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80. Introduction

This paper is the second of a series of articles on WKB analysis of
higher order Painlevé equations with a large parameter. In the first of
the series ([KKNT]) we studied the geometric aspect of the Painlevé hi-
erarchy (Py) (J = I,II-1 or II-2) with a large parameter, and in this article
we begin to analyze the WKB-theoretic structure of each member (Pj),,
(J =L1I-1 or I1-2;m = 1,2,3,...) of the hierarchy. To be concrete, we show
that a O-parameter solution of (Pj),, (J = LII-1 or II-2;m = 1,2,3,...)
constructed in [KKNT] and [N] can be reduced to a 0O-parameter solution
of (P)1, the traditional (i.e., second order) Painlevé-I equation (Pr) with a
large parameter, i.e.,

d’\
(0.1) A e ),
with the aid of a formal transformation defined near a turning point of (Py),
of the first kind in the sense of [KKNT]. (See Theorem 3.2.1 in Section 3 for
the precise statement.) Throughout this paper we use the same notions and
notations used in [KKNT]. A résumé of this paper is given in [KT2].

An important step of our reasoning in this paper is to derive a pair of
Schrddinger equation (SLj)., and its deformation equation (Dj),, from the
Lax pair (L), associated with the m-th member (Pj),, of the Painlevé hier-
archy in question. Here we make essential use of the fact that (L;),, consists
of 2 x 2 systems. (See Section 1 for the details.) Once we obtain the si-
multaneous equations (SLy),, and (Dy),, for one unknown function, we can
employ the techniques used in [KT1]; we first establish some analyticity prop-
erties of the odd part of a solution of the Riccati equation attached to (SLy),
(Theorem 2.1) and then in Proposition 3.2.1 we construct a semi-global trans-
formation that brings (SLy), to (SLp), the Schrédinger equation underlying
(Pr) (cf. [KT1]). In constructing the semi-global transformation we need
some matching conditions, and the constructed semi-global transformation
together with the matching conditions is used to reduce the 0-parameter solu-
tion in question to a 0-parameter solution of (F;). (Theorem 3.2.1.) We note
that the actual reduction is divided into two steps: we first solve an algebraic
equation of degree m whose coefficients are defined in terms of a O-parameter
solution of (Py),, to find some formal series b;(¢,n) (j = 1,...,m), and we
then employ the analytic machinery of semi-globally transforming (SLj),
to (SL;) so that we may reduce b; that is relevant to the turning point of



(Pj)m in question to a O-parameter solution of (P), with the help of the
constructed semi-global transformation. We discuss the geometric meaning
of b; in Section 1.

In ending this introduction we want to repeat the same comment as that
given in [KT1]: it is probably worth emphasizing that the above reduction is
attained through the study of (SLj),, a differential equation on the extended
(x,t)-space, despite the fact that the required relation is relevant only to the
t-variable.

§1. Derivation of a Schrodinger equation (SLj),,
and its deformation equation (Dj),,
81.1. The case J =1

For the convenience of the reader, we first recall the definition of (/),, and
the underlying Lax pair (L;),. See [KKNT] and [S] for their backgrounds.

Definition 1.1.1. The m-th member of P-hierarchy with a large parameter
7 is the following system of non-linear differential equations:

du
% =ou; (j=1,...,m) (1.1.1.a)
. dv;
(L11)  (P)m: % =20(ujp1 +wiu; +w;) (G=1,...,m) (1.1.1.b)
Umt1 =0 (1.1.1.c)

where w; is a polynomial of uy and v; (1 < k,! < j) that is determined by
the following recursive relation:

A j-1
(1.1.2) wj =5 (Z uk“j+1—k) + Zukwj—k
k=1 k=1

= _
- §<kavj_k> +Cj +(5jmt (] = 1,...,m).

k=1

Here ¢; is a constant and d;,, stands for Kronecker’s delta.



Definition 1.1.2. The Lax pair (L;),, underlying (P;),, is the following pair
of linear differential equations on (z, t)-space:

(1.13) (L) : ((%_ A)JZO’ (1.1.3.a)
(% - "B)J: 0 (1.1.3.b)

where 9 = (11, ),

(11.4) A:( V(x)/2 U@))
o (2™ — zU(x) + 2W (x))/4 -V (x)/2

and
0 2
wo me(,0,7)
with
(1.1.6) Uz) =a2™ — Zujxm_j,
j=1
(1.1.7) V(z) = Z vjx™ I
j=1
and
(1.1.8) W(z) = ijxm_j.
j=1

Remark 1.1.1. As is proved in Proposition 1.1.1 of [KKNT], (P),, states the
compatibility condition for (Ly),y,.

Remark 1.1.2. Combining (1.1.1.a), (1.1.1.b) and (1.1.2), we find that w4
(j < m—1) is a polynomial of uy,...,u;, du/dt,...,du;/dt and d*u;/dt*.
Hence u;4; (j < m—1) is a polynomial of uy, du,/dt,...,d*u,/dt*. Substi-
tuting these polynomials into

d?u,,

1.1.
(1.1.9) o

= 4772(U1Um + wm)a
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we obtain a 2m-th order differential equation for u;. It is also clear that,
once a solution u; of the 2m-th order differential equation is given, we can
find (ug, ..., Um; V1, ..., Uy Wy, ... Wy) so that they satisfy (1.1.1) and (1.1.2).
Thus (Pp)., is equivalent to a single 2m-th order differential equation. The
explicit form of the resulting equation for m =1 is

(1.1.10) d?uy Jdt* = n?(6u? + 4cy + 4t),
and that for m = 2 is

(1.1.11) d*uy/dt* = n?(20uyd*uy /dt* + 10(du, /dt)?)
+ n*(—40u? — 16c1u; + 16¢, + 16t).

It is clear that the scaling
(1.1.12) t=a(t+c¢) and A=oa’u/4 with a=4Y5
brings (1.1.10) into
(1.1.13) d?\/dt* = n*(6)\% + 1),

the traditional Painlevé-1 equation (P;) with a large parameter 1. These
facts explain why (1.1.1) is called (F;)-hierarchy, or often with some abuse
of language, a higher order Painlevé-I equation.

Let us first write down the equation that the first component ¢, of a
solution 1 of (1.1.3.a) satisfies:
(1.1.14)

2 2
(a_ U 0 (ggmt _qy aW U 4+ V) + Q(Uwv - V)) 1 = 0.

2\ U

Next we eliminate the term —U,U 10, /0z by introducing v by

(1.1.15) exp(—/ QU—[;dx)% = %lﬁl;

the resulting equation for 4 is

62
(1.1.16) a—;f =1’ Qum¥,



where

1 1
(1.1.17) Qum) = Z(WH —zU +2W)U + ZV2
UV Ve 302Uz 0 U
2U 2 4U? 2U
On the other hand, (1.1.3.b) implies
9
1.1.18 — =2
( ) 8t an:
and it also follows from (1.1.3.a) that
oYy _ vV
1.1.1 —_— = — .

Hence we find

O _ V. U

(1.1.20) e = gty

Therefore we obtain

!
4
It also follows from (1.1.1), (1.1.6) and (1.1.7) that

1 1 1
(1.1.21) (e §U¢t + U+ 577V - iUxU_IW’-
(1.1.22) U, = —2qV.

Thus we conclude

% 0 1 8a(17m)

1.1.2 — a2 |
(1.1.23) 5 = Ymas T3 ar ¥
where

9
1.1.24 - -
12 ) = Ga)

Thus we have arrived at simultaneous equations (1.1.16) and (1.1.23) for
one unknown function ¢. This is the setting that [KT1] used to establish
a reduction theorem for 0-parameter solutions of the traditional Painlevé
equations. In what follows, the equation (1.1.16) (resp., (1.1.23)) is referred
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to as (SLi)m (resp., (D1)m), and we analyze these equations by substituting
a O-parameter solution (i, 9;)1<j<m Of (P1)m into their coefficients. The
existence and basic properties of a O-parameter solution of (/),, are shown
in [KKNTJ; it is a formal series in n~! of the following form:

(1.1.25) a;(t, )
(1.1.26) b;(t,m) =

jo(t) + G (B~ + -
v, (t)+vjl(t)n_1+---

We note that

(1127) ’l/lj+1’0 + ﬁl,oﬁj,() + ﬂ)\j,O = 0, ] = 1, e, M,
(1.1.28) bj0=0, j=1,...,m,

and

(1.1.29)

j—1

N 1 . .
Wjo = 5 (Z U, OU'J—H k 0) + Z owj,k,o +c;+ 5jmt, j=1,....m
k=1 =1

follow from (1.1.1) and (1.1.2) and that these relations together with (1.1.1.c)
determine 4, algebraically. (See [KKNT, §2.1] for the details.) If we substi-
tute the expansions (1.1.25) and (1.1.26) into the coefficients of U, V and W,
they are accordingly expanded in powers of n!; we let U;, V; and W, respec-
tively denote the coefficient of 7! in the expansion. Using the O-parameter

solution we define series b;(¢,7) (j = 1,...,m) as solutions of the equation
(1.1.30) Ub,)=0, j=1,2,...,m,
that is,
(1.1.31) b= b =0.
j=1

It is clear that b;(t,n) is also expanded as
(1.1.32) bj = bjo(t) + b',l(t)n_l 4.

Although we have started our discussion with the equation (1.1.1) with un-
known functions (u;,v;j(= (du;/dt)/2n)), the quantities (ui,...,u,) were



first introduced as the elementary symmetric polynomials of (by,...,b,) in
[S].

Since b; (j = 1,...,m) is determined by (4, ..., 4,) through the alge-
braic equation (1.1.31), we try to find a transformation that brings b; to a 0-
parameter solution of (/), i.e., (1.1.13), in a neighborhood of a turning point
of (), that is relevant to b;. This task is accomplished in Section 3 with the
essential use of the results in Section 2. Before proceeding further, we note
two important geometric properties of the function b,0(t) (j = 1,...,m), the
top order term of the expansion of b; in 7 *.

First, x = b;o(t) is, as a zero of Up(x), a singular point of Q) and
a(,m)- Hence their expansions in n~tare considered outside the point; their
coefficients of n~! are denoted respectively by Qum),; and a(m);. Second,
x = bjo(t) is a double turning point of (SL;),,. In fact, (1.1.27) together
with the definition of Uy, V; and Wy entails

(1.1.33) 20 — gUy(x) + 2Wy(z)
— 4 Z aj’oxmﬂfj -9 Z(ﬂj+1’0 + ﬁl,Oﬁj,O)fEm*j
i=1 i=t

m
= J)m+1 + 2’&1,01'7” — ﬁl,omm - E ’[Lj,o.’ll'm+1_]
=2

m

~ ~ m_

—2U1,0 E Uj o0l J
Jj=1

= (37 + 2@1,0)[]0(3?),
and hence (1.1.28) and (1.1.33) imply

1 N
(1134) Q(I,m),O = Z(LE + 2’&1’0)Uo($)2.

As we will see below, similar facts are observed for (Py),, (J =I-1 or 1I-2),
and they play critically important roles in Section 2 and Section 3.

81.2. The case J =1I-1

Let us begin our discussions by briefly recalling the definition of (Pi1.1)nm, and
the underlying Lax pair (Li1)m- See [KKNT] and [GP] for the details. We
refer the reader to [GP] for their relevance to the non-isospectral scattering
problem.



Definition 1.2.1. The m-th member of Pj;_i-hierarchy with a large param-
eter 7 is, by definition, the following differential equation for v:

0
(121) (PII—l)m : (n_la + QU)Km + g(2tv + 77_1) +c= 0,

where g and ¢ are constants and K, is a polynomial of v and its derivatives
defined by the following recursive relation:

(1.2.2) N0 Ky = (07207 + 4n~ (v® — n7 )0,
+ 2(21)1)75 - n_lvtt))Kp7 b= 07 17 27 cee

with
(1.2.3) Ko =1/2.

Remark 1.2.1. The above recursive relation allows K, to contain integrated
terms like 9; 'v. However, we can choose K, so that it is a polynomial of v
and its derivatives. (See [KKNT, Appendix A] for the proof.) One can then
easily confirm that such preferred K, has the form

_ 2(p-1) _
(12 (2p -1, N
(1.2.4) P v + l:zl N Kpy 0 e

Hence (Pi1.1)m is a 2m-th order non-linear differential equation. The explicit
form of the first two preferred K, is as follows:

Kl = —’U2 + 77_11)15,
2.6) Ky = 3v* — 6n7 20, + 072 ((0,)* = 20vy) + 0 3vg.

Hence we find

d*v
(1.2.7) (Pira):n™* =5 =" = 2gtv = (c+ gn ™),
and

d*v d*v dv\ 2
1.2. P Tt —— = 72100 — + 1 —

—6v° —2¢gtv — (c+gn Y.



As (1.2.7) is the traditional Painlevé-II equation (Pj;) with a large parameter
7, it is reasonable to call the totality of these equations the Painlevé-II hierar-
chy with a large parameter 1. As we will see in Section 1.3 another hierarchy
whose first member is (Pyp), in order to distinguish these two hierarchies, we
coin the terminology Pji-hierarchy to call the equations discussed in this
section. The equations discussed in Section 1.3 will be called Pjrp-hierarchy.

Remark 1.2.2. We sometimes allow constants ¢ and g to contain powers of
n~! like ¢ = ¢y + ¢1n~!. For example, we usually assume that g is a genuine
constant (i.e., free from 7)) and that

(1.2.9) c=co—gn "

so that ¢ + gn~! is free from n~!. In what follows we also assume that g is
different from 0.

Definition 1.2.2. The Lax pair (Lr1)s, underlying (Pip.1)pm, is the following
pair of linear differential equations on (z,t)-space:

B .
2 _pA)g =0, 1.2.10.
(1.2.10) (Lit1 ) : (%ﬂc ! ) j ( Y
(E . nB)w —0, (1.2.10.b)

where J = t(wla ¢2)7

1 /e 2T,
(1.2.11) A= —
4ga: 2qu - 777281:2Tm nilatTm

and

(1.2.12) B— (2 (1))

with 7}, and ¢ being given respectively by

(1.2.13) T =gt+ Y (42) Ky
k=0

and

(1.2.14) g=zv—K;



Remark 1.2.3. As is discussed in [KKNT, §1.2] and [GP], (Pi.1)m states the
compatibility condition of (Liy.1)m,.

As in Section 1.1, we begin our discussion by writing down the equation
that the first component ¥, of ¢ should satisfy:

(1.2.15) (8_2+ (1 Tm,x) 0 1

((Tm,t)2 + 4772QT31 - 2Tme,tt)

0x? z T, /0r 16g2z2
1 Tm me t
L (g, - TusTur))y o
+ 4dgx ( ot T ¥
Here T,, ., etc. designate 0*T,,/0t0x etc. By introducing 1 by
1 /1 T,. _
(1216) exp(é/ (; — T—",L>d$)¢1 = $1/2Tm1/2¢1,
we find the required Schrodinger equation for :
0? 9
1.2.17 TS5V = -1,m)¥s
( ) 92 N Qu-1,m)¥
where
1218 Q _ Ly e op g
( 2. ) (I-1,m) = élng?q m+m( m,t m m,tt)
2 TnaTm 3 e N Tnga
77_(’7¢_Tmtw)+ n ’ _T’ )
dgx° Ty ’ 4T2 2T,
0T
27T, 422

On the other hand, (1.2.10.b) implies

(1.2.19) 2 i,

and (1.2.10.a) entails

oy 1
(1.2.20.a) i @(—Tm,ﬂ/ﬁ + 20T e).
Hence we find

oYn 1 Oy
1.2.21 — = —/(-T, 2T ——)-
( ) ox 4g:L'( mt1 + 2 ot )

10



Then, combining (1.2.16) and (1.2.21), we obtain
1 1
(1.2.22) 4gx(—§x_3/2T%/21ﬁ + ix_l/ZTT;UZTm,xw
+aTPTI,) = T @ Ty
1
t+ 2T 2 (ST Tt + T *40n),

that is,
29x 1 _1

1.2.23 = 2+ — (92T T n — g0
Therefore, by setting

29x
(1.2.24) At m) = 7{}—m,
we find

0 0 1 0a(11-1.m

(1.2.25) L4 v _ 1o%earim

or ~ WmEy T2 oy

Thus we obtain simultaneous equations (1.2.17) and (1.2.25) for the unknown
function v; equation (1.2.17) (resp., (1.2.25)) is referred to as (SLir1)m (resp.,
(D11.1)m)- In parallel with the case of (SLy),, and(Dy),, we first construct a
0-parameter solution

(1.2.26) oty ) = to(t) + o1 (&) + -

of (Pmr.1)m, and then substitute it into the coefficients of (SLi1), and
(D11.1)m to analyze their structure. We note that (1.2.4) implies

(—=1)™2™(2m — 1)!

(1.2.27) -

ﬁngrl + 2gt@0 +cyp = 0.

In what follows we let T, 0, K0, Qo, etc. respectively denote the top order
term of the expansion obtained by substituting the 0-parameter solution into
the coefficients of T},, K, g, etc; for example, gy = = + 03.

Using the 0-parameter solution o, we introduce another set of formal
series

(1.2.28) bi(t,m) =bjot) +n b &) +--- (G=1,...,m)

11



as solutions of the equation

(1.2.29) Ton(z,t,m) = 0.

x=bj(t,n)
We then immediately find that o = b;(t) is a singular point of Q(11.1,,) and
a(i-1,m)- It is also clear from (1.2.18) that x = b;o(t) is a double turning
point of (SLi1)m,. These observations are exactly the same as those for the
series b;(t,7n) introduced in the previous subsection.

81.3. The case J =1I-2

Let us first recall the definition of Pjpo-hierarchy with a large parameter 7
and its underlying Lax pair (Li2). We refer the reader to [GJP] and [N] for
the detailed discussions concerning Py o-hierarchy.

Definition 1.3.1. The m-th member of Py ,-hierarchy with a large param-
eter 7 is, by definition, the following differential equations for the unknown
functions v and v:

m—1
Km_|_1 + chKj +gt =0
(1.3.1) (Pr2)m -
Lm+1 —i—ZCij =0
j=1

Here ¢, g and ¢ are constants, and K; and L; are polynomials of u,v and
their derivatives, which are defined by the following recursive relations:

(1.32) n7'0 Ki) _ 1 (0 =m0, 20 K
- t Ljy 2 \2n o +n vy mtud + 0207 L;
(4 >0)

with K() =2 and L() =0.

Remark 1.3.1. See [N] for the proof of the existence of such preferred K; and
L;, that is, those which are polynonials of u,v and their derivatives. The

12



first three terms of such preferred K; and L; are as follows:

o (5)-()

K\ 1 (uw*+2v—nty
(1.34) (Lg) T2 ( 2uv + 0~y
K, 1\’ [ u® + 6uv — 3 tuug + n 2uy
(135) =\ 3 2 2 -1 -2
Ls 2 3uv 4+ 3v* 4+ 30 uv + 10 ‘v

Remark 1.3.2. In what follows we assume
(1.3.6) ¢;=0, 7=12,....m—1.

We also assume that g is a non-zero genuine constant and that § has the
form &y + 714, with

(1.3.7) 5, =—g/2.

Remark 1.3.3. (i) (Pp2); is reduced to

d*u

1.3.8 pep—
(1.3.8) U

= 2u® 4+ 29(2tu +n7") + 46.

(i) (P2)2 is reduced to

du 1 du\2d*u d?u\ 2
(1.3.9) Uil ( 4(dt) e +3u(dt2)
U du du\ 2
du— — 2(16gu—— — 16gt( —
T dt3)+n (16gu 7 — 169 (dt)
du\ 2 d*u d*u
(=) +16gtu—py + 10u*—
+ 5u (dt) + 16gtu" 7 + 1000
— 24n " gu® + (16¢%*t%u — 486u® — 16gtu* — 5u")).

Definition 1.3.2. The Lax pair (Li1.2)s, underlying (Pio)y, is the following
pair of linear differential equations on (z,t)-space:

0 .
— _pA)d =0, 1.3.10.
(1.3.10) (L1r2)m : (%x >1f) ( g
(a . nB)w =0, (1.3.10.b)



where ¢ = (11, 1)),

(1.3.11) A
—1 _(23; - u)Tm - nile,t 2T,
T g\ 20T 07022 — W) T A T+ K1) (22 — u) 40 Ty
with
1 & .
(1.3.12) T =15 > 2K,
§=0
and
[~z +u/2 1
(1.3.13) B= ( iy x_u/2>.

In parallel with the discussions in the preceding subsections, we first write
down the differential equation that the first component ¢4 of the solution 1
of the equation (1.3.10) should satisfy:

0? Tz 0 7P
o2 T, 0z @
+ %(—2(2:5 — )T Ts + 2T (22 — u) Ty
+ 0 Tt + K1) + 297T0)

B ng,t Tt Tz N Tm,tmi|

(1.3.14)

(=22 — u)’T2 + 4T?2)

g2 9Tm Y1 =0

To eliminate the first order differential operator part, we introduce

1 [*Tha _
(1315) ’lﬁ = eXp(—E/ T’ d$)¢1 = Tm1/2¢1
and find the Schrodinger equation for 4):
82
(1316) 6—1‘1‘/; = 772Q(II—2,m)¢7

14



where

1
(1.3.17)  Quram) = E((Qq; —u)? — 4u)T2
n~!
+ ?(QUtT% — 2T Kyt — 29T )
+ 2(§T3L7$ _ Tmal'l' + Tr?l,t . 2Tme,tt + Tm,tTm,m _ Tm,tm)

On the other hand, (1.3.10.b) implies

0 U
(1.3.18) % =n(-z+ 5)% + s,
and (1.3.10.a) implies
0 2
(1.3.19) % - —g((zfc — )T+ 1 T )01 + ?"Tm%.

Combining these relations, we obtain

o _ 1 2T, O

1.3.2 =—-T — }
(1.3.20) ox g mi¥1+ g Ot

Substituting (1.3.15) into (1.3.20), we find

a_w — ia_w + ng,:c
ot 2T, Ox aT?

(1.3.21) .

Therefore, by setting

g
1.3.22 -2,m) — A
( 3 ) a(11-2,m) o
we arrive at
81ﬁ aw 1 8&(11_2 m)
1.3.23 — = om)— — —————=1).
(1.3.23) ot~ Cmamg T 5y ¥

In what follows, (1.3.17) (resp., (1.3.23)) is referred to as (SLi.2), and
(D11.2)m, and our aim is to analyze them by substituting a O-parameter
solution (%,?) of (Pi2)m in their coefficients. We refer the reader to [N]

15



concerning the existence proof of a 0-parameter solution and its basic prop-
erties. In parallel with the preceding subsections, we introduce another set
of formal series

(1.3.24) bi(t,m) =bjo(t) +bj () +--- (G=1,...,m)
as solutions of the equation

1.3.25 Tin(z, t, =0.

( ) ( TI) (U':U):(ﬁ"ﬁ)’l':bj(tm)
It is then clear that x = b; (%) is a singular point of Q(1r2,m) and a2 m), and
that it is a double turning point of (SLir2).,,. These facts are completely in
parallel with the results we obtained in the preceding subsections.

§2. Regularity of S,qq near x = b;(t)

In Section 1 we have derived a pair of Schrédinger equation (SLj),, and
its deformation equation (Dj),, from the Lax pair (L), (J = I,1I-1,1I-2).
We have also confirmed that all of them share the following important prop-
erty: the point x = b,o(t) (j = 1,---,m) is a double turning point of the
Schrédinger equation we obtained, where b;(t) is the top order term of the
formal series b;(t,n) which is determined algebraically by a 0-parameter so-
lution of (Py), (J = [,1I-1,11-2). In the subsequent section (Section 3) we
will construct a formal transformation that reduces b;(¢,7) to a 0-parameter
solutin of the traditional Painlevé-I equation (i.e., (P;);) near an appropriate
turning point of (Pj),,, and in this section we prepare some results needed for
the construction. As our reasoning in this section applies uniformly to every
(SLj)m(J = 1,1I-1,11-2), we omit the suffix (J,m) of Qm) and a(sm). In
what follows we let S* denote the solution of the Riccati equation associated
with (SLj)m, i.e.,
0S* 9

5 =
that begins with £+7/Qo (with an appropriate choice of the branch of v/Qp).
We also use the symbol S,qq4 to denote

(2.2) %(5+ —57).

(2.1) (S%)? +

We note that the definition of Sygq given here is different from that given
in [KT1], although they coincide in the situation discussed in [KT1]. As a
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matter of fact, they are also coincident for (SL;),, by a result on the structure
of a 0-parameter solution (cf. Appendix); in general, if () has the form

(23) Z ninQﬂa

1>0

then the two definitions coincide. When @) contains odd degree terms in 7,
the definition given in [KT1] does not work; then we should use the definition
(2.2). Making use of the reasoning in [AKT,§2], we can readily deduce the
following relation (2.4) from (Dy),,:

0S, 0
(2.4) X = —(aS0aa)

ot ox
for S,qq thus defined.

Remark 2.1. We note that the denominator of a is a polynomial of degree m
in z; in the analysis of the traditional Painlevé equations ([O], [KT1]), the
corresponding function was linear in x.

Now, using the relation (2.4) we prove the following.

Theorem 2.1. Assume that x = b;o(t) is an ezxactly double zero of Qo(x,1)
near (z,t) = (bjo(to),to). Then the series Soaqa and aSeda are holomorphic
on a neighborhood of © = bjo(t) in the sense that each of their coefficients as
formal power series in =" is holomorphic on the neighborhood of x = b;(t).

Proof. For the sake of the uniformity of the presentation we use the symbol
U also to denote T, /(gx) if J = II-1 and 47,,/g if J = II-2. Let us substitute
a 0-parameter solution into the coefficients of @ and U and expand them in
powers of n~! as follows:

(2.5) a=> ajztn”,

Jj20
(2.6) U=> Uz t)n .
Jj20
To simplify the notation we let R denote S,qq; in accordance with this con-

vention, R; stands for the coefficient of 7 in the expansion of Syqq. It then
follows from (2.4) that

ORm1 0 [
2.7) i —a—<ZaRm)
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It also follows from the definition of a that

k
(2.8) Upay + Z U, =0 for £ > 1.
I=1
Since Uy(l > 0) is a polynomial in z, (2.8) shows that a; has the form

NU, *~* with some polynomial Ny in .
Now, combining (2.7) and (2.8), we find

(2.9) 8}2:1 = ax(aoRm_l) - % [i zm: ((liUlak_l) Rm_l_kﬂ
G,

8_ =

a 1 m m
8—(aoRm—1) ~ [—0 ( 2 U ( Z alc—lRm—l—k>>:|
9 01 /&= °

Making use of (2.9) we show that there exists an open neighborhood w of z =
bj,0(t) on which the following assertion (A), is validated for n =0,1,2,---:

(i) Rp—1 is holomorphic,
(A)

n -

(ii) ZalR”—l—l 1s holomorphic.
1=0

We prove this by the induction on n. But, before embarking on proving this,
we make some preparatory study on the structure of the function R; = (S;' —
S;7)/2. By solving the Riccati equation (2.1) we can find a neighborhood w
of z = b;o(t) on which S; has the following form:

CrP?

(2.10) W,

where p; + and ¢ 1+ are some non-negative integers, C’ljE is an analytic function
that does not vanish on w and PljE is a polynomial in = that depends analyt-
ically on ¢ on w. Since S%, has the form +al/; with a non-vanishing analytic
factor @ on w, we may assume every Sli, in particular S, has the form
5iPiUf)HE with an integer pi, a polynomial P, in xz and a non-vanishing
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analytic factor C* on w. Hence we find R, has the form 6PU(’)’ with an
integer p, a polynomial P in x and a non-vanishing analytic factor C on w.
Here P is assumed not to vanish identically on {(z,t);x = b,o(t)}. Having
this structure of R, in mind, we embark on the confirmation of (A), by the
induction on n. First of all, (A), is clear, because R_; has the form alj
with an analytic factor o on w and ay = 2/Uy (resp., 2z/Up) for J =1 or
J = II-2 (resp., J = II-1). Let us next assume that (A),, is validated for
m =20,1,---,n. Then this induction hypothesis guaratees that

(211) Z Un+1—s ( Z arRs—l—r>
s=0 r=0

is holomorphic on w, and hence the second term in the right-hand side of
(2.9) with m = n + 1, namely,

L[S ()]

has an at most double pole at = b; ¢() that originates from the simple pole
factor U;'. On the other hand, our preparatory study on the structure of R,,
shows that AR, /0t has the form BUY™" with an analytic factor 8 on w and
that d(agR,)/0z = O(2CPUP )/0x = BUP ? with another non-vanishing
analytic factor E on w. Therefore (2.9) with m = n+1 impliesp > 0, i.e., R,
should be holomorphic. This validates the first part of the assertion (A), . ;-
It also entails that OR,, /0t is holomorphic on w, and hence the relation (2.7)
with m = n + 1 shows that

ox prd

is holomorphic on w. But, then, in view of the structure of a; and R, ,
that is, the fact that their singularities, if any, are of the form U;" for some
non-negative integer r, we conclude that

n+1

(2.14) Z akRn_k
r=0

should be holomorphic on w. This is nothing but the second part of the

assertion (A), ;. Thus the induction proceeds.
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It is clear that the validity of (A),, for every n(n =0,1,2,---) means that
R = Syqq and aSyqq are holomorphic on w. This completes the proof of the
theorem.

§3. Reduction of b(t,n) (j = 1,...,m) to a 0-
parameter solution of (/)

83.1. Some preparation of notions and notations about
the Stokes geometry of (Pj),, and that of (SLj),
(J =1, II-1, 11-2).

Before entering the analysis of (SLj),, we clarify the geometric setting on
which we consider the problem. To begin with, let us fix a turning point
t = 7 of the first kind of (Py),, (J = I, II-1, II-2) in the sense of [KKNT,
§2], that is, there exist two solutions v (t) of the characteristic equation of
the linearization of (Py),, at a 0-parameter solution (often called the Fréchet
derivative of (Py),,) which merge at ¢ = 7 and whose values v (7) are 0.
Then it follows from the explicit form of the characteristic equation of the
Fréchet derivative (cf. [KKNT, (2.1.23), (2.2.13), (2.3.8)]) that some b; (%),
a double turning point of (SLy),,, and a simple turning point, say a(t), of
(SLj)m merge at t = 7. Note that every turning point of (Py),, is of the first
kind if m = 1. This explains why the turning point is not assumed to be
of the first kind in [KT1]. We further assume, as in [KT1], that the turning
point is simple: unlike the situation discussed in [KT1], we want to impose
the condition without using the explicit form of the equation and employ
the general definition given in [AKKT]. However, the characteristic equation
written in ¢-variable has singularities at turning points and an immediate
application of [AKKT] is not possible. Hence we use a local parameter u of
the Riemann surface R associated with the 0-parameter solution as the in-
dependent variable that replaces ¢t. Note that the Stokes geometry of (Py),,
is described on R (cf. [KKNT] and [NT]). Thus we require that the charac-
teristic polynomial P(u,v) of the Fréchet derivative of (Py),, should satisfy
the following conditions at g = u(7):

X ory .
(3.1.1) P(iip, 0) = a—yo(uo,O) =0

opP . o’P .

%(UO,O) 7£ 0’ —(U’Oa 0) 7& 0.

(3.1.2) 5
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These conditions guarantee that 7 is a square-root branch point of R, and
hence they imply that

(3.1.3) vi(t) is of exactly order (t —7)'/%.
The results in [KKNT, §2] tell us then that
(3.1.4) Vo= —v,4

and

t bj,o(t)
(3.1.5) / vi(s)ds = 2/ \/ Quimyo(x,t)dz
T a(t)

hold. Note that a Stokes curve of (Py),, that emanates from 7 is, by defini-
tion, given by

(3.1.6) Im /t vi(s)ds = 0.

Since a(7) and b, () coincide by their definition, (3.1.5) guarantees that a(?)
and bj(t) are connected by a Stokes curve (or, rather a Stokes segment) of
(SLyj)m if t is a point in a Stokes curve of (Py),, that is sufficiently close to
7. Note, however, that Stokes curves of (Py),, cross for m > 2, and that the
so-called Nishikawa phenomena ([N]) are observed at crossing points. Hence
we cannot expect, in general, that a(t) and b,o(t) are connected by a Stokes
curve of (SLy),, even if ¢ lies in a Stokes curve of (Py),,. Thus we consider
the problem near a point o(# 7) in a Stokes curve of (Py),, that emanates
from 7 and that satisfies the following condition:

(3.1.7)  a(o) and bjo(o) are connected by a Stokes curve of (SLy)n,.

In this geometric setting we try to reduce b;(t, 1) to a 0-parameter solution
of (P1); on a neighborhood of o. This is what we will achieve in the next
subsection.

83.2. Construction of formal transformations

In the setting described in Section 3.1 we construct appropriate formal trans-
formations #(w,t,n) and #(¢,n) for which the following relation holds:

(3.2.1) 2, t,1) laomv; = M (E(E, 1), m),
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where \;(,7) stands for a 0-parameter solution of the traditional Painlevé-I
equation, that is,
d?\p

(3.2.2) o n?(6)F +1).

Note that a O-parameter solution is uniquely fixed once we fix the branch of
its highest degree term Ag(t) = /—t/6. In what follows we also use symbols

v(t,n) and Q(x, t,m) to denote respectlvely

(3.2.3) n~tdA/dt

and

(3.2.4) 473 + 247 + v — 403 — 20\ —

—/\1 +77 4(33—/\1)2'

We note that @ is the potential of the Schrédinger equation (SLp) that is
associated with the traditional Painlevé-I equation in the notation of [KTl]
Hence we use the symbol SI odd (Z, t) to denote the odd part of a solution S
of the Riccati equation associated with (SLy), that is,

oS

(3.2.5) 5%+ o = Q.

Using these symbols we first prove the following

Proposition 3.2.1. Let 7 be a simple turning point of the first kind of (Pj)m
(J =L1I-1,11-2;m = 1,2,3,- - ), and let o(F£ T) be a point that is sufficiently
close to T (that is, o satisfies the assumption (3.1.7) ) and that lies in a
Stokes curve of (Pj), which emanates from 7. Let v denote the Stokes
segment which connects turning points b;o(t) and a(t) of (SLj)m that are
fixed in terms of T in Section 3.1. Then there exist a neighborhood §2 of v,
a neighborhood w of o and holomorphic functions Z;(x,t) (j = 0,1,2,---)
on Q x w and t;(t) (j = 0,1,2,--+) on w so that they satisfy the following
relations:

(i) The function ty(t) satisfies the following relation

(3.2.6) /Tt s)ds = (/ \/st)
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where vy denotes the solution of the characteristic equation of the Fréchet
derivative of (Py)m which is fived in terms of T in Section 3.1.

(11) .fojbj,o(t),t) = Ao(to(t)) and fo(a(t), t) = —2/\0(t0(t))

(iii) dto/dt #0 on w and 0%¢/0z # 0 on Q X w.

(iv) Letting Z(x,t,m) and £(t,n) respectively denote " &;(x,t)n~7 and Y £;(t)n~7,
3>0 J>0
we find the following relation:

321 Qumot) = (5 ) Qi

| P
bR GICARIESS
where {Z;x} denotes the Schwarzian derivative
0*#/0x® 3 (0%/02%\°
0z/ox 2\ 0z/d0x )

Proof. To begin with, we note that the relation (3.2.7) follows from the fol-
lowing relation (3.2.9) together with the relevant Riccati equations (cf. [AKT]):

(3.2.8)

ozx . -
(329) S(J,m),odd(ma t, 77) = (8%) SI,odd (.’L‘(.’I?, ta 77)5 t(ta 77)5 77)5

where S(jm)0dd stands for the odd part of a solution of the Riccati equation
(2.1) with @ = Q(s,m)- To simplify the notations, we use the symbol R and R
respectively to denote S, 044 and gl,odd; accordingly R; and El respectively
stand for the coefficient of n~! (l~: -1,0,1,2,---) of R and R.

In constructing Z;(z,t) and ¢;(¢) in an inductive manner, we make use
of the following assertion (C), (n = 0,1,2,---) to make the argument run
smoothly:

C)n We can construct {Z;(z,t)}o<j<n and {t;(t)}o<j<n so that
(3.2.9) holds modulo terms of order equal to or at most n~".

Let us first show (C)o; the way of our reasoning is exactly the same as
that used in [KT1], but for the sake of completeness we repeat it here. [The
only difference is the usage of ~ in the rotations (z,t) etc. and (Z,7) etc.; it
is reversed here.] The construction of the function #y(¢) is attained by solving
the implicit relation (3.2.6); we readily find it is a constant multiple of

(3.2.10) < / t V+(s)ds> 4/5,
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which is holomorphic on a neighborhood of 7 by the relation (3.1.3). If we
define & by fy(c), the relation (3.2.6) implies that & lies on a Stokes curve
of (P), and hence a double turning point & = A¢(¢) and a simple turning
point x = @(6) = —2X¢(6) of (SLy) are connected by a Stokes segment 7 of
(SLy). Here we note that (SLy) has one double turning point and one simple
turning point if  # 0; in fact we know

(3.2.11) Qo = 4(F — Xo(1)*(T + 2X0(7))-

Now we note

(3.2.12) / \/st_Q/

holds as a special case of (3.1.5). Hence combining (3.1.5), (3.2.6) and (3.2.12)
we find

(3.2.13) /bjo Qo t)dz —/ NGRS

2Xo (to

2)\0

Furthermore it is a real number when ¢ lies in the Stokes curve of (Pj),,
in question; we may assume without loss of generality that the number is
negative. We let p = p(t) denote the number multiplied by (—1). Let us now
introduce the following functions z;(xz,t) and 2o(Z, t):

(3.2.14) (z,1) / \/ Qim0 (y, t)dy,
bjo(t
(3.2.15) z(Z,t) = //\( (7 — Xo(to())\/ T + 2Xo(to(2))d.
0
We then try to construct Zo(z,t) that satisfies
(3.2.16) z1(x,t) = 20(ZTo(x, 1), t).
It is clear that (3.2.16) guarantees (3.2.9) at the level of 1. Hence the

construction of Zg(z,t) satisfying (3.2.16) will show (C)o.
Now, the following assertions immediately follow from the definitions of
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21, 29 and p:

(3.2.17)  z1(y,1), ie., the image of the segment v by the map z, is a
closed interval [0, p],

(3.2.18)  0z1/0x # 0 on 7y except for its endpoints,
(3.2.19)  21/? is holomorphic at = = bjo(t) and (8z}/2/8x) le=b; (1) 7 0,

(3.2.20)  (21—p)*? is holomorphic at = = a(t) and g(zl—p)z/3 |s=a(t)

0
0, !
(3.2.21)  29(7,t) =0, p),
(3.2.22)  029/0% # 0 on ¥ except for its endpoints,
(3.2.23)  z/* is holomorphic at & = Ag(%(t)) and gz;ﬂ li=ro(o()) 7 05
z
(3.2.24) (2 — p)*? is holomorphic at & = —2Xo(Zo(2)).

We next consider the composition of maps z and z, !, the inverse map of z,,
and we denote it by z(, that is,

(3.2.25) wp=12," 0z :7— 7.
It is then clear that

(3.2.26)  zo(bjo(t),t) = Ao(to(t))
and

(3.2.27)  mo(a(t),t) = —2X(Fo(t))

hold. It also follows from (3.2.18) and (3.2.22) that x, is holomorphic on 7
except for its endpoints and that dz,/0% # 0 holds there. To confirm its
analyticity at b;(t) and a(t), first say at b,o(t), let us consider the following
equation for Z{(x,t) near z = b;(t):

(3.2.28) 2 (z, )% = 25(8) (2, 1), 1)/,
where the branch of zi/ ? (resp., z;/ ?) is chosen so that it may be positive in
v (resp., 7). It then follows from (3.2.19) and (3.2.23) that (3.2.28) has a

unique holomorphic solution Z}(z,t) near = b;(t) that satisfies

~t
0z,

(3.2.29) T3(bjo(t), t) = Mo(fo(t)) and  —=2

(bjo(t),t) #0.
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It is clear that :E}; and z( coincide on their common domain of definition.

Hence 7, is holomorphic at = = b, (t) and 0%¢/0z does not vanish there. The
holomorphy of Zy(z,t) at z = a(t) is also confirmed by a similar reasoning if
we start with the following equation (3.2.30) instead of (3.2.28):

(3.2.30) (z1(z,t) — p)?/® = (22(&(z, 1), 1) — p)¥/3.

Thus we have proved (C)o. In the course of the proof we have also confirmed
properties (i), (ii) and (iii) in the statement of the proposition.

We now embark on the proof of (C),, (n > 1). Our method of the proof is
essentially the same as that given in [KT1]. There is, however, one important
difference: we have to construct non-zero #; and t; even for odd j. (As we
show in Appendix, a O-parameter solution of (P;),, enjoys a nice property
which guarantees (2.3); in this case we may assume Z; = ; = 0 for odd j.
But a 0-parameter solution of (P11 ), or (Pi2)m does not have the property.)
Our strategy of the proof is to construct a solution of the equation (3.2.31.n)
below globally on €2 X w by matching a solution holomorphic near x = b; (%)
with another solution holomorphic near = = a(t) with an appropriate choice
of the “parameter” #,(¢). One technical problem in putting this idea into
practice is the non-analyticity of the coefficients of (3.2.32.n) at z = a(t); we
circumvent this problem by considering another defining equation (3.2.33.n)
of z,, as a replacement of (3.2.32.n).

Now the actual task in proceeding from (C),_1 to (C), (n > 1) is to
construct Z,(z,t) and %,(t), the coefficients of 7'~ of (3.2.9), so that the
following relation (3.2.31.n) may be satisfied globally on Q x w:

(3231n)  Ryy(sf) = E_l(:zo(x,t),fo(x,t))aai;(x,t)
Do R,
+ %(w,t) 5% (Zo(z, 1), to(x, 1)) Tpn(x,t)
R,

where j, is a function of {Z;, #x o<jk<n—1. Note that Theorem 2.1 guarantees
that (3.2.31.n) is a differential equation for Z,(z,t) with analytic coefficients
near = = b;o(t). To make the computation run smoothly we introduce a new
variable z by defining it to be Zo(z,t). Then (3.2.31.n) can be rewritten as
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follows:

~ 9 OR.\. _ (0i\" . OR_,.
(3.2.32.n) (R‘1£+ % ):Un— (8$) (Rn—1— pn) 5 tn.

We also find the following relation (3.2.33.n) through the comparison of the
coefficients of 7™ of (3.2.7) (divided by (0%/01)?):

=0 0\ .
_ (9% " oy 0Qo:
- (8—:1:) (Qn - Tn) - tha

where 7, is a holomorphic function of {Z;,x}o<jk<n—1. In what follows we
let Lz and Lé denote respectively the differential operator

~ 9 OR,
.2.34 e
(3:2:34) Borg T 52
and another differential operator
~ 0 9Q
2. 2Q0=— :
(3.2.35) Q08z+ 07

Clearly they satisfy

(3.2.36) 2\/&% =Lg.

It also follows immediately from the induction hypothesis that

3231 20, (%)_1@"1 ) = (%)_Q@M ~ 7).

Therefore (3.2.32.n) and (3.2.33.n) are equivalent; in what follows we make
full use of this fact. Let us first note that the differential equation Lzu =
f (resp., Lzv = g) has a unique holomorphic solution u (resp., v) near
z = A(to(t)) (resp., z = —2Xo(%o(t))) if f (vesp., g) is holomorphic there,
because the characteristic exponent of L (resp., L@) at z = Ay (resp., z =
—2)\g) is equal to —1 (resp., —1/2). Now let f; and fo respectively denote
(0%0/0z)" (R, 1 — pn) and OR_1/0%. Then Theorem 2.1 together with the
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induction hypothesis guarantees that f; and f, are holomorphic near z = Aq.
Hence we find a unique holomorphic solution ¢; of the equation

(3.2.38) Lzoi=f; (1=1,2)

near z = ). Since (3.2.37) entails the holomorphy of 2\/@0f1 at z = =2
and since 24/ @0 fo= 8@0 /0t is clearly holomorphic at z = —2)g, we find a

unique holomorphic solution (ﬁj of the equation

(3.2.39) L@$r=2v%iﬁ (j=1,2)

near z = —2)\g. Let now ¢ denote a non-zero multi-valued analytic solution
of Lz¢ = 0 on a neighborhood of +; it is unique up to a constant multiple.
On the other hand, (3.2.36) implies

(3.2.40) Lb; =2/Qof; (j=1,2)

near z = —2) after the analytic continuation of ¢; along 7. Therefore we
find

(3.2.41) ¢i—bi=ci¢ (j=1,2)

for some constants ¢; (j = 1,2). If we can choose a constant %, so that
(3.2.42) c1 —tnco =0

holds, then, by choosing

(3.2.43) Fo = b1 — Tnho,

we find that all the required conditions are satisfied. Thus what remains
to be done is the confirmation of the non-vanishing of the constant cy. It
follows from the definition of the operator Lz and the function f, together
with the explicit form of (SLp) (cf. (3.2.11)) that ¢, satisfies the following
relation near z = Ag:

(3.2.44)
2@+2%f”@—A@%§+{@—A@@+2%)U2+%z+2Myﬁw2
= 2z 422 220 2z )+ 200) LY,
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that is,

dpy 3 d\
(3.2.45) (= +220)(s = 20) 22 + 22 4+ )y = 30 22
Since we know (cf. (3.2.2))
(3.2.46) 6Xo(t)> +1=0,

the right-hand side of (3.2.45) is equal to 1/4. Hence by integrating (3.2.45)
we find

(3.2.47) ¢y = = T_dw
o 2 4(2—)\0)\/(Z+2)\0) Ao \/w+2)\0.
Then we analytically continue ¢, near z = —2) to find

1 (/‘2)‘0 dw N /Z dw )
4(2 — /\0) (Z + 2/\0) Ao Vw + 2)\0 —2x VW + 2)\0 .

As it is evident that

(3.2.48)

1
(3.2.49) LR«< ) =0,
4(Z — )\0) (Z + 2)\0)
the expression (3.2.48) implies
1 “20 dw
(3.2.50) Co = / L
Ve he  Voron
V3o

2(z — M)/ (2 + 2X)

Thus we see that ¢y is different from 0 on the condition that A\g is different
from 0. Since we are considering the problem near ¢ # 7, we may assume
that \o(£y(¢)) is different from 0 for ¢ in w. Thus we have constructed (%, t,)
that satisfy (3.2.31.n), that is, the induction proceeds, completing the proof
of Proposition 3.2.1.

Using the formal series Z(x,t,7) and #(¢,n) which satisfy (3.2.7), and
hence (3.2.9), we obtain the following reduction theorem.
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Theorem 3.2.1. In the geometric setting of Proposition 3.2.1, the series
T(x,t,n) and t(t,n) constructed there satisfy the following relation :

(3.2.51) (1) |o=b,0m= M(E(E 1), m),

where \i(t,n) designates a 0-parameter solution of the traditional Painlevé-1
equation, namely,

d*\p
dt?
Proof. First we note that every a(sm,) (J =1, 1I-1,1I-2;m = 1,2,---) has
the form

(3.2.52) = n*(6)] +1).

c(sm) (@, t,m)
(3.2.53) T

(z — b;(t, n))
where ¢(j,,) has the form
(3.2.54) Z c(z, t)n™

1>0

with
(3255) Co(x, t) |m:bj,0(t)7é 0.

In what follows we say, as is always the case in this paper, that a series in
n~! is holomorphic if the coefficient of n~! is holomorphic on a fixed open set
for every [. Using this wording, we know by Theorem 2.1 that
(3.2.56)

¢

(x = b;(t,m))
Since g is different from 0 at x = b;o(t), the series ¢ is invertible as a formal
series in 77 '. Hence (3.2.56) implies

S(J;m),0da is holomorphic on a neighborhood of © = b, (t).

S(m
(3.2.57) 2Wm)odd_ e holomorphic on a neighborhood of © = b; o(?).
z = b;(t,m)
On the other hand, (3.2.9) implies
S m),0
(3.2.58) ——modd
T — bj (ta 77)
— j(.’L’, l 77) B AI(t~(ta 77)5 77) af&(l’a l 77) SI,odd(‘,z.(xa 12 n)a E(t: 77): 77)
Xz = bj(ta 77) Oz i‘(.’l?,t, 77) - )‘I(t(ta 77)’77)
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Since 0z /0x is different from 0 at = = b, (), the series 0z /0x is invertible
there. We also find by an explicit computation that

St 1 (Fo(, 1), {0(0)
To(z,t) — Aro(to(?))

which is clearly different from 0 at x = b; (). Hence

(3.2.59) = 24/Zo(z, t) + 2A10(ho(2)),

gI,odd(i (3?, ta 77)7 E(t’ 77)’ 77)
i‘(LE, t, 77) - )‘I(E(ta n)a 77)

is also invertible near x = b;(t). Therefore (3.2.57) and (3.2.58) imply that

(3.2.60)

(3.2.61) E(z,t,m) — M(E(t,n),n) = (z — b;(t,n))d(z,t,n)

holds for some holomorphic series d(z,t,n) near z = b;o(t). Setting z =
b;(t,n) in (3.2.61), we obtain the required relation (3.2.51).

Appendix

The purpose of this Appendix is to prove the following Proposition A.1
concerning the structure of a O-parameter solution of (P;),, which guarantees
that Qi) satisfies the condition (2.3).

Proposition A.1. Let (4,0) = (G, Up, V1, ,0m) be a 0-parameter
solution of (P)m, defined near t = ty and w = (W, --- ,Wy) be the formal
series determined by (4,v) through the relation (1.1.2). Assume that the
simple turning point of (SLi)m, namely x = —20,(t), does not coincide
with any double turning point of (SLi)m at t = to. Then all the odd degree
(in n~1) terms of 4,9 and W vanish.

Remark A.1. It is evident from (1.1.33) that the above assumption of non-
coincidence of the simple turning point and a double turning point can be
summarized as follows:

(A.1) Un(—2i1,0(t0)) # 0.

To make the logical structure of the proof of Proposition A.1 lucid, we
divide the proof into several steps; each step is summarized as a sublemma,
and the proof of the Proposition is completed after Sublemma A.3.
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Sublemma A.1. We find
(A2) ’UA)j’l = alyoﬁjjl
holds for 3 =1,2,--- ,m.

Proof. As it follows from the definition of w; (cf. (1.1.2)) that

1
(A.3) 1 = ST+ ¢+ O,
we find
(A4) wl,l - ﬁ1,0ﬁ1,1-

Thus (A.2) holds for j = 1. We now use the induction on j; let us suppose
that (A.2) holds for j =1,2,- -, jo. The definition of w; implies

1 Jot+1 Jo+1
(A.5) Wjo+1,1 =35 > Ak oljorz—ka + Y Uk gr2-k0
k=1 k=1
Jo
+ ) (ttk oy 1—k1 + 1 Wi s1-k,0)
k=1
because we know by (1.1.28)
(A.6) @],O:O; ]: 1’... ’m.

Then the induction hypothesis entails

Jot+1 Jjo Jo
(A7) Wjp41,1 = Z Ujo+2-1,0U1,1 + Z Up,0U1,0Ujo-+1—k,1 + Z U, 1 Wjg+1—k,0
=1 k=1 k=1
Jo
= U10Ujy41,1 + Z(ﬁjo+24,o + G100y 41-1,0 + Wjo1-1,0)U,1-
=1

Hence (1.1.27) with j = jo + 1 — [ proves
(A.8) Wo+1,1 = U1,0Ujot1,1-

Thus the induction proceeds, completing the proof of Sublemma A.1.
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Sublemma A .2. The coefficient of the degree one (in n~') part of 4 =
(’lll, e ,ﬂm), z'.e., (’lftljl,ﬁgjl, s aﬁ'm,l); 18 Zero.

Proof. First, the comparison of the coefficients of 7° in (1.1.1.b) with the
help of (A.6) entails

(A.9) a]—'—l,l + al,oa]’l + /1/)/1,1/1/)/‘]70 + 12\)],1 = 0, ] = 1, PR ’m_
Then Sublemma A.1 implies
(A.]_O) ﬂ/]—f—l,l + 21/)/1,0{)/]’1 + aj,o’ al,l = 0’ j = 1’ .. ,m.

Since Up41, and in particular 4,411, vanishes by its definition, the rela-
tion (A.10) can be re-written as a matrix equation for the unknown vector
t A A A .
(U1,1, U1, " ,Um,1)-

(3’&,1’0 1 0 \ ( '&1,1 \

&2,0 27:[,1,0 1 O U2,1
in 0 24 1 :
(A.11) 30 B | =0
Um—1,0 2a10 1 Gim—11

\ ﬂm,o O 2111,0/ \ Um,1

Then the determinant A of the matrix in the left-hand side of (A.11) is

(A12)
3i1,0(201,0)™ " — {lig,0(20i1,0)™ % — Tz 0(20i1,0)™
+ Gig0(281,0)™ " — -+ + (= 1) (lhm—1,0(28i1,0) — Umyo) }

=(—1)"{(—2ti1,0)™ — @1,0(—20i1,0)™ " — tio,0(—2lir,0)™

— Q3.0(=211,0)™ " — Qg o(—=2010)™ " — -+ — Um_1,0(—2110) — o}

=(—1)"Uy(—211 ).

Hence Remark A.1 guarantees that the determinant A does not vanish at ¢t =
to. Therefore the solution (4 1, g1, - , Um,1) of the homogeneous equation
(A.11) should be 0. This completes the proof of Sublemma A.2.

Sublemma A.3. Suppose that

(A.13.po) Ujop-1=Wjgp—1 =Vjop2=0 (j=1,2,---,m)
hold forp=1,2,--- , po.
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Then we find

(A.14.po + 1) Wjope+1 = U1,0Uj0pe+1 (9 =1,2,-++,m).

Proof. We can use essentially the same reasoning as in the proof of Sublemma
A.1. First we note that (A.3) together with (A.13.py) entails

(A.15) W1 9po+1 = G1,001,2p0+1-

Hence we use the induction on j to prove (A.14.py + 1), starting with (A.15):
let us suppose

(A.16) Wjapo+1 = U1,00,2po+1
holds for 7 = 1,2, -+, jo. Since

A 1da i 2po—1
(A.17) e

holds by (1.1.1.a), (A.13.po) implies
(A.18) Ujope =0 (1=1,2,---,m).

Then, in parallel with (A.5), we find

1 jo+1 Jo+1
(A19)  Wjo41,2p041 =5 E uk:,O;uj0+2—k,2p0+1+E Uk, 2p+1Ujo+2—k,0

k=1 k=1
Jo
+ E :(uk,owj0+1*k,2po+1 + uk,2p0+1wjo+1fk,o)-
k=1

Hence the induction hypothesis together with (1.1.27) (with j = jo +1 — k)
proves

(AQO) Wjo+1,2po+1 = U1,0U50+1,2po+1-

Thus the induction on j proceeds, proving (A.14.py + 1).
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Proof of Proposition A.1. Sublemma A.2, Sublemma A.1 and (A.6) imply
that (A.13.pg) is true for pp = 1. We now prove by induction on py that
(A.13.po) holds for every py = 1,2, - --; it clearly proves Proposition A.1. In
view of Sublemma A.3 and (A.18), it suffices to prove that (A.13.py) implies

(Azl) &jaQPO‘Fl =0 for .7 = 1a T, M.

Now, with the help of the induction hypothesis supplemented by (A.18),
the comparison of the coefficients of 720 in (1.1.1.b) gives us

(A.22) Uj41,2po+1 T (81,0U5,9p0+1 + 1,2po4+1T5,0) + Wipo+1 = 0
for every j =1,2,--- ,m. Then, applying Sublemma A.3 to (A.22), we find
(A.23) Uj1,2p0+1 T 2U1,0Uj 2041 + Ujolnop1 = 0, J = 1,2,---,m.

Since Umt1,2p041 = 0 by (1.1.1.c), (A.23) leads to the same matrix equation
as (A.11) with the replacement of the unknown vector *( 1, Ug1, -+ , lm,1)
by (1 9pg+15 U2,9p0+15  * * 5 Um,2po+1), I exactly the same manner as (A.10)
has led to (A.11). We have already confirmed in the proof of Sublemma A.2
that the determinant A of the coefficient matrix in (A.11) is different from
0 at t = ty by the assumption of Proposition A.1. Therefore we conclude
that t(’ll172p0+1,’&272p0+1, s ,am,zpo_H) should vanish. Thus the induction on
po proceeds, and we have completed the proof of Proposition A.1.
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