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Abstract

The marriage model due to Gale and Shapley and the assignment model
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markets. We give a common generalization of these models by utilizing
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(Fujishige and Tamura [10]), and the proof of the existence of a pairwise
stable outcome is even simpler than the previous one.
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1. Introduction

The marriage model due to Gale and Shapley [12] and the assignment model

due to Shapley and Shubik [26] are standard in the theory of two-sided matching

markets. The largest difference between these two models is that the former does

not allow money or transferable utilities whereas the latter does (see Roth and

Sotomayor [24], Alkan and Gale [1] and Fleiner [8] for related models).

Progress has been made toward unifying the marriage model and the assign-

ment model. Kaneko [15] formulated a general model that includes the two by

means of characteristic functions, and proved the nonemptiness of the core. Roth

and Sotomayor [25] proposed a general model that also encompasses both and in-

vestigated the lattice property for payoffs. Eriksson and Karlander [4] proposed a

hybrid model of the marriage model and the assignment model. In the Eriksson-

Karlander model, the set of agents is partitioned into two categories, one for “rigid”

agents and the other for “flexible” agents. Rigid agents do not get side payments,

that is, they behave like agents in the marriage model, while flexible agents be-

have like ones in the assignment model. Sotomayor [27] also further investigated

this hybrid model and gave a non-constructive proof of the existence of a pairwise

stable outcome. Fujishige and Tamura [10] proposed a generalization of the hybrid

model due to Eriksson and Karlander [4] and Sotomayor [27] by utilizing discrete

convex analysis developed by Murota [18, 19, 20].

Our goal is to propose a further general model based on discrete convex analysis

which includes models due to Gale and Shapley [12], Shapley and Shubik [26],

Eriksson and Karlander [4], Sotomayor [27], Fleiner [7], Eguchi et al. [3], and

Fujishige and Tamura [10] as special cases, and to verify the existence of a pairwise

stable outcome in our model. The feature of our model is to adopt a range of

a side payment for each pair of agents instead of using the concept of “rigid”

and “flexible” agents. Our present model is a natural extension of the model of

Fujishige and Tamura [10], and our proof for the existence of a pairwise stable

outcome is simpler than that in our previous paper.

The present paper is organized as follows. Section 2 explains M\-concavity to-

gether with some examples. Section 3 describes our model based on discrete convex

analysis and gives our main theorem. In Section 4 we give proofs of two lemmas

mentioned in Section 3, and propose an algorithm for finding a pairwise stable

outcome in our model. By proving its correctness, we show our main theorem, the

existence of a pairwise stable outcome.
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2. M\-concavity

In this section we explain the concept of M\-concave functions. Let E be a

nonempty finite set, and let Z and R be the sets of integers and reals, respec-

tively. We denote by ZE the set of integer vectors x = (x(e) | e ∈ E) indexed by

E, where x(e) denotes the eth component of vector x. Also, RE denotes the set

of real vectors indexed by E. Let 0 and 1 be vectors of all zeros and all ones of an

appropriate dimension. We define the positive support supp+(x) and the negative

support supp−(x) of x ∈ ZE by

supp+(x) = {e ∈ E | x(e) > 0}, supp−(x) = {e ∈ E | x(e) < 0}.

For each S ⊆ E, we denote by χS the characteristic vector of S defined by:

χS(e) = 1 if e ∈ S and χS(e) = 0 otherwise, and write simply χe instead of χ{e}
for all e ∈ E. For S ⊆ E and x ∈ ZE, let x(S) =

∑
e∈S x(e). For a vector p ∈ RE

and a function f : ZE → R ∪ {−∞}, we define functions 〈p, x〉 and f [p](x) in

x ∈ ZE by

〈p, x〉 =
∑

e∈E

p(e)x(e), f [p](x) = f(x) + 〈p, x〉 (∀x ∈ ZE).

We also define arg max, the set of maximizers, of f on U ⊆ ZE and the effective

domain of f by

arg max{f(y) | y ∈ U} = {x ∈ U | ∀y ∈ U : f(x) ≥ f(y)},
dom f = {x ∈ ZE | f(x) > −∞}.

A function f : ZE → R∪{−∞} with dom f 6= ∅ is called M\-concave (Murota [20]

and Murota and Shioura [21]) if it satisfies

(M\) ∀x, y ∈ dom f , ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) ∪ {0} :

f(x) + f(y) ≤ f(x− χe + χe′) + f(y + χe − χe′),

where 0 is a new element not in E and χ0 is a zero vector in ZE.

((M\) is denoted by (−M\-EXC) in Murota [20].) If f is M\-concave, then f [p]

is also M\-concave for any p ∈ RE. Here are two simple examples of M\-concave

functions.

Example 1: For the independence family I ⊆ 2E of a matroid on E and w ∈ RE,

the function f : ZE → R ∪ {−∞} defined by

f(x) =





∑

e∈X

w(e) if x = χX for some X ∈ I

−∞ otherwise
(∀x ∈ ZE)

is M\-concave (see Murota [20]).
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Example 2: We call a nonempty family T of subsets of E a laminar family if

X ∩Y = ∅, X ⊆ Y or Y ⊆ X holds for any X, Y ∈ T . For a laminar family T and

a family of univariate concave functions fY : R → R ∪ {−∞} indexed by Y ∈ T ,

the function f : ZE → R ∪ {−∞} defined by

f(x) =
∑

Y ∈T
fY (x(Y )) (∀x ∈ ZE)

is M\-concave if dom f 6= ∅ (see Murota [20]).

An M\-concave function has nice features as a utility function from the point

of view of mathematical economics. A utility function is usually assumed to be

concave in that field. For any M\-concave function f : ZE → R ∪ {−∞}, there

exists an ordinary concave function f̄ : RE → R∪{−∞} such that f̄(x) = f(x) for

all x ∈ ZE (Murota [18]). That is, any M\-concave function on ZE has a concave

extension on RE. An M\-concave function f also satisfies submodularity (Murota

and Shioura [22]): f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) for all x, y ∈ dom f , where

x ∧ y and x ∨ y are the vectors whose eth components (x ∧ y)(e) and (x ∨ y)(e)

are, respectively, min{x(e), y(e)} and max{x(e), y(e)} for all e ∈ E. Moreover,

an M\-concave function satisfies gross substitutability and the single improvement

property discussed in Kelso and Crawford [16] and Gul and Stacchetti [13], and

M\-concavity can be characterized by these properties or their extensions under

a natural assumption (see Fujishige and Yang [11], Danilov et al. [2] and Murota

and Tamura [23] for details). Relations between M\-concavity and substitutability

are also discussed in Farooq and Tamura [6] and Farooq and Shioura [5].

3. Model description

We consider a two-sided market consisting of disjoint sets P and Q of agents, in

which an agent in P may be called a worker and one in Q a firm. Each worker

i ∈ P can supply multi-units of labor time, and each firm j ∈ Q can employ

workers with multi-units of labor time and pay a salary to worker i per unit of

labor time if j hires i. We assume bounded side payments, i.e., each pair (i, j)

has lower and upper bounds on a salary per unit of labor time. We also assume

that utility of each worker i ∈ P and profit of each firm j ∈ Q are described by

functions in monetary terms. We will examine pairwise stability in this market.

We first describe our model mathematically. Let E = P × Q, i.e., the set of

all ordered pairs (i, j) of agents i ∈ P and j ∈ Q. Also define E(i) = {i} × Q for

all i ∈ P and E(j) = P × {j} for all j ∈ Q. Denoting by x(i, j) the number of

units of labor time for which j hires i, we represent a labor allocation by vector

x = (x(i, j) | (i, j) ∈ E) ∈ ZE. We express lower and upper bounds of salaries
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by two vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π. For any

y ∈ RE and k ∈ P ∪Q, we denote by y(k) the restriction of y on E(k). For example,

for a labor allocation x ∈ ZE, x(k) represents the labor allocation of agent k with

respect to x. For each i ∈ P and j ∈ Q, let fi : ZE(i) → R ∪ {−∞} denote utility

of worker i and fj : ZE(j) → R ∪ {−∞} profit of firm j. We assume that for each

k ∈ P ∪Q function fk satisfies the following assumption:

(A) dom fk is bounded and hereditary, and has 0 as the minimum point,

where heredity means that for any y, y′ ∈ ZE(k) , 0 ≤ y′ ≤ y ∈ dom fk implies

y′ ∈ dom fk. The boundedness of effective domains means that each function is

implicitly imposed on firm’s budget constraint or worker’s constraint on labor time.

The heredity of effective domains implies that each agent can arbitrarily decrease

related labor time (before contract) without any permission from the partner.

A vector x ∈ ZE is called a feasible allocation if x(k) ∈ dom fk for all k ∈ P ∪Q.

Given a feasible allocation x, a vector s ∈ RE is called an x-compatible salary vector

if π(i, j) ≤ s(i, j) ≤ π(i, j) for all (i, j) ∈ E with x(i, j) > 0 and if s(i, j) = 0 for

all (i, j) ∈ E with x(i, j) = 0. We call a pair (x, s) of a feasible allocation x ∈ ZE

and an x-compatible salary vector s ∈ RE an outcome.

An outcome (x, s) is said to satisfy incentive constraints if

fi[+s(i)](x(i)) = max{fi[+s(i)](y) | y ≤ x(i)} (∀i ∈ P ), (3.1)

fj[−s(j)](x(j)) = max{fj[−s(j)](y) | y ≤ x(j)} (∀j ∈ Q). (3.2)

Here fi[+s(i)](x(i)) is the sum of i’s monetary utility for labor allocation x and

the amount of i’s salary for (x, s), and hence, it means the net payoff of worker i

with respect to (x, s). Similarly, fj[−s(j)](x(j)) mean the net profit of firm j with

respect to (x, s). Conditions (3.1) and (3.2) say that each agent has no incentive

to decrease the current units of labor time for the current salaries.

For s ∈ RE, α ∈ R, i ∈ P , and j ∈ Q, let (s−j
(i) , α) be defined as the vector

obtained from s(i) by replacing its jth component by α, and (s−i
(j), α) be similarly

defined. An outcome (x, s) is called pairwise unstable if it does not satisfy incentive

constraints or there exist i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and

y′′ ∈ ZE(j) such that

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](y′), (3.3)

y′(i, j′) ≤ x(i, j′) (∀j′ ∈ Q \ {j}), (3.4)

fj[−s(j)](x(j)) < fj[−(s−i
(j), α)](y′′), (3.5)

y′′(i′, j) ≤ x(i′, j) (∀i′ ∈ P \ {i}), (3.6)

y′(i, j) = y′′(i, j). (3.7)
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Conditions (3.3)∼(3.7) say that i and j can strictly increase their net payoff and

profit by concertedly changing the current units of labor time and the current

salary between them under the constraints that units of labor time of the other

parts are not increased. An outcome (x, s) is called pairwise stable if it is not

pairwise unstable.

We also consider a stronger pairwise stability. We say that an outcome (x, s)

is pairwise quasi-unstable if it does not satisfy incentive constraints or there exist

i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) satisfying (3.3)∼(3.6)

(but not necessarily (3.7)). Trivially, a pairwise unstable outcome is pairwise quasi-

unstable. An outcome (x, s) is called pairwise strictly stable if it is not pairwise

quasi-unstable. Hence, an outcome (x, s) is pairwise strictly stable if and only if

(3.1) and (3.2) hold and for all i ∈ P , j ∈ Q and α ∈ R with π(i, j) ≤ α ≤ π(i, j),

fi[+s(i)](x(i)) ≥ max{fi[+(s−j
(i) , α)](y) | y(i, j′) ≤ x(i, j′), ∀j′ 6= j}, (3.8)

or

fj[−s(j)](x(j)) ≥ max{fj[−(s−i
(j), α)](y) | y(i′, j) ≤ x(i′, j), ∀i′ 6= i}. (3.9)

The above condition says that for each pair (i, j) ∈ E both i and j do not have

incentive to change the current feasible allocation for any candidate of a salary

between them. Note that any pairwise strictly stable outcome is pairwise stable.

Example 3: There is a gap between pairwise stability and pairwise strict stability.

Let us consider the case where E = {(m,w)},

fm(x) =





x if x ∈ {0, 1, 2}
−∞ otherwise

(∀x ∈ Z),

fw(x) =





x if x ∈ {0, 1, 2, 3}
−∞ otherwise

(∀x ∈ Z),

and (π, π) = (0, 1/4). In this case, an outcome (x, s) = (2, 0) is not pairwise

strictly stable, because fm(2) < fm[+ε](2) and fw(2) < fw[−ε](3) for all ε ∈
(0, 1/4]. However, the outcome is pairwise stable. On the other hand, an outcome

(x, s) = (2, 1/4) is pairwise strictly stable, and hence, pairwise stable.

Pairwise strict stability coincides with pairwise stability under certain condi-

tions.

Lemma 3.1: If fk (k ∈ P ∪Q) are M\-concave functions satisfying (A) and if one

of the following conditions

(i) π = π,
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(ii) dom fk ⊆ {0, 1}E(k) for all k ∈ P ∪Q,

(iii) dom
∑

i∈P fi = dom
∑

j∈Q fj = {y ∈ ZE | 0 ≤ y ≤ u} for some vector u, and

fk (k ∈ P ∪Q) are linear over dom fk

holds, then any pairwise stable outcome is pairwise strictly stable.

Proof. See Section 4.1.

The concept of pairwise stability in our model coincides, in special cases, with

those in the marriage model, the assignment model, and so on (see Remarks 1 and

2 after Theorem 3.5).

The following theorem states that the existence of a pairwise strictly stable

outcome, and hence, the existence of a pairwise stable outcome, is certified by

M\-concave functions.

Theorem 3.2: For M\-concave functions fk (k ∈ P ∪ Q) satisfying (A) and for

vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, there exists a

pairwise strictly stable outcome (x, s), and hence, there exists a pairwise stable

outcome.

To show Theorem 3.2, we give an alternative characterization of a pairwise

strictly stable outcome.

Lemma 3.3: Assume that fk is an M\-concave function satisfying (A) for each

k ∈ P∪Q. Let x be a feasible allocation. There exists an x-compatible salary vector

s forming a pairwise strictly stable outcome (x, s) if and only if there exist p ∈ RE,

zP = (z(i) | i ∈ P ) ∈ (Z ∪ {+∞})E, and zQ = (z(j) | j ∈ Q) ∈ (Z ∪ {+∞})E such

that

x(i) ∈ arg max{fi[+p(i)](y) | y ≤ z(i)} (∀i ∈ P ), (3.10)

x(j) ∈ arg max{fj[−p(j)](y) | y ≤ z(j)} (∀j ∈ Q), (3.11)

π ≤ p ≤ π, (3.12)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.13)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.14)

Moreover, from any p satisfying the above conditions, we can construct a required

salary vector s by defining s(e) = p(e) for all e ∈ E with x(e) > 0 and s(e) = 0

for all e ∈ E with x(e) = 0.

Proof. See Section 4.2.

We note that M\-concavity in Lemma 3.3 is not required to show the if part, while

it is required to show the only-if part.
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Let us define fP and fQ by

fP (x) =
∑

i∈P

fi(x(i)), fQ(x) =
∑

j∈Q

fj(x(j)) (∀x ∈ ZE). (3.15)

Since E(i) and E(i′) are disjoint for all i, i′ ∈ P with i 6= i′, function fP is M\-

concave if all functions fi (i ∈ P ) are M\-concave. Similarly, fQ is M\-concave if

all functions fj (j ∈ Q) are. Moreover, the following assertions obviously hold.

Lemma 3.4: Condition (3.10) holds if and only if x ∈ arg max{fP [+p](y) | y ≤
zP}. Condition (3.11) holds if and only if x ∈ arg max{fQ[−p](y) | y ≤ zQ}.

Furthermore, Assumption (A) is rewritten in terms of fP and fQ as:

(A′) Effective domains dom fP and dom fQ are bounded and hereditary, and have

the common minimum point 0 ∈ ZE.

By Lemmas 3.3 and 3.4, Theorem 3.2 is a direct consequence of the following

theorem.

Theorem 3.5: For M\-concave functions fP , fQ : ZE → R ∪ {−∞} satisfying

(A′) and for vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, there

exist x ∈ ZE, p ∈ RE, and zP , zQ ∈ (Z ∪ {+∞})E such that

x ∈ arg max{fP [+p](y) | y ≤ zP}, (3.16)

x ∈ arg max{fQ[−p](y) | y ≤ zQ}, (3.17)

π ≤ p ≤ π, (3.18)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.19)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.20)

Moreover, if fP and fQ are integer-valued on their effective domains, π ∈ (Z ∪
{−∞})E, and π ∈ (Z ∪ {+∞})E, then the above p can be chosen from ZE.

We also say that a pair (x, p) of x ∈ ZE and p ∈ RE is a pairwise strictly stable

outcome if there exist zP , zQ ∈ (Z ∪ {+∞})E satisfying (3.16)∼(3.20). We will

give a proof of Theorem 3.5 in Section 4.3.

We next discuss relations between our model and existing models.

Remark 1: We briefly explain that our model includes the marriage model due to

Gale and Shapley [12] and the assignment model due to Shapley and Shubik [26]

as special cases. In these models, we are given pairs (aij, bij) ∈ (R ∪ {−∞})2

for all (i, j) ∈ E = P × Q. Here aij and bij are interpreted as profits of i and

j in the assignment model. Moreover, these define preferences in the marriage
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model: i ∈ P prefers j1 to j2 if aij1 > aij2 , and i is indifferent between j1 and j2 if

aij1 = aij2 (similarly, a preference of j ∈ Q is defined by bij (i ∈ P )). We assume

that aij > 0 if j is acceptable to i, and aij = −∞ otherwise, and bij > 0 if i is

acceptable to j, and bij = −∞ otherwise. Define functions fi for all i ∈ P and fj

for all j ∈ Q by

fi(x) =





aij if x = χ(i,j) for some j ∈ Q

0 if x = 0

−∞ otherwise

(∀x ∈ ZE(i)), (3.21)

fj(x) =





bij if x = χ(i,j) for some i ∈ P

0 if x = 0

−∞ otherwise

(∀x ∈ ZE(j)). (3.22)

It can easily be shown that the above functions are M\-concave. We can show

that, by putting π = π = 0, pairwise stability in our model coincides with pairwise

stability in the marriage model. On the other hand, by putting π = (−∞, · · · ,−∞)

and π = (+∞, · · · , +∞), pairwise stability in our model coincides with pairwise

stability in the assignment model. Furthermore, by Lemma 3.1, in these special

cases, pairwise strict stability is identical with pairwise stability.

Remark 2: We briefly discuss the fact that Theorem 3.5 implies the existence of

pairwise stable outcome in the model in Fujishige and Tamura [10]. This means

that our model also includes many existing models (see Fujishige and Tamura [10]

for details). In their model, two M\-concave functions fP , fQ : ZE → R ∪ {−∞}
satisfying (A′), and an arbitrary partition (F,R) of E are given. For a vector d on E

and S ⊆ E, let d|S denote the restriction of d on S. A vector x ∈ dom fP∩dom fQ is

called an fP fQ-pairwise stable solution with respect to (F, R) if there exist p ∈ RE,

disjoint subsets RP and RQ of R, ẑP ∈ ZRP , and ẑQ ∈ ZRQ such that

p|R = 0, (3.23)

x ∈ arg max{fP [+p](y) | y|RP
≤ ẑP}, (3.24)

x ∈ arg max{fQ[−p](y) | y|RQ
≤ ẑQ}. (3.25)

We can show that fP fQ-pairwise stability is equivalent to our pairwise strict sta-

bility in the case where π(e) = π(e) = 0 for all e ∈ R, and π(e) = −∞ and

π(e) = +∞ for all e ∈ F .

We finally give one illustration of our model.

Example 4: We consider the problem of allocating dance partners between set

P = {m1,m2} of two men and set Q = {w1, w2} of two women. Here E = P ×Q.
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We abbreviate pair (mi, wj) by (i, j) and denote the (i, j)-component of a vector

d by dij. Think of a situation when m1 and w1 are professional and the others are

amateur, and m2 and w1 are a married couple. Because a lesson fee (which should

be nonnegative) is allowed between a professional and an amateur, and because a

lesson fee between husband and wife is meaningless, we set

π = 0, (π11, π12, π21, π22) = (0, +∞, 0, 0).

We assume that they have the following preferences:

• everyone wants to dance as many times as possible, up to four times,

• m1 prefers w1 to w2,

• w1 and w2 are indifferent for m2,

• every woman wants to dance with m1 and m2 as equally as possible.

Denoting by xij the number of times mi and wj dance together, we further assume

that their preferences are described by the following four utility functions:

fm1(x11, x12) =





10x11 + 8x12 if 0 ≤ x11 + x12 ≤ 4

−∞ otherwise,

fm2(x21, x22) =





10x21 + 10x22 if 0 ≤ x21 + x22 ≤ 4

−∞ otherwise,

fw1(x11, x21) =





10x11 + 10x21 − (x2
11 + x2

21)/2 if 0 ≤ x11 + x21 ≤ 4

−∞ otherwise,

fw2(x12, x22) =





10x12 + 10x22 − (x2
12 + x2

22)/2 if 0 ≤ x12 + x22 ≤ 4

−∞ otherwise,

which are used in Fujishige and Tamura [10, Example 4]. We note that the above

functions are M\-concave, because these are defined by laminar families. Thus,

the problem is formulated as our model. We have the following pairwise strictly

stable outcomes, x and the range of s12, together with zP and zQ:

(x11, x12, x21, x22) range of s12 zP zQ

(3, 1, 1, 3) [1, 2] (3,−,−,−) (−,−, 1,−)

(2, 2, 2, 2) [0, 2] (2,−,−,−) (−,−,−, 2)

(1, 3, 3, 1) [2, 2] (−,−,−,−) (1,−,−, 1)

(0, 4, 4, 0) [2, 6.5] (−,−,−,−) (0,−,−, 0)

where − means +∞ in the above table. By setting p = (0, s12, 0, 0) and by using

zP and zQ given above, we can easily check the pairwise strict stability of the

above outcomes, due to Lemma 3.3. Lemma 3.3 gives a good characterization of

pairwise strictly stable outcomes.
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4. Proofs

In this section we give proofs of Lemma 3.1, Lemma 3.3, and Theorem 3.5.

4.1. A proof of Lemma 3.1

It is enough to show that if an outcome (x, s) is pairwise quasi-unstable, then it is

also pairwise unstable. Let (x, s) be a pairwise quasi-unstable outcome. We may

assume that (x, s) satisfies incentive constraints (3.1) and (3.2). Then there exist

i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) satisfying (3.3)∼(3.6).

We first deal with Case (i). In this case, s(i, j) = α holds. Because (x, s)

satisfies incentive constraints, we have y′(i, j) > x(i, j) and y′′(i, j) > x(i, j). In

addition, we assume that y′(i, j) and y′′(i, j), respectively, are as small as possible

among vectors satisfying (3.3)∼(3.6). By (M\) for y′ and x(i), there exists e′ ∈
supp−(y′ − x(i)) ∪ {0} such that, putting e = (i, j),

fi[+(s−j
(i) , α)](y′) + fi[+s(i)](x(i))

= fi[+(s−j
(i) , α)](y′) + fi[+(s−j

(i) , α)](x(i))

≤ fi[+(s−j
(i) , α)](y′ − χe + χe′) + fi[+(s−j

(i) , α)](x(i) + χe − χe′).

Since fi[+(s−j
(i) , α)](y′) > fi[+(s−j

(i) , α)](y′ − χe + χe′) by the choice of y′, we obtain

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](x(i)+χe−χe′). This implies that y′(i, j) = x(i, j)+1,

since x(i) + χe − χe′ is a possible candidate for y′. Analogously, we can show that

y′′(i, j) = x(i, j) + 1. Hence y′ and y′′ also satisfy (3.7).

We next consider Cases (ii) and (iii). We assume that s(i, j) < α (The case

where s(i, j) = α can be treated similarly as in Case (i) and we can also deal

with the case where s(i, j) > α similarly as shown below). If x(i, j) = 0, then

we can show the assertion in the same way as in Case (i). Hence we assume that

x(i, j) > 0. In this case, the following relations

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](x(i)),

fj[−s(j)](y) ≥ fj[−(s−i
(j), α)](y) (∀y ≤ x(j))

hold. Thus, y′′(i, j) must be greater than x(i, j), so that y′′(i, j) ≥ 2. Therefore, it

is sufficient to deal with Case (iii) only. Replace y′ by x(i) +(y′′(i, j)−x(i, j))χ(i,j),

which belongs to dom fi. We then have fi[+(s−j
(i) , α)](y′) > fi[+s(i)](y

′). Since

x(i, j) > 0, fi is linear over dom fi, and (x, s) satisfies incentive constraints, we

also have fi[+s(i)](y
′) ≥ fi[+s(i)](x(i)). Hence (3.3), (3.4), and (3.7) are satisfied

by the new y′.
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4.2. A proof of Lemma 3.3

The only-if part: Let (x, s) be a pairwise strictly stable outcome. For each pair

(i, j) ∈ E with x(i, j) = 0, we define r(i, j) as the supremum of the set of α’s

satisfying (3.8) without the constraint α ≤ π(i, j). (We have r(i, j) 6= +∞ if there

exists y ∈ dom fi such that y(i, j) > 0 and y(i, j′) ≤ x(i, j′) for all j′ ∈ Q \ {j}.)
If r(i, j) = +∞, then we redefine r(i, j) as the infimum of the set of α’s satisfying

(3.9) without the constraint π(i, j) ≤ α. (We have r(i, j) 6= −∞ if there exists

y ∈ dom fj such that y(i, j) > 0 and y(i′, j) ≤ x(i′, j) for all i′ ∈ P \ {i}.) If

r(i, j) = −∞, then we further redefine r(i, j) = −b for a sufficiently large positive

number b. Then, we define p ∈ RE by

p(i, j) =





s(i, j) if x(i, j) > 0

r(i, j) else if π(i, j) ≤ r(i, j) ≤ π(i, j)

π(i, j) else if r(i, j) < π(i, j)

π(i, j) else if π(i, j) < r(i, j)

(∀(i, j) ∈ E). (4.1)

Condition (3.12) is satisfied by p because s is x-compatible.

We also define zP and zQ by

zP (i, j) =





x(i, j) if (3.8) does not hold for α = p(i, j)

+∞ otherwise
(∀(i, j) ∈ E), (4.2)

zQ(i, j) =





x(i, j) if (3.9) does not hold for α = p(i, j)

+∞ otherwise
(∀(i, j) ∈ E). (4.3)

It follows from the pairwise strict stability of (x, s) that zP (i, j) = +∞ or zQ(i, j) =

+∞ holds. We consider the case where zP (i, j) < +∞. In this case, there exists

y′ ∈ ZE(i) such that fi[+p(i)](x(i)) < fi[+p(i)](y
′) and y′(i, j′) ≤ x(i, j′) for all

j′ ∈ Q \ {j}, where note that fi[+p(i)](x(i)) = fi[+s(i)](x(i)) and fi[+p(i)](y
′) =

fi[+(s−j
(i) , p(i, j))](y′). We show (3.13). Suppose, to the contrary, that p(i, j) >

π(i, j). If x(i, j) > 0, then for a sufficiently small number ε > 0 we have

fi[+p(i)](x(i)) < fi[+(p(i)−εχ(i,j))](y
′),

fj[−p(j)](x(j)) < fj[−(p(j)−εχ(i,j))](x(j)),

which imply that neither (3.8) nor (3.9) holds for α = p(i, j) − ε ≥ π(i, j), a

contradiction. Hence, assume x(i, j) = 0. Since p(i, j) > π(i, j), we have p(i, j) ≤
r(i, j) by (4.1). As the right-hand side of (3.8) is nondecreasing in α and p(i, j) ≤
r(i, j), the definition of r(i, j) guarantees that (3.8) holds for α = p(i, j). However,

this contradicts zP (i, j) < +∞. Thus, we have (3.13).

We next consider the case where zQ(i, j) < +∞ and show (3.14). Suppose, to

the contrary, that p(i, j) < π(i, j). If x(i, j) > 0, then we reach a contradiction in
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the same way as above. Hence assume x(i, j) = 0. By (4.1) and the assumption

we have p(i, j) ≥ r(i, j). If r(i, j) is defined by (3.8), then for a sufficiently small

number ε > 0, neither (3.8) nor (3.9) holds for α = p(i, j) + ε ≤ π(i, j), which

is a contradiction. In the other case (where r(i, j) is either defined by (3.9) or

sufficiently small −b), (3.9) holds for α = p(i, j) since p(i, j) ≥ r(i, j). However,

this contradicts the assumption that zQ(i, j) < +∞. Hence, we have (3.14).

We will finally show (3.10) ((3.11) can be shown similarly). Suppose that (3.10)

does not hold, i.e., for some i ∈ P there exists y′ ∈ arg max{fi[+p(i)](y) | y ≤ z(i)}
with fi[+p(i)](x(i)) < fi[+p(i)](y

′). We choose y′ ∈ arg max{fi[+p(i)](y) | y ≤ z(i)}
with fi[+p(i)](x(i)) < fi[+p(i)](y

′) that minimizes
∑{y′(e)−x(i)(e) | e ∈ supp+(y′−

x(i))}. Since fi[+s(i)](y) = fi[+p(i)](y) holds for all y ∈ ZE(i) with 0 ≤ y ≤ x(i),

(3.1) implies the existence of e ∈ E(i) with y′(e) > x(i)(e). By (M\), there exists

e′ ∈ supp−(y′ − x(i)) ∪ {0} such that

fi[+p(i)](y
′) + fi[+p(i)](x(i)) ≤ fi[+p(i)](y

′−χe+χe′) + fi[+p(i)](x(i)+χe−χe′).

By the definition of y′, we have

fi[+p(i)](y
′) > fi[+p(i)](y

′ − χe + χe′).

The above two inequalities imply fi[+p(i)](x(i)) < fi[+p(i)](x(i) + χe − χe′), which

yields that zP (e) = x(i)(e), by (4.2). This contradicts y′ ≤ z(i). Hence (3.10) holds.

The if part: Let p ∈ RE and zP , zQ ∈ (Z ∪ {+∞})E be vectors satisfying

(3.10)∼(3.14). We define a vector s ∈ RE by

s(i, j) =





p(i, j) if x(i, j) > 0

0 if x(i, j) = 0
(∀(i, j) ∈ E). (4.4)

It follows from (3.12) that s is x-compatible. We will show that (x, s) is pairwise

strictly stable. Since x(k) ≤ z(k) for all k ∈ P ∪ Q, Conditions (3.1) and (3.2) are

direct consequences of (3.10) and (3.11). Suppose, to the contrary, that there exist

i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) such that

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](y′),

y′(i, j′) ≤ x(i, j′) (∀j′ ∈ Q \ {j}), (4.5)

and
fj[−s(j)](x(j)) < fj[−(s−i

(j), α)](y′′),

y′′(i′, j) ≤ x(i′, j) (∀i′ ∈ P \ {i}). (4.6)

Definition (4.4) yields that

fi[+s(i)](x(i)) = fi[+p(i)](x(i)), fi[+(s−j
(i) , α)](y′) = fi[+(p−j

(i) , α)](y′).
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Hence, by (3.10) and since y′ ≥ 0, Condition (4.5) implies that either (Case 1)

y′(i, j) > z(i)(i, j) or (Case 2) y′(i, j) ≤ z(i)(i, j) and p(i, j) < α. Similarly, by (3.11)

and (4.6), we have either (Case 3) y′′(i, j) > z(j)(i, j) or (Case 4) y′′(i, j) ≤ z(j)(i, j)

and α < p(i, j). Trivially, (Case 2) and (Case 4) are inconsistent. By (3.13)

or (3.14), (Case 1) and (Case 3) do not hold simultaneously. Also, (Case 1)

together with (3.13) implies p(i, j) = π(i, j), which is irreconcilable with (Case 4).

Analogously, (Case 2) is irreconcilable with (Case 3), due to (3.14). This means

that (4.5) and (4.6) do not hold simultaneously, a contradiction. Hence (x, s) is

pairwise strictly stable.

4.3. A proof of Theorem 3.5

We assume that given M\-concave functions fP , fQ : ZE → R ∪ {−∞} satisfy

Assumption (A′).

Before describing our constructive proof, we give several known results on M\-

concave functions. For an M\-concave function f : ZE → R ∪ {−∞}, we define

f̂ : Z{0}∪E → R ∪ {−∞} by

f̂(y0, y) =





f(y) if y0 = −y(E)

−∞ otherwise
(∀(y0, y) ∈ Z{0}∪E),

where 0 6∈ E and y(E) denotes the sum of all the components of y. Function f̂ is

called an M-concave function (Murota [18, 19]). Let Ẽ = {0}∪E. For each vector

x ∈ RE we denote by x̂ the vector (−x(E), x) ∈ RẼ, and we write vectors in RẼ

by putting tildes such as p̃ and ỹ (e.g., χ̃e is the characteristic vector of e on Ẽ).

An M-convex function can be characterized by the following exchange property

(Murota [18, 19]):

(M) ∀x̃, ỹ ∈ dom f̂ , ∀e ∈ supp+(x̃− ỹ), ∃e′ ∈ supp−(x̃− ỹ):

f̂(x̃) + f̂(ỹ) ≤ f̂(x̃− χ̃e + χ̃e′) + f̂(ỹ + χ̃e − χ̃e′).

((M) is written as (−M-EXC) in Murota [20].) In particular, an M-concave func-

tion is also M\-concave. For a vector p̃ = (p0, p) ∈ RẼ we have

x ∈ arg max f [p− p01] ⇐⇒ x̂ ∈ arg max f̂ [p̃]. (4.7)

The maximizers of an M-concave function have a good characterization as

follows.

Theorem 4.1 (Murota [18, 19]): For an M-concave function f̂ : ZẼ → R∪{−∞}
and x̃ ∈ dom f̂ , we have x̃ ∈ arg max f̂ if and only if f̂(x̃) ≥ f̂(x̃ − χ̃e + χ̃e′) for

all e, e′ ∈ Ẽ.
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The following property is a direct consequence of (M).

Lemma 4.2: Let f̂ be an M-concave function. Then, for any x̃, ỹ ∈ arg max f̂

and for any e ∈ supp+(x̃− ỹ), there exists e′ ∈ supp−(x̃− ỹ) such that x̃− χ̃e + χ̃e′ ,

ỹ + χ̃e − χ̃e′ ∈ arg max f̂ .

A set B of integer vectors satisfying the property in Lemma 4.2 is called an M-

convex set, which is a so-called base polyhedron in ZẼ. M-convex sets have the

following property.

Lemma 4.3 (Lemma 4.5 in Fujishige [9]): Let B be an M-convex set. For any

x̃ ∈ B and any distinct e1, e′1, e2, e′2, · · · , er, e
′
r ∈ Ẽ, if x̃− χ̃ei

+ χ̃e′i ∈ B for all i =

1, · · · , r and x̃−χ̃ei
+χ̃e′j 6∈ B for all i, j with i < j, then ỹ = x̃−∑r

i=1(χ̃ei
−χ̃e′i) ∈ B.

Lemma 4.4 (Fujishige and Tamura [10]): Let f̂ : ZẼ → R ∪ {−∞} be an M-

concave function. For an element e ∈ Ẽ let z̃1, z̃2 ∈ (Z ∪ {+∞})Ẽ be vectors such

that z̃1 = z̃2 + χ̃e, arg max{f̂(ỹ) | ỹ ≤ z̃1} 6= ∅, and arg max{f̂(ỹ) | ỹ ≤ z̃2} 6= ∅.
Then, the following two statements hold:

(a) For each x̃ ∈ arg max{f̂(ỹ) | ỹ ≤ z̃1} there exists e′ ∈ Ẽ (possibly e′ = e) such

that

x̃− χ̃e + χ̃e′ ∈ arg max{f̂(ỹ) | ỹ ≤ z̃2}.

(b) For each x̃ ∈ arg max{f̂(ỹ) | ỹ ≤ z̃2} there exists e′ ∈ Ẽ (possibly e′ = e) such

that

x̃ + χ̃e − χ̃e′ ∈ arg max{f̂(ỹ) | ỹ ≤ z̃1}.

Lemma 4.5 (Fujishige and Tamura [10]): For an M-concave function f̂ : ZẼ →
R∪{−∞} and a vector z̃2 ∈ (Z∪{+∞})Ẽ suppose that arg max{f̂(ỹ) | ỹ ≤ z̃2} 6=
∅. For any x̃ ∈ arg max{f̂(ỹ) | ỹ ≤ z̃2} and any z̃1 ∈ (Z ∪ {+∞})Ẽ such that (i)

z̃1 ≥ z̃2 and (ii) if x̃(e) = z̃2(e) then z̃1(e) = z̃2(e), we have x̃ ∈ arg max{f̂(ỹ) |
ỹ ≤ z̃1}.

By relation (4.7) between M\-concave and M-concave functions, the problem of

finding a pairwise strictly stable outcome is equivalent to that of finding x̂P , x̂Q ∈
ZẼ, p̃ = (p0, p) ∈ RẼ and z̃P , z̃Q ∈ (Z ∪ {+∞})Ẽ such that

x̂P = x̂Q, (4.8)

x̂P ∈ arg max{f̂P [+p̃](ỹ) | ỹ ≤ z̃P}, (4.9)

x̂Q ∈ arg max{f̂Q[−p̃](ỹ) | ỹ ≤ z̃Q}, (4.10)

p0 = 0, π ≤ p ≤ π, (4.11)

z̃P (0) = +∞, [e ∈ E, z̃P (e) < +∞⇒ p̃(e) = π(e), z̃Q(e) = +∞], (4.12)

z̃Q(0) = +∞, [e ∈ E, z̃Q(e) < +∞⇒ p̃(e) = π(e), z̃P (e) = +∞]. (4.13)
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In the sequel, we show an algorithm that finds x̂P , x̂Q, p̃, z̃P , and z̃Q satisfying

(4.8)∼(4.13). Initially, we put p̃ as:

p̃(e) :=





0 if e = 0

π(e) if π(e) < +∞
b otherwise

(∀e ∈ Ẽ),

where b is a sufficiently large positive integer to be specified later. Furthermore,

put z̃P := (+∞, · · · , +∞) and choose any x̂P ∈ arg max f̂P [+p̃]. Obviously, (4.9),

(4.11), and (4.12) are satisfied. We define z̃Q by

z̃Q(e) =





+∞ if e = 0

x̂P (e) if π(e) < +∞
+∞ otherwise

(∀e ∈ Ẽ),

and choose an x̂Q satisfying (4.10). Condition (4.13) evidently holds. Moreover,

by setting b to be a large enough integer so that x̂Q(e) = 0 for all e ∈ E with

π(e) = +∞, we have

x̂Q(e) ≤ x̂P (e) (∀e ∈ E). (4.14)

From Assumption (A′), such a b exists. By Lemma 4.5, (4.10) is preserved even if

z̃Q(e) is set to +∞ for every e ∈ E with p̃(e) = π(e) and x̂Q(e) < x̂P (e). Thus we

can assume that the following condition is satisfied:

e ∈ E, z̃Q(e) < +∞⇒ x̂Q(e) = x̂P (e) = z̃Q(e). (4.15)

Our aim is to modify vectors x̂P , x̂Q, p̃, z̃P , and z̃Q preserving (4.9)∼(4.15) and

eventually to attain (4.8).

We now assume that we are given vectors x̂P , x̂Q, p̃, z̃P and z̃Q satisfying

(4.9)∼(4.15) but not (4.8). Let L and U be subsets of E defined by

L = {e ∈ E | p̃(e) = π(e)}, (4.16)

U = {e ∈ E | z̃Q(e) < +∞}. (4.17)

It follows from (4.13) and (4.15) that for all e ∈ U we have p̃(e) = π(e) and

x̂Q(e) = x̂P (e) = z̃Q(e). Note that L and U may have a common element e with

π(e) = π(e).

We divide our argument into two parts that treat: (Case 1) there exists e ∈ L

with x̂Q(e) < x̂P (e); (Case 2) the other case.

In (Case 1), we will modify x̂P , x̂Q, z̃P and z̃Q while keeping p̃ the same. Let

e be an element of L with x̂Q(e) < x̂P (e). From (4.15), we have z̃Q(e) = +∞,

and hence, we can assume z̃P (e) = x̂P (e) while preserving (4.9) and (4.12). We

replace z̃P (e) by x̂P (e)−1. By (a) of Lemma 4.4, there exists e′ ∈ Ẽ\{e} such that
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x̂P := x̂P − χ̃e + χ̃e′ satisfies (4.9) for the modified z̃P . If z̃Q(e′) = +∞ then x̂Q and

z̃Q are kept the same, and Conditions (4.9)∼(4.15) are preserved. In the case where

z̃Q(e′) < +∞ (i.e., e′ ∈ U), we modify x̂Q and z̃Q as follows. By (4.15), for the

updated x̂P we have x̂P (e′) = x̂Q(e′) + 1. Thus, (b) of Lemma 4.4 guarantees the

existence of e′′ ∈ E, which may coincide with e′, such that x̂Q := x̂Q + χ̃e′ − χ̃e′′

and z̃Q := z̃Q + χ̃e′ satisfy (4.10). At this point, (4.9)∼(4.14) are satisfied. If

e′ 6= e′′, then we have z̃Q(e′) = x̂Q(e′) = x̂P (e′), which implies (4.15) for e′. In

order to ensure (4.15) for e′′, we replace z̃Q(e′′) by +∞ if e′′ ∈ U . Since we have

x̂Q(e′′) < x̂P (e′′), this modification does not destroy (4.10), by Lemma 4.5. Hence,

in (Case 1), the modified vectors satisfy all the required conditions.

Next we consider (Case 2), where x̂Q(e) = x̂P (e) for all e ∈ L. In this case, we

modify p̃ as well as x̂P , x̂Q, and z̃Q (while we keep z̃P the same). The procedure

given below is based on a successive shortest path algorithm for finding a maximizer

of the sum of two M-concave functions (Moriguchi and Murota [17], also see Iwata

et al. [14]). It may be recognized as a sophisticated procedure for decreasing prices

in auction algorithms. We deal with two functions defined by

f̂≤P (x0, x) =





fP (x) if x0 = −x(E), (x0, x) ≤ z̃P

−∞ otherwise
(∀(x0, x) ∈ ZẼ),

f̂≤Q (x0, x) =





fQ(x) if x0 = −x(E), (x0, x) ≤ z̃Q

−∞ otherwise
(∀(x0, x) ∈ ZẼ).

Obviously, f̂≤P and f̂≤Q are also M-concave, and x̂P ∈ arg max f̂≤P [+p̃] and x̂Q ∈
arg max f̂≤Q [−p̃] hold.

We construct a directed graph G = (Ẽ, A) and an arc length function ` : A →
R ∪ {+∞} as follows. Arc set A consists of two disjoint parts:

AP = {(e, e′) | e, e′ ∈ Ẽ, e 6= e′, x̂P − χ̃e + χ̃e′ ∈ dom f̂≤P },
AQ = {(e, e′) | e, e′ ∈ Ẽ, e 6= e′, x̂Q + χ̃e − χ̃e′ ∈ dom f̂≤Q},

(4.18)

and ` ∈ RA is defined by

`(a) =





f̂≤P [+p̃](x̂P )− f̂≤P [+p̃](x̂P − χ̃e + χ̃e′) if a = (e, e′) ∈ AP

f̂≤Q [−p̃](x̂Q)− f̂≤Q [−p̃](x̂Q + χ̃e − χ̃e′) if a = (e, e′) ∈ AQ.
(4.19)

Length function ` is nonnegative due to Theorem 4.1.

Let S = supp+(x̂P − x̂Q) and T = {0}∪L∪U . We note that S∩T = ∅ because

0 6∈ S by (4.14) and x̂Q 6= x̂P and because x̂Q(e) = x̂P (e) for all e ∈ L ∪ U by

(4.15) and the assumption in (Case 2). Let d : Ẽ → R∪{+∞} denote the shortest

distances from S to all vertices in G with respect to `. For any a = (e, e′) ∈ A

with d(e) < +∞ we have

`(a) + d(e)− d(e′) ≥ 0. (4.20)
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We note that there always exists a path from S to T because (e, 0) ∈ AP for all

e ∈ S by (A′). Let P be a shortest path from S to T with the minimum number

of arcs. We define δ by

δ = min
{
`(P), min{p̃(e)− π(e) + d(e) | e ∈ Ẽ}

}
, (4.21)

where `(P) =
∑

a∈P `(a), and define a vector ∆p̃ by

∆p̃(e) = min{d(e)− δ, 0} (∀e ∈ Ẽ). (4.22)

Obviously ∆p̃ ≤ 0 holds. It follows from (4.20)∼(4.22) and the nonnegativity of `

that

`(a) + ∆p̃(e)−∆p̃(e′) ≥ 0 (∀a = (e, e′) ∈ A).

The above system of inequalities is equivalent to

f̂≤P [+p̃](x̂P )− f̂≤P [+p̃](x̂P−χ̃e+χ̃e′) + ∆p̃(e)−∆p̃(e′) ≥ 0

f̂≤Q [−p̃](x̂Q)− f̂≤Q [−p̃](x̂Q+χ̃e−χ̃e′) + ∆p̃(e)−∆p̃(e′) ≥ 0
(∀e, e′ ∈ Ẽ),

which is further equivalent to

x̂P ∈ arg max f̂≤P [+(p̃ + ∆p̃)], x̂Q ∈ arg max f̂≤Q [−(p̃ + ∆p̃)],

due to Theorem 4.1. We show that p̃ + ∆p̃ satisfies (4.11). Since ∆p̃ ≤ 0, it is

enough to show that π(e) ≤ p̃(e) + ∆p̃(e) for all e ∈ E and ∆p̃(0) = 0. Since

δ ≤ `(P), we have

∆p̃(e) = 0 (∀e ∈ T ). (4.23)

It follows from (4.21) that for all e ∈ Ẽ we have

p̃(e) + ∆p̃(e) = min {p̃(e) + d(e)− δ, p̃(e)}
≥ min {p̃(e) + d(e)− (p̃(e) + d(e)− π(e)), p̃(e)}
= π(e).

Thus, x̂P , x̂Q, p̃ + ∆p̃, z̃P , and z̃Q satisfy Conditions (4.9)∼(4.15).

The above calculation shows that if δ < `(P), then there exists e ∈ E with

p̃(e) > p̃(e) + ∆p̃(e) = π(e), that is, L is enlarged. We next deal with the case

where δ = `(P).

Suppose δ = `(P). Note that for each arc a = (e, e′) ∈ A, `′(a) = `(a) +

∆p̃(e) − ∆p̃(e′) is the length of a in the directed graph defined in the same way

as above for f̂≤P [+(p̃ + ∆p̃)], f̂≤Q [−(p̃ + ∆p̃)], x̂P , and x̂Q. Since δ = `(P), we have

`′(a) = 0 for all arcs a ∈ P. Therefore, we have

x̂P − χ̃e + χ̃e′ ∈ arg max f̂≤P [+(p̃ + ∆p̃)] (∀(e, e′) ∈ P ∩ AP ),

x̂Q + χ̃e − χ̃e′ ∈ arg max f̂≤Q [−(p̃ + ∆p̃)] (∀(e, e′) ∈ P ∩ AQ).
(4.24)
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Since P has the minimum number of arcs, we have

x̂P − χ̃e + χ̃e′′ 6∈ arg max f̂≤P [+(p̃ + ∆p̃)],

x̂Q + χ̃e − χ̃e′′ 6∈ arg max f̂≤Q [−(p̃ + ∆p̃)]
(4.25)

for all vertices e and e′′ of P such that (e, e′′) 6∈ P and e appears earlier than e′′

in P. Furthermore, arcs of AP and AQ appear alternately in P. For otherwise,

assume that two consecutive arcs (e, e′), (e′, e′′) ∈ P belong to AP and then, by

(M) we have

f̂≤P [+p̃](x̂P−χ̃e+χ̃e′) + f̂≤P [+p̃](x̂P−χ̃e′+χ̃e′′)

≤ f̂≤P [+p̃](x̂P ) + f̂≤P [+p̃](x̂P−χ̃e+χ̃e′′),

which yields

`(e, e′) + `(e′, e′′) ≥ `(e, e′′),

a contradiction to the minimality of the number of arcs in P. Consequently, we

have

a1=(e1, e
′
1), a2=(e2, e

′
2) ∈ P∩AP , a1 6= a2 =⇒ {e1, e

′
1} ∩ {e2, e

′
2} = ∅,

a1=(e1, e
′
1), a2=(e2, e

′
2) ∈ P∩AQ, a1 6= a2 =⇒ {e1, e

′
1} ∩ {e2, e

′
2} = ∅. (4.26)

From Lemmas 4.2 and 4.3 together with (4.24)∼(4.26), we have

x̂′P = x̂P −
∑

(e,e′)∈P∩AP

(χ̃e − χ̃e′) ∈ arg max f̂≤P [+(p̃ + ∆p̃)], (4.27)

x̂′Q = x̂Q +
∑

(e,e′)∈P∩AQ

(χ̃e − χ̃e′) ∈ arg max f̂≤Q [−(p̃ + ∆p̃)]. (4.28)

We replace x̂P , x̂Q and p̃ by x̂′P , x̂′Q and p̃ + ∆p̃, respectively. Modifications (4.27)

and (4.28) guarantee that (4.9), (4.10) and (4.14) hold for modified vectors. We

have already shown that (4.11) holds. Since z̃P and z̃Q remain the same, Condition

(4.23) implies (4.12) and (4.13). Let e′ be the terminal vertex of P and let a∗ be

the last arc of P. If e′ 6∈ U , then (4.15) trivially holds. Hence we assume that

e′ ∈ U in the sequel.

If a∗ ∈ AQ, then we have x̂Q(e′) < z̃Q(e′) = x̂P (e′) and (4.10). Hence, it follows

from Lemma 4.5 that we can put z̃Q(e′) := +∞ while preserving (4.10) and (4.15).

Suppose that a∗ belongs to AP . Thus, x̂P (e′) = x̂Q(e′)+1 = z̃Q(e′)+1 holds at

this point. We increase z̃Q(e′) by one. By (b) of Lemma 4.4, there exists e′′ ∈ Ẽ

such that x̂Q := x̂Q + χ̃e′ − χ̃e′′ satisfy (4.10) for the updated z̃Q. If e′′ ∈ U , then

we put z̃Q(e′′) := +∞. In the same way as in the argument for (Case 1), this

modification yields (4.15) while preserving the other conditions.

Summarizing the above argument, we describe an algorithm Pairwise Stable.

We will show that it terminates in a finite number of iterations and finds a pairwise

strictly stable outcome.
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Algorithm Pairwise Stable

Step 0. Find x̂P , x̂Q, p̃, z̃P , and z̃Q satisfying (4.9)∼(4.15).

Step 1. If x̂P = x̂Q then stop.

Step 2. Set L and U as (4.16) and (4.17). If there exists e ∈ L with x̂Q(e) < x̂P (e)

then go to Step 3.a; else go to Step 4.a.

Step 3.a. Set z̃P (e) := x̂P (e)− 1 and x̂P := x̂P − χ̃e + χ̃e′ , where e′ is an element

such that (4.9) is satisfied by the updated x̂P and z̃P .

3.b. If e′ 6∈ U then go to Step 1; else go to Step 5.

Step 4.a. Construct G and compute ` for f̂≤P [+p̃], f̂≤Q [−p̃], x̂P and x̂Q by (4.18)

and (4.19). Set S := supp+(x̂P − x̂Q) and T := {0} ∪ L ∪ U . Compute the

shortest distances d(e) from S to all e ∈ Ẽ in G with respect to `. Find a

shortest path P from S to T with the minimum number of arcs.

4.b. Compute δ by (4.21). For each e ∈ Ẽ, set p̃(e) := p̃(e)+min{d(e)−δ, 0}.
If δ < `(P) then go to Step 1.

4.c. Update x̂P and x̂Q by (4.27) and (4.28). If the terminal vertex e′ of P

is not in U then go to Step 1.

4.d. If the last arc of P is in AQ then put z̃Q(e′) := +∞ and go to Step 1;

else go to Step 5.

Step 5. Set z̃Q := z̃Q + χ̃e′ and x̂Q := x̂Q + χ̃e′ − χ̃e′′ , where e′′ is an element such

that (4.10) holds. If e′′ ∈ U then set z̃Q(e′′) := +∞. Go to Step 1.

We have already shown the following lemma.

Lemma 4.6: Conditions (4.9)∼(4.15) are satisfied at Step 1 in each iteration of

Pairwise Stable.

The following two lemmas show the termination of Pairwise Stable.

Lemma 4.7: In each iteration of Pairwise Stable, the following statements

hold.

(a) L enlarges or remains the same.

(b) z̃P decreases or remains the same.

(c) z̃Q increases or remains the same.
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(d)
∑

e∈E

(x̂P (e)− x̂Q(e)) = x̂Q(0)− x̂P (0) decreases or remains the same.

Proof. Since L = {e ∈ E | p̃(e) = π(e)} and p̃ does not increase during Pair-

wise Stable, we have (a). Statements (b) and (c) trivially hold. Furthermore,

we obviously have
∑

e∈E(x̂P (e) − x̂Q(e)) = x̂Q(0) − x̂P (0), which is nonnegative

by (4.14). Vectors x̂P and/or x̂Q are modified at Step 3.a, Step 4.c or Step 5. At

Step 3.a or Step 4.c, if e′ = 0, then x̂Q(0) − x̂P (0) is decreased by one; otherwise

it remains the same. At Step 5, if e′′ = 0, then x̂Q(0)− x̂P (0) is decreased by one;

otherwise it remains the same. Hence (d) holds.

We denote by [StepXX→Step1] the case where we go from Step XX to Step 1

after execution of Step XX in Pairwise Stable.

Lemma 4.8: Pairwise Stable has the following features.

(a) In [Step3.b→Step1], some component of z̃P strictly decreases.

(b) In [Step4.b→Step1], L strictly enlarges.

(c) In [Step4.c→Step1], either x̂Q(0) − x̂P (0) strictly decreases or (a) occurs in

the next iteration.

(d) In [Step4.d→Step1], some component of z̃Q strictly increases.

(e) In [Step5→Step1], some component of z̃Q strictly increases.

Proof. (a): At the beginning of Step 3.a, we have z̃P (e) ≥ x̂P (e). Hence, z̃P (e)

strictly decreases at Step 3.a.

(b): As we have already shown, L strictly enlarges when δ < `(P).

(c): In this case, we have either e′ = 0 or e′ ∈ L \ U . In the former case

x̂Q(0) − x̂P (0) is decreased by one. Since x̂Q(e) = x̂P (e) for all e ∈ L ∪ U at the

beginning of Step 4, we have x̂P (e′) > x̂Q(e′) for e′(∈ L) at the end of Step 4.c,

which results in (a) in the next iteration.

(d): In this case, we have e′ ∈ U at the beginning of Step 4.d. Hence, z̃Q(e′)

strictly increases.

(e): If e′ 6= e′′, then z̃Q(e′) increases by one; otherwise z̃Q(e′) = +∞.

Lemma 4.9: Pairwise Stable terminates in a finite number of iterations if fP

and fQ satisfy (A′).

Proof. Since fP and fQ satisfy (A′), we have

• x̂Q(0)− x̂P (0) is nonnegative and bounded from above,
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• if z̃P (e) < +∞ then it is nonnegative and bounded from above,

• if z̃Q(e) < +∞ then it is bounded from above by (4.15).

Hence, Lemmas 4.7 and 4.8 guarantee the termination of Pairwise Stable in

finitely many steps.

Lemma 4.10: If fP and fQ are integer-valued on their effective domains, π ∈
(Z ∪ {−∞})E, and π ∈ (Z ∪ {+∞})E, then p̃ is preserved to be integer-valued in

Pairwise Stable.

Proof. Because π ∈ (Z ∪ {+∞})E, p̃ is initially defined to be integer-valued in

Pairwise Stable. Since fP and fQ are integer-valued on their effective domains,

` defined in (4.19) is integer-valued. Furthermore, as π ∈ (Z∪ {−∞})E, δ defined

in (4.21) is also integer-valued. Hence, p̃(e) := p̃(e) + min{d(e)− δ, 0} modified at

Step 4.b is preserved to be integer for each e ∈ Ẽ.

By Lemmas 4.6 and 4.9, Pairwise Stable always finds x̂P , x̂Q, p̃, z̃P , and

z̃Q satisfying (4.8)∼(4.13) under (A′). By Lemma 4.10, if fP and fQ are integer-

valued on their effective domains, π ∈ (Z∪ {−∞})E, and π ∈ (Z∪ {+∞})E, then

p is preserved to be integer-valued. This completes the proof of Theorem 3.5.
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