WKB analysis of higher order Painlevé equations with a large parameter — Local reduction of 0-parameter solutions for Painlevé hierarchies (P_J) (J = I, II-1 or II-2)

To be dedicated to Professor H. Komatsu on his seventieth birthday

by

Takahiro KAWAI

Research Institute for Mathematical Sciences Kyoto University Kyoto, 606-8502 Japan

and

Yoshitsugu TAKEI

Research Institute for Mathematical Sciences ${\rm Kyoto~University}$ ${\rm Kyoto,~606\text{--}8502~Japan}$

§0. Introduction

This paper is the second of a series of articles on WKB analysis of higher order Painlevé equations with a large parameter. In the first of the series ([KKNT]) we studied the geometric aspect of the Painlevé hierarchy (P_J) (J = I, II-1 or II-2) with a large parameter, and in this article we begin to analyze the WKB-theoretic structure of each member $(P_J)_m$ (J = I, II-1 or II-2; $m = 1, 2, 3, \ldots$) of the hierarchy. To be concrete, we show that a 0-parameter solution of $(P_J)_m$ (J = I, II-1 or II-2; $m = 1, 2, 3, \ldots$) constructed in [KKNT] and [N] can be reduced to a 0-parameter solution of $(P_I)_1$, the traditional (i.e., second order) Painlevé-I equation (P_I) with a large parameter, i.e.,

(0.1)
$$\frac{d^2\lambda}{dt^2} = \eta^2 (6\lambda^2 + t),$$

with the aid of a formal transformation defined near a turning point of $(P_J)_m$ of the first kind in the sense of [KKNT]. (See Theorem 3.2.1 in Section 3 for the precise statement.) Throughout this paper we use the same notions and notations used in [KKNT]. A résumé of this paper is given in [KT2].

An important step of our reasoning in this paper is to derive a pair of Schrödinger equation $(SL_J)_m$ and its deformation equation $(D_J)_m$ from the Lax pair $(L_J)_m$ associated with the m-th member $(P_J)_m$ of the Painlevé hierarchy in question. Here we make essential use of the fact that $(L_J)_m$ consists of 2×2 systems. (See Section 1 for the details.) Once we obtain the simultaneous equations $(SL_J)_m$ and $(D_J)_m$ for one unknown function, we can employ the techniques used in [KT1]; we first establish some analyticity properties of the odd part of a solution of the Riccati equation attached to $(SL_J)_m$ (Theorem 2.1) and then in Proposition 3.2.1 we construct a semi-global transformation that brings $(SL_J)_m$ to (SL_I) , the Schrödinger equation underlying (P_1) (cf. [KT1]). In constructing the semi-global transformation we need some matching conditions, and the constructed semi-global transformation together with the matching conditions is used to reduce the 0-parameter solution in question to a 0-parameter solution of (P_1) . (Theorem 3.2.1.) We note that the actual reduction is divided into two steps: we first solve an algebraic equation of degree m whose coefficients are defined in terms of a 0-parameter solution of $(P_J)_m$ to find some formal series $b_j(t,\eta)$ $(j=1,\ldots,m)$, and we then employ the analytic machinery of semi-globally transforming $(SL_I)_m$ to $(SL_{\rm I})$ so that we may reduce b_i that is relevant to the turning point of $(P_J)_m$ in question to a 0-parameter solution of (P_1) , with the help of the constructed semi-global transformation. We discuss the geometric meaning of b_i in Section 1.

In ending this introduction we want to repeat the same comment as that given in [KT1]: it is probably worth emphasizing that the above reduction is attained through the study of $(SL_J)_m$, a differential equation on the extended (x,t)-space, despite the fact that the required relation is relevant only to the t-variable.

§1. Derivation of a Schrödinger equation $(SL_J)_m$ and its deformation equation $(D_J)_m$

§1.1. The case J = I

For the convenience of the reader, we first recall the definition of $(P_{\rm I})_m$ and the underlying Lax pair $(L_{\rm I})_m$. See [KKNT] and [S] for their backgrounds.

Definition 1.1.1. The m-th member of P_{I} -hierarchy with a large parameter η is the following system of non-linear differential equations:

$$(1.1.1) (P_{\rm I})_m : \begin{cases} \frac{du_j}{dt} = 2\eta v_j & (j = 1, \dots, m) \\ \frac{dv_j}{dt} = 2\eta (u_{j+1} + u_1 u_j + w_j) & (j = 1, \dots, m) \\ u_{m+1} = 0 & (1.1.1.c) \end{cases}$$

where w_j is a polynomial of u_k and v_l $(1 \le k, l \le j)$ that is determined by the following recursive relation:

(1.1.2)
$$w_j = \frac{1}{2} \left(\sum_{k=1}^j u_k u_{j+1-k} \right) + \sum_{k=1}^{j-1} u_k w_{j-k}$$
$$- \frac{1}{2} \left(\sum_{k=1}^{j-1} v_k v_{j-k} \right) + c_j + \delta_{jm} t \quad (j = 1, \dots, m).$$

Here c_j is a constant and δ_{jm} stands for Kronecker's delta.

Definition 1.1.2. The Lax pair $(L_{\rm I})_m$ underlying $(P_{\rm I})_m$ is the following pair of linear differential equations on (x, t)-space:

$$(1.1.3) (L_{\rm I})_m : \begin{cases} \left(\frac{\partial}{\partial x} - \eta A\right) \vec{\psi} = 0, \\ \left(\frac{\partial}{\partial t} - \eta B\right) \vec{\psi} = 0, \end{cases} (1.1.3.a)$$

where $\vec{\psi} = {}^t(\psi_1, \psi_2)$,

(1.1.4)
$$A = \begin{pmatrix} V(x)/2 & U(x) \\ (2x^{m+1} - xU(x) + 2W(x))/4 & -V(x)/2 \end{pmatrix}$$

and

$$(1.1.5) B = \begin{pmatrix} 0 & 2 \\ u_1 + x/2 & 0 \end{pmatrix}$$

with

(1.1.6)
$$U(x) = x^m - \sum_{j=1}^m u_j x^{m-j},$$

(1.1.7)
$$V(x) = \sum_{j=1}^{m} v_j x^{m-j}$$

and

(1.1.8)
$$W(x) = \sum_{j=1}^{m} w_j x^{m-j}.$$

Remark 1.1.1. As is proved in Proposition 1.1.1 of [KKNT], $(P_{\rm I})_m$ states the compatibility condition for $(L_{\rm I})_m$.

Remark 1.1.2. Combining (1.1.1.a), (1.1.1.b) and (1.1.2), we find that u_{j+1} $(j \leq m-1)$ is a polynomial of $u_1, \ldots, u_j, du_1/dt, \ldots, du_j/dt$ and d^2u_j/dt^2 . Hence u_{j+1} $(j \leq m-1)$ is a polynomial of $u_1, du_1/dt, \ldots, d^{2j}u_1/dt^{2j}$. Substituting these polynomials into

(1.1.9)
$$\frac{d^2u_m}{dt^2} = 4\eta^2(u_1u_m + w_m),$$

we obtain a 2m-th order differential equation for u_1 . It is also clear that, once a solution u_1 of the 2m-th order differential equation is given, we can find $(u_1, \ldots, u_m; v_1, \ldots, v_m; w_1, \ldots, w_m)$ so that they satisfy (1.1.1) and (1.1.2). Thus $(P_1)_m$ is equivalent to a single 2m-th order differential equation. The explicit form of the resulting equation for m = 1 is

$$(1.1.10) d^2u_1/dt^2 = \eta^2(6u_1^2 + 4c_1 + 4t),$$

and that for m=2 is

(1.1.11)
$$d^4u_1/dt^4 = \eta^2 (20u_1d^2u_1/dt^2 + 10(du_1/dt)^2) + \eta^4 (-40u_1^3 - 16c_1u_1 + 16c_2 + 16t).$$

It is clear that the scaling

(1.1.12)
$$\tilde{t} = \alpha(t+c_1) \quad \text{and} \quad \lambda = \alpha^3 u_1/4 \quad \text{with} \quad \alpha = 4^{1/5}$$

brings (1.1.10) into

(1.1.13)
$$d^2 \lambda / d\tilde{t}^2 = \eta^2 (6\lambda^2 + \tilde{t}),$$

the traditional Painlevé-I equation $(P_{\rm I})$ with a large parameter η . These facts explain why (1.1.1) is called $(P_{\rm I})$ -hierarchy, or often with some abuse of language, a higher order Painlevé-I equation.

Let us first write down the equation that the first component ψ_1 of a solution $\vec{\psi}$ of (1.1.3.a) satisfies:

$$\left(\frac{\partial^2}{\partial x^2} - \frac{U_x}{U}\frac{\partial}{\partial x} - \frac{\eta^2}{4}((2x^{m+1} - xU + 2W)U + V^2) + \frac{\eta}{2}\left(\frac{U_xV}{U} - V_x\right)\right)\psi_1 = 0.$$

Next we eliminate the term $-U_xU^{-1}\partial\psi_1/\partial x$ by introducing ψ by

(1.1.15)
$$\exp(-\int^{x} \frac{U_{x}}{2U} dx) \psi_{1} = \frac{1}{\sqrt{U}} \psi_{1};$$

the resulting equation for ψ is

(1.1.16)
$$\frac{\partial^2 \psi}{\partial x^2} = \eta^2 Q_{(\mathbf{I},m)} \psi,$$

where

(1.1.17)
$$Q_{(I,m)} = \frac{1}{4} (2x^{m+1} - xU + 2W)U + \frac{1}{4}V^2 - \frac{\eta^{-1}U_xV}{2U} + \frac{\eta^{-1}V_x}{2} + \frac{3\eta^{-2}U_x^2}{4U^2} - \frac{\eta^{-2}U_{xx}}{2U}.$$

On the other hand, (1.1.3.b) implies

(1.1.18)
$$\frac{\partial \psi_1}{\partial t} = 2\eta \psi_2,$$

and it also follows from (1.1.3.a) that

(1.1.19)
$$\frac{\partial \psi_1}{\partial x} = \frac{\eta V}{2} \psi_1 + \eta U \psi_2.$$

Hence we find

(1.1.20)
$$\frac{\partial \psi_1}{\partial x} = \frac{\eta V}{2} \psi_1 + \frac{U}{2} \frac{\partial \psi_1}{\partial t}.$$

Therefore we obtain

(1.1.21)
$$\psi_x = \frac{1}{2}U\psi_t + (\frac{1}{4}U_t + \frac{1}{2}\eta V - \frac{1}{2}U_x U^{-1})\psi.$$

It also follows from (1.1.1), (1.1.6) and (1.1.7) that

$$(1.1.22) U_t = -2\eta V.$$

Thus we conclude

(1.1.23)
$$\frac{\partial \psi}{\partial t} = \mathfrak{a}_{(I,m)} \frac{\partial \psi}{\partial x} - \frac{1}{2} \frac{\partial \mathfrak{a}_{(I,m)}}{\partial x} \psi,$$

where

$$\mathfrak{a}_{(\mathrm{I},m)} = \frac{2}{U(x)}.$$

Thus we have arrived at simultaneous equations (1.1.16) and (1.1.23) for one unknown function ψ . This is the setting that [KT1] used to establish a reduction theorem for 0-parameter solutions of the traditional Painlevé equations. In what follows, the equation (1.1.16) (resp., (1.1.23)) is referred

to as $(SL_{\rm I})_m$ (resp., $(D_{\rm I})_m$), and we analyze these equations by substituting a 0-parameter solution $(\hat{u}_j, \hat{v}_j)_{1 \leq j \leq m}$ of $(P_{\rm I})_m$ into their coefficients. The existence and basic properties of a 0-parameter solution of $(P_{\rm I})_m$ are shown in [KKNT]; it is a formal series in η^{-1} of the following form:

$$\hat{u}_j(t,\eta) = \hat{u}_{j,0}(t) + \hat{u}_{j,1}(t)\eta^{-1} + \cdots,$$

$$\hat{v}_{i}(t,\eta) = \hat{v}_{i,0}(t) + \hat{v}_{i,1}(t)\eta^{-1} + \cdots$$

We note that

$$\hat{u}_{j+1,0} + \hat{u}_{1,0}\hat{u}_{j,0} + \hat{w}_{j,0} = 0, \quad j = 1, \dots, m,$$

$$(1.1.28) \hat{v}_{j,0} = 0, \quad j = 1, \dots, m,$$

and

(1.1.29)

$$\widehat{w}_{j,0} = \frac{1}{2} \left(\sum_{k=1}^{j} \widehat{u}_{k,0} \widehat{u}_{j+1-k,0} \right) + \sum_{k=1}^{j-1} \widehat{u}_{k,0} \widehat{w}_{j-k,0} + c_j + \delta_{jm} t, \quad j = 1, \dots, m$$

follow from (1.1.1) and (1.1.2) and that these relations together with (1.1.1.c) determine $\hat{u}_{j,0}$ algebraically. (See [KKNT, §2.1] for the details.) If we substitute the expansions (1.1.25) and (1.1.26) into the coefficients of U, V and W, they are accordingly expanded in powers of η^{-1} ; we let U_l, V_l and W_l respectively denote the coefficient of η^{-l} in the expansion. Using the 0-parameter solution we define series $b_i(t, \eta)$ (j = 1, ..., m) as solutions of the equation

$$(1.1.30) U(b_j) = 0, j = 1, 2, \dots, m,$$

that is,

(1.1.31)
$$b_j^m - \sum_{i=1}^m \hat{u}_i b_j^{m-j} = 0.$$

It is clear that $b_i(t, \eta)$ is also expanded as

$$(1.1.32) b_j = b_{j,0}(t) + b_{j,1}(t)\eta^{-1} + \cdots$$

Although we have started our discussion with the equation (1.1.1) with unknown functions $(u_j, v_j (= (du_j/dt)/2\eta))$, the quantities (u_1, \ldots, u_m) were

first introduced as the elementary symmetric polynomials of (b_1, \ldots, b_m) in [S].

Since b_j (j = 1, ..., m) is determined by $(\hat{u}_1, ..., \hat{u}_m)$ through the algebraic equation (1.1.31), we try to find a transformation that brings b_j to a 0-parameter solution of (P_I) , i.e., (1.1.13), in a neighborhood of a turning point of $(P_I)_m$ that is relevant to b_j . This task is accomplished in Section 3 with the essential use of the results in Section 2. Before proceeding further, we note two important geometric properties of the function $b_{j,0}(t)$ (j = 1, ..., m), the top order term of the expansion of b_j in η^{-1} .

First, $x = b_{j,0}(t)$ is, as a zero of $U_0(x)$, a singular point of $Q_{(I,m)}$ and $\mathfrak{a}_{(I,m)}$. Hence their expansions in η^{-1} are considered outside the point; their coefficients of η^{-l} are denoted respectively by $Q_{(I,m),l}$ and $\mathfrak{a}_{(I,m),l}$. Second, $x = b_{j,0}(t)$ is a double turning point of $(SL_I)_m$. In fact, (1.1.27) together with the definition of U_0, V_0 and W_0 entails

$$(1.1.33) 2x^{m+1} - xU_0(x) + 2W_0(x)$$

$$= x^{m+1} + \sum_{j=1}^m \hat{u}_{j,0} x^{m+1-j} - 2 \sum_{j=1}^m (\hat{u}_{j+1,0} + \hat{u}_{1,0} \hat{u}_{j,0}) x^{m-j}$$

$$= x^{m+1} + 2\hat{u}_{1,0} x^m - \hat{u}_{1,0} x^m - \sum_{j=2}^m \hat{u}_{j,0} x^{m+1-j}$$

$$- 2\hat{u}_{1,0} \sum_{j=1}^m \hat{u}_{j,0} x^{m-j}$$

$$= (x + 2\hat{u}_{1,0}) U_0(x),$$

and hence (1.1.28) and (1.1.33) imply

(1.1.34)
$$Q_{(I,m),0} = \frac{1}{4}(x + 2\hat{u}_{1,0})U_0(x)^2.$$

As we will see below, similar facts are observed for $(P_J)_m$ (J = I-1 or II-2), and they play critically important roles in Section 2 and Section 3.

§1.2. The case J = II-1

Let us begin our discussions by briefly recalling the definition of $(P_{\text{II-1}})_m$ and the underlying Lax pair $(L_{\text{II-1}})_m$. See [KKNT] and [GP] for the details. We refer the reader to [GP] for their relevance to the non-isospectral scattering problem.

Definition 1.2.1. The m-th member of $P_{\text{II-1}}$ -hierarchy with a large parameter η is, by definition, the following differential equation for v:

$$(1.2.1) (P_{\text{II-1}})_m : (\eta^{-1} \frac{\partial}{\partial t} + 2v) K_m + g(2tv + \eta^{-1}) + c = 0,$$

where g and c are constants and K_m is a polynomial of v and its derivatives defined by the following recursive relation:

(1.2.2)
$$\eta^{-1}\partial_t K_{p+1} = (\eta^{-3}\partial_t^3 + 4\eta^{-1}(v^2 - \eta^{-1}v_t))\partial_t + 2(2vv_t - \eta^{-1}v_{tt})K_p, \quad p = 0, 1, 2, \dots$$

with

$$(1.2.3) K_0 = 1/2.$$

Remark 1.2.1. The above recursive relation allows K_p to contain integrated terms like $\partial_t^{-1}v$. However, we can choose K_p so that it is a polynomial of v and its derivatives. (See [KKNT, Appendix A] for the proof.) One can then easily confirm that such preferred K_p has the form

(1.2.4)
$$\frac{(-1)^{p}2^{p-1}(2p-1)!!}{p!}v^{2p} + \sum_{l=1}^{2(p-1)} \eta^{-l}K_{p,l} + \eta^{-(2p-1)}\frac{d^{2p-1}v}{dt^{2p-1}}.$$

Hence $(P_{\text{II-1}})_m$ is a 2m-th order non-linear differential equation. The explicit form of the first two preferred K_p is as follows:

$$(1.2.5) K_1 = -v^2 + \eta^{-1}v_t,$$

(1.2.6)
$$K_2 = 3v^4 - 6\eta^{-1}v^2v_t + \eta^{-2}((v_t)^2 - 2vv_{tt}) + \eta^{-3}v_{ttt}.$$

Hence we find

(1.2.7)
$$(P_{\text{II-1}})_1 : \eta^{-2} \frac{d^2 v}{dt^2} = v^3 - 2gtv - (c + g\eta^{-1}),$$

and

(1.2.8)
$$(P_{\text{II-1}})_2 : \eta^{-4} \frac{d^4 v}{dt^4} = \eta^{-2} (10v^2 \frac{d^2 v}{dt^2} + 10v \left(\frac{dv}{dt}\right)^2)$$
$$-6v^5 - 2gtv - (c + g\eta^{-1}).$$

As (1.2.7) is the traditional Painlevé-II equation $(P_{\rm II})$ with a large parameter η , it is reasonable to call the totality of these equations the Painlevé-II hierarchy with a large parameter η . As we will see in Section 1.3 another hierarchy whose first member is $(P_{\rm II})$, in order to distinguish these two hierarchies, we coin the terminology $P_{\rm II-1}$ -hierarchy to call the equations discussed in this section. The equations discussed in Section 1.3 will be called $P_{\rm II-2}$ -hierarchy.

Remark 1.2.2. We sometimes allow constants c and g to contain powers of η^{-1} like $c = c_0 + c_1 \eta^{-1}$. For example, we usually assume that g is a genuine constant (i.e., free from η) and that

$$(1.2.9) c = c_0 - g\eta^{-1}$$

so that $c + g\eta^{-1}$ is free from η^{-1} . In what follows we also assume that g is different from 0.

Definition 1.2.2. The Lax pair $(L_{\text{II-1}})_m$ underlying $(P_{\text{II-1}})_m$ is the following pair of linear differential equations on (x, t)-space:

(1.2.10)
$$(L_{\text{II-1}})_m : \begin{cases} \left(\frac{\partial}{\partial x} - \eta A\right) \vec{\psi} = 0, \\ \left(\frac{\partial}{\partial t} - \eta B\right) \vec{\psi} = 0, \end{cases}$$
 (1.2.10.a)
$$(1.2.10.b)$$

where $\vec{\psi} = {}^t(\psi_1, \psi_2)$,

(1.2.11)
$$A = \frac{1}{4gx} \begin{pmatrix} -\eta^{-1}\partial_t T_m & 2T_m \\ 2qT_m - \eta^{-2}\partial_t^2 T_m & \eta^{-1}\partial_t T_m \end{pmatrix}$$

and

$$(1.2.12) B = \begin{pmatrix} 0 & 1 \\ q & 0 \end{pmatrix}$$

with T_m and q being given respectively by

(1.2.13)
$$T_m = gt + \sum_{k=0}^{m} (4x)^k K_{m-k}$$

and

$$(1.2.14) q = x - K_1$$

Remark 1.2.3. As is discussed in [KKNT, §1.2] and [GP], $(P_{\text{II-1}})_m$ states the compatibility condition of $(L_{\text{II-1}})_m$.

As in Section 1.1, we begin our discussion by writing down the equation that the first component ψ_1 of $\vec{\psi}$ should satisfy:

$$(1.2.15) \quad \left(\frac{\partial^2}{\partial x^2} + \left(\frac{1}{x} - \frac{T_{m,x}}{T_m}\right) \frac{\partial}{\partial x} - \frac{1}{16g^2 x^2} ((T_{m,t})^2 + 4\eta^2 q T_m^2 - 2T_m T_{m,tt}) + \frac{1}{4gx} \left(T_{m,tx} - \frac{T_{m,x} T_{m,t}}{T_m}\right) \psi_1 = 0.$$

Here $T_{m,tx}$ etc. designate $\partial^2 T_m/\partial t \partial x$ etc. By introducing ψ by

(1.2.16)
$$\exp\left(\frac{1}{2} \int_{-\infty}^{x} \left(\frac{1}{x} - \frac{T_{m,x}}{T_{m}}\right) dx\right) \psi_{1} = x^{1/2} T_{m}^{-1/2} \psi_{1},$$

we find the required Schrödinger equation for ψ :

(1.2.17)
$$\frac{\partial^2}{\partial x^2} \psi = \eta^2 Q_{(\text{II-1},m)} \psi,$$

where

(1.2.18)
$$Q_{(\text{II-1},m)} = \frac{1}{4g^2x^2}qT_m^2 + \frac{\eta^{-2}}{16g^2x^2}(T_{m,t}^2 - 2T_mT_{m,tt}) + \frac{\eta^{-2}}{4gx}(\frac{T_{m,x}T_{m,t}}{T_m} - T_{m,tx}) + \frac{3\eta^{-2}T_{m,x}^2}{4T_m^2} - \frac{\eta^{-2}T_{m,xx}}{2T_m} - \frac{\eta^{-2}T_{m,x}}{4x^2}.$$

On the other hand, (1.2.10.b) implies

$$(1.2.19) \qquad \frac{\partial \psi_1}{\partial t} = \eta \psi_2,$$

and (1.2.10.a) entails

(1.2.20.a)
$$\frac{\partial \psi_1}{\partial x} = \frac{1}{4ax} (-T_{m,t}\psi_1 + 2\eta T_m \psi_2).$$

Hence we find

(1.2.21)
$$\frac{\partial \psi_1}{\partial x} = \frac{1}{4gx} \left(-T_{m,t} \psi_1 + 2T_m \frac{\partial \psi_1}{\partial t} \right).$$

Then, combining (1.2.16) and (1.2.21), we obtain

(1.2.22)
$$4gx(-\frac{1}{2}x^{-3/2}T_m^{1/2}\psi + \frac{1}{2}x^{-1/2}T_m^{-1/2}T_{m,x}\psi + x^{-1/2}T_m^{1/2}\psi_x) = -T_{m,t}x^{-1/2}T_m^{1/2}\psi + 2T_mx^{-1/2}(\frac{1}{2}T_m^{-1/2}T_{m,t}\psi + T_m^{1/2}\psi_t),$$

that is.

(1.2.23)
$$\psi_t = \frac{2gx}{T_m} \psi_x + \frac{1}{T_m} (gx T_m^{-1} T_{m,x} - g) \psi.$$

Therefore, by setting

$$\mathfrak{a}_{(\text{II-1},m)} = \frac{2gx}{T_m},$$

we find

(1.2.25)
$$\frac{\partial \psi}{\partial t} = \mathfrak{a}_{(\text{II-1},m)} \frac{\partial \psi}{\partial x} - \frac{1}{2} \frac{\partial \mathfrak{a}_{(\text{II-1},m)}}{\partial x} \psi.$$

Thus we obtain simultaneous equations (1.2.17) and (1.2.25) for the unknown function ψ ; equation (1.2.17) (resp., (1.2.25)) is referred to as $(SL_{\text{II-1}})_m$ (resp., $(D_{\text{II-1}})_m$). In parallel with the case of $(SL_{\text{I}})_m$ and $(D_{\text{I}})_m$, we first construct a 0-parameter solution

$$\hat{v}(t,\eta) = \hat{v}_0(t) + \hat{v}_1(t)\eta^{-1} + \cdots$$

of $(P_{\text{II-1}})_m$, and then substitute it into the coefficients of $(SL_{\text{II-1}})_m$ and $(D_{\text{II-1}})_m$ to analyze their structure. We note that (1.2.4) implies

(1.2.27)
$$\frac{(-1)^m 2^m (2m-1)!!}{m!} \hat{v}_0^{2m+1} + 2gt \hat{v}_0 + c_0 = 0.$$

In what follows we let $T_{m,0}$, $K_{m,0}$, q_0 , etc. respectively denote the top order term of the expansion obtained by substituting the 0-parameter solution into the coefficients of T_m , K_m , q, etc; for example, $q_0 = x + \hat{v}_0^2$.

Using the 0-parameter solution \hat{v} , we introduce another set of formal series

$$(1.2.28) b_j(t,\eta) = b_{j,0}(t) + \eta^{-1}b_{j,1}(t) + \cdots (j=1,\ldots,m)$$

as solutions of the equation

(1.2.29)
$$T_m(x, t, \eta) \Big|_{x=b_i(t, \eta)} = 0.$$

We then immediately find that $x = b_{j,0}(t)$ is a singular point of $Q_{(\text{II-1},m)}$ and $\mathfrak{a}_{(\text{II-1},m)}$. It is also clear from (1.2.18) that $x = b_{j,0}(t)$ is a double turning point of $(SL_{\text{II-1}})_m$. These observations are exactly the same as those for the series $b_j(t,\eta)$ introduced in the previous subsection.

§1.3. The case J = II-2

Let us first recall the definition of $P_{\text{II-2}}$ -hierarchy with a large parameter η and its underlying Lax pair $(L_{\text{II-2}})$. We refer the reader to [GJP] and [N] for the detailed discussions concerning $P_{\text{II-2}}$ -hierarchy.

Definition 1.3.1. The m-th member of $P_{\text{II-2}}$ -hierarchy with a large parameter η is, by definition, the following differential equations for the unknown functions u and v:

(1.3.1)
$$(P_{\text{II-2}})_m : \begin{cases} K_{m+1} + \sum_{j=1}^{m-1} c_j K_j + gt = 0 \\ L_{m+1} + \sum_{j=1}^{m-1} c_j L_j = \delta \end{cases}$$

Here c_j , g and δ are constants, and K_j and L_j are polynomials of u, v and their derivatives, which are defined by the following recursive relations:

$$(1.3.2) \eta^{-1}\partial_t \begin{pmatrix} K_{j+1} \\ L_{j+1} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \eta^{-1}\partial_t u - \eta^{-2}\partial_t^2 & 2\eta^{-1}\partial_t \\ 2\eta^{-1}v\partial_t + \eta^{-1}v_t & \eta^{-1}u\partial_t + \eta^{-2}\partial_t^2 \end{pmatrix} \begin{pmatrix} K_j \\ L_j \end{pmatrix}$$

$$(j \ge 0)$$

with $K_0 = 2$ and $L_0 = 0$.

Remark 1.3.1. See [N] for the proof of the existence of such preferred K_j and L_j , that is, those which are polynonials of u, v and their derivatives. The

first three terms of such preferred K_j and L_j are as follows:

(1.3.3)
$$\begin{pmatrix} K_1 \\ L_1 \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$$
(1.3.4)
$$\begin{pmatrix} K_2 \\ L_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} u^2 + 2v - \eta^{-1} u_t \\ 2uv + \eta^{-1} v_t \end{pmatrix}$$
(1.3.5)
$$\begin{pmatrix} K_3 \\ L_3 \end{pmatrix} = \left(\frac{1}{2}\right)^2 \begin{pmatrix} u^3 + 6uv - 3\eta^{-1} uu_t + \eta^{-2} u_{tt} \\ 3u^2v + 3v^2 + 3\eta^{-1} uv_t + \eta^{-2} v_{tt} \end{pmatrix}$$

Remark 1.3.2. In what follows we assume

$$(1.3.6) c_j = 0, j = 1, 2, \dots, m - 1.$$

We also assume that g is a non-zero genuine constant and that δ has the form $\delta_0 + \eta^{-1}\delta_1$ with

$$\delta_1 = -g/2.$$

Remark 1.3.3. (i) $(P_{\text{II-2}})_1$ is reduced to

(1.3.8)
$$\eta^{-2} \frac{d^2 u}{dt^2} = 2u^3 + 2g(2tu + \eta^{-1}) + 4\delta.$$

(ii) $(P_{\text{II-2}})_2$ is reduced to

$$(1.3.9) \eta^{-4} \frac{d^4 u}{dt^4} = \frac{1}{2u^2} (\eta^{-4} \left(-4 \left(\frac{du}{dt} \right)^2 \frac{d^2 u}{dt^2} + 3u \left(\frac{d^2 u}{dt^2} \right)^2 \right. \\ + 4u \frac{du}{dt} \frac{d^3 u}{dt^3} \right) + \eta^{-2} (16gu \frac{du}{dt} - 16gt \left(\frac{du}{dt} \right)^2 \\ + 5u^3 \left(\frac{du}{dt} \right)^2 + 16gtu \frac{d^2 u}{dt^2} + 10u^4 \frac{d^2 u}{dt^2} \right) \\ - 24\eta^{-1} gu^3 + (16g^2 t^2 u - 48\delta u^3 - 16gtu^4 - 5u^7)).$$

Definition 1.3.2. The Lax pair $(L_{\text{II-2}})_m$ underlying $(P_{\text{II-2}})_m$ is the following pair of linear differential equations on (x, t)-space:

(1.3.10)
$$(L_{\text{II-2}})_m : \begin{cases} \left(\frac{\partial}{\partial x} - \eta A\right) \vec{\psi} = 0, \\ \left(\frac{\partial}{\partial t} - \eta B\right) \vec{\psi} = 0, \end{cases}$$
 (1.3.10.a)
$$(1.3.10.b)$$

where $\vec{\psi} = {}^t(\psi_1, \psi_2),$

(1.3.11) A

$$= \frac{1}{g} \begin{pmatrix} -(2x-u)T_m - \eta^{-1}T_{m,t} & 2T_m \\ -2vT_m - \eta^{-1}\partial_t((2x-u)T_m + \eta^{-1}T_{m,t} + K_{m+1}) & (2x-u)T_m + \eta^{-1}T_{m,t} \end{pmatrix}$$
 with

(1.3.12)
$$T_m = \frac{1}{2} \sum_{j=0}^m x^{m-j} K_j,$$

and

$$(1.3.13) B = \begin{pmatrix} -x + u/2 & 1 \\ -v & x - u/2 \end{pmatrix}.$$

In parallel with the discussions in the preceding subsections, we first write down the differential equation that the first component ψ_1 of the solution $\vec{\psi}$ of the equation (1.3.10) should satisfy:

$$\left[\frac{\partial^2}{\partial x^2} - \frac{T_{m,x}}{T_m} \frac{\partial}{\partial x} + \frac{\eta^2}{g^2} (-(2x - u)^2 T_m^2 + 4v T_m^2) \right]$$

$$+ \frac{\eta}{g^2} (-2(2x - u) T_m T_{m,t} + 2T_m \partial_t ((2x - u) T_m T_m) + \eta^{-1} T_{m,t} + K_{m+1}) + 2g T_m)$$

$$- \frac{T_{m,t}^2}{g^2} - \frac{T_{m,t} T_{m,x}}{g T_m} + \frac{T_{m,tx}}{g} \right] \psi_1 = 0.$$

To eliminate the first order differential operator part, we introduce

(1.3.15)
$$\psi = \exp(-\frac{1}{2} \int_{-\infty}^{x} \frac{T_{m,x}}{T_m} dx) \psi_1 = T_m^{-1/2} \psi_1$$

and find the Schrödinger equation for ψ :

$$(1.3.16) \quad \frac{\partial^2 \psi}{\partial x^2} = \eta^2 Q_{(\text{II-2},m)} \psi,$$

where

$$(1.3.17) Q_{(II-2,m)} = \frac{1}{g^2} ((2x-u)^2 - 4v) T_m^2$$

$$+ \frac{\eta^{-1}}{g^2} (2u_t T_m^2 - 2T_m K_{m+1,t} - 2gT_m)$$

$$+ \eta^{-2} \left(\frac{3}{4} \frac{T_{m,x}^2}{T_m^2} - \frac{T_{m,xx}}{2T_m} + \frac{T_{m,t}^2}{g^2} - 2\frac{T_m T_{m,tt}}{g^2} + \frac{T_{m,t} T_{m,x}}{gT_m} - \frac{T_{m,tx}}{g} \right).$$

On the other hand, (1.3.10.b) implies

(1.3.18)
$$\frac{\partial \psi_1}{\partial t} = \eta(-x + \frac{u}{2})\psi_1 + \eta\psi_2,$$

and (1.3.10.a) implies

(1.3.19)
$$\frac{\partial \psi_1}{\partial x} = -\frac{\eta}{g} ((2x - u)T_m + \eta^{-1}T_{m,t})\psi_1 + \frac{2\eta}{g}T_m\psi_2.$$

Combining these relations, we obtain

(1.3.20)
$$\frac{\partial \psi_1}{\partial x} = -\frac{1}{q} T_{m,t} \psi_1 + \frac{2T_m}{q} \frac{\partial \psi_1}{\partial t}.$$

Substituting (1.3.15) into (1.3.20), we find

(1.3.21)
$$\frac{\partial \psi}{\partial t} = \frac{g}{2T_m} \frac{\partial \psi}{\partial x} + \frac{gT_{m,x}}{4T_m^2} \psi.$$

Therefore, by setting

$$\mathfrak{a}_{(\text{II-2},m)} = \frac{g}{2T_m},$$

we arrive at

(1.3.23)
$$\frac{\partial \psi}{\partial t} = \mathfrak{a}_{(\text{II-2},m)} \frac{\partial \psi}{\partial x} - \frac{1}{2} \frac{\partial \mathfrak{a}_{(\text{II-2},m)}}{\partial x} \psi.$$

In what follows, (1.3.17) (resp., (1.3.23)) is referred to as $(SL_{\text{II-2}})_m$ and $(D_{\text{II-2}})_m$, and our aim is to analyze them by substituting a 0-parameter solution (\hat{u}, \hat{v}) of $(P_{\text{II-2}})_m$ in their coefficients. We refer the reader to [N]

concerning the existence proof of a 0-parameter solution and its basic properties. In parallel with the preceding subsections, we introduce another set of formal series

(1.3.24)
$$b_j(t,\eta) = b_{j,0}(t) + b_{j,1}(t)\eta^{-1} + \cdots \quad (j=1,\ldots,m)$$

as solutions of the equation

(1.3.25)
$$T_m(x,t,\eta) \Big|_{(u,v)=(\hat{u},\hat{v}),x=b_j(t,\eta)} = 0.$$

It is then clear that $x = b_{j,0}(t)$ is a singular point of $Q_{(\text{II-2},m)}$ and $\mathfrak{a}_{(\text{II-2},m)}$, and that it is a double turning point of $(SL_{\text{II-2}})_m$. These facts are completely in parallel with the results we obtained in the preceding subsections.

§2. Regularity of S_{odd} near $x = b_{i,0}(t)$

In Section 1 we have derived a pair of Schrödinger equation $(SL_J)_m$ and its deformation equation $(D_J)_m$ from the Lax pair $(L_J)_m(J=I,II-1,II-2)$. We have also confirmed that all of them share the following important property: the point $x=b_{j,0}(t)$ $(j=1,\cdots,m)$ is a double turning point of the Schrödinger equation we obtained, where $b_{j,0}(t)$ is the top order term of the formal series $b_j(t,\eta)$ which is determined algebraically by a 0-parameter solution of $(P_J)_m$ (J=I,II-1,II-2). In the subsequent section (Section 3) we will construct a formal transformation that reduces $b_j(t,\eta)$ to a 0-parameter solutin of the traditional Painlevé-I equation (i.e., $(P_I)_1$) near an appropriate turning point of $(P_J)_m$, and in this section we prepare some results needed for the construction. As our reasoning in this section applies uniformly to every $(SL_J)_m(J=I,II-1,II-2)$, we omit the suffix (J,m) of $Q_{(J,m)}$ and $\mathfrak{a}_{(J,m)}$. In what follows we let S^{\pm} denote the solution of the Riccati equation associated with $(SL_J)_m$, i.e.,

$$(2.1) (S^{\pm})^2 + \frac{\partial S^{\pm}}{\partial x} = \eta^2 Q,$$

that begins with $\pm \eta \sqrt{Q_0}$ (with an appropriate choice of the branch of $\sqrt{Q_0}$). We also use the symbol S_{odd} to denote

$$(2.2) \frac{1}{2}(S^+ - S^-).$$

We note that the definition of S_{odd} given here is different from that given in [KT1], although they coincide in the situation discussed in [KT1]. As a

matter of fact, they are also coincident for $(SL_1)_m$ by a result on the structure of a 0-parameter solution (cf. Appendix); in general, if Q has the form

(2.3)
$$\sum_{l>0} \eta^{-2l} Q_{2l},$$

then the two definitions coincide. When Q contains odd degree terms in η , the definition given in [KT1] does not work; then we should use the definition (2.2). Making use of the reasoning in [AKT,§2], we can readily deduce the following relation (2.4) from $(D_J)_m$:

(2.4)
$$\frac{\partial S_{\text{odd}}}{\partial t} = \frac{\partial}{\partial x} (\mathfrak{a} S_{\text{odd}})$$

for S_{odd} thus defined.

Remark 2.1. We note that the denominator of \mathfrak{a} is a polynomial of degree m in x; in the analysis of the traditional Painlevé equations ([O], [KT1]), the corresponding function was linear in x.

Now, using the relation (2.4) we prove the following.

Theorem 2.1. Assume that $x = b_{j,0}(t)$ is an exactly double zero of $Q_0(x,t)$ near $(x,t) = (b_{j,0}(t_0),t_0)$. Then the series S_{odd} and $\mathfrak{a}S_{\text{odd}}$ are holomorphic on a neighborhood of $x = b_{j,0}(t)$ in the sense that each of their coefficients as formal power series in η^{-1} is holomorphic on the neighborhood of $x = b_{j,0}(t)$.

Proof. For the sake of the uniformity of the presentation we use the symbol U also to denote $T_m/(gx)$ if J=II-1 and $4T_m/g$ if J=II-2. Let us substitute a 0-parameter solution into the coefficients of \mathfrak{a} and U and expand them in powers of η^{-1} as follows:

(2.5)
$$\mathfrak{a} = \sum_{j>0} \mathfrak{a}_j(x,t)\eta^{-j},$$

(2.6)
$$U = \sum_{j>0} U_j(x,t)\eta^{-j}.$$

To simplify the notation we let R denote S_{odd} ; in accordance with this convention, R_l stands for the coefficient of η^{-l} in the expansion of S_{odd} . It then follows from (2.4) that

(2.7)
$$\frac{\partial R_{m-1}}{\partial t} = \frac{\partial}{\partial x} \left(\sum_{k=0}^{m} \mathfrak{a}_k R_{m-1-k} \right).$$

It also follows from the definition of \mathfrak{a} that

(2.8)
$$U_0 \mathfrak{a}_k + \sum_{l=1}^k U_l \mathfrak{a}_{k-l} = 0 \text{ for } k \ge 1.$$

Since $U_l(l \geq 0)$ is a polynomial in x, (2.8) shows that \mathfrak{a}_k has the form $N_k U_0^{-k-1}$ with some polynomial N_k in x.

Now, combining (2.7) and (2.8), we find

$$(2.9) \quad \frac{\partial R_{m-1}}{\partial t} = \quad \frac{\partial}{\partial x} (\mathfrak{a}_0 R_{m-1}) - \frac{\partial}{\partial x} \left[\frac{1}{U_0} \sum_{k=1}^m \left(\left(\sum_{l=1}^k U_l \mathfrak{a}_{k-l} \right) R_{m-1-k} \right) \right]$$

$$= \quad \frac{\partial}{\partial x} (\mathfrak{a}_0 R_{m-1}) - \frac{\partial}{\partial x} \left[\frac{1}{U_0} \left(\sum_{l=1}^m U_l \left(\sum_{k=l}^m \mathfrak{a}_{k-l} R_{m-1-k} \right) \right) \right]$$

$$= \quad \frac{\partial}{\partial x} (\mathfrak{a}_0 R_{m-1}) - \frac{\partial}{\partial x} \left[\frac{1}{U_0} \left(\sum_{s=0}^m U_{m-s} \left(\sum_{r=0}^s \mathfrak{a}_r R_{s-1-r} \right) \right) \right] .$$

Making use of (2.9) we show that there exists an open neighborhood ω of $x = b_{j,0}(t)$ on which the following assertion $(\mathcal{A})_n$ is validated for $n = 0, 1, 2, \cdots$:

$$(\mathcal{A})_n: \begin{cases} \text{(i)} & R_{n-1} \text{ is holomorphic,} \\ \text{(ii)} & \sum_{l=0}^n \mathfrak{a}_l R_{n-1-l} \text{ is holomorphic.} \end{cases}$$

We prove this by the induction on n. But, before embarking on proving this, we make some preparatory study on the structure of the function $R_l = (S_l^+ - S_l^-)/2$. By solving the Riccati equation (2.1) we can find a neighborhood ω of $x = b_{j,0}(t)$ on which S_l^{\pm} has the following form:

(2.10)
$$\frac{C_l^{\pm} P_l^{\pm}}{(S_{-1}^{\pm})^{p_{l,\pm}} U_0^{q_{l,\pm}}},$$

where $p_{l,\pm}$ and $q_{l,\pm}$ are some non-negative integers, C_l^{\pm} is an analytic function that does not vanish on ω and P_l^{\pm} is a polynomial in x that depends analytically on t on ω . Since S_{-1}^{\pm} has the form $\pm \alpha U_0$ with a non-vanishing analytic factor α on ω , we may assume every S_l^{\pm} , in particular S_n^{\pm} , has the form $\widetilde{C}^{\pm}P^{\pm}U_0^{p\pm}$ with an integer p_{\pm} , a polynomial P_{\pm} in x and a non-vanishing

analytic factor \widetilde{C}^{\pm} on ω . Hence we find R_n has the form $\widetilde{C}PU_0^p$ with an integer p, a polynomial P in x and a non-vanishing analytic factor \widetilde{C} on ω . Here P is assumed not to vanish identically on $\{(x,t); x=b_{j,0}(t)\}$. Having this structure of R_n in mind, we embark on the confirmation of $(\mathcal{A})_n$ by the induction on n. First of all, $(\mathcal{A})_0$ is clear, because R_{-1} has the form αU_0 with an analytic factor α on ω and $\mathfrak{a}_0 = 2/U_0$ (resp., $2x/U_0$) for J = I or J = II-2 (resp., J = II-1). Let us next assume that $(\mathcal{A})_m$ is validated for $m = 0, 1, \dots, n$. Then this induction hypothesis guaratees that

(2.11)
$$\sum_{s=0}^{n} U_{n+1-s} \left(\sum_{r=0}^{s} \mathfrak{a}_r R_{s-1-r} \right)$$

is holomorphic on ω , and hence the second term in the right-hand side of (2.9) with m = n + 1, namely,

$$(2.12) -\frac{\partial}{\partial x} \left[\frac{1}{U_0} \left(\sum_{s=0}^n U_{n+1-s} \left(\sum_{r=0}^s \mathfrak{a}_r R_{s-1-r} \right) \right) \right],$$

has an at most double pole at $x=b_{j,0}(t)$ that originates from the simple pole factor U_0^{-1} . On the other hand, our preparatory study on the structure of R_n shows that $\partial R_n/\partial t$ has the form βU_0^{p-1} with an analytic factor β on ω and that $\partial (\mathfrak{a}_0 R_n)/\partial x = \partial (2\widetilde{C}PU_0^{p-1})/\partial x = \widetilde{\beta}U_0^{p-2}$ with another non-vanishing analytic factor $\widetilde{\beta}$ on ω . Therefore (2.9) with m=n+1 implies $p\geq 0$, i.e., R_n should be holomorphic. This validates the first part of the assertion $(\mathcal{A})_{n+1}$. It also entails that $\partial R_n/\partial t$ is holomorphic on ω , and hence the relation (2.7) with m=n+1 shows that

(2.13)
$$\frac{\partial}{\partial x} \left(\sum_{k=0}^{n+1} \mathfrak{a}_k R_{n-k} \right)$$

is holomorphic on ω . But, then, in view of the structure of \mathfrak{a}_k and R_{n-k} , that is, the fact that their singularities, if any, are of the form U_0^{-r} for some non-negative integer r, we conclude that

$$(2.14) \qquad \qquad \sum_{r=0}^{n+1} \mathfrak{a}_k R_{n-k}$$

should be holomorphic on ω . This is nothing but the second part of the assertion $(\mathcal{A})_{n+1}$. Thus the induction proceeds.

It is clear that the validity of $(\mathcal{A})_n$ for every $n(n=0,1,2,\cdots)$ means that $R=S_{\mathrm{odd}}$ and $\mathfrak{a}S_{\mathrm{odd}}$ are holomorphic on ω . This completes the proof of the theorem.

- §3. Reduction of $b_j(t,\eta)$ $(j=1,\ldots,m)$ to a 0-parameter solution of $(P_{\mathbf{I}})_1$
- §3.1. Some preparation of notions and notations about the Stokes geometry of $(P_J)_m$ and that of $(SL_J)_m$ (J = I, II-1, II-2).

Before entering the analysis of $(SL_J)_m$ we clarify the geometric setting on which we consider the problem. To begin with, let us fix a turning point $t = \tau$ of the first kind of $(P_J)_m$ (J = I, II-1, II-2) in the sense of [KKNT, §2], that is, there exist two solutions $\nu_{\pm}(t)$ of the characteristic equation of the linearization of $(P_J)_m$ at a 0-parameter solution (often called the Fréchet derivative of $(P_J)_m$) which merge at $t = \tau$ and whose values $\nu_{\pm}(\tau)$ are 0. Then it follows from the explicit form of the characteristic equation of the Fréchet derivative (cf. [KKNT, (2.1.23), (2.2.13), (2.3.8)]) that some $b_{i,0}(t)$, a double turning point of $(SL_J)_m$, and a simple turning point, say a(t), of $(SL_J)_m$ merge at $t=\tau$. Note that every turning point of $(P_J)_m$ is of the first kind if m=1. This explains why the turning point is not assumed to be of the first kind in [KT1]. We further assume, as in [KT1], that the turning point is simple: unlike the situation discussed in KT1, we want to impose the condition without using the explicit form of the equation and employ the general definition given in [AKKT]. However, the characteristic equation written in t-variable has singularities at turning points and an immediate application of [AKKT] is not possible. Hence we use a local parameter u of the Riemann surface \mathcal{R} associated with the 0-parameter solution as the independent variable that replaces t. Note that the Stokes geometry of $(P_J)_m$ is described on \mathcal{R} (cf. [KKNT] and [NT]). Thus we require that the characteristic polynomial $P(u,\nu)$ of the Fréchet derivative of $(P_J)_m$ should satisfy the following conditions at $\hat{u}_0 = u(\tau)$:

(3.1.1)
$$P(\hat{u}_0, 0) = \frac{\partial P_0}{\partial \nu}(\hat{u}_0, 0) = 0$$

(3.1.2)
$$\frac{\partial P}{\partial u}(\hat{u}_0, 0) \neq 0, \quad \frac{\partial^2 P}{\partial \nu^2}(\hat{u}_0, 0) \neq 0.$$

These conditions guarantee that τ is a square-root branch point of \mathcal{R} , and hence they imply that

(3.1.3)
$$\nu_{\pm}(t)$$
 is of exactly order $(t-\tau)^{1/4}$.

The results in [KKNT, §2] tell us then that

$$(3.1.4) \nu_{-} = -\nu_{+}$$

and

(3.1.5)
$$\int_{\tau}^{t} \nu_{+}(s)ds = 2 \int_{a(t)}^{b_{j,0}(t)} \sqrt{Q_{(J,m),0}(x,t)} dx$$

hold. Note that a Stokes curve of $(P_J)_m$ that emanates from τ is, by definition, given by

(3.1.6)
$$\operatorname{Im} \int_{\tau}^{t} \nu_{+}(s) ds = 0.$$

Since $a(\tau)$ and $b_{j,0}(\tau)$ coincide by their definition, (3.1.5) guarantees that a(t) and $b_{j,0}(t)$ are connected by a Stokes curve (or, rather a Stokes segment) of $(SL_J)_m$ if t is a point in a Stokes curve of $(P_J)_m$ that is sufficiently close to τ . Note, however, that Stokes curves of $(P_J)_m$ cross for $m \geq 2$, and that the so-called Nishikawa phenomena ([N]) are observed at crossing points. Hence we cannot expect, in general, that a(t) and $b_{j,0}(t)$ are connected by a Stokes curve of $(SL_J)_m$ even if t lies in a Stokes curve of $(P_J)_m$. Thus we consider the problem near a point $\sigma(\neq \tau)$ in a Stokes curve of $(P_J)_m$ that emanates from τ and that satisfies the following condition:

(3.1.7)
$$a(\sigma)$$
 and $b_{j,0}(\sigma)$ are connected by a Stokes curve of $(SL_J)_m$.

In this geometric setting we try to reduce $b_j(t, \eta)$ to a 0-parameter solution of $(P_I)_1$ on a neighborhood of σ . This is what we will achieve in the next subsection.

§3.2. Construction of formal transformations

In the setting described in Section 3.1 we construct appropriate formal transformations $\tilde{x}(x,t,\eta)$ and $\tilde{t}(t,\eta)$ for which the following relation holds:

(3.2.1)
$$\tilde{x}(x,t,\eta) \mid_{x=b_i(t,\eta)} = \lambda_{\mathrm{I}}(\tilde{t}(t,\eta),\eta),$$

where $\lambda_{\rm I}(\tilde{t},\eta)$ stands for a 0-parameter solution of the traditional Painlevé-I equation, that is,

(3.2.2)
$$\frac{d^2\lambda_{\rm I}}{d\tilde{t}^2} = \eta^2 (6\lambda_{\rm I}^2 + \tilde{t}).$$

Note that a 0-parameter solution is uniquely fixed once we fix the branch of its highest degree term $\lambda_0(t) = \sqrt{-t/6}$. In what follows we also use symbols $\nu_{\rm I}(\tilde{t},\eta)$ and $\widetilde{Q}(\tilde{x},\tilde{t},\eta)$ to denote respectively

$$(3.2.3)$$
 $\eta^{-1}d\lambda_{\text{I}}/d\tilde{t}$

and

$$(3.2.4) 4\tilde{x}^3 + 2\tilde{t}\tilde{x} + \nu_{\rm I}^2 - 4\lambda_{\rm I}^3 - 2\tilde{t}\lambda_{\rm I} - \eta^{-1}\frac{\nu_{\rm I}}{\tilde{x} - \lambda_{\rm I}} + \eta^{-2}\frac{3}{4(x - \lambda_{\rm I})^2}.$$

We note that \widetilde{Q} is the potential of the Schrödinger equation $(SL_{\rm I})$ that is associated with the traditional Painlevé-I equation in the notation of [KT1]. Hence we use the symbol $\widetilde{S}_{\rm I,odd}$ (\tilde{x},\tilde{t}) to denote the odd part of a solution \widetilde{S} of the Riccati equation associated with $(SL_{\rm I})$, that is,

(3.2.5)
$$\widetilde{S}^2 + \frac{\partial \widetilde{S}}{\partial \widetilde{x}} = \eta^2 \widetilde{Q}.$$

Using these symbols we first prove the following

Proposition 3.2.1. Let τ be a simple turning point of the first kind of $(P_J)_m$ $(J = I, II-1, II-2; m = 1, 2, 3, \cdots)$, and let $\sigma(\neq \tau)$ be a point that is sufficiently close to τ (that is, σ satisfies the assumption (3.1.7)) and that lies in a Stokes curve of $(P_J)_m$ which emanates from τ . Let γ denote the Stokes segment which connects turning points $b_{j,0}(t)$ and a(t) of $(SL_J)_m$ that are fixed in terms of τ in Section 3.1. Then there exist a neighborhood Ω of γ , a neighborhood ω of σ and holomorphic functions $\tilde{x}_j(x,t)$ $(j=0,1,2,\cdots)$ on $\Omega \times \omega$ and $\tilde{t}_j(t)$ $(j=0,1,2,\cdots)$ on ω so that they satisfy the following relations:

(i) The function $\tilde{t}_0(t)$ satisfies the following relation

(3.2.6)
$$\int_{\tau}^{t} \nu_{+}(s) ds = \left(\int_{0}^{t} \sqrt{12\lambda_{0}(\tilde{s})} d\tilde{s} \right) \Big|_{\tilde{t} = \tilde{t}_{0}(t)},$$

where ν_+ denotes the solution of the characteristic equation of the Fréchet derivative of $(P_J)_m$ which is fixed in terms of τ in Section 3.1.

- (ii) $\tilde{x}_0(b_{j,0}(t),t) = \lambda_0(\tilde{t}_0(t))$ and $\tilde{x}_0(a(t),t) = -2\lambda_0(\tilde{t}_0(t))$.
- (iii) $d\tilde{t}_0/dt \neq 0$ on ω and $\partial \tilde{x}_0/\partial x \neq 0$ on $\Omega \times \omega$.
- (iv) Letting $\tilde{x}(x,t,\eta)$ and $\tilde{t}(t,\eta)$ respectively denote $\sum_{j\geq 0} \tilde{x}_j(x,t)\eta^{-j}$ and $\sum_{j\geq 0} \tilde{t}_j(t)\eta^{-j}$, we find the following relation:

(3.2.7)
$$Q_{(J,m)}(x,t,\eta) = \left(\frac{\partial \tilde{x}}{\partial x}\right)^{2} \widetilde{Q}(\tilde{x}(x,t,\eta),\tilde{t}(t,\eta),\eta) - \frac{1}{2} \eta^{-2} \{\tilde{x}(x,t,\eta);x\},$$

where $\{\tilde{x}; x\}$ denotes the Schwarzian derivative

(3.2.8)
$$\frac{\partial^3 \tilde{x}/\partial x^3}{\partial \tilde{x}/\partial x} - \frac{3}{2} \left(\frac{\partial^2 \tilde{x}/\partial x^2}{\partial \tilde{x}/\partial x} \right)^2.$$

Proof. To begin with, we note that the relation (3.2.7) follows from the following relation (3.2.9) together with the relevant Riccati equations (cf. [AKT]):

(3.2.9)
$$S_{(J,m),\text{odd}}(x,t,\eta) = \left(\frac{\partial \tilde{x}}{\partial x}\right) \tilde{S}_{I,\text{odd}}(\tilde{x}(x,t,\eta),\tilde{t}(t,\eta),\eta),$$

where $S_{(J,m),\text{odd}}$ stands for the odd part of a solution of the Riccati equation (2.1) with $Q = Q_{(J,m)}$. To simplify the notations, we use the symbol R and \widetilde{R} respectively to denote $S_{(J,m),\text{odd}}$ and $\widetilde{S}_{I,\text{odd}}$; accordingly R_l and \widetilde{R}_l respectively stand for the coefficient of η^{-l} $(l = -1, 0, 1, 2, \cdots)$ of R and \widetilde{R} .

In constructing $\tilde{x}_j(x,t)$ and $\tilde{t}_j(t)$ in an inductive manner, we make use of the following assertion $(\mathcal{C})_n$ $(n=0,1,2,\cdots)$ to make the argument run smoothly:

 $(\mathcal{C})_n$ We can construct $\{\tilde{x}_j(x,t)\}_{0\leq j\leq n}$ and $\{\tilde{t}_j(t)\}_{0\leq j\leq n}$ so that (3.2.9) holds modulo terms of order equal to or at most η^{-n} .

Let us first show $(C)_0$; the way of our reasoning is exactly the same as that used in [KT1], but for the sake of completeness we repeat it here. [The only difference is the usage of \sim in the rotations (x, t) etc. and (\tilde{x}, \tilde{t}) etc.; it is reversed here.] The construction of the function $\tilde{t}_0(t)$ is attained by solving the implicit relation (3.2.6); we readily find it is a constant multiple of

$$\left(\int_{\tau}^{t} \nu_{+}(s)ds\right)^{4/5},$$

which is holomorphic on a neighborhood of τ by the relation (3.1.3). If we define $\tilde{\sigma}$ by $\tilde{t}_0(\sigma)$, the relation (3.2.6) implies that $\tilde{\sigma}$ lies on a Stokes curve of $(P_{\rm I})$, and hence a double turning point $\tilde{x} = \lambda_0(\tilde{\sigma})$ and a simple turning point $x = \tilde{a}(\tilde{\sigma}) = -2\lambda_0(\tilde{\sigma})$ of $(SL_{\rm I})$ are connected by a Stokes segment $\tilde{\gamma}$ of $(SL_{\rm I})$. Here we note that $(SL_{\rm I})$ has one double turning point and one simple turning point if $\tilde{t} \neq 0$; in fact we know

$$(3.2.11) \widetilde{Q}_0 = 4(\tilde{x} - \lambda_0(\tilde{t}))^2(\tilde{x} + 2\lambda_0(\tilde{t})).$$

Now we note

(3.2.12)
$$\int_0^{\tilde{t}} \sqrt{12\lambda_0(\tilde{s})} d\tilde{s} = 2 \int_{-2\lambda_0(\tilde{t})}^{\lambda_0(\tilde{t})} \sqrt{\widetilde{Q}_0(\tilde{x}, \tilde{t})} d\tilde{x}$$

holds as a special case of (3.1.5). Hence combining (3.1.5), (3.2.6) and (3.2.12) we find

(3.2.13)
$$\int_{a(t)}^{b_{j,0}(t)} \sqrt{Q_{(J,m),0}(x,t)} dx = \int_{-2\lambda_0(\tilde{t}_0(t))}^{\lambda_0(\tilde{t}_0(t))} \sqrt{\widetilde{Q}_0(\tilde{x},\tilde{t})} d\tilde{x}.$$

Furthermore it is a real number when t lies in the Stokes curve of $(P_J)_m$ in question; we may assume without loss of generality that the number is negative. We let $\rho = \rho(t)$ denote the number multiplied by (-1). Let us now introduce the following functions $z_1(x,t)$ and $z_2(\tilde{x},t)$:

(3.2.14)
$$z_1(x,t) = \int_{h_{i,0}(t)}^{x} \sqrt{Q_{(J,m),0}(y,t)} dy,$$

$$(3.2.15) z_2(\tilde{x},t) = 2 \int_{\lambda_0(\tilde{t}_0(t))}^{\tilde{x}} (\tilde{y} - \lambda_0(\tilde{t}_0(t))) \sqrt{\tilde{y} + 2\lambda_0(\tilde{t}_0(t))} d\tilde{y}.$$

We then try to construct $\tilde{x}_0(x,t)$ that satisfies

$$(3.2.16) z_1(x,t) = z_2(\tilde{x}_0(x,t),t).$$

It is clear that (3.2.16) guarantees (3.2.9) at the level of η^{-1} . Hence the construction of $\tilde{x}_0(x,t)$ satisfying (3.2.16) will show (\mathcal{C})₀.

Now, the following assertions immediately follow from the definitions of

 z_1, z_2 and ρ :

- (3.2.17) $z_1(\gamma, t)$, i.e., the image of the segment γ by the map z, is a closed interval $[0, \rho]$,
- (3.2.18) $\partial z_1/\partial x \neq 0$ on γ except for its endpoints,
- (3.2.19) $z_1^{1/2}$ is holomorphic at $x = b_{j,0}(t)$ and $(\partial z_1^{1/2}/\partial x) \mid_{x=b_{j,0}(t)} \neq 0$,
- (3.2.20) $(z_1-\rho)^{2/3}$ is holomorphic at x=a(t) and $\frac{\partial}{\partial x}(z_1-\rho)^{2/3}\mid_{x=a(t)}\neq 0$,
- (3.2.21) $z_2(\tilde{\gamma}, t) = [0, \rho],$
- (3.2.22) $\partial z_2/\partial \tilde{x} \neq 0$ on $\tilde{\gamma}$ except for its endpoints,
- (3.2.23) $z_2^{1/2}$ is holomorphic at $\tilde{x} = \lambda_0(\tilde{t}_0(t))$ and $\frac{\partial}{\partial \tilde{x}} z_2^{1/2} \mid_{\tilde{x} = \lambda_0(\tilde{t}_0(t))} \neq 0$,
- (3.2.24) $(z_2 \rho)^{2/3}$ is holomorphic at $\tilde{x} = -2\lambda_0(\tilde{t}_0(t))$.

We next consider the composition of maps z_1 and z_2^{-1} , the inverse map of z_2 , and we denote it by x_0 , that is,

$$(3.2.25) x_0 = z_2^{-1} \circ z_1 : \gamma \to \tilde{\gamma}.$$

It is then clear that

$$(3.2.26) x_0(b_{j,0}(t), t) = \lambda_0(\tilde{t}_0(t))$$

and

$$(3.2.27) x_0(a(t), t) = -2\lambda_0(\tilde{t}_0(t))$$

hold. It also follows from (3.2.18) and (3.2.22) that x_0 is holomorphic on γ except for its endpoints and that $\partial x_0/\partial \tilde{x} \neq 0$ holds there. To confirm its analyticity at $b_{j,0}(t)$ and a(t), first say at $b_{j,0}(t)$, let us consider the following equation for $\tilde{x}_0^{\dagger}(x,t)$ near $x=b_{j,0}(t)$:

$$(3.2.28) z_1(x,t)^{1/2} = z_2(\tilde{x}_0^{\dagger}(x,t),t)^{1/2},$$

where the branch of $z_1^{1/2}$ (resp., $z_2^{1/2}$) is chosen so that it may be positive in γ (resp., $\tilde{\gamma}$). It then follows from (3.2.19) and (3.2.23) that (3.2.28) has a unique holomorphic solution $\tilde{x}_0^{\dagger}(x,t)$ near $x=b_{i,0}(t)$ that satisfies

(3.2.29)
$$\tilde{x}_0^{\dagger}(b_{j,0}(t),t) = \lambda_0(\tilde{t}_0(t)) \quad \text{and} \quad \frac{\partial \tilde{x}_0^{\dagger}}{\partial x}(b_{j,0}(t),t) \neq 0.$$

It is clear that \tilde{x}_0^{\dagger} and x_0 coincide on their common domain of definition. Hence \tilde{x}_0 is holomorphic at $x = b_{j,0}(t)$ and $\partial \tilde{x}_0/\partial x$ does not vanish there. The holomorphy of $\tilde{x}_0(x,t)$ at x = a(t) is also confirmed by a similar reasoning if we start with the following equation (3.2.30) instead of (3.2.28):

$$(3.2.30) (z_1(x,t) - \rho)^{2/3} = (z_2(\tilde{x}(x,t),t) - \rho)^{2/3}.$$

Thus we have proved $(C)_0$. In the course of the proof we have also confirmed properties (i), (ii) and (iii) in the statement of the proposition.

We now embark on the proof of $(C)_n$ $(n \ge 1)$. Our method of the proof is essentially the same as that given in [KT1]. There is, however, one important difference: we have to construct non-zero \tilde{x}_j and \tilde{t}_j even for odd j. (As we show in Appendix, a 0-parameter solution of $(P_{\rm I})_m$ enjoys a nice property which guarantees (2.3); in this case we may assume $\tilde{x}_j = \tilde{t}_j = 0$ for odd j. But a 0-parameter solution of $(P_{\rm II-1})_m$ or $(P_{\rm II-2})_m$ does not have the property.) Our strategy of the proof is to construct a solution of the equation (3.2.31.n) below globally on $\Omega \times \omega$ by matching a solution holomorphic near $x = b_{j,0}(t)$ with another solution holomorphic near x = a(t) with an appropriate choice of the "parameter" $\tilde{t}_n(t)$. One technical problem in putting this idea into practice is the non-analyticity of the coefficients of (3.2.32.n) at x = a(t); we circumvent this problem by considering another defining equation (3.2.33.n) of x_n as a replacement of (3.2.32.n).

Now the actual task in proceeding from $(\mathcal{C})_{n-1}$ to $(\mathcal{C})_n$ $(n \geq 1)$ is to construct $\tilde{x}_n(x,t)$ and $\tilde{t}_n(t)$, the coefficients of η^{1-n} of (3.2.9), so that the following relation (3.2.31.n) may be satisfied globally on $\Omega \times \omega$:

$$(3.2.31.n) R_{n-1}(x,t) = \widetilde{R}_{-1}(\widetilde{x}_0(x,t),\widetilde{t}_0(x,t)) \frac{\partial \widetilde{x}_n}{\partial x}(x,t)$$

$$+ \frac{\partial \widetilde{x}_0}{\partial x}(x,t) \left\{ \frac{\partial \widetilde{R}_{-1}}{\partial \widetilde{x}}(\widetilde{x}_0(x,t),\widetilde{t}_0(x,t))\widetilde{x}_n(x,t) \right.$$

$$+ \frac{\partial \widetilde{R}_{-1}}{\partial \widetilde{t}}(\widetilde{x}_0(x,t),\widetilde{t}_0(x,t))\widetilde{t}_n(x,t) \right\} + \widetilde{\rho}_n \quad (n \ge 1),$$

where $\tilde{\rho}_n$ is a function of $\{\tilde{x}_j, \tilde{t}_k\}_{0 \leq j,k \leq n-1}$. Note that Theorem 2.1 guarantees that (3.2.31.n) is a differential equation for $\tilde{x}_n(x,t)$ with analytic coefficients near $x = b_{j,0}(t)$. To make the computation run smoothly we introduce a new variable z by defining it to be $\tilde{x}_0(x,t)$. Then (3.2.31.n) can be rewritten as

follows:

(3.2.32.n)
$$\left(\widetilde{R}_{-1} \frac{\partial}{\partial z} + \frac{\partial \widetilde{R}_{-1}}{\partial \widetilde{x}} \right) \widetilde{x}_n = \left(\frac{\partial \widetilde{x}_0}{\partial x} \right)^{-1} (R_{n-1} - \widetilde{\rho}_n) - \frac{\partial \widetilde{R}_{-1}}{\partial \widetilde{t}} \widetilde{t}_n.$$

We also find the following relation (3.2.33.n) through the comparison of the coefficients of η^{-n} of (3.2.7) (divided by $(\partial \tilde{x}_0/\partial x)^2$):

(3.2.33.n)
$$\left(2\widetilde{Q}_0 \frac{\partial}{\partial z} + \frac{\partial \widetilde{Q}_0}{\partial \tilde{x}}\right) \tilde{x}_n$$

$$= \left(\frac{\partial \tilde{x}_0}{\partial x}\right)^{-2} (Q_n - \tilde{r}_n) - \frac{\partial \widetilde{Q}_0}{\partial \tilde{t}} \tilde{t}_n,$$

where \tilde{r}_n is a holomorphic function of $\{\tilde{x}_j, \tilde{t}_k\}_{0 \leq j,k \leq n-1}$. In what follows we let $L_{\widetilde{R}}$ and $L_{\widetilde{Q}}$ denote respectively the differential operator

$$(3.2.34) \widetilde{R}_{-1} \frac{\partial}{\partial z} + \frac{\partial \widetilde{R}_{-1}}{\partial \widetilde{x}}$$

and another differential operator

$$(3.2.35) 2\widetilde{Q}_0 \frac{\partial}{\partial z} + \frac{\partial \widetilde{Q}_0}{\partial \widetilde{z}}.$$

Clearly they satisfy

$$(3.2.36) 2\sqrt{\widetilde{Q}_0}L_{\widetilde{R}} = L_{\widetilde{Q}}.$$

It also follows immediately from the induction hypothesis that

$$(3.2.37) 2\sqrt{\widetilde{Q}_0} \left(\frac{\partial \widetilde{x}_0}{\partial x}\right)^{-1} (R_{n-1} - \widetilde{\rho}_n) = \left(\frac{\partial \widetilde{x}_0}{\partial x}\right)^{-2} (Q_{n-1} - \widetilde{r}_n).$$

Therefore (3.2.32.n) and (3.2.33.n) are equivalent; in what follows we make full use of this fact. Let us first note that the differential equation $L_{\tilde{R}}u=f$ (resp., $L_{\tilde{Q}}v=g$) has a unique holomorphic solution u (resp., v) near $z=\lambda_0(\tilde{t}_0(t))$ (resp., $z=-2\lambda_0(\tilde{t}_0(t))$) if f (resp., g) is holomorphic there, because the characteristic exponent of $L_{\tilde{R}}$ (resp., $L_{\tilde{Q}}$) at $z=\lambda_0$ (resp., $z=-2\lambda_0$) is equal to -1 (resp., -1/2). Now let f_1 and f_2 respectively denote $(\partial \tilde{x}_0/\partial x)^{-1}(R_{n-1}-\tilde{\rho}_n)$ and $\partial \tilde{R}_{-1}/\partial \tilde{t}$. Then Theorem 2.1 together with the

induction hypothesis guarantees that f_1 and f_2 are holomorphic near $z = \lambda_0$. Hence we find a unique holomorphic solution ϕ_i of the equation

(3.2.38)
$$L_{\tilde{R}}\phi_{i} = f_{i} \quad (j = 1, 2)$$

near $z = \lambda_0$. Since (3.2.37) entails the holomorphy of $2\sqrt{\widetilde{Q}_0}f_1$ at $z = -2\lambda_0$ and since $2\sqrt{\widetilde{Q}_0}f_2 = \partial \widetilde{Q}_0/\partial \widetilde{t}$ is clearly holomorphic at $z = -2\lambda_0$, we find a unique holomorphic solution $\hat{\phi}_j$ of the equation

(3.2.39)
$$L_{\tilde{Q}}\hat{\phi}_{j} = 2\sqrt{\tilde{Q}_{0}}f_{j} \quad (j=1,2)$$

near $z=-2\lambda_0$. Let now ϕ denote a non-zero multi-valued analytic solution of $L_{\widetilde{R}}\phi=0$ on a neighborhood of γ ; it is unique up to a constant multiple. On the other hand, (3.2.36) implies

(3.2.40)
$$L_{\tilde{Q}}\phi_{j} = 2\sqrt{\tilde{Q}_{0}}f_{j} \quad (j = 1, 2)$$

near $z=-2\lambda_0$ after the analytic continuation of ϕ_j along γ . Therefore we find

(3.2.41)
$$\phi_j - \hat{\phi}_j = c_j \phi \quad (j = 1, 2)$$

for some constants c_j (j=1,2). If we can choose a constant \tilde{t}_n so that

$$(3.2.42) c_1 - \tilde{t}_n c_2 = 0$$

holds, then, by choosing

$$\tilde{x}_n = \phi_1 - \tilde{t}_n \phi_2,$$

we find that all the required conditions are satisfied. Thus what remains to be done is the confirmation of the non-vanishing of the constant c_2 . It follows from the definition of the operator $L_{\tilde{R}}$ and the function f_2 together with the explicit form of $(SL_{\rm I})$ (cf. (3.2.11)) that ϕ_2 satisfies the following relation near $z = \lambda_0$:

(3.2.44)

$$2(z+2\lambda_0)^{1/2}(z-\lambda_0)\frac{\partial\phi_2}{\partial z} + \{(z-\lambda_0)(z+2\lambda_0)^{-1/2} + 2(z+2\lambda_0)^{1/2}\}\phi_2$$
$$= -2(z+2\lambda_0)^{1/2}\frac{d\lambda_0}{d\tilde{t}} + 2(z-\lambda_0)(z+2\lambda_0)^{-1/2}\frac{d\lambda_0}{d\tilde{t}},$$

that is,

$$(3.2.45) (z+2\lambda_0)(z-\lambda_0)\frac{\partial\phi_2}{\partial z} + \frac{3}{2}(z+\lambda_0)\phi_2 = -3\lambda_0\frac{d\lambda_0}{d\tilde{t}}.$$

Since we know (cf. (3.2.2))

$$(3.2.46) 6\lambda_0(\tilde{t})^2 + \tilde{t} = 0,$$

the right-hand side of (3.2.45) is equal to 1/4. Hence by integrating (3.2.45) we find

(3.2.47)
$$\phi_2 = \frac{1}{4(z - \lambda_0)\sqrt{(z + 2\lambda_0)}} \int_{\lambda_0}^z \frac{dw}{\sqrt{w + 2\lambda_0}}.$$

Then we analytically continue ϕ_2 near $z=-2\lambda_0$ to find

$$(3.2.48) \qquad \frac{1}{4(z-\lambda_0)\sqrt{(z+2\lambda_0)}} \bigg(\int_{\lambda_0}^{-2\lambda_0} \frac{dw}{\sqrt{w+2\lambda_0}} + \int_{-2\lambda_0}^{z} \frac{dw}{\sqrt{w+2\lambda_0}} \bigg).$$

As it is evident that

(3.2.49)
$$L_{\widetilde{R}}\left(\frac{1}{4(z-\lambda_0)\sqrt{(z+2\lambda_0)}}\right) = 0,$$

the expression (3.2.48) implies

(3.2.50)
$$c_2 \phi = \frac{1}{4(z - \lambda_0)\sqrt{(z + 2\lambda_0)}} \int_{\lambda_0}^{-2\lambda_0} \frac{dw}{\sqrt{w + 2\lambda_0}} = -\frac{\sqrt{3\lambda_0}}{2(z - \lambda_0)\sqrt{(z + 2\lambda_0)}}.$$

Thus we see that c_2 is different from 0 on the condition that λ_0 is different from 0. Since we are considering the problem near $\sigma \neq \tau$, we may assume that $\lambda_0(\tilde{t}_0(t))$ is different from 0 for t in ω . Thus we have constructed $(\tilde{x}_n, \tilde{t}_n)$ that satisfy (3.2.31.n), that is, the induction proceeds, completing the proof of Proposition 3.2.1.

Using the formal series $\tilde{x}(x,t,\eta)$ and $\tilde{t}(t,\eta)$ which satisfy (3.2.7), and hence (3.2.9), we obtain the following reduction theorem.

Theorem 3.2.1. In the geometric setting of Proposition 3.2.1, the series $\tilde{x}(x,t,\eta)$ and $\tilde{t}(t,\eta)$ constructed there satisfy the following relation:

(3.2.51)
$$\tilde{x}(x,t,\eta) \mid_{x=b_i(t,\eta)} = \lambda_{\mathrm{I}}(\tilde{t}(t,\eta),\eta),$$

where $\lambda_{\rm I}(\tilde{t},\eta)$ designates a 0-parameter solution of the traditional Painlevé-I equation, namely,

(3.2.52)
$$\frac{d^2\lambda_{\rm I}}{d\tilde{t}^2} = \eta^2 (6\lambda_{\rm I}^2 + \tilde{t}).$$

Proof. First we note that every $\mathfrak{a}_{(J,m)}$ $(J=\mathrm{I,\,II-1,\,II-2}; m=1,2,\cdots)$ has the form

(3.2.53)
$$\frac{\mathfrak{c}_{(J,m)}(x,t,\eta)}{(x-b_i(t,\eta))},$$

where $\mathfrak{c}_{(J,m)}$ has the form

(3.2.54)
$$\sum_{l>0} c_l(x,t)\eta^{-l}$$

with

$$(3.2.55) c_0(x,t) \mid_{x=b_{i,0}(t)} \neq 0.$$

In what follows we say, as is always the case in this paper, that a series in η^{-1} is holomorphic if the coefficient of η^{-l} is holomorphic on a fixed open set for every l. Using this wording, we know by Theorem 2.1 that (3.2.56)

$$\frac{\mathfrak{c}}{(x-b_j(t,\eta))}S_{(J,m),\mathrm{odd}}$$
 is holomorphic on a neighborhood of $x=b_{j,0}(t)$.

Since c_0 is different from 0 at $x = b_{j,0}(t)$, the series \mathfrak{c} is invertible as a formal series in η^{-1} . Hence (3.2.56) implies

(3.2.57)
$$\frac{S_{(J,m),\text{odd}}}{x - b_j(t,\eta)} \text{ is holomorphic on a neighborhood of } x = b_{j,0}(t).$$

On the other hand, (3.2.9) implies

$$(3.2.58) \frac{S_{(J,m),\text{odd}}}{x - b_j(t,\eta)} = \frac{\tilde{x}(x,t,\eta) - \lambda_{\text{I}}(\tilde{t}(t,\eta),\eta)}{x - b_j(t,\eta)} \frac{\partial \tilde{x}(x,t,\eta)}{\partial x} \frac{\tilde{S}_{\text{I,odd}}(\tilde{x}(x,t,\eta),\tilde{t}(t,\eta),\eta)}{\tilde{x}(x,t,\eta) - \lambda_{\text{I}}(\tilde{t}(t,\eta),\eta)}.$$

Since $\partial \tilde{x}_0/\partial x$ is different from 0 at $x = b_{j,0}(t)$, the series $\partial \tilde{x}/\partial x$ is invertible there. We also find by an explicit computation that

(3.2.59)
$$\frac{\tilde{S}_{\mathrm{I},-1}(\tilde{x}_0(x,t),\tilde{t}_0(t))}{\tilde{x}_0(x,t) - \lambda_{\mathrm{I},0}(\tilde{t}_0(t))} = 2\sqrt{\tilde{x}_0(x,t) + 2\lambda_{\mathrm{I},0}(\tilde{t}_0(\tilde{t}))},$$

which is clearly different from 0 at $x = b_{i,0}(t)$. Hence

(3.2.60)
$$\frac{\widetilde{S}_{I,\text{odd}}(\tilde{x}(x,t,\eta),\tilde{t}(t,\eta),\eta)}{\tilde{x}(x,t,\eta)-\lambda_{I}(\tilde{t}(t,\eta),\eta)}$$

is also invertible near $x = b_{j,0}(t)$. Therefore (3.2.57) and (3.2.58) imply that

(3.2.61)
$$\tilde{x}(x,t,\eta) - \lambda_{\mathrm{I}}(\tilde{t}(t,\eta),\eta) = (x - b_j(t,\eta))d(x,t,\eta)$$

holds for some holomorphic series $d(x, t, \eta)$ near $x = b_{j,0}(t)$. Setting $x = b_j(t, \eta)$ in (3.2.61), we obtain the required relation (3.2.51).

Appendix

The purpose of this Appendix is to prove the following Proposition A.1 concerning the structure of a 0-parameter solution of $(P_1)_m$, which guarantees that $Q_{(I,m)}$ satisfies the condition (2.3).

Proposition A.1. Let $(\hat{u}, \hat{v}) = (\hat{u}_1, \dots, \hat{u}_m, \hat{v}_1, \dots, \hat{v}_m)$ be a 0-parameter solution of $(P_{\rm I})_m$ defined near $t = t_0$ and $\hat{w} = (\hat{w}_1, \dots, \hat{w}_m)$ be the formal series determined by (\hat{u}, \hat{v}) through the relation (1.1.2). Assume that the simple turning point of $(SL_{\rm I})_m$, namely $x = -2\hat{u}_{1,0}(t)$, does not coincide with any double turning point of $(SL_{\rm I})_m$ at $t = t_0$. Then all the odd degree $(in \eta^{-1})$ terms of \hat{u}, \hat{v} and \hat{w} vanish.

Remark A.1. It is evident from (1.1.33) that the above assumption of non-coincidence of the simple turning point and a double turning point can be summarized as follows:

(A.1)
$$U_0(-2\hat{u}_{1,0}(t_0)) \neq 0.$$

To make the logical structure of the proof of Proposition A.1 lucid, we divide the proof into several steps; each step is summarized as a sublemma, and the proof of the Proposition is completed after Sublemma A.3.

Sublemma A.1. We find

$$\hat{w}_{i,1} = \hat{u}_{1,0}\hat{u}_{i,1}$$

holds for $j = 1, 2, \dots, m$.

Proof. As it follows from the definition of \hat{w}_j (cf. (1.1.2)) that

(A.3)
$$\hat{w}_1 = \frac{1}{2}\hat{u}_1^2 + c_1 + \delta_{1m}t,$$

we find

$$\hat{w}_{1,1} = \hat{u}_{1,0}\hat{u}_{1,1}.$$

Thus (A.2) holds for j = 1. We now use the induction on j; let us suppose that (A.2) holds for $j = 1, 2, \dots, j_0$. The definition of \hat{w}_j implies

(A.5)
$$\hat{w}_{j_0+1,1} = \frac{1}{2} \left(\sum_{k=1}^{j_0+1} \hat{u}_{k,0} \hat{u}_{j_0+2-k,1} + \sum_{k=1}^{j_0+1} \hat{u}_{k,1} \hat{u}_{j_0+2-k,0} \right) + \sum_{k=1}^{j_0} \left(\hat{u}_{k,0} \hat{w}_{j_0+1-k,1} + \hat{u}_{k,1} \hat{w}_{j_0+1-k,0} \right)$$

because we know by (1.1.28)

(A.6)
$$\hat{v}_{i,0} = 0, \quad j = 1, \dots, m.$$

Then the induction hypothesis entails

(A.7)
$$\hat{w}_{j_0+1,1} = \sum_{l=1}^{j_0+1} \hat{u}_{j_0+2-l,0} \hat{u}_{l,1} + \sum_{k=1}^{j_0} \hat{u}_{k,0} \hat{u}_{1,0} \hat{u}_{j_0+1-k,1} + \sum_{k=1}^{j_0} \hat{u}_{k,1} \hat{w}_{j_0+1-k,0}$$

$$= \hat{u}_{1,0} \hat{u}_{j_0+1,1} + \sum_{l=1}^{j_0} (\hat{u}_{j_0+2-l,0} + \hat{u}_{1,0} \hat{u}_{j_0+1-l,0} + \hat{w}_{j_0+1-l,0}) \hat{u}_{l,1}.$$

Hence (1.1.27) with $j = j_0 + 1 - l$ proves

$$\hat{w}_{j_0+1,1} = \hat{u}_{1,0}\hat{u}_{j_0+1,1}.$$

Thus the induction proceeds, completing the proof of Sublemma A.1.

Sublemma A.2. The coefficient of the degree one (in η^{-1}) part of $\hat{u} = (\hat{u}_1, \dots, \hat{u}_m)$, i.e., $(\hat{u}_{1,1}, \hat{u}_{2,1}, \dots, \hat{u}_{m,1})$, is zero.

Proof. First, the comparison of the coefficients of η^0 in (1.1.1.b) with the help of (A.6) entails

(A.9)
$$\hat{u}_{i+1,1} + \hat{u}_{1,0}\hat{u}_{i,1} + \hat{u}_{1,1}\hat{u}_{i,0} + \hat{w}_{i,1} = 0, \ j = 1, \dots, m.$$

Then Sublemma A.1 implies

(A.10)
$$\hat{u}_{j+1,1} + 2\hat{u}_{1,0}\hat{u}_{j,1} + \hat{u}_{j,0}, \hat{u}_{1,1} = 0, \ j = 1, \dots, m.$$

Since \hat{u}_{m+1} , and in particular $\hat{u}_{m+1,1}$, vanishes by its definition, the relation (A.10) can be re-written as a matrix equation for the unknown vector ${}^{t}(\hat{u}_{1,1}, \hat{u}_{2,1}, \dots, \hat{u}_{m,1})$:

$$(A.11) \qquad \begin{pmatrix} 3\hat{u}_{1,0} & 1 & 0 & & & \\ \hat{u}_{2,0} & 2\hat{u}_{1,0} & 1 & & & \\ \hat{u}_{3,0} & 0 & 2\hat{u}_{1,0} & 1 & & \\ \vdots & & \ddots & \ddots & & \\ \hat{u}_{m-1,0} & & & 2\hat{u}_{1,0} & 1 \\ \hat{u}_{m,0} & 0 & & & 2\hat{u}_{1,0} \end{pmatrix} \begin{pmatrix} \hat{u}_{1,1} \\ \hat{u}_{2,1} \\ \vdots \\ \vdots \\ \hat{u}_{m-1,1} \\ \hat{u}_{m,1} \end{pmatrix} = 0.$$

Then the determinant \triangle of the matrix in the left-hand side of (A.11) is

$$(A.12) \\ 3\hat{u}_{1,0}(2\hat{u}_{1,0})^{m-1} - \{\hat{u}_{2,0}(2\hat{u}_{1,0})^{m-2} - \hat{u}_{3,0}(2\hat{u}_{1,0})^{m-3} \\ + \hat{u}_{4,0}(2\hat{u}_{1,0})^{m-4} - \dots + (-1)^{m-1}(\hat{u}_{m-1,0}(2\hat{u}_{1,0}) - \hat{u}_{m,0})\} \\ = (-1)^m \{(-2\hat{u}_{1,0})^m - \hat{u}_{1,0}(-2\hat{u}_{1,0})^{m-1} - \hat{u}_{2,0}(-2\hat{u}_{1,0})^{m-2} \\ - \hat{u}_{3,0}(-2\hat{u}_{1,0})^{m-3} - \hat{u}_{4,0}(-2\hat{u}_{1,0})^{m-4} - \dots - \hat{u}_{m-1,0}(-2\hat{u}_{1,0}) - \hat{u}_{m,0}\} \\ = (-1)^m U_0(-2\hat{u}_{1,0}).$$

Hence Remark A.1 guarantees that the determinant \triangle does not vanish at $t = t_0$. Therefore the solution ${}^t(\hat{u}_{1,1}, \hat{u}_{2,1}, \dots, \hat{u}_{m,1})$ of the homogeneous equation (A.11) should be 0. This completes the proof of Sublemma A.2.

Sublemma A.3. Suppose that

(A.13.
$$p_0$$
) $\hat{u}_{j,2p-1} = \hat{w}_{j,2p-1} = \hat{v}_{j,2p-2} = 0 \quad (j = 1, 2, \dots, m)$
hold for $p = 1, 2, \dots, p_0$.

Then we find

$$(A.14.p_0 + 1) \hat{w}_{i,2p_0+1} = \hat{u}_{1,0}\hat{u}_{i,2p_0+1} (j = 1, 2, \dots, m).$$

Proof. We can use essentially the same reasoning as in the proof of Sublemma A.1. First we note that (A.3) together with $(A.13.p_0)$ entails

$$(A.15) \hat{w}_{1,2p_0+1} = \hat{u}_{1,0}\hat{u}_{1,2p_0+1}.$$

Hence we use the induction on j to prove $(A.14.p_0 + 1)$, starting with (A.15): let us suppose

$$\hat{w}_{j,2p_0+1} = \hat{u}_{1,0}\hat{u}_{j,2p_0+1}$$

holds for $j = 1, 2, \dots, j_0$. Since

(A.17)
$$\hat{v}_{j,2p_0} = \frac{1}{2} \frac{d\hat{u}_{j,2p_0-1}}{dt}$$

holds by (1.1.1.a), $(A.13.p_0)$ implies

(A.18)
$$\hat{v}_{j,2p_0} = 0 \quad (j = 1, 2, \dots, m).$$

Then, in parallel with (A.5), we find

(A.19)
$$\hat{w}_{j_0+1,2p_0+1} = \frac{1}{2} \left(\sum_{k=1}^{j_0+1} \hat{u}_{k,0}, \hat{u}_{j_0+2-k,2p_0+1} + \sum_{k=1}^{j_0+1} \hat{u}_{k,2p_0+1} \hat{u}_{j_0+2-k,0} \right) + \sum_{k=1}^{j_0} \left(\hat{u}_{k,0} \hat{w}_{j_0+1-k,2p_0+1} + \hat{u}_{k,2p_0+1} \hat{w}_{j_0+1-k,0} \right).$$

Hence the induction hypothesis together with (1.1.27) (with $j = j_0 + 1 - k$) proves

$$\hat{w}_{j_0+1,2p_0+1} = \hat{u}_{1,0}\hat{u}_{j_0+1,2p_0+1}.$$

Thus the induction on j proceeds, proving $(A.14.p_0 + 1)$.

Proof of Proposition A.1. Sublemma A.2, Sublemma A.1 and (A.6) imply that (A.13. p_0) is true for $p_0 = 1$. We now prove by induction on p_0 that (A.13. p_0) holds for every $p_0 = 1, 2, \cdots$; it clearly proves Proposition A.1. In view of Sublemma A.3 and (A.18), it suffices to prove that (A.13. p_0) implies

(A.21)
$$\hat{u}_{j,2p_0+1} = 0 \text{ for } j = 1, \dots, m.$$

Now, with the help of the induction hypothesis supplemented by (A.18), the comparison of the coefficients of η^{-2p_0} in (1.1.1.b) gives us

$$(A.22) \hat{u}_{j+1,2p_0+1} + (\hat{u}_{1,0}\hat{u}_{j,2p_0+1} + \hat{u}_{1,2p_0+1}\hat{u}_{j,0}) + \hat{w}_{j,2p_0+1} = 0$$

for every $j = 1, 2, \dots, m$. Then, applying Sublemma A.3 to (A.22), we find

$$(A.23) \qquad \hat{u}_{i+1,2n_0+1} + 2\hat{u}_{1,0}\hat{u}_{i,2n_0+1} + \hat{u}_{i,0}\hat{u}_{1,2n_0+1} = 0, \ j = 1, 2, \cdots, m.$$

Since $\hat{u}_{m+1,2p_0+1} = 0$ by (1.1.1.c), (A.23) leads to the same matrix equation as (A.11) with the replacement of the unknown vector ${}^t(\hat{u}_{1,1}, \hat{u}_{2,1}, \cdots, \hat{u}_{m,1})$ by ${}^t(\hat{u}_{1,2p_0+1}, \hat{u}_{2,2p_0+1}, \cdots, \hat{u}_{m,2p_0+1})$, in exactly the same manner as (A.10) has led to (A.11). We have already confirmed in the proof of Sublemma A.2 that the determinant \triangle of the coefficient matrix in (A.11) is different from 0 at $t=t_0$ by the assumption of Proposition A.1. Therefore we conclude that ${}^t(\hat{u}_{1,2p_0+1}, \hat{u}_{2,2p_0+1}, \cdots, \hat{u}_{m,2p_0+1})$ should vanish. Thus the induction on p_0 proceeds, and we have completed the proof of Proposition A.1.

Acknowledgment: The research of the authors has been supported in part by JSPS grant-in-Aid No. 14340042 and No. 16540148.

References

- [AKKT] Aoki, T., T. Kawai, T. Koike and Y. Takei: On the exact WKB analysis of microdifferential operators of WKB type, RIMS Preprint 1429, 2003.
- [AKT] Aoki, T., T. Kawai and Y. Takei: WKB analysis of Painlevé transcendents with a large parameter. II, Structure of Solutions of Differential Equations, World Scientific, 1996, pp.1-49.
- [GJP] Gordoa, P. R., N. Joshi and A. Pickering: On a generalized 2 + 1 dispersive water wave hierarchy, *Publ. RIMS*, *Kyoto Univ.*, **37** (2001), 327-347.

- [GP] Gordoa, P. R. and A. Pickering: Nonisospectral scattering problems: A key to integrable hierarchies, *J. Math. Phys.*, **40** (1999), 5749-5786.
- [KKNT] Kawai, T., T. Koike, Y. Nishikawa and Y. Takei: On the Stokes geometry of higher order Painlevé equations, RIMS Preprint 1443, 2004.
- [KT1] Kawai, T. and Y. Takei: WKB analysis of Painlevé transcendents with a large parameter, Adv. in Math., 118 (1996), 1-33.
- [KT2] : On WKB analysis of higher order Painlevé equations with a large parameter, *Proc. Japan Acad.*, **80A** (2004),
- [N] Nishikawa, Y.: Towards the exact WKB analysis of $P_{\text{II}} P_{\text{IV}}$ hierarchy. Preprint.
- [NT] Nishikawa, Y. and Y. Takei: On the structure of the Riemann surface in the Painlevé hierarchies, in prep.
- [O] Okamoto, K.: Isomonodromic deformation and Painlevé equations, and the Garnier systems, J. Fac. Sci. Univ. Tokyo, Sect. IA, 33 (1986), 575-618.
- [S] Shimomura, S.: Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation, Ann. Scuola Norm. Sup. Pisa, 29 (2000), 1-17.