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For an element x of the Cuntz algebra ON , define the
isotropy subgroup Gx ≡ {g ∈ U(N) : αg(x) = x} of the
unitary group U(N) with respect to the canonical action α
of U(N) on ON . We have irreducible representations of the
crossed product ONoGx by extending irreducible generalized
permutative representations of ON and irreducible represen-
tation of Gx. ¿From this, the Peter-Weyl theorem for Gx is
extended to the regular representation of ONoGx.

1. Main theorem

By comparing the theory of Lie groups, representation theory of operator
algebras are not well developed. The most different point among them is the
uniqueness of irreducible decomposition of representation. In general, rep-
resentations of C∗-algebras do not have unique decomposition(up to unitary
equivalence) into sums or integrals of irreducibles. However, the permuta-
tive representations of the Cuntz algebra ON do ([1, 3, 4]). We generalized
the permutative representations in [5, 6, 7, 8] by keeping the uniqueness
of decomposition. For a C∗-dynamical system (A, G, α), representations of
the C∗-crossed product AoG are written in [9]. However their irreducible
representations are not well-known. In this paper, we show concrete irre-
ducible representations of ONoG by using generalized permutative(=GP)
representations of ON and unitary representations of a compact group G
and classify them when G is a closed subgroup of the isotropy subgroup of
the unitary group U(N) with respect to the canonical action α of U(N) on
ON . In order to introduce representations of ONoG, we start to review GP
representations of ON with cycle.

Let S(CN ) ≡ {w ∈ CN : ‖w‖ = 1}, S(CN )⊗k ≡ {w(1) ⊗ · · · ⊗ w(k) :
w(i) ∈ S(CN ), i = 1, . . . , k} for k ≥ 1 and S(CN )⊗∗ ≡ ⋃

k≥1 S(CN )⊗k. Let
s1, . . . , sN be canonical generators of ON . For w = (wi)N

i=1 ∈ CN , define
s(w) ≡ w1s1 + · · · + wNsN . For w = w(1) ⊗ · · · ⊗ w(k) ∈ S(CN )⊗k, a
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representation (H, π) of ON is GP (w) if there is a cyclic vector Ω ∈ H such
that π(s(w))Ω = Ω where s(w) ≡ s(w(1)) · · · s(w(k)). We call Ω by the GP
vector of (H, π). We call GP (w) by the GP representation of ON by w. w ∈
S(CN )⊗k is non periodic if there is no y ∈ S(CN )⊗l such that w equals to the
tensor power y⊗l of y for some l ≥ 2. If w ∈ S(CN )⊗k is non periodic, then
GP (w) exists uniquely up to unitary equivalence. GP (w) is irreducible if w

is non periodic. If both w ∈ S(CN )⊗k and y ∈ S(CN )⊗k
′

are non periodic,
then GP (w) ∼ GP (y) if and only if k

′
= k and w = y(p(1))⊗ · · · ⊗ y(p(k)) for

some p ∈ Zk where ∼ means unitary equivalence. Any cyclic permutative
representation with a cycle is a GP representation.

Let α be the canonical action of U(N) on ON . For w ∈ S(CN )⊗∗, let
Uw(N) ≡ {g ∈ U(N) : αg(s(w)) = s(w)}. Then Uw(N) is a closed subgroup
of U(N). For example, Uw(N) ∼= U(N − 1) for any w ∈ S(CN ). For a
closed subgroup G of Uw(N), we define ONoG by the C∗-crossed product
associated with a C∗-dynamical system (ON , G, α).

Definition 1.1. For w ∈ S(CN )⊗∗ and a unitary representation (V, V ) of
G, a representation (H, π) of ONoG is GP (w)o(V, V ) if there is a subspace
V ′ ⊂ H which is cyclic for (H, π) such that (V ′ , π|G) is unitarily equivalent
to (V, V ) and π(s(w))v = v for each v ∈ V ′. We call V ′ by the GP subspace
of (H, π).

Theorem 1.2. For a non periodic element w ∈ S(CN )⊗∗ and a closed
subgroup G of Uw(N), the following holds:

(i) GP (w)o(V, V ) exists uniquely up to unitary equivalence.
(ii) GP (w)o(V ⊕ V ′ , V ⊕ V

′
) ∼ (GP (w)o(V, V ))⊕ (GP (w)o(V ′ , V ′

)).
(iii) GP (w)o(V, V ) ∼ GP (w)o(V ′ , V ′) if and only if (V, V ) ∼ (V ′ , V ′

).
(iv) GP (w)o(V, V ) is irreducible if and only if (V, V ) is irreducible.
(v) Identify ON with the subalgebra of ONoG by the natural embedding of

ON into ONoG. Then the following branching law holds:

(GP (w)o(V, V ))|ON
∼ (GP (w))⊕dimV .

For a representation (H, π) of a C∗-algebra A and a C∗-dynamical
system (A, G, α) with a locally compact group G, the regular representation
(L2(G,H), π̃oλ) of AoG by (H, π) is the representation which is induced
by the following covariant representation (L2(G,H), π̃, λ) as follows(§ 7.7,
[9]):

(π̃(a)φ)(g) ≡ π(αg−1(a))φ(g), (λhφ)(g) ≡ φ(h−1g) (a ∈ A, g, h ∈ G).

For a non periodic element w ∈ S(CN )⊗∗ and a closed subgroup G of Uw(N),
let (H, π) be GP (w) of ON . By the Peter-Weyl theorem for G and Theorem
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1.2, the following irreducible decomposition holds:

(L2(G,H), π̃oλ) ∼
⊕

γ∈Ĝ

{GP (w)oγ}⊕dγ

where Ĝ is the unitary dual of G and dγ is the dimension of the representa-
tion of G associated with γ.

In §2, we prove the main theorem(Theorem 1.2). In §3, we show the
state of ONoG associated with GP (w)o(V, V ). In §4, we show example.

2. Proof of the main theorem

In this paper, any representation and embedding are unital and ∗-preserving.
We assume that any group G is locally compact and any representation of G
means a(possibly infinite dimensional)unitary representation in this section.
For a representation (K, π) of a C∗-algebra A, a subspace V ⊂ K is cyclic for
(K, π) if π(A)V = K. For a C∗-dynamical system (A, G, α), let Rep(AoG)
and Repu(G) be the set of all representations of AoG and the set of all
(possibly infinite dimensional)unitary representations of G, respectively. For
a covariant representation (H, π, U) of (A, G, α) and (V, V ) ∈ Repu(G),
define a new covariant representation (H⊗V, π̃, U⊗V ) of (A, G, α) as follows:

(2.1) π̃(x) ≡ π(x)⊗ I, (U ⊗ V )g ≡ Ug ⊗ Vg (x ∈ A, g ∈ G).

For (H, π) ∈ Rep(AoG), we have a covariant representation (H, π|A, π|G)
of (A, G, α).

Definition 2.1. For a representation (H, π) of AoG and a unitary rep-
resentation (V, V ) of G, a new representation (H, π)o(V, V ) of AoG is
defined by the representation which is induced by a covariant representation
(H⊗ V, π̃|A, (π|G)⊗ V ) of (A, G, α).

This induces the following map:

Rep(AoG)× Repu(G) 3 ((H, π), (V, V )) 7→ (H, π)o(V, V ) ∈ Rep(AoG).

Define R(G) ≡ Repu(G)/∼ and R(AoG) ≡ Rep(AoG)/∼ where ∼ means
unitary equivalence. Then we can verify that the following map is well-
defined:

R(AoG)×R(G) 3 ([(H, π)], [(V, V )]) 7→ [(H, π)o(V, V )] ∈ R(AoG).

We denote [(H, π)]o[(V, V )] ≡ [(H, π)o(V, V )]. Both R(G) and R(AoG)
have a sum by the direct sum of representations. The tensor product on
R(G) is associative and distributive with respect to direct sum. For x ∈
R(G), define

(2.2) Rx : R(AoG) →R(AoG); ξRx ≡ ξox.
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We see that ξR1 = ξ, (ξ ⊕ η)Rx = ξRx ⊕ ηRx, (ξRx)Ry = ξRxy, ξRx⊕y =
ξRx ⊕ ξRy for x, y ∈ R(G) and ξ, η ∈ R(AoG) where 1 is the trivial
representation of G. ¿From this, the following holds:

Proposition 2.2. For a C∗-dynamical system (A, G, α), R(AoG) is a right
R(G)-module by R in (2.2).

For N ≥ 2, let ON be the Cuntz algebra([2]), that is, it is a C∗-algebra
which is universally generated by generators s1, . . . , sN satisfying s∗i sj = δijI
for i, j = 1, . . . , N and s1s

∗
1 + · · · + sNs∗N = I. For a non periodic element

w = w(1)⊗· · ·⊗w(k) ∈ S(CN )⊗k, define w[l] ≡ w(l)⊗· · ·⊗w(k) for 1 ≤ l ≤ k

and choose an orthonormal set {y(l,m)}N
m=1 ⊂ CN such that y(l,1) ≡ w(l)

for each l = 1, . . . , k. Let {1, . . . , N}∗ ≡ ∐
k≥0{1, . . . , N}k, {1, . . . , N}∗1 ≡∐

k≥1{1, . . . , N}k, {1, . . . , N}0 ≡ ∅, {1, . . . , N}k ≡ {(j1, . . . , jk) : j1, . . . , jk ∈
{1, . . . , N}}. Define a subset Λ(w) of S(CN )⊗∗ by

(2.3) Λ(w) ≡ Λ1(w) t Λ2(w) t Λ3(w),

Λ1(w) ≡ {w[l] : l = 1, . . . , k}, Λ2(w) ≡ ∐k
l=1 Λ2,l(w), Λ2,1(w) ≡ {y(k,m)⊗w :

m = 2, . . . , N}, Λ2,l(w) ≡ {y(l−1,m) ⊗ w[l] : m = 2, . . . , N} for 2 ≤ l ≤ k,
Λ3(w) ≡ {εJ⊗x : x ∈ Λ2(w), J ∈ {1, . . . , N}∗1} where εJ = εj1⊗· · ·⊗εjk

for
J = (j1, . . . , jk) and {εj}N

j=1 is the standard basis of CN . If (H, π) is GP (w)
of ON with the GP vector Ω, then {π(s(x))Ω : x ∈ Λ(w)} is a complete
orthonormal basis of H.

Lemma 2.3. For a non periodic element w ∈ S(CN )⊗k and a closed sub-
group G of Uw(N), let (K, π) be GP (w) with the GP vector Ω. Let Λ(w) be
in (2.3). For g ∈ G, define an operator Yg on K by

Ygπ(s(x))Ω ≡ π(αg(s(x)))Ω (x ∈ Λ(w)).

Then Y is a unitary action of G on K and (K, π, Y ) is a covariant repre-
sentation of a C∗-dynamical system (ON , G, α).

Proof. For each g ∈ G, Yg is well-defined because G ⊂ Uw(N). We
show that Kx,y ≡< Ygπ(s(x))Ω|Ygπ(s(y))Ω >= δx,y for each x, y ∈ Λ(w).
Because π(s(w))Ω = Ω and αg(s(w)) = s(w),

(2.4) πg(s(w⊗L))Ω = Ω (∀L ≥ 0)

where πg ≡ π ◦ αg. By (2.4), Kx,y =< Ω|πg({s(x)}∗s(y ⊗ w⊗L))Ω > for
each L ≥ 0. Assume that x = x(1) ⊗ · · · ⊗ x(a) and y = y(1) ⊗ · · · ⊗ y(b)

for a, b ≥ 0. If a = b + Lk + j, L ≥ 0 and 0 < j < k, then Kx,y = c· <

Ω|πg(s(w[j + 1]))Ω > where c ≡< x|y ⊗ w⊗L ⊗ w(1) ⊗ · · · ⊗ w(j) >. By
(2.4), < Ω|πg(s(w[j + 1]))Ω >= d· < Ω|πg(s(w[j + 1]))Ω > where d ≡<

w|w[j]⊗w(1)⊗· · ·⊗w(j) >. Because w is non periodic, |d| < 1. This implies
that Kx,y = 0. Assume that a = b + Lk. Because < π(s(x))Ω|π(s(y))Ω >=
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δx,y, we see that < x|y ⊗ w⊗L >= δx,y. On the other hand, Kx,y =<
x|y ⊗ w⊗L >. In consequence, Kx,y = δx,y for each x, y ∈ Λ(w). Therefore
Yg is an isometry for each g ∈ G. Because Y −1

g = Yg−1 and YgYh = Ygh for
each g, h ∈ G, Y is a unitary action of G on K. By definition of Yg, we see
that Ygπ(sJ)Ω = π(αg(sJ))Ω for each J ∈ {1, . . . , N}∗. ¿From this, we can
verify that AdYg ◦ π = π ◦ αg for each g ∈ G. Hence the statement holds.

¤

Let ϕ be the natural embedding of ON into ONoG. When (K, π) is GP (w)
of ON , there is a representation (K, π̃) such that π̃ ◦ϕ = π by Lemma 2.3. If
(K′

, π
′
) is GP (w) of ON , then (K′

, π̃
′
) ∼ (K, π̃) by construction. We denote

(K, π̃) by GP (w)o1. By Definition 2.1, we have (GP (w)o1)o(V, V ) for
(V, V ) ∈ Repu(G).

Lemma 2.4. For a non periodic element w ∈ S(CN )⊗∗, let G be a closed
subgroup of Uw(N) and (K, π) be GP (w) with the GP vector Ω. Then
GP (w)o(V, V ) ∼ (GP (w)o1)o(V, V ) for each (V, V ) ∈ Repu(G).

Proof. Let (H,Π) be GP (w)o(V, V ) and V ′ ⊂ H such that (V ′ ,Π|G) ∼
(V, V ). We construct a unitary from H to K ⊗ V. By definition, there
is a unitary u from V ′ to V such that Adu(π(g)) = Vg for each g ∈ G.
Choose an orthonormal basis {en}n∈Ξ of V ′ . Define an operator T on H
by TΠ(s(x))en ≡ π(s(x))Ω

′ ⊗ uen for x ∈ Λ(w) and n ∈ Ξ. Then we see
that < TΠ(s(x))en|TΠ(s(y))em >= δx,yδn,m for x, y ∈ Λ(w) and n,m ∈ Ξ.
Hence T is an isometry. Because {π(s(x))Ω

′ ⊗ uen : x ∈ Λ(x), n ∈ Ξ} is a
complete orthonormal basis of K ⊗ V, T is a unitary. Further we see that
TΠ(si) = (π(si)⊗ I)T and TΠ(g) = (π(g)⊗ Vg)T for each i = 1, . . . , N and
g ∈ G. Therefore T gives the unitary equivalence between GP (w)o(V, V )
and (GP (w)o1)o(V, V ). ¤

For a non periodic element w ∈ S(CN )⊗k, let (K, π) be GP (w) of ON with
the GP vector Ω. If v ∈ K satisfies < v|Ω >= 0, then we can verify that
limn→∞(π(s(w))∗)nv = 0.

Proof of Theorem 1.2. (i) By Lemma 2.4, the statement holds.
(ii) and (iii) hold by (i) and Proposition 2.2.
(iv) Assume that (V, V ) is irreducible. Let (H, π) be GP (w)o(V, V ) with
the GP subspace V ′ . For v ∈ H, v 6= 0, it is sufficient to show that V ′ ⊂
π(ONoG)v. By the proof of Lemma 2.4, v is written by

∑
(x,n)∈Λ×Ξ ax,nπ(s(x))en

for ax,n ∈ C. When ax,n 6= 0, put v
′ ≡ a−1

x,n · (π(s(x)))∗v. Then we can de-
note v

′
= en +y for y ∈ H, < y|en >= 0. Then v

′ ≡ limn→∞(π(s(w))∗)nv =∑M
l=1 clen ∈ V ′ and cn = 1. Because (V, V ) is irreducible, Lin < π(G)v

′
>=
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V ′ . Therefore V ′ ⊂ Lin < π(G)·π(ON )v >⊂ π(ONoG)v. Hence GP (w)o(V, V )
is irreducible. If (V, V ) is not irreducible, then GP (w)o(V, V ) is not irre-
ducible by (ii). Therefore the statement holds. ¤

For w,w
′ ∈ S(CN )⊗∗, w ∼ w

′
if there is p ∈ Zk such that w

′
=

w(p(1)) ⊗ · · · ⊗ w(p(k)) where w = w(1) ⊗ · · · ⊗ w(k). When w, w
′ ∈ S(CN )⊗∗

are non periodic, GP (w) ∼ GP (w
′
) if and only if w ∼ w

′
.

Proposition 2.5. For non periodic elements w,w
′ ∈ S(CN )⊗∗, assume that

G is a closed subgroup of Uw(N)∩Uw′ (N). If w 6∼ w
′
, then GP (w)o(V, V ) 6∼

GP (w
′
)o(V ′ , V ′

) for any representations (V, V ) and (V ′ , V ′
) of G.

Proof. We see the following branching laws: (GP (w)o(V, V ))|ON
=

(GP (w))⊕dimV , (GP (w
′
)o(V ′ , V ′

))|ON
= (GP (w

′
))⊕dimV ′ . Because w 6∼ w

′
,

GP (w)o(V, V ) 6∼ GP (w
′
)o(V ′ , V ′

). ¤

3. State associated with GP (w)o(V, V )

Operator algebraists prefer state than representation. We realize GP (w)o(V, V )
as the GNS representation of a state of ONoG. We denote generators of
ONoG by si, λg for i = 1, . . . , N and g ∈ G.

Proposition 3.1. Assume that w = w(1) ⊗ · · · ⊗ w(k) ∈ S(CN )⊗k with
k ≥ 1 is non periodic and G is a closed subgroup of Uw(N). For a finite
dimensional unitary representation (V, V ) of G with dimV = M and an
orthonormal basis {en}M

n=1 of V, let Vg = ((Vg)ij)M
i,j=1 be the matrix repre-

sentation of Vg for g ∈ G with respect to {en}M
n=1. define a state ρ of ONoG

by

ρ(sJs∗Kλg) =





(Vg)11 · wJ · wK (|J | ≡ |K| mod k),

0 (otherwise)

for g ∈ G and J,K ∈ {1, . . . , N}∗ where wJ ≡ ∏k
l=1 w

(σl−1(1))
jl

for J =
(j1, . . . , jk). Then the following holds:

(i) ρ is pure if and only if (V, V ) is irreducible.
(ii) If (V, V ) is irreducible, then the GNS representation of ONoG by ρ is

equivalent to GP (w)o(V, V ).

Proof. Let (H, π) be GP (w)o(V, V ) with the GP subspace V ′ ⊂ H.
Then there is a unitary u from V to V ′ such that Adu ◦ (π|G) = V . Define
Ω ≡ ue1 and a state ρ

′
of ONoG by ρ

′
(sJs∗Kλg) ≡< Ω|π(sJs∗K)λgΩ > for

g ∈ G and J,K ∈ {1, . . . , N}∗. Then we can verify that ρ
′
= ρ. Therefore

the statements hold by Theorem 1.2. ¤
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4. Example

Let {εj}N
j=1 be the standard basis of CN and dγ be the dimension of the

representation associated with γ ∈ Ĝ for a group G in this section.

4.1. Examples of Theorem 1.2.

Example 4.1. Let (l2(N), π) be a representation ofON defined by π(si)en ≡
eN(n−1)+i for n ∈ N and i = 1, . . . , N . (l2(N), π) is an irreducible permuta-
tive representation. Define an action β of U(N − 1) on ON by βg(s1) ≡ s1

and βg(ti) ≡
∑N−1

j=1 gjitj for g = (gij) ∈ U(N − 1) where ti ≡ si+1 for
i = 1, . . . , N − 1. Then (l2(N), π) is GP (ε1) of ON and G ≡ Uε1(N) =
{1} × U(N − 1) ∼= U(N − 1). For the regular representation (L2(U(N −
1), l2(N)), Π) of ONoβU(N −1) induced by (l2(N), π) of ON , the following
irreducible decomposition holds:

(L2(U(N − 1), l2(N)), Π) =
⊕

γ∈ \U(N−1)

(GP (ε1)oγ)⊕dγ .

When N = 2, the action β of U(1) on O2 is given by βc(s1) = s1, β(s2) = cs2

for c ∈ U(1). For O2oβU(1), the following irreducible decomposition holds:

(L2(U(1), l2(N)), Π) =
⊕

n∈Z

GP (ε1)oχn

where χn(c) ≡ cn for c ∈ U(1). Especially this decomposition is multiplicity
free.

Example 4.2. Let SN ↪→ U(N) be the natural embedding of the symmetric
group SN by the permutation of {εj}N

j=1 and w ≡ c · (ε1 + · · ·+ εN )/
√

N ∈
S(CN ) for c ∈ U(1). Since p(w) = w for each p ∈ SN , SN ⊂ Uw(N).
Let (H, π) be GP (w). Then we have the irreducible decomposition of the
regular representation of ONoSN as follows:

L2(SN ,H)(∼= H⊕N !) =
⊕

γ∈ ˆSN

(GP (w)oγ)⊕dγ .

4.2. Other cases. The following are not examples of Theorem 1.2.

Example 4.3. For N ≡ {1, 2, 3, . . .} and N ≥ 2, let σ(i) ≡ i + 1 for
i = 1, . . . , N − 1 and σ(N) ≡ 1. Define operators T and P on l2(N) by

Ten ≡ eNn, P eN(n−1)+i ≡ eN(n−1)+σ(i) (n ∈ N, i = 1, . . . , N).

Define a representation (l2(N), π) of ON by

(4.1) π(si) ≡ P iTP−i (i = 1, . . . , N).

Then (l2(N), π) is GP (ε1 ⊗ · · · ⊗ εN ) of ON . Define β ∈ AutON by β(si) ≡
sσ(i) for i = 1, . . . , N . Then AdP ◦ π = π ◦ β. ¿From this, (l2(N), π, P )
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is a covariant representation of a C∗-dynamical system (ON ,ZN , β). This
induces a representation (l2(N), π̃) of ONoZN naturally. Because (l2(N), π)
is irreducible, (l2(N), π̃) is irreducible.

Example 4.4. Let ONoU(1) be the C∗-crossed product by the gauge ac-
tion on ON and (H, π) be a representation of ONoU(1). If there are
w ∈ S(CN )⊗∗ and Ω ∈ H such that π(s(w))Ω = Ω, then we can show
that Ω = 0. ¿From this, there is no permutative representation of cycle type
for ONoU(1).

4.3. Permutative representation of ONo(TN−1oZN ). For N ≥ 2, let
transformations τ on TN−1 ≡ {(z1, . . . , zN−1) : ∀i, zi ∈ C, |zi| = 1} and κ
on ZN−1 as follows: when N = 2, τ(z) ≡ z̄, κ(n) ≡ 1− n and when N ≥ 3,

(4.2)
{

τ(z1, . . . , zN−1) ≡ (z2, . . . , zN−1, z1 · · · zN−1),
κ(n1, . . . , nN−1) ≡ (n2 − n1 + 1, n3 − n1, . . . , nN−1 − n1,−n1).

τ and κ induce actions of the cyclic group ZN ≡ {σi−1 : i = 1, . . . , N}
where σ is a cyclic permutation on {1, . . . , N} defined by σ(i) ≡ i + 1 for
i = 1, . . . , N − 1 and σ(N) ≡ 1. For n = (n1, . . . , nN−1) ∈ ZN−1 and
z = (z1, . . . , zN−1) ∈ TN−1, define zn ≡ zn1

1 · · · znN−1

N−1 . The action κ is free.
Define [n] ≡ {κi−1(n) : i = 1, . . . , N} and G ≡ TN−1oZN by τ . We denote
an element in G by (z, σj). We identify both TN−1 and ZN as subgroups of
G. G is realized as a subgroup G

′ ≡< {diag(z1, . . . , zN−1, z1 · · · zN−1), P} >
of U(N) where P ∈ U(N) is defined by Pεi ≡ εσ(i) for i = 1, . . . , N . We
identify G and G

′
. We denote the action of G on ON by α. Define the

crossed product ONoG for the C∗-dynamical system (ON , G, α).

Definition 4.5. For n ∈ ZN−1, a representation (H, π) of ONoG is P (1 · · ·N |n)
if there is a cyclic vector Ω ∈ H such that

π(s1 · · · sN )Ω = Ω, TzΩ = znΩ (∀z ∈ TN−1)

where Tz ≡ π((z, id)) for z ∈ TN−1. Ω is called the GP vector of (H, π).

A representation (K, π) of ON is P (1 · · ·N) if there is a cyclic unit vector Ω
such that π(s1 · · · sN )Ω = Ω. (l2(N), π) in Example 4.3 is P (1 · · ·N).

Theorem 4.6. (i) For each n ∈ ZN−1, P (1 · · ·N |n) is unique up to uni-
tary equivalence.

(ii) For each n ∈ ZN−1, P (1 · · ·N |n) is irreducible.
(iii) For n,m ∈ ZN−1, P (1 · · ·N |n) ∼ P (1 · · ·N |m) if and only if [n] = [m].
(iv) Let (K, π) be P (1 · · ·N) of ON and (L2(G,K), Π) be the regular repre-

sentation of ONoG induced by (K, π). Then there is an orthonormal
family {vn ∈ L2(G,K) : n ∈ ZN−1} such that vn is the GP vector
of P (1 · · ·N |n) of ONoG and the following irreducible decomposition
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with respect to the action of ONoG holds:

(4.3) L2(G,K) =
⊕

n∈ZN−1

Wn, Wn ≡ Π(ONoG)vn.

The multiplicity of each component in the decomposition in (4.3) is N . (4.3)
implies that the existence of P (1 · · ·N |n) for each n ∈ ZN−1.

We show the case N = 2 in Theorem 4.6. Let τ be an action of Z2

on U(1) ≡ {z ∈ C : |z| = 1} by z 7→ z̄. κ(n) = 1 − n. G = U(1)oZ2

is realized as a subgroup
{(

z 0
0 z̄

)
,

(
0 z
z̄ 0

)
: z ∈ U(1)

}
of U(2). Let

(K, π) be P (12) of O2 with the GP vector Ω and (L2(G,K),Π) be the regular
representation of O2oG induced by (K, π). Define

Ωn,+(z, σj) ≡ δ0,j · z−nΩ, Ωn,−(z, σj) ≡ δ1,j · z−nΩ

for z ∈ U(1) and j = 0, 1. Then Vn,± ≡ Π(O2)Ωn,± is P (12) of O2,
L2(G,K) =

⊕
n∈Z(Vn,+ ⊕ Vn,−). Therefore Wn = Vn,+ ⊕ V1−n,−.

L2(G,K) =
⊕

n∈Z

(Vn,+ ⊕ Vn,−) =
⊕

n∈Z

Wn ∼
⊕

n∈N

(P (12|n))⊕2

since Wn ∼ W1−n and Wn is P (12|n).

Acknowledgement: We would like to thank Takeshi Nozawa for nice his
idea.

Appendix A. Proof of Theorem 4.6

Let (H, π) be a representation of ON . If Ω, Ω
′ ∈ H satisfy < Ω|Ω′

>= 0,
π(s1 · · · sN )Ω = Ω and π(s1 · · · sN )Ω

′
= Ω

′
, then π(ON )Ω and π(ON )Ω′ are

orthogonal.

Lemma A.1. Let τ , κ and G be in (4.2) and (H, π) be P (1 · · ·N |n) for
n ∈ ZN−1 with the GP vector Ω. Define P ≡ π(1, σ), R ≡ π(s1)P and
Ωi ≡ Ri−1Ω for i = 1, . . . , N where 1 ≡ (1, . . . , 1) ∈ TN−1. Then the
following holds:

(i) TzΩi = zκi−1(n)Ωi and π(s1 · · · sN )Ωi = Ωi for i = 1, . . . , N .
(ii) H = V1 ⊕ · · · ⊕ VN where Vi ≡ π(ON )Ωi for i = 1, . . . , N .
(iii) {π(s(x))Ri−1Ω : x ∈ Λ, i = 1, . . . , N} is a complete orthonormal basis

of H where Λ ≡ Λ(ε1 ⊗ · · · ⊗ εN ) in (2.3).

Proof. (i) We see that TzR = z1RTτ−1(z) for z = (z1, . . . , zN−1) ∈
TN−1. By this and the induction with respect to i = 1, . . . , N , the statement
holds.
(ii) By (i), {Ωi}N

i=1 is an orthogonal family of vectors in H. ¿From this
and the eigenequation of Ωi, {Vi}N

i=1 is an orthogonal family of subspaces
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of H. Because TzVi ⊂ Vi and PVi ⊂ π(s∗1)Vσ(i) ⊂ Vσ(i) for i = 1, . . . , N ,
H = π(A)Ω ⊂ V1 ⊕ · · · ⊕ VN ⊂ H. Hence the statement holds.
(iii) By construction, (Vi, π|Vi) is P (1 · · ·N) of ON with the GP vector Ωi.
Hence {π(s(x))Ωi : x ∈ Λ} is a complete orthonormal basis of Vi. By (ii),
the statement holds. ¤

Proof of Theorem 4.6. Let A ≡ ONoG and R be in Lemma A.1.
(i) By Lemma A.1 (iii), the existence of the canonical basis implies the
uniqueness.
(ii) Let v ∈ H, v 6= 0. Because Ω is a cyclic vector for (H, π), it is sufficient
to show that Ω ∈ π(A)v. Define eJ,i ≡ π(sJ)Ri−1Ω for J ∈ Λ and i =
1, . . . , N . Then v =

∑
J,i aJ,ieJ,i. Choose J, i such that aJ,i 6= 0. Then <

Ω|(π(sJ)Ri−1)∗v > 6= 0. We can assume that v = Ω+y for y ∈ H, < Ω|y >=
0. Then v

′ ≡ limn→∞(π(s1 · · · sN )∗)nv = Ω+
∑N

j=2 cjΩj ∈ π(ON )v for some
cj ∈ C for j = 2, . . . , N . ¿From this, Ω =

∫
TN−1 z̄nTzv

′
dµ(z) ∈ π(A)v.

Hence the statement holds.
(iii) Assume that P (1 · · ·N |n) ∼ P (1 · · ·N |m). By Lemma A.1, P (1 · · ·N |n)
and P (1 · · ·N |m) have vectors Ω1, . . . ,ΩN and Ω

′
1, . . . , Ω

′
N which satisfy the

statement, respectively. By the description above Lemma A.1, the vector in
the statement is unique up to scalar multiple. By checking the eigenvalues
by Tz, the statement holds.
(iv) Because L2(G,K) =

⊕N
i=1(K ⊗ L2(TN−1 · σi−1)), {π(sJ)Ω ⊗ fn,i : J ∈

Λ, i = 1, . . . , N, n ∈ ZN−1} is a complete orthonormal basis of L2(G,K)
where fn,i(z, σj) ≡ z−n · δj,1−i. Define {φn,i : n ∈ ZN−1, i = 1, . . . , N} ⊂
L2(G,K) by φn,i(z, σj) ≡ δj,1−i · z−nπ(si · · · sN )Ω. Then Rφn,i = φκ(n),σ−1(i)

and Π(s1 · · · sN )φn,i = φn,i where R ≡ Π(s1)P . ¿From this, L2(G,K) =⊕
n∈ZN−1

⊕N
i=1 Vn,i where Vn,i ≡ Π(ON )φn,i. Define Wn ≡ Π(A)φn,1. We

see that
⊕N

i=1 Vκi−1(n),σ1−i(1) ⊂ Wn. Because TzVn,i ⊂ Vn,i and PVn,i ⊂
Π(s1)∗Vκ(n),σ−1(i) ⊂ Vκ(n),σ−1(i),Wn ⊂

⊕N
i=1 Vκi−1(n),σ1−i(1). In consequence,

Wn =
⊕N

i=1 Vκi−1(n),σ1−i(1). By these, the decomposition holds. vn is ob-
tained by normalizing φn,1. By definition, (Wn,Π|Wn) is P (1 · · ·N |n) of A.
Hence each component is irreducible. ¤
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