
Extensions of representations of the CAR algebra to the
Cuntz algebra O2

—the Fock and the infinite wedge—

Katsunori Kawamura
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan

Fermions are expressed by polynomials of canonical genera-
tors of the Cuntz algebra O2 and they generate the U(1)-fixed
point subalgebra A ≡ OU(1)

2 of O2 by the canonical gauge
action. We extend the Fock and the infinite wedge represen-
tations of A to permutative representations of O2. By these
extensions, the boson-fermion correspondence is rewritten by
canonical generators of O2.

1. Introduction

Let A0 be the Clifford algebra generated by fermions an, a∗n, n ∈ N ≡
{1, 2, 3, . . .} which satisfy the canonical anticommutation relations(=CAR):

(1.1) ana∗m + a∗man = δn,mI, a∗na∗m + a∗ma∗n = anam + aman = 0

for n, m ∈ N. A0 always has unique C∗-norm ‖ · ‖ and the completion
A ≡ A0 with respect to ‖ · ‖ is called the CAR algebra in theory of operator
algebras([6]). In [1, 2, 3, 4], we construct several polynomial embeddings of
A into the Cuntz algebrasON . For example, if s1, s2 are canonical generators
of O2, that is, they satisfy

(1.2) s∗i sj = δijI (i, j = 1, 2), s1s
∗
1 + s2s

∗
2 = I,

then

(1.3) a1 ≡ s1s
∗
2, an ≡

∑

J∈{1,2}n−1

(−1)n2(J)sJs1s
∗
2s
∗
J (n ≥ 2)

satisfy (1.1) where n2(J) ≡ ∑k
l=1(jl−1) and sJ = sj1 · · · sjk

, sJ∗ = s∗jk
· · · s∗j1

for J = (j1, . . . , jk), and C∗< {an ∈ O2 : n ∈ N} > coincides with a fixed-
point subalgebra OU(1)

2 of O2 by the canonical gauge action. Put a linear
map ζ on O2 by

(1.4) ζ(x) ≡ s1xs∗1 − s2xs∗2 (x ∈ O2).
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Then an = ζ(an−1) for each n ≥ 2. In this sense, {an}n∈N in (1.3) is called
the recursive fermion system(=RFS) in O2.

In this paper, we extend the Fock and the infinite wedge representations([12,
13]) of A to permutative representations of O2 under identification of A as
OU(1)

2 ⊂ O2 by (1.3). At first, we give our main theorem for abstract for-
mulations of representations of A.

Theorem 1.1. (i) Let (HF , πF ) be the Fock representation of A, that is,
(HF , πF ) is a cyclic representation with a cyclic vector Ω ∈ HF such
that

πF (an)Ω = 0 ( ∀n ∈ N).

Then (HF , πF ) is extended to an irreducible representation (HF , π̃F )
of O2 defined by

π̃F (s1) ≡ L, π̃F (s2) ≡ π(a∗1) · L
where L is the one-sided shift operator on HF defined by

LΩ ≡ Ω, LπF (a∗n1
· · · a∗nk

)Ω ≡ πF (a∗n1+1 · · · a∗nk+1)Ω

for each n1, . . . , nk ∈ N and k ∈ N.
(ii) Let (Λ

∞
2 V, π∞,+) be the infinite wedge representation of A, that is,

(Λ
∞
2 V, π∞,+) is a cyclic representation with a cyclic vector |vac>+ ∈

Λ
∞
2 V such that

ψ−k|vac>+ = ψ∗k|vac>+ = 0 ( ∀k ∈ Z + 1
2 , k > 0)

where

(1.5) ψk ≡ π∞,+(a2k+1), ψ−k ≡ π∞,+(a2k) (k ∈ Z + 1
2 , k > 0)

and Z + 1
2 ≡ {n + 1/2 : n ∈ Z}. Then (Λ

∞
2 V, π∞,+) is extended to an

irreducible representation (Λ
∞
2 V ⊕ Λ

∞
2 V ∗, Π) of O2 which satisfies

Π(s1s2)|vac>+ = |vac>+.

Both representations (H, π̃F ) and (Λ
∞
2 V ⊕ Λ

∞
2 V ∗, Π) of O2 in Theorem

1.1 are permutative representations([5, 8, 9]) and they are not equivalent
each other. Well-known Fock and infinite wedge representations are just
realizations of those in Theorem 1.1. The extension for a concrete infinite
wedge is given in § 4.

On the other hand, the boson-fermion correspondence on the infinite
wedge representation is given by

(1.6) αn =
∑

k∈Z+ 1
2

ψk−nψ∗k (n ∈ Z \ {0}).
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{an}n∈Z satisfies α−n = α∗n, αnαm − αmαn = n · δn,−mI. By identifying si

and Π(si) in Theorem 1.1 (ii) and combining (1.3) and (1.5), we have



ψk =
∑

J∈{1,2}2k

(−1)n2(J)sJs1s
∗
2s
∗
J

ψ−k =
∑

J∈{1,2}2k−1

(−1)n2(J)sJs1s
∗
2s
∗
J

(k ∈ Z + 1
2 , k > 0).

From these and (1.6), we have a direct expression of bosons by canonical
generators of O2 as follows:

(1.7) αn =
∑

l∈N

ρ2l−2(Xn) + Bn (n ≥ 1)

where

(1.8) Xn ≡ ρ(s1s
∗
2ζ

2n(s2s
∗
1)) + ζ2n(s1s

∗
2)s2s

∗
1 (n ≥ 1),

(1.9) B1 ≡ −s1s2s
∗
1s
∗
2, Bn ≡ ρ(B∗

n−1)− s1ζ
2n−2(s2s

∗
1)s

∗
2 (n ≥ 2),

ζ is in (1.4) and ρ is the canonical endomorphism of O2, that is, ρ(x) ≡
s1xs∗1 + s2xs∗2 for x ∈ O2. Furthermore α∗n|vac>+ = B∗

n|vac>+ for each
n ≥ 1.

In § 2, we review representations of A and O2 and the RFS. In § 3, we
introduce a branching function system on the space of Maya diagrams and
review the infinite wedge space and its dual space. In § 4, we show extensions
of the Fock and the infinite wedge representations to O2. A relation between
a branching law of a permutative representation of O2 and the extension of
the infinite wedge is concretely illustrated.

2. The recursive fermion system and permutative
representations of O2

Both O2 and the CAR algebra

CAR ≡ C∗< {an : n ∈ N} >

(= A in § 1) are simple, infinite dimensional, noncommutative C∗-algebras([6,
7]). Remark that a∗n ∈ CAR for each n ∈ N by definition of C∗-algebra.
Unital ∗-homomorphisms (specially, unital ∗-representations) from these al-
gebras to other algebras are always faithful. Algebras which are generated
by generators s1, s2 in (1.2) and an, n ∈ N in (1.1) are unique up to ∗-
isomorphisms, respectively. Therefore their representations are determined
by only operators on a Hilbert space, which satisfy relations of their gener-
ators without ambiguity. In this paper, a representation and an embedding
always mean a unital ∗-representation and a unital ∗-embedding, respec-
tively.
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2.1. Representations of CAR and the RFS. We review representations
of CAR in theory of operator algebras in [6].

Definition 2.1. Let (H, π) be a representation of CAR.
(i) (H, π) is the (abstract)Fock representation of CAR if there is a cyclic

unit vector Ω ∈ H such that π(an)Ω = 0 for each n ∈ N. Ω is called
the vacuum of (H, π). We denote (H, π) by HFock simply.

(ii) (H, π) is P [12] if there is a cyclic unit vector Ω ∈ H such that
π(a2n−1)Ω = π(a∗2n)Ω = 0 (∀n ∈ N).

(iii) (H, π) is P [21] if there is a cyclic unit vector Ω ∈ H such that
π(a∗2n−1)Ω = π(a2n)Ω = 0 (∀n ∈ N).

For consistency with after statements, any Ω in the above is normalized.
HFock, P [12], P [21] appear in [5] as components of irreducible decomposition
of permutative representation of O2, which are called “atom”. This fact is
explained in Proposition 2.6.

Proposition 2.2. All of HFock, P [12], P [21] are unique up to unitary equiv-
alences and irreducible. Any two of HFock, P [12], P [21] are not unitarily
equivalent.

Proof. See (5.18) in [2], and [5]. In Appendix A, their inequivalences
are shown. ¤

By Proposition 2.2, symbols HFock, P [12] and P [21] make sense as equiva-
lence classes of representations. Since fermions are often treated as operators
on a concrete Hilbert space, any representation which is different with the
Fock representation in only permutation of creations and annihilations and
their phase factors, are called the Fock representation, too in such situation.
In this paper, we do not call such representation by the Fock representation.

We review a concrete example: Put H ≡ l2(N) and the completely
antisymmetric Fock space F−(H) ≡ CΩ ⊕ ⊕∞

k=1 H∧k, H∧k ≡ P
(k)
− H⊗k

where P
(k)
− is the antisymmetrizer on H⊗k defined by P

(k)
− (v1 ⊗ · · · ⊗ vk) ≡

(
√

k!)−1/2
∑

σ∈Sk
sgn(σ)·vσ(1)⊗· · ·⊗vσ(k) for k ≥ 1. We denote v1∧· · ·∧vk =

P
(k)
− (v1⊗· · ·⊗vk). We see vσ(1)∧· · ·∧vσ(k) = sign(σ)(v1⊗· · ·⊗vk) for each

σ ∈ Sk. For f ∈ H, define A∗(f)Ω ≡ f, A∗(f)v ≡ f ∧ v for f ∈ H, v ∈
H∧n, n ≥ 1. A(f) is defined by the adjoint operator of A∗(f) on F−(H).
We see that A(f)Ω = 0 for each f ∈ H. Then A(f)A∗(g) + A∗(g)A(f) =<
f |g > I for each f, g ∈ H. For the canonical basis {en}n∈N of H = l2(N),
put πF (an) ≡ A(en) for n ∈ N. Then (F−(H), πF ) is a representation of
CAR. (F−(H), πF ) is the (concrete)Fock representation.

Let s1, s2 be canonical generators of O2. Define an embedding

(2.1) ϕS : CAR ↪→ O2; ϕS(an) ≡ ζn−1(s1s
∗
2) (n ≥ 1)
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where ζ is in (1.4). For example, ϕS(a1) = s1s
∗
2, ϕS(a2) = s1s1s

∗
2s
∗
1 −

s2s1s
∗
2s
∗
2. We call ϕS by the standard embedding of CAR into O2. C∗<

{ϕS(an)}n∈N >= OU(1)
2 = {x ∈ O2 : ∀z ∈ U(1), γz(x) = x} ∼= UHF2 where

γ is the canonical U(1)-action of O2, γz(si) ≡ zsi for z ∈ U(1) ≡ {z ∈ C :
|z| = 1} and i = 1, 2. By identifying an and ϕS(an), an’s coincide with those
in (1.3) and we have the following intertwining relations:

Lemma 2.3. For n ≥ 1,

s1an = an+1s1, s1a
∗
n = a∗n+1s1, s2an = −an+1s2, s2a

∗
n = −a∗n+1s2,

s∗1an+1 = ans∗1, s∗1a
∗
n+1 = a∗ns∗1, s∗2an+1 = −ans∗2, s∗2a

∗
n+1 = −a∗ns∗2.

2.2. Permutative representations of O2 and their branching laws.
Permutative representations of the Cuntz algebras are well-studied([5, 8, 9]).
We introduce two permutative representations of O2 according to [10].

Definition 2.4. A representation (H, π) of O2 is P (1)(resp. P (12)) if there
is a cyclic unit vector Ω ∈ H such that π(s1)Ω = Ω(resp. π(s1s2)Ω = Ω).
We call Ω by the GP vector of (H, π).

Both P (1) and P (12) exist uniquely up to unitary equivalences, and they
are irreducible and not unitarily equivalent each other.

Assume that (H, π) is P (12) of O2 with the GP vector Ω and α is an
automorphism of O2 defined by α(s1) ≡ s2, α(s2) ≡ s1. Define an operator
U on H by

(2.2) UΩ ≡ π(s2)Ω, Uπ(sJ)Ω ≡ π(α(sJ)s2)Ω (J ∈ {1, 2}k, k ≥ 1).

Then U is a unitary which satisfies U2 = I and AdU ◦ π = π ◦ α. In con-
sequence, (H, π, U) is a covariant representation of a C∗-dynamical system
(O2, α,Z2).

Example 2.5. (i) Define a representation (l2(N), πS) of O2 by

πS(s1)en ≡ e2n−1, πS(s2)en ≡ e2n (n ∈ N).

Then (l2(N), πS) is P (1). We call (l2(N), πS) by the standard repre-
sentation of O2.

(ii) Define a representation (l2(N), π12) of O2 by

π12(s1)e2n−1 ≡ e4n−1, π12(s1)e2n ≡ e4n−3, π12(s2)en ≡ e2n (n ∈ N).

The action of s1, s2 on the canonical basis of l2(N) is illustrated as
follows:
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e3 e4

e7 e8

e6 e5

π12(s2)π12(s1)

π12(s1) π12(s2)
π12(s2) π12(s1)

�
���

@
@@I

�
�
�
�
���

@
@@I

�
���

A
A
A
A
AAK

e1 e2

R

I

π12(s2)

π12(s1)

This system looks like the Fock representation with two vacuums e1

and e2. This diagram appears in § 3 and § 4 again. (l2(N), π12) is
P (12). Remark that π12(s1s2)e1 = e1 is expressed as a cycle in the
above. For this type example, see [11].

By ϕS in (2.1), we identify CAR and a subalgebra ϕS(CAR) = OU(1)
2 ⊂

O2. For a representation (H, π) of O2, we have the restriction (H, π|CAR)
of (H, π) on CAR.

Proposition 2.6. ([2]) The following branching laws hold:

P (1)|CAR = HFock, P (12)|CAR = P [12]⊕ P [21].

Specially, all of these are irreducible decompositions.

We consider the branching of P (12) on CAR more.

Lemma 2.7. Let (H, π) be P (12) of O2 with the GP vector Ω1 ≡ Ω and put
Ω2 ≡ π(s2)Ω1. Then we have the followings:

π(a2k−1)Ω1 = 0, π(a2k)Ω1 = (−1)k−1π(s(12)k−1s1s1)Ω1,

π(a∗2k−1)Ω1 = (−1)k−1π(s(12)k−1s2s2)Ω1, π(a∗2k)Ω1 = 0,

π(a2k−1)Ω2 = (−1)k−1π(s(21)k−1s1)Ω1, π(a2k)Ω2 = 0,

π(a∗2k−1)Ω2 = 0, π(a∗2k)Ω2 = (−1)kπ(s2s(12)k−1s2s2)Ω1

for each k ∈ N.

Proof. By π(ζ(x)s2)Ω1 = −π(s2x)Ω1 for any x ∈ O2, statements
hold. ¤
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Let V12 ≡ π(CAR)Ω1, V21 ≡ π(CAR)Ω2. Then H = V12 ⊕ V21 and we see
that

V12 V21

vacuum Ω1 Ω2

creation a∗2k−1, a2k a2k−1, a∗2k
annihilation a2k−1, a∗2k a∗2k−1, a2k

where k ∈ N. Specially,

(2.3)





π(a1)Ω2 = π(s1)Ω1, π(a2)Ω1 = π(s1s1)Ω1,

π(a∗1)Ω1 = π(s2)Ω2, π(a∗2)Ω2 = −π(s2s2)Ω2.

If α is the Z2-action onO2 and an is the RFS inO2, then α(an) = (−1)n−1a∗n.
Hence U in (2.2) satisfies

UΩ1 = Ω2, UΩ2 = Ω1, Uπ(aKa∗L)Ω1 = (−1)|K|1+|L|1π(a∗KaL)Ω2

where aK ≡ ak1 · · · akn , |K|1 ≡
∑n

i=1(ki − 1) for K = {k1, . . . , kn} ⊂ N.
Hence UV12 = V21.

Example 2.8. (i) In Example 2.5 (i), πS ◦ ϕS is HFock with the vacuum
e1. See [1] for more detail.

(ii) In Example 2.5 (ii), we consider π12 ◦ ϕS . Then (l2(2N− 1), π12 ◦ ϕS)
is P [12] and (l2(2N), π12 ◦ ϕS) is P [21]. If we identify an and (π12 ◦
ϕS)(an), then

a2n−1e1 = a∗2ne1 = a2ne2 = a∗2n−1e2 = 0,

a2ne1 = (−1)n−1e4n−1·6+1, a∗2n−1e1 = (−1)n−1e4n−1·3+1,

a2n−1e2 = (−1)n−1e4n−1·3+2, a∗2ne2 = (−1)ne4n−1·6+2

for each n ∈ N. These statements are shown by using (π12(s1s2))men =
e4m(n−1)+1 for each m,n ∈ N. Specially, when n2 > n1,

a2n1a2n2e1 = (−1)n2−1e3·(22n2−1+22n1−1)+1.

3. A branching function system on the infinite wedge

We review a representation of the fermion algebra which is called the infinite
wedge space([12, 13]) according to notation in [13]. In order to extend this
representation to O2, we introduce the dual infinite wedge space at once and
a branching function system on them.

3.1. Maya diagram. Denote Z + 1
2 ≡ {n + 1

2 : n ∈ Z}. Put

Z+/2 ≡ {n + 1/2 : n ∈ Z, n ≥ 0}, Z−/2 ≡ {n− 1/2 : n ∈ Z, n ≤ 0}.
For a subset S ⊂ Z + 1

2 , define ∆±(S) ⊂ Z + 1
2 by

(3.1) ∆±(S) ≡ (S \ Z∓/2) ∪ (Z∓/2 \ S).

Remark the sign of both sides.
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Definition 3.1. An element in M± ≡ {S ⊂ Z + 1
2 : #∆±(S) < ∞} is

called a Maya diagram. Specially, Z∓/2 ∈M± is called the vacuum in M±.

We see that M+ ∩M− = ∅ and M± = {−S : S ∈M∓} where −S ≡ {−k :
k ∈ S}. There are maxS for any S ∈ M+ and minS for any S ∈ M−,
and #S = ∞ for any S ∈ M±. Therefore we can always parameterize as
follows: S = {ti : i ∈ N} such that ti > ti+1 for i ≥ 1 when S ∈ M+, and
S = {ti : i ∈ N} such that ti < ti+1 for i ≥ 1 when S ∈M−.

We illustrate S ∈ M± by a two-sided infinite sequence consisting of
symbols ◦ and • along the lattice Z + 1

2 as follows: For S ∈ M±, put ◦ at
k ∈ Z + 1

2 when k ∈ S, and put • at k ∈ Z + 1
2 when k 6∈ S. For example, if

{−5/2,−1/2, 3/2, 7/2} ⊂ S and {−7/2,−3/2, 1/2, 5/2} ∩ S = ∅, then

· · · −7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2 · · ·
· · · • ◦ • ◦ • ◦ • ◦ · · ·

By this illustration, M± are the following sets:

M+ = {· · · ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ • • · · · }, M− = {· · · • • ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ · · · }
where ∗ ∗ ∗ ∗ ∗∗ is taken any finite sequence consisting of ◦ and •. Specially,

vacuum Z−/2 ∈M+ · · · ◦ ◦ ◦ ◦ • • • • · · ·
dual vacuum Z+/2 ∈M− · · · • • • • ◦ ◦ ◦ ◦ · · ·

3.2. A branching function system on the space of Maya diagrams.
Put the space of all Maya diagrams

M≡M+ ∪M−.

We give a branching function system on M. Put S± ≡ S ∩ Z±/2, S+1 ≡
{k + 1 : k ∈ S} and S±,+1 ≡ (S±)+1. For S ∈M, define

(3.2) g1(S) ≡ −(S+,+1 ∪ S− ∪ {1/2}), g2(S) ≡ −(S+,+1 ∪ S−).

Then g = {g1, g2} is a branching function system on M, that is, g1 and g2

are injective maps on M, g1(M) ∩ g2(M) = ∅ and g1(M) ∪ g2(M) = M.
Furthermore g1(M) = {S ∈ M : −1/2 ∈ S}, g2(M) = {S ∈ M : −1/2 6∈
S},

g−1
1 (S) = −{(S− \ {−1/2})+1 ∪ S+}, g−1

2 (S) = −(S−,+1 ∪ S+).

If θ(S) ≡ Z + 1
2 \ S, then θ2 = id, θ(M±) = M∓, θ(Z±/2) = Z∓/2 and

g2 = θ ◦ g1 ◦ θ.

Lemma 3.2. Denote S±n ≡ {k ± n : k ∈ S}, S±,+n ≡ (S±)+n. Then the
followings hold:

(i) (g1 ◦ g2)n(S) = S−,−n ∪S+,+n ∪{−1/2, . . . ,−(n− 1)− 1/2} for n ∈ N.
(ii) (g1 ◦ g2)−n(S) = (S−,+n)− ∪ S+,−n for n ∈ N.
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(iii) Put hn(S) ≡ (gn−1
12 ◦ g1 ◦ g−1

2 ◦ (gn−1
12 )−1)(S) and kn(S) ≡ (gn−1

12 ◦ g1 ◦
g1 ◦ (g−1

12 )n)(S) for n ∈ N. Then

hn(S) = S ∪ {−(n− 1)− 1/2}, kn(S) = S ∪ {n− 1 + 1/2} (n ∈ N).

We illustrate g by Maya diagrams:

S g1(S) g2(S)
Z−/2 Z+/2 ∪ {−1/2} Z+/2

Z+/2 Z−/2 Z−/2 \ {−1/2}
Z+/2 ∪ {−1/2} Z−/2 ∪ {1/2} (Z−/2 \ {−1/2}) ∪ {1/2}
Z−/2 \ {−1/2} (Z+/2 \ {1/2}) ∪ {−1/2} Z+/2 \ {1/2}

...
...

...

Z+/2 ∪ {−1/2} Z−/2 \ {−1/2}

Z−/2 ∪ {1/2} Z+/2 \ {1/2}
(Z−/2 \ {−1/2}) ∪ {1/2} (Z+/2 \ {1/2}) ∪ {−1/2}

g2g1

g1 g2

g2 g1

t t d d d d d d t t t t

t t t t d dd d d d t t

d d t d t t t t d t d d

�
���

@
@@I

�
�
�
�
���

@
@@I

�
���

A
A
A
A
AAK

d d d t t t d d dt t t

R

I

g2

g1

Z−/2 Z+/2


◦ (k ∈ S)

• (k 6∈ S)

3.3. The infinite wedge representation of CAR and its dual. We
introduce the infinite wedge space by a Hilbert space of Maya diagrams.
For a set Λ, l2(Λ) is a complex Hilbert space with a complete orthonormal
basis {eλ}λ∈Λ and dim l2(Λ) = #Λ.

Definition 3.3. For M± in Definition 3.3,

Λ
∞
2 V # ≡ l2(M), Λ

∞
2 V ≡ l2(M+), Λ

∞
2 V ∗ ≡ l2(M−)

are called the bi-infinite wedge space, the infinite wedge space and the dual
infinite wedge space, respectively.

We see that Λ
∞
2 V # = Λ

∞
2 V ⊕ Λ

∞
2 V ∗. By definition, Λ

∞
2 V #, Λ

∞
2 V and

Λ
∞
2 V ∗ have canonical basis {eS : S ∈ M}, {eS : S ∈ M+} and {eS : S ∈

M−}, respectively. Usually, the symbol Λ
∞
2 V means a subspace of l2(M+)
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consisting of finite linear combinations of {eS : S ∈ M+}([12, 13]). We
denote

|vac>± ≡ eZ∓/2
.

Since there are maxS for any S ∈ M+ and minS for any S ∈ M−, and
#S = ∞ for any S ∈M±, we can denote

t1 ∧ t2 ∧ · · · = eS when S = {ti : ∀i ∈ N, ti > ti+1} ∈ M+,

t1 ∧ t2 ∧ · · · = eS when S = {ti : ∀i ∈ N, ti < ti+1} ∈ M−.

Then we see that

|vac>+ = (−1
2) ∧ (−3

2) ∧ (−5
2) ∧ · · · , |vac>− = 1

2 ∧ 3
2 ∧ 5

2 ∧ · · · .
For a permutation σ ∈ Sk k ≥ 2, define

tσ(1) ∧ · · · · · · ∧ tσ(k) ∧ tk+1 ∧ · · · ≡ sgn(σ) · t1 ∧ · · · ∧ tk ∧ tk+1 ∧ · · · .

By these definitions, “∧” seems the exterior product of infinite vectors.
Define a family {ψk}k∈Z+ 1

2
of operators on Λ

∞
2 V # by

ψkeS ≡




(−1)dS(k) · eS∪{k} (k 6∈ S),

0 (otherwise)
(S ∈M)

where dS(k) ≡ min{#{x ∈ S : x > k}, #{x ∈ S : x < k}}. We simply
denote

ψkeS = (−1)dS(k) · χSc(k) · eS∪{k}
where χSc is the characteristic function on Sc ≡ (Z + 1

2) \ S. We can easily
check that the definition of ψk coincides with the following ordinary defini-
tion:

ψkv = k ∧ v (v ∈ Λ
∞
2 V #, k ∈ Z + 1

2).

Lemma 3.4. (i) The adjoint ψ∗k of ψk is given by

ψ∗keS = (−1)dS\{k}(k) · χS(k) · eS\{k} (k ∈ Z + 1
2 , S ∈M).

(ii) ψkψ
∗
keS = χS(k) · eS for k ∈ Z + 1

2 and S ∈M.
(iii) ψkψ

∗
l +ψ∗l ψk = δklI for k, l ∈ Z + 1

2 and other anticommutators vanish.

We see that
ψ−k|vac>+ = ψ∗k|vac>+ = 0,

ψk|vac>+ = k ∧ |vac>+, ψ∗−k|vac>+ = (−1)k− 1
2 · eZ−/2\{−k}

for k ∈ Z + 1
2 , k > 0. In the same way, we see that

Λ
∞
2 V Λ

∞
2 V ∗

vacuum |vac>+ |vac>−
creation ψ∗−k, ψk ψ−k, ψ∗k

annihilation ψ−k, ψ∗k ψ∗−k, ψk

10



where k ∈ Z + 1
2 , k > 0.

Definition 3.5. A representation (Λ
∞
2 V #, π∞) of CAR defined by

(3.3) π∞(a2n−1) ≡ ψ−n+1/2, π∞(a2n) ≡ ψn−1/2 (n ∈ N)

is called the bi-infinite wedge representation of CAR.

On the other hand,

(3.4) ψk = π∞(a2k+1), ψ−k = π∞(a2k) (k ∈ Z + 1
2 , k > 0).

Proposition 3.6. (i) The following irreducible decomposition of repre-
sentations of CAR holds:

Λ
∞
2 V # = Λ

∞
2 V ⊕ Λ

∞
2 V ∗.

(ii) If we denote

π∞,+ ≡ π∞|Λ∞2 V
, π∞,− ≡ π∞|Λ∞2 V ∗ ,

then (Λ
∞
2 V, π∞,+) is P [12] and (Λ

∞
2 V ∗, π∞,−) is P [21].

(Λ
∞
2 V, π∞,+) and (Λ

∞
2 V ∗, π∞,−) are called the infinite wedge representation

and the dual-infinite wedge representation of CAR, respectively.

4. Standard extensions of representations of CAR

In order to show extension theorems, we prepare a notion, “standard exten-
sion” of a representation of CAR to O2 as follows:

Definition 4.1. Let ϕS be the standard embedding of CAR into O2 in (2.1).
For a representation (H, π) of CAR, (H̃, π̃) is the standard extension of
(H, π) to O2 if H is a closed subspace of H̃ such that

(4.1) (π̃ ◦ ϕS)|H = π.
4.1. Standard extension of the Fock representation.

Theorem 4.2. Let (H, π) be the Fock representation of CAR with the vac-
uum Ω in Definition 2.1. Put two operators π̃(s1), π̃(s2) on H by

π̃(s1)Ω ≡ Ω, π̃(s1)π(a∗n1
· · · a∗nk

)Ω ≡ π(a∗n1+1 · · · a∗nk+1)Ω,

π̃(s2)Ω ≡ π(a∗1)Ω, π̃(s2)π(a∗n1
· · · a∗nk

)Ω ≡ π(a∗1a
∗
n1+1 · · · a∗nk+1)Ω

for n1 < n2 < · · · < nk, nj ∈ N, j = 1, . . . , k, k ≥ 1. Then the followings
hold:

(i) (H, π̃) is a representation of O2.
(ii) π̃ ◦ ϕS = π.
(iii) (H, π̃) is P (1) with the GP vector Ω.

This proof is given by direct computation and Lemma 2.3. For more detail,
see § 3.3 in [1]. Clearly, (H̃ ≡ H, π̃) in Theorem 4.2 is the standard extension
of the Fock representation. Theorem 1.1 (i) about an operator L follows from
Theorem 4.2 as another expression of this extension.

11



4.2. Standard extension of the infinite wedge. For g = {g1, g2} in
(3.2), define a representation (Λ

∞
2 V #, Π) of O2 by

Π(s1)eS ≡ (−1)d+(S)eg1(S), Π(s2)eS ≡ (−1)d+(S)eg2(S) (S ∈M+),

Π(s1)eS ≡ (−1)d
′
−(S)eg1(S), Π(s2)eS ≡ (−1)d−(S)eg2(S) (S ∈M−)

where d+(S) ≡ #(S ∩ Z+/2) + #(Z−/2 \ S) and d
′
−(S) ≡ #(Z+/2 \ S),

d−(S) ≡ #(Z+/2 \ S) + #(S ∩ Z−/2).

Lemma 4.3. When K = {k1, . . . , kn} and L = {l1, . . . , lm} ⊂ Z+/2 satisfy
k1 > · · · > kn and l1 < · · · < lm,

Π(s1)|vac>+ = ψ−1/2|vac>− = eZ+/2∪{−1/2} Π(s2)|vac>+ = |vac>−,

Π(s1)|vac>− = |vac>+, Π(s2)|vac>− = ψ∗−1/2|vac>+ = eZ−/2\{−1/2}.

Π(s1)eZ−/2∪K\(−L) = (−1)n+meZ+/2∪(−K∗
+1)\L,

Π(s2)eZ−/2∪K\(−L) = (−1)n+meZ+/2∪(−K+1)\L,

Π(s1)eZ+/2∪(−K)\L = (−1)meZ−/2∪K\(−L+1),

Π(s2)eZ+/2∪(−K)\L = (−1)m+neZ−/2∪K\(−L∗+1)

where K+1 ≡ {k + 1 : k ∈ K} and K∗
+1 ≡ K+1 ∪ {1/2}.

Proposition 4.4. (i) (Λ
∞
2 V #, Π) is P (12).

(ii) If π∞, π∞,± are in Proposition 3.6, then Π ◦ ϕS = π∞. Specially,

(Λ
∞
2 V, π∞,+) = (Λ

∞
2 V, (Π ◦ ϕS)|

Λ
∞
2 V

) ∼ P [12],

(Λ
∞
2 V ∗, π∞,−) = (Λ

∞
2 V ∗, (Π ◦ ϕS)|

Λ
∞
2 V ∗) ∼ P [21].

Proof. (i) By Lemma 4.3, Π(s1s2)|vac>+ = |vac>+. By definition of
g1, g2, (Λ

∞
2 V #, Π) is P (12).

(ii) Identify ϕS(an) and an for each n ∈ N. By Lemma 3.2 and Lemma 4.3,
we can check the followings:

Π(a2n−1)|vac>+ = Π(a2n)|vac>− = Π(a∗2n)|vac>+ = Π(a2n−1)∗|vac>− = 0,

Π(a2n)|vac>+ = ψn−1/2|vac>+, Π(a2n−1)|vac>− = ψ−n+1/2|vac>−,

Π(a∗2n−1)|vac>+ = ψ∗−n+1/2|vac>+, Π(a∗2n)|vac>− = ψ∗n−1/2|vac>−

for each n ∈ N. By Lemma 4.3, Π(an) = π∞(an) for each n ∈ N. ¤

The branching law Π|CAR = π∞,+ ⊕ π∞,− is illustrated by Maya diagrams
as follows:
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We try to interpret this branching law from a physical standpoint. Before
the symmetry breaking of O2 to CAR, the vacuum and the dual vacuum
are coupled as a cycle: |vac>+

s2→ |vac>−
s1→ |vac>+. After the symmetry

breaking, they are decomposed into two independent vacua of fermions. A
Z2-symmetry between Λ

∞
2 V and Λ

∞
2 V ∗ are just a unitary U in (2.2) on

Λ
∞
2 V # which satisfies Us1U

∗ = s2.

4.3. Boson-fermion correspondence described by O2. By using the
standard extension of the infinite wedge, we consider correspondence among
boson, fermion and generators of the Cuntz algebra O2. Under identification
of Π(si) and si for i = 1, 2 in Proposition 4.4, we have the followings:

ψk = ζ2k(s1s
∗
2), ψ−k = ζ2k−1(s1s

∗
2) (k ∈ Z + 1

2 , k > 0)

where ζ is in (1.4). From this, we have the following recurrence formulae:

Proposition 4.5.
ψ 1

2
= ζ(s1s

∗
2), ψ− 1

2
= s1s

∗
2,

ψk+1 = ζ2(ψk), ψ−k−1 = ζ2(ψ−k) (k ∈ Z + 1
2 , k > 0).

Intertwining relations are given as follows:

siψk = (−1)i−1ψ−(k+1)si, siψ−k = (−1)i−1ψksi,

siψ
∗
k = (−1)i−1ψ∗−(k+1)si, siψ

∗
−k = (−1)i−1ψ∗ksi

for i = 1, 2 and k ∈ Z + 1
2 , k > 0.
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Proof of (1.7). If n ≥ 0, then we can decompose

αn = An + Bn + Cn

where An ≡
∑

k∈Z+ 1
2
, k>n ψk−nψ∗k, Bn ≡

∑
k∈Z+ 1

2
, n>k>0 ψk−nψ∗k and

Cn ≡
∑

k∈Z+ 1
2
, k<0 ψk−nψ∗k. By Proposition 4.5,

An + Cn =
∑

l∈N

ρ2n−2(Xn), Xn ≡ ψ1/2ψ
∗
n+1/2 + ψ−n−1/2ψ

∗
−1/2

where we use ζ(x)ζ(y) = ρ(xy) for each x, y ∈ O2. This implies (1.8).
Furthermore we have B1 = −s1s2s

∗
1s
∗
2,

B2k = −
∑

1≤l≤k

ρ2(l−1){ρ(s2ζ
4(k−l)(s1s

∗
2)s

∗
1) + s1ζ

4(k−l)+2(s2s
∗
1)s

∗
2},

B2k+1 = −ρ2k(s1s2s
∗
1s
∗
2)

−
∑

1≤l≤k

ρ2(l−1){ρ(s2ζ
4(k−l)+2(s1s

∗
2)s

∗
1) + s1ζ

4(k−l)+4(s2s
∗
1)s

∗
2}

for each k ∈ N. Hence the recurrence formula (1.9) of Bn is obtained. ¤

Remark that αn is an unbounded operator on a Hilbert space Λ
∞
2 V and

above equations make sense on a dense domain in Λ
∞
2 V .

In the same way, the energy defined by

H ≡
∑

k∈Z+ 1
2

k : ψkψ
∗
k : =

∑

k∈Z+ 1
2
:k>0

k(ψkψ
∗
k + ψ∗−kψ−k)

is rewritten as follows:

H =
∑

l∈N

(l − 1/2)ρ2l−2(s1s1s
∗
1s
∗
1 + s2s1s

∗
1s
∗
2 + s2s

∗
2).

Acknowledgement: We would like to thank Yukiko Konishi and Rei Inoue
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Appendix A. Inequivalences among HFock, P [12], P [21]

Assume thatHFock and P [12] are equivalent. Then there is a cyclic represen-
tation (H, π) of CAR with two cyclic vectors Ω and Ω

′
such that π(an)Ω = 0

and π(a2n−1)Ω
′

= π(a∗2n)Ω
′

= 0 for each n ∈ N. We identify π(an) and
an for each n ∈ N. We see that H has a complete orthonormal basis
{a∗F Ω : F ∈ F(N)} where F(N) is the set of all finite subsets of N and
a∗∅ ≡ I, a∗F ≡ a∗n1

· · · a∗nk
when F = {n1, . . . , nk} and n1 < · · · < nk. Hence
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we can denote Ω
′
=

∑
F cF a∗F Ω for suitable cF ∈ C. Then there are n0 ∈ N

and F0 ∈ F(N) such that 2n0 6∈ F0 and cF0 6= 0. This implies

(A.1) a2n0a
∗
F0

Ω = 0.

We see that

(A.2) < ana∗F Ω|ana∗
F
′Ω >= δF,F

′ · χF (n) · χF
′ (n)

for each (n, F ) ∈ N × F(N). By assumption of Ω
′

and anticommutation
relations of an’s,

(A.3) ‖a2nΩ
′‖ = ‖Ω′‖ ( ∀n ∈ N).

By (A.1), (A.2) and (A.3),

‖Ω′‖2 = ‖a2n0Ω
′‖2 = ‖

∑

F

cF a2n0a
∗
F Ω‖2 ≤

∑

F 6=F0

|cF |2 < ‖Ω′‖2.

This is contradiction. Hence HFock and P [12] are not equivalent. In the
same way, inequivalences among HFock, P [21], P [12] are shown. ¤
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