THE MODULI STACK OF GIESEKER-SL,-BUNDLES
ON A NODAL CURVE 11
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1. INTRODUCTION

Let Xy be an irreducible projective nodal curve with only one singular point, and
let Py be a line bundle on Xy. The moduli SUx,(r; Py) of rank r vector bundles
on X with determinant Py is not compact. In [A], using the technique of Kausz
([K1], [K2]), we constructed a compactification GSLaB(Xo;Py) of SUx,(2;Po),
and studied its structure. Surprisingly, despite its seemingly natural definition,
GSLyB(Xo;Py) is not a good compactification. It has two components and one
of them is non-reduced. This means that if (Xo,Pp) is a degeneration of (Xy, Py),
where b € B is a parameter and X, (b # 0) is an irreducible smooth projective curve
and Py is a line bundle on X, GSLyB(Xg; Py) is not a semistable degeneration of
SUx,(2;Py). In this paper, we introduce a new compactification of SUx, (2;Pp),
and prove that it gives a semistable reduction of the above degeneration. Moreover
we prove a decomposition theorem for the generalized theta divisors on this new
moduli space.

The contents of the sections are as follows. In section 2, we introduce basic
definitions. In section 3, we introduce the new compactification of the moduli of
vector bundles. In section 4, we study the local structure of the moduli space. In
section 5, we study the global structure of the moduli space. The arguments in
section 4 and 5 are quite similar to those in [A]. That is why we omitted some
details. In section 6, we prove a decomposition theorem for the generalized theta
divisors. In section 7, we collected some facts about the compactification KSLy of
S Lo that are used in the preceding sections.

2. PRELIMINARIES

In this section, we fix notation and introduce basic definitions that are used
throughout this paper.

Setting. As in [A], we put B := SpecC|[[[t]]. By — B is the closed point and
B, (C B) is the generic point of B. 7 : X — B is a stable curve of genus g > 2 over
B such that the generic fiber X, is smooth, the special fiber X is an irreducible
curve with only one node ). We assume that & is a regular scheme. Moreover we
assume that 7 : X — B is induced by an analytic family X** — B*" where B*"
is a small open neighborhood of 0 € C. We fix a C|[[t]]-isomorphism

(2.1) Ox.q = Cllar, w2, 1))/ (122 1)

that is induced by an analytic isomorphism O%%. o ~ C{{z1,z2,t}}/(z122 — 1).
Let n : Xo — Xo be the normalization, and put {Py, P,} := n~(Q) so that the
local coordinate x; gives the local coordinate at P;.

Put B’ := SpecC[[t']] and let B’ — B be given by t? = t. B} — B is
the closed point and B;] is the generic point. The point @ € X gives, by base-
change, the singular point Q' on X’ x g B’. We have the isomorphism (7)\XXBB/’Q/ ~
Clw1, w2, t']] /(w122 — ). If k : X' — X x g B’ denotes the blowing-up of X x5 B’

1



2 TAKESHI ABE

at the point @', then X’ is a regular scheme and 7’ : X’ — B’ is a flat family of
nodal curves over B’.

X/
[

(2.2) XxpB —— X
I I
B’ —— B

Let R be the smooth rational curve k~1(Q’) on X’. PutX{ := X’ xp Bj. Note
that X is a union of Xy and R. Let P/ be the singular point of X such that

{P} = {Bi}

When the point P/ on X, is regarded as a point on R, we also denote it by P/. The
isomorphism (2.1) induces the isomorphism
(2.3) Oxr pr = Cllxs, yi, V]l (xiys — 1),

where y; = t'/x;.

Modifications. Let RU) := jo) U---u Rl(j) (l >0, j =1,2) be a chain of
rational curves, where Rg'j) ~ P!, and RZ(»'lj) N Rg) # (0 if and only if |iy —ip| < 1.
Let a;,b; be closed points of jo), Rl(j) respectively such that if [; = 1 then a; # b;,
and if I; > 1 then a; # RY) NRY and b; # RY) N RY). Let X/, | be the nodal
curve that is obtained by identifying the pair of points (P;, P}) on Xo U R with
(aj,b;) on RY) (j =1,2). We have the natural morphism g : XEll,ZQ) — X|.

. \r/ ,
RO P

(2)
R
.. %“\ £

Definition 2.1. (i) Let T be a B’-scheme and let f : T — B’ denote the
structure morphism. A modification of X’ over T is a commutative diagram

hl

yl X’ X B T
pra oh’ pr2
T

such that )’ is flat, proper and of finite presentation over T, and that
for any field K and any morphism SpecK — T'if f(SpecK) is B, then
R x idgpeck @ V' X1 SpecK — X' xp/ SpecK is an isomorphism, and if
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f(SpecK) is B, then for some (l1,l3) € (Z>0)®? there is an isomorphism
g+ X1, 1) xSpecK — V' x7SpecK satisfying (A’ xidspeck)0g = ¢xidspeck -

(ii) Let T be a Bj-scheme. A modification of X{, over T is a modification of X’
over T, where T is regarded as a B’-scheme by Bj — B’.

(iii) If K is a field and SpecK — B{, is a morphism and Y’ L X x SpecK is
a modification of X, over SpecK, then (I1,l2) that appears in (i) is called
the length of the modification.

Definition 2.2. Let K be a field over C.

(i) W :=¢xid: XEll7l2) x SpecK — X} x SpecK is a modification of length
(I1,12) € (Z>0)®? of X}y over SpecK. A vector bundle E’ on X{1, 1) X SpecK
is said to be admissible iff all the conditions (a), (b) and (c) below hold,;

(a) B0 =~ 0(1)*" @ O®rankE'=m with m > 0 (m depends on j and 7).

(b) F'| R is globally generated.

(c) If, by abuse of notation, k : X — X, denotes the restriction of k :
X" — X xpg B’ to the fiber over By, then ((ko ¢) X idgpeck )+E’ is a
torsion-free sheaf on Xy x SpecK.

(ii) Let h : Y’ — X{ x SpecK be a modification of X{, over SpecK and let
g+ X1, 1) X SpecK — Y’ be as in (i) of Definition 2.1. A vector bundle £’
on Y’ is said to be admissible iff g*E is admissible.

(iii) Let f : T — B’ be a morphism and let A’ : ) — X’ x g/ T be a modification
of X" over T. A vector bundle £ on )’ is said to be admissible iff for any
SpecK — T, where K is a field, such that f(SpecK) = By, the pullback of
&' to V' xr SpecK is admissible.

Notation for points on X(’1 1) In the sequel, we will deal with modifications of
X of length (1,1) many times. Therefore, we here prepare the notation for singular

/

points of X(; ; as follows. (Note that X{, ;) = XoU Rgl) u R?) UR.)

e ()

P} :=XoNR
(2.4) ) ° !
{S;} :=RNRY.

3. GIESEKER-SL2-BUNDLES ON X’/B’

In the rest of this paper, we fix a line bundle P on &', of degree d on the fibers
over B. P’ denotes the pullback of P to X”. Put Py := P|x, and Pg :=P’[x;.

Definition 3.1. Let S be a B’-scheme. A Gieseker-SLy-bundle with determinant
P’ on X’ over S, or a Gieseker-SLo-bundle on (X’;P’) over S, is the following data:

a modification b’ : )/ — X' xp/ S,

an admissible 2-bundle £ on ), of degree d on the fibers over S,

an Oy-module homomorphism 6" : det £ — (pry o B')*P’,

an Oy-module homomorphism 6’ : (pry o /)*P’'(=R) — det &',

where we require the composite §’(°) o §'(Y) is the multiplication by (pri o h')*1g,
here 1z € Ox/(R) is the canonical section.

GSLyB'(X'/B’;P") denotes the B’-groupoid that associates to an affine B’-
scheme S the groupoid consisting of all the Gieseker-SLo-bundles on (X”;P’) over
S. GSLyB'(X(); P}) denotes the B{-groupoid GSLyB'(X'/B';P’) x g Bj.

Proposition 3.2. GSLyB'(X'/B’;P') and GSLyB'(X(; P|) are algebraic stacks.
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/ 1(0)
Lemma 3.3. Let K be a field extension of C. Let (Y’ LN X§xp;SpecK, &', det &’ LA
7(1)

(prioh")*Pl, (prioh)*P{(—R) I det &) be a Gieseker-SLy-bundle on (X';P’)
over SpecK . Then there are three possibilities:

(Type 0') B’ is an isomorphism and &£'|g ~ O%2.

(Type 1') I/ is an isomorphism and £'|g ~ O(1)%2.

(Type 2') Y’ LN X§ xpy SpecK is a modification of length (1,1), and &'|p ~ 0%?

and &' piy 20 @ O(1) (i=1,2).

Proof. By (b) and (c) in Definition 2.2 (i), we have E|g =~ O*7* @ O(1)* with

2>a2>0. Let Bl ~ 024" ¢ 0(1)%”. By Lemma 3.3 of [K2], we have

A=a+ Zilzl az(-l) + Zi2=1 a§2) < 2. If A =0, then we have Type 0’. Assume that
A > 0. We have A = 2 because '@ #£ 0. If a = 2, we have Type 1. If a < 2, we
have [; > 0 for j = 1 and 2 because 6’(1)|X;|7é 0. Thus (I1,l2) = (1,1) and a = 0.

We have Type 2'. O

4. LOCAL STRUCTURE

In this section, we shall investigate the local structure of GSL,B'(X’/B’; P').

L/ 6/(0) 5/(1)
Let us fix an object B} == (Y’ 2% X4, Bl det B, 22— hrPh, hi (P)(—R)) 2.
det EY)) of GSL,B'(X'/B'; P')(B}). Put L} := (det E})Y @ WP} and let o be

/(0) (1)
0

the global section of Lj, corresponding to d; ~ and let o, ' be the global section of

Ly’ ® hg (Ox(R)|x;) corresponding to 5(/)(1). Put L{, := (Y’ o, X}, L, 06(0), 06(1)).
As in [A, §5], we introduce deformation functors.

Definition 4.1. The functors G’ and F’ from A(=the category of artinian local
C[[t']]- algebras) to the category of sets are defined as follows. For A € A,

G'(4) E' € GSLyB'(X'/B’; P")(SpecA) /
"] with isomorphism E’ X speca By — EI. g
F'(4)
y LN X' x g/ SpecA is

W a modification of X’/B’
L":= (Y — &' xps SpecA, | over SpecA.

_ L', o' M) L is a line bundle on ). —
' with isomorphism o' and ') are global T
L' Xspeca B £, L), sections of £’ and

LY @ h*O(R) respectively
such that o/(®) . ') = b/*(15).

where the equivalence relations ~g: and ~ s are defined obviously.

As we get L{, out of Efj, we have the natural transformation ¥’ : G’ — F’. One
can check ¥’ is smooth. By this, in order to understand the local structure of
GSLyB'(X'/B’;P'), we have only to investigate the versal deformation of F.

Theorem 4.2. Let hgr — F' be a hull of F'.

(0" or 1) If Ej is of Type 0’ or of Type 1, then we have an isomorphism R’ ~
C[[t']] of C[[¢']]-algebras.

(2') If B is of Type 2', then we have an isomorphism R’ ~ C[[t',to,t1,u]]/(t' —
tot1) of C[[t']]-algebras.
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In what follows, we shall explicitly construct versal deformations of 7’ depending
on the type of E{. The verification that they are in fact versal deformations is
analogous to the proof of Theorem 5.6 in [A] and is left to the reader.

Type 0': On X, put £ = Oy, 0/ =1 ¢ £/, o'V .= 1g € LV ®
Ox/(R) = Ox/(R). Then the quadruple (X’ ‘% X7, £/, 6'®, 5'D) gives a
versal deformation of F.

Type 1’: On &/, put £ := Ox/(R), '@ := 1p € £ and /M =1 €
£ ® Ox/(R) ~ Ox. Then the quadruple (X’ % &7, £/ 0'® /(1) gives
a versal deformation of F’.

Type 2’: In this case, the construction of the versal deformation is more in-

volved than the previous two cases. Put W := SpecC|[wy1, w12, wa1, was]]/(w11wi2—

wawee) and let f : W — B’ be given by f*(t') = wijwia(= waiwas). At

the point P/ on the central fiber of X’ x g W, we have an isomorphism
Cllwi1, w12, wa1, w22, T;, i)

W11W12 — W21W22, TilY; — wilwiQ)

(4’]‘) (/9\X/><B/W,Pi/ ~ (

as (C[[wu, w12, W21, wgg]]/(wuwlg —wglwgg)-algebra. Blowing up X' x B’ w
by the ideal (x;,w;1) (precisely speaking in the category of analytic spaces),
we obtain the modification hyy, : V' — &X' xp W over W, such that the
central fiber is a modification of lengh (1,1). If we put w; := w;1/x; and
v; := x; /w;1, then we have isomorphisms

Cllwi1, wi2, w1, wa2, T;, u;)]

Oy p, =
(4 2) (wnwlz — W21W22, TiU; — wil)
. @ s~ (C[[wn,wm,wm,wm,Z/mvi]]
s (wi1wiz — warWa2, YiV; — Wi2)
Of C[[wu, W12, W21, 11)22]]/('[0111012 — w21w22)—algebras. " o
xT E
Py
Py
Y2 T2
Put
;o Cllw11, wi2, wa1, w22, ql]
(w11 (14 q) — war, w12 — waa (1 + q))
and D := SpecR’. Let m’ be the maximal ideal of R’ and put R,
R’ /w1, By abuse of notation, the images of w;; and g € R’ into R], are
also denoted by w;; and ¢. If A/ . yR, — X' x g SpecR], is the pullback
of hiy, : Y — X' xp W by SpecR’ — W, yR, is isomorphic to X(1 1) as
a topological space, and (4.2) induces isomorphisms (i = 1,2)
Oy p o~ R ([, ual]
4 Ry (xzui — wﬂ)
43 AR
Oy ~ mn yl? 1

7% (yv; — wig)”
By R} [[2i, w]l/(viu; —win) — R, ((2:)) ® R, ((w;)), where z; — (2, wi1 /u;)
and u; — (w;1/x;,u;), we have

H (SpecOy,, | = {Pi},0) = R, ((x:) @ B, ((w)).
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Similarly
H (SpecOy,, |~ {S:},0) = Ri((5:) © R, ((v:).

We put U := y;%, {Py, Py, 51,5} Let jl(%l,)i) and j(s ) denote the natural
morphisms SpecOy/ P yR and SpecOy/ 5 yR respectively.

Now let us construct a line bundle £/, and sectlons crn(o) € L) and op ) e

LY @ (prio k) )" Ox/(R) on Yy, . Let L}, be the line bundle on Vg,

that has the trivializations <p(P1) : '(}fi)*ﬁ’ — @y/, Pi» 90%9/ i) . (Si)*‘cg -
@yg%,si and ¢R/ Lilu — Oy/ |z) such that wR, o (p(Pl) is given,

on Spec@y;%/ p,—{P1}, by (1/x1,u1(1 + ¢))-multiplication, ’l/)R/ o QD%?Z)

is given, on Spec@ykl P, — {P2}, by (1/z2,us)-multiplication, and ¢, o

90525/ 771 i identity on Spec(/’)\yl/?/ s — {8} (i=1,2). Let o1 be the global

section of £/, such that

U _1(0) 1 on Xo — { Py, Ps}
Y (077) = 1 2
w11(1+q):w21 on R( ) U R( )UR_{P17P2,51,SQ}

(S: )( (S )* /(0))

and ¢p = wi1(1l + q) = way. Be-

(P‘ (j }(;,Di)*cr;fo)) = z; and ¢y,

fore deﬁmng on™ | note that the hne bundle (pri o h'p )*Ox/(R) has triv-

ializations (%) :jg,)i)*(prl o W )*Ox1(R) — Oy p,, alsi (S) (pri o
hg, )*Ox/(R) — Oy, s, and aV : (pryohly, ) Ox(R)|u — Oyl/?/ |u such
that a¥ oaP)~1 is given, on Spec(’)y/ —{P;}, by (1/z;,1), aV 051

is given, Spec(’)y;?/ s; —{Si}, by (v, ) and

1 Onj(vvo—{Pl,Pg}
a”((priohlp )*1gly) = § % =wav; =2 on RY — {P;, 5;}
wiiwie = worwee on R — {51, 55}

and o) (j (I:) (pr1 o Wg )*1gr) = ; and a(si)(jl({%)*(prl o h’I%)*lR) =
w;1v;. The trivializations of £ and (pry o by, )*Ox/(R) give rise to the
trivializations of M, := LV ® (pry o hy, )*Ox/(R): BF) . (P)*M —
Oyr, ps BV 1 i My — Oy s, and BV s M|y — Oyr. |U. We have

W) g gP)-1 _ (4 L
B0 0 0 = (1, )
B0 gt = (1, 1)

2

B o gL = (y;,1).

Let a;(l) be the global section of M,, such that

1 on X’o—{P1,P2}
T 1
B (/D)) = | 0T = g on B — (P15}
%Z:wm on R —{S1,5:}
L=y on R® — {P2, Sz}

U2
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and B (GE o1y = 1, BN (50" 61 D) = vy /(14q) and B (55" 01V) =
V2.
Then the projective system of the quadruples {(h}, : Vi — X' xp/

SpecR., L) 02(0), agl))}nzo gives a versal deformation of F’.

5. GLOBAL STRUCTURE

Notation 5.1. Let K be a field extension of C. Let (b : Y’ — X xSpecK, E’,§'(®) .

det B/ — (prioh’)* P, 8’V : (prioh’)*Ph(—R) — det E') be an object of GS Ly B’ (X}; P§)(SpecK)
that is of Type 0’ or of Type 1’. If it is of Type 0, then the point h'~'({P/}) is

denoted by S;. If it is of Type 1’, then the point h'~1({P/}) is denoted by P;.

S1 Py
So P
Type 0 Type 1/

Proposition 5.2. Take a B))-scheme T and let (h' : )" — X)xT,&',6'©) : det & —
(prioh’)*Ph,8'M) : (prioh’)*P)(—R) — det &) be an object of GSLa B’ (X{; PH)(T).
Then there exist closed subsets Z(P;) and Z(S;) of V' such that for any t € T
Z(Py)ly; ={Pi} and Z(Si)|y; = {Si} (i=1,2).

Proof. We may assume that T is of finite type over Bj. By abuse of notation, the
restriction of the morphism & : X’ — X x g B’ to the fiber over B} is also denoted
by k : X — Xo. Let us consider h : Y := Proj@®,,>0 ((k xidr)oh').((det £)®™) —
Xo x T. Using Lemma 1.4 and Corollary 1.5 of [Kn], we can check that ) is flat
over T and that there exists a natural morphism contr : ' — Y with (k xid)oh’ =
hocontr. Over t € T, contr collapses the rational curves on which £’ is trivial. If
we put € := contr,&’, then we have the isomorphism contr*€ ~ &'. ') induces
d:detE — (prioh)*Py. The triple (h: Y — Xo xT,E,6: detE — (pr1oh)*Py) is
an object of GSLyB(Xo;Po)(T) (cf. §4 of [A]). Let II; (j = 0,1,2) be the closed
subset of ) defined in [A, Proposition 6.1]. Then the closed subset contr—1(Il;)
(i = 1,2) is Z(P;). The closed subset contr=t(Ilp) N A1 ({P/} x T) (i = 1,2) is
Z(S;). O

We endow each closed subset Z(P;) and Z(Q;) (i = 1,2) with the scheme struc-
ture defined by the first Fitting ideal of Qy/ /7. Then (pro o b')|z(p,) : Z(F;) — T
and (pra o h')|z(s,) : Z(S;) — T (i = 1,2) are closed immersions. Moreover, by the
description of the versal family of GSLyB'(X{;P)), Z(Py) and Z(Pz) (resp. Z(S1)
and Z(Sz)) define the same closed subscheme of T'. Let Z C O (resp. J) be the
ideal sheaf of the closed subscheme defined by Z(P;) (resp. Z(S5;)).

Definition 5.3. GSLyB'(X}; Py)© (resp. GSLyB' (X}; Py and GSLyB' (X}; Ph)P)
is defined to be the closed substack defined by the ideal J (resp. Z and Z + J).

Theorem 5.4. We have an isomorphism of B -groupoids
GSLyB'(Xg; Py) ) =~ GSLyB(Xo; Po) .

(Rigorously speaking, the right-hand side should be written as GSLoB(Xo;Po)® x 5,
Bly. See §6 of [A] for the definition of GSLaB(Xo;P)®.)

Proof. In the proof of Proposition 5.2, we constructed a morphism GS Ly B’ (X(); P) —
GSLyB(X¢; Po), which induces a morphism ® : GS Ly B’ (X}); Py)(®) — GSLyB(Xo; o).
Let us construct the inverse of ®. Let T be an affine Bj-scheme. Given an
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object (¥ 25 Xo x T,E,6 : det€ — (prf o h)*Py) of GSLyB(Xo;Po)O(T).
Let IIp be the closed subscheme of ) defined in the paragraph 6.2 in [A] and
let g y — Y be the blowing-up along Ily. There exists a unique morphism
h y — Xo x T with (n x idp) o h=h og. y/T has two sections s; and sy such
that g~ (Ho) = 51(T) U so(T) with hos; = P; x idp. Since X} x T is obtained by
gluing X x T and Rx T along {P]} x TU{Py} x T, if ' is the scheme obtained by
gluing Yand RxT along the two sections, we have a morphism A’ : )/ — Xo xT.
We also have a morphism contr : ) — Y by contracting R x T to II,. We have
hocontr = (k x idp) o h'.

Y M xixT

lcontr lkxidT

y —>h X()XT.

Put & := contr*E. § : det € — (prioh)*Py induces 6’(0) det & — (prq Oh’) PO By
Lemma 6.11 in [A], the line bundle (deté‘ YQW™* (P R))|yfa-51(T) —s2(T)) on
Y is trivial. Since det & @ h'* (P} @ R))|pta-51(T) = 52(T)) — det &' @ h"™* (Py’ @
O(R)), we can find a morphism 6’(1) h*(Py(— )) — det &’ which is nonzero on
every fiber over T. Adjusting ') so that ¢'(®) 0 (V) is A’*(1p)-multiplication, we
obtain an object of GSLyB'(X4; Py)O(T). O

5.5. Next we describe the global structure of GSLyB'(X};P))™M. We fix a line
bundle L of degree one on the smooth rational curve R and we also fix an isomor-
phism

(51) L®2 ~ OR(—R)(: OX/(—R)|R).
There exists a unique isomorphism

such that 1| g€ Oxr (R)] gicorresponds to 1 € Oy AP + ). By (5.1) and (5.2),
we have the isomorphism (i = 1, 2)

(5.3)

Let SUQ(XO,PO( — P,)) be the moduli stack of 2-bundles on X, with deter-
minant PO( P - Pg) that is, for an affine Bj-scheme T', objects of the groupoid
SUy(Xo; Po(—P. Pg))(T) are 2-bundles W on )20 x T together with an isomor-
phism AZW ~ prfPo( Py). On X x SUy(Xo; Po(—Py — P,)), we have the uni-
versal 2-bundle Wy together with the 1somorphlsrn N2 Wumv ~ pri’ 730( —P).
Put T = (Pl,ld) : SUQ(X(),P()( PQ)) — XO X SUQ(X(),P()( PQ))
(1=1,2). Put V; := (1 Waniv) ® (L|pi/) . We have isomorphisms

det V; ~ (det 7, Waniv) @c (L|pr)® 72

~ (T priPo(—P P2)> ¢ (L|pr)®2
7 priPo(—P;) @c (L]p)® 7
=T Pﬁpo( s) ®c (
~ 77priPo = Osu @c (Polg)-

) by (5.3)

By this we have the canonical isomorphism

(5.4) 0 : det V; ~ det V.
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This allows us to consider K.SLy (V1,Vs).
Theorem 5.6. We have an isomorphism of B -groupoids
GSLyB' (X} PN ~ KSLy (V1, V).

Proof. Let T be an affine scheme of finite type over Bj. Let E' := () L

(0) ')
X x T,&, det & o2, (pri o K )*Py, (pr1 o W' )*Pi(—R) LikaR det £’) be an ob-

ject of GSLyB'(X}; Py)M(T). We shall transform E’ into equivalent data. By
the definition of GSLyB'(X}); P))™1), the closed subschemes Z(P;) and Z(Py) of )’
are sections over T. Blowing up y along Z(P)) U Z(P), we obtain a morphism

(XoxT)LU 2, 7 such that (hobl)| g3 p XoxT — X xT is a base-change of the

inclusion X, < X} and (h' o bl : U — X x T factors as U L RxT— XoxT.
The invers-image of Z(P;) to Xo x T is the section {P;} x T, and let o; C U
(or o; : T — U) be the section over T that is the inverse-image of Z(F;) to
U. Then f:U — R xT is a bi-simple modification of the two-pointed curve
(R; P/, P3). (See [A, Definition 6.6] for the deﬁmtlon of a bi-simple modification.)

Put F := (bl|g3,)*E". The pullback of §'O) by bl| gy gives det F — priPo,
which is the composite of the isomorphism « : det 7 — pri (Po(—P1 — P3)) and the

natural inclusion prj (Po( —P)) — prlﬁo Note that the pullback of §'(V) by
b”)@T gives also an 1somorphlsm pri(Po @ (Ox(— R)| 1) — det F, and it is the
inverse of o, where Oy (— ~ OgA—P1 — P») by (5.2). Put G := (blfy)*E".

Let 5 : (f*priOr(—R)) ®c PQ — det G be the pullback of 8'Y) by bly,. It is easy to
see that o} () : Or ®@c (Or(—R)|p) @c Pg — deto;§ is an isomorphism. By the

definition of F and G, we have a canonical isomorphism ¢; : (P;,idr)*F — 0;G
(i =1,2). After all, we obtained the following data:

(i) A 2-bundle F on X, x T,

(i) An isomorphism « : det F = pri(Po(—P, — P)),
(iii) A bi-simple modification of the two pomted curve (R; P{, Py) over T
~RxT

pr2o f
P1 X ld
P/
01,02

(iv) A 2-bundle G on U satisfying (#
(v) A homomorphism 8 : (f*pr;O ( R)) ®c Pg — det g,

where (#) is the following condition:

(#) For t € T, if U x 1 Speck(t) EESiNy 3% Speck(t) is an isomor-
phism, then Gl specr(ty = O(1)®2, and if U X7 Speck(t) ~ RU
RMUR® L9 By Speck(t), then Glr ~ O, G| po ~ OB O(1)
(1' = 1a 2) and HO((g|U><Specf€(t))(_Jl(t) - 0—2(t))) =0.

Moreover the diagram

(P,id)* det F L2 (P @¢ PO ¢ {~P)) @c Or

() JEIeS !

a3 (8)
S

ordetG (Pq ®c P{*Or(—R)) ®c Or
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commutes (¢ = 1,2). These data are equivalent to E’, that is, we can reconstruct
E’ from these data. Let us see that the above data (i) ~ (v) give an object of
KSLy (V1,Vs) (T) and vice versa. Put N := Oy(—01 —02) @ (prio f)*Or(P] + Pj)
and let v € N be the canonical section. Put H := f,(G ® N). Then by Proposition
7.4 of [K2], we have bf-morphisms of rank one

(5.5) (Ni,vi,07G — (P,id)*H,N; ® (P!,id)*H — 0}G, 1),
where N; := 0N and v; :=o}v (i = 1,2).
Claim 5.6.1. For any ¢ € T', H|rxspecn(r) =~ O(1)%2.

Proof of Claim 5.6.1. If f is an isomorphism over ¢t € T, then the claim is obvious
by (#). Assume that, over t € T, f is of the form U x7 Speck(t) ~ R U RM U
R® — R x Speck(t). Then HO((H|rxspecn(t))(—P] — P4)) = 0 by (#). Since
deg(H|R><Spch(t))(_P1/ _P2I) = _27 we have (H‘RXSpccn(t))(_P{ - P2/) = O(_l)@;

Put 7 := pro.(H®priL=1). Then we have an isomorphism pr37 ~ H®priL™!,
which induces an isomorphism (i = 1, 2)

(5.6) T @c (L|p) = (P x id)*H.
(5.5) and (5.6) imply
ofdetG ~ (det7) ® N; ' @c (L‘P{)@
~ (det T) @ N; ' @c (Or(—R)|p).

This and 8 imply N; ~ (det 7)Y @c Pg. Let v be the composite N1 — (det 7)Y ®¢
PQ — NQ.

(5.7)

Claim 5.6.2. v(v1) = vs.

Proof of Claim 5.6.2. Let U be the family of nodal curves that is obtained from /
by gluing o1 and o3, and let R be the nodal rational curve obtained from R by
gluing P{ and Pj. We have the commutative diagram:

U —L . rRxr

(5.8) l l

u—L - RxT
Let N be the line bundle obtained from A gluing along o and ¢} by the isomor-
phism v. By [A, Lemma 6.11], det G ~ f*(det H) @ N1, so we have det G ~ (prg o
) det T @LO2QN ! ~ (proo f)*det T @ (prio f)*Or(—R)®@N L. The existence
of 3 implies that we have a morphism (proo f)*(det 7 ®¢ Py) — N that is fiber-

wisely nonzero. Therefore we have the isomorphism det 7 ®@c Py =~ (pra of). (Nﬁl).

This implies that (prg o f).(N 71) is a line bundle on T and commutes with base-
change. This is equivalent to that both (pra o F)e(N ') and R (proo F)u(N ') are
line bunldes.

In order to prove the claim, we may assume that 7" = SpecA with A an artinian
loczﬂ C-algebra. By [NS, Appendix III (iv)], we have wy,, =~ frog.r- Sinie
pa(R) =0, w7 ~ O. Then by Theorem 11.1 of [H] for a vector bundle M on i,
we have a spectral sequence

(5.9) EDY = Eact%T (R™9(pry o f)uM,Op) = RPTT L (pry o ), (MY).
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Therefore R (praof). (NV) is a line bundle for j = 0,1 if and only if R (prao f).(N)
is a line bundle for j = 0,1. The latter condition is equivalent to v(v1) = vy This
completes the proof of Claim 5.6.2. O

The bf-morphism (5.5) together with the isomorphismsy : (B;,idr)*F — oG
and (5.6) gives rise to a bf-morphism

®N;
(5.10) (P;,idr)*F ®c (Llp)" — T,
or equivalently
®N;
(5.11) T @ N; = (Py,idr)* F ®c (L|pr)Y

By (#) and the commutative diagram (&), these data satisfy the conditions (a)
and (b) in Definition 3.1 of [A]. Thus we obtained an object of KSLs (V1,V2) (T')
The reconstruction of the data (i)~ (v) from an these data is straightforward. O

6. DECOMPOSITION THEOREM

Definition 6.1. The generalized theta line bundle © on GSLyB'(X’/B’; P’) is de-
fined by associating to each object (k' : V' — X' x /T, &', 50 §'MV) € GSL,B'(X'/B'; P')(T)
the line bundle (det R(pra o h').€)Y on T. By abuse of notation, the restrictions
of © to substacks are also denoted by ©. Let V,,, (resp. V,ﬁf )) be the vector space
HO(GSLyB' (X};P}), 0™) (vesp. HO(GSLyB' (X}; P, 0™)) (m >1,i=0,1,2).

Note that we have the natural homomorphisms V. — V& V(©) — v and
v L y@)
Proposition 6.2. The natural homomorphism V,, — V,SLO) X V,SP 1S an 1so-
morphism.

Proof. We just mention the exact sequence

(6.1) 0 — R/(zy) — R/(z) & R/(y) — R/(z,y) — 0,

where R = C[[z,y, 21, 22, . . . ]], and leave the details to the reader. O
Proposition 6.3. The natural homomorphism V,Sf) — Vn(f) s an isomorphism.

Proof. We use the notation in the paragraph 5.5. By Theorem 5.6, we have the
commutative diagram

(6.2)
GSLyB' (X P~ KSLo(Vi, V) —  SUs(Xg; Po(—Py — P))
p’l"
U U I
GSL.B/(X5PH® ~ BV 2B SUL(Xo: Po(—Pi — Py)).

(See §7 for B(V1,V2).)
Claim 6.3.1. The line bundle © on GSLy B’ (X}; P4)™) is isomorphic to pr* (det RprasWaniv )" s
where pry : Xo X SUs; — SUs.

Proof of Claim 6.3.1. We use the notation used in the proof of Theorem 5.6. The
claim follows from the isomorphisms

det R(prg o )& =~ (det Rpro. F') @ det R(pra o f).G
2 det(07G)" ® det(03G)"
=~ (det Rpro. ') @ det Rpro.(H @ priOr(—P| — P3))
~ det Rprq. F'.

(6.3)
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Since we have the isomorphisms
6y F (ST2 (X0 Po(~P1 = P2)) , M) = BO (K SLy (V1. Va) ,pr* M)
~H’ (B (V1,V2), (prls)* M)

for any line bundle M on SUQ(.SZO; 750(—P1 — P,)), the proposition is proved. O

Corollary 6.4. The natural homomorphism V,, — VTgO) is an isomorphism.

Proof. This is immediate from Proposition 6.2 and Proposition 6.3. (]

6.5. Let SUQ()?O;’ﬁO) be the moduli stack of 2-bundles on )?0 with determinant
P(). P~ut gz = (Pi,id) : SUQ(X();P()) - XO X SUQ(X();P()) (’L = 1,2). On Xo X
SUs2(Xo; Po), we have the universal 2-bundle F,,,;, together with the isomorphism
det Founiv =~ priPo. Put
PB = ]P)(O'T]:unw) XSUZ(W P(Usfunw)

Put ¢; : PB — P(ofFuniv), mi : P(o} Funiv) — SUQ(X'OﬂSo) and T := ¢; o ;.
Let @’Z}B(j) be the line bundle 7*(det Rpros Funiv) 2™ @ ¢t O(j) ® ¢30(5) &c
(Po)g(mﬁ) on PB.

Proposition 6.6. We have the canonical isomorphism Vi) ~ o7 H® (PB,©B5(4)) -

Proof. By Theorem 5.4 and [A, Theorem 6.4] and Proposition 7.2, we have the
diagram

GSLyB'(X}; Py)©

1

KSLa (07 Funiv: 03 Funiv)  — SUs(Xo; Po)

U U |

(65) GSLQB/(X(/)a P(l))(2) = B(founi?n Ugfuniv) m SU2 ()?07 7,50)
vl I

PB L SUQ(XO;PO).

Claim 6.6.1. The line bundle © on GSLyB’(X}; Py)(? is isomorphic to the line
bundle Oxsr,(B) ® pr*(det RprowFuniv)” @c (Po)g on KSLa(0F Funiv, 04 Funiv),
where pry : Xo x SU; — SUs.

Proof of Claim 6.6.1. Analogous to the proof of Claim 6.3.1. (]
Therefore, by Proposition 7.5 and Proposition 7.3, we have the isomorphisms

(6.6)
VTELO) ~ HO(KSLQ(UT}-UMU, U; um’v)7 OKSL2 (mB) & p?"* (det Rpr2*-7:univ)®(_m) ®c (PO)Sm)

R

@HO(B(UT]:univ7J§]:univ)y OIB(jB) ® (PT‘IB)*(det Rpr2*-7:univ)®(_m) ®(C (PO)gm)
0

<.
Il

H(PB, 075 (j))-

-

<
Il
o

Corollary 6.7. We have the canonical isomorphism

(6.7) HO(GSLoB' (Xg; Pg), 0™) ~ @O H(PB, OF (7).

=0



THE MODULI STACK OF GIESEKER-SL>-BUNDLES ON A NODAL CURVE II 13

7. APPENDIX

In this appendix, we gather some facts on KSLs.

Universal family. Let S be a scheme over SpecC, and let £ and F be trivial
2-bundles on S. Let 0 : det £ ~ O — O ~ det F be the identity map. Let P be the
S-scheme ProjOg[z11, 12, T21, T22, Too], and @ be the closed subscheme of P defined
by 211722 — T12721 — 239 = 0. Put B := Q N {wg0 = 0}. Let 7 be the projection
to S. Let x: m*€ — ™ F® OQ(B) be given by the matrix (Iij/x00)1§i7j§2~ Put
& i==x"1(n*F) and F; := x(&;) C 7*F. We have natural morphisms

T < & © O(B)

(7.1) ™ F < 71 ® O(B).

Hence, on @, we have the diagram of isomorphisms and bf-morphisms:
& X F1

®0O(B) ®0(B)

€ T F.
This gives the universal family of KSLy(E, F).

Degenerate locus.

Definition 7.1. Let B(E,F) be the subfunctor of XSLo(€, F) defined by the ad-
ditional condition p1q = s = 0 in [A, Definition 3.1].

Clearly the functor B(&, F) is represented by B in the above.
Proposition 7.2. We have an S-isomorphism
(7.2) B ~P(&) xg P(F).

Proof. We construct a bijection on T-valued points for an S-scheme T' %+ S. For a
T-valued point of B(E, F)

Z/Il u2

QM1 QM2

p € o F
put Ry :=Im(p*€ — Uy @ My) and Rs := Im(p*F — Us ® M3). Then the pair
(¢*E = R1,9*F — Ra) gives a T-valued point of P(£) xg P(F). Thus we have
B — P(€) xg P(F).

Conversely, if we are given a T-valued point (a : p*€ — Ry, 0 : ¢*F — Ra) of
P(€) xs P(F), put M := Ry @ (Ker3)V. The isomorphism det ¢*& 270, det ©*F
induces the isomorphism ¢’ : R, @ (Ker3)¥ — Ro® (Kera)V. Let g : (RioMY)a®
(Ry ® MY) — ©*E be the composite (R; @ MY) @ (Ra @ MY) X2 Ry @ MY =
R2 @ RY ®@ (Kerj) Y, Kera < & gf i (RioOMY)® (Ry @ MY) — ©*F be
the composite (R; @ MY) @ (Ry @ MY) 25 Ry @ MY ~ Kerf3 < ¢*F. Then the
diagram
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R1 ®Mv RQ@MV

7\

gives a T-valued point of IB(S,]—'). Thus we have IP’(S) xs P(F) — B. These
morphisms are inverses to each other. O

Line bundle.

Proposition 7.3. By identifying B and P(E) xg P(F) by the isomorphism (7.2),
we have an isomorphism of line bundles

Proof. This follows from the proof of Proposition 7.2. (|

Remark 7.4. Put G := SL(E) xg SL(F). We have the natural (left) G-action on
KSLy(E,F) and P(€) xsP(F). G also induces the natural G-linearlizations on the
line bundles Og(B) and Op(g) (1) X Op(£)(1). The isomorphisms (7.2) and (7.3) are
G-equivariant,.

Proposition 7.5. We have the canonical equivariant isomorphism (m > 0)
(7.4) 7+ Og(mB) @m(’)g (iB).

Proof. Since S is a scheme over SpecC, we may assume that S = SpecC. We prove
this proposition by induction. If m = 0, it is trivial. Assume that m > 0. We have
an exact sequence

(7.5) 0— Og((m—1)B) — Og(mB) — Og(mB) — 0.

Since HY(Q, Og((m — 1)B)) = 0, we have

(7.6) 0 — H(Q,0((m — 1)B)) — H (@, Og(mEB)) — H (B, Os(mB)) — 0.

If U; denotes the irreducible S Lo-representation with dim U; = i+ 1, then we have,
by induction and Proposition 7.3,

m—1
2

(7.7) H° (Q,0q ((m — UZ QU;

as SLy x SLy-modules. Therefore H(Q, OQ(mIB) & U; @ U; as SLy x SLo-
modules, and the exact sequence (7.6) has a canonical splitting. This proves the
proposition. [l
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