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For an element x of the Cuntz algebra Op, define the
isotropy subgroup G, = {g € U(N) : ag(x) = z=} of the
unitary group U(NN) with respect to the canonical action «
of U(N) on On. We have irreducible representations of the
crossed product O X G, by extending irreducible generalized
permutative representations of Opn and irreducible represen-
tation of G,. ;(From this, the Peter-Weyl theorem for G, is
extended to the regular representation of On X Gy.

1. Main theorem

By comparing the theory of Lie groups, representation theory of operator
algebras are not well developed. The most different point among them is the
uniqueness of irreducible decomposition of representation. In general, rep-
resentations of C*-algebras do not have unique decomposition(up to unitary
equivalence) into sums or integrals of irreducibles. However, the permuta-
tive representations of the Cuntz algebra Ox do ([1, 3, 4]). We generalized
the permutative representations in [5, 6, 7, 8] by keeping the uniqueness
of decomposition. For a C*-dynamical system (A, G, «), representations of
the C*-crossed product AXG are written in [9]. However their irreducible
representations are not well-known. In this paper, we show concrete irre-
ducible representations of On XG by using generalized permutative(=GP)
representations of Oy and unitary representations of a compact group G
and classify them when G is a closed subgroup of the isotropy subgroup of
the unitary group U(IN) with respect to the canonical action a of U(N) on
Op. In order to introduce representations of Oy X G, we start to review GP
representations of Oy with cycle.

Let S(CY) = {w e CV : |Jw|| = 1}, S(CV)®* = {wD @ ... @ wk) ;
w® € S(CN), i =1,...,k} for k > 1 and S(CV)®* = J,-, S(CV)®F. Let
$1,...,SN be canonical generators of Oy. For w = (w;)Y,; € C¥, define

s(w) = wysy + -+ + wysy. For w = wh @ ... 0wk e S(CN)®’“, a
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representation (H, 7) of Oy is GP(w) if there is a cyclic vector 2 € H such
that 7(s(w))Q = Q where s(w) = s(w®)---s(w®). We call Q by the GP
vector of (H, ). We call GP(w) by the GP representation of Oy by w. w €
S(CN)®k is non periodic if there is no y € S(CV)® such that w equals to the
tensor power y®! of y for some [ > 2. If w € S(CN)®* is non periodic, then
G P(w) exists uniquely up to unitary equivalence. GP(w) is irreducible if w

is non periodic. If both w € S(CN)®* and y € S(CN)®]‘7/ are non periodic,
then GP(w) ~ GP(y) if and only if k' = k and w = y®) @ ... @ y®*) for
some p € Zj where ~ means unitary equivalence. Any cyclic permutative
representation with a cycle is a GP representation.

Let a be the canonical action of U(N) on Oy. For w € S(CN)®* let
Up(N)={g € U(N) : ag(s(w)) = s(w)}. Then Uy,(N) is a closed subgroup
of U(N). For example, Uy(N) =2 U(N — 1) for any w € S(CV). For a
closed subgroup G of U, (N), we define Oy XG by the C*-crossed product
associated with a C*-dynamical system (Opn, G, a).

Definition 1.1. For w € S(CN)®* and a unitary representation (V,V) of
G, a representation (H,m) of ONXG is GP(w)X(V, V) if there is a subspace
V' € 'H which is cyclic for (H,n) such that (V',7|q) is unitarily equivalent
o (V,V) and w(s(w))v = v for eachv € V'. We call V' by the GP subspace
of (H, ).

*

Theorem 1.2. For a non periodic element w € S(CN)®* and a closed

subgroup G of Uy,(N), the following holds:

(i) GP(w)x(V,V) exists umquely up to unitary equivalence.
(ii) GP()x(V @V, Ve V)~ (GP(w)x(V,V)) & (GP(w)x(V, V).
(ili) GP(w)X(V,V) ~ GP(w)x (V' , V') if and only if (V,V) ~ (V,V').
(iv) GP(w)x (V V') is irreducible if and only if (V, V') is irreducible.
(v) Identify On with the subalgebra of OnXG by the natural embedding of
On into ONXG. Then the following branching law holds:

(GP(w)x(V,V)|oy ~ (GP(w)) ¥4,

For a representation (H,7) of a C*-algebra A and a C*-dynamical
system (A, G, a) with a locally compact group G, the regular representation
(L2(G,H),7mx\) of AXMG by (H,m) is the representation which is induced
by the following covariant representation (Lo(G,H), 7, A) as follows(§ 7.7,

[9]):
(7(a)9)(g9) = m(ag-1(a))d(g), (Md)(g) = d(h'g) (a€ A, g,heQ).

For a non periodic element w € S(C™)®* and a closed subgroup G of U, (N),
let (H,7) be GP(w) of On. By the Peter-Weyl theorem for G and Theorem
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1.2, the following irreducible decomposition holds:

(La(G, H), 7x\) ~ @D {GP(w)x7}
ye@

where G is the unitary dual of G and d is the dimension of the representa-
tion of G associated with ~.

In §2, we prove the main theorem(Theorem 1.2). In §3, we show the
state of O X G associated with GP(w) > (V, V). In §4, we show example.

2. Proof of the main theorem

In this paper, any representation and embedding are unital and *-preserving.
We assume that any group G is locally compact and any representation of G
means a(possibly infinite dimensional)unitary representation in this section.
For a representation (C, w) of a C*-algebra A, a subspace V C K is cyclic for
(K, m) if 7(A)V = K. For a C*-dynamical system (A, G, «), let Rep(AXG)
and Rep, (G) be the set of all representations of AXG and the set of all
(possibly infinite dimensional )unitary representations of G, respectively. For
a covariant representation (H,w,U) of (A, G,a) and (V,V) € Rep,(G),
define a new covariant representation (H®V, 7, U®V) of (A, G, «) as follows:

(2.1) Tz)=nz)®I, UV),=U,aV, (x€A ged).

For (H, ) € Rep(AXG), we have a covariant representation (H, |4, 7|q)
of (A4,G,a).

Definition 2.1. For a representation (H,n) of AXG and a unitary rep-
resentation (V,V') of G, a new representation (H, )X (V,V) of AXG is
defined by the representation which is induced by a covariant representation
(HeV, 7|4, (rla) @ V) of (A,G, ).

This induces the following map:
Rep(AXG) x Rep,(G) 3 (H,7), V,V)) — (H,m)x(V,V) € Rep(AXG).

Define R(G) = Rep,(G)/~ and R(AXG) = Rep(AXG)/~ where ~ means
unitary equivalence. Then we can verify that the following map is well-
defined:

R(AXG) x R(G) 3 ([(H,m)], [(V,V)]) = [(H,m)x(V,V)] € R(AXG).

We denote [(H,m)]x[(V,V)] = [(H,7)x(V,V)]. Both R(G) and R(AXG)
have a sum by the direct sum of representations. The tensor product on
R(G) is associative and distributive with respect to direct sum. For z €
R(G), define

(2.2) Ry : R(AXG) — R(AXNG); ER, = ExXa.
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We see that (R =&, (£ ® )Ry = Ry ® Ry, (ERy)Ry = ERyy, ERvgy =
ER, ® ERy for z,y € R(G) and &, € R(AXG) where 1 is the trivial
representation of G. ;From this, the following holds:

Proposition 2.2. For a C*-dynamical system (A, G, a), R(AXG) is a right
R(G)-module by R in (2.2).

For N > 2, let Oy be the Cuntz algebra([2]), that is, it is a C*-algebra
which is universally generated by generators s, ..., sy satisfying s7s; = d;;1
fori,j =1,...,N and s1s] + -+ sysy = I. For a non periodic element
w=wMe  .euh cS(CN)® define wll] = wW®---@w® for1 <1<k
and choose an orthonormal set {y“™}N_ < CN such that y!) = w®
for each I = 1,...,k. Let {1,...,N}* = [[1s{L,.... N}*, {1,....N}} =
[lesi{L - NI {1, N0 =0, {1, N = {(j1, -5 dk) 21550k €
{1,...,N}}. Define a subset A(w) of S(CV)®* by

(2.3) A(w) = A1 (w) U Ag(w) U As(w),

Mw)={wll]:1=1,...,k}, Ag(w) = I, Agy(w), Aog(w) = {y*™ @uw
m=2,....,N}, Ayy(w) = {y""t™ @w[l] : m = 2,...,N} for 2 < 1 < k,
Az(w) ={ej@x: 2 € Ay(w), J € {1,...,N}]} wheree; =¢;, ®- - -®¢;, for
J = (j1,--.,Jr) and {é‘j}éy:l is the standard basis of CV. If (H, 7) is GP(w)
of Oy with the GP vector Q, then {7(s(z))Q? : z € A(w)} is a complete
orthonormal basis of H.

Lemma 2.3. For a non periodic element w € S(CN)®* and a closed sub-
group G of Uy(N), let (IC,m) be GP(w) with the GP vector ). Let A(w) be
in (2.3). For g € G, define an operator Yy on K by

Yym(s(2))Q = m(ay(s(2)))? (x € A(w)).

Then Y is a unitary action of G on K and (K,7,Y) is a covariant repre-
sentation of a C*-dynamical system (On, G, ).

Proof. For each g € G, Y, is well-defined because G C U, (N). We
show that K, , =< Yym(s(x))Q|Yym(s(y))2 >= 6., for each z,y € A(w).
Because m(s(w))Q = Q and oy (s(w)) = s(w),

(2.4) Ty(s(w®))Q =Q (VL >0)

where 7, = mo ay. By (24), K;y =< Qmy({s(z)}*s(y ® w®F))Q > for
each L > 0. Assume that z = 20 @ -+ @ 2@ and y = y®V @ --- @ y©®
for a,b > 0. fa=b+Lk+j, L > 0and 0 < j <k, then K, , = ¢ <
Qlmy(s(wlj + 1]))Q > where ¢ =< zly ® w® @ wH) @ --- @ W) >. By
(2.4), < Qmg(s(wlj +1]))Q >= d- < Qmg(s(w[j + 1])) > where d =<
ww[j]@w®P @ - @wl >. Because w is non periodic, |d| < 1. This implies
that K, = 0. Assume that a = b+ Lk. Because < 7(s(x))Qn(s(y))Q >=
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81,y We see that < zly ® w®l >= §,,. On the other hand, K,, =<
z|ly ® w®L >. In consequence, K, = 0, for each z,y € A(w). Therefore
Y, is an isometry for each g € G. Because Yg_1 =Y, and Y,V = Yy, for
each g,h € GG, Y is a unitary action of G on K. By definition of Y, we see
that Y,m(s7)Q = m(ay(sy))Q for each J € {1,..., N}*. ;From this, we can
verify that AdY, om = 7o, for each g € G. Hence the statement holds.

O

Let ¢ be the natural embedding of Oy into On XG. When (K, 7) is GP(w)
of On, there is a representation (/C, ) such that 7oy = 7 by Lemma 2.3. If
(K',7') is GP(w) of O, then (K',7") ~ (K, 7) by construction. We denote
(K,7) by GP(w)x1. By Definition 2.1, we have (GP(w)x1)x(V,V) for
(V,V) € Rep,(G).

Lemma 2.4. For a non periodic element w € S(CN)®*, let G be a closed
subgroup of Uy(N) and (K,m) be GP(w) with the GP wvector Q. Then
GP(w)X(V,V) ~ (GP(w)x1)x(V,V) for each (V,V) € Rep,(G).

Proof. Let (H,II) be GP(w)x(V,V)and V' C H such that (V',I|g) ~
(V,V). We construct a unitary from H to £ ® V. By definition, there
is a unitary u from V' to V such that Adu(m(g)) = Vj for each g € G.
Choose an orthonormal basis {e,}nez of V', Define an operator T on H
by TH(s(z))en, = 7(s(x))Q @ ue, for z € A(w) and n € Z. Then we see
that < TTI(s(x))en|TH(s(y))em >= dzy0nm for z,y € A(w) and n,m € =.
Hence T is an isometry. Because {m(s(x))Q ® ue, : & € A(z), n € Z} is a
complete orthonormal basis of £ ® V, T' is a unitary. Further we see that
TII(s;) = (m(s;) ® I)T and TTI(g) = (n(g9) ® Vy)T for each i =1,..., N and
g € G. Therefore T gives the unitary equivalence between GP(w)x (V,V)
and (GP(w)x1)x(V,V). O

For a non periodic element w € S(CY)®* let (K, n) be GP(w) of Oy with
the GP vector Q. If v € K satisfies < v|Q2 >= 0, then we can verify that
limy, o0 (7(s(w))*)"v = 0.

Proof of Theorem 1.2. (i) By Lemma 2.4, the statement holds.

(ii) and (iii) hold by (i) and Proposition 2.2.

(iv) Assume that (V,V) is irreducible. Let (H,7) be GP(w)x(V,V) with
the GP subspace V'. Forv e H, v = 0, it is sufficient to show that V' C

T(On X G)v. By the proof of Lemma 2.4, v is written by >-, ) ca vz Ganm(s(x))en

for az, € C. When a,,, # 0, put v = azy - (m(s(z)))*v. Then we can de-

note v’ = e, 4y for y € H, < yle, >= 0. Then v = lim, o0 (7(s(w))*)"v =
Zl]\il cien €V and ¢, = 1. Because (V, V) is irreducible, Lin < 7(G)v’ >=
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V'. Therefore V' C Lin < n(G)-7(On)v >C 71(On X G)v. Hence GP(w)x(V,V)
is irreducible. If (V, V) is not irreducible, then GP(w)(V,V) is not irre-
ducible by (ii). Therefore the statement holds. O

For w,w € S(CM®* w ~ w' if there is p € Zj, such that w' =
w(p(l)) ® e ® w(p(k)) Where w = w(l) ® - ® w(k) When w’ wl c S(CN)®*
are non periodic, GP(w) ~ GP(w') if and only if w ~ w’.

Proposition 2.5. For non periodic elements w, w e S(CN)®*, assume that
G is a closed subgroup of Uy, (N)NU,/(N). Ifw w', then GP(w)x(V, V) o
GPw Yx(V', V") for any representations (V,V) and V', V') of G.

Proof. We see the following branching laws: (GP(w)x(V,V))|loy =
(GP(w))2dmY (GP(w )x(V,V))|oy = (GP(w/))GBdimV,. Because w % w,
GP(w)x(V,V) o4 GP(w )x(V', V). O

3. State associated with GP(w)x(V,V)

Operator algebraists prefer state than representation. We realize GP(w)x(V, V)
as the GNS representation of a state of O XG. We denote generators of
OnXG by s;, Ay fori=1,...,N and g € G.

Proposition 3.1. Assume that w = w) @ --- @ wk) € S(CNV)®F with
k > 1 is non periodic and G is a closed subgroup of Uy,(N). For a finite
dimensional unitary representation (V,V) of G with dimV = M and an
orthonormal basis {e,}M of V, let V, = ((Vg)w)%:1 be the matriz repre-
sentation of Vy for g € G with respect to {en}ﬂil. define a state p of ONXG
by

(Vo) -wy-wi  (|J| = |K| mod k),

p(ssSKAg) =
0 (otherwise)

for g € G and J,K € {1,...,N}* where wy = Hlewj(-?l '
(J1,---,7k)- Then the following holds:
(i) p is pure if and only if (V,V) is irreducible.
(ii) If (V,V) is irreducible, then the GNS representation of OnXG by p is
equivalent to GP(w)x(V, V).

Proof. Let (H,n) be GP(w)x(V,V) with the GP subspace V' C H.
Then there is a unitary u from V to V' such that Adu o (r|g) = V. Define
Q = ue; and a state p' of Oy XG by p/<SJ8*KAg) =< Qn(ss85)AgQ > for
g€ Gand J,K € {1,...,N}*. Then we can verify that p' = p. Therefore
the statements hold by Theorem 1.2. O

W) for J =



4. Example
Let {z-:j}évzl be the standard basis of CV and d, be the dimension of the

representation associated with v € G for a group G in this section.

4.1. Examples of Theorem 1.2.

Example 4.1. Let (I3(IN), 7) be a representation of Oy defined by 7(s;)e, =
eN(n—1)+i forn € Nandi=1,...,N. (I2(N),7) is an irreducible permuta-
tive representation. Deﬁne an action § of U(N — 1) on Oy by B4(s1) = s1
and (y(t;) = Z] Lgjit; for g = (gij) € U(N — 1) where t; = s;4; for
i =1,...,N —1. Then (I2(N),n) is GP(e1) of Oy and G = U, (N) =
{1} x U(N — 1) 2 U(N —1). For the regular representation (La(U(N —
1),12(N)), IT) of OnxgU(N — 1) induced by (I2(IN), 7) of On, the following
irreducible decomposition holds:

(L2(U(N = 1),1,(N)), ) = € (GP(er)x)®
vEU(N-1)

When N = 2, the action 8 of U(1) on O3 is given by (.(s1) = s1, B(s2) = ¢s2
for ¢ € U(1). For Oyx3U(1), the following irreducible decomposition holds:
(La(U(1),15(N)), TT) = €D GP(e1) X xn

neZz
where xp(c) = ¢" for ¢ € U(1). Especially this decomposition is multiplicity
free.
Example 4.2. Let G — U(N) be the natural embedding of the symmetric
group Gy by the permutation of {5]-};-\7:1 andw=c-(e;+-+en)/VN €
S(CN) for ¢ € U(1). Since p(w) = w for each p € Sy, Sy C Uy(N).
Let (H,n) be GP(w). Then we have the irreducible decomposition of the
regular representation of Oy XSy as follows:
Lo(&n, H)(= HY) = €D (GP(w)xy)™.

'YEGN
4.2. Other cases. The following are not examples of Theorem 1.2.
Example 4.3. For N = {1,2,3,...} and N > 2, let o(i) = i+ 1 for
i=1,...,N—1and o(N) = 1. Define operators 7" and P on l3(IN) by

Ten, = enn, PeN(n—l)—i—i = eN(n—1)+0(i) (n eN,i=1,... ,N).

Define a representation (I3(IN), 7) of Oy by
(4.1) n(s;)) = P'TP™" (i=1,...,N).

Then (I2(N),7) is GP(e1 ® --- ®epn) of On. Define 5 € AutOn by ((s;) =
So@) fori =1,...,N. Then AdPonm = 7o . ;From this, (lo(N),n, P)
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is a covariant representation of a C*-dynamical system (Opn,Zy, 3). This
induces a representation (l2(N), 7) of On XZx naturally. Because (I2(IN), 7)
is irreducible, (I2(N), 7) is irreducible.

Example 4.4. Let OnxU(1) be the C*-crossed product by the gauge ac-
tion on Oy and (H,w) be a representation of OyxU(1). If there are
w € S(CV)®* and Q € H such that 7(s(w))2 = €, then we can show
that 2 = 0. jFrom this, there is no permutative representation of cycle type
for Oy xU(1).

4.3. Permutative representation of Oy x(TV"!xZy). For N > 2, let
transformations 7 on TN=! = {(21,...,2ny_1) : Vi, 2z, € C,|z| = 1} and &
on ZV~1 as follows: when N =2, 7(2) = 2, k(n) = 1 —n and when N > 3,

(21, ,28-1) = (22,.+,2N-1,21 " ZN—1),
(12) -
k(ni,...,ny—1) = (n2—n1+1,n3—ny,...,nNy—_1 —ny,—nq).

7 and k induce actions of the cyclic group Zy = {01 : i =1,...,N}
where o is a cyclic permutation on {1,..., N} defined by o(i) = i+ 1 for
i=1,....,N—1and o(N) = 1. Forn = (n1,...,ny_1) € Z¥~! and
z=(21,...,2nv-1) € TN7L define 2" = 2] - 27", The action & is free.
Define [n] = {x""!(n):i=1,...,N} and G = TN~ xZy by 7. We denote
an element in G by (z,07). We identify both TN~! and Zy as subgroups of
G. G is realized as a subgroup G =< {diag(z1,...,2N-1,21 " 2n-1), P} >
of U(N) where P € U(N) is defined by Pe; = g4(;) for i = 1,...,N. We
identify G and G'. We denote the action of G on Oy by «a. Define the
crossed product Oy X G for the C*-dynamical system (Op, G, «).

Definition 4.5. Forn € ZV~!, a representation (H,n) of Oy XG is P(1--- N|n)
if there is a cyclic vector Q) € ‘H such that

m(s1sn)Q=Q, T.Q0=:"Q (Vz2eTV 1
where T, = 7((2,id)) for = € TN=. Q is called the GP vector of (H,T).

A representation (K, 7) of Oy is P(1--- N) if there is a cyclic unit vector 2
such that 7(sy---sn)Q = Q. (I2(N),n) in Example 4.3 is P(1--- N).

Theorem 4.6. (i) For each n € ZN=1, P(1--- N|n) is unique up to uni-
tary equivalence.

(ii) For eachn € ZN~1, P(1--- N|n) is irreducible.

(iii) Forn,m € ZN=1, P(1---N|n) ~ P(1--- N|m) if and only if [n] = [m].

(iv) Let (K,m) be P(1---N) of On and (L2(G,K),II) be the reqular repre-
sentation of ONXG induced by (IC, 7). Then there is an orthonormal
family {v, € La(G,K) : n € ZN~'Y such that v, is the GP vector
of P(1---Nn) of ONXG and the following irreducible decomposition

8



with respect to the action of Oy X G holds:
(4.3) Ly(G.K)= €D Wn, Win=T(OxxG)v,

nezZN-1
The multiplicity of each component in the decomposition in (4.3) is N. (4.3)
implies that the existence of P(1--- N|n) for each n € ZV~!

We show the case N = 2 in Theorem 4.6. Let 7 be an action of Zs
onU(l)={z€C:lzl=1}byzr— 2z k(n) =1—-n G =U(1)xZ
is realized as a subgroup {( (Z) (z_) > , < 2 S > 1z € U(l)} of U(2). Let
(K, ) be P(12) of Oy with the GP vector Q and (L2(G, K),II) be the regular
representation of Oy X G induced by (I, 7). Define

Qpi(z,00) =60 -27"Q, Qu_(2,07) =61, -27"Q

for z € U(1) and j = 0,1. Then V, + = II(O2)Qy, + is P(12) of Oy,
Ly(G,K) = D,,cz(Va+ ® Vi,—). Therefore W,, =V, 1 @ V1, .

L2(G.K) = @ Vas © Vo) = @ W ~ @ (P(1210)*2

nez nez neN
since Wy, ~ Wi_,, and W, is P(12|n).

Acknowledgement: We would like to thank Takeshi Nozawa for nice his
idea.

Appendix A. Proof of Theorem 4.6

Let (H,7) be a representation of Oy. If Q. Q € H satisfy < Q|Q >= 0,
m(s1---sy)Q=Q and 7(s;---sy)Q = Q, then 7(On)Q and 7(On)Q are
orthogonal.

Lemma A.1. Let 7, k and G be in (4.2) and (H,w) be P(1---N|n) for
n € ZN=1 with the GP vector Q. Define P = ©(1,0), R = (51)P and
Q = RQ fori =1,...,N where 1 = (1,...,1) € TN=L. Then the
following holds:

(i) T.Q; = 0, and w(s1 - sn)Q=Q; fori=1,...,N.

(ii)) H=V1 @ - ® Vy where V; = w(ON); fori=1,...,N.

(iii) {m(s(x))R"Q:2 € A, i=1,...,N} is a complete orthonormal basis

of H where A=A(e1 ®---Qep) in (2.3).

Proof. (i) We see that T,R = 21 RT,-1(;) for z = (21,...,28-1) €

TN=1. By this and the induction with respect toi = 1,..., N, the statement
holds.

(ii) By (i), {4}, is an orthogonal family of vectors in H. ¢From this
and the eigenequation of Q;, {V; }121 is an orthogonal family of subspaces
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of H. Because T,V; C V; and PV; C 7(s])Vo(s) C Vo) fori = 1,..., N,
H=n(A)QCV, & - & VN C H. Hence the statement holds.

(iii) By construction, (V;,7|y,) is P(1--- N) of On with the GP vector ;.
Hence {7 (s(x))$; : x € A} is a complete orthonormal basis of V;. By (ii),
the statement holds. ]

Proof of Theorem 4.6. Let A = OxXG and R be in Lemma A.1.

(i) By Lemma A.1 (iii), the existence of the canonical basis implies the
uniqueness.

(ii) Let v € H, v # 0. Because € is a cyclic vector for (H, ), it is sufficient
to show that Q € m(A)v. Define ej; = 7(s;)R™1Q for J € A and i =
1,...,N. Then v = EJJ. ajiey;. Choose J,i such that ay; # 0. Then <
Ql(m(s;)R~1Y)*v ># 0. We can assume that v = Q+y fory € H, < Qly >=
0. Then v = limy,_oo(m(s1 -+ Sn)*) "0 = Q—i—Z;y:Q ¢j§); € (On)v for some
¢j € Cforj=2,...,N. ;From this, Q = [n_: 2T du(z) € n(A)v.
Hence the statement holds.

(iii) Assume that P(1--- N|n) ~ P(1--- N|m). By Lemma A.1, P(1--- N|n)
and P(1--- N|m) have vectors Q,...,Qy and Qll, - Q'N which satisfy the
statement, respectively. By the description above Lemma A.1, the vector in
the statement is unique up to scalar multiple. By checking the eigenvalues
by T, the statement holds.

(iv) Because Lo(G,K) = @Y (K ® Ly(TN1 . 67 1), {7(s/)Q® fri: J €
Ai=1,...,N,n € ZVN"1} is a complete orthonormal basis of Ly(G,K)
where fp, (2, ol) =z j1—i. Define {¢p; : n € ZN=1i=1,... N} C
LQ(G ]C) by ¢n, z(z 0']) 5] 1—i- 27" (Si T SN)Q' Then R¢n,z = ¢n(n),0*1(i)
and TI(sp - sN)gzbm = ¢n,i where R = II(s1)P. (From this, Ly(G,K) =
D,czv-1 691 1 Vi where V,,; = II(ON)¢y,,i. Define W, = T(A)pn1 )Pn1. We
see that @l 1 Vieirim),o1-i(1) € Wha. Because T.V,,; C Vp; and PV,; C
H(Sl) Vﬁ(n) 1(4) - Vn(n)70'_1(i)7 Wy C @f\il Vnifl(n%o.l—i(l). In consequence,
Wi @Z 1 Vii=1(n),o1-i(1)- By these, the decomposition holds. vy, is ob-
tained by normahzmg ¢n,1. By definition, (W, 1|y, ) is P(1--- N|n) of A.
Hence each component is irreducible. O
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