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Abstract

For a higher order linear ordinary differential operator P , its Stokes
curve bifurcates in general when it hits another turning point of P . This
phenomenon is most neatly understandable by taking into account Stokes
curves emanating from virtual turning points, together with those from
ordinary turning points. This understanding of the bifurcation of a Stokes
curve plays an important role in resolving a paradox recently found in the
Noumi-Yamada system, a system of linear differential equations associated
with the fourth Painlevé equation.

Exact WKB analysis, that is, WKB analysis based on the Borel resum-
mation, has turned out to be an important and useful tool in mathematical
physics [1]; its advantage certainly consists in its efficiency in manipulating
exponentially small terms, but still more important, from the theoretical view-
point, are the fact that the Borel transform of an ordinary differential operator
P (x, η−1d/dx) with a large parameter η is a partial differential operator on the
(x, y)-space with y denoting the variable dual to η, and the fact that microlo-
cal analysis, a new and powerful machinery in mathematics [2], clarifies the
structure of singularities of solutions of the Borel transformed equation, i.e., the
Borel transformed WKB solutions, which are multi-valued analytic functions on
(x, y)-space. An important example of the influence of microlocal analysis on
WKB analysis is the introduction of the notion of a virtual turning point for
differential equations of the third or higher order [3]; it is, by definition, the x-
component of the self-intersection point of a bicharacteristic curve of the Borel
transform of the operator P (x, η−1d/dx). Note that a bicharacteristic curve is
the most “elementary” carrier of singularities of solutions of linear partial differ-
ential equations in general [2]. Note also that Voros [4] uses the corresponding
result for the Tricomi-type operator in constructing his theory of exact WKB
analysis for differential operators of the second order. As the so-called new
Stokes curve for higher order operators [5] is nothing but an ordinary Stokes
curve emanating from a virtual turning point, the importance of the notion of
a virtual turning point is practically evident. Actually it plays an important
role in computing the transition probabilities for the non-adiabatic transition
problem of the Landau-Zener type [6]. In this paper we show how important a
role a virtual turning point plays from the theoretical viewpoint. To be more
concrete, we validate the following Assertion A using a concrete example we
encounter in the exact WKB analysis of the Painlevé transcendent [7]:

Assertion A: The role of a virtual turning point is commensurate with
that of an ordinary turning point; theoretically speaking, there is no distinction
between them.

In validating this challenging assertion, we divide our discussion into two
steps: we first show the mechanism that relates a virtual turning point with the
bifurcation phenomenon of a Stokes curve that is observed when it hits a simple
turning point, and then we argue how the mechanism works in understanding
the true nature of a seemingly paradoxical phenomenon which has been just
found [7].
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The relevance of a virtual turning point and the bifurcation of a Stokes curve
has been recognized since a couple of years ago [8], but it has not been published
in literature.

We start with a third (or higher) order differential operator P (x, η−1d/dx)
with a large parameter η. Let us consider the situation where a Stokes curve
emanating from a turning point s1 hits another simple turning point s2. We
further suppose that the Stokes curve is of type (1, 2), i.e., an integral curve of
the direction field

(1) Im(ξ1(x)− ξ2(x))dx = 0,

and that x = s2 satisfies

(2) ξ2(x) = ξ3(x),

where ξj(x) (j = 1, 2, 3) are mutually distinct solutions of the characteristic
equation P (x, ξ) = 0. Here we have used the assumption that P is of third
(or higher) order; in the case of operators of the second order, this situation
cannot be observed. Now, since x = s2 is a simple turning point where ξ2(x)
and ξ3(x) merge by the assumption (2), ξ2(x) (and ξ3(x) also) has a square-root
type singularity at x = s2 and the Stokes curve bifurcates there (Fig.1).

If the operator P does not contain any parameter other than η, one might be
content to regard this bifurcation just as one of the pathologies which analysis
of higher order equations presents. Then the reasoning would be stopped there.
But, if the operator P depends on an auxiliary parameter t, it is natural to
consider how the configuration of Stokes curves changes as the parameter t
changes. Then it is more reasonable to take into account the Stokes curve
emanating from s2, in addition to the Stokes curve emanating from s1. To fix
the situation, let us suppose their configurations are those given in Fig.2 (resp.,
Fig.3) for t = t2 (resp., t = t3). We also suppose that s2(t) lies on the Stokes
curve emanating from s1(t) when t = t1. In the situation we observe in Fig.2, we
know that there exists a virtual turning point v = v(t) such that a Stokes curve
of type (1, 3) emanating from v passes through the crossing point of the Stokes
curve emanating from s1 and that from s2 [8] (cf. Fig.2′). The configuration of
these Stokes curves then becomes as described in Fig.3′ when t = t3 in all cases
we have examined [9]. Since the Stokes curve emanating from v(t1) is of type
(1, 3), it also bifurcates at s2(t1) because of the singularity that ξ3(x) contains.
The resulting configuration is given in Fig.1′. Comparing Figures 1′, 2′ and
3′, one naturally observes that the configuration of Stokes curves continuously
changes as the parameter t moves, in spite of the fact that the relative location
of the Stokes curve emanating from v(t) and that from s1(t) is interchanged
on the right of their crossing points. Thus we can understand the bifurcation
of a Stokes curve to be a natural counterpart of the addition of a Stokes curve
emanating from a virtual turning point; it is not an isolated pathology! We refer
the reader to [9] for the concrete description of Stokes curves in the example of
the Stokes geometry for the quantized Hénon map.
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We now show how the mechanism described above is related to the paradox-
ical situation which one of us (S.S.) has recently found [7] in the computer-
assisted study of the Stokes geometry of the Painlevé hierarchy of Noumi-
Yamada type [10]; its first member, with which we are concerned in this paper,
consists of the following symmetric form of the fourth Painlevé equation [11]

(3) η−1 dfj

dt
= fj(fj+1 − fj+2) + αj (j = 0, 1, 2)

with fj = fj−3 (j = 3, 4) and α0 + α1 + α2 = η−1, and its underlying
“Schrödinger” equation
(4)
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As is well-known, the equation (3) is nothing but the compatibility condition
of the equations (4) and (5). As the equation (3) is equivalent to the fourth
Painlevé equation, we can use more traditional pair of the “Schrödinger” equa-
tion and its deformation equation [12] so that their compatibility condition is
equivalent to (3). Actually in the traditional case the “Schrödinger” equation is
of the second order. Now, one of the results of [13] asserts that, if the parameter
t lies on the Stokes curve of (3) (to be more precise, the appropriate linearization
of (3); see [13] for the details), two turning points of the “Schrödinger” equation
are connected by a Stokes curve of the “Schrödinger” equation. On the other
hand, a computer-assisted study of the Stokes geometry of the equations (3) and
(4) shows the following intriguing fact [7] (here we have chosen α0 = 1.0 + 0.6i
and α1 = 0.2− 0.1i):

If the parameter t is on the Stokes curve of (3) and if it is sufficiently close to
its origin, i.e., a turning point of (3), then a double turning point d and a simple
turning point s1 of equation (4) are connected by a Stokes curve of (4) (Fig.5;
here we have included another simple turning point s2 for the later reference).
However, when t lies in some portion, say σ, of the same Stokes curve which is
far away from the turning point of (3), no pair of turning points of equation (4)
are connected by a Stokes curve of (4), unless virtual turning points are counted
as turning points (Fig.6; we have also included the simple turning point s2 in
this figure).

One might be puzzled by the apparent contradiction between the above
quoted result of [13] and the latter half part of the observation of [7], namely,

3



the fact that no pair of turning points of (4) is connected by a Stokes curve of
(4) for the parameter t in the portion σ of a Stokes curve of (3). As we see
below, this paradox is resolved in a natural manner if a virtual turning point is
counted as a turning point.

Let us first note, by comparing Fig.5 and Fig.6, that the Stokes curve con-
necting turning points d and s1 should hit the turning point s2 as the parameter
t moves from the portion close to the turning point of (3) (i.e., generating Fig.5)
to another portion σ of the Stokes curve of (3) that is far away from the turning
point (i.e., generating Fig.6). Hence it is reasonable to surmise that bifurcation
of a Stokes curve should occur in the course of the journey of t from a point,
say t5, giving rise to the configuration of Stokes curves of (4) in Fig.5, and to
another point, say t6, giving rise to Fig.6. As we know that the bifurcation
phenomenon is a counterpart of the addition of Stokes curves emanating from
virtual turning points, we include virtual turning points in Fig.5 to find Fig.5′.
Since we have two kinds of crossing points of Stokes curves, i.e., the crossing of
the Stokes curve emanating from s1 and that from s2, and the crossing of the
Stokes curve from s2 and that from d, we write in two virtual turning points
v1 and v2. (We have omitted some other virtual turning points which are not
of our immediate concern.) In parenthesis, an interesting fact worth mention-
ing is that v1 and v2 are connected by a Stokes curve. As t moves from t5
to t6, we should encounter the configuration of Stokes curves given in Fig.4.
In Fig.4 the virtual turning point v1 is connected with both the double turn-
ing point d and the virtual turning point v2 thanks to the bifurcation of the
Stokes curve emanating from v1, and similarly the virtual turning point v2 is
connected with both the simple turning point s1 and the virtual turning point
v1. When t moves further to reach t6, the interchange of relative location of the
Stokes curve emanating from v1 and that from s1 on the left of their crossing
point switches the target of the Stokes curve (emanating from v1) from v2 to
the double turning point d. In parallel with this, the target of the Stokes curve
emanating from v2 becomes s1, not v1. Thus we obtain Fig.6′, where s1 (resp.,
d) in Fig.5 is superseded by v1 (resp., v2), that is, virtual turning points v1 and
v2 are respectively connected by a Stokes curve with ordinary turning points d
and s1 but d and s1 are not connected. Thus we clearly see that a “virtual”
turning point is really a “real” object even though not “ordinary”. (From the
viewpoint of the topological complexity, Fig.5′ corresponds to Fig.3′ and Fig.6′

corresponds to Fig.2′. Hence it might be better, logically speaking, to arrange
our argument so that we may start from t = t6 and reach t = t5. Here we have
arranged the materials so that we may start with a “usual”situation and end
up with an “unusual” situation with the change of the parameter.)

In conclusion, we emphasize that virtual turning points and (ordinary) turn-
ing points play equal roles in Fig.6′, validating Assertion A.

In ending this paper we note that the geometric study given here strongly
indicates that connection formula for the wave function ψ = t(ψ0, ψ1, ψ2) (i.e.,
a solution of (4)) across a Stokes curve emanating from a virtual turning point
should be relevant to the connection formula for the Painlevé transcendents. It
should be an important and interesting problem to study in general how the
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analytic structure of the wave function near a Stokes curve emanating from a
virtual turning point is related to the connection formula for the novel tran-
scendents that appear as solutions of a higher member in the Noumi-Yamada
hierarchy, i.e., the so-called higher order fourth Painlevé equation.
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Figure 1 : Bifurcation of a Stokes curve. Figure 1′: Figure 1 with a virtual turning

point added.
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Figure 2 :Configuration of Stokes curves

for t = t2.
Figure 2′: Figure 2 with a virtual turning

point added.
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Figure 3 : Configuration of Stokes curves

for t = t3.
Figure 3′: Figure 3 with a virtual turning

point added.
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Figure 4 : Configuration of Stokes

curves of (4) when s2 meets other
Stokes curves.
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Figure 5 : Configuration of Stokes

curves of (4) for t = t5 = −1.6104
− 0.2268i.

Figure 5′: Figure 5 with virtual

turning points added.
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Figure 6 : Configuration of Stokes

curves of (4) for t = t6 = −1.5783
− 0.4130i.

Figure 6′: Figure 6 with virtual

turning points added.
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