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ABSTRACT. We study certain connections between the quantum invariants of the torus knots T3,2k

and some q-series identities. In particular, we obtain new generalizations of Slater’s identities (83)

and (86).

1. INTRODUCTION

Recent studies reveal an intimate connection between the quantum invariants for 3-manifold and

the modular forms. This remarkable observation originates from Refs. 18,19. In a slightly different

context [26], it was discussed that the generating function of Stoimenow’s upper bound of the

number of the Vassiliev invariant coincides with the half-differential of the Dedekind η-function.

From a viewpoint of the quantum invariant, this generating function happens to coincide with

Kashaev’s invariant [17] for trefoil. This quantum knot invariant was originally defined by use of

the quantum dilogarithm function [10], and is a specific value of the colored Jones polynomial [21].

Motivated by this coincidence, it was clarified [11, 13–15] that Kashaev’s invariant for torus knot

Ts,t and torus link T2,2m respectively coincides with the Eichler integral of the Virasoro character

for the minimal model M(s, t) and that of the ŝu(2)m−2 character.

One of the benefits of the correspondence between the character and the quantum invariant is

that we can find new q-series identities. For example, it is well known that the Virasoro charac-

ter for M(2, 2 m + 1) is related to the Gordon–Andrews identity (generalization of the famous

Rogers–Ramanujan identity). Motivated from an explicit form of Kashaev’s invariant for torus

knot T2,2m+1, we obtained a new q-series which may be regarded as a one-parameter extension of

the Gordon–Andrews identity [13]. A case of m = 1 corresponds to Zagier’s q-series identity [26].

See also Refs. 3, 9, 20, 22 for other generalizations of Zagier’s identity. Therein constructed were

the q-hypergeometric type generating functions of the L-function at the negative integers. Purpose

of this article is to propose a q-series identity which is related to Slater’s identities.
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We define the Santos polynomial [4, 5] by

Sn(q) =
bn/2c∑

k=0

q2k2
[

n
2 k

]
, (1.1a)

Tn(q) =
b(n−1)/2c∑

k=0

q2k(k+1)

[
n

2 k + 1

]
. (1.1b)

Definitions of our notation are summarized in Section 2. These polynomials can also be defined

recursively by
(

Sn+1(q)

Tn+1(q)

)
=

(
1 qn+1

qn 1

) (
Sn(q)

Tn(q)

)
, (1.2)

with an initial condition (
S0(q)

T0(q)

)
=

(
1

0

)
.

By use of the Santos polynomials, we define the formal q-series X (0)(q) and X (1)(q) by

X (0)(q) =
∞∑

n=0

(q)n (Tn(q) + Tn+1(q)) , (1.3a)

X (1)(q) =
∞∑

n=0

(q)n (Sn(q) + Sn+1(q)) . (1.3b)

To state one of our main theorems, we introduce the periodic functions as follows;

n mod 24 5 11 13 19 others

χ
(0)

24 (n) 1 −1 −1 1 0
(1.4a)

n mod 24 1 7 17 23 others

χ
(1)
24 (n) 1 −1 −1 1 0

(1.4b)

Theorem 1. Let X (a)(q) for a = 0, 1 be defined by eqs. (1.3). We have an asymptotic expansion

in z ↘ 0 as

X (0)(e−z) = e25 z/48
∞∑

n=0

t (0)
n

n!

( z

48

)n
, (1.5a)

X (1)(e−z) = ez/48
∞∑

n=0

t (1)
n

n!

( z

48

)n
. (1.5b)
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Here t-series is given in terms of the L-function associated with χ
(a)

24 (n);

t (a)
n =

1

2
(−1)n+1 L(−2 n − 1, χ

(a)

24 )

=
1

2
(−1)n 242n+1

2 n + 2

24∑

k=1

χ
(a)

24 (k) B2n+2(k/24), (1.6)

where Bn(x) is the n-th Bernoulli polynomial.

We note that generating functions of the t-series are written as

sh(3 x) sh(4 x)

sh(12 x)
=

1

2

∞∑

n=0

χ
(0)
24 (n) e−n x =

∞∑

n=0

(−1)n t (0)
n

(2 n + 1)!
x2n+1,

sh(3 x) sh(8 x)

sh(12 x)
=

1

2

∞∑

n=0

χ
(1)
24 (n) e−n x =

∞∑

n=0

(−1)n t (1)
n

(2 n + 1)!
x2n+1.

Some of the t-series are explicitly given as follows;

n 0 1 2 3 4 5 6

t (0)
n 1 119 37201 23181479 24453497761 39286795847639 89443016674567921

t (1)
n 2 142 38882 23439022 24521135042 39313934084302 89458458867741602

t (2)
n 2 184 53792 32965504 34630287872 55579108685824 126502446478794752

See eq. (4.8) for definition of the t-series t (2)
n .

This paper is organized as follows. In Section 2 we collect notations and identities of q-series

used in this paper. See e.g. Ref. 1. In Section 3 we prove Theorem 1. In Section 4 we study a

(nearly) modular property of our q-series. We show that X (a)(q) is regarded as the Eichler integral

of the modular form with weight 1/2, which corresponds to the character of the Virasoro minimal

model M(3, 4). We further discuss on a relationship with the quantum knot invariant for the torus

knot T3,4. In Section 5 we show several q-hypergeometric type expression of the character of the

Virasoro minimal model M(3, k).

2. NOTATION AND IDENTITIES

For our later convention, we give a list of notations and useful identities (see, e.g., Ref. 1);
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• q-product and q-binomial coefficient (the Gaussian polynomial),

(a)n = (a; q)n =
n∏

k=1

(1 − a qk−1),

(a1, a2, . . . , ak; q)n = (a1; q)n (a2; q)n · · · (ak; q)n,

[
n
k

]
=
[

n
k

]

q
=





(q)n

(q)k (q)n−k
, for n ≥ k ≥ 0,

0, otherwise,

• q-binomial formula,
∞∑

n=0

(a)n

(q)n
zn =

(a z)∞
(z)∞

, (2.1)

• q-expansion,

(z)n =
n∑

k=0

[
n
k

]
(−z)k qk(k−1)/2, (2.2)

1

(z)n
=

∞∑

k=0

[
n + k − 1

k

]
zk, (2.3)

• the Euler identity (a limit n → ∞ of eq. (2.2)),

∞∑

n=0

qn(n−1)/2

(q)n
zn = (−z)∞, (2.4)

• the Jacobi triple product identity,

∑

k∈Z

(−1)k qk2/2 xk = (q, x−1q
1
2 , x q

1
2 ; q)∞, (2.5)

• the Watson quintuple identity,

∑

k∈Z

qk(3k−1)/2 x3k (1 − x qk) = (q, x, q x−1; q)∞ (q x2, q x−2; q2)∞ (2.6)

We note that the Watson identity can be proved by use of eq. (2.5) (see e.g., Ref 6).

Hereafter we use properties of the L-function associated with the periodic function.

Lemma 2. Let C f (n) be a periodic function with mean value 0 and modulus f . Then asymptotic

expansion in a limit t ↘ 0 is as follows;

∞∑

n=0

n C f (n) e−n2t '
∞∑

k=0

L(−2 k − 1, C f )
(−t)k

k!
, (2.7)
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where L(k, C f ) is the L-function associated with C f (n), and is given by

L(−k, C f ) = −
f k

k + 1

f∑

n=1

C f (n) Bk+1

(
n

f

)
.

Proof. It is a standard result using the Mellin transformation. See, e.g., Ref. 19. �

3. PROOF OF THEOREM 1

We define functions H (a)(x) ≡ H (a)(x; q) by

H (0)(x) =
∞∑

n=0

χ
(0)
24 (n) q

n2−25
48 x

n−5
2 (3.1a)

= 1 − q2 x3 − q3 x4 + q7 x7 + q17 x12 − q25 x15 − q28 x16 + · · · ,

H (1)(x) =
∞∑

n=0

χ
(1)
24 (n) q

n2−1
48 x

n−1
2 (3.1b)

= 1 − q x3 − q6 x8 + q11 x11 + q13 x12 − q20 x15 − q35 x20 + · · · ,

where the periodic function χ
(a)

24 (n) is defined in eq. (1.4). We easily see that these q-series solve

the following q-difference equations;

H (0)(x) = 1 − q2 x3 − q3 x4 H (1)(q x),

H (1)(x) = 1 − q x3 − q6 x8 H (0)(q x).

(3.2)

Proposition 3. Let the functions H (a)(x) be defined by eqs. (3.1). Then for a = 0, 1 we have

H (1−a)(x) =
∞∑

n=0

(x)n+1 x2n

×




b(n−a)/2c∑

k=0

x2k−aq2k(k+a)

[
n

2 k + a

]
+

b(n+1−a)/2c∑

k=0

x2k+1−aq2k(k+a)

[
n + 1

2 k + a

]
 . (3.3)

Proof. We find that the periodic function (1.4) is related to the Dirichlet character

−χ
(0)

24 (n) + χ
(1)

24 (n) =
(

12

n

)
≡ χ12(n),

where we have used the Legendre symbol. We further introduce a q-series H(x; q) as

−q
1
2 x2 H (0)(x) + H (1)(x) =

∞∑

n=0

χ12(n) q
n2−1

48 x
n−1

2

≡ H(x; q
1
2 ). (3.4)
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As the functions H (a)(x) have integral powers of q, the q-hypergeometric expression may be

derived if we know that of H(x; q
1
2 ). Fortunately it is known from Refs. 1, 26 that

H(x; q
1
2 ) =

∞∑

n=0

(x; q
1
2 )n+1 xn. (3.5)

To divide this expression into a sum of H (a)(x), we compute as follows;

∞∑

n=0

(x; q
1
2 )n+1 xn

=
∞∑

n=0

(x)n+1(x q
1
2 )n x2n +

∞∑

n=0

(x)n+1(x q
1
2 )n+1 x2n+1

=
∞∑

n=0

(x)n+1 x2n




n∑

j=0

[
n
j

]
(−1) j x j q j2/2 +

n+1∑

j=0

[
n + 1

j

]
(−1) j x j+1 q j2/2




=
∞∑

n=0

(x)n+1 x2n
b(n+1)/2c∑

k=0

([
n

2 k

]
+ x

[
n + 1

2 k

])
x2k q2k2

− q
1
2 x2

∞∑

n=0

(x)n+1 x2n−1
bn/2c∑

k=0

([
n

2 k + 1

]
+ x

[
n + 1

2 k + 1

])
x2k q2k(k+1).

In the second equality, we have used eq. (2.2). We have separated a sum into even and odd parts

in both the first and the last equalities. This proves a statement of the proposition. �

Using the q-binomial formula (2.1), we can rewrite eq. (3.3) into

H (1−a)(x) = (q x)∞

∞∑

n=0

q2n(n+a)

(x2 q)2n+a
x6n+a−1

+ (1 − x)

∞∑

n=0

((q x)n − (q x)∞) x2n
∑

k≥0

x2k−a q2k(k+a)

([
n

2 k + a

]
+ x

[
n + 1

2 k + a

])
. (3.6)

In a limit x → 1, functions H (a)(x) defined by eqs. (3.1) can be written in an infinite product form

with a help of the Watson quintuple identity (2.6). Combining with a result (3.6) in a limit x → 1,

we recover the following identities.

Corollary 4 (Slater’s identities, (83) and (86) [24]).

(q)∞

∞∑

n=0

q2n(n+1)

(q)2n+1
= (q3, q5, q8; q8)∞ · (q2, q14; q16)∞, (3.7a)

(q)∞

∞∑

n=0

q2n2

(q)2n
= (q, q7, q8; q8)∞ · (q6, q10; q16)∞. (3.7b)
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We obtain the following formulae which come from the next order of x − 1 of eq. (3.6).

Proposition 5. We have the following q-series identities;

1

2

∞∑

n=0

n χ
(0)
24 (n) q

n2−25
48

= (q3, q5, q8; q8)∞ (q2, q14; q16)∞

( ∞∑

k=1

−qk

1 − qk

)
+ (q)∞

∞∑

n=0

q2n(n+1)

(q)2n+1

(
6 n +

2n+1∑

k=1

2 qk

1 − qk

)

−
∞∑

n=0

((q)n − (q)∞) (Tn(q) + Tn+1(q)) , (3.8a)

1

2

∞∑

n=0

n χ
(1)
24 (n) q

n2−1
48

= (q, q7, q8; q8)∞ (q6, q10; q16)∞

(
−1 −

∞∑

k=1

qk

1 − qk

)
+ (q)∞

∞∑

n=0

q2n2

(q)2n

(
6 n +

2n∑

k=1

2 qk

1 − qk

)

−
∞∑

n=0

((q)n − (q)∞) (Sn(q) + Sn+1(q)) . (3.8b)

Proof. We differentiate eq. (3.6) with respect to x , and then substitute x → 1. �

Proof of Theorem 1. We substitute q = e−z for eqs. (3.8). As terms which include infinite product

terms such as (q)∞ vanish in a limit z ↘ 0, we get formal q-series identities;

X (0)(q) = −
1

2

∞∑

n=0

n χ
(0)
24 (n) q

n2−25
48 , (3.9a)

X (1)(q) = −
1

2

∞∑

n=0

n χ
(1)
24 (n) q

n2−1
48 . (3.9b)

Applying Lemma 2, we obtain the statement of Theorem. �

We see that

χ
(0)
24 (n) + χ

(1)
24 (n) =

(
24

n

)
≡ χ24(n),

where we have used the Legendre symbol. Using Zagier’s result, we can see that, when the q-series

X (q) is defined by

X (q) =
∞∑

n=0

(−q
1
2 ; −q

1
2 )n, (3.10)
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we have an asymptotic expansion

X (e−z) = ez/48
∞∑

n=0

tn
n!

( z

48

)n
, (3.11)

where

tn =
1

2
(−1)n+1 L(−2 n − 1, χ24)

= t (0)
n + t (1)

n .

4. MODULARITY AND KNOT INVARIANT

The q-series which we have studied in preceding sections is related to the modular form as

follows. We define

8(τ ) ≡




8(0)(τ )

8(1)(τ )

8(2)(τ )


 =




q
25
48 H (0)(x = 1)

q
1
48 H (1)(x = 1)

η(2 τ )


 . (4.1)

Here q = exp(2 π i τ ) with τ in the upper half plane H, and we have used the Dedekind η-function,

η(τ) = q
1
24 (q)∞ =

∞∑

n=0

χ12(n) q
n2
24 . (4.2)

We can find by use of the Poisson summation formula that the vector 8(τ ) is modular with weight

1/2; the modular S- and T -transformations are respectively written as

8(τ ) =
√

i

τ




1
2

1
2 − 1√

2
1
2

1
2

1√
2

− 1√
2

1√
2

0


 · 8(−1/τ) ≡

√
i

τ
M · 8(−1/τ), (4.3)

8(τ + 1) =




e
25
24 π i

e
1

24 π i

e
1
6 π i


 8(τ ). (4.4)

These modular forms represent the character of the minimal model M(3, 4), i.e., the Ising model

(see, e.g., Refs. 16, 23.).

We consider an asymptotic behavior of X (a)(q) when q is near at the N -th primitive root of

unity. Hereafter we use

ω = e2π i/N .
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We define the Eichler integral of 8(α) for α ∈ Q by

8̃(α) ≡




8̃(0)(α)

8̃(1)(α)

η̃(2 α)


 =




e
25
24 π iα X (0)(e2π iα)

e
1
24 π iα X (1)(e2π iα)

e
1
6 π iα X (2)(e2π iα)


 , (4.5)

where X (0)(q) and X (1)(q) are defined in eqs. (1.3), and

X (2)(q) = 2
∞∑

n=0

(q2; q2)n. (4.6)

One sees that 8̃(α) converges to finite value for α ∈ Q as an infinite sum terminates at finite order

due to (q)n .

As was proved in Ref. 15 (see also Refs. 19,26), we have an asymptotic behavior of the Eichler

integral of the modular form of weight 1/2.

Theorem 6 ( [15]). For N ∈ Z>0, we have an asymptotic expansion in N → ∞ as

8̃(1/N ) + (−i N )
3
2 M · 8̃(−N ) '

∞∑

n=0

tn

n!

( π

24 i N

)n
, (4.7)

where M is the 3 × 3 matrix defined in eq. (4.3). We mean that t-series is

tn =




t (0)
n

t (1)
n

t (2)
n


 ,

where t (0)
n and t (1)

n are given in eq. (1.6), and

t (2)
n = −(−4)n L(−2 n − 1, χ12)

=
1

2
(−1)n 242n+1

2 n + 2

12∑

k=1

χ12(k) B2n+2(k/12). (4.8)

It is noted that the Eichler integrals 8̃(N ) at N ∈ Z in the left hand side of eq. (4.7) are computed

as

8̃(N ) =




e
25
24 π iN

2 e
1
24 π iN

2 e
1
6 π iN


 . (4.9)

Proposition 7 ( [15]). Kashaev’s invariant 〈K〉N for torus knot K = T3,4 (see Fig. 1) is propor-

tional to X (0)(ω);

ω3 X (0)(ω) = 〈T3,4〉N . (4.10)
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FIGURE 1. Torus knots, T3,4 and T3,8.

See also Ref. 12 for a connection with the colored Jones polynomial with generic q, the Alexan-

der polynomial, A-polynomial, for the torus knot.

The quantum invariant such as the colored Jones polynomial was identified with the Chern–

Simons path integral [25]. The asymptotic behavior thereof is known to be related to the classical

topological invariants such as the Reidemeister torsion and the Chern–Simons invariant. Looking

at the nearly modular property (4.7) with eq. (4.10), the limiting value of the Eichler integral (4.9)

at τ → N ∈ Z can be identified with the Chern–Simons invariant of the torus knot T3,4 [15].

5. APPLICATIONS

In our previous paper [15], we have demonstrated that Kashaev’s invariant for the torus knot

Ts,t where s and t are relatively prime positive integers (see e.g. Fig. 1) is regarded as the Eich-

ler integral of the Virasoro character of the minimal model M(s, t). Prop. 7 is for a case of

(s, t) = (3, 4). The Virasoro character chs,t
n,m(τ ) of M(s, t) for an irreducible highest weight with

conformal weight 1s,t
n,m = (nt−ms)2−(s−t)2

4st for 1 ≤ n ≤ s − 1 and 1 ≤ m ≤ t − 1, is known to

be [23]

chs,t
n,m(τ ) =

8
(n,m)
s,t (τ )

η(τ )
. (5.1)

Here we have

8
(n,m)
s,t (τ ) =

∞∑

k=0

χ
(n,m)
2st (k) q

k2
4st , (5.2)

with a periodic function

k mod 2 s t n t − m s n t + m s 2 s t − (n t + m s) 2 s t − (n t − m s) others

χ
(n,m)
2st (k) 1 −1 −1 1 0

The function 8
(n,m)
s,t (τ ) is modular covariant with weight 1/2 [8,16], and spans a (s −1) (t −1)/2-

dimensional space due to a symmetry chs,t
n,m(τ ) = chs,t

s−n,t−m(τ ). Then Kashaev’s invariant 〈K〉N
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for a torus knot K = Ts,t is written in terms of the Eichler integral 8̃
(1,t−1)
s,t (1/N ), which is defined

by the half-differential of the modular form as

8̃
(n,m)
s,t (τ ) = −

1

2

∞∑

k=0

k χ
(n,m)

2st (k) q
k2
4st , (5.3)

where τ ∈ H. The limiting value at τ → 1/N ∈ Q is computed as

8̃
(n,m)
s,t (1/N ) =

s t N

2

2st N∑

k=1

χ
(n,m)
2st (k) e

k2
2st N π i B2

(
k

2 s t N

)
. (5.4)

We consider the q-series identities associated with (the Eichler integral of) the minimal model

M(3, k). As we have discussed in preceding sections, the character of the minimal model M(3, 4)

is related to Slater’s identities, and we can expect that such identities could be constructed. In

fact there are multi-variable generalizations of Slater’s identities due to G. Andrews [2]. These

q-series identities may be interpreted as fermionic formulae for the characters of the Virasoro

algebra. The q-series identities which come from the computation of the quantum invariants of the

corresponding torus knots T3,k are rather messy.

To study q-series identities associated to the character of the minimal model M(s, t), it will be

convenient to define a function [12, 15]

H (n,m)
s,t (x) ≡ H (n,m)

s,t (x; q) =
∞∑

k=0

χ
(n,m)
2st (k) q

k2−(nt−ms)2

4st x
k−|nt−ms|

2 . (5.5)

See that

8
(n,m)
s,t (τ ) = q

(nt−ms)2
4st H (n,m)

s,t (1),

and that H (a)(x) for a = 0, 1 defined in eq. (3.1) is nothing but H (n,m)
s,t (x) with (s, t) = (3, 4)

and (n, m) = (1, 3), (1, 1), respectively. We demonstrate below how our function (5.5) does

work for investigations of the q-hypergeometric type functions associated to the minimal Virasoro

characters. It is noted that linear combinations among characters for minimal Virasoro model was

studied in Ref. 7 in a different method.

5.1 M(3, 2 p)

First we pay attention to a case of (s, t) = (3, 2 k). The periodic function satisfies

χ12(2 k + 3) χ12(n) =
k−1∑

a=0

(−1)a−1 χ
(1,2a+1)
12k (n). (5.6)

Using this identity, we have the following proposition;
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Proposition 8. Let the function H(x; q) be defined by eq. (3.4). We have

χ12(2 k + 3) H(x; q
1
k ) =

k−1∑

a=0

(−1)a−1 q`k(a)x
|2k−6a−3|−1

2 H (1,2a+1)
3,2k (x; q), (5.7)

where

`k(a) =
(k − 3 a − 1)(k − 3 a − 2)

6 k
.

When k = 2p, we see that `k(a) − `k(b) 6∈ Z for all a and b satisfying 0 < a 6= b ≤ 2 k − 1.

Thus we can extract H (1,2a+1)

3,2p+1 (x; q) from above lemma for a case of M(3, 2 p+1) following a

method of Prop. 3.

We take an example M(3, 8). We have

H(x; q
1
4 ) = H (1,3)

3,8 (x) − q
1
4 x2 H (1,1)

3,8 (x) − q
1
2 x3 H (1,5)

3,8 (x) + q
7
4 x6 H (1,7)

3,8 (x), (5.8a)

H (1,2)
3,8 (x) = H (1)(x2; q2), (5.8b)

H (1,6)
3,8 (x) = H (0)(x2; q2), (5.8c)

H (1,4)
3,8 (x) = H(x4; q4). (5.8d)

From a result in Section 3 we already have a q-hypergeometric expression of H (1,a)

3,8 (x) for even

a cases. For odd a cases, we can derive q-hypergeometric functions from eq. (5.8a) by the same

method with previous section. We have

H (1,1)
3,8 (x) = −q− 1

4 x−2 I (1)(x),

H (1,3)
3,8 (x) = I (0)(x),

H (1,5)
3,8 (x) = −q− 1

2 x−3 I (2)(x),

H (1,7)
3,8 (x) = q− 7

4 x−6 I (3)(x).

where

I (a)(x) =
∞∑

k=0

(x)k+1 x4k
∑

1≥ε1≥ε2≥ε3≥0

xε1+ε2+ε3

×
∑

`1,`2,`3≥0
`1+2`2+3`3=a mod 4

(−x)`1+`2+`3 q
`1+2`2+3`3

4




3∏

j=1

[
k + ε j

` j

]
q

1
2 ` j (` j −1)


 .
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5.2 M(3, 5)

We list some formulae concerning H (n,m)
s,t (x) for (s, t) = (3, 5) defined in eq. (5.5). In this case

we have four independent functions (n, m) = (1, 1), (1, 2), (1, 3) and (1, 4), and they satisfy the

following difference equations;

H (1,4)
3,5 (x) = 1 − q2 x3 − q4 x5 · H (1,1)

3,5 (q x),

H (1,3)
3,5 (x) = 1 − q3 x5 − q4 x6 · H (1,2)

3,5 (q x),

H (1,2)
3,5 (x) = 1 − q2 x5 − q6 x9 · H (1,3)

3,5 (q x),

H (1,1)
3,5 (x) = 1 − q x3 − q8 x10 · H (1,4)

3,5 (q x),

We note that

−q
3
4 x

5
2 H (1,4)

3,5 (x) + H (1,1)
3,5 (x) = H (1,3)

3,5 (x
1
2 ; q

1
4 ),

−q
1
4 x

3
2 H (1,3)

3,5 (x) + H (1,2)
3,5 (x) = H (1,1)

3,5 (x
1
2 ; q

1
4 ),

and that the Watson quintuple identity (2.6) proves

H (1,4)

3,5 (1) = (q2, q18; q20)∞ (q4, q6, q10; q10)∞,

H (1,3)
3,5 (1) = (q4, q16; q20)∞ (q3, q7, q10; q10)∞,

H (1,2)
3,5 (1) = (q6, q14; q20)∞ (q2, q8, q10; q10)∞,

H (1,1)
3,5 (1) = (q8, q12; q20)∞ (q, q9, q10; q10)∞.

Though we do not obtain a q-series identity which appeared in Slater’s 130 identities, we obtain

the following formulae.

Proposition 9.

H (1,4)

3,5 (x) =
∞∑

n=0

(−q4 x5; q10)n

(
−q4 x5

)n
− q2 x3

∞∑

n=0

(−q6 x5; q10)n

(
−q6 x5

)n
(5.9)

=
∞∑

n=0

(−q2 x3; q6)n

(
−q2 x3

)n+2c n∑

c=0

q6c2
[

n
c

]

q6

− q4 x5
∞∑

n=0

(−q4 x3; q6)n

(
−q4 x3

)n+2c n∑

c=0

q6c2
[

n
c

]

q6
(5.10)

=
∞∑

n,c=0

(−1)nq
5
2 n(n+1)+5c(c+1)−n−c x5(n+c)

(
1 − q2(n+c+1) x3

) [n
c

]

q5
(5.11)
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H (1,3)
3,5 (x) = −q3 x5

∞∑

n,c=0

(−q x3; q6)n+1

(
−q x3

)n+2c
q6c(c+1)

[
n
c

]

q6

+
∞∑

n,c=0

(−q−1 x3; q6)n+1

(
−q−1 x3

)n+2c
q6c(c+1)

[
n
c

]

q6
(5.12)

=
∞∑

n,c=0

(−1)nq
5
2 n(n+1)+5c(c+1)−2(n+c) x5(n+c)

(
1 − q4(n+c+1) x6

) [n
c

]

q5
(5.13)

H (1,2)
3,5 (x) =

∞∑

n=0

(−q2 x5; q10)n

(
−q2 x5

)n
− q6 x9

∞∑

n=0

(−q8 x5; q10)n

(
−q8 x5

)n
(5.14)

=
∞∑

n,c=0

(−1)nq
5
2 n(n+1)+5c(c+1)−3(n+c) x5(n+c)

(
1 − q6(n+c+1) x9

) [n
c

]

q5
(5.15)

H (1,1)

3,5 (x) = 1 − x−2 + x−2
∞∑

n,c=0

(−1)nq
5
2 n(n+1)+5c(c+1)−4(n+c) x5(n+c)

(
1 − q8(n+c+1) x12

) [n
c

]

q5

(5.16)

= −q x3
∞∑

n=0

(−q x5; q10)n+1

(
−q x5

)n
+

∞∑

n=0

(−q−1 x5; q10)n+1

(
−q−1 x5

)n

(5.17)

Proof. We recall results from Refs. 13, 26;

∞∑

n=0

χ6(n) q
n2−1

24 x
n−1

2 =
∞∑

n=0

(−x)n+1 (−x)n, (5.18)

∞∑

n=0

χ
(0)
10 (n) q

n2−9
40 x

n−3
2 =

∞∑

n=0

(−x)n+1 (−x)n
n∑

c=0

qc(c+1) x2c
[

n
c

]
, (5.19)

∞∑

n=0

χ
(1)
10 (n) q

n2−1
40 x

n−1
2 =

∞∑

n=0

(−x)n+1 (−x)n
n+1∑

c=0

qc2
x2c

[
n + 1

c

]
. (5.20)
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Here the periodic functions are meant to be

n mod 6 1 5 others

χ6(n) 1 −1 0

n mod 10 3 7 others

χ
(0)

10 (n) 1 −1 0

n mod 10 1 9 others

χ
(1)
10 (n) 1 −1 0

Using eq. (5.18), χ
(1,1)

30 (n) = −χ6(
n−3

5 ) + χ6(
n+3

5 ), and χ
(1,2)

30 (n) = −χ6(
n−6

5 ) + χ6(
n+6

5 ),

we obtain eqs. (5.17) and (5.14). Eq. (5.9) also follows in the same manner. Eqs. (5.10)

and (5.12) follow from eqs. (5.19), (5.20), χ
(1,3)
30 (n) = −χ

(0)
10 (n−5

3 ) + χ
(0)
10 (n+5

3 ), and χ
(1,4)
30 (n) =

−χ
(1)
10 (n−10

3 ) + χ
(1)
10 (n+10

3 ).

To prove remaining identities, we use a formula [14],

∞∑

n=0

χ̃6(n) q
n2−4

12 x
n−2

2 =
∞∑

n=0

(−1)n q
1
2 n(n+1)

n∑

c=0

xn+c qc(c+1)

[
n
c

]
, (5.21)

with

n mod 6 2 4 others

χ̃6(n) 1 −1 0

Combining with a fact that χ
(1,5−a)
30 (n) = −χ̃6(

n−3 a
5 )+χ̃6(

n+3 a
5 ) for a = 1, 2, 3, we can complete

the proof. �

We should remark that an identity (5.21) gives

H (1,m)
3,t (x) =





I (m)
t (x), for t − 3 m < 0,

1 − x3m−t + x3m−t I (m)
t (x), for t − 3 m > 0,

(5.22)

where

I (m)
t (x) =

∞∑

n,c=0

(−1)n q
t
2 n(n+1)+tc(c+1)−(t−m)(n+c) x t (n+c)

(
1 − q2(t−m)(c+n+1) x3(t−m)

) [n
c

]

q t
.

Here we have set t > 0 and 1 ≤ m < t such that (3, t) = 1, and H (1,m)
3,t (x = 1) is a (t − 1)-

dimensional representation of the modular group.
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