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Fermions are expressed by polynomials of canonical genera-
tors of the Cuntz algebra O, and they generate the U(1)-fixed
point subalgebra A = (’)g(l) of O, by the canonical gauge
action. We extend the Fock and the infinite wedge represen-
tations of A to permutative representations of O,;. By these
extensions, the boson-fermion correspondence is rewritten by
canonical generators of O,.

1. Introduction

Let Ap be the Clifford algebra generated by fermions ay,,a),,n € N =
{1,2,3,...} which satisfy the canonical anticommutation relations(=CAR):

* * Xk * *
(1.1) nary, + Ay Gp = Opml, ajan, + an,a; = anGpm + apma, =0

for n,m € N. Ap always has unique C*-norm || - || and the completion
A = Ay with respect to || - || is called the CAR algebra in theory of operator
algebras([6]). In [1, 2, 3, 4], we construct several polynomial embeddings of
A into the Cuntz algebras Oy . For example, if s1, s9 are canonical generators
of O, that is, they satisfy

(1.2) sps; =0l (1,7 =1,2), s15]+ 8285 =1,

then

(1.3) a; = 8185, ap = Z (=)W s185s%  (n > 2)
Je{1,2}—1

satisfy (1.1) where na(J) = 3271 (ji—1) and s5 = s, -+ 85, 5.+ = 85 8h
for J = (j1,...,Jk), and C*< {a, € Oz : n € N} > coincides with a fixed-
point subalgebra Og D of O3 by the canonical gauge action. Put a linear
map ¢ on Oy by

(1.4) ((z) = s1zs] — saxsy;  (x € O2).
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Then a,, = ((an—1) for each n > 2. In this sense, {ay tnen in (1.3) is called
the recursive fermion system(=RFS) in Os.

In this paper, we extend the Fock and the infinite wedge representations([12,
13]) of A to permutative representations of Oy under identification of A as

Og W - Os by (1.3). At first, we give our main theorem for abstract for-
mulations of representations of A.

Theorem 1.1. (i) Let (Hp,mF) be the Fock representation of A, that is,
(Hp,7F) is a cyclic representation with a cyclic vector Q € Hp such
that

1r(a)2 =0 (Yn € N).
Then (Hp,7F) is extended to an irreducible representation (Hp,7F)
of Oy defined by
7p(s1) =L, 7p(s2) =mn(al)- L
where L is the one-sided shift operator on Hr defined by
LO=Q, Lup(a, - a) )2 = mr(aly 1 ahy )0

for each ny,...,np € N and k € N.

(i) Let (A2V, moot) be the infinite wedge representation of A, that is,
(ATV, Moo, 1) is a cyclic representation with a cyclic vector [vac>, €
ATV such that

V_glvac>y = f|vac>y =0 ("ke€Z+ 3. k>0)
where
(1.5) Yk = oo (A2kt1)s Vg = Moo g (o) (K EZ+3, k> 0)

and Z+ 5 ={n+1/2:n € Z}. Then (ATV, Moo 1) is extended to an
irreducible representation (AZV @ AZ V*, 1) of Oy which satisfies

II(s1s2)|vac>4 = |vac>4.

Both representations (H,7r) and (A2 V @ A2 V* II) of Oy in Theorem
1.1 are permutative representations([5, 8, 9]) and they are not equivalent
each other. Well-known Fock and infinite wedge representations are just
realizations of those in Theorem 1.1. The extension for a concrete infinite
wedge is given in § 4.

On the other hand, the boson-fermion correspondence on the infinite
wedge representation is given by

(1.6) an= Y Pt (n€Z\{0})

ke€Z+3



{an}nez satisfies a_,, = o, anay — amoy, =n -0y —pl. By identifying s;

and II(s;) in Theorem 1.1 (ii) and combining (1.3) and (1.5), we have

Yk = > (1" Wsysistsy
Je{1,2}2k
(k€Z+ 4, k>0).
Yok = > ()™ Ysysisisy
Je{172}2k71

From these and (1.6), we have a direct expression of bosons by canonical
generators of Oy as follows:

(1.7) an=> p"*(Xn)+ By (n>1)
leN
where
(1.8) X = p(s155¢7" (s257)) + (¥ (s185)s257  (n > 1),

(1.9) By = —s15957s5, By =p(B'_|) — 51¢*" 2(s35})sy (n>2),

¢ is in (1.4) and p is the canonical endomorphism of Oy, that is, p(x) =
s1287 + sqwsy for x € Oz. Furthermore o |vac>, = BJ|vac>4 for each
n > 1.

In § 2, we review representations of 4 and Oy and the RFS. In § 3, we
introduce a branching function system on the space of Maya diagrams and
review the infinite wedge space and its dual space. In § 4, we show extensions
of the Fock and the infinite wedge representations to Os. A relation between
a branching law of a permutative representation of Qs and the extension of
the infinite wedge is concretely illustrated.

2. The recursive fermion system and permutative
representations of Oy

Both Oy and the CAR algebra
CAR =C"<{a, :n € N} >

(= Ain § 1) are simple, infinite dimensional, noncommutative C*-algebras([6,
7]). Remark that a) € CAR for each n € N by definition of C*-algebra.
Unital *-homomorphisms (specially, unital *-representations) from these al-
gebras to other algebras are always faithful. Algebras which are generated
by generators s1,s2 in (1.2) and a,, n € N in (1.1) are unique up to *-
isomorphisms, respectively. Therefore their representations are determined
by only operators on a Hilbert space, which satisfy relations of their gener-
ators without ambiguity. In this paper, a representation and an embedding
always mean a unital x-representation and a unital *-embedding, respec-
tively.



2.1. Representations of CAR and the RFS. We review representations
of CAR in theory of operator algebras in [6].

Definition 2.1. Let (H,m) be a representation of CAR.

(i) (H,m) is the (abstract)Fock representation of CAR if there is a cyclic
unit vector Q € H such that w(a,)Q2 = 0 for each n € N. Q is called
the vacuum of (H,n). We denote (H,7) by Hpock simply.

(ii) (H,m) is P[12] if there is a cyclic unit vector Q € H such that
m(aan )9 = 7(3,)2 =0 ('n € N).

(iii) (H,m) is P[21] if there is a cyclic unit vector Q@ € H such that
m(a3, 1) =m(a2,)2=0 ("ne€N).

For consistency with after statements, any 2 in the above is normalized.
Hpock, P[12], P[21] appear in [5] as components of irreducible decomposition
of permutative representation of 02, which are called “atom”. This fact is
explained in Proposition 2.6.

Proposition 2.2. All of Hpock, P[12], P[21] are unique up to unitary equiv-
alences and irreducible. Any two of Hpoeck, P[12], P[21] are not unitarily
equivalent.

Proof.  See (5.18) in [2], and [5]. In Appendix A, their inequivalences
are shown. 0

By Proposition 2.2, symbols Hgock, P[12] and P[21] make sense as equiva-
lence classes of representations. Since fermions are often treated as operators
on a concrete Hilbert space, any representation which is different with the
Fock representation in only permutation of creations and annihilations and
their phase factors, are called the Fock representation, too in such situation.
In this paper, we do not call such representation by the Fock representation.

We review a concrete example: Put H = [3(N) and the completely

antisymmetric Fock space F_(H) = CQ ® @y, H'*, H = pk) ek
where P™ is the antisymmetrizer on H®* defined by Pﬁk)(vl ®--Qug) =
(VEN~1/2 EaeGk sgn(0) V(1)@ @Vg(r) for k > 1. We denote v1A- - -Avg =

p® (11 ®- - @uvg). Wesee vy(1) A+ AUg(y) = sign(o)(v1 ® - - - @) for each
o € 6. For f € H, define A*(f)Q = f, A*(flv=fAvfor fe Hve
H" n > 1. A(f) is defined by the adjoint operator of A*(f) on F_(H).
We see that A(f)Q2 =0 for each f € H. Then A(f)A*(g9) + A*(9)A(f) =<
flg > I for each f,g € H. For the canonical basis {ey}nen of H = l2(N),
put 7r(an,) = A(en) for n € N. Then (F_(H),7Fr) is a representation of
CAR. (F_(H),nF) is the (concrete)Fock representation.
Let s1, s2 be canonical generators of Oy. Define an embedding

(2.1) 95 : CAR — Oq;  pg(an) =" sysh) (n>1)
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where ¢ is in (1.4). For example, pg(a1) = sis3, ps(az) = sis155s7 —
s2s155s5. We call pg by the standard embedding of CAR into Oy. C*<
{ps(an)}nen >= (’)g(l) ={r€0y:"2cU1), v.(x) =2} 2 UHF, where
7 is the canonical U(1)-action of Og, 7.(s;) = zs; for z € U(1) = {z € C:
|z| =1} and i = 1,2. By identifying a,, and ¢gs(ay), a,’s coincide with those
in (1.3) and we have the following intertwining relations:

Lemma 2.3. Forn > 1,

* * * *
$10p = Ap+1S51, slan = aanl, §20p = —Qnp+1S52, Sgan = —an_HSQ,
* * k% * ok * * k ok * ok
Slan_l,_l - an$17 Slan+1 - ansl, 32an+1 == —an82, 32an+1 - _anSQ.

2.2. Permutative representations of O, and their branching laws.
Permutative representations of the Cuntz algebras are well-studied([5, 8, 9]).
We introduce two permutative representations of Qs according to [10].

Definition 2.4. A representation (H,m) of Oz is P(1) (resp. P(12)) if there
is a cyclic unit vector Q € H such that m(s1)2 = Q(resp. w(s152)2 = Q).
We call Q by the GP vector of (H, ).

Both P(1) and P(12) exist uniquely up to unitary equivalences, and they
are irreducible and not unitarily equivalent each other.

Assume that (H,n) is P(12) of Oy with the GP vector Q and « is an
automorphism of Oy defined by a(s1) = s2, a(s2) = s1. Define an operator
U on H by

(22) UQ=7(s0)Q, Un(s)Q=mn(a(ss)s2)Q (Je{1,2}* k>1).

Then U is a unitary which satisfies U? = I and AdU o7 = mo . In con-
sequence, (H,m,U) is a covariant representation of a C*-dynamical system

(09, a0, Zs3).
Example 2.5. (i) Define a representation (l2(N), wg) of Oy by
ws(s1)en = ean—1, 7ws(s2)en =ea, (n € N).

Then (I2(N),7g) is P(1). We call (I2(N),mg) by the standard repre-
sentation of Os.
(ii) Define a representation (l2(N),m12) of O by

71—12(31)627171 = €4n—1, 7F12(51)€2n = €4n—3, 7712(52)€n = €2n (n € N)~

The action of s1,s2 on the canonical basis of l3(N) is illustrated as
follows:

ot



€6 €5

er €8
7712(51)‘\ m12(52) m12(51) /mQ(sQ)
€3 €4
T12(52)
7T12(8:)\ /—\ /:712(52)

€1 €2

v
7712(31)

This system looks like the Fock representation with two vacuums e;
and eg. This diagram appears in § 3 and § 4 again. (I3(IN),m2) is
P(12). Remark that mi2(s1s2)e; = e; is expressed as a cycle in the
above. For this type example, see [11].

By ¢g in (2.1), we identify C AR and a subalgebra ¢ s(CAR) = (’)g(l) C
Os. For a representation (H,m) of Oy, we have the restriction (H,7|car)
of (H,m) on CAR.

Proposition 2.6. ([2]) The following branching laws hold:
P(1)|car = Hroeks, P(12)|car = P[12] & P[21].
Specially, all of these are irreducible decompositions.
We consider the branching of P(12) on C AR more.

Lemma 2.7. Let (H, ) be P(12) of Os with the GP vector Q1 = Q and put
Qg = 7w(s2)Q1. Then we have the followings:

W(agk_l)Ql = 0, W(agk)ﬂl = (—l)k_lﬂ(5(12)k718181)91,
W(a;k_l)Ql = (—1)]67171'(8(12)1@_18282)91, F(a;k)ﬂl =0,
W(agk_l)QQ = (—1)k71ﬂ'(8(21)k—181)g1, W(agk)Qz == O,

W(a;k_l)ﬂg = 0, W(a;k)gg = (*1)k77'(828(12)k—18282)91
for each k € N.

Proof. By m({(z)s2)1 = —7(sex)Qy for any z € O, statements
hold. O



Let Vig = n(CAR)Q, Vo1 = n(CAR)Qe. Then H = Vig @ Va1 and we see

that
| Vi | Wy

vacuum 04 Qs
creation Adp_1, A2k | G2k—1, Qo
annihilation | agg_1, ayy, | a5,_;, a2
where k € N. Specially,

F(al)Qg = 7T(81)Q1, F(ag)Ql = 71’(8181)91,

(2.3)
F(GT)Ql = W(SQ)QQ, W(ag)QQ = —F(SQSQ)QQ.
If o is the Zg-action on Oy and ay, is the RFS in O, then a(a,) = (—1)"a.
Hence U in (2.2) satisfies
UQl = QQ, UQQ = Ql, Uﬂ(aKaz)Ql = (—1)|K|1HL|17T(G}<(GL)QQ
where ax = ak, -+~ ag,, |[Kh = > i q(ki— 1) for K = {k1,...,k,} C N.
Hence UVio = Voy.
Example 2.8. (i) In Example 2.5 (i), 75 0 pg is Hpocr with the vacuum
e1. See [1] for more detail.

(ii) In Example 2.5 (ii), we consider 712 0 pg. Then (I2(2N — 1), 712 0 pg)
is P[12] and (I2(2N), m2 0 pg) is P[21]. If we identify a, and (72 0
C,OS)(G%), then

Agn—1€1 = A3,€1 = A2€2 = a3, €2 =0,
agner = (—1)" Yem-1641, aby_qe1 = (—1)""em-1.3,1,
a9p—1€2 = (—1>n71€4n—1_3+2, Cl,;n€2 = (—1)n€4n—1,6+2
for each n € N. These statements are shown by using (m12(s152))"e, =
e4m(n—1)41 for each m,n € N. Specially, when na > ny,

no—1

a2n1a2n261 — (_1) 63,(2271271_’_2271171)_’_1.

3. A branching function system on the infinite wedge

We review a representation of the fermion algebra which is called the infinite
wedge space([12, 13]) according to notation in [13]. In order to extend this
representation to O2, we introduce the dual infinite wedge space at once and
a branching function system on them.

3.1. Maya diagram. Denote Z + % ={n+4:n€Z} Put
Zip={n+1/2:n€Zn>0}, Z_,={n-1/2:n€Z,n<0}.

For a subset S C Z + 3, define A (S) C Z + 1 by

(3.1) AL(S) = (S\Zgp2) U(Zg)2\ S).

Remark the sign of both sides.



Definition 3.1. An element in My = {S C Z+ 3 : #A4(5) < oo} is
called a Maya diagram. Specially, Z+ o € My is called the vacuum in M.

We see that My N M_ =0 and My ={-5:5 € My} where =S = {—k:
k € S}. There are maxS for any S € M, and minS for any S € M_,
and #S5 = oo for any S € M. Therefore we can always parameterize as
follows: S = {t; : i € N} such that ¢; > t;41 for i > 1 when S € M, and
S ={t; :i € N} such that t; < ;41 for i > 1 when S € M_.

We illustrate S € My by a two-sided infinite sequence consisting of
symbols o and e along the lattice Z + % as follows: For S € M4, put o at
ke Z—i—%when k€S, and put e at k € Z—i—% when k£ ¢ S. For example, if
{-5/2,-1/2,3/2,7/2} C S and {-7/2,-3/2,1/2,5/2} NS = (), then

~7/2 —5/2 —3/2 —1/2 1/2 3/2 5/2 7/2

[ ] (@] [ ] (@] [ ] @] [ ] o
By this illustration, My are the following sets:
Mi={ ocoxsxsxxkxxee---} M_={ -.e@xxxxkxk%x00--}
where * x * % xx is taken any finite sequence consisting of o and e. Specially,

vacuum  Z_;y € My |---0000eeee--.
dual vacuum Z,, € M_|---eeee0000---

3.2. A branching function system on the space of Maya diagrams.
Put the space of all Maya diagrams

MEMJFUMf.

We give a branching function system on M. Put Sy = SNZy 5, Si1 =
{k+1:keS}and Sy +1 = (S+)4+1. For S € M, define

(3.2) 91(9) = =(S+ 11 US-U{1/2}),  92(5) = (54,41 US-).

Then g = {g1, 92} is a branching function system on M, that is, g; and g9
are injective maps on M, g1(M) N g2(M) = 0 and g1(M) U go(M) = M.
Furthermore g1(M) = {S e M : -1/2 € S}, gg(M) ={S e M : -1/2 ¢
S},

g7 (8) = —{(S-\{~1/2D)1USL}, g5 '(S) = —(S— 41 US4).
If (S) = Z+ 5\ S, then 6% = id, 0(Mz) = Mx, 6(Zy)3) = Zyjp and
g2=00g00.
Lemma 3.2. Denote S, = {k+tn:k e S}, St n = (S+)4n. Then the
followings hold:
(i) (91002)"(S) = S w US4 4nU{=1/2,...,—~(n—1)—1/2} forn € N.
(ii) (g1 092)7"(S) = (S-4n)- U S4,—n for n € N.
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(ili) Put ha(S) = (915 "0 g1095" o (g5 ") 7)(S) and kn(S) = (95 ' 0 g1 0
g1 o (91_21)”)(3) forn € N. Then

hn(S)=SU{-(n—-1)—-1/2}, k,(S)=SU{n—-1+1/2} (n€N).
We illustrate g by Maya diagrams:

S g1(S) 92(S5)

Z_j Z, ,,U{-1/2} Z,

Z, Z_ ) Z_;\{-1/2}
Z,,0{-1/2} Z_,,U{1/2} (Z_pp\{-1/2})u{1/2}
Z_pp\{-1/2} | (Zypp\{1/2})U{-1/2} Z,p\{1/2}

(Z_pp\{=1/2Y) U{1/2}  (Zyp\{1/2}) U{-1/2}

0coeOee 00000
Z_;yU{1/2} Z, 5\ {1/2}
[oNoNoNON N ) 000000
\\\ g2 g1 ///
g1 92
Z. ) U{-1/2} Z_p\{-1/2}
©00000 OOeeee
92
91\ =t /92
Z_ ) Z,
o (hes) ooooo:\/:ooooo
g1
o (kg59)

3.3. The infinite wedge representation of CAR and its dual. We
introduce the infinite wedge space by a Hilbert space of Maya diagrams.
For a set A, l(A) is a complex Hilbert space with a complete orthonormal
basis {ex}rea and dimla(A) = #A.

Definition 3.3. For M4 in Definition 3.3,

AZV# =1y(M), ATV =1h(My), AZV* =ly(M_)
are called the bi-infinite wedge space, the infinite wedge space and the dual
infinite wedge space, respectively.
We see that AZV# = AZV @ AZV*. By definition, AZV#, AZV and
AZ V* have canonical basis {es : S € M}, {es: S € M.} and {es: S €
M_}, respectively. Usually, the symbol ATV means a subspace of lo(M.)
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consisting of finite linear combinations of {eg : S € M4}([12, 13]). We
denote

|vac>y = €Z -
Since there are maxS for any S € M, and minS for any S € M_, and
#S = oo for any S € M, we can denote

tiNtg AN+ =eg WhenS:{ti:ViGN,ti>ti+1}€M+,

tiNtg AN---=eg whenS:{ti:ViEN,ti<t¢+1}€M_.
Then we see that

vac> = (A (=) A(=5) A+, |vacm =FA3ZAZA--

For a permutation o € &, k > 2, define
loy Neeeeee Ntok) N1 N+ =sgn(o) ty A At A1 A- -

By these definitions, “A” seems the exterior product of infinite vectors.
Define a family {43}z, 1 of operators on A= V# by
2

(—1)%® egipy (K €9),
Yres = (SeM)

0 (otherwise)
where dg(k) = min{#{z € S : z > k},#{z € S : v < k}}. We simply
denote

Ures = (—1)%®) . xge(k) - esuqn
where xge is the characteristic function on S¢ = (Z + %) \ S. We can easily
check that the definition of ;. coincides with the following ordinary defini-
tion:

Ypo=kAv (ve ATV, keZ+1).

Lemma 3.4. (i) The adjoint ¥} of ¥y, is given by
Yres = (—1)\E) (k) sy (kE€Z+ 3, SeM).
(ii) Ywiies = xs(k)-es for k € Z + % and S € M.
(il) Yry] +yy = 6l fork,l € Z + % and other anticommutators vanish.
We see that
Yglvac>4 = Yy|vac>4 =0,
, _1
Yplvac>y = kA [vac>y, o |vac>, = (—1)F2 C€Z_ o \{—k}
for ke Z + %, k > 0. In the same way, we see that
| AZV | ATV
vacuum |vac>, | |vac>_

creation | ¥ ., Yy | Vi, U}
annihilation | Y_, ¥ | ¥* ., g
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Wherek‘EZ—i—%, k> 0.

Definition 3.5. A representation (A% V#, 7)) of CAR defined by
(3.3) Too(@2n-1) = V_pi1/2, Tool2n) = Pp_1/2 (n €N)

is called the bi-infinite wedge representation of CAR.

On the other hand,

(34) Yy =m(azks1), Yop =7mc(ak) (kE€Z+3, k>0).

Proposition 3.6. (i) The following irreducible decomposition of repre-
sentations of CAR holds:

ATVHF = ATV @AV
(ii) If we denote
oot = Tooly 0 Moo, = Mool 5 s
then (A2 V, meo 1) is P[12] and (A2 V*, 14 ) is P[21].

(ATV, Too 1) and (A2 V*, o, ) are called the infinite wedge representation
and the dual-infinite wedge representation of C AR, respectively.

4. Standard extensions of representations of CAR

In order to show extension theorems, we prepare a notion, “standard exten-
sion” of a representation of CAR to 09 as follows:

Definition 4.1. Let pg be the standard embedding of CAR into O in (2.1).
For a representation (K, ) of CAR, (H,7) is the standard extension of
(H,7) to Oy if H is a closed subspace of H such that

(4.1) (T opg)ln =m.

4.1. Standard extension of the Fock representation.

Theorem 4.2. Let (H,n) be the Fock representation of CAR with the vac-
uum € in Definition 2.1. Put two operators w(s1),7(s2) on H by

T(s1)Q=Q, wsi)m(ay, - ap, ) =m(ag, 41 an, 1),

T(s2) = m(a7)?,  T(s2)m(ap, -~ ap, )@ = m(ayan, 41 ap, 1)
formg <ng <---<mng,nj €N, j=1,....k k>1. Then the followings
hold:

(i) (H,7) is a representation of Oz.

(i) Topg =m.
(i) (H,7) is P(1) with the GP vector Q.
This proof is given by direct computation and Lemma 2.3. For more detail,
see § 3.3 in [1]. Clearly, (H = H, 7) in Theorem 4.2 is the standard extension
of the Fock representation. Theorem 1.1 (i) about an operator L follows from
Theorem 4.2 as another expression of this extension.
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4.2. Standard extension of the infinite wedge. For ¢ = {g1, 92} in
(3.2), define a representation (A V# 1I) of Oy by

II(s1)es = (—1)d+(s)egl(5), I(s2)es = (—1)d+(s)eg2(5) (S eMy),

H(s1)es = (1) Fey gy, M(sr)es = (~1) ey, (S € ML)
where di(S) = #(SNZy ) + #(Z 5\ S) and d_(S) = #(Zy s \ 9),
d—(S)=#(Zy 2\ S) + #(SNZ_p).

Lemma 4.3. When K = {ki1,...,kn} and L = {l1,...,ln} C Z )y satisfy
k1> ->kpandly < <lpy,

H(s1)|vac>4 = 1_y jg|vac>. = €7, u{~1/2} II(s9)|vac>4 = |vac>_,
II(s1)|vac> = |vac>y,  I(sz)|vac>— = ¢%, plvac>, =ez_ \(-1/2}-

(s1)ez_ur\(—1) = (=1)" ez, 0k \Ls

n-+

(s2)ez_,um\(-1) = (=1)"""ez_ ,u(-Kk)\Ls

H(51)6Z+/2U(—K)\L = (—1)mez,/2u1<\(—L+1),

H(52)6Z+/2U(7K)\L = (_1)m+n€Z_/2uK\(foH)

where Kyy ={k+1:kec K} and K}, = K;1U{1/2}.

Proposition 4.4. (i) (AT V# 1I) is P(12).
(ii) If Moo, Moo+ are in Proposition 3.6, then Il o pg = mo. Specially,

(AZV,7oos) = (AZV, (Lo pg) ) ~ P[12],

AFv

(ASV* 7o) = (AT V¥, (IT 0 0g) PJ21].

|A%V*) ~

Proof. (i) By Lemma 4.3, II(s1s2)|vac>4 = |vac>,. By definition of
91,92, (AT V# T0) is P(12).
(ii) Identify ¢g(a,) and a, for each n € N. By Lemma 3.2 and Lemma 4.3,
we can check the followings:

II(agn—1)|vac>1 = (agy,)|vac>— = II(a3, )|vac>4 = (agn—1)*|vac> =0,
H(azn)|[vac>y = 1 j9|vac>y,  Il(agn—1)[vac> = _, 1y slvac>,
(ag, 1)|[vac> =~ 1 plvac>y,  Il(ag,)[vac> =1y _; |vac>

for each n € N. By Lemma 4.3, II(a,) = 7o (ay,) for each n € N. O

The branching law IIjcar = Too 4+ @ Teo,— is illustrated by Maya diagrams
as follows:
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We try to interpret this branching law from a physical standpoint. Before
the symmetry breaking of Oy to CAR, the vacuum and the dual vacuum
are coupled as a cycle: |vac>, 23 |vac>_ 2 |vac>,. After the symmetry
breaking, they are decomposed into two independent vacua of fermions. A
Zo-symmetry between A2V and AZ V* are just a unitary U in (2.2) on

AT V# which satisfies Us1U* = so.

4.3. Boson-fermion correspondence described by ;. By using the
standard extension of the infinite wedge, we consider correspondence among
boson, fermion and generators of the Cuntz algebra O,. Under identification
of II(s;) and s; for i = 1,2 in Proposition 4.4, we have the followings:

U = (F(s183), Yok =CF(s1s3) (K€Z+ 35, k>0)

where ( is in (1.4). From this, we have the following recurrence formulae:

Proposition 4.5.

Y1 = ((s183),

1
2

"lﬂ_% = 5153,

Ve = Cr), Y1 =CWk) (KEZ+ 3, k>0).

Intertwining relations are given as follows:

sie = (=1)" " o1y i,

sith_p = (—=1)" s,

sith = (_1)i_1¢i(1€+1)5i, syl = (_1)i_1¢25i

fori:1,2andk‘€Z+%,k¢>0.
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Proof of (1.7). If n > 0, then we can decompose
o =A, +B,+C,
where A, = Zkez+%,k>n Vk—n¥y, Bn = Zkez+%,n>kz>0 Vr-—nty, and

Cn = Zkez+%,k<0 Yr—nt;. By Proposition 4.5,

A, +Cp = Z ,02n_2(Xn)a Xn = ¢1/2¢Z+1/2 + w—n—l/ﬂw_yz
leN

where we use ((x)((y) = p(zy) for each z,y € Oy. This implies (1.8).

Furthermore we have By = —s1525]53,
Bay, = — Z PP (52 D (s183) 1) + 510 DT (s057) 3},
1<i<k
Bopy1 = —p2k(81828T5§)
3 P p(sa¢ D2 (51 55)s7) + s1CHE D (s557) 55}
1<i<k

for each k € N. Hence the recurrence formula (1.9) of B, is obtained. O

Remark that o, is an unbounded operator on a Hilbert space AZV and
above equations make sense on a dense domain in A2 V.
In the same way, the energy defined by

H= Z k:ppp: = Z k(Yrr, + )

keZ+3 ke€Z+%:k>0
is rewritten as follows:

H= Z(l —1/2)p%72(s15157 57 + 59515755 + 5253).
leN

Acknowledgement: We would like to thank Yukiko Konishi and Rei Inoue
for good advice.

Appendix A. Inequivalences among Hp,c, P[12], P[21]

Assume that H g and P[12] are equivalent. Then there is a cyclic represen-
tation (H, ) of CAR with two cyclic vectors © and Q" such that 7(a,)Q = 0
and m(ag, 1)Q = m(a},)Q = 0 for each n € N. We identify 7(a,) and
an for each n € N. We see that H has a complete orthonormal basis
{a72 : F € F(N)} where F(N) is the set of all finite subsets of N and

ag =1, ap = ay, - -a;, when F'= {ny,...,n;} and ny < --- < ng. Hence
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we can denote ' = > pcrajS) for suitable ¢ € C. Then there are ng € N
and Fy € F(N) such that 2ng ¢ Fy and cp, # 0. This implies

(Al) agnoa}OQ = 0.
We see that
(A.2) < apapQanay, Q@ >=0p p - xp(n) - X (0)

for each (n, F) € N x F(N). By assumption of Q' and anticommutation
relations of a,’s,

(A.3) laza® || = Q'] (Y € N).
By (A.1), (A.2) and (A.3),

1217 = Nazao 2 I* = 1Y craza,aiQU* < Y lerl® < 1]

F F+£F,
This is contradiction. Hence Hp,e; and P[12] are not equivalent. In the
same way, inequivalences among Hpocr, P[21], P[12] are shown. O
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