > 1. Thenx, € Y and Yi = Un>1{J0U{L'n 2 Jo € {1, e ,N}E, JoU
{kn} € {1,...,N}4}. Then X4 pep = GBKG[L.‘.,N]? Y, flyi is a cyclic A-
branching function system on Yy and {x,}n,en is a chain of f|y,, by K in
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Yk . In consequence,

Axinw= P fve ~ P PE).

Ke[l,..,N]® Ke[l,...,N|%

Because X4 = X4 ¢p L X A pep, we have a cyclic decomposition of f into the

direct sum of {P(J): J € [1,..., N]ﬁ}. From this and (3.4), the statement
holds. g

By Proposition 8.1, we obtain

((Xa),mp)~ D PU).
JE[L,..,N|%
By this and § 6.2, (I2(X4),7y) is just the atomic representation([5]) of O
within the compass of a class of permutative representations.
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