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Abstract

The marriage model due to Gale and Shapley and the assignment model

due to Shapley and Shubik are standard in the theory of two-sided matching

markets. We give a common generalization of these models by utilizing

discrete concave functions and considering possibly bounded side payments.

We show the existence of a pairwise stable outcome in our model. Our

present model is a further natural extension of the model examined in our

previous paper (Fujishige and Tamura [12]), and the proof of the existence

of a pairwise stable outcome is even simpler than the previous one.
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1. Introduction

The marriage model due to Gale and Shapley [14] and the assignment model

due to Shapley and Shubik [28] are standard in the theory of two-sided matching

markets. The largest difference between these two models is that the former does

not allow side payments or transferable utilities whereas the latter does (see Roth

and Sotomayor [26]).

Since Gale and Shapley’s paper a large number of variations and extensions

have been proposed. Recently, the marriage model was extended to frameworks in

combinatorial optimization. Fleiner [9] extended the marriage model to the frame-

work of matroids, and Eguchi, Fujishige and Tamura [5] extended this formulation

to a more general one in terms of discrete convex analysis which was developed

by Murota [20, 21, 22]. Alkan and Gale [2] and Fleiner [10] also generalized the

marriage model to another wide frameworks. The existence of stable matchings in

these models are guaranteed.

For the other standard model, the assignment model, Kelso and Crawford [18]

proposed a seminal one-to-many variation in which a payoff function of each worker

is strictly increasing (not necessarily linear) in a side payment, and a payoff func-

tion of each firm satisfies gross substitutability and is linear in a side payment.

They showed the existence of a stable outcome.

On the other hand, progress has been made toward unifying the marriage

model and the assignment model. Crawford and Knoer [3] extended Gale and

Shapley’s deferred acceptance algorithm for the marriage model to the assignment

model. Kaneko [17] formulated a general model that includes the two by means

of characteristic functions, and proved the nonemptiness of the core. Roth and

Sotomayor [27] proposed a general model that also encompasses both and inves-

tigated the lattice property for payoffs. Eriksson and Karlander [6] proposed a

hybrid model of the marriage model and the assignment model. In the Eriksson-

Karlander model, the set of agents is partitioned into two categories, one for “rigid”

agents and the other for “flexible” agents. Rigid agents do not get side payments,

that is, they behave like agents in the marriage model, while flexible agents be-

have like ones in the assignment model. Sotomayor [31] also further investigated

this hybrid model and gave a non-constructive proof of the existence of a pair-

wise stable outcome. Fujishige and Tamura [12] proposed a generalization of the
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hybrid model due to Eriksson and Karlander [6] and Sotomayor [31] by utilizing

M\-concave functions which play a central role in discrete convex analysis.

The model in [12] motivates us to consider a more natural common gener-

alization of the marriage model and the assignment model by utilizing discrete

convex analysis. Our goal is to propose such a model which includes models due

to Gale and Shapley [14], Shapley and Shubik [28], Eriksson and Karlander [6],

Sotomayor [31], Fleiner [9], Eguchi et al. [5], and Fujishige and Tamura [12] as

special cases, and to verify the existence of a pairwise stable outcome. The char-

acteristic idea of our present model is to adopt a range of a side payment for each

pair of agents instead of using the concept of rigid and flexible pairs. Our model

can deal with rigidity and flexibility of pairs as ranges [0, 0] and (−∞, +∞) of side

payments respectively as well as any ranges of side payments. This approach is

more natural and adaptable than that adopting rigidity and flexibility. Further-

more, our proof for the existence of a pairwise stable outcome is simpler than that

in our previous paper [12].

As we will discuss in Section 2, gross substitutability and M\-concavity are

equivalent for set functions. It is our contribution in contrast to the results of

Kelso and Crawford [18] that the existence of pairwise stable outcome is preserved

in a many-to-many variation with quasi-linear workers’ payoff functions as well as

its extensions with multi-units of labor time and possibly bounded side payments.

Moreover, we give not only a general mathematical model but also a new concrete

common generalization of the marriage and assignment models. We call it the

assignment model with possibly bounded side payments, which is the simplest

common generalization. It seems that this model has not been studied in the

literature. The existence of a pairwise stable outcome of this model is a direct

consequence of our main result.

The present paper is organized as follows. Section 2 explains M\-concavity to-

gether with some examples and gives its nice properties and several useful lemmas

from the viewpoint of mathematical economics. Section 3 describes our general

model and two concepts of stability, namely “pairwise stability” and “pairwise

strict stability,” discusses relations between these two concepts, and gives our

main theorem about the existence of pairwise stable outcomes. Proofs of prelimi-

nary lemmas and theorems are put in Section 6, and a proof of our main theorem
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is given in Section 5. Section 4 discusses relations between several existing models

and our general model. In Section 5 we present an algorithm for finding a pairwise

strictly stable outcome and prove its correctness, which shows our main theorem

about the existence of a pairwise stable outcome. In Section 6 we give proofs of

the lemma and theorems appearing in Section 3. Section 7 gives future work and

open problems.

2. M\-concavity

In this section we explain the concept of M\-concave function, which plays a central

role in discrete convex analysis (see [22] for details). Let E be a nonempty finite

set, and let 0 be a new element not in E. We denote by Z the set of integers, and

by ZE the set of integral vectors x = (x(e) | e ∈ E) indexed by E, where x(e)

denotes the e-component of vector x. Also, R and RE denote the set of reals and

of real vectors indexed by E, respectively. Let 0 and 1 be vectors of all zeros and

all ones of an appropriate dimension. We define the positive support supp+(x)

and the negative support supp−(x) of x ∈ ZE by

supp+(x) = {e ∈ E | x(e) > 0}, supp−(x) = {e ∈ E | x(e) < 0}.

For each S ⊆ E, we denote by χS the characteristic vector of S defined by:

χS(e) = 1 if e ∈ S and χS(e) = 0 otherwise, and write simply χe instead of χ{e}

for all e ∈ E. We also define χ0 as the zero vector in ZE, where we assume 0 /∈ E.

For S ⊆ E and x ∈ ZE, let x(S) =
∑

e∈S x(e). For a vector p ∈ RE and a function

f : ZE → R ∪ {−∞}, we define functions 〈p, x〉 and f [p](x) in x ∈ ZE by

〈p, x〉 =
∑

e∈E

p(e)x(e), f [p](x) = f(x) + 〈p, x〉 (∀x ∈ ZE).

We also define arg max, the set of maximizers, of f on U ⊆ ZE and the effective

domain of f by

arg max{f(y) | y ∈ U} = {x ∈ U | ∀y ∈ U : f(x) ≥ f(y)},
dom f = {x ∈ ZE | f(x) > −∞}.

We abbreviate arg max{f(y) | y ∈ ZE} to arg max f .

A function f : ZE → R ∪ {−∞} with dom f 6= ∅ is called M\-concave

(Murota [22] and Murota and Shioura [23]) if it satisfies
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Figure 1: M\-concavity for two dimensional case: the sum of function values of

black points or that of white points is greater than or equal to that of x and y.

(M\) ∀x, y ∈ dom f , ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) ∪ {0} :

f(x) + f(y) ≤ f(x− χe + χe′) + f(y + χe − χe′).

((M\) is denoted by (−M\-EXC) in Murota [22].) Condition (M\) says that the sum

of the function values at two points does not decrease as the points symmetrically

move one or two step closer to each other on the set of integral lattice points of

ZE (see Figure 1). This is a discrete analogue of the fact that for an ordinary

concave function the sum of the function values at two points does not decrease

as the points symmetrically move closer to each other on the straight line segment

between the two points.

By the definition of M\-concavity, if f is M\-concave, then f [p] is also M\-

concave for any p ∈ RE. Here are two simple examples of M\-concave functions.

Example 1: For the independence family I ⊆ 2E of a matroid on E and w ∈ RE,

the function f : ZE → R ∪ {−∞} defined by

f(x) =





∑

e∈X

w(e) if x = χX for some X ∈ I

−∞ otherwise

(∀x ∈ ZE)

is M\-concave (see Murota [22]).

Example 2: We call a nonempty family T of subsets of E a laminar family if

X ∩ Y = ∅, X ⊆ Y or Y ⊆ X holds for every X,Y ∈ T . For a laminar family
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T and a family of univariate concave functions fY : R → R ∪ {−∞} indexed by

Y ∈ T , the function f : ZE → R ∪ {−∞} defined by

f(x) =
∑

Y ∈T
fY (x(Y )) (∀x ∈ ZE)

is M\-concave if dom f 6= ∅ (see Murota [22]).

An M\-concave function has nice features as a value function from the point

of view of mathematical economics. For any M\-concave function f : ZE →
R ∪ {−∞}, there exists an ordinary concave function f̄ : RE → R ∪ {−∞}
such that f̄(x) = f(x) for all x ∈ ZE (Murota [20]). That is, any M\-concave

function on ZE has a concave extension on RE. An M\-concave function f also

satisfies submodularity (Murota and Shioura [24]): f(x)+f(y) ≥ f(x∧y)+f(x∨y)

for all x, y ∈ dom f , where x ∧ y and x ∨ y are the vectors whose e-components

(x∧ y)(e) and (x∨ y)(e) are, respectively, min{x(e), y(e)} and max{x(e), y(e)} for

all e ∈ E.

An M\-concave function satisfies the following two properties which are natu-

ral generalizations of the gross substitutability and single improvement property

discussed in Kelso and Crawford [18] and Gul and Stacchetti [15].

(GS) For any p, q ∈ RE and any x ∈ arg max f [−p] such that p ≤ q and arg max f [−q] 6=
∅, there exists y ∈ arg max f [−q] such that y(e) ≥ x(e) for all e ∈ E with

p(e) = q(e).

(SI) For any p ∈ RE and any x, y ∈ dom f with f [−p](x) < f [−p](y),

f [−p](x) < max
e∈supp+(x−y)∪{0}

max
e′∈supp−(x−y)∪{0}

f [−p](x− χe + χe′).

Here E denotes the set of indivisible commodities, p ∈ RE a price vector of com-

modities, x ∈ ZE a consumption of commodities, and f(x) a monetary valuation

for x. The above conditions are interpreted as follows. Condition (GS) says that

when each price increases or remains the same, the consumer wants a consumption

such that the numbers of the commodities whose prices remain the same do not

decrease. Condition (SI) guarantees that the consumer can bring consumption x

closer to any better consumption y by changing the consumption of one or two com-

modities. The equivalence between gross substitutability and the single improve-

ment condition for set functions was first pointed out by Gul and Stacchetti [15],
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and the equivalence between the single improvement condition and M\-concavity

for set functions was by Fujishige and Yang [13]. Moreover, M\-concavity can be

characterized by these properties or their extensions under a natural assumption

(see Danilov, Koshevoy and Lang [4] and Murota and Tamura [25] for details).

Fujishige and Tamura [12] showed that an M\-concave function satisfies the

following properties.

(S1) Let z1, z2 ∈ ZE be such that z1 ≥ z2, arg max{f(y) | y ≤ z1} 6= ∅, and

arg max{f(y) | y ≤ z2} 6= ∅. For any x1 ∈ arg max{f(y) | y ≤ z1}, there

exists x2 such that

x2 ∈ arg max{f(y) | y ≤ z2} and z2 ∧ x1 ≤ x2.

(S2) Let z1, z2 ∈ ZE be such that z1 ≥ z2, arg max{f(y) | y ≤ z1} 6= ∅, and

arg max{f(y) | y ≤ z2} 6= ∅. For any x2 ∈ arg max{f(y) | y ≤ z2}, there

exists x1 such that

x1 ∈ arg max{f(y) | y ≤ z1} and z2 ∧ x1 ≤ x2.

Suppose that E denotes a set of workers, y ∈ ZE a labor allocation representing

labor times of the workers, f(y) a valuation of a firm for labor allocation y, and

z1, z2 ∈ ZE vectors representing capacities of labor times. Property (S1) says

that when each capacity decreases or remains the same, there exists an optimal

labor allocation such that for every worker, if his/her original labor time is less

than or equal to the new capacity, then the labor time increases or remains the

same, and if the original labor time is greater than the new capacity, then the

labor time becomes equal to the new capacity. On the other hand, (S2) says

that when each capacity increases or remains the same, there exists an optimal

labor allocation such that for every worker, if his/her original labor time is less

than its original capacity, then the labor time decreases or remains the same.

Hence, (S1) and (S2) imply that a choice function C : ZE → 2dom f defined by

C(z) = arg max{f(y) | y ≤ z} satisfies “substitutability,” where 2dom f denotes

the set of all subsets of dom f . In fact, if dom f ⊆ {0, 1}E then (S1) and (S2) are

equivalent to conditions of substitutability in Sotomayor [30, Definition 4], and if

C always gives a singleton (in this case (S1) and (S2) are equivalent), then (S1)

and (S2) are equivalent to persistence (substitutability) in Alkan and Gale [2].
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Farooq and Tamura [8] showed that f : {0, 1}E → R ∪ {−∞} is M\-concave if

and only if f [−p] satisfies (S1) for all p ∈ RE, and that f is M\-concave if and

only if f [−p] satisfies (S2) for all p ∈ RE. Farooq and Shioura [7] extended these

characterizations to the case where dom f is bounded.

The maximizers of an M\-concave function have a good characterization as

follows.

Theorem 2.1 (Murota [20, 21], Murota and Shioura [23]): For an M\-concave func-

tion f : ZE → R ∪ {−∞} and x ∈ dom f , we have x ∈ arg max f if and only if

f(x) ≥ f(x− χe + χe′) for all e, e′ ∈ {0} ∪ E.

The set of all maximizers of an M\-concave function is called a g-polymatroid

in ZE (see [11]), which is also called an M\-convex set in [22]. M\-convex sets have

the following property.

Lemma 2.2 (Lemma 4.5 in Fujishige [11]): Let B be an M\-convex set. For any

x ∈ B and any distinct elements e1, e′1, e2, e′2, · · · , er, e
′
r ∈ {0} ∪ E, if x − χei

+

χe′i ∈ B for all i = 1, · · · , r and x − χei
+ χe′j 6∈ B for all i, j with i < j, then

y = x−∑r
i=1(χei

− χe′i) ∈ B.

The following lemmas also show some basic properties of M\-concave functions,

which will be useful in Sections 5 and 6.

Lemma 2.3 (Fujishige and Tamura [12]): Let f : ZE → R ∪ {−∞} be an M\-

concave function. For an element e ∈ E let z1, z2 ∈ (Z ∪ {+∞})E be vectors such

that z1 = z2 + χe, arg max{f(y) | y ≤ z1} 6= ∅, and arg max{f(y) | y ≤ z2} 6= ∅.
Then, the following two statements hold:

(a) For each x ∈ arg max{f(y) | y ≤ z1} there exists e′ ∈ {0}∪E (possibly e′ = e)

such that

x− χe + χe′ ∈ arg max{f(y) | y ≤ z2}.

(b) For each x ∈ arg max{f(y) | y ≤ z2} there exists e′ ∈ {0}∪E (possibly e′ = e)

such that

x + χe − χe′ ∈ arg max{f(y) | y ≤ z1}.
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Lemma 2.3 says that when the capacity of the labor time of one worker de-

creases (or increases) by one, an optimal allocation can be obtained from the

current optimal allocation by changing the labor times of at most two workers.

Lemma 2.4 (Fujishige and Tamura [12]): For an M\-concave function f : ZE →
R∪{−∞} and a vector z2 ∈ (Z∪{+∞})E suppose that arg max{f(y) | y ≤ z2} 6=
∅. For any x ∈ arg max{f(y) | y ≤ z2} and any z1 ∈ (Z ∪ {+∞})E such that (i)

z1 ≥ z2 and (ii) x(e) = z2(e) =⇒ z1(e) = z2(e), we have x ∈ arg max{f(y) | y ≤
z1}.

Lemma 2.4 says that any capacity larger than the corresponding labor time can

be made arbitrarily large without destroying the optimality of the given optimal

labor allocation.

3. Model description

We consider a two-sided market consisting of disjoint sets P and Q of agents, in

which an agent in P may be called a worker and one in Q a firm. Each worker

i ∈ P can supply multi-units of labor time, and each firm j ∈ Q can employ

workers with multi-units of labor time and pay a salary to worker i if j hires i.

We assume possibly bounded side payments, i.e., each pair (i, j) may have lower

and upper bounds on a salary per unit of labor time. We also assume that the

valuation of each agent k ∈ P ∪Q on labor allocations is described by a function

in monetary terms. We will examine two concepts of stability, namely, pairwise

stability and pairwise strict stability, in a market where the payoff function of each

agent is quasi-linear. We will give precise definitions of the two concepts later.

First we describe our model mathematically. Let E = P × Q, i.e., the set of

all ordered pairs (i, j) of agents i ∈ P and j ∈ Q. Also define E(i) = {i} × Q for

all i ∈ P and E(j) = P × {j} for all j ∈ Q. Denoting by x(i, j) the number of

units of labor time for which j hires i, we represent a labor allocation by vector

x = (x(i, j) | (i, j) ∈ E) ∈ ZE. We express lower and upper bounds of salaries

per unit of labor time by two vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E

with π ≤ π. For each y ∈ RE and k ∈ P ∪ Q, we denote by y(k) the restriction

of y on E(k). For example, for a labor allocation x ∈ ZE, x(k) represents the labor

9



allocation of agent k with respect to x. We assume that the valuation of each

worker on a labor allocation is determined only by how many units of labor time

he/she works in the firms, and that the valuation of each firm is determined only

by how many units of labor time it hires the workers. That is, the value function

fk of each k ∈ P ∪ Q is defined on E(k) as fk : ZE(k) → R ∪ {−∞}. We assume

that each value function fk satisfies the following assumption:

(A) dom fk is bounded and hereditary, and has 0 as the minimum point,

where heredity means that for any y, y′ ∈ ZE(k) , 0 ≤ y′ ≤ y ∈ dom fk implies

y′ ∈ dom fk. The boundedness of effective domains implies that each value function

is implicitly imposed on firm’s budget constraint or worker’s constraint on labor

time. The heredity of effective domains implies that each agent can arbitrarily

decrease related labor time (before contract) without any permission from the

partner.

A vector x ∈ ZE is called a feasible allocation if x(k) ∈ dom fk for all k ∈ P ∪Q,

and a vector s ∈ RE is called a feasible salary vector if π(i, j) ≤ s(i, j) ≤ π(i, j)

for all (i, j) ∈ E. We call a pair (x, s) of a feasible allocation x ∈ ZE and a feasible

salary vector s ∈ RE an outcome.

The payoff functions of agents on outcomes are defined as follows: the payoff of

worker i ∈ P on (x, s) is given by fi[+s(i)](x(i)) = fi(x(i)) +
∑

j∈Q s(i, j)x(i, j), i.e.,

the value of i on x plus the income from the firms that hire worker i, and the payoff

of firm j ∈ Q on (x, s) is given by fj[−s(j)](x(j)) = fj(x(j)) − ∑
i∈P s(i, j)x(i, j),

i.e., the value of firm j on x minus the payments to the workers that firm j hires.

An outcome (x, s) is said to satisfy incentive constraints if each agent has no

incentive to unilaterally decrease the current units x of labor time at the current

salary agreements s, that is, if it satisfies

fi[+s(i)](x(i)) = max{fi[+s(i)](y) | y ≤ x(i)} (∀i ∈ P ), (3.1)

fj[−s(j)](x(j)) = max{fj[−s(j)](y) | y ≤ x(j)} (∀j ∈ Q). (3.2)

Next we define pairwise (un)stability formally. For any s ∈ RE, α ∈ R, i ∈ P ,

and j ∈ Q, let (s−j
(i) , α) be defined as the vector obtained from s(i) by replacing its

(i, j)-component by α, and (s−i
(j), α) be similarly defined. We say that an outcome

(x, s) is pairwise unstable if it does not satisfy incentive constraints or there exist
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i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) such that

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](y′), (3.3)

y′(i, j′) ≤ x(i, j′) (∀j′ ∈ Q \ {j}), (3.4)

fj[−s(j)](x(j)) < fj[−(s−i
(j), α)](y′′), (3.5)

y′′(i′, j) ≤ x(i′, j) (∀i′ ∈ P \ {i}), (3.6)

y′(i, j) = y′′(i, j). (3.7)

For some feasible salary α between i and j, conditions (3.3) and (3.4) say that

worker i can strictly increase his/her payoff by changing the current units of labor

time with j without increasing units of labor time with other firms, and (3.5) and

(3.6) say that firm j can also strictly increase its payoff by changing the current

units of labor time with i without increasing units of labor time with other workers.

Moreover, condition (3.7) requires that i and j agree on units of labor time between

them. An outcome (x, s) is called pairwise stable if it is not pairwise unstable.

We also consider a stronger pairwise stability, which might be regarded as

artificial but plays an important role in showing the existence of a pairwise stable

outcome. We say that an outcome (x, s) is pairwise quasi-unstable if it does not

satisfy incentive constraints or there exist i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)],

y′ ∈ ZE(i) and y′′ ∈ ZE(j) satisfying (3.3)∼(3.6) (but not necessarily (3.7)). Without

requirement (3.7), conditions (3.3)∼(3.6) mean that i and j have an incentive to

deviate from (x, s) without consent to possible labor time between them. An

outcome (x, s) is called pairwise strictly stable if it is not pairwise quasi-unstable.

Since a pairwise unstable outcome is pairwise quasi-unstable, a pairwise strictly

stable outcome is pairwise stable. An outcome (x, s) is pairwise strictly stable

if and only if (3.1) and (3.2) hold and for all i ∈ P , j ∈ Q and α ∈ R with

π(i, j) ≤ α ≤ π(i, j),

fi[+s(i)](x(i)) ≥ max{fi[+(s−j
(i) , α)](y) | y(i, j′) ≤ x(i, j′), ∀j′ 6= j}, (3.8)

or

fj[−s(j)](x(j)) ≥ max{fj[−(s−i
(j), α)](y) | y(i′, j) ≤ x(i′, j), ∀i′ 6= i}. (3.9)

Conditions (3.8) and (3.9) is equivalent to that for each pair (i, j) ∈ E and each

feasible salary between them, both i and j cannot strictly increase their payoffs

without increasing labor times with other partners.
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The next example illustrates a gap between pairwise stability and pairwise

strict stability.

Example 3: Let us consider the case where E = {(i, j)} (a singleton),

fi(x) =





x if x ∈ {0, 1, 2}
−∞ otherwise

(∀x ∈ Z),

fj(x) =





x if x ∈ {0, 1, 2, 3}
−∞ otherwise

(∀x ∈ Z),

and π(i, j) = 0 and π(i, j) = 1/4. In this case, an outcome (x, s) = (2, 0) is not

pairwise strictly stable, because fi(2) < fi[+ε](2) and fj(2) < fj[−ε](3) for all

ε ∈ (0, 1/4]. However, the outcome is pairwise stable. On the other hand, an

outcome (x, s) = (2, 1/4) is pairwise strictly stable (and hence, pairwise stable).

The concept of a pairwise strictly stable outcome may be regarded as artificial

but, as can be seen from Lemma 3.1, pairwise strict stability coincides with pair-

wise stability in some useful special cases: (i) salaries are constant, and (ii) each

worker-firm pair can be matched at most once. These two cases comprise many

known existing models such as the marriage model due to Gale and Shapley [14],

the assignment model due to Shapley and Shubik [28], and an extension [5] of the

marriage model with M\-concave value functions on ZE (also see the assignment

model with possibly bounded side payments to be considered in Section 4).

Lemma 3.1: If fk (k ∈ P ∪Q) are M\-concave functions satisfying (A) and if one

of the following conditions

(i) π = π,

(ii) dom fk ⊆ {0, 1}E(k) for all k ∈ P ∪Q,

(iii) there exists a vector u ∈ ZE such that for each k ∈ P ∪Q we have dom fk =

{y ∈ ZE(k) | 0 ≤ y ≤ u(k)} and fk is linear over dom fk

holds, then any pairwise stable outcome is pairwise strictly stable.

Proof. See Section 6.1.

Although the concepts of pairwise stability and pairwise strict stability are

different in our general model, we have the following theorem.
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Theorem 3.2: Assume that fk is an M\-concave function satisfying (A) for each

k ∈ P ∪Q. If (x, s) is a pairwise stable outcome in our model, then there exists a

feasible salary vector s′ such that (x, s′) is a pairwise strictly stable outcome.

Proof. See Section 6.3.

Hence, if we call a feasible allocation x pairwise (strictly) stable if there exists

a feasible salary vector s such that (x, s) is pairwise (strictly) stable, then there is

no gap between the two concepts of pairwise stability and pairwise strict stability

in terms of allocations.

The following is our main theorem that for M\-concave value functions there

exists a pairwise strictly stable outcome and hence a pairwise stable outcome in

our model. (It should be noted that due to Theorem 3.2, there exists a pairwise

stable outcome if and only if there exists a pairwise strictly stable outcome in our

model.)

Theorem 3.3: For M\-concave functions fk (k ∈ P ∪ Q) satisfying (A) and for

vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, there exists

a pairwise strictly stable outcome (x, s), and hence, there exists a pairwise stable

outcome. Moreover, if fk (k ∈ P∪Q) are integer-valued on their effective domains,

π ∈ (Z ∪ {−∞})E, and π ∈ (Z ∪ {+∞})E, then the above s can be chosen from

ZE.

To show Theorem 3.3, we give an alternative characterization of a pairwise

strictly stable outcome. (Note that by Theorem 3.2, the following theorem also

gives a characterization of a pairwise stable allocation.)

Theorem 3.4: Assume that fk is an M\-concave function satisfying (A) for each

k ∈ P ∪ Q. Let x be a feasible allocation. There exists a feasible salary vector s

forming a pairwise strictly stable outcome (x, s) if and only if there exist p ∈ RE,

zP = (z(i) | i ∈ P ) ∈ (Z ∪ {+∞})E, and zQ = (z(j) | j ∈ Q) ∈ (Z ∪ {+∞})E such

that

x(i) ∈ arg max{fi[+p(i)](y) | y ≤ z(i)} (∀i ∈ P ), (3.10)

x(j) ∈ arg max{fj[−p(j)](y) | y ≤ z(j)} (∀j ∈ Q), (3.11)

π ≤ p ≤ π, (3.12)
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e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.13)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.14)

Moreover, for any x, p, zP , and zQ satisfying the above conditions, (x, p) is a

pairwise strictly stable outcome.

Proof. See Section 6.2.

We note that M\-concavity in Theorem 3.4 is not required to show the if part,

while it is required to show the only-if part.

Consider the case where zP (i, j) = +∞ and zQ(i, j) < +∞. Condition (3.10)

implies that worker i has no incentive to increase x(i, j) at the current salary. If

firm j could strictly increase its payoff by increasing x(i, j) at the current salary,

then j would try to increase the salary of worker i to give worker i incentive to

increase x(i, j). Condition (3.14), however, implies that firm j is in an extreme

situation where firm j cannot increase the current i’s salary any more, i.e., p(i, j) =

π(i, j), and that firm j must give up increasing x(i, j) (and hence zQ(i, j) is put

to be a finite value). Analogously, when zP (i, j) < +∞ and zQ(i, j) = +∞,

Conditions (3.11) and (3.13) imply that if worker i must give up increasing x(i, j),

then firm j has no incentive to increase x(i, j) at the current salary and i is in an

extreme situation where worker i cannot decrease his/her current salary to give

firm j incentive to hire more units of labor time x(i, j). It is of importance that

(3.10)∼(3.14) give a decentralized characterization of a pairwise (strictly) stable

allocation. That is, given appropriate vectors p, zP and zQ, a pairwise (strictly)

stable allocation can be obtained by individually maximizing each agent’s payoff.

To prove our main theorem (Theorem 3.3) in Section 5, it is convenient to use

two aggregated M\-concave functions on ZE, one for each of P and Q. Let us

define fP and fQ by

fP (x) =
∑

i∈P

fi(x(i)), fQ(x) =
∑

j∈Q

fj(x(j)) (∀x ∈ ZE). (3.15)

Since E(i) and E(i′) are disjoint for all i, i′ ∈ P with i 6= i′, function fP is M\-

concave if all functions fi (i ∈ P ) are M\-concave. Similarly, fQ is M\-concave if

all functions fj (j ∈ Q) are. Moreover, the following lemma obviously holds.

Lemma 3.5: Condition (3.10) holds if and only if x ∈ arg max{fP [+p](y) | y ≤
zP}. Condition (3.11) holds if and only if x ∈ arg max{fQ[−p](y) | y ≤ zQ}.
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Furthermore, Assumption (A) is rewritten in terms of fP and fQ as:

(A′) Effective domains dom fP and dom fQ are bounded and hereditary, and have

the common minimum point 0 ∈ ZE.

By Theorem 3.4 and Lemma 3.5, Theorem 3.3 is a direct consequence of the

following theorem.

Theorem 3.6: For M\-concave functions fP , fQ : ZE → R ∪ {−∞} satisfying

(A′) and for vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, there

exist x ∈ ZE, p ∈ RE, and zP , zQ ∈ (Z ∪ {+∞})E such that

x ∈ arg max{fP [+p](y) | y ≤ zP}, (3.16)

x ∈ arg max{fQ[−p](y) | y ≤ zQ}, (3.17)

π ≤ p ≤ π, (3.18)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.19)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.20)

Moreover, if fP and fQ are integer-valued on their effective domains, π ∈ (Z ∪
{−∞})E, and π ∈ (Z ∪ {+∞})E, then the above p can be chosen from ZE.

We also say that a pair (x, p) of x ∈ ZE and p ∈ RE is a pairwise strictly stable

outcome if there exist zP , zQ ∈ (Z ∪ {+∞})E satisfying (3.16)∼(3.20).

In Section 5 we will give an algorithm for finding a pairwise strictly stable

outcome (x, p) and prove its validity, which will complete the proof of Theorem 3.6

and hence Theorem 3.3.

Remark 1: We briefly discuss a time scheduling problem of a feasible labor al-

location. A solution of this problem can be given by a famous result on graph

coloring, namely, “any bipartite graph can be edge-colorable with the maximum

degree colors.” That is, given a feasible labor allocation x ∈ ZE, if workers hired by

firm j can simultaneously work at j for every j ∈ Q, then there exists a scheduling

of the feasible labor allocation within time horizon max
i∈P

{∑

j∈Q

x(i, j)}; also, if each

firm can join at most one worker at each unit time, then there exists a scheduling

within time horizon max



max

i∈P
{∑

j∈Q

x(i, j)}, max
j∈Q

{∑

i∈P

x(i, j)}


. Here, for simplicity

we neglect time required for moving from one firm to another.
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4. Related models

In this section we discuss models that are closely related to our model.

4.1. Marriage model and assignment model

We briefly explain that our model includes the marriage model due to Gale and

Shapley [14] and the assignment model due to Shapley and Shubik [28] as special

cases. In these models, we are given pairs (aij, bij) ∈ (R ∪ {−∞})2 for all (i, j) ∈
E = P × Q. Here, in the assignment model aij and bij are interpreted as profits

of i and j when i and j are matched, while in the marriage model aij and bij

define preferences as: i ∈ P prefers j1 to j2 if aij1 > aij2 , and i is indifferent

between j1 and j2 if aij1 = aij2 (similarly, a preference of j ∈ Q over P is defined

by {bij | i ∈ P}). We assume that aij > 0 if j is acceptable to i, and aij = −∞
otherwise, and bij > 0 if i is acceptable to j, and bij = −∞ otherwise. A matching

is a subset of E such that every agent appears at most once. Given a matching

X, i ∈ P (respectively j ∈ Q) is called unmatched in X if there exists no j ∈ Q

(resp. i ∈ P ) with (i, j) ∈ X. In the marriage model, a matching X is called

pairwise stable if there exist q ∈ RP and r ∈ RQ such that

(m1) qi = aij and rj = bij for all (i, j) ∈ X,

(m2) q ≥ 0, r ≥ 0, and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(m3) qi ≥ aij or rj ≥ bij for all (i, j) ∈ E.

In the assignment model, an outcome which is a triple (q, r; X) consisting of payoff

vectors q = (qi | i ∈ P ) ∈ RP , r = (rj | j ∈ Q) ∈ RQ, and a subset X ⊆ E, is

called pairwise stable if

(a1) X is a matching,

(a2) qi + rj = aij + bij for all (i, j) ∈ X,

(a3) q ≥ 0, r ≥ 0, and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(a4) qi + rj ≥ aij + bij for all (i, j) ∈ E.
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Define functions fi for all i ∈ P and fj for all j ∈ Q by

fi(x) =





aij if x = χ(i,j) for some j ∈ Q

0 if x = 0

−∞ otherwise

(∀x ∈ ZE(i)), (4.1)

fj(x) =





bij if x = χ(i,j) for some i ∈ P

0 if x = 0

−∞ otherwise

(∀x ∈ ZE(j)). (4.2)

It can easily be shown that the above functions are M\-concave. We can show

that, by putting π = π = 0, pairwise stability in our model coincides with pairwise

stability in the marriage model for functions defined by (4.1) and (4.2). On the

other hand, by putting π = (−∞, · · · ,−∞) and π = (+∞, · · · , +∞), pairwise

stability in our model coincides with pairwise stability in the assignment model

for these functions. Furthermore, by Lemma 3.1, in these special cases, pairwise

strict stability is identical with pairwise stability.

4.2. The assignment model with possibly bounded side

payments

In the assignment model, for each (i, j) ∈ X, sij = qi − aij = bij − rj denotes a

transfer (or a side payment) from j to i. In a labor allocation case, it would not

be practical to consider that a firm can pay an arbitrarily large amount of money

to a worker as a salary or that a worker receives a negative salary (of arbitrary

large absolute value). Hence we introduce possible bounds on side payments like

in our general model.

Let us consider an extension of the assignment model in which, given two

vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, a transfer sij from

j to i is bounded as πij ≤ sij ≤ πij for all (i, j) ∈ E. We say that an outcome

(q, r; X) is pairwise stable if

(b1) X is a matching,

(b2) qi = aij + sij, rj = bij − sij, and πij ≤ sij ≤ πij for all (i, j) ∈ X,

(b3) q ≥ 0, r ≥ 0, and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,
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(b4) qi ≥ aij + α or rj ≥ bij − α for all (i, j) ∈ E and α with πij ≤ α ≤ πij.

We call this extended model the assignment model with possibly bounded side pay-

ments. Obviously, if π = π = 0, then pairwise stability of this model coincides

with pairwise stability of the marriage model. Furthermore, we can easily show

that if π = (−∞, · · · ,−∞) and π = (+∞, · · · , +∞), then pairwise stability in

this model coincides with pairwise stability in the assignment model. Hence, the

assignment model with possibly bounded side payments is a common generaliza-

tion of the marriage and the assignment model. Even though the present model is

the simplest common generalization, it seems that it has not been studied in the

literature on the two-sided matching market.

By defining value functions of agents by (4.1) and (4.2), Theorem 3.3 and

Lemma 3.1 immediately imply the existence of a pairwise stable outcome in the

assignment model with possibly bounded side payments. We remark that the

central assignment model due to Kaneko [17] also includes the assignment model

with possibly bounded side payments but not a many-to-many variation whose

value functions are defined by

fi(x) =





∑

j∈Q

aijxij if x ∈ {0, 1}E(i) ,
∑

j∈Q

xij ≤ λi

−∞ otherwise

(∀x ∈ ZE(i)) (4.3)

for each i ∈ P and

fj(x) =





∑

i∈P

bijxij if x ∈ {0, 1}E(j) ,
∑

i∈P

xij ≤ µj

−∞ otherwise

(∀x ∈ ZE(j)) (4.4)

for each j ∈ Q, where λi and µj denote capacities on labor times of agents. As is

seen in Example 2, the functions defined by (4.3) and (4.4) are M\-concave. Hence,

our model also includes the many-to-many variation of the assignment model with

possibly bounded side payments.

4.3. A labor allocation model with several categories of

workers

We consider a labor allocation model without bounds on side payments in which

each worker can supply one unit of labor-time and each firm can employ several
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workers, i.e., a one-to-many case. We further assume that there are several cate-

gories of workers, e.g., engineers, cashiers, secretaries, and so on. Mathematically,

the set P of workers is partitioned into P 1, P 2, · · · , P n. Each firm j can employ

at most µt
j workers of category t ∈ {1, 2, · · · , n} and at most µj workers in total.

It seems that existing models in the literature cannot deal with such a situation

even if a valuation of each firm j on each category t can be described by a linear

function f t
j : ZP t×{j} → R ∪ {−∞} defined in the same way as (4.4), because

the effective domain of a value function of a firm is not a simplex. M\-concavity

enables us to deal with such a situation.

For any x ∈ ZE, t ∈ {1, 2, · · · , n}, and j ∈ Q let x
(t)
(j) denote the restriction of

x on P t × {j} and δj be the function defined by

δj(x(j)) =





0 if x(j) ∈ {0, 1}E(j) ,
∑

i∈P

xij ≤ µj

−∞ otherwise.

Then define functions fj (j ∈ Q) by

fj(x(j)) =
n∑

t=1

f t
j (x

(t)
(j)) + δj(x(j)) (∀x ∈ ZE).

Here each fj is M\-concave as shown in Example 2, and gives an appropriate

valuation of j satisfying its total capacity of workers.

By the discussion in Section 2, the model due to Kelso and Crawford [18]

includes the one-to-many labor allocation model with several categories of workers

without bounds on side payments, where a payoff function of each firm satisfies

gross substitutability and is linear in salary and a payoff function of each worker is

strictly increasing (not necessarily linear). On the other hand, our model can deal

with the many-to-many variation in which a payoff function of each agent satisfies

gross substitutability and is linear in salary, and furthermore, its extension with

multiplicity of units of labor time and with possibly bounded side payments. This

is one of the merits of our model in contrast to the seminal model by Kelso and

Crawford [18].

While the above-mentioned model is an extension of the assignment model,

similar extensions of the marriage model have been discussed in [1, 5, 9]. Our

general model also includes these models as special cases.
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4.4. Hybrid models

Eriksson and Karlander [6] and Sotomayor [31] proposed a hybridization of the

marriage and assignment models. Their idea is to partition agents into two cat-

egories: rigid agents and flexible agents. Rigid agents do not get side payments,

that is, they behave like agents in the marriage model, while flexible agents behave

like ones in the assignment model. Fujishige and Tamura [12] generalized these

models by using M\-concave functions. In their model, two M\-concave functions

fP , fQ : ZE → R ∪ {−∞} satisfying (A′), and an arbitrary partition (F,R) of E

are given. For a vector d on E and S ⊆ E, let d|S denote the restriction of d on

S. A vector x ∈ dom fP ∩ dom fQ is called an fP fQ-pairwise stable solution with

respect to (F,R) if there exist p ∈ RE, disjoint subsets RP and RQ of R, ẑP ∈ ZRP ,

and ẑQ ∈ ZRQ such that

p|R = 0, (4.5)

x ∈ arg max{fP [+p](y) | y|RP
≤ ẑP}, (4.6)

x ∈ arg max{fQ[−p](y) | y|RQ
≤ ẑQ}. (4.7)

We can show that fP fQ-pairwise stability is equivalent to our pairwise strict sta-

bility in the case where π(e) = π(e) = 0 for all e ∈ R, and π(e) = −∞ and

π(e) = +∞ for all e ∈ F . Thus, Theorem 3.6 implies the existence of an fP fQ-

pairwise stable outcome in the hybrid model in [12]. This means that our model

also includes many existing models (see [12] for details).

5. An algorithm for finding a pairwise strictly

stable outcome

We assume that given M\-concave functions fP , fQ : ZE → R ∪ {−∞} satisfy

Assumption (A′). The problem of finding a pairwise strictly stable outcome is

rewritten as that of finding xP , xQ ∈ ZE, p ∈ RE and zP , zQ ∈ (Z∪ {+∞})E such

that

xP = xQ, (5.1)

xP ∈ arg max{fP [+p](y) | y ≤ zP}, (5.2)

xQ ∈ arg max{fQ[−p](y) | y ≤ zQ}, (5.3)
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π ≤ p ≤ π, (5.4)

e ∈ E, zP (e) < +∞⇒ p(e) = π(e), zQ(e) = +∞, (5.5)

e ∈ E, zQ(e) < +∞⇒ p(e) = π(e), zP (e) = +∞. (5.6)

In this section, we give an algorithm that finds xP , xQ, p, zP , and zQ satisfy-

ing (5.1)∼(5.6). The algorithm may be recognized as one of auction algorithms.

Roughly speaking, its strategy is to initially put p as large as possible so that there

exist xP , xQ, zP and zQ satisfying (5.2)∼(5.6) and several extra conditions such

as xQ ≤ xP , and then to monotonically decrease p preserving these conditions so

that (5.1) is eventually satisfied. A characteristic feature of the algorithm is to

use a sophisticated procedure for decreasing p, due to the technique of network

flow algorithms (see (Case 2) below). On the other hand, when specialized to a

marriage model, the algorithm can find a pairwise stable matching of the marriage

model. This means that the algorithm also retains an essence of the deferred ac-

ceptance algorithm of Gale and Shapley [14]. The deferred acceptance algorithm

is generalized as a procedure of updating zP and zQ, which relies on Lemmas 2.3

and 2.4 (see (Case 1) below).

Now, we describe our algorithm. Initially, we put p as

p(e) :=





π(e) if π(e) < +∞
b otherwise

(∀e ∈ E),

where b is a sufficiently large positive integer to be specified later. Furthermore,

put zP := (+∞, · · · , +∞) and choose any xP ∈ arg max fP [+p]. Obviously, (5.2),

(5.4), and (5.5) are satisfied. We put zQ as

zQ(e) :=





xP (e) if π(e) < +∞
+∞ otherwise

(∀e ∈ E),

and choose an xQ satisfying (5.3). Condition (5.6) evidently holds. Moreover,

by setting b to be a large enough integer so that xQ(e) = 0 for all e ∈ E with

π(e) = +∞, we have

xQ(e) ≤ xP (e) (∀e ∈ E). (5.7)

From Assumption (A′), such a b exists. By Lemma 2.4, (5.3) is preserved even if

zQ(e) is set to +∞ for every e ∈ E with p(e) = π(e) and xQ(e) < xP (e). Thus we

can assume that the following condition is satisfied:

e ∈ E, zQ(e) < +∞ =⇒ xQ(e) = xP (e) = zQ(e). (5.8)
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Our aim is to modify vectors xP , xQ, p, zP , and zQ preserving (5.2)∼(5.8) and

eventually to attain (5.1).

We now assume that we are given vectors xP , xQ, p, zP and zQ satisfying

(5.2)∼(5.8) but not (5.1). Let L and U be subsets of E defined by

L = {e ∈ E | p(e) = π(e)}, (5.9)

U = {e ∈ E | zQ(e) < +∞}. (5.10)

It follows from (5.6) and (5.8) that for all e ∈ U we have p(e) = π(e) and xQ(e) =

xP (e) = zQ(e). Note that L and U may have a common element e with π(e) = π(e).

We divide our argument into two parts that treat: (Case 1) there exists e ∈ L

with xQ(e) < xP (e); (Case 2) the other case.

In (Case 1), we will modify xP , xQ, zP and zQ while keeping p the same. Let

e be an element of L with xQ(e) < xP (e). From (5.8), we have zQ(e) = +∞,

and hence, we can assume zP (e) = xP (e) while preserving (5.2) and (5.5). We

replace zP (e) by xP (e)− 1. By (a) of Lemma 2.3, there exists e′ ∈ {0} ∪ E \ {e}
such that xP := xP − χe + χe′ satisfies (5.2) for the modified zP . If e′ = 0 or

zQ(e′) = +∞ then xQ and zQ are kept the same, and Conditions (5.2)∼(5.8) are

preserved. In the case where zQ(e′) < +∞ (i.e., e′ ∈ U), we modify xQ and zQ

as follows. By (5.8), for the updated xP we have xP (e′) = xQ(e′) + 1. Thus, (b)

of Lemma 2.3 guarantees the existence of e′′ ∈ E, which may coincide with e′,

such that xQ := xQ + χe′ − χe′′ and zQ := zQ + χe′ satisfy (5.3). At this point,

(5.2)∼(5.7) are satisfied. If e′ 6= e′′, then we have zQ(e′) = xQ(e′) = xP (e′), which

implies (5.8) for e′. In order to ensure (5.8) for e′′, we replace zQ(e′′) by +∞ if

e′′ ∈ U . Since we have xQ(e′′) < xP (e′′), this modification does not destroy (5.3),

by Lemma 2.4. Hence, in (Case 1), the modified vectors satisfy all the required

conditions.

Next we consider (Case 2), where xQ(e) = xP (e) for all e ∈ L. In this case, we

modify p as well as xP , xQ, and zQ (while we keep zP the same). The procedure

given below is based on a successive shortest path algorithm for finding a maximizer

of the sum of two M\-concave functions (Moriguchi and Murota [19], also see Iwata
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et al. [16]). We deal with two functions defined by

f≤P (y) =





fP (y) if y ≤ zP

−∞ otherwise
(∀y ∈ ZE),

f≤Q (y) =





fQ(y) if y ≤ zQ

−∞ otherwise
(∀y ∈ ZE).

(5.11)

Obviously, f≤P and f≤Q are also M\-concave, and xP ∈ arg max f≤P [+p] and xQ ∈
arg max f≤Q [−p] hold.

We construct a directed graph G = ({0} ∪ E, A) and an arc length function

` : A → R as follows. Arc set A consists of two disjoint parts:

AP = {(e, e′) | e, e′ ∈ {0} ∪ E, e 6= e′, xP − χe + χe′ ∈ dom f≤P },
AQ = {(e, e′) | e, e′ ∈ {0} ∪ E, e 6= e′, xQ + χe − χe′ ∈ dom f≤Q},

(5.12)

and ` ∈ RA is defined by

`(a) =





f≤P [+p](xP )− f≤P [+p](xP − χe + χe′) if a = (e, e′) ∈ AP

f≤Q [−p](xQ)− f≤Q [−p](xQ + χe − χe′) if a = (e, e′) ∈ AQ.
(5.13)

Length function ` is nonnegative due to (5.2), (5.3) and Theorem 2.1.

Let S = supp+(xP −xQ) and T = {0}∪L∪U . We note that S∩T = ∅ because

0 6∈ S and because xQ(e) = xP (e) for all e ∈ L ∪ U by (5.8) and the assumption

in (Case 2). Let d : {0} ∪ E → R ∪ {+∞} denote the shortest distances from S

to all vertices in G with respect to `. For any a = (e, e′) ∈ A with d(e) < +∞ we

have

`(a) + d(e)− d(e′) ≥ 0. (5.14)

We note that there always exists a path from S to T because (e, 0) ∈ AP for all

e ∈ S by (A′). Let P be a shortest path from S to T with the minimum number

of arcs. We define δ by

δ = min {`(P), min{p(e)− π(e) + d(e) | e ∈ E}} , (5.15)

where `(P) =
∑

a∈P `(a), and define a vector ∆p ∈ RE by

∆p(e) = min{d(e)− δ, 0} (∀e ∈ E). (5.16)

For convenience, we define ∆p(0) by min{d(0)−δ, 0} = 0. Obviously ∆p ≤ 0

holds. Because of δ ≤ `(P), we have

∆p(e) = 0 (∀e ∈ T ). (5.17)
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It follows from (5.14)∼(5.16) and the nonnegativity of ` that

`(a) + ∆p(e)−∆p(e′) ≥ 0 (∀a = (e, e′) ∈ A).

The above system of inequalities is equivalent to

f≤P [+p](xP )− f≤P [+p](xP−χe+χe′) + ∆p(e)−∆p(e′) ≥ 0

f≤Q [−p](xQ)− f≤Q [−p](xQ+χe−χe′) + ∆p(e)−∆p(e′) ≥ 0
(∀e, e′ ∈ {0} ∪E),

which is further equivalent to

xP ∈ arg max f≤P [+(p + ∆p)], xQ ∈ arg max f≤Q [−(p + ∆p)],

due to Theorem 2.1. We show that p + ∆p satisfies (5.4). Since ∆p ≤ 0, it is

enough to show that π(e) ≤ p(e) + ∆p(e) for all e ∈ E. It follows from (5.15) that

for all e ∈ E we have

p(e) + ∆p(e) = min {p(e) + d(e)− δ, p(e)}
≥ min {p(e) + d(e)− (p(e) + d(e)− π(e)), p(e)}
= π(e).

Thus, xP , xQ, p + ∆p, zP , and zQ satisfy Conditions (5.2)∼(5.8).

The above calculation shows that if δ < `(P), then there exists e ∈ E with

p(e) > p(e) + ∆p(e) = π(e), that is, L is enlarged. We next deal with the case

where δ = `(P).

Suppose δ = `(P). Note that for each arc a = (e, e′) ∈ A, `′(a) = `(a) +

∆p(e) − ∆p(e′) is the length of a in the directed graph defined in the same way

as above for f≤P [+(p + ∆p)], f≤Q [−(p + ∆p)], xP , and xQ. Since δ = `(P), we have

`′(a) = 0 for all arcs a ∈ P. Therefore, we have

xP − χe + χe′ ∈ arg max f≤P [+(p + ∆p)] (∀(e, e′) ∈ P ∩ AP ),

xQ + χe − χe′ ∈ arg max f≤Q [−(p + ∆p)] (∀(e, e′) ∈ P ∩ AQ).
(5.18)

Since P has the minimum number of arcs, we have

xP − χe + χe′′ 6∈ arg max f≤P [+(p + ∆p)],

xQ + χe − χe′′ 6∈ arg max f≤Q [−(p + ∆p)]
(5.19)

for all vertices e and e′′ of P such that (e, e′′) 6∈ P and e appears earlier than e′′

in P. Furthermore, arcs of AP and AQ appear alternately in P. For otherwise,
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assume that two consecutive arcs (e, e′), (e′, e′′) ∈ P belong to AP and then, by

repeatedly using (M\) we have

f≤P [+p](xP−χe′+χe′′) + f≤P [+p](xP−χe+χe′)

≤ max





f≤P [+p](xP−χe+χe′′) + f≤P [+p](xP )

f≤P [+p](xP−χe−χe′+χe′′) + f≤P [+p](xP +χe′)





≤ max





f≤P [+p](xP−χe+χe′′) + f≤P [+p](xP )

f≤P [+p](xP−χe) + f≤P [+p](xP +χe′′)





≤ f≤P [+p](xP−χe+χe′′) + f≤P [+p](xP ),

which yields

`(e, e′) + `(e′, e′′) ≥ `(e, e′′). (5.20)

This contradicts the minimality of the number of arcs in P. Consequently, we have

a1=(e1, e
′
1), a2=(e2, e

′
2) ∈ P∩AP , a1 6= a2 =⇒ {e1, e

′
1} ∩ {e2, e

′
2} = ∅,

a1=(e1, e
′
1), a2=(e2, e

′
2) ∈ P∩AQ, a1 6= a2 =⇒ {e1, e

′
1} ∩ {e2, e

′
2} = ∅.

(5.21)

From Lemma 2.2 together with (5.18), (5.19) and (5.21), we have

x′P = xP −
∑

(e,e′)∈P∩AP

(χe − χe′) ∈ arg max f≤P [+(p + ∆p)], (5.22)

x′Q = xQ +
∑

(e,e′)∈P∩AQ

(χe − χe′) ∈ arg max f≤Q [−(p + ∆p)]. (5.23)

We replace xP , xQ and p by x′P , x′Q and p + ∆p, respectively. Modifications (5.22)

and (5.23) guarantee that (5.2), (5.3) and (5.7) hold for modified vectors. We

have already shown that (5.4) holds. Since zP and zQ remain the same, Condition

(5.17) implies (5.5) and (5.6). Let e′ be the terminal vertex of P and let a∗ be the

last arc of P. If e′ 6∈ U , then (5.8) trivially holds. Hence we assume that e′ ∈ U

in the sequel.

If a∗ ∈ AQ, then we have xQ(e′) < zQ(e′) = xP (e′) and (5.3). Hence, it follows

from Lemma 2.4 that we can put zQ(e′) := +∞ while preserving (5.3) and (5.8).

Suppose that a∗ belongs to AP . Thus, xP (e′) = xQ(e′) + 1 = zQ(e′) + 1 holds

at this point. We increase zQ(e′) by one. By (b) of Lemma 2.3, there exists

e′′ ∈ {0} ∪ E such that xQ := xQ + χe′ − χe′′ satisfy (5.3) for the updated zQ.

If e′′ ∈ U , then we put zQ(e′′) := +∞. In the same way as in the argument for

(Case 1), this modification yields (5.8) while preserving the other conditions.
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Summarizing the above argument, we describe an algorithm Pairwise Stable.

We will show that it terminates in a finite number of iterations and finds a pairwise

strictly stable outcome.

Algorithm Pairwise Stable

Step 0. Find xP , xQ, p, zP , and zQ satisfying (5.2)∼(5.8).

Step 1. If xP = xQ then stop.

Step 2. Set L and U as (5.9) and (5.10). If there exists e ∈ L with xQ(e) < xP (e)

then go to Step 3.a; else go to Step 4.a.

Step 3.a. Set zP (e) := xP (e)− 1 and xP := xP − χe + χe′ , where e′ is an element

such that (5.2) is satisfied by the updated xP and zP .

3.b. If e′ 6∈ U then go to Step 1; else go to Step 5.

Step 4.a. Construct G and compute ` for f≤P [+p], f≤Q [−p], xP and xQ by (5.12)

and (5.13). Set S := supp+(xP − xQ) and T := {0} ∪ L ∪ U . Compute the

shortest distances d(e) from S to all e ∈ {0}∪E in G with respect to `. Find

a shortest path P from S to T with the minimum number of arcs.

4.b. Compute δ by (5.15). For each e ∈ E, set p(e) := p(e)+min{d(e)−δ, 0}.
If δ < `(P) then go to Step 1.

4.c. Update xP and xQ by (5.22) and (5.23). If the terminal vertex e′ of P

is not in U then go to Step 1.

4.d. If the last arc of P is in AQ then put zQ(e′) := +∞ and go to Step 1;

else go to Step 5.

Step 5. Set zQ := zQ + χe′ and xQ := xQ + χe′ −χe′′ , where e′′ is an element such

that (5.3) holds. If e′′ ∈ U then set zQ(e′′) := +∞. Go to Step 1.

We have already shown the following lemma.

Lemma 5.1: Conditions (5.2)∼(5.8) are satisfied at Step 1 in each iteration of

Pairwise Stable.

The following two lemmas show the termination of Pairwise Stable.
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Lemma 5.2: In each iteration of Pairwise Stable, the following statements

hold.

(a) L enlarges or remains the same.

(b) zP decreases or remains the same.

(c) zQ increases or remains the same.

(d)
∑

e∈E

(xP (e)− xQ(e)) decreases or remains the same.

Proof. Since L = {e ∈ E | p(e) = π(e)} and p does not increase during Pair-

wise Stable, we have (a). Statements (b) and (c) trivially hold. Obviously
∑

e∈E(xP (e) − xQ(e)) is nonnegative by (5.7). Vectors xP and/or xQ are mod-

ified at Step 3.a, Step 4.c or Step 5. At Step 3.a or Step 4.c, if e′ = 0, then
∑

e∈E(xP (e) − xQ(e)) is decreased by one; otherwise it remains the same. At

Step 5, if e′′ = 0, then
∑

e∈E(xP (e) − xQ(e)) is decreased by one; otherwise it

remains the same. Hence (d) holds.

We denote by [StepXX→Step1] the case where we go from Step XX to Step 1

after execution of Step XX in Pairwise Stable.

Lemma 5.3: Pairwise Stable has the following features.

(a) In [Step3.b→Step1], some component of zP strictly decreases.

(b) In [Step4.b→Step1], L strictly enlarges.

(c) In [Step4.c→Step1], either
∑

e∈E(xP (e) − xQ(e)) strictly decreases or some

component of zP strictly decreases at Step3.b in the next iteration.

(d) In [Step4.d→Step1], some component of zQ strictly increases.

(e) In [Step5→Step1], some component of zQ strictly increases.

Proof. (a): At the beginning of Step 3.a, we have zP (e) ≥ xP (e). Hence, zP (e)

strictly decreases at Step 3.a.

(b): As we have already shown, L strictly enlarges when δ < `(P).

(c): In this case, we have either e′ = 0 or e′ ∈ L \ U . In the former case
∑

e∈E(xP (e)−xQ(e)) is decreased by one. Since xQ(e) = xP (e) for all e ∈ L∪U at
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the beginning of Step 4, we have xP (e′) > xQ(e′) for e′(∈ L) at the end of Step 4.c,

which results in (a) in the next iteration.

(d): In this case, we have e′ ∈ U at the beginning of Step 4.d. Hence, zQ(e′)

strictly increases.

(e): If e′ 6= e′′, then zQ(e′) increases by one; otherwise zQ(e′) = +∞.

Lemma 5.4: Pairwise Stable terminates in a finite number of iterations if fP

and fQ satisfy (A′).

Proof. Since fP and fQ satisfy (A′), we have

• ∑
e∈E(xP (e)− xQ(e)) is nonnegative and bounded from above,

• if zP (e) < +∞ then it is nonnegative and bounded from above,

• if zQ(e) < +∞ then it is bounded from above by (5.8).

Hence, Lemmas 5.2 and 5.3 guarantee the termination of Pairwise Stable in

finitely many steps.

Lemma 5.5: If fP and fQ are integer-valued on their effective domains, π ∈
(Z ∪ {−∞})E, and π ∈ (Z ∪ {+∞})E, then p is preserved to be integer-valued in

Pairwise Stable.

Proof. Because π ∈ (Z ∪ {+∞})E, p is initially defined to be integer-valued in

Pairwise Stable. Since fP and fQ are integer-valued on their effective domains,

` defined in (5.13) is integer-valued. Furthermore, as π ∈ (Z∪ {−∞})E, δ defined

in (5.15) is also integer-valued. Hence, p(e) := p(e) + min{d(e)− δ, 0} modified at

Step 4.b is preserved to be integer for each e ∈ E.

By Lemmas 5.1 and 5.4, Pairwise Stable always finds xP , xQ, p, zP , and zQ

satisfying (5.1)∼(5.6) under (A′). By Lemma 5.5, if fP and fQ are integer-valued

on their effective domains, π ∈ (Z ∪ {−∞})E, and π ∈ (Z ∪ {+∞})E, then p is

preserved to be integer-valued. This completes the proof of Theorem 3.6.

We briefly discuss the oracle complexity of algorithm Pairwise Stable, by

assuming that the function value f(x) of a given M\-concave function f can be

calculated in constant time for each input x. Pairwise Stable initially solves the
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maximization problem of an M\-concave function. It is known that a maximizer

of an M\-concave function f on E can be found in polynomial time in m and

log D, where m = |E| and D = max{||x − y||∞ | x, y ∈ dom f}. For example,

O(m3 log D)-time algorithms are proposed in [29, 32]. In our case we can define

D = max{||x−y||∞ | x, y ∈ dom fP}, because (5.7) is preserved. Each iteration of

Pairwise Stable can be executed in polynomial time in m, because construction

of network (G, `) and finding a shortest path can be done in polynomial time

in m. Moreover, Lemma 5.3 guarantees that Pairwise Stable terminates in

polynomial time in m and D, which says that if D is constant, or dom fP ⊆ {0, 1}E

in particular, then Pairwise Stable is an oracle polynomial time algorithm for

finding a pairwise strictly stable outcome.

6. Proofs

In this section we give proofs of Lemma 3.1, Theorems 3.4 and 3.2 in this order.

6.1. A proof of Lemma 3.1

It is enough to show that if an outcome (x, s) is pairwise quasi-unstable, then it is

also pairwise unstable. Let (x, s) be a pairwise quasi-unstable outcome. We may

assume that (x, s) satisfies incentive constraints (3.1) and (3.2). Then there exist

i ∈ P , j ∈ Q, α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) satisfying (3.3)∼(3.6).

We first deal with Case (i). In this case, s(i, j) = α holds. Because (x, s)

satisfies incentive constraints, we have y′(i, j) > x(i, j) and y′′(i, j) > x(i, j). In

addition, we assume that y′(i, j) and y′′(i, j), respectively, are as small as possible

among vectors satisfying (3.3)∼(3.6). By (M\) for y′ and x(i), there exists e′ ∈
supp−(y′ − x(i)) ∪ {0} such that, putting e = (i, j),

fi[+(s−j
(i) , α)](y′) + fi[+s(i)](x(i))

= fi[+(s−j
(i) , α)](y′) + fi[+(s−j

(i) , α)](x(i))

≤ fi[+(s−j
(i) , α)](y′ − χe + χe′) + fi[+(s−j

(i) , α)](x(i) + χe − χe′).

Since fi[+(s−j
(i) , α)](y′) > fi[+(s−j

(i) , α)](y′ − χe + χe′) by the choice of y′, we obtain

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](x(i)+χe−χe′). This implies that y′(i, j) = x(i, j)+1,
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since x(i) + χe − χe′ is a possible candidate for y′. Analogously, we can show that

y′′(i, j) = x(i, j) + 1. Hence y′ and y′′ also satisfy (3.7).

We next consider Cases (ii) and (iii). We assume that s(i, j) < α (The case

where s(i, j) = α can be treated similarly as in Case (i) and we can also deal with

the case where s(i, j) > α by interchanging the roles of workers and firms in the

following argument). If x(i, j) = 0, then we can show the assertion in the same

way as in Case (i). Hence we assume that x(i, j) > 0. In this case, the following

relations

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](x(i)),

fj[−s(j)](y) ≥ fj[−(s−i
(j), α)](y) (∀y ≤ x(j))

hold. Hence, y′′(i, j) must be greater than x(i, j), so that y′′(i, j) ≥ 2. Therefore,

it is sufficient to deal with Case (iii). Replace y′ by x(i) + (y′′(i, j)− x(i, j))χ(i,j),

which belongs to dom fi. We then have fi[+(s−j
(i) , α)](y′) > fi[+s(i)](y

′). Since

x(i, j) > 0, fi is linear over dom fi, and (x, s) satisfies incentive constraints, we

also have fi[+s(i)](y
′) ≥ fi[+s(i)](x(i)). Hence (3.3), (3.4), and (3.7) are satisfied

by the new y′.

6.2. A proof of Theorem 3.4

The only-if part: Let (x, s) be a pairwise strictly stable outcome. For each

pair (i, j) ∈ E with x(i, j) = 0, we define r(i, j) as the supremum of the set of αs

satisfying (3.8) without the constraint α ≤ π(i, j). (We have r(i, j) 6= +∞ if there

exists y ∈ dom fi such that y(i, j) > 0 and y(i, j′) ≤ x(i, j′) for all j′ ∈ Q \ {j}.)
If r(i, j) = +∞, then we redefine r(i, j) as the infimum of the set of αs satisfying

(3.9) without the constraint π(i, j) ≤ α. (We have r(i, j) 6= −∞ if there exists

y ∈ dom fj such that y(i, j) > 0 and y(i′, j) ≤ x(i′, j) for all i′ ∈ P \ {i}.) If

r(i, j) = −∞, then we redefine r(i, j) = −b for a sufficiently large positive number

b. Then, we define p ∈ RE by

p(i, j) =





s(i, j) if x(i, j) > 0

r(i, j) else if π(i, j) ≤ r(i, j) ≤ π(i, j)

π(i, j) else if r(i, j) < π(i, j)

π(i, j) else if π(i, j) < r(i, j)

(∀(i, j) ∈ E). (6.1)
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Condition (3.12) is satisfied by p because s is feasible.

We also define zP and zQ by

zP (i, j) =





x(i, j) if (3.8) does not hold for α = p(i, j)

+∞ otherwise
(∀(i, j) ∈ E), (6.2)

zQ(i, j) =





x(i, j) if (3.9) does not hold for α = p(i, j)

+∞ otherwise
(∀(i, j) ∈ E). (6.3)

It follows from pairwise strict stability of (x, s) that zP (i, j) = +∞ or zQ(i, j) =

+∞ holds. We consider the case where zP (i, j) < +∞. In this case, there exists

y′ ∈ ZE(i) such that fi[+p(i)](x(i)) < fi[+p(i)](y
′) and y′(i, j′) ≤ x(i, j′) for all

j′ ∈ Q \ {j}, where note that fi[+p(i)](x(i)) = fi[+s(i)](x(i)) and fi[+p(i)](y
′) =

fi[+(s−j
(i) , p(i, j))](y′). We show (3.13). Suppose, to the contrary, that p(i, j) >

π(i, j). If x(i, j) > 0, then for a sufficiently small number ε > 0 we have

fi[+p(i)](x(i)) < fi[+(p(i)−εχ(i,j))](y
′),

fj[−p(j)](x(j)) < fj[−(p(j)−εχ(i,j))](x(j)),

which imply that neither (3.8) nor (3.9) holds for α = p(i, j) − ε ≥ π(i, j), a

contradiction. Hence, assume x(i, j) = 0. Since p(i, j) > π(i, j), we have p(i, j) ≤
r(i, j) by (6.1). As the right-hand side of (3.8) is nondecreasing in α and p(i, j) ≤
r(i, j), the definition of r(i, j) guarantees that (3.8) holds for α = p(i, j). However,

this contradicts zP (i, j) < +∞. We thus have (3.13).

We next consider the case where zQ(i, j) < +∞ and show (3.14). Suppose, to

the contrary, that p(i, j) < π(i, j). If x(i, j) > 0, then we reach a contradiction in

the same way as above. Hence assume x(i, j) = 0. By (6.1) and the assumption

we have p(i, j) ≥ r(i, j). If r(i, j) is defined by (3.8), then for a sufficiently small

number ε > 0, neither (3.8) nor (3.9) holds for α = p(i, j) + ε ≤ π(i, j), which is a

contradiction. In the other case (where r(i, j) is either defined by (3.9) or set to be

sufficiently small −b), (3.9) holds for α = p(i, j) since p(i, j) ≥ r(i, j). However,

this contradicts the assumption that zQ(i, j) < +∞. Hence, we have (3.14).

Finally, we show (3.10) ((3.11) can be shown similarly). Suppose that (3.10)

does not hold, i.e., for some i ∈ P there exists y′ ∈ arg max{fi[+p(i)](y) | y ≤ z(i)}
with fi[+p(i)](x(i)) < fi[+p(i)](y

′). We choose y′ ∈ arg max{fi[+p(i)](y) | y ≤ z(i)}
with fi[+p(i)](x(i)) < fi[+p(i)](y

′) that minimizes
∑{y′(e)−x(i)(e) | e ∈ supp+(y′−
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x(i))}. Since fi[+s(i)](y) = fi[+p(i)](y) holds for all y ∈ ZE(i) with 0 ≤ y ≤ x(i),

(3.1) implies the existence of e ∈ E(i) with y′(e) > x(i)(e). By (M\), there exists

e′ ∈ supp−(y′ − x(i)) ∪ {0} such that

fi[+p(i)](y
′) + fi[+p(i)](x(i)) ≤ fi[+p(i)](y

′−χe+χe′) + fi[+p(i)](x(i)+χe−χe′).

By the definition of y′, we have

fi[+p(i)](y
′) > fi[+p(i)](y

′ − χe + χe′).

The above two inequalities imply fi[+p(i)](x(i)) < fi[+p(i)](x(i) + χe − χe′), which

yields that zP (e) = x(i)(e), by (6.2). This contradicts y′ ≤ z(i). Hence (3.10) holds.

The if part: Let p ∈ RE and zP , zQ ∈ (Z ∪ {+∞})E be vectors satisfying

(3.10)∼(3.14). We put s = p. We show that (x, s) is pairwise strictly stable. Since

x(k) ≤ z(k) for all k ∈ P ∪ Q, Conditions (3.1) and (3.2) are direct consequences

of (3.10) and (3.11). Suppose, to the contrary, that there exist i ∈ P , j ∈ Q,

α ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) such that

fi[+s(i)](x(i)) < fi[+(s−j
(i) , α)](y′),

y′(i, j′) ≤ x(i, j′) (∀j′ ∈ Q \ {j}),
(6.4)

and

fj[−s(j)](x(j)) < fj[−(s−i
(j), α)](y′′),

y′′(i′, j) ≤ x(i′, j) (∀i′ ∈ P \ {i}).
(6.5)

By (3.10) and since y′ ≥ 0, Condition (6.4) implies that either (Case 1) y′(i, j) >

z(i)(i, j) or (Case 2) y′(i, j) ≤ z(i)(i, j) and p(i, j) < α. Similarly, by (3.11) and

(6.5), we have either (Case 3) y′′(i, j) > z(j)(i, j) or (Case 4) y′′(i, j) ≤ z(j)(i, j) and

α < p(i, j). Trivially, (Case 2) and (Case 4) are inconsistent. By (3.13) or (3.14),

(Case 1) and (Case 3) do not hold simultaneously. Also, (Case 1) together with

(3.13) implies p(i, j) = π(i, j), which is irreconcilable with (Case 4). Analogously,

(Case 2) is irreconcilable with (Case 3), due to (3.14). This means that (6.4) and

(6.5) do not hold simultaneously, a contradiction. Hence (x, s) is pairwise strictly

stable.

6.3. A proof of Theorem 3.2

Let x be a pairwise stable allocation and s a feasible salary vector such that (x, s)

is pairwise stable. By Theorem 3.4 and Lemma 3.5, it is enough to show that
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there exists p ∈ RE, and zP , zQ ∈ (Z ∪ {+∞})E satisfying (3.16)∼(3.20) with x.

Let N = (G, `) be a network with a directed graph G = ({0} ∪ E, A) and an arc

length function ` : A → R, where the arc set A of G is the union of the following

two sets

AP = {(e, e′) | e, e′ ∈ {0} ∪ E, e 6= e′, x− χe + χe′ ∈ dom fP},
AQ = {(e, e′) | e, e′ ∈ {0} ∪ E, e 6= e′, x + χe − χe′ ∈ dom fQ}

(6.6)

and the length function ` is defined by

`(a) =





fP [+s](x)− fP [+s](x− χe + χe′) if a = (e, e′) ∈ AP

fQ[−s](x)− fQ[−s](x + χe − χe′) if a = (e, e′) ∈ AQ

(6.7)

with fP and fQ being defined by (3.15).

By the pairwise stability of (x, s) we have the following claim.

Claim 6.3.A: Consider any two consecutive arcs a = (e, e′) ∈ AP and a′ =

(e′, e′′) ∈ AQ. Then we have `(a) ≥ 0 or `(a′) ≥ 0. Furthermore, if `(a) +

`(a′) < 0, then `(a) < 0 implies `(a′) − (s(e′) − π(e′)) ≥ 0, and `(a′) < 0 implies

`(a)− (π(e′)− s(e′)) ≥ 0.

(Proof) Suppose to the contrary that `(a) < 0 and `(a′) < 0. Since (x, s) satisfies

incentive constraints, the lengths of arcs of AP entering vertex 0 and of arcs of

AQ leaving vertex 0 are nonnegative. Hence we have e′ 6= 0. Let e′ = (i, j) ∈ E,

y′ = x− χe + χe′ , and y′′ = x + χe′ − χe′′ .

If e = 0 or e = (i, j′) for some j′ ∈ Q, then `(a) < 0 means

fi[+s(i)](x(i)) < fi[+s(i)](y
′
(i)). (6.8)

Also consider the other case where e 6= 0 and e = (i′, j′) for some i′(6= i) ∈ P and

j′ ∈ Q. By the incentive constraints for (x, s), we have

fi′ [+s(i′)](x(i′)) ≥ fi′ [+s(i′)](y
′
(i′)),

which together with `(a) < 0 implies (6.8).

Similarly, it follows from `(a′) < 0 that

fj[−s(j)](x(j)) < fj[−s(j)](y
′′
(j)). (6.9)

Inequalities (6.8) and (6.9) contradict the pairwise stability of (x, s).
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Next we show that `(a′)−(s(e′)−π(e′)) ≥ 0 if `(a)+`(a′) < 0 and `(a) < 0 (we

can similarly show the second part of the last assertion). Suppose to the contrary

that `(a′) − (s(e′) − π(e′)) < 0. Then there exists α ∈ R such that `(a) + α < 0,

`(a′)−α < 0, and 0 ≤ α ≤ s(e′)−π(e′). In the same way as the argument showing

(6.8) and (6.9), inequalities `(a) + α < 0 and `(a′)− α < 0 yield

fi[+s(i)](x(i)) < fi[+(s−j
(i) , s(i, j)− α)](y′(i)),

fj[−s(j)](x(j)) < fj[−(s−i
(j), s(i, j)− α)](y′′(j)),

where y′ = x − χe + χe′ and y′′ = x + χe′ − χe′′ . This contradicts the pairwise

stability of (x, s).

We initially put p = s, zP = zQ = (+∞, · · · , +∞), and modify them as follows.

For each pair of consecutive arcs a = (e, e′) ∈ AP and a′ = (e′, e′′) ∈ AQ with

`(a) + `(a′) < 0, if `(a) < 0 then we set zP (e′) := x(e′) and p(e′) := π(e′), and if

`(a′) < 0 then we set zQ(e′) := x(e′) and p(e′) := π(e′). We define subsets L and

U of E by

L = {e ∈ E | zP (e) < +∞}, U = {e ∈ E | zQ(e) < +∞}.

It follows from Claim 6.3.A that L and U are disjoint. We update network N =

(G, `) by (6.6) and (6.7) with fP , fQ and s being replaced by f≤P , f≤Q and p, where

f≤P and f≤Q are defined by (5.11). Let S = {0} ∪ L ∪ U . For the updated network

N and S, we show the following three claims.

Claim 6.3.B: For any two consecutive arcs a = (e, e′) ∈ AP and a′ = (e′, e′′) ∈ AQ,

we have `(a) + `(a′) ≥ 0.

(Proof) One of the two consecutive arcs a ∈ AP and a′ ∈ AQ that do not satisfy

the present claim for the original network N disappears in the updated network.

Hence the present claim holds.

Claim 6.3.C: All arcs between vertices in S have nonnegative lengths.

(Proof) By the definitions of L, U , and updated AP and AQ, no arc of AP enters a

vertex in L and no arc of AQ leaves a vertex in U . Furthermore, by the definitions

of L and U and by Claim 6.3.A, all arcs of AQ leaving a vertex in L and all arcs of

AP entering a vertex in U have nonnegative lengths. Hence, it suffices to consider

arcs a of the following four types:
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(1) a ∈ AP entering vertex 0 from L,

(2) a ∈ AQ entering L from 0,

(3) a ∈ AP entering 0 from U , and

(4) a ∈ AQ entering U from 0.

First, we deal with any arc a = (0, e′) of type (2). Since (x, s) satisfies incentive

constraints, we have

fQ[−s](x)− fQ[−s](x− χe′) ≥ 0.

This inequality is preserved when s is replaced by p, because p(e′) ≤ s(e′), and

hence, `(a) ≥ 0. Next, consider any arc a = (e′, 0) of type (1). Since e′ ∈ L, there

exists a vertex e ∈ {0} ∪ E such that

fP [+s](x− χe + χe′)− fP [+s](x) > s(e′)− π(e′) ≥ 0, (6.10)

where the first inequality follows from the definition of L and Claim 6.3.A. By

(M\) and incentive constraints for (x, s), we have

fP [+s](x− χe + χe′)− fP [+s](x) ≤ fP [+s](x− χe)− fP [+s](x− χe′)

≤ fP [+s](x)− fP [+s](x− χe′). (6.11)

From (6.10) and (6.11) we obtain `(a) = fP [+s](x) − fP [+s](x − χe′) − (s(e′) −
π(e′)) ≥ 0. Similarly, we can also show the nonnegativity of the lengths of arcs of

types (3) and (4).

Claim 6.3.D: All arcs of AP entering S and all arcs of AQ leaving S have non-

negative lengths.

(Proof) By the first part of the proof of Claim 6.3.C, it is sufficient to deal with

the arcs of AP entering 0 and arcs of AQ leaving 0. The nonnegativity of lengths

of such arcs follows from incentive constraints for (x, s), because p(e) = s(e) for

all e ∈ E \ S.

Preserving (3.18)∼(3.20) and keeping Claims 6.3.B, 6.3.C and 6.3.D valid, we

repeat modifying p, zP , zQ and S as described below. Since each modification

results in enlarging S ⊆ {0} ∪ E, after at most |E| repetitions we eventually get
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an S such that (3.16) and (3.17) hold with x , due to Claim 6.3.C, and this will

complete the proof of Theorem 3.2.

For each e′ ∈ E \ S we consider the following three cases:

(1) there exists an arc a = (e, e′) ∈ AP with `(a) < 0,

(2) there exists an arc a′ = (e′, e′′) ∈ AQ with `(a′) < 0, and

(3) `(a) ≥ 0 for any arc a = (e, e′) ∈ AP and `(a′) ≥ 0 for any arc a′ = (e′, e′′) ∈
AQ.

By Claim 6.3.B, these three cases are exclusive.

First, we deal with Case (3). In this case, we put S := S ∪ {e′} and leave

p, zP and zQ the same. Obviously, Claim 6.3.B remains valid. In Case (3) there

is no arc of AP , entering e′, of negative length and no arc of AQ, leaving e′, of

negative length. This implies Claim 6.3.D for updated S, and this together with

Claim 6.3.D for old S implies Claim 6.3.C for updated S.

Next, we deal with Case (1). In this case, we modify p(e′) as

p(e′) := p(e′) + max{min{`(a) | a = (e, e′) ∈ AP}, π(e′)− p(e′)},

and, if min{`(a) | a = (e, e′) ∈ AP} < π(e′)− p(e′) then we set zP (e′) := x(e′) and

update network N for new zP . This modification of p(e′) increases the lengths of

the arcs entering e′ and decreases those of the arcs leaving e′. Though the lengths

of arcs of AQ leaving e′ get decreased, they remain nonnegative for updated N

because of Claim 6.3.B for old N , and hence, Case (3) applies for the present e′ in

updated N , so that we put S := S∪{e′}. In order to show Claim 6.3.C for updated

N , it is enough to verify `(a1) ≥ 0 for any arc a1 = (e′, e1) ∈ AP with e1 ∈ S in

updated N . Let a∗ = (e0, e
′) ∈ AP be an arc that attains min{`(a) | a = (e, e′) ∈

AP} in old N . It follows from M\-concavity that `(a∗) + `(a1) ≥ `(e0, e1) and

(e0, e1) ∈ AP for a∗, a1 ∈ AP in old N (see (5.20)). By Claims 6.3.C and 6.3.D, we

have `(e0, e1) ≥ 0 in old N . The length `(a1) in updated N is greater than or equal

to `(a∗)+ `(a1) in old N , and hence, Claim 6.3.D holds for updated N . In order to

show that Claim 6.3.B holds for updated N , it is enough to verify that in updated

N we have `(a1) + `(a2) ≥ 0 for any consecutive two arcs a1 = (e′, e1) ∈ AP and

a2 = (e1, e2) ∈ AQ. By M\-concavity, we have

`(a∗) + `(a1) + `(a2) ≥ `(e0, e1) + `(a2) ≥ 0 (6.12)
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in old N , where the second inequality follows from Claim 6.3.B for old N . The

sum `(a1) + `(a2) in updated N is greater than or equal to the left-hand side of

(6.12). We thus see that Claim 6.3.B holds for updated N . Also, Claim 6.3.D

obviously holds for updated N .

Finally, we deal with Case (2). In this case, we modify p(e′) as

p(e′) := p(e′)−max{min{`(a′) | a′ = (e′, e′′) ∈ AQ}, p(e′)− π(e′)},

and, if min{`(a′) | a′ = (e′, e′′) ∈ AQ} < p(e′) − π(e′) then we set zQ(e′) := x(e′)

and update network N for new zQ. After this modification, we put S := S ∪ {e′}.
In the same way as the proof for Case (1), we can show that updated N and S

satisfy Claims 6.3.B, 6.3.C and 6.3.D.

7. Concluding remarks

We have proposed a general two-sided matching market model with possibly

bounded side payments and have verified the existence of a pairwise stable outcome

by utilizing discrete convex analysis.

However, we have not discussed a structure of the set of all pairwise stable

outcomes. It is well-known that the set of all payoff vectors in the assignment model

and the set of all stable matchings in the marriage model without indifference have

lattice structures.

In our model without bounds on side payments, namely in the case where

π = (−∞, · · · ,−∞) and π = (+∞, · · · , +∞), we can show, by using the duality

in discrete convex analysis, that the set of all feasible salary vectors that form

pairwise stable outcomes with certain feasible allocations has a lattice structure

(more precisely, L\-convexity) (see [22] for details). Investigations on structures of

pairwise stable outcomes are left for future work.

Both the Kelso-Crawford model [18] and our model assume gross substitutabil-

ity of value functions of agents. Kelso and Crawford showed the existence of a

pairwise stable outcome in a one-to-many case in which a payoff function of each

worker is strictly increasing (not necessarily linear) in salary. On the other hand,

we showed the existence of a pairwise stable outcome in a many-to-many case with

multi-units of labor time and possibly bounded side payments under the hypothe-

sis that a payoff function of each agent is linear in salary. It is open to determine
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whether there exist pairwise stable outcomes in a many-to-many case where a pay-

off function of each worker (resp. firm) is strictly increasing (resp. decreasing) in

salary under gross substitutability of value functions of agents.

In Section 5 we have proposed Algorithm Pairwise Stable for finding a pair-

wise strictly stable outcome and have shown that the time complexity is polynomial

in m = |E| and D = max{||x − y||∞ | x, y ∈ dom fP}. Unfortunately, we know

that there exist a series of instances for which Pairwise Stable requires time

proportional to D even if π = π = 0. It is an open problem to devise an algo-

rithm to compute a pairwise (strictly) stable outcome in time polynomial in m

and log D.
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