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1. Introduction

Let X0 be an irreducible projective nodal curve with only one singular point, and
let P0 be a line bundle on X0. The moduli SUX0(r;P0) of rank r vector bundles
on X0 with determinant P0 is not compact. In [A], using the technique of Kausz
([K1], [K2]), we constructed a compactification GSL2B(X0;P0) of SUX0(2;P0),
and studied its structure. Surprisingly, despite its seemingly natural definition,
GSL2B(X0;P0) is not a good compactification. It has two components and one
of them is non-reduced. This means that if (X0,P0) is a degeneration of (Xb,Pb),
where b ∈ B is a parameter and Xb (b 6= 0) is an irreducible smooth projective curve
and Pb is a line bundle on Xb, GSL2B(X0;P0) is not a semistable degeneration of
SUXb

(2;Pb). In this paper, we introduce a new compactification of SUX0(2;P0),
and prove that it gives a semistable reduction of the above degeneration. Moreover
we prove a decomposition theorem for the generalized theta divisors on this new
moduli space.

The contents of the sections are as follows. In section 2, we introduce basic
definitions. In section 3, we introduce the new compactification of the moduli of
vector bundles. In section 4, we study the local structure of the moduli space. In
section 5, we study the global structure of the moduli space. The arguments in
section 4 and 5 are quite similar to those in [A]. That is why we omitted some
details. In section 6, we prove a decomposition theorem for the generalized theta
divisors. In section 7, we collected some facts about the compactification KSL2 of
SL2 that are used in the preceding sections.

2. Preliminaries

In this section, we fix notation and introduce basic definitions that are used
throughout this paper.

Setting. As in [A], we put B := SpecC[[[t]]. B0 ↪→ B is the closed point and
Bη(⊂ B) is the generic point of B. π : X → B is a stable curve of genus g ≥ 2 over
B such that the generic fiber Xη is smooth, the special fiber X0 is an irreducible
curve with only one node Q. We assume that X is a regular scheme. Moreover we
assume that π : X → B is induced by an analytic family X an → Ban, where Ban

is a small open neighborhood of 0 ∈ C. We fix a C[[t]]-isomorphism

(2.1) ÔX ,Q ' C[[x1, x2, t]]/(x1x2 − t)
that is induced by an analytic isomorphism Oan

Xan,Q ' C{{x1, x2, t}}/(x1x2 − t).
Let n : X̃0 → X0 be the normalization, and put {P1, P2} := n−1(Q) so that the
local coordinate xi gives the local coordinate at Pi.

Put B′ := SpecC[[t′]] and let B′ → B be given by t′2 = t. B′
0 ↪→ B is

the closed point and B′
η is the generic point. The point Q ∈ X gives, by base-

change, the singular point Q′ on X ×B B
′. We have the isomorphism ÔX×BB′,Q′ '

C[[x1, x2, t
′]]/(x1x2− t′2). If k : X ′ → X ×B B

′ denotes the blowing-up of X ×B B
′

1
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at the point Q′, then X ′ is a regular scheme and π′ : X ′ → B′ is a flat family of
nodal curves over B′.

(2.2)

X ′yk

X ×B B′ −−−−→ Xy y
B′ −−−−→ B

Let R be the smooth rational curve k−1(Q′) on X ′. PutX ′
0 := X ′ ×B′ B′

0. Note
that X ′

0 is a union of X̃0 and R. Let P ′i be the singular point of X ′
0 such that

{P ′i}|X̃0
= {Pi}.

P ′
1

P ′
2

q
q

R

When the point P ′i on X ′
0 is regarded as a point on R, we also denote it by P ′i . The

isomorphism (2.1) induces the isomorphism

(2.3) ÔX ′,P ′
i
' C[[xi, yi, t

′]]/(xiyi − t′),

where yi = t′/xi.

Modifications. Let R(j) := R
(j)
1 ∪ · · · ∪ R(j)

lj
(lj ≥ 0, j = 1, 2) be a chain of

rational curves, where R(j)
i ' P1, and R

(j)
i1
∩ R(j)

i2
6= ∅ if and only if |i1 − i2| ≤ 1.

Let aj , bj be closed points of R(j)
1 , R

(j)
lj

respectively such that if lj = 1 then aj 6= bj ,

and if lj > 1 then aj 6= R
(j)
1 ∩R

(j)
2 and bj 6= R

(j)
lj−1 ∩R

(j)
lj

. Let X ′
(l1,l2)

be the nodal

curve that is obtained by identifying the pair of points (Pj , P
′
j) on X̃0 t R with

(aj , bj) on R(j) (j = 1, 2). We have the natural morphism q : X ′
(l1,l2)

→ X ′
0.

· · ·
R

(1)
1 R

(1)
2 R

(1)
l1

· · ·
R

(2)
1 R

(2)
2

R
(2)
l2

R

P ′
1

P ′
2

-q

Definition 2.1. (i) Let T be a B′-scheme and let f : T → B′ denote the
structure morphism. A modification of X ′ over T is a commutative diagram

Y ′ X ′ ×B′ T

T

-

J
J

J
JĴ

�
�

�
��/

pr2pr2◦h′

h′

such that Y ′ is flat, proper and of finite presentation over T , and that
for any field K and any morphism SpecK → T if f(SpecK) is B′

η then
h′ × idSpecK : Y ′ ×T SpecK → X ′ ×B′ SpecK is an isomorphism, and if
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f(SpecK) is B′
0 then for some (l1, l2) ∈ (Z≥0)⊕2 there is an isomorphism

g : X(l1,l2)×SpecK → Y ′×T SpecK satisfying (h′×idSpecK)◦g = q×idSpecK .
(ii) Let T be a B′

0-scheme. A modification of X ′
0 over T is a modification of X ′

over T , where T is regarded as a B′-scheme by B′
0 ↪→ B′.

(iii) If K is a field and SpecK → B′
0 is a morphism and Y ′ h′

−→ X ′
0 × SpecK is

a modification of X ′
0 over SpecK, then (l1, l2) that appears in (i) is called

the length of the modification.

Definition 2.2. Let K be a field over C.

(i) h′ := q × id : X ′
(l1,l2)

× SpecK → X ′
0 × SpecK is a modification of length

(l1, l2) ∈ (Z≥0)⊕2 ofX ′
0 over SpecK. A vector bundle E′ onX ′

(l1,l2)
×SpecK

is said to be admissible iff all the conditions (a), (b) and (c) below hold;
(a) E′|

R
(j)
i
' O(1)⊕m ⊕O⊕rankE′−m with m > 0 (m depends on j and i).

(b) E′|R is globally generated.
(c) If, by abuse of notation, k : X ′

0 → X0 denotes the restriction of k :
X ′ → X ×B B′ to the fiber over B′

0, then ((k ◦ q) × idSpecK)∗E′ is a
torsion-free sheaf on X0 × SpecK.

(ii) Let h : Y ′ → X ′
0 × SpecK be a modification of X ′

0 over SpecK and let
g : X(l1,l2)× SpecK → Y ′ be as in (i) of Definition 2.1. A vector bundle E′

on Y ′ is said to be admissible iff g∗E is admissible.
(iii) Let f : T → B′ be a morphism and let h′ : Y ′ → X ′×B′ T be a modification

of X ′ over T . A vector bundle E ′ on Y ′ is said to be admissible iff for any
SpecK → T , where K is a field, such that f(SpecK) = B′

0, the pullback of
E ′ to Y ′ ×T SpecK is admissible.

Notation for points on X ′
(1,1). In the sequel, we will deal with modifications of

X ′
0 of length (1, 1) many times. Therefore, we here prepare the notation for singular

points of X ′
(1,1) as follows. (Note that X ′

(1,1) = X̃0 ∪R(1)
1 ∪R

(2)
1 ∪R.)

{Pj} := X̃0 ∩R(j)
1

{Sj} := R ∩R(j)
1 .

(2.4)

3. Gieseker-SL2-bundles on X ′/B′

In the rest of this paper, we fix a line bundle P on X , of degree d on the fibers
over B. P ′ denotes the pullback of P to X ′. Put P0 := P|X0 and P ′0 := P ′|X′

0
.

Definition 3.1. Let S be a B′-scheme. A Gieseker-SL2-bundle with determinant
P ′ on X ′ over S, or a Gieseker-SL2-bundle on (X ′;P ′) over S, is the following data:

• a modification h′ : Y ′ → X ′ ×B′ S,
• an admissible 2-bundle E ′ on Y ′, of degree d on the fibers over S,
• an OY′ -module homomorphism δ′(0) : det E ′ → (pr1 ◦ h′)∗P ′,
• an OY′ -module homomorphism δ′(1) : (pr1 ◦ h′)∗P ′(−R)→ det E ′,

where we require the composite δ′(0) ◦ δ′(1) is the multiplication by (pr1 ◦ h′)∗1R,
here 1R ∈ OX ′(R) is the canonical section.

GSL2B
′(X ′/B′;P ′) denotes the B′-groupoid that associates to an affine B′-

scheme S the groupoid consisting of all the Gieseker-SL2-bundles on (X ′;P ′) over
S. GSL2B

′(X ′
0;P ′0) denotes the B′

0-groupoid GSL2B
′(X ′/B′;P ′)×B′ B′

0.

Proposition 3.2. GSL2B
′(X ′/B′;P ′) and GSL2B

′(X ′
0;P ′0) are algebraic stacks.
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Lemma 3.3. Let K be a field extension of C. Let (Y ′ h′

−→ X ′
0×B′

0
SpecK, E ′,det E ′ δ′(0)−−−→

(pr1 ◦ h′)∗P ′0, (pr1 ◦ h′)∗P ′0(−R) δ′(1)−−−→ det E ′) be a Gieseker-SL2-bundle on (X ′;P ′)
over SpecK. Then there are three possibilities:

(Type 0′) h′ is an isomorphism and E ′|R ' O⊕2.
(Type 1′) h′ is an isomorphism and E ′|R ' O(1)⊕2.

(Type 2′) Y ′ h′

−→ X ′
0 ×B′

0
SpecK is a modification of length (1, 1), and E ′|R ' O⊕2

and E ′|R(i) ' O ⊕O(1) (i = 1, 2).

Proof. By (b) and (c) in Definition 2.2 (i), we have E|R ' O2−a ⊕ O(1)a with
2 ≥ a ≥ 0. Let E|

R
(j)
i
' O2−a

(j)
i ⊕ O(1)a

(j)
i . By Lemma 3.3 of [K2], we have

A := a+
∑l1

i=1 a
(1)
i +

∑l2
i=1 a

(2)
i ≤ 2. If A = 0, then we have Type 0′. Assume that

A > 0. We have A = 2 because δ′(0) 6= 0. If a = 2, we have Type 1′. If a < 2, we
have lj > 0 for j = 1 and 2 because δ′(1)|X̃0

6= 0. Thus (l1, l2) = (1, 1) and a = 0.
We have Type 2′. �

4. Local Structure

In this section, we shall investigate the local structure of GSL2B
′(X ′/B′;P ′).

Let us fix an object E′0 := (Y ′ h′
0−→ X ′

0, E
′
0,detE′0

δ
′(0)
0−−−→ h′∗0 P ′0, h′∗0 (P ′0(−R))

δ
′(1)
0−−−→

detE′0) of GSL2B
′(X ′/B′;P ′)(B′

0). Put L′0 := (detE′0)
∨ ⊗ h′∗0 P ′0 and let σ′(0)0 be

the global section of L′0 corresponding to δ′(0)0 and let σ′(1)0 be the global section of

L′∨0 ⊗h′∗0 (OX ′(R)|X′
0
) corresponding to δ′(1)0 . Put L′0 := (Y ′ h′

0−→ X ′
0, L

′
0, σ

′(0)
0 , σ

′(1)
0 ).

As in [A, §5], we introduce deformation functors.

Definition 4.1. The functors G′ and F ′ from A(=the category of artinian local
C[[t′]]- algebras) to the category of sets are defined as follows. For A ∈ A,

G′(A) :=

{
E′ ∈ GSL2B

′(X ′/B′;P ′)(SpecA)

with isomorphism E′ ×SpecA B′
0

α′

−→ E′0.

}/
∼G′ ,

F ′(A)

:=



L′ := (Y ′ h′

−→ X ′ ×B′ SpecA,
L′, σ′(0), σ′(1))
with isomorphism

L′ ×SpecA B′
0

β′

−→ L′0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y ′ h′

−→ X ′ ×B′ SpecA is
a modification of X ′/B′

over SpecA.
L′ is a line bundle on Y ′.
σ′(0) and σ′(1) are global
sections of L′ and
L′∨ ⊗ h′∗O(R) respectively
such that σ′(0) · σ′(1) = h′∗(1R).



/
∼F ′ ,

where the equivalence relations ∼G′ and ∼F ′ are defined obviously.

As we get L′0 out of E′0, we have the natural transformation Ψ′ : G′ → F ′. One
can check Ψ′ is smooth. By this, in order to understand the local structure of
GSL2B

′(X ′/B′;P ′), we have only to investigate the versal deformation of F ′.

Theorem 4.2. Let hR′ → F ′ be a hull of F ′.
(0′ or 1′) If E′0 is of Type 0′ or of Type 1′, then we have an isomorphism R′ '

C[[t′]] of C[[t′]]-algebras.
(2′) If E′0 is of Type 2′, then we have an isomorphism R′ ' C[[t′, t0, t1, u]]/(t′ −

t0t1) of C[[t′]]-algebras.
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In what follows, we shall explicitly construct versal deformations of F ′ depending
on the type of E′0. The verification that they are in fact versal deformations is
analogous to the proof of Theorem 5.6 in [A] and is left to the reader.

Type 0′: On X ′, put L′ := OX ′ , σ′(0) := 1 ∈ L′, σ′(1) := 1R ∈ L′∨ ⊗
OX ′(R) = OX ′(R). Then the quadruple (X ′ id−→ X ′,L′, σ′(0), σ′(1)) gives a
versal deformation of F ′.

Type 1′: On X ′, put L′ := OX ′(R), σ′(0) := 1R ∈ L′ and σ′(1) := 1 ∈
L′∨ ⊗OX ′(R) ' OX ′ . Then the quadruple (X ′ id−→ X ′,L′, σ′(0), σ′(1)) gives
a versal deformation of F ′.

Type 2′: In this case, the construction of the versal deformation is more in-
volved than the previous two cases. PutW := SpecC[[w11, w12, w21, w22]]/(w11w12−
w21w22) and let f : W → B′ be given by f∗(t′) = w11w12(= w21w22). At
the point P ′i on the central fiber of X ′ ×B′ W , we have an isomorphism

(4.1) ÔX ′×B′W,P ′
i
' C[[w11, w12, w21, w22, xi, yi]]

(w11w12 − w21w22, xiyi − wi1wi2)

as C[[w11, w12, w21, w22]]/(w11w12−w21w22)-algebra. Blowing up X ′×B′W
by the ideal (xi, wi1) (precisely speaking in the category of analytic spaces),
we obtain the modification h′W : Y ′ → X ′ ×B′ W over W , such that the
central fiber is a modification of lengh (1, 1). If we put ui := wi1/xi and
vi := xi/wi1, then we have isomorphisms

ÔY′,Pi
' C[[w11, w12, w21, w22, xi, ui]]

(w11w12 − w21w22, xiui − wi1)

ÔY′,Si
' C[[w11, w12, w21, w22, yi, vi]]

(w11w12 − w21w22, yivi − wi2)

(4.2)

of C[[w11, w12, w21, w22]]/(w11w12 − w21w22)-algebras.

6

?

R

XXzXXXXXXy
R(1)

��:������9 R(2)

-

6

?

q
S1

qS2

q
P1

qP2

q
P ′

1

qP ′
2

R

x1

x2

u1

u2

y1

y2

v1

v2

y1

y2

x1

x2

Put

R′ :=
C[[w11, w12, w21, w22, q]]

(w11(1 + q)− w21, w12 − w22(1 + q))
and D := SpecR′. Let m′ be the maximal ideal of R′ and put R′n :=
R′/m′n+1. By abuse of notation, the images of wij and q ∈ R′ into R′n are
also denoted by wij and q. If h′R′

n
: Y ′R′

n
→ X ′ ×B′ SpecR′n is the pullback

of h′W : Y ′ → X ′ ×B′ W by SpecR′n → W , Y ′R′
n

is isomorphic to X ′
(1,1) as

a topological space, and (4.2) induces isomorphisms (i = 1, 2)

ÔY′
R′

n
,Pi
' R′n[[xi, ui]]

(xiui − wi1)

ÔY′
R′

n
,Si
' R′n[[yi, vi]]

(yivi − wi2)
.

(4.3)

By R′n[[xi, ui]]/(xiui−wi1) ↪→ R′n((xi))⊕R′n((ui)), where xi 7→ (xi, wi1/ui)
and ui 7→ (wi1/xi, ui), we have

H0
(
SpecÔY′

R′
n,Pi

− {Pi},O
)
' R′n((xi))⊕R′n((ui)).
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Similarly

H0
(
SpecÔY′

R′
n,Si

− {Si},O
)
' R′n((yi))⊕R′n((vi)).

We put U := Y ′R′
n
−{P1, P2, S1, S2}. Let j(Pi)

R′
n

and j(Si)
R′

n
denote the natural

morphisms SpecÔY′
R′

n
,Pi
→ Y ′Rn

and SpecÔY′
R′

n
,Si
→ Y ′Rn

respectively.

Now let us construct a line bundle L′n and sections σ′(0)n ∈ L′n and σ
′(1)
n ∈

L′∨n ⊗ (pr1 ◦ h′R′
n
)∗OX ′(R) on Y ′R′

n
. Let L′n be the line bundle on Y ′R′

n

that has the trivializations ϕ(Pi)
R′

n
: j(Pi)∗

R′
n
L′n → ÔY′

R′
n

,Pi
, ϕ(Si)

R′
n

: j(Si)∗
R′

n
L′n →

ÔY′
R′

n
,Si

and ψU
R′

n
: L′n|U → (OY′

R′
n

|U ) such that ψU
R′

n
◦ ϕ(P1)−1

R′
n

is given,

on SpecÔY′
R′

n
,P1 − {P1}, by (1/x1, u1(1 + q))-multiplication, ψU

R′
n
◦ ϕ(P2)−1

R′
n

is given, on SpecÔY′
R′

n
,P2 − {P2}, by (1/x2, u2)-multiplication, and ψU

R′
n
◦

ϕ
(Si)−1
R′

n
is identity on SpecÔY′

R′
n

,Si
−{Si} (i = 1, 2). Let σ′(0)n be the global

section of L′n such that

(4.4) ψU
R′

n
(σ′(0)n ) =

{
1 on X̃0 − {P1, P2}
w11(1 + q) = w21 on R(1) ∪R(2) ∪R− {P1, P2, S1, S2}

and ϕ
(Pi)
R′

n
(j(Pi)∗

R′
n

σ
′(0)
n ) = xi and ϕ

(Si)
R′

n
(j(Si)∗

R′
n

σ
′(0)
n ) = w11(1 + q) = w21. Be-

fore defining σ′(1)n , note that the line bundle (pr1 ◦ h′R′
n
)∗OX ′(R) has triv-

ializations α(Pi) : j(Pi)∗
R′

n
(pr1 ◦ h′R′

n
)∗OX ′(R) → OY′

Rn
,Pi

, α(Si) : j(Si)∗
R′

n
(pr1 ◦

h′R′
n
)∗OX ′(R) → OY′

Rn
,Si

and αU : (pr1 ◦ h′R′
n
)∗OX ′(R)|U → OY′

R′
n

|U such

that αU ◦α(Pi)−1 is given, on SpecÔY′
R′

n
,Pi
−{Pi}, by (1/xi, 1), αU ◦α(Si)−1

is given, SpecÔY′
R′

n
,Si
− {Si}, by (yi, 1) and

(4.5) αU ((pr1 ◦ h′R′
n
)∗1R|U ) =


1 on X̃0 − {P1, P2}
wi1
ui

= wi1vi = xi on R(i) − {Pi, Si}
w11w12 = w21w22 on R− {S1, S2}

and α(Pi)(j(Pi)∗
R′

n
(pr1 ◦ h′R′

n
)∗1R) = xi and α(Si)(j(Si)∗

R′
n

(pr1 ◦ h′R′
n
)∗1R) =

wi1vi. The trivializations of L′ and (pr1 ◦ h′R′
n
)∗OX ′(R) give rise to the

trivializations of Mn := L′∨ ⊗ (pr1 ◦ h′R′
n
)∗OX ′(R): β(Pi) : j(Pi)∗

R′
n
Mn →

OY′
Rn

,Pi
, β(Si) : j(Si)∗

R′
n
Mn → OY′

Rn
,Si

and βU :Mn|U → OY′
R′

n

|U . We have

β(U) ◦ β(P1)−1 = (1,
1

u1(1 + q)
)

β(U) ◦ β(P2)−1 = (1,
1
u2

)

β(U) ◦ β(Si)−1 = (yi, 1).

(4.6)

Let σ′(1)n be the global section ofMn such that

βU (σ′(1)n |U ) =


1 on X̃0 − {P1, P2}

1
u1(1+q) = v1

1+q on R(1) − {P1, S1}
w12
1+q = w22 on R− {S1, S2}
1
u2

= v2 on R(2) − {P2, S2}
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and β(Pi)(j(Pi)∗
R′

n
σ
′(1)
n ) = 1, β(S1)(j(S1)∗

R′
n

σ
′(1)
n ) = v1/(1+q) and β(S2)(j(S2)∗

R′
n

σ
′(1)
n ) =

v2.
Then the projective system of the quadruples {(h′R′

n
: Y ′R′

n
→ X ′ ×B′

SpecR′n,L′n, σ
′(0)
n , σ

′(1)
n )}n≥0 gives a versal deformation of F ′.

5. Global Structure

Notation 5.1. LetK be a field extension of C. Let (h′ : Y ′ → X ′
0×SpecK,E′, δ′(0) :

detE′ → (pr1◦h′)∗P ′0, δ′(1) : (pr1◦h′)∗P ′0(−R)→ detE′) be an object ofGSL2B
′(X ′

0;P ′0)(SpecK)
that is of Type 0′ or of Type 1′. If it is of Type 0′, then the point h′−1({P ′i}) is
denoted by Si. If it is of Type 1′, then the point h′−1({P ′i}) is denoted by Pi.

S1

S2

q
q

Type 0′

P1

P2

q
q

Type 1′

Proposition 5.2. Take a B′
0-scheme T and let (h′ : Y ′ → X ′

0×T, E ′, δ′(0) : det E ′ →
(pr1◦h′)∗P ′0, δ′(1) : (pr1◦h′)∗P ′0(−R)→ det E ′) be an object of GSL2B

′(X ′
0;P ′0)(T ).

Then there exist closed subsets Z(Pi) and Z(Si) of Y ′ such that for any t ∈ T
Z(Pi)|Y′

t
= {Pi} and Z(Si)|Y′

t
= {Si} (i = 1, 2).

Proof. We may assume that T is of finite type over B′
0. By abuse of notation, the

restriction of the morphism k : X ′ → X ×B B′ to the fiber over B′
0 is also denoted

by k : X ′
0 → X0. Let us consider h : Y := Proj⊕m≥0 ((k× idT )◦h′)∗((det E ′)⊗m)→

X0 × T . Using Lemma 1.4 and Corollary 1.5 of [Kn], we can check that Y is flat
over T and that there exists a natural morphism contr : Y ′ → Y with (k× id)◦h′ =
h ◦ contr. Over t ∈ T , contr collapses the rational curves on which E ′ is trivial. If
we put E := contr∗E ′, then we have the isomorphism contr∗E ' E ′. δ′(0) induces
δ : det E → (pr1 ◦ h)∗P0. The triple (h : Y → X0× T, E , δ : det E → (pr1 ◦ h)∗P0) is
an object of GSL2B(X0;P0)(T ) (cf. §4 of [A]). Let Πj (j = 0, 1, 2) be the closed
subset of Y defined in [A, Proposition 6.1]. Then the closed subset contr−1(Πi)
(i = 1, 2) is Z(Pi). The closed subset contr−1(Π0) ∩ h′−1({P ′i} × T ) (i = 1, 2) is
Z(Si). �

We endow each closed subset Z(Pi) and Z(Qi) (i = 1, 2) with the scheme struc-
ture defined by the first Fitting ideal of ΩY′/T . Then (pr2 ◦ h′)|Z(Pi) : Z(Pi) → T
and (pr2 ◦ h′)|Z(Si) : Z(Si)→ T (i = 1, 2) are closed immersions. Moreover, by the
description of the versal family of GSL2B

′(X ′
0;P ′0), Z(P1) and Z(P2) (resp. Z(S1)

and Z(S2)) define the same closed subscheme of T . Let I ⊂ OT (resp. J ) be the
ideal sheaf of the closed subscheme defined by Z(Pi) (resp. Z(Si)).

Definition 5.3. GSL2B
′(X ′

0;P ′0)(0) (resp. GSL2B
′(X ′

0;P ′0)(1) andGSL2B
′(X ′

0;P ′0)(2))
is defined to be the closed substack defined by the ideal J (resp. I and I + J ).

Theorem 5.4. We have an isomorphism of B′
0-groupoids

GSL2B
′(X ′

0;P ′0)(0) ' GSL2B(X0;P0)(0).

(Rigorously speaking, the right-hand side should be written as GSL2B(X0;P0)(0)×B0

B′
0. See §6 of [A] for the definition of GSL2B(X0;P0)(0).)

Proof. In the proof of Proposition 5.2, we constructed a morphismGSL2B
′(X ′

0;P ′0)→
GSL2B(X0;P0), which induces a morphism Φ : GSL2B

′(X ′
0;P ′0)(0) → GSL2B(X0;P0)(0).

Let us construct the inverse of Φ. Let T be an affine B′
0-scheme. Given an
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object (Y h−→ X0 × T, E , δ : det E → (prf ◦ h)∗P0) of GSL2B(X0;P0)(0)(T ).
Let Π0 be the closed subscheme of Y defined in the paragraph 6.2 in [A] and
let g : Ỹ → Y be the blowing-up along Π0. There exists a unique morphism
h̃ : Ỹ → X̃0 × T with (n × idT ) ◦ h̃ = h ◦ g. Ỹ/T has two sections s1 and s2 such
that g−1(Π0) = s1(T ) t s2(T ) with h̃ ◦ si = Pi × idT . Since X ′

0 × T is obtained by
gluing X̃0×T and R×T along {P ′1}×T t{P ′2}×T , if Y ′ is the scheme obtained by
gluing Ỹ and R× T along the two sections, we have a morphism h′ : Y ′ → X̃0× T .
We also have a morphism contr : Y ′ → Y by contracting R × T to Π0. We have
h ◦ contr = (k × idT ) ◦ h′.

Y ′ h′

−−−−→ X ′
0 × Tycontr

yk×idT

Y −−−−→
h

X0 × T.

Put E ′ := contr∗E . δ : det E → (pr1◦h)∗P0 induces δ′(0) : det E ′ → (pr1◦h′)∗P ′0. By
Lemma 6.11 in [A], the line bundle (det E ′)⊗h′∗(P ′∨0 ⊗O(R))|Ỹ(−s1(T )−s2(T )) on
Ỹ is trivial. Since det E ′⊗h′∗(P ′∨0 ⊗O(R))|Ỹ(−s1(T )−s2(T )) ↪→ det E ′⊗h′∗(P ′∨0 ⊗
O(R)), we can find a morphism δ′(1) : h′∗(P ′0(−R)) → det E ′ which is nonzero on
every fiber over T . Adjusting δ′(1) so that δ′(0) ◦ δ′(1) is h′∗(1R)-multiplication, we
obtain an object of GSL2B

′(X ′
0;P ′0)(0)(T ). �

5.5. Next we describe the global structure of GSL2B
′(X ′

0;P ′0)(1). We fix a line
bundle L of degree one on the smooth rational curve R and we also fix an isomor-
phism

(5.1) L⊗2 ' OR(−R)(:= OX ′(−R)|R).

There exists a unique isomorphism

(5.2) OX ′(R)|X̃0
' OX̃0

(P1 + P2)

such that 1R|X̃0
∈ OX ′(R)|X̃0

corresponds to 1 ∈ OX̃0
(P1+P2). By (5.1) and (5.2),

we have the isomorphism (i = 1, 2)

(5.3) L⊗2|P ′
i
' OX̃0

(−Pi)|Pi .

Let SU2(X̃0; P̃0(−P1 − P2)) be the moduli stack of 2-bundles on X̃0 with deter-
minant P̃0(−P1 − P2), that is, for an affine B′

0-scheme T , objects of the groupoid
SU2(X̃0; P̃0(−P1 − P2))(T ) are 2-bundles W on X̃0 × T together with an isomor-
phism ∧2W ' pr∗1P̃0(−P1−P2). On X̃0×SU2(X̃0; P̃0(−P1−P2)), we have the uni-
versal 2-bundleWuniv together with the isomorphism ∧2Wuniv ' pr∗1P̃0(−P1−P2).
Put τi := (Pi, id) : SU2(X̃0; P̃0(−P1 − P2)) → X̃0 × SU2(X̃0; P̃0(−P1 − P2))
(i = 1, 2). Put Vi := (τ∗iWuniv)⊗ (L|P ′

i
)∨. We have isomorphisms

detVi ' (det τ∗iWuniv)⊗C (L|P ′
i
)⊗−2

'
(
τ∗i pr

∗
1P̃0(−P1 − P2)

)
⊗C (L|P ′

i
)⊗−2

= τ∗i pr
∗
1P̃0(−Pi)⊗C (L|P ′

i
)⊗−2

' τ∗i pr∗1P̃0(−Pi)⊗C

(
OX̃0

(Pi)|Pi

)
by (5.3)

' τ∗i pr∗1P̃0 = OSU ⊗C (P0|Q).

By this we have the canonical isomorphism

(5.4) θ : detV1 ' detV2.
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This allows us to consider KSL2 (V1,V2).

Theorem 5.6. We have an isomorphism of B′
0-groupoids

GSL2B
′(X ′

0;P ′0)(1) ' KSL2 (V1,V2) .

Proof. Let T be an affine scheme of finite type over B′
0. Let E′ := (Y ′ h′

−→
X ′

0 × T, E ′,det E ′ δ′(0)−−−→ (pr1 ◦ h′)∗P ′0, (pr1 ◦ h′)∗P ′0(−R) δ′(1)−−−→ det E ′) be an ob-
ject of GSL2B

′(X ′
0;P ′0)(1)(T ). We shall transform E′ into equivalent data. By

the definition of GSL2B
′(X ′

0;P ′0)(1), the closed subschemes Z(P1) and Z(P2) of Y ′
are sections over T . Blowing up Y ′ along Z(P1) t Z(P2), we obtain a morphism
(X̃0×T )tU bl−→ Y ′ such that (h◦bl)|X̃0×T : X̃0×T → X ′

0×T is a base-change of the

inclusion X̃0 ↪→ X ′
0 and (h′ ◦ bl)|U : U → X ′

0 × T factors as U f−→ R× T ↪→ X ′
0 × T .

The invers-image of Z(Pi) to X̃0 × T is the section {Pi} × T , and let σi ⊂ U
(or σi : T → U) be the section over T that is the inverse-image of Z(Pi) to
U . Then f : U → R × T is a bi-simple modification of the two-pointed curve
(R;P ′1, P

′
2). (See [A, Definition 6.6] for the definition of a bi-simple modification.)

Put F := (bl|X̃0×T )∗E ′. The pullback of δ′(0) by bl|X̃0×T gives detF → pr∗1P̃0,
which is the composite of the isomorphism α : detF → pr∗1(P̃0(−P1−P2)) and the
natural inclusion pr∗1(P̃0(−P1 − P2)) ↪→ pr∗1P̃0. Note that the pullback of δ′(1) by
bl|X̃0×T gives also an isomorphism pr∗1(P̃0 ⊗ (OX ′(−R)|X̃0

))→ detF , and it is the
inverse of α, where OX ′(−R)|X̃0

' OX̃0
(−P1 − P2) by (5.2). Put G := (bl|U )∗E ′.

Let β : (f∗pr∗1OR(−R))⊗CPQ → detG be the pullback of δ′(1) by blU . It is easy to
see that σ∗i (β) : OT ⊗C (OR(−R)|P ′

i
)⊗C PQ → detσ∗i G is an isomorphism. By the

definition of F and G, we have a canonical isomorphism ϕi : (Pi, idT )∗F ∼−→ σ∗i G
(i = 1, 2). After all, we obtained the following data:

(i) A 2-bundle F on X̃0 × T ,
(ii) An isomorphism α : detF ∼−→ pr∗1(P0(−P1 − P2)),
(iii) A bi-simple modification of the two-pointed curve (R;P ′1, P

′
2) over T

U R× T-f

T

S
S

S
S

S
Sw

σ1, σ2

�
�

�
�

�
�/

P ′
1 × id,

P ′
2 × id

pr2
pr2 ◦ f

(iv) A 2-bundle G on U satisfying (#),
(v) A homomorphism β : (f∗pr∗1OR(−R))⊗C PQ → detG,

where (#) is the following condition:

(#) For t ∈ T , if U ×T Specκ(t)
f×id−−−→ R × Specκ(t) is an isomor-

phism, then G|U×T Specκ(t) ' O(1)⊕2, and if U ×T Specκ(t) ' R ∪
R(1)∪R(2) f×id−−−→ R×Specκ(t), then G|R ' O⊕2, G|R(i) ' O⊕O(1)
(i = 1, 2) and H0((G|U×Specκ(t))(−σ1(t)− σ2(t))) = 0.

Moreover the diagram

(♣)

(Pi, id)∗ detF (Pi,id)∗−−−−−→ (PQ ⊗C P
∗
i OX̃0

(−Pi))⊗C OT

o
ydet(ϕi) o

y
σ∗i detG σ∗

i (β)←−−−− (PQ ⊗C P
′∗
i OR(−R))⊗C OT
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commutes (i = 1, 2). These data are equivalent to E′, that is, we can reconstruct
E′ from these data. Let us see that the above data (i) ∼ (v) give an object of
KSL2 (V1,V2) (T ) and vice versa. Put N := OU (−σ1−σ2)⊗ (pr1 ◦f)∗OR(P ′1 +P ′2)
and let ν ∈ N be the canonical section. Put H := f∗(G ⊗N ). Then by Proposition
7.4 of [K2], we have bf-morphisms of rank one

(5.5) (Ni, νi, σ
∗
i G → (P ′i , id)∗H, Ni ⊗ (P ′i , id)∗H → σ∗i G, 1),

where Ni := σ∗iN and νi := σ∗i ν (i = 1, 2).

Claim 5.6.1. For any t ∈ T , H|R×Specκ(t) ' O(1)⊕2.

Proof of Claim 5.6.1. If f is an isomorphism over t ∈ T , then the claim is obvious
by (#). Assume that, over t ∈ T , f is of the form U ×T Specκ(t) ' R ∪ R(1) ∪
R(2) → R × Specκ(t). Then H0((H|R×Specκ(t))(−P ′1 − P ′2)) = 0 by (#). Since
deg(H|R×Specκ(t))(−P ′1−P ′2) = −2, we have (H|R×Specκ(t))(−P ′1−P ′2) ' O(−1)⊕2.

�

Put T := pr2∗(H⊗pr∗1L−1). Then we have an isomorphism pr∗2T ' H⊗pr∗1L−1,
which induces an isomorphism (i = 1, 2)

(5.6) T ⊗C (L|P ′
i
) ' (P ′i × id)∗H.

(5.5) and (5.6) imply

σ∗i detG ' (det T )⊗N−1
i ⊗C (L|P ′

i
)⊗2

' (det T )⊗N−1
i ⊗C (OR(−R)|P ′

i
).

(5.7)

This and β imply Ni ' (det T )∨⊗CPQ. Let v be the composite N1 → (det T )∨⊗C
PQ → N2.

Claim 5.6.2. v(ν1) = ν2.

Proof of Claim 5.6.2. Let U be the family of nodal curves that is obtained from U
by gluing σ1 and σ2, and let R be the nodal rational curve obtained from R by
gluing P ′1 and P ′2. We have the commutative diagram:

(5.8)

U f−−−−→ R× Ty y
U f−−−−→ R× T.

Let N be the line bundle obtained from N gluing along σ∗1 and σ∗2 by the isomor-
phism v. By [A, Lemma 6.11], detG ' f∗(detH)⊗N−1, so we have detG ' (pr2 ◦
f)∗ det T ⊗L⊗2⊗N−1 ' (pr2 ◦f)∗ det T ⊗(pr1 ◦f)∗OR(−R)⊗N−1. The existence
of β implies that we have a morphism (pr2 ◦f)∗(det T ⊗CP∨Q)→ N−1

that is fiber-

wisely nonzero. Therefore we have the isomorphism det T ⊗CP∨Q ' (pr2◦f)∗(N
−1

).

This implies that (pr2 ◦ f)∗(N
−1

) is a line bundle on T and commutes with base-
change. This is equivalent to that both (pr2 ◦ f)∗(N

−1
) and R1(pr2 ◦ f)∗(N

−1
) are

line bunldes.
In order to prove the claim, we may assume that T = SpecA with A an artinian

local C-algebra. By [NS, Appendix III (iv)], we have ωU/T ' f
∗
ωR×T . Since

pa(R) = 0, ωU/T ' OU . Then by Theorem 11.1 of [H] for a vector bundleM on U ,
we have a spectral sequence

(5.9) Ep,q
2 = ExtpOT

(R−q(pr2 ◦ f)∗M,OT )⇒ Rp+q+1(pr2 ◦ f)∗(M∨).
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Therefore Rj(pr2◦f)∗(N
∨
) is a line bundle for j = 0, 1 if and only if Rj(pr2◦f)∗(N )

is a line bundle for j = 0, 1. The latter condition is equivalent to v(ν1) = ν2 This
completes the proof of Claim 5.6.2. �

The bf-morphism (5.5) together with the isomorphismsϕ : (Pi, idT )∗F → σ∗i G
and (5.6) gives rise to a bf-morphism

(5.10) (Pi, idT )∗F ⊗C (L|P ′
i
)∨

⊗Ni
x−→ T ,

or equivalently

(5.11) T ⊗Ni

⊗Ni
x−→ (Pi, idT )∗F ⊗C (L|P ′

i
)∨

By (#) and the commutative diagram (♣), these data satisfy the conditions (a)
and (b) in Definition 3.1 of [A]. Thus we obtained an object of KSL2 (V1,V2) (T )
The reconstruction of the data (i)∼ (v) from an these data is straightforward. �

6. Decomposition Theorem

Definition 6.1. The generalized theta line bundle Θ on GSL2B
′(X ′/B′;P ′) is de-

fined by associating to each object (h′ : Y ′ → X ′×B′T, E ′, δ′(0), δ′(1)) ∈ GSL2B
′(X ′/B′;P ′)(T )

the line bundle (detR(pr2 ◦ h′)∗E ′)∨ on T . By abuse of notation, the restrictions
of Θ to substacks are also denoted by Θ. Let Vm (resp. V (i)

m ) be the vector space
H0(GSL2B

′(X ′
0;P ′0),Θm) (resp. H0(GSL2B

′(X ′
0;P ′0)(i),Θm)) (m ≥ 1, i = 0, 1, 2).

Note that we have the natural homomorphisms V → V (i), V (0) → V (2) and
V (1) → V (2).

Proposition 6.2. The natural homomorphism Vm → V
(0)
m ×

V
(1)

m
V

(1)
m is an iso-

morphism.

Proof. We just mention the exact sequence

(6.1) 0→ R/(xy)→ R/(x)⊕R/(y)→ R/(x, y)→ 0,

where R = C[[x, y, z1, z2, . . . ]], and leave the details to the reader. �

Proposition 6.3. The natural homomorphism V
(1)
m → V

(2)
m is an isomorphism.

Proof. We use the notation in the paragraph 5.5. By Theorem 5.6, we have the
commutative diagram
(6.2)

GSL2B
′(X ′

0;P ′0)(1) ' KSL2(V1,V2) −→
pr

SU2(X̃0; P̃0(−P1 − P2))⋃ ⋃
‖

GSL2B
′(X ′

0;P ′0)(2) ' B(V1,V2)
pr|B−−→ SU2(X̃0; P̃0(−P1 − P2)).

(See §7 for B(V1,V2).)

Claim 6.3.1. The line bundle Θ onGSL2B
′(X ′

0;P ′0)(1) is isomorphic to pr∗(detRpr2∗Wuniv)∨,
where pr2 : X̃0 × SU2 → SU2.

Proof of Claim 6.3.1. We use the notation used in the proof of Theorem 5.6. The
claim follows from the isomorphisms

detR(pr2 ◦ h′)∗E ′ ' (detRpr2∗F ′)⊗ detR(pr2 ◦ f)∗G
⊗ det(σ∗1G)∨ ⊗ det(σ∗2G)∨

' (detRpr2∗F ′)⊗ detRpr2∗(H⊗ pr∗1OR(−P ′1 − P ′2))
' detRpr2∗F ′.

(6.3)

�
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Since we have the isomorphisms

H0
(
SU2

(
X̃0; P̃0(−P1 − P2)

)
,M

)
' H0 (KSL2 (V1,V2) , pr∗M)

' H0 (B (V1,V2) , (pr|B)∗M)
(6.4)

for any line bundle M on SU2(X̃0; P̃0(−P1 − P2)), the proposition is proved. �

Corollary 6.4. The natural homomorphism Vm → V
(0)
m is an isomorphism.

Proof. This is immediate from Proposition 6.2 and Proposition 6.3. �

6.5. Let SU2(X̃0; P̃0) be the moduli stack of 2-bundles on X̃0 with determinant
P̃0. Put σi := (Pi, id) : SU2(X̃0; P̃0) → X̃0 × SU2(X̃0; P̃0) (i = 1, 2). On X̃0 ×
SU2(X̃0; P̃0), we have the universal 2-bundle Funiv together with the isomorphism
detFuniv ' pr∗1P̃0. Put

PB := P(σ∗1Funiv)×SU2(X̃0;P̃0)
P(σ∗2Funiv).

Put qi : PB → P(σ∗iFuniv), πi : P(σ∗iFuniv) → SU2(X̃0; P̃0) and π := qi ◦ πi.
Let Θm

PB(j) be the line bundle π∗(detRpr2∗Funiv)⊗(−m) ⊗ q∗1O(j) ⊗ q∗2O(j) ⊗C

(P0)
⊗(m−j)
Q on PB.

Proposition 6.6. We have the canonical isomorphism V
(0)
m ' ⊕m

j=0H
0 (PB,Θm

PB(j)) .

Proof. By Theorem 5.4 and [A, Theorem 6.4] and Proposition 7.2, we have the
diagram

(6.5)

GSL2B
′(X ′

0;P ′0)(0) ' KSL2(σ∗1Funiv, σ
∗
2Funiv) −→

pr
SU2(X̃0; P̃0)⋃ ⋃

‖
GSL2B

′(X ′
0;P ′0)(2) ' B(σ∗1Funiv, σ

∗
2Funiv)

pr|B−−→ SU2(X̃0; P̃0)
o ↓ ‖
PB

π−→ SU2(X̃0; P̃0).

Claim 6.6.1. The line bundle Θ on GSL2B
′(X ′

0;P ′0)(0) is isomorphic to the line
bundle OKSL2(B) ⊗ pr∗(detRpr2∗Funiv)∨ ⊗C (P0)Q on KSL2(σ∗1Funiv, σ

∗
2Funiv),

where pr2 : X̃0 × SU2 → SU2.

Proof of Claim 6.6.1. Analogous to the proof of Claim 6.3.1. �

Therefore, by Proposition 7.5 and Proposition 7.3, we have the isomorphisms

V (0)
m ' H0(KSL2(σ∗1Funiv, σ

∗
2Funiv),OKSL2(mB)⊗ pr∗(detRpr2∗Funiv)⊗(−m) ⊗C (P0)⊗m

Q )

'
m⊕

j=0

H0(B(σ∗1Funiv, σ
∗
2Funiv),OB(jB)⊗ (pr|B)∗(detRpr2∗Funiv)⊗(−m) ⊗C (P0)⊗m

Q )

'
m⊕

j=0

H0(PB,Θm
PB(j)).

(6.6)

�

Corollary 6.7. We have the canonical isomorphism

(6.7) H0(GSL2B
′(X ′

0;P ′0),Θm) '
m⊕

j=0

H0(PB,Θm
PB(j)).
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7. Appendix

In this appendix, we gather some facts on KSL2.

Universal family. Let S be a scheme over SpecC, and let E and F be trivial
2-bundles on S. Let θ : det E ' O → O ' detF be the identity map. Let P be the
S-scheme ProjOS [x11, x12, x21, x22, x00], andQ be the closed subscheme of P defined
by x11x22 − x12x21 − x2

00 = 0. Put B := Q ∩ {x00 = 0}. Let π be the projection
to S. Let x : π∗E → π∗F ⊗ OQ(B) be given by the matrix (xij/x00)1≤i,j≤2. Put
E1 := x−1(π∗F) and F1 := x(E1) ⊂ π∗F . We have natural morphisms

π∗E ↪→ E1 ⊗O(B)

π∗F ↪→ F1 ⊗O(B).
(7.1)

Hence, on Q, we have the diagram of isomorphisms and bf-morphisms:

π∗E π∗F

E1 F1
-x

? ?

⊗O(B) ⊗O(B)

q
This gives the universal family of KSL2(E ,F).

Degenerate locus.

Definition 7.1. Let B(E ,F) be the subfunctor of KSL2(E ,F) defined by the ad-
ditional condition µ1 = µ2 = 0 in [A, Definition 3.1].

Clearly the functor B(E ,F) is represented by B in the above.

Proposition 7.2. We have an S-isomorphism

(7.2) B ' P(E)×S P(F).

Proof. We construct a bijection on T -valued points for an S-scheme T
ϕ−→ S. For a

T -valued point of B(E ,F)

ϕ∗E ϕ∗F

U1 U2
-

? ?

⊗M1 ⊗M2

,
put R1 := Im(ϕ∗E → U1 ⊗M1) and R2 := Im(ϕ∗F → U2 ⊗M2). Then the pair
(ϕ∗E � R1, ϕ

∗F � R2) gives a T -valued point of P(E) ×S P(F). Thus we have
B→ P(E)×S P(F).

Conversely, if we are given a T -valued point (α : ϕ∗E � R1, β : ϕ∗F � R2) of

P(E) ×S P(F), put M := R1 ⊗ (Kerβ)∨. The isomorphism detϕ∗E ϕ∗θ−−→ detϕ∗F
induces the isomorphism θ′ : R1⊗(Kerβ)∨ → R2⊗(Kerα)∨. Let g#

1 : (R1⊗M∨)⊕
(R2 ⊗M∨) → ϕ∗E be the composite (R1 ⊗M∨) ⊕ (R2 ⊗M∨)

pr2−−→ R2 ⊗M∨ =

R2 ⊗ R∨1 ⊗ (Kerβ) θ′−→ Kerα ↪→ ϕ∗E . g#
2 : (R1 ⊗M∨) ⊕ (R2 ⊗M∨) → ϕ∗F be

the composite (R1 ⊗M∨)⊕ (R2 ⊗M∨)
pr1−−→ R1 ⊗M∨ ' Kerβ ↪→ ϕ∗F . Then the

diagram
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ϕ∗E ϕ∗F

(R1 ⊗M∨)⊕ (R2 ⊗M∨)









�

J
J

J
Ĵ

�3 Qk
⊗M ⊗M

gives a T -valued point of B(E ,F). Thus we have P(E) ×S P(F) → B. These
morphisms are inverses to each other. �

Line bundle.

Proposition 7.3. By identifying B and P(E) ×S P(F) by the isomorphism (7.2),
we have an isomorphism of line bundles

(7.3) OB(B) '
(
OP(E)(1) �OP(F)(1)

)
⊗ π∗(detF)∨.

Proof. This follows from the proof of Proposition 7.2. �

Remark 7.4. Put G := SL(E)×S SL(F). We have the natural (left) G-action on
KSL2(E ,F) and P(E)×S P(F). G also induces the natural G-linearlizations on the
line bundles OB(B) and OP(E)(1)�OP(F)(1). The isomorphisms (7.2) and (7.3) are
G-equivariant.

Proposition 7.5. We have the canonical equivariant isomorphism (m ≥ 0)

(7.4) π∗OQ(mB) '
m⊕

i=0

π∗OB(iB).

Proof. Since S is a scheme over SpecC, we may assume that S = SpecC. We prove
this proposition by induction. If m = 0, it is trivial. Assume that m > 0. We have
an exact sequence

(7.5) 0→ OQ((m− 1)B)→ OQ(mB)→ OB(mB)→ 0.

Since H1(Q,OQ((m− 1)B)) = 0, we have

(7.6) 0→ H0 (Q,OQ((m− 1)B))→ H0 (Q,OQ(mB))→ H0 (B,OB(mB))→ 0.

If Ui denotes the irreducible SL2-representation with dimUi = i+1, then we have,
by induction and Proposition 7.3,

(7.7) H0 (Q,OQ ((m− 1)B)) '
m−1⊕
i=0

Ui ⊗ Ui

as SL2 × SL2-modules. Therefore H0(Q,OQ(mB)) ' ⊕m
i=0Ui ⊗ Ui as SL2 × SL2-

modules, and the exact sequence (7.6) has a canonical splitting. This proves the
proposition. �

Acknowledgements. The author would like to thank Professor Hiromichi Takagi
for warm encouragement during the preparation of this paper.

References

[A] T. Abe: The moduli stack of Gieseker-SL2-bundles on a nodal curve, preprint
RIMS-1460.

[H] R. Hartshorne: Residues and duality, Lecture Notes in Mathematics, No. 20,
Springer-Verlag, Berlin-New York (1966)

[K1] I. Kausz: A modular compactification of the general linear group, Doc. Math.
Vol. 5, 553-594 (2000)

[K2] I. Kausz: A Gieseker type degeneration of moduli stacks of vector bundles on
curves, arXiv:math.AG/0201197

[Kn] Finn F. Knudsen: The projectivity of the moduli space of stable curves. II.
The stacks Mg,n, Math. Scand. 52 (1983), no. 2, 161–199.



THE MODULI STACK OF GIESEKER-SL2-BUNDLES ON A NODAL CURVE II 15

[NS] D. S. Nagaraj and C. S. Seshadri: Degenerations of the moduli spaces of vec-
tor bundles on curves II (Generalized Gieseker moduli spaces), Proc. Indian
Acad. Sci. Vol. 109, 165-201 (1999)

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502,
Japan

E-mail address: abeken@kurims.kyoto-u.ac.jp


