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��������� In this paper, we generalize the main result of [Mzk2] (to the effect that

very general noetherian log schemes may be reconstructed from naturally associated

categories) to the case of log schemes locally of finite type over Zariski localizations of
the ring of rational integers which are, moreover, equipped with certain “archimedean

structures”.

§0. Notations and Conventions

§1. Review of the Theory for Log Schemes

§2. Archimedean Structures

§3. The Main Theorem

Introduction

As is discussed in the Introduction to [Mzk2], it is natural to ask to what extent
various objects — such as log schemes — that occur in arithmetic geometry may be
represented by categories, i.e., to what extent one may reconstruct the original object
solely from the category-theoretic structure of a category naturally associated to
the object. As is explained in loc. cit., this point of view is partially motivated by
the anabelian philosophy of Grothendieck.

In the present paper, we extend the theory of [Mzk2], which only concerns log
schemes, to obtain a theory that proves a similar categorical representability result
[cf. Theorem 3.4 below] for what we call “arithmetic log schemes” [cf. Definitions
2.1, 2.2 below], i.e., log schemes that are locally of finite type over a Zariski lo-
calization of the ring of rational integers and, moreover, are equipped with certain
“archimedean structures” at archimedean primes.

In §1, we review the theory of [Mzk2], and revise the formulation of the main
theorem of [Mzk2] slightly [cf. Theorem 1.1]. In §2, we define the notion of an
archimedean structure on a fine, saturated log scheme which is of finite type over
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a Zariski localization of Z. Finally, in §3, we generalize Theorem 1.1 [cf. Theorem
3.4] so as to take into account these archimedean structures.
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Section 0: Notations and Conventions

Numbers:

We will denote by N the set (or, occasionally, the commutative monoid) of
natural numbers, by which we take to consist set of the integers n ≥ 0. A number
field is defined to be a finite extension of the field of rational numbers Q. The field
of real numbers (respectively, complex numbers) will be denoted by R (respectively,
C). The topological group of complex numbers of unit norm will be denoted by
S1 ⊆ C.

We shall say that a scheme S is a Zariski localization of Z if S = Spec(R),
where R = M−1 · Z, for some multiplicative subset M ⊆ Z.

Topological Spaces:

In this paper, the term “compact” is to be understood to include the assumption
that the topological space in question is Hausdorff. (The author wishes to thank A.
Tamagawa for his comments concerning the importance of making this assumption
explicit.)

Also, when a topological space H is equipped with an involution σ (typically
an action of “complex conjugation”), we shall denote by

HR

(i.e., a superscript “R”) the quotient topological space of “σ-orbits”.

Categories:

Let C be a category. We shall denote the collection of objects of C by:

Ob(C)

If A ∈ Ob(C) is an object of C, then we shall denote by

CA
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the category whose objects are morphisms B → A of C and whose morphisms (from
an object B1 → A to an object B2 → A) are A-morphisms B1 → B2 in C. Thus,
we have a natural functor

(jA)! : CA → C
(given by forgetting the structure morphism to A). Similarly, if f : A → B is a
morphism in C, then f defines a natural functor

f! : CA → CB

by mapping an arrow (i.e., an object of CA) C → A to the object of CB given by
the composite C → A→ B with f .

If the category C admits finite products, then (jA)! is left adjoint to the natural
functor

j∗A : C → CA

given by taking the product with A, and f! is left adjoint to the natural functor

f∗ : CB → CA

given by taking the fibered product over B with A.

We shall call an object A ∈ Ob(C) terminal if for every object B ∈ Ob(C),
there exists a unique arrow B → A in C. We shall call an object A ∈ Ob(C) quasi-
terminal if for every object B ∈ Ob(C), there exists an arrow φ : B → A in C, and,
moreover, for every other arrow ψ : B → A, there exists an automorphism α of A
such that ψ = α ◦ φ.

We shall refer to a natural transformation between functors all of whose com-
ponent morphisms are isomorphisms as an isomorphism between the functors in
question. A functor φ : C1 → C2 between categories C1, C2 will be called rigid if φ
has no nontrivial automorphisms. A category C will be called slim if the natural
functor CA → C is rigid, for every A ∈ Ob(C).

If C if a category and S is a collection of arrows in C, then we shall say that
an arrow A→ B is minimal-adjoint to S if every factorization A→ C → B of this
arrow A→ B in C such that A→ C lies in S satisfies the property that A→ C is,
in fact, an isomorphism. Often, the collection S will be taken to be the collection of
arrows satisfying a particular property P ; in this case, we shall refer to the property
of being “minimal-adjoint to S” as the minimal-adjoint notion to P .

Section 1: Review of the Theory for Log Schemes

We begin our discussion by reviewing the theory for log schemes developed
in [Mzk2]. Also, we give a slight extension of this theory (to the case of locally
noetherian log schemes and morphisms which are locally of finite type). In the
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context of this extension, it is natural to modify the notation used in [Mzk2] slightly
as follows:

Let us denote by
Schlog

the category of all locally noetherian fine saturated log schemes and locally finite
type morphisms, and by

NSchlog

the category of all noetherian fine saturated log schemes and finite type morphisms.
Note that

NSchlog ⊆ Schlog

may be characterized as the full subcategory consisting of the X log for which X is
noetherian.

If X log is a fine saturated log scheme whose underlying scheme X is locally
noetherian, then we shall write

Schlog(X log) def= (Schlog)X log

and
NSchlog(X log) ⊆ Schlog(X log)

for the full subcategory consisting of the Y log → X log for which Y is noetherian.
Thus, when X is noetherian, we have NSchlog(X log) = (NSchlog)X log .

To simplify terminology, we shall often refer to the domain Y log of an arrow
Y log → X log which is an object of Schlog(X log) or NSchlog(X log) as an “object of
Schlog(X log) or NSchlog(X log)”.

If X log, Y log are locally noetherian fine saturated log schemes, then denote the
set of isomorphisms of log schemes X log ∼→ Y log by:

Isom(X log, Y log)

Then the main result of [Mzk2] [cf. [Mzk2], Theorem 2.19] states that the natural
map

Isom(X log, Y log) → Isom(NSchlog(Y log),NSch(X log))

given by f log �→ NSchlog(f log) [i.e., mapping an isomorphism to the induced equiv-
alence between “NSchlog(−)’s”] is bijective. (Here, the “Isom” on the right is to
be understood to denote isomorphism classes of equivalences between the two
categories in parentheses.) This result generalizes immediately to the case of
“Schlog(−)”:

Theorem 1.1. (Categorical Reconstruction of Locally Noetherian Fine
Saturated Log Schemes) Let X log, Y log be locally noetherian fine saturated
log schemes. Then the natural map

Isom(X log, Y log) → Isom(Schlog(Y log),Schlog(X log))
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is bijective.

Proof. Indeed, by functoriality and [Mzk2], Theorem 2.19, it suffices to show that
the subcategory

NSchlog(X log) ⊆ Schlog(X log)

may be recovered “category-theoretically”.

To see this, let us first observe that the proof given in [Mzk2] [cf. [Mzk2],
Corollary 2.14] of the category-theoreticity of the property that a morphism in
NSchlog(X log) be “scheme-like” (i.e., that the log structure on the domain is the
pull-back of the log structure on the codomain) is entirely valid in Schlog(X log).
(Indeed, the proof essentially only involves morphisms among “one-pointed ob-
jects”, which are the same in NSchlog(X log), Schlog(X log).) Moreover, once one
knows which morphisms are scheme-like, the open immersions may be character-
ized category-theoretically as in [Mzk2], Corollary 1.3.

Next, let us first observe that the property that a collection of open immersions

Y log
α → Y log

(where α ranges over the elements of some index set A) in Schlog(X log) be surjective
is category-theoretic. Indeed, this follows from the fact that this collection is sur-
jective if and only if, for any morphism Z log → Y log, where Z log is nonempty, the
fiber product Y log

α ×Y log Z log in Schlog(X log) [cf. [Mzk2], Lemma 2.6] is nonempty
for some α [cf. also [Mzk2], Proposition 1.1, (i), applied to the complement of the
union of the images of the Y log

α ].

Thus, it suffices to observe that an object Y log is noetherian if and only if, for
any surjective collection of open immersions (in Schlog(X log)) Y log

α → Y log (where
α ranges over the elements of some index set A), there exists a finite subset B ⊆ A

such that the collection {Y log
β → Y log}β∈B is surjective. ©

Remark 1.1.1. Similar [but easier] results hold for

Sch (respectively, NSch)

— i.e., the category of all locally noetherian schemes and locally finite type mor-
phisms (respectively, all noetherian log schemes and finite type morphisms).

Section 2: Archimedean Structures

In this §, we generalize the categories defined in [Mzk2] so as to include
archimedean primes. In particular, we prepare for the proof in §3 below of a global
arithmetic analogue [cf. Theorem 3.4] of Theorem 1.1.
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Let X log be a fine, saturated locally noetherian log scheme (with underlying
scheme X).

Definition 2.1. We shall say that X is arithmetically (locally) of finite type if
X is (locally) of finite type over a Zariski localization of Z. Similarly, we shall say
that X log is arithmetically (locally) of finite type if X is.

Suppose that X log is arithmetically locally of finite type. Then X log
Q

def= X log⊗Z

Q is locally of finite type over Q. In particular, the set of C-valued points

X(C)

is equipped with a natural topology (induced by the topology of C), together with an
involution σX : X(C) → X(C) induced by the complex conjugation automorphism
on C. Similarly, in the logarithmic context, it is natural to consider the topological
space

X log(C) def= {(x, θ) | x ∈ X(C), θ ∈ Hom(Mgp
X,x,S

1)

s.t. θ(f) = f(x)/|f(x)|, ∀f ∈ O×
X,x}

[cf. [KN], §1.2]. Here, we use the notation MX to denote the monoid that defines
the log structure of X log [cf. [Mzk2], §2]. Thus, we have a natural surjection

X log(C) → X(C)

whose fibers are (noncanonically) isomorphic to products of finitely many copies
of S1. Also, we observe that it follows immediately from the definition that σX

extends to an involution σX log on X log(C).

Definition 2.2.

(i) Let H ⊆ X(C) be a compact subset stabilized by σX . Then we shall refer to
a pair X = (X,H) as an arithmetic scheme, and H as the archimedean structure on
X. We shall say that an archimedean structure H ⊆ X(C) is trivial (respectively,
total) if H = ∅ (respectively, H = X(C)).

(ii) Let H ⊆ X log(C) be a compact subset stabilized by σX log . Then we
shall refer to a pair X

log
= (X log,H) as an arithmetic log scheme, and H as

the archimedean structure on X
log

. We shall say that an archimedean structure
H ⊆ X log(C) is trivial (respectively, total) if H = ∅ (respectively, H = X log(C)).

Remark 2.2.1. The idea that “integral structures at archimedean primes” should
be given by compact/bounded subsets of the set of complex valued points may be
seen in the discussion of [Mzk1], p. 9; cf. also Remark 3.5.2 below.
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Remark 2.2.2. Relative to Definition 2.2, one may think of the case where
“H” is open as the case of an ind-arithmetic (log) scheme [or, alternatively, an
“ind-archimedean structure”], i.e., the inductive system of arithmetic (log) schemes
[or, alternatively, archimedean structures] determined by considering all compact
subsets that lie inside the given open.

Let us denote the category of all arithmetic log schemes by:

Sch
log

Thus, a morphism X
log

1 = (X log
1 ,H1) → X

log

2 = (X log
2 ,H2) in this category is a

locally finite type morphism X log
1 → X log

2 such that the induced map X log
1 (C) →

X log
2 (C) maps H1 into H2. The full subcategory of noetherian objects of Sch

log
[i.e.,

objects whose underlying scheme is noetherian] will be denoted by:

NSch
log ⊆ Sch

log

Similarly, if we forget about log structures, we obtain categories NSch, Sch.

Definition 2.3.

(i) An arithmetic (log) scheme will be called purely nonarchimedean if its
archimedean structure is trivial.

(ii) A morphism between arithmetic (log) schemes will be called purely archime-
dean if the underlying morphism between (log) schemes is an isomorphism.

Denote by
Schlog ⊆ Schlog

the full subcategory determined by those objects which are arithmetically locally
of finite type. Then note that by considering purely nonarchimedean objects, we
obtain a natural embedding

Schlog ↪→ Sch
log

of Schlog as a full subcategory of Sch
log

.

If X
log ∈ Ob(Sch

log
), then we shall write

Sch
log

(X
log

) def= (Sch
log

)
X

log

[cf. §1] and
Sch

log
(X

log
)arch ⊆ Sch

log
(X

log
)

for the subcategory whose objects Y
log → X

log
are purely archimedean arrows of

Sch
log

. (Thus, the morphisms Y
log

1 → Y
log

2 of this subcategory are also necessarily
purely archimedean.)



8 SHINICHI MOCHIZUKI

On the other hand, if T is a topological space, then let us write

Open(T ) (respectively, Closed(T ))

for the category whose objects are open subsets U ⊆ T (respectively, closed subsets
F ⊆ T ) and whose morphisms are inclusions of subsets of T . Thus, one verifies
easily (by taking complements!) that Closed(T ) is the opposite category Open(T )opp

associated to Open(T ). Also, let us write

Shv(T )

for the category of sheaves on T (valued in sets).

Now we have the following:

Proposition 2.4. (Conditional Reconstruction of the Archimedean
Topological Space)

(i) If H is the archimedean structure on X
log

, then the functor

Sch
log

(X
log

)arch → Closed(HR) ( ∼→ Open(HR)opp)

[cf. §0 for more on the superscript “R”] given by assigning to an arrow Y
log → X

log

the image of the archimedean structure of Y
log

in HR ⊆ X log(C)R is an equivalence.

(ii) Let X
log

1 ,X
log

2 ∈ Ob(Sch
log

). Suppose that

Φ : Sch
log

(X
log

1 ) ∼→ Sch
log

(X
log

2 )

is an equivalence of categories that preserves purely archimedean arrows (i.e.,
an arrow f in Sch

log
(X

log

1 ) is purely archimedean if and only if Φ(f) is purely
archimedean). Then one can construct, for every object Y

log

1 = (Y log
1 ,K1) ∈

Ob(Sch
log

(X
log

1 )) that maps via Φ to Y
log

2 = (Y log
2 ,K2) ∈ Ob(Sch

log
(X

log

2 )), a
homeomorphism

KR
1

∼→ KR
2

which is functorial in Y log
1 .

Proof. Assertion (i) is a formal consequence of the definitions. To prove assertion
(ii), let us first observe that (for an arbitrary topological space T ) Shv(T ) may be
reconstructed functorially from Open(T ), since coverings of objects of Open(T ) may
be characterized as collections of objects whose inductive limit (a purely categorical
notion!) is isomorphic to the object to be covered. Thus, our assumption on Φ,
together with assertion (i), implies that (for i = 1, 2) Shv(KR

i ) may be reconstructed
category-theoretically from Y log

i in a fashion which is functorial in Y log
i . Moreover,

since KR
i is clearly a sober topological space, we thus conclude [by a well-known
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result from “topos theory” — cf., e.g., [Mzk2], Theorem 1.4] that the topological
space KR

i itself may be reconstructed category-theoretically from Y log
i in a fashion

which is functorial in Y log
i , as desired. ©

Before proceeding, we observe the following:

Lemma 2.5. (Finite Products of Arithmetic Log Schemes) The category
Sch

log
admits finite products.

Proof. Indeed, if, for i = 1, 2, 3, we are given objects X
log

i = (X log
i ,Hi) ∈

Ob(Sch
log

) and morphisms X log
1 → X log

2 , X log
3 → X log

2 in Sch
log

, then we may
form the product of X log

1 , X log
3 over X log

2 by equipping the log scheme

X log
1 ×X log

2
X log

3

(which is easily seen to be arithmetically locally of finite type) with the archimedean
structure given by the inverse image of

H1 ×H2 H3 ⊆ X log
1 (C) ×X log

2 (C) X
log
3 (C)

(where we note that H1 ×H2 H3 is compact, since H2 is Hausdorff) via the natural
map:

(X log
1 ×X log

2
X log

3 )(C) → X log
1 (C) ×X log

2 (C) X
log
3 (C)

Note that this last map is proper [i.e., inverse images of compact sets are compact],
since, for any Y log which is arithmetically locally of finite type, the map Y log(C) →
Y (C) is proper, and, moreover, the map induced on C-valued points of underlying
schemes by

X log
1 ×X log

2
X log

3 → X1 ×X2 X3

[i.e., where the domain is equipped with the trivial log structure] is finite [cf. [Mzk2],
Lemma 2.6], hence proper. ©

Thus, if X
log
, Y

log ∈ Ob(Sch
log

), then any morphism X
log → Y

log
in Sch

log

induces a natural functor

Sch
log

(Y
log

) → Sch
log

(X
log

)

(by sending an object Z
log → Y

log
to the fibered product Z

log ×
Y

log X
log → X

log

— cf. the discussion of §0).

Next, we would like to show, in the following discussion [cf. Corollary 2.10,
(ii) below], that the hypothesis of Proposition 2.4, (ii), is automatically satisfied.

Let X
log ∈ Ob(Sch

log
).
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Proposition 2.6. (Minimal Objects) An object Y
log

of Sch
log

(X
log

) will
be called minimal if it is nonempty and satisfies the property that any monomor-
phism Z

log � Y
log

(where Z
log

is nonempty) in Sch
log

(X
log

) is necessarily an
isomorphism. An object Y

log
of Sch

log
(X

log
) is minimal if and only if it is purely

nonarchimedean and log scheme-theoretically minimal [i.e., the underlying
object Y log of Schlog(X log) is minimal as an object of Sch(X log) — cf. [Mzk2],
Proposition 2.4].

Proof. The sufficiency of this condition is clear, since the domain of any morphism
in Sch

log
to a purely nonarchimedean object is necessarily itself purely nonar-

chimedean [i.e., no nonempty set maps to an empty set]. That this condition is
necessary is evident from the definitions (e.g., if a nonempty object fails to be
purely nonarchimedean, then it can always be “made smaller” [but still nonempty!]
by setting the archimedean structure equal to the empty set, thus precluding “min-
imality”). ©

Proposition 2.7. (Characterization of One-Pointed Objects) We shall
call an object of Sch

log
one-pointed if the underlying topological space of its

underlying scheme consists of precisely one point. The one-pointed objects Y
log

of Sch
log

(X
log

) may be characterized category-theoretically as the nonempty ob-
jects which satisfy the following property: For any two morphisms S

log

i → Y
log

(for i = 1, 2), where S
log

i is a minimal object, the product S
log

1 ×
Y

log S
log

2 (in

Sch
log

(X
log

)) is nonempty.

Proof. This is a formal consequence of the definitions; Proposition 2.6; and [Mzk2],
Corollary 2.9. ©

Proposition 2.8. (Minimal Hulls) Let Y
log

be a one-pointed object of the
category Sch

log
(X

log
). Then a monomorphism Z

log � Y
log

will be called a hull for
Y

log
if every morphism S

log → Y
log

from a minimal object S
log

to Y
log

factors
(necessarily uniquely!) though Z

log
. A hull Z

log � Y
log

will be called a minimal
hull if every monomorphism Z

log

1 � Z
log

for which the composite Z
log

1 � Y
log

is a hull is necessarily an isomorphism. A one-pointed object Z
log

will be called a
minimal hull if the identity morphism Z

log → Z
log

is a minimal hull for Z
log

.

(i) An object Y
log

of Sch
log

(X
log

) is a minimal hull if and only if it is purely
nonarchimedean and log scheme-theoretically a minimal hull [i.e., the un-
derlying object Y log of Schlog(X log) is a minimal hull in the sense of [Mzk2], Propo-
sition 2.7; cf. also [Mzk2], Corollary 2.10].

(ii) Any two minimal hulls of an object Y
log ∈ Ob(Sch

log
(X

log
)) are isomor-

phic (via a unique isomorphism over Y
log

).
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(iii) If Y
log

1 ∈ Ob(Sch
log

(X
log

1 )), Y
log

2 ∈ Ob(Sch
log

(X
log

2 )), and

Φ : Sch
log

(X
log

1 ) ∼→ Sch
log

(X
log

2 )

is an equivalence of categories such that Φ(Y log
1 ) = Y

log

2 , then Y
log

1 is a minimal
hull if and only if Y log

2 is. That is to say, the condition that an object Y
log ∈

Ob(Sch
log

(X
log

)) be a minimal hull is “category-theoretic”.

Proof. Assertion (i) (respectively, (ii); (iii)) is a formal consequence of Proposition
2.6 (respectively, assertion (i); Proposition 2.7) [and the definitions of the terms
involved]. ©

Proposition 2.9. (Purely Archimedean Morphisms of Reduced One-
Pointed Objects) Let Y

log ∈ Ob(Sch
log

(X
log

)) be one-pointed; let Z
log � Y

log
be

a minimal hull which factors as a composite of monomorphisms Z
log � Z

log

1 �
Y

log
. Then the following are equivalent:

(i) Z
log

1 is reduced.

(ii) Z
log → Z

log

1 is purely archimedean.

(iii) Z
log → Z

log

1 is an epimorphism in Sch
log

(Z
log

1 ) [i.e., two sections Z
log

1 →
S

log
of a morphism S

log → Z
log

1 coincide if and only if they coincide after restriction
to Z

log
].

Proof. The equivalence of (i), (ii) is a formal consequence of [Mzk2], Proposition
2.3; [Mzk2], Proposition 2.7, (ii), (iii); [Mzk2], Corollary 2.10. That (ii) implies (iii)
is a formal consequence of the definitions. Finally, that (iii) implies (i) follows, for
instance, by taking S

log → Z
log

1 to be the projective line over Z
log

1 (so sections that
lies in the open sub-log scheme of S log determined by the affine line correspond to
elements of Γ(Z1,OZ1)). (Here, we equip the projective line with the archimedean
structure which is the inverse image of the archimedean structure of Z

log

1 .) ©

Note that condition (iii) of Proposition 2.9 is “category-theoretic”. This implies
the following:

Corollary 2.10. (Characterization of Purely Nonarchimedean One-
Pointed Objects and Purely Archimedean Morphisms)

(i) A one-pointed object Y
log ∈ Ob(Sch

log
(X

log
)) is purely nonarchimedean

if and only if it satisfies the following “category-theoretic” condition: Every minimal
hull Z

log � Y
log

is minimal-adjoint [cf. §0] to the collection of arrows Z
log →

Z
log

1 which satisfy the equivalent conditions of Proposition 2.9.
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(ii) A morphism ζ : Y
log → Z

log
in Sch

log
(X

log
) is purely archimedean

if and only if it satisfies the following “category-theoretic” condition: The mor-
phism ζ is a monomorphism in Sch

log
(X

log
), and, moreover, for every morphism

φ : S
log → Z

log
in Sch

log
(X

log
), where S

log
is one-pointed and purely nonar-

chimedean, there exists a unique morphism ψ : S
log → Y

log
such that φ = ζ ◦ψ.

Proof. Assertion (i) is a formal consequence of Proposition 2.9 [and the definitions
of the terms involved]. As for assertion (ii), the necessity of the condition is a formal
consequence of the definitions of the terms involved. To prove sufficiency, let us first
observe that by [Mzk2], Lemma 2.2; [Mzk2], Proposition 2.3, it follows from this
condition that the underlying morphism of log schemes Y log → Z log is scheme-like
[i.e., the log structure on Y log is the pull-back of the log structure on Z log]. Thus,
this condition implies that the underlying morphism of schemes Y → Z is smooth
[cf. [Mzk2], Corollary 1.2] and surjective. But this implies [cf. [Mzk2], Corollary
1.3] that Y → Z is a surjective open immersion, hence that it is an isomorphism of
schemes. Since Y log → Z log is scheme-like, we thus conclude that Y log → Z log is
an isomorphism of log schemes, as desired. ©

Thus, Corollary 2.10, (ii), implies that the hypothesis of Proposition 2.4 is
automatically satisfied. This allows us to conclude the following:

Corollary 2.11. (Unconditional Reconstruction of the Archimedean
Topological Space) The R-superscripted topological space determined by the ar-
chimedean structure on an object Y

log ∈ Ob(Sch
log

(X
log

)) may be reconstructed
category-theoretically in a fashion which is functorial in Y

log
[cf. Proposition

2.4, (ii)]. In particular, the condition that Y
log

be purely nonarchimedean is
category-theoretic in nature.

Corollary 2.12. (Reconstruction of the Underlying Log Scheme) The
full subcategory

Schlog(Y log) ⊆ Sch
log

(Y
log

) = Sch
log

(X
log

)
Y

log

[i.e., consisting of arrows Z
log → Y

log
for which Z

log
is purely nonarchimedean] as-

sociated to an object Y
log ∈ Ob(Sch

log
(X

log
)) is a category-theoretic invariant of

the data (Sch
log

(X
log

), Y
log ∈ Ob(Sch

log
(X

log
))). In particular, [cf. Theorem 1.1]

the underlying log scheme Y log associated to Y
log

may be reconstructed category-
theoretically from this data in a fashion which is functorial in Y

log
.

Remark 2.12.1. Thus, by Corollary 2.12, one may functorially reconstruct the
underlying log scheme Y log of an object Y

log
= (Y log,K) ∈ Ob(Sch

log
(X

log
)), hence

the topological space Y log(C) from category-theoretic data. On the other hand, by
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Corollary 2.11, one may also reconstruct the topological space KR (⊆ Y log(C)R).
Thus, the question arises:

Is the reconstruction of KR via Corollary 2.11 compatible with the recon-
struction of Y log(C)R via Corollary 2.12?

More precisely, given objects X
log

1 ,X
log

2 ∈ Ob(Sch
log

); objects

Y
log

1 = (Y log
1 ,K1) ∈ Ob(Sch

log
(X

log

1 )); Y
log

2 = (Y log
2 ,K2) ∈ Ob(Sch

log
(X

log

2 ))

and an equivalence of categories

Φ : Sch
log

(X
log

1 ) ∼→ Sch
log

(X
log

2 )

such that Φ(Y
log

1 ) = Y
log

2 , we wish to know whether or not the diagram

KR
1

∼→ KR
2



�



�

Y log
1 (C)R ∼→ Y log

2 (C)R

— where the vertical morphisms are the natural inclusions; the upper horizontal
morphism is the homeomorphism arising from Corollary 2.11; and the lower hori-
zontal morphism is the homeomorphism arising by taking “C-valued points” of the
isomorphism of log schemes obtained in Corollary 2.12 — commutes. This question
will be answered in the affirmative in Lemmas 3.2, 3.3 below.

Definition 2.13. In the notation of Remark 2.12.1, let us suppose that X
log

1 ,
Y

log

1 are fixed. Then:

(i) If the diagram of Remark 2.12.1 commutes for allX
log

2 , Y
log

2 , Φ as in Remark
2.12.1, then we shall say that Y

log

1 is (logarithmically) globally compatible.

(ii) If the composite of the diagram of Remark 2.12.1 with the commutative
diagram

Y log
1 (C)R ∼→ Y log

2 (C)R



�



�

Y1(C)R ∼→ Y2(C)R

commutes for all X
log

2 , Y
log

2 , Φ as in Remark 2.12.1, then we shall say that Y
log

1 is
nonlogarithmically globally compatible.
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Section 3: The Main Theorem

In the following discussion, we complete the proof of the main theorem of
the present paper by showing that the archimedean and scheme-theoretic data
reconstructed in Corollaries 2.11, 2.12 are compatible with one another.

Definition 3.1. We shall say that an object S
log

of Sch
log

is a test object if
its underlying scheme is affine, connected, and normal, and, moreover, the R-
superscripted topological space determined by its archimedean structure consists
of precisely one point.

Note that by Corollaries 2.11, 2.12, the notion of a “test object” is “category-
theoretic”.

Lemma 3.2. (Nonlogarithmic Global Compatibility) Let X
log

be an
object in Sch

log
. Then every object S

log ∈ Ob(Sch
log

(X
log

)) is nonlogarithmically
globally compatible.

Proof. By the functoriality of the diagram discussed in Remark 2.12.1, it follows
immediately that it suffices to prove the nonlogarithmic global compatibility of test
objects S

log
= (Slog,HS). Since S is assumed to be affine, write S = Spec(R). Then

we may think of the single point of HR
S as defining an “archimedean valuation” vR

on the ring R.

Write
Y

log
= (Y log,HY ) → S

log
= (Slog,HS)

for the projective line over S
log

, equipped with the log structure obtained by pulling
back the log structure of S log and the archimedean structure which is the inverse
image of the archimedean structure of S

log
. Note that this archimedean struc-

ture may be characterized “category-theoretically” [cf. Corollaries 2.11, 2.12] as the
archimedean structure which yields a quasi-terminal object [cf. §0] in the subcat-
egory of Sch

log
(S

log
) consisting of purely archimedean morphisms among objects

with underlying log scheme isomorphic (over S log) to Y log.

Next, let us observe that to reconstruct the log scheme S log via Corollary 2.12
amounts, in effect, to applying the theory of [Mzk2]. Moreover, in the theory of
[Mzk2], the set underlying the ring R = Γ(S,OS) is reconstructed as the set of
sections S

log → Y
log

that avoid the ∞-section (of the projective line Y ). Moreover,
the topology determined on R by the “archimedean valuation” vR is precisely the
topology on this set of sections determined by considering the induced sections
HR

S → HR
Y [i.e., two sections S

log → Y
log

are “close” if and only if their induced
sections HR

S → HR
Y are “close”]. Thus, we conclude (via Corollary 2.11) that this

topology on R is a “category-theoretic invariant”.
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On the other hand, it is immediate that the point R → C (considered up to
complex conjugation) determined by HR

S may be recovered from this topology —
i.e., by “completing” with respect to this topology. This completes the proof of the
asserted nonlogarithmic global compatibility. ©

Lemma 3.3. (Logarithmic Global Compatibility) Let X
log ∈ Ob(Sch

log
).

Then every object S
log ∈ Ob(Sch

log
(X

log
)) is globally compatible.

Proof. The proof is entirely similar to the proof of Lemma 3.2 [cf. the discussion
preceding [Mzk2], Lemma 2.16]. In particular, we reduce immediately to the case
where S

log
is a test object. This time, instead of considering Y

log
, we consider the

object
Z

log
= (Z log,HZ) → S

log
= (Slog,HS)

obtained by “appending” to the log structure of Y log the log structure determined
by the divisor given by the zero section (of the projective line Y ). As in the case
of Y

log
, we take the archimedean structure on Z

log
to be the inverse image of the

archimedean structure of S
log

. Also, just as in the case of Y
log

, this archimedean
structure may be characterized category-theoretically.

Now if we think of the unique point inHR
S as a pair (up to complex conjugation)

(s, θ) [cf. the discussion preceding Definition 2.2], then it remains to show that θ
may be “recovered category-theoretically”. On the other hand, θ may be thought
of as being the datum of a certain quotient of the monoid MS,s. Moreover, just as
in the proof of Lemma 3.2, this quotient may be obtained by “completing” the set
of sections S

log → Z
log

for which the underlying morphism of schemes S → Z is
equal to the zero section relative to the topology determined by the induced sections
HR

S → HR
Z . By Corollary 2.11, this topology/completion is “category-theoretic”, as

desired. ©

We are now ready to state the main result of the present §, i.e., the following
global arithmetic analogue of Theorem 1.1:

Theorem 3.4. (Categorical Reconstruction of Arithmetic Log Schemes)
Let X

log
, Y

log
be arithmetic log schemes. Then the categories Sch

log
(Y

log
),

Sch
log

(X
log

) are slim, and the natural map

Isom(X
log
, Y

log
) → Isom(Sch

log
(Y

log
),Sch

log
(X

log
))

is bijective.

Proof. Indeed, this is a formal consequence of Corollaries 2.11, 2.12; Lemma 3.3;
[Mzk2], Theorem 2.20. ©
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Remark 3.4.1. The natural map of Theorem 3.4 is obtained by considering the
natural functors mentioned in the discussion following Lemma 2.5.

Remark 3.4.2. Of course, similar [but easier!] arguments yield the expected
versions of Theorem 3.4 for NSch

log
, Sch, NSch:

(i) If X
log

, Y
log

are noetherian arithmetic log schemes, then the categories
NSch

log
(Y

log
), NSch

log
(X

log
) are slim, and the natural map

Isom(X
log
, Y

log
) → Isom(NSch

log
(Y

log
),NSch

log
(X

log
))

is bijective.

(ii) If X, Y are arithmetic schemes, then the categories Sch(Y ), Sch(X) are
slim, and the natural map

Isom(X,Y ) → Isom(Sch(Y ),Sch(X))

is bijective.

(iii) If X, Y are noetherian arithmetic schemes, then the categories NSch(Y ),
NSch(X) are slim, and the natural map

Isom(X, Y ) → Isom(NSch(Y ),NSch(X))

is bijective.

Example 3.5. Arithmetic Vector Bundles.

(i) Let F be a number field; denote the associated ring of integers by OF ;
write S def= Spec(OF ). Equip S with the archimedean structure given by the whole
of S(C); denote the resulting arithmetic scheme by S. Let E be a vector bundle on
S. Write V → S for the result of blowing up the associated geometric vector bundle
along its zero section; denote the resulting exceptional divisor [i.e., the inverse image
of the zero section via the blow-up morphism] by D ⊆ V . If E is equipped with
a Hermitian metric at each archimedean prime (up to complex conjugation) of F ,
then, by taking the “archimedean structure” on V to be the complex-valued points
of V that correspond to sections of E with norm (relative to this Hermitian metric)
≤ 1 [hence include the complex-valued points of D], we obtain an arithmetic scheme
V over S. Now suppose that S is equipped with a log structure defined by some
finite set Σ of closed points of S; denote the resulting arithmetic log scheme by
S

log
. Equip V with the log structure obtained by “appending” to the log structure

pulled back from S log the log structure determined by the divisor D ⊆ V . Thus,
we obtain a morphism of arithmetic log schemes:

V
log → S

log
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The sections S
log → V

log
of this morphism correspond naturally to the elements of

Γ(S, E) which are nonzero away from Σ and have norm ≤ 1 at all the archimedean
primes.

(ii) For i = 1, 2, let V
log

i → S
log

i be constructed as in (i) above. Then (by
Theorem 3.4) the isomorphism classes of equivalences of categories

Sch
log

(V
log

1 ) ∼→ Sch
log

(V
log

2 )

correspond naturally to the following data: an isometric isomorphism of vector
bundles E1

∼→ E2 lying over an isomorphism of log schemes S log
1

∼→ S log
2 .

(iii) We shall refer to a subset

A ⊆ C

as an angular region if there exists a ρ ∈ R>0 and a subset AS1 ⊆ S1 ⊆ C such that
A = {λ · u | λ ∈ [0, ρ], u ∈ AS1}. We shall say that the angular region A is open
(respectively, closed; isotropic) [i.e., as an angular region] if the subset AS1 ⊆ S1

is open (respectively, closed; equal to S1); we shall refer to ρ as the radius of the
angular region A. Thus, if we write

Ang(C) def= C×/R>0

[so the natural composite S1 ↪→ C � Ang(C) is a homeomorphism], then the
projection

Ang(A) ⊆ Ang(C)

of A [i.e., A\{0}] to Ang(C) ∼= S1 is simply A1
S. Note that the notion of an angular

region (respectively, open angular region; closed angular region; Ang(−); radius of
an angular region) extends immediately to the case where “C” is replaced by an
an arbitrary 1-dimensional complex vector space (respectively, vector space; vector
space; vector space; vector space equipped with a Hermitian metric).

In particular, in the notation of (i), when E is a line bundle, the choice of
a(n) closed (respectively, open) angular region of radius 1 at each of the complex
archimedean primes of F determines a(n) (ind-)archimedean structure [cf. Remark
2.2.2] on V log. Thus, the (ind-)arithmetic log schemes discussed in (i) correspond
to the case where all of the angular regions chosen are isotropic.

Remark 3.5.1. When the vector bundle E of Example 3.5 is a line bundle [i.e.,
of rank one], the blow-up used to construct V is an isomorphism. That is to say,
in this case, V is simply the geometric line bundle associated to E, and D ⊆ V is
its zero section.

Remark 3.5.2. Some readers may wonder why, in Definition 2.2, we took H to
be a compact set, as opposed to, say, an open set (or, perhaps, an open set which is,
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in some sense, “bounded”). One reason for this is the following: If H were required
to be open, then we would be obliged, in Example 3.5, to take the “archimedean
structure” on V to be the open set defined by sections of norm < 1. In particular,
if E is taken to be the trivial line bundle, then it would follow that the section of
V defined by the section “1” of the trivial bundle would fail to define a morphism
in the “category of arithmetic log schemes” — a situation which the author found
to be unacceptable.

Another motivating reason for Definition 2.2 comes from rigid geometry: That
is to say, in the context of rigid geometry, perhaps the most basic example of an
integral structure on the affine line Spec(Qp[T ]) is that given by the ring

Zp[T ]∧

(where the “∧” denotes p-adic completion). Then the continuous homomorphisms
Zp[T ]∧ → Cp [i.e., the “Cp-valued points of the integral structure”] correspond
precisely to the elements of Cp with absolute value ≤ 1.

Remark 3.5.3. If S def= Spec(OF ) [where OF is the ring of integers of a number
field F ], and we equip S with the log structure associated to the chart N � 1 �→ 0 ∈
OS , then an archimedean structure on S log is not the same as a choice of Hermitian
metrics on the trivial line bundle over OS at various archimedean primes of S.
This is somewhat counter-intuitive, from the point of view of the usual theory of
log schemes. More generally:

The definition of an archimedean structure [cf. Definition 2.2] adopted in
this paper is perhaps not so satisfactory when one wishes to consider the
archimedean aspects of log structures or other infinitesimal deformations
(e.g., nilpotent thickenings) in detail.

For instance, the possible choices of an archimedean structure are invariant with
respect to nilpotent thickenings. Thus, depending on the situation in which one
wishes to apply the theory of the present paper, it may be desirable to modify Def-
inition 2.2 so as to deal with archimedean structures on log structures or nilpotent
thickenings in a more satisfactory matter — perhaps by making use of the con-
structions of Example 3.5 [including “angular regions”!], applied to the various line
bundles or vector bundles that form the log structures or nilpotent thickenings under
consideration.

At the time of writing, however, it is not clear to the author how to construct
such a theory. Indeed, many of the complications that appear to arise if one is to
construct such a theory seem to be related to the fact that archimedean (integral)
structures, unlike their nonarchimedean counterparts, typically fail to be closed
under addition. Since, however, such a theory is beyond the scope of the present
paper, we shall not discuss this issue further in the present paper.
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