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��������� In this paper, we develop the theory of “cuspidalizations” of the étale
fundamental group of a proper hyperbolic curve over a finite or nonarchimedean local

field. The ultimate goal of this theory is the group-theoretic reconstruction of the

étale fundamental group of an arbitrary open subscheme of the curve from the étale

fundamental group of the full proper curve. We then apply this theory to show that

a certain absolute p-adic version of the Grothendieck Conjecture holds for hyperbolic

curves “of Belyi type”. This includes, in particular, affine hyperbolic curves over a
nonarchimedean local field which are defined over a number field and isogenous to

a hyperbolic curve of genus zero. Also, we apply this theory to prove the analogue

for proper hyperbolic curves over finite fields of the version of the Grothendieck

Conjecture that was shown in [Tama].
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Introduction

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local; let U ⊆ X be an open subscheme of X. Write ΠX for the
étale fundamental group of X. In this paper, we study the extent to which the étale
fundamental group of U may be group-theoretically reconstructed from ΠX .

In §1, we show that the abelian portion of the extension of ΠX determined
by the étale fundamental group of U may be group-theoretically reconstructed from
ΠX [cf. Theorem 1.16, (iii)], and, moreover, that this construction has certain
remarkable rigidity properties [cf. Propositions 1.15, (i); 2.6, (i)].

In §2, we show that this abelian portion of the extension is sufficient to recon-
struct [in essence] the multiplicative group of the function field of X [cf. Theorem
2.5, (ii)]. In the case of nonarchimedean local fields, this already implies various
interesting consequences in the context of the absolute anabelian geometry studied

Typeset by AMS-TEX

1



2 SHINICHI MOCHIZUKI

in [Mzk5], [Mzk6], [Mzk8]. In particular, it implies that the absolute p-adic ver-
sion of the Grothendieck Conjecture [i.e., an absolute version of [a certain portion
of] the relative result that appears as the main result of [Mzk4]] holds for hyper-
bolic curves “of Belyi type” [cf. Definition 2.9; Corollary 2.12]. This includes, in
particular, hyperbolic curves “of strictly Belyi type”, i.e., affine hyperbolic curves
over a nonarchimedean local field which are defined over a number field and isoge-
nous to a hyperbolic curve of genus zero. In particular, we obtain a new countable
class of “absolute curves” [in the terminology of [Mzk6]], whose absoluteness is, in
certain respects, reminiscent of the absoluteness of the canonical curves of p-adic
Teichmüller theory discussed in [Mzk6] [cf. Remark 2.13.1], but [in contrast to the
class of canonical curves] appears [at least from the point of view of certain circum-
stantial evidence] unlikely to be Zariski dense in most moduli spaces [cf. Remark
2.13.2].

Finally, in §3, we apply the theory of the weight filtration [cf., e.g., [Kane],
[Mtm]] to develop various “higher order generalizations” of the theory of §1, 2.
In particular, we obtain various “higher order generalizations” of the “remarkable
rigidity” referred to above [cf. Corollaries 3.8, 3.9, especially Corollary 3.9, (iii)],
which we apply to show that, relative to the notation introduced above, the ge-
ometrically pro-l portion [where l is a prime number invertible in k] of the étale
fundamental group of U may be recovered from ΠX , at least when U is obtained
from X by removing a single k-rational point [cf. Theorem 3.10]. This, along with
the theory of §2, allows one to verify the analogue for proper hyperbolic curves over
finite fields of the version of the Grothendieck Conjecture that was shown in [Tama]
[cf. Theorem 3.12].
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Section 0: Notations and Conventions

Numbers:

We shall denote by Ẑ the profinite completion of the additive group of rational
integers Z. If p is a prime number, then Zp denotes the ring of p-adic integers;
Qp denotes its quotient field. We shall refer to as a p-adic local field (respectively,
nonarchimedean local field) any finite field extension of Qp (respectively, a p-adic
local field, for some p). A number field is defined to be a finite extension of the field
of rational numbers. If Σ is a set of prime numbers, then we shall refer to a positive
integer each of whose prime factors belongs to Σ as a Σ-integer. We shall refer to a
finite étale covering of schemes whose degree is a Σ-integer as a Σ-covering. Also,
we shall write Primes for the set of all prime numbers.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

Gab

for the abelianization of G [i.e., the quotient of G by the topological subgroup of G
generated by the commutators of G]. Let us write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G;

NG(H) def= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g ·H · g−1)
⋂

H has finite index in H, g ·H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H). If H = NG(H) (respectively, H = CG(H)), then
we shall say that H is normally terminal (respectively, commensurably terminal) in
G. Note that ZG(H), NG(H) are always closed in G, while CG(H) is not necessarily
closed in G.

If G1, G2 are Hausdorff topological groups, then an outer homomorphism
G1 → G2 is defined to be an equivalence class of continuous homomorphisms
G1 → G2, where two such homomorphisms are considered equivalent if they differ
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by composition with an inner automorphism of G2. The group of outer automor-
phisms of G [i.e., bijective bicontinuous outer homomorphisms G → G] will be
denoted Out(G). If G is center-free, then there is a natural exact sequence:

1→ G→ Aut(G)→ Out(G)→ 1

[where the homomorphism G→ Aut(G) is defined by letting G act on G by conju-
gation].

If G is a profinite group such that, for every open subgroup H ⊆ G, we have
ZG(H) = {1}, then we shall say that G is slim. One verifies immediately that G
is slim if and only if every open subgroup of G is center-free [cf. [Mzk5], Remark
0.1.3].

If G is a profinite group and Σ is set of prime numbers, then we shall say that
G is a pro-Σ group if the order of every finite quotient group of G is a Σ-integer. If
Σ = {l} is of cardinality one, then we shall refer to a pro-Σ group as a pro-l group.

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) byMg,r [cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering ofMg,r determined
by ordering the marked points]. The open substackMg,r ⊆Mg,r of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g, r).

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y,D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact is
well-known from the elementary theory of algebraic curves. Next, we consider an
arbitrary connected normal S on which a prime l is invertible (which, by Zariski
localization, we may assume without loss of generality). Denote by S ′ → S the finite
étale covering parametrizing orderings of the marked points and trivializations of
the l-torsion points of the Jacobian of Y . Note that S ′ → S is independent of
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the choice of (Y,D), since (by the normality of S), S ′ may be constructed as the
normalization of S in the function field of S ′ (which is independent of the choice
of (Y,D) since the restriction of (Y,D) to the generic point of S has already been
shown to be unique). Thus, the uniqueness of (Y,D) follows by considering the
classifying morphism (associated to (Y,D)) from S ′ to the finite étale covering of
(Mg,r)Z[ 1l ] parametrizing orderings of the marked points and trivializations of the
l-torsion points of the Jacobian [since this covering is well-known to be a scheme, for
l sufficiently large].) We shall refer to Y (respectively, D; D) as the compactification
(respectively, divisor of cusps; divisor of marked points) of X. A family of hyperbolic
curves X → S is defined to be a morphism X → S such that the restriction of this
morphism to each connected component of S is a family of hyperbolic curves of type
(g, r) for some integers (g, r) as above. A family of hyperbolic curves X → S of
type (0, 3) will be referred to as a tripod.

If X is a hyperbolic curve over a field K with compactification X ⊆ X , then
we shall write

Xcl; Xcl+

for the sets of closed points of X and X, respectively.

If XK (respectively, YL) is a hyperbolic curve over a field K (respectively, L),
then we shall say that XK is isogenous to YL if there exists a hyperbolic curve ZM

over a field M together with finite étale morphisms ZM → XK , ZM → YL.

If X is a generically scheme-like algebraic stack [i.e., an algebraic stack which
admits a “scheme-theoretically” dense open that is isomorphic to a scheme] over a
field K of characteristic zero that admits a [surjective] finite étale [or, equivalently,
finite étale Galois] covering Y → X, where Y is a hyperbolic curve over a finite
extension of K, then we shall refer to X as a hyperbolic orbicurve over K. [Although
this definition differs from the definition of a “hyperbolic orbicurve” given in [Mzk6],
Definition 2.2, (ii), it follows immediately from a theorem of Bundgaard-Nielsen-Fox
[cf., e.g., [Namba], Theorem 1.2.15, p. 29] that these two definitions are equivalent.]
If X → Y is a dominant morphism of hyperbolic orbicurves, then we shall refer to
X → Y as a partial coarsification morphism if the morphism induced by X → Y
on associated coarse spaces [cf., e.g., [FC], Chapter I, §4.10] is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field of character-
istic zero; denote its étale fundamental group by ∆X . We shall refer to the order of
the [manifestly finite!] decomposition group of a closed point x of X as the order
of x. We shall refer to the [manifestly finite!] least common multiple of the orders
of the closed points of X as the order of X. Thus, it follows immediately from the
definitions that X is a hyperbolic curve if and only if the order of X is equal to 1.
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Section 1: Cuspidalizations

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local. Write

dk

for the cohomological dimension of k. Thus, if k is finite (respectively, nonar-
chimedean local), then dk = 1 (respectively, dk = 2 [cf., e.g., [NSW], Chapter 7,
Theorem 7.1.8, (i)]). If k is finite (respectively, nonarchimedean local), we shall
denote the characteristic of k (respectively, of the residue field of k) by p and the
number p (respectively, 1) by p†. Also, we shall write

Primes† def= Primes\(Primes
⋂
{p†})

[where Primes is the set of all prime numbers [cf. §0]; the intersection is taken in
the “ambient set” Z].

Let Σ be a set of prime numbers that contains at least one prime number that
is invertible in k. Write

Σ′ def= Σ\(Σ
⋂
{p}); Σ† def= Σ\(Σ

⋂
{p†})

[where the intersections are taken in the “ambient set” Z]. Denote by Ẑ′ the max-
imal pro-Σ′ quotient of Ẑ and by Ẑ† the maximal pro-Σ† quotient of Ẑ.

If k is an algebraic closure of k, then we shall denote the result of base-changing
objects over k to k by means of a subscript “k”. Any choice of a basepoint of X
determines an algebraic closure k of k, and hence an exact sequence

1→ π1(Xk)→ π1(X)→ Gk → 1

where Gk
def= Gal(k/k); π1(X), π1(Xk) are the étale fundamental groups of X,

Xk, respectively. Write ∆X for the maximal pro-Σ quotient of π1(Xk) and ΠX
def=

π1(X)/Ker(π1(Xk)� ∆X). Thus, we have an exact sequence:

1→ ∆X → ΠX → Gk → 1

Similarly, if we write X ×X
def= X×kX, then we obtain [by considering the maximal

pro-Σ quotient of π1((X ×X)k)] an exact sequence

1→ ∆X×X → ΠX×X → Gk → 1

where ΠX×X (respectively, ∆X×X) may be identified with ΠX×GkΠX (respectively,
∆X ×∆X). Let ΠZ ⊆ ΠX×X be an open subgroup that surjects onto Gk. Write
Z → X ×X for the corresponding covering; ∆Z

def= Ker(ΠZ � Gk).
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Proposition 1.1. (Group-theoreticity of Étale Cohomology) Let Ẑ† � A
be a finite quotient, and N a finite A-module equipped with a continuous ∆X-
(respectively, ΠX-; ∆Z-; ΠZ-) action. Then for i ∈ Z, the natural homomorphism

Hi(∆X , N)→ Hi
ét(Xk, N) (respectively, Hi(ΠX , N)→ Hi

ét(X,N);

Hi(∆Z , N)→ Hi
ét(Zk, N); Hi(ΠZ , N)→ Hi

ét(Z,N))

is an isomorphism.

Proof. In light of the Leray spectral sequence for the surjections ΠX � Gk,
ΠZ � Im(ΠZ) ⊆ ΠX [i.e., where “Im(−)” denotes the image via the natural
homomorphism associated to one of the projections Z → X ×X → X], it suffices
to verify the asserted isomorphism in the case of ∆X . If Y → Xk is a connected finite
étale Galois Σ-covering, then the associated Leray spectral sequence has “E2-term”
given by the cohomology of Gal(Y/X) with coefficients in the étale cohomology of
Y and abuts to the étale cohomology of Xk. By allowing Y to vary, one then verifies
immediately that it suffices to verify that every étale cohomology class of Y [with
coefficients in N ] vanishes upon pull-back to some [connected] finite étale Σ-covering
Y ′ → Y . Moreover, by passing to an appropriate Y , one reduces immediately to
the case where N = A, equipped with the trivial ΠX -action. Then the vanishing
assertion in question is a tautology for “H1”; for “H2”, it suffices to take Y ′ → Y
so that the degree of Y ′ → Y annihilates A [cf., e.g., the discussion at the bottom
of [FK], p. 136]. ©

Set:

MX
def= Hom

�Z†(H2(∆X , Ẑ†), Ẑ†); Mk
def= Hom

�Z†(Hdk(Gk,M
⊗dk−1
X ),M⊗dk−1

X )

Thus, Mk, MX are free Ẑ†-modules of rank one; MX is isomorphic as a Gk-module
to Ẑ†(1) [where the “(1)” denotes a “Tate twist” — i.e., Gk acts on Ẑ†(1) via the
cyclotomic character]; Mk is isomorphic as a Gk-module to Ẑ†(dk−1). [Indeed, this
follows from Proposition 1.1; Poincaré duality [cf., e.g., [FK], Chapter II, Theorem
1.13]; the fact, in the finite field case, that Gk

∼= Ẑ [together with an easy compu-
tation of the group cohomology of Ẑ]; the well-known theory of the cohomology of
nonarchimedean local fields [cf., e.g., [NSW], Chapter 7, Theorem 7.2.6].]

Remark 1.2.0. Note that for any open subgroup ΠX ′ ⊆ ΠX [which we think of as
corresponding to a finite étale covering X ′ → X], we obtain a natural isomorphism

MX
∼→ MX ′

by applying the functor Hom
�Z†(−, Ẑ†) to the induced morphism on group coho-

mology H2(∆X , Ẑ†) → H2(∆X ′, Ẑ†) [where ∆X ′
def= Ker(ΠX ′ → Gk)] and dividing

by [∆X : ∆X ′]. [One verifies easily that this does indeed yield an isomorphism
— cf., e.g., the discussion at the bottom of [FK], p. 136.] Moreover, relative to



8 SHINICHI MOCHIZUKI

the tautological isomorphisms H2(∆X ,MX ) ∼= Ẑ†, H2(∆X ′,MX ′) ∼= Ẑ†, the iso-
morphism MX

∼→ MX ′ just constructed induces [via the restriction morphism on
group cohomology] the morphism Ẑ† → Ẑ† given by multiplication by [∆X : ∆X ′].
Similarly, if k′ is the base field of X ′, then we obtain a natural isomorphism

Mk
∼→ Mk′

by applying the natural isomorphism MX
∼→ MX ′ just constructed and the dual of

the natural pull-back morphism on group cohomology and then dividing by [k′ : k]
[cf., e.g., [NSW], Chapter 7, Corollary 7.1.4].

Proposition 1.2. (Top Cohomology Modules)

(i) There are natural isomorphisms:

Hdk(Gk,Mk) ∼= Ẑ†; H2(∆X ,MX ) ∼= Ẑ†; Hdk+2(ΠX ,MX ⊗Mk) ∼= Ẑ†

H4(∆Z ,M⊗2
X ) ∼= Ẑ†; Hdk+4(ΠZ ,M⊗2

X ⊗Mk) ∼= Ẑ†

(ii) There is a unique isomorphism MX
∼→ Ẑ†(1) such that the image of

1 ∈ Ẑ† maps via the composite of the isomorphism Ẑ† ∼= H2(∆X ,MX) of (i)
with the isomorphism H2(∆X ,MX ) ∼→ H2(∆X , Ẑ†(1)) induced by the isomorphism
MX

∼→ Ẑ†(1) in question to the [first] Chern class of a line bundle of degree 1 on
Xk.

Proof. Assertion (i) follows from the definitions; the Leray spectral sequence for
the surjections ΠX � Gk, ΠZ � Im(ΠZ ) ⊆ ΠX [i.e., where “Im(−)” denotes the
image via the natural homomorphism associated to one of the projections Z →
X ×X → X]. Assertion (ii) is immediate from the definitions. ©

Proposition 1.3. (Duality) For i ∈ Z, let Ẑ† � A be a finite quotient, and
N a finite A-module.

(i) Suppose that N is equipped with a continuous Gk-action. Then the pairing

Hi(Gk, N)×Hdk−i(Gk,HomA(N,Mk ⊗ A))→ A

determined by the cup product in group cohomology and the natural isomorphisms
of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(Gk, N) ∼→ HomA(Hdk−i(Gk,HomA(N,Mk ⊗ A)),A)

(ii) Suppose that N is equipped with a continuous ΠX- (respectively, ∆X-; ΠZ-;
∆Z-) action. Then the pairing
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Hi(ΠX , N)×Hdk+2−i(ΠX ,HomA(N,MX ⊗Mk ⊗A))→ A

(respectively, Hi(∆X , N)×H2−i(∆X ,HomA(N,MX ⊗A))→ A;

Hi(ΠZ , N)×Hdk+4−i(ΠZ ,HomA(N,M⊗2
X ⊗Mk ⊗A))→ A;

Hi(∆Z , N)×H4−i(∆Z ,HomA(N,M⊗2
X ⊗ A))→ A)

determined by the cup product in group cohomology and the natural isomorphisms
of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(ΠX , N) ∼→ HomA(Hdk+2−i(ΠX ,HomA(N,MX ⊗Mk ⊗ A)),A)

(respectively, Hi(∆X , N) ∼→ HomA(H2−i(∆X ,HomA(N,MX ⊗ A)),A);

Hi(ΠZ , N) ∼→ HomA(Hdk+4−i(ΠZ ,HomA(N,M⊗2
X ⊗Mk ⊗ A)),A);

Hi(∆Z , N) ∼→ HomA(H4−i(∆Z ,HomA(N,M⊗2
X ⊗ A)),A))

Proof. Assertion (i) follows immediately from the fact that Gk
∼= Ẑ [together with

an easy computation of the group cohomology of Ẑ] in the finite field case; [NSW],
Chapter 7, Theorem 7.2.6, in the nonarchimedean local field case. Assertion (ii)
then follows from assertion (i); the Leray spectral sequences associated to ΠX �
Gk, ΠZ � Im(ΠZ ) ⊆ ΠX [i.e., where “Im(−)” denotes the image via the natural
homomorphism associated to one of the projections Z → X ×X → X]; Proposition
1.1; Poincaré duality [cf., e.g., [FK], Chapter II, Theorem 1.13]. ©

Proposition 1.4. (Automorphisms of Cyclotomic Extensions)

(i) We have: H0(Gk,H1(∆X ,MX )) = 0.

(ii) There are natural isomorphisms

H1(ΠX ,MX) ∼→ H1(Gk,MX) ∼→ (k×)∧

H1(ΠZ ,MX) ∼→ H1(Gk,MX) ∼→ (k×)∧

— where the first isomorphisms in each line are induced by the surjections ΠX �
Gk, ΠZ � Gk; the second isomorphisms in each line are induced by the isomor-
phism of Proposition 1.2, (ii), and the Kummer exact sequence; (k×)∧ is the max-
imal pro-Σ†-quotient of k×.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for abelian
varieties over finite fields” [cf., e.g., [Mumf], p. 206] in the finite field case; [Mzk8],
Lemma 4.6, in the nonarchimedean local field case. The first isomorphisms of
assertion (ii) follow immediately from assertion (i) and the Leray spectral sequences
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associated to ΠX � Gk, ΠZ � Gk; the second isomorphisms follow immediately
from consideration of the Kummer exact sequence for Spec(k). ©

Definition 1.5.

(i) Let H be a profinite group equipped with a homomorphism H → ΠX . Then
we shall refer to the kernel IH of H → ΠX as the cuspidal subgroup of H [relative
to H → ΠX ]. We shall say that H is cuspidally abelian (respectively, cuspidally
pro-Σ∗ [where Σ∗ is a set of prime numbers]) [relative to H � ΠX ] if IH is abelian
(respectively, a pro-Σ∗ group). If H is cuspidally abelian, then observe that H/IH

acts naturally [by conjugation] on IH ; we shall say that H is cuspidally central
[relative to H → ΠX ] if this action of H/IH on IH is trivial. Also, we shall use
similar terminology to the terminology just introduced for H � ΠX when ΠX is
replaced by ∆X , ΠX×X , ∆X×X .

(ii) Let H be a profinite group; H1 ⊆ H a closed subgroup. Then we shall
refer to as an H1-inner automorphism of H an inner automorphism induced by
conjugation by an element of H1. If H ′ is also a profinite group, then we shall
refer to as an H1-outer homomorphism H ′ → H an equivalence class of homo-
morphisms H ′ → H, where two such homomorphisms are considered equivalent if
they differ by composition by an H1-inner automorphism. If H is equipped with
a homomorphism H → Gk [cf., e.g., the various groups introduced above], and
H1

def= Ker(H → Gk), then we shall refer to an H1-inner automorphism (respec-
tively, H1-outer homomorphism) as a geometrically inner automorphism (respec-
tively, geometrically outer homomorphism). If H is equipped with a structure of
extension of some other profinite group H0 by a finite product H1 of copies of MX ,
or, more generally, a projective limit H1 of such finite products, then we shall refer
to an H1-inner automorphism (respectively, H1-outer homomorphism) as a cyclo-
tomically inner automorphism (respectively, cyclotomically outer homomorphism).
If H is equipped with a homomorphism to ΠX , ∆X , ΠX×X , or ∆X×X [cf. the
situation of (i)], and H1 is the kernel of this homomorphism, then we shall refer to
an H1-inner automorphism (respectively, H1-outer homomorphism) as a cuspidally
inner automorphism (respectively, cuspidally outer homomorphism).

Next, let
ΠX ′ ⊆ ΠX

be an open normal subgroup, corresponding to a finite étale Galois covering X ′ → X.
Set

ΠZ′
def= ΠX ′×X′ ·ΠX ⊆ ΠX×X

[where we regard ΠX as a subgroup of ΠX×X via the diagonal map]; write Z ′ →
X ×X for the covering determined by ΠZ′ . Thus, it is a tautology that the diagonal
morphism ι : X ↪→ X ×X lifts to a morphism

ι′ : X ↪→ Z ′



ABSOLUTE ANABELIAN CUSPIDALIZATIONS 11

which induces the inclusion ΠX ↪→ ΠZ′ on fundamental groups. If Z → X ×X is
a connected finite étale covering arising from an open subgroup of ΠX×X , write:

UX×X
def= (X ×X)\ι(X); UZ

def= (UX×X)×(X×X) Z

Denote by ∆UX×X the maximal cuspidally [i.e., relative to the natural map to
π1((X ×X)k)] pro-Σ† quotient of the maximal pro-Σ quotient of the tame funda-
mental group of (UX×X)k [where “tame” is with respect to the divisor ι(X) ⊆
X ×X] and by ΠUX×X the quotient π1(UX×X)/Ker(π1((UX×X)k) � ∆UX×X );
write ΠUZ ⊆ ΠUX×X for the open subgroup corresponding to the finite étale cover-
ing UZ → UX×X .

Proposition 1.6. (Characteristic Class of the Diagonal)

(i) The pull-back morphism arising from the natural inclusion

ΠX ↪→ ΠZ′ (⊆ ΠX×X = ΠX ×Gk ΠX)

composed with the natural isomorphism of Proposition 1.2, (i), determines a homo-
morphism

Hdk+2(ΠZ′ ,MX ⊗Mk)→ Hdk+2(ΠX ,MX ⊗Mk) ∼→ Ẑ†

hence [by Proposition 1.3, (ii)] a class

ηdiag
Z′ ∈ H2(ΠZ′ ,MX )

which is equal to the étale cohomology class associated to ι′(X) ⊆ Z ′, or, alterna-
tively, the [first] Chern class of the line bundle OZ′ (ι′(X)).

(ii) Denote by
L×

diag[Z
′]→ Z ′

the complement of the zero section in the geometric line bundle [i.e., Gm-torsor]
determined by OZ′(ι′(X)), by ∆

L
×
diag[Z

′] the maximal cuspidally pro-Σ† quotient of

the maximal pro-Σ quotient of the tame fundamental group of (L×
diag[Z

′])k [where
“tame” is with respect to the divisor determined by the complement of the Gm-
torsor L×

diag[Z
′] in the naturally associated P1-bundle], and by Π

L
×
diag[Z

′ ] the quotient

π1(L×
diag[Z

′])/Ker(π1((L×
diag[Z

′])k)� ∆
L
×
diag[Z

′]). Then [in light of the isomorphism
of Proposition 1.2, (ii)] we have a natural exact sequence

1→MX → Π
L
×
diag[Z′] → ΠZ′ → 1

whose associated extension class is equal to the class ηdiag
Z′ .

(iii) The global section of OZ′(ι′(X)) over Z ′ determined by the natural inclu-
sion OZ′ ↪→OZ′(ι′(X)) defines a morphism

UZ′ → L
×
diag[Z

′]
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over Z ′ which induces a surjective homomorphism of groups over ΠZ′ :

ΠUZ′ � ΠL
×
diag[Z

′ ]

Proof. Assertion (i) follows immediately from Propositions 1.1, 1.2, 1.3, together
with well-known facts concerning Chern classes and associated cycles in étale co-
homology [cf., e.g., [FK], Chapter II, Definition 1.2, Proposition 2.2]. Assertion
(ii) follows from Proposition 1.1; [Mzk7], Definition 4.2, Lemmas 4.4, 4.5. Asser-
tion (iii) follows from [Mzk8], Lemma 4.2, by considering fibers over one of the
two natural projections ΠZ′ → ΠX×X � ΠX . [Here, we note that although in
[Mzk7], §4; [Mzk8], the base field is assumed to be of characteristic zero, one ver-
ifies immediately that the same arguments as those applied in loc. cit. yield the
corresponding results in the finite field case — so long as we restrict the coefficients
of the cohomology modules in question to modules over Ẑ†.] ©

Definition 1.7.

(i) We shall refer to a covering Z ′ → X ×X as in the above discussion as the
diagonal covering associated to the covering X ′ → X. We shall refer to an extension
of profinite groups

1→MX →D′ → ΠZ′ → 1

whose associated extension class is the class ηdiag
Z′ of Proposition 1.6, (i), as a fun-

damental extension [of ΠZ′ ]. In the following (ii) — (iv), we shall assume that
1→MX → D → ΠX×X → 1 is a fundamental extension.

(ii) Let x, y ∈ X(k); write Dx,Dy ⊆ ΠX for the associated decomposition
groups [which are well-defined up to conjugation by an element of ∆X — cf. Remark
1.7.1 below]. Now set:

Dx
def= D|Dx×Gk

ΠX ; Dx,y
def= D|Dx×Gk

Dy

Thus, Dx (respectively, Dx,y) is an extension of ΠX (respectively, Gk) by MX .
Similarly, if D =

∑
i mi ·xi, E =

∑
j nj · yj are divisors on X supported on points

that are rational over k, then set:

DD
def=
∑

i

mi · Dxi ; DD,E
def=
∑
i,j

mi · nj · Dxi,yj

[where the sums are to be understood as sums of extensions of ΠX or Gk by MX

— i.e., the sums are induced by the additive structure of MX ]. Also, we shall write
C def= −D|ΠX [where we regard ΠX as a subgroup of ΠX×X via the diagonal map].
[Thus, C is an extension of ΠX by MX whose extension class is the Chern class of
the canonical bundle of X.]
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(iii) Let S ⊆ X(k) be a finite subset. Then we shall write

DS
def=
∏
x∈S

Dx

[where the product is to be understood as the fiber product over ΠX ]. Thus, DS

is an extension of ΠX by a product of copies of MX indexed by elements of S. We
shall refer to DS as an S-cuspidalization [of ΠX at S]. Observe that if T ⊆ X(k)
is a finite subset such that S ⊆ T , then we obtain a natural projection morphism
DT →DS .

(iv) We shall refer to a homomorphism

ΠUX×X →D

over ΠX×X as a fundamental section if, for some isomorphism of D with Π
L
×
diag

that induces the identity on ΠX×X , MX , the resulting composite homomorphism
ΠUX×X → Π

L
×
diag

is the homomorphism of Proposition 1.6, (iii).

Remark 1.7.1. Relative to the situation in Definition 1.7, (ii), conjugation by
elements δ ∈ ∆X induces isomorphisms between the different possible choices of
“Dx”, all of which lie over the isomorphism between any of these choices and Gk

induced by the projection ΠX � Gk. Moreover, by lifting (δ, 1) ∈ ∆X×X ⊆ ΠX×X

to an element δD ∈ D, and conjugating by δD, we obtain natural isomorphisms
between the various resulting “Dx’s” which induce the identity on the quotient
group Dx � ΠX , as well as on the subgroup MX ⊆ Dx. Note that this last
property [i.e., of inducing the identity on ΠX , MX ] holds precisely because we are
working with δ ∈ ∆X ⊆ ΠX , as opposed to an arbitrary “δ ∈ ΠX”.

Remark 1.7.2. By Proposition 1.4, (ii), if E is any profinite group extension of
ΠX (respectively, Gk; an open subgroup ΠZ ⊆ ΠX×X that surjects onto Gk) by
MX , then the group of cyclotomically outer automorphisms of the extension E [i.e.,
that induce the identity on ΠX (respectively, Gk; ΠZ ) and MX ] may be naturally
identified with (k×)∧. In particular, in the context of Definition 1.7, (iv), any two
fundamental sections of D differ, up to composition with a cyclotomically inner
automorphism of D, by a “(k×)∧-multiple”.

Proposition 1.8. (Basic Properties of Cuspidalizations) Let

1→MX → D → ΠX×X → 1

be a fundamental extension; φ : ΠUX×X � D a fundamental section; S ⊆
X(k) a finite subset. Then:

(i) The profinite groups ∆X×X, ∆X , as well as any profinite group extension
of ΠX×X or ΠX by a [possibly empty] finite product of copies of MX is slim [cf.
§0]. In particular, the profinite group DS is slim.
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(ii) For x ∈ X(k), write Ux
def= X\{x}. Denote by ∆Ux the maximal cuspidally

[i.e., relative to the natural map to π1((Ux)k)] pro-Σ† quotient of the maximal pro-Σ
quotient of the tame fundamental group of (Ux)k [where “tame” is with respect to the
complement of Ux in X] and by ΠUx the quotient π1(Ux)/Ker(π1((Ux)k)� ∆Ux).
Then the inverse image via either of the natural projections ΠUX×X � ΠX of
the decomposition group Dx ⊆ ΠX is naturally isomorphic to ΠUx . In particular,
∆UX×X , ΠUX×X are slim.

(iii) For S ⊆ X(k) a finite subset, write:

US
def=
∏
x∈S

Ux

[where the product is to be understood as the fiber product over X]. Denote by
∆US the maximal cuspidally [i.e., relative to the natural map to π1((US)k)] pro-Σ†

quotient of the maximal pro-Σ quotient of the tame fundamental group of (US)k

[where “tame” is with respect to the complement of US in X], and by ΠUS the
quotient π1(US)/Ker(π1((US)k) � ∆US). Then ∆US , ΠUS are slim. Forming
the product of the specializations of φ to the various Dx ×Gk ΠX ⊆ ΠX×X yields
homomorphisms

ΠUS →
∏
x∈S

ΠUx → DS

[where the product is to be understood as the fiber product over ΠX ]. Moreover, the
composite morphism ΠUS → DS is surjective; the resulting quotient of ∆US

def=
Ker(ΠUS � Gk) is the maximal cuspidally central quotient of ∆US [relative
to the surjection ∆US � ∆X].

(iv) The quotient of ∆UX×X

def= Ker(ΠUX×X � Gk) determined by φ : ΠUX×X �
D is the maximal cuspidally central quotient of ∆UX×X [relative to the sur-
jection ∆UX×X � ∆X×X].

Proof. Assertion (i) follows immediately from the slimness of ΠX , ∆X [cf., e.g.,
[Mzk5], Theorem 1.1.1, (ii); the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10], together
with the fact that Gk acts on MX via the cyclotomic character. Next, we consider
assertion (ii). The portion of assertion (ii) concerning ΠUx follows immediately from
the well-known “base change theorem for smooth base change” in étale cohomology
[cf., e.g., [FK], Chapter I, Theorem 7.3, for the abelian version of this result]. The
slimness assertion then follows from assertion (i) [applied to ΠX ] and the slimness
of ∆Ux [cf. the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10]. As for assertion (iii),
the slimness of ∆US , ΠUS follows via the arguments given in the proofs of [Mzk5],
Lemmas 1.3.1, 1.3.10. The existence of homomorphisms ΠUS →

∏
x∈S ΠUx → DS

as asserted is immediate from the definitions, assertion (ii). For x ∈ S, write

Dx[US ] ⊆ ΠUS

for the decomposition group of x; Ix[US ] ⊆ Dx[US ] for the inertia subgroup. Now
it is immediate from the definitions that Ix[US] maps isomorphically onto the copy
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MX in DS corresponding to the point x. This implies the desired surjectivity.
Since, moreover, it is immediate from the definitions that the cuspidal subgroup
of any cuspidally central quotient of ∆US is generated by the image of the Ix[US ],
as x ranges over the elements of S, the final assertion concerning the maximal
cuspidally central quotient of ∆US follows immediately. Assertion (iv) follows by a
similar argument to the argument applied to the final portion of assertion (iii). ©

Next, let Z ′ → X ×X (respectively, Z ′′ → X ×X; Z∗ → X ×X) be the
diagonal covering associated to a covering X ′ → X (respectively, X ′′ → X; X∗ →
X) arising from an open subgroup of ΠX ; denote by ι′ : X ↪→ Z ′ (respectively,
ι′′ : X ↪→ Z ′′; ι∗ : X ↪→ Z∗) the tautological lifting of the diagonal embedding
ι : X ↪→ X ×X and by k′ (respectively, k′′; k∗) the extension of k determined by
X ′ (respectively, X ′′; X∗). Assume, moreover, that the covering X ′′ → X factors
as follows:

X ′′ → X ′ → X∗ → X

Thus, we obtain a factorization Z ′′ → Z ′ → Z∗ → X ×X. Let

1→MX →D′′ → ΠZ′′ → 1

be a fundamental extension of ΠZ′′ .

Write
1→MX → D′′

X ′′×X′′ → ΠX ′′×X′′ → 1

for the pull-back of the extension D′′ via the inclusion ΠX ′′×X′′ ⊆ ΠZ′′ . Now
if we think of ΠX×X or ΠX ′′×X′′ as only being defined up to ∆X ′′ × {1}-inner
automorphisms, then it makes sense, for δ ∈ ∆X/∆X ′′ to speak of the pull-back of
the extension D′′

X ′′×X′′ via δ × 1:

1→MX → (δ × 1)∗D′′
X ′′×X′′ → ΠX ′′×X′′ → 1

In particular, we may form the fiber product over ΠX ′′×X′′ :

SX ′′/X∗(D′′)X ′′×X′′
def=

∏
δ∈∆X∗/∆X′′

(δ × 1)∗D′′
X ′′×X′′

Thus, SX ′′/X∗(D′′)X ′′×X′′ is an extension of ΠX ′′×X′′ by a product of copies of
MX indexed by ∆X∗/∆X ′′ ; SX ′′/X∗(D′′)X ′′×X′′ admits a tautological ∆X ′′ × {1}-
outer [more precisely, a (∆X ′′ ×{1})×ΠX′′×X′′ SX ′′/X∗(D′′)X ′′×X′′-outer] action by
the finite group ∆X∗/∆X ′′ ∼= (∆X∗/∆X ′′) × {1}. Moreover, the natural outer
action of Gal(X ′′/X) ∼= Gal((X′′ ×X ′′)/Z ′′) ∼= ΠX/ΠX ′′ on ΠX ′′×X′′ [arising
from the diagonal embedding ΠX ↪→ ΠZ′′ ] clearly lifts to an outer action of
Gal(X ′′/X) on SX ′′/X∗(D′′)X ′′×X′′ , which is compatible, relative to the natural ac-
tion of Gal(X ′′/X) on ∆X∗/∆X ′′ by conjugation, with the ∆X ′′ ×{1}-outer action
of ∆X∗/∆X ′′ on SX ′′/X∗(D′′)X ′′×X′′ . Thus, in summary, the natural isomorphism{

(∆X∗/∆X ′′)× {1}
}

� Gal(X ′′/X) ∼= Gal((X′′ ×X ′′)/Z∗)
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determines a homomorphism Gal((X′′ ×X ′′)/Z∗)→ Out(SX ′′/X∗(D′′)X ′′×X′′) via
which we may pull-back the extension “1 → (−) → Aut(−) → Out(−) → 1” [cf.
§0; Proposition 1.8, (i)] for SX ′′/X∗(D′′)X ′′×X′′ to obtain an extension

1 →
∏

∆X∗/∆X′′

MX → SX ′′/X∗(D′′) → ΠZ∗ → 1

in which ΠZ∗ is only determined up to ∆X ′′ × {1}-inner automorphisms. Note,
moreover, that every cyclotomically outer automorphism of the extension D′′ —
i.e., an element of (k×)∧ [cf. Remark 1.7.2] — induces a cyclotomically outer
automorphism of SX ′′/X∗(D′′). In particular, we have a natural cyclotomically outer
action of (k×)∧ on SX ′′/X∗(D′′).

Next, let us push-forward the extension SX ′′/X∗(D′′) just constructed via the
natural surjection ∏

∆X∗/∆X′′

MX �
∏

∆X∗/∆X′

MX

[which induces the identity morphism MX → MX between the various factors of
the domain and codomain], so as to obtain an extension TrX ′′/X′:X∗(D′′) as follows:

1 →
∏

∆X∗/∆X′

MX → TrX ′′/X′:X∗(D′′) → ΠZ∗ → 1

[in which ΠZ∗ is only determined up to ∆X ′′ × {1}-inner automorphisms].

Proposition 1.9. (Symmetrizations and Traces) In the notation of the
discussion above:

(i) The extension TrX ′′/X′:X′(D′′) of ΠZ′ by MX is a fundamental exten-
sion of ΠZ′ .

(ii) There is a natural commutative diagram:

1 −→
∏

∆X/∆X′′
MX −→ SX ′′/X(D′′) −→ ΠX×X −→ 1
 
 
id

1 −→
∏

∆X/∆X′
MX −→ SX ′/X (TrX ′′/X′:X′(D′′)) −→ ΠX×X −→ 1

[which is well-defined up to ∆X ′ × {1}-inner automorphisms — cf. Remark 1.9.1
below].

(iii) Relative to the commutative diagram of (ii), the natural cyclotomically
outer action of (k×)∧ on SX ′′/X(D′′) lies over the composite of the map (k×)∧ →
(k×)∧ given by raising to the [∆X ′ : ∆X ′′ ]-power with the natural cyclotomically
outer action of (k×)∧ on SX ′/X(TrX ′′/X′:X′(D′′)). In particular, if N is a positive
integer that divides [∆X ′ : ∆X ′′ ], then the natural cyclotomically outer action of
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an element of (k×)∧ on SX ′′/X (D′′) lies over the cyclotomically outer action of an
element of {(k×)∧}N on SX ′/X(TrX ′′/X′:X′(D′′)).

Proof. To verify assertion (i), observe that it is immediate from the definitions
that

ι′(X)×Z′ (X′′ ×X ′′) ⊆ X ′′ ×X ′′

is equal to the ∆X ′/∆X ′′-orbit of ι′′(X)×Z′′ (X′′ ×X ′′) ⊆ X ′′ ×X ′′. Now assertion
(i) follows by translating this observation into the language of étale cohomology
classes associated to subvarieties; assertions (ii), (iii) follow formally from assertion
(i) and the definitions of the various objects involved. ©

Remark 1.9.1. Relative to the commutative diagram of Proposition 1.9, (ii),
note that, although SX ′/X(TrX ′′/X′:X′(D′′)) is, by definition, only well-defined up
to ∆X ′ × {1}-inner automorphisms, the push-forward of SX ′′/X (D′′) by∏

∆X/∆X′′

MX →
∏

∆X/∆X′

MX

is well-defined up to ∆X ′′ × {1}-inner automorphisms. That is to say, the push-
forward extension implicit in this commutative diagram furnishes a canonically
more rigid version of the extension SX ′/X (TrX ′′/X′:X′(D′′)).

Definition 1.10.

(i) We shall refer to the extension SX ′′/X∗(D′′) [of ΠZ∗ ] constructed from
the fundamental extension D′′ as the [X ′′/X∗-]symmetrization of D′′, or, alter-
natively, as a symmetrized fundamental extension. We shall refer to the extension
TrX ′′/X′:X∗(D′′) [of ΠZ∗ ] constructed from the fundamental extension D′′ as the
[X ′′/X ′ : X∗-]trace of D′, or, alternatively, as a trace-symmetrized fundamental
extension.

(ii) If D′ is a fundamental extension of ΠZ′ , then we shall refer to as a morphism
of trace type any morphism

SX ′′/X(D′′)→ SX ′/X(D′)

obtained by composing the morphism

SX ′′/X(D′′)→ SX ′/X(TrX ′′/X′:X′(D′′))

of Proposition 1.9, (ii), with a morphism

SX ′/X (TrX ′′/X′:X′(D′′))→ SX ′/X(D′)

arising [by the functoriality of the construction of “SX ′/X(−)”] from an isomorphism
of [fundamental] extensions TrX ′′/X′:X′(D′′) ∼→ D′ of ΠZ′ by MX [which induces
the identity on ΠZ′ , MX ].
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(iii) We shall refer to as a pro-symmetrized fundamental extension any com-
patible system [indexed by the natural numbers]

. . .� Si � . . .� Sj � . . .� ΠX×X

of morphisms of trace type [up to inner automorphisms of the appropriate type] be-
tween symmetrized fundamental extensions, where Si is the Xi/X-symmetrization
of a fundamental extension of ΠZi ; Zi is the diagonal covering associated to an
open normal subgroup ΠXi ⊆ ΠX ; the intersection of the ΠXi is trivial. In this
situation, we shall refer to the inverse limit profinite group

S∞ def= lim←−
i

Si

as the limit of the pro-symmetrized fundamental extension {Si}; any profinite group
S∞ arising in this fashion will be referred to as a pro-fundamental extension [of
ΠX×X ].

(iv) Let S ⊆ X(k) be a finite subset; S ′ an X ′/X-symmetrization of a funda-
mental extension D′ of ΠZ′ . Then we shall write

S ′S
def=
∏
x∈S

S ′Dx×Gk
ΠX

[where the product is to be understood as the fiber product over ΠX ]. Thus, S ′S
is an extension of ΠX by a product of copies of MX . Similarly, given a projective
system {Si} as in (iii), we obtain a projective system {(Si)S}, with inverse limit:

(S∞)S

We shall refer to (S∞)S as an S-pro-cuspidalization [of ΠX at S]. Observe that if
T ⊆ X(k) is a finite subset such that S ⊆ T , then we obtain a natural projection
morphism (S∞)T → (S∞)S .

Remark 1.10.1. Let D be as in Definition 1.7, (iii); S ′, {Si}, S∞ as in Definition
1.10, (iii), (iv). Then observe that it follows from Proposition 1.8, (i), that D, S ′,
Si, and S∞ are slim. In particular, if S ⊆ Xcl is any finite set of closed points of
X, then we may form the objects

DS ; S ′S ; (Si)S ; (S∞)S

by passing to a Galois covering XkS → X [i.e., the result of base-changing X to
some finite Galois extension kS of k] such that the closed points of XkS that lie
over points of S are rational over kS; forming the various objects in question over
XkS [cf. Definition 1.7, (iii); Definition 1.10, (iv)]; and, finally, “descending to X”
via the outer action of Gal(XkS /X) = Gal(kS/k) on the various objects in question
[cf. the exact sequence “1 → (−) → Aut(−) → Out(−) → 1” of §0; the slimness
mentioned above]. Thus, in the remainder of this paper, we shall often speak of
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the various objects defined in Definition 1.7, (iii); Definition 1.10, (iv), even when
the points of the finite set S are not necessarily rational over k.

Before proceeding, we note the following:

Lemma 1.11. (Conjugacy Estimate) Let H ⊆ ∆X be a normal open
subgroup; a ∈ ∆X/H an element not equal to the identity; N a Σ†-integer [cf. §0].
Then there exists a normal open subgroup H ′ ⊆ ∆X contained in H such that for
any normal open subgroup H ′′ ⊆ ∆X contained in H ′ and any a′′ ∈ ∆X/H ′′ that
lifts a, the cardinality of the H-conjugacy class Conj(a′′,H ′′) ⊆ ∆X/H ′′ of a′′ in
∆X/H ′′ is divisible by N .

Proof. In the notation of the statement of Lemma 1.11, denote by Z(a′′,H ′′) ⊆ H
the subgroup of elements δ ∈ H such that δ · a′′ · δ−1 = a′′ in ∆X/H ′′. Then it
is immediate that if a′ is the image of a′′ in ∆X/H ′, then Z(a′′,H ′′) ⊆ Z(a′,H ′),
so the cardinality of Conj(a′′,H ′′) ∼= H/Z(a′′,H ′′) is divisible by the cardinality
of Conj(a′,H ′) ∼= H/Z(a′,H ′). Thus, it suffices to find a normal open subgroup
H ′ ⊆ H such that for any a′ ∈ H ′ that lifts a, the cardinality of Conj(a′,H ′) is
divisible by N .

To this end, let us consider, for some prime number l ∈ Σ†, the maximal pro-l
quotient H[l] of the abelianization Hab of H. Note that ∆X/H acts by conjugation
on Hab, H[l]. Now I claim that there exists a [nonzero] hl ∈ H[l] such that a(hl) /∈
Zl · hl. Indeed, if this claim were false, then it would follow that a acts on H[l] by
multiplication by a single element λ ∈ Zl. Moreover, by considering the portion of
H[l] arising from the abelianization of ∆X , it follows that λ = 1, i.e., that a acts
trivially on H[l]. But since a induces a nontrivial automorphism of the covering of
Xk determined by H, it follows that a induces a nontrivial automorphism of the
l-power torsion points of the Jacobian of Xk [since these points are Zariski dense
in this Jacobian] — a contradiction. This completes the proof of the claim.

Now let j ∈ H be an element that lifts the various hl obtained above for the
[finite collection of] primes l that divide N ; let aX ∈ ∆X be an element that lifts
a. Then observe that for some integer power M of N that is independent of the
choice of aX , the image of jn · aX · j−n · a−1

X in Hab⊗ (Z/MZ) is nonzero, for n ∈ Ẑ

with nonzero image in Ẑ/N · Ẑ. Thus, if we take H ′ equal to the inverse image
of M · Hab in ∆X , we obtain that the intersection of the subgroup j

�Z ⊆ H with
Z(a′,H ′) [where a′ ∈ ∆X/H lifts a] does not contain jn, for n ∈ Ẑ with nonzero
image in Ẑ/N · Ẑ. But this implies that the intersection (j�Z)

⋂
Z(a′,H ′) ⊆ jN ·�Z,

hence that [H : Z(a′,H ′)] is divisible by N , as desired. ©

Next, we consider the following fundamental extensions of ΠZ′′ , ΠZ′ :

D′′ def= ΠL
×
diag[Z′′]; D′ def= TrX ′′/X′:X′(D′′)
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[cf. Proposition 1.6, (ii)]. Note that in this situation, it follows immediately from
the definitions that we obtain a natural isomorphism D′ ∼→ ΠL

×
diag[Z′], which we shall

use in the following discussion to identify D′, Π
L
×
diag[Z

′ ]. Thus, we have fundamental
sections:

ΠUZ′′ � D′′; ΠUZ′ � D′

[cf. Proposition 1.6, (iii)]. In particular, by pulling back from Z ′′ to X ′′ ×X ′′, we
obtain a surjection:

ΠUX′′×X′′ � D′′
X ′′×X′′

Now if we apply the natural outer (∆X/∆X ′′) × {1}-action on ΠUX′′×X′′ to this
surjection, it follows from the definition of “SX ′′/X (D′′)” that we obtain a natural
homomorphism

ΠUX′′×X′′ � SX ′′/X(D′′)X ′′×X′′

which is easily verified [cf. Proposition 1.8, (ii), (iii)] to be surjective. Since, more-
over, the construction of this surjective homomorphism is manifestly compatible
with the outer actions of Gal(X ′′/X) on both sides, we thus obtain a natural sur-
jection:

ΠUX×X � SX ′′/X(D′′)

Now let us denote by
DX ⊆ ΠUX×X

the decomposition group of the subvariety ι(X) ⊆ X ×X. [Thus, DX is well-defined
up to conjugation; here, we assume that we have chosen a conjugate that maps to
the image of the diagonal embedding ΠX ↪→ ΠX×X via the natural surjection
ΠUX×X � ΠX×X .] Observe that we have a natural exact sequence

1→ IX → DX → ΠX → 1

[where IX — i.e., the inertia subgroup of DX — is defined so as to make the
sequence exact], together with a natural isomorphism IX

∼= MX . Also, we shall
write DX ′

def= DX

⋂
ΠUX′×X′ ; DX ′′

def= DX

⋂
ΠUX′′×X′′ . Since the construction just

carried out for double primed objects may also be carried out for single primed
objects, we thus obtain the following:

Proposition 1.12. (Symmetrized Fundamental Sections) In the notation
of the discussion above:

(i) There is a natural commutative diagram:

DX ⊆ ΠUX×X � SX ′′/X(D′′)
id


id



DX ⊆ ΠUX×X � SX ′/X(D′)

[where the vertical arrow on the right is the morphism in the diagram of Proposition
1.9, (ii)].
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(ii) Denote by means of a subscript X ′′ the result of pulling back extensions of
ΠX×X , ΠZ′′ , ΠX ′′×X′′ to ΠX ′′ [via the diagonal inclusion]. Then the projection [cf.
the fiber product defining SX ′′/X(D′′)] to the factor labeled “∆X ′′/∆X ′′” detemines
a natural surjection

ζ ′′ : SX ′′/X (D′′)X ′′ � DX ′′

whose restriction to DX ′′ [i.e., relative to the arrows in the first line of the com-
mutative diagram of (i)] defines an isomorphism DX ′′

∼→ DX ′′ . Moreover, the
cuspidal subgroup of DX ′′ maps isomorphically onto the factor of MX in SX ′′/X(D′′)
labeled “∆X ′′/∆X ′′”. In particular, if we denote by

SX ′′/X(D′′)�=

the quotient of SX ′′/X(D′′) by this factor of MX , then ζ ′′ determines a surjection

ζ ′′
�= : SX ′′/X(D′′)�=X ′′ � ΠX ′′

whose restriction to the quotient DX ′′ � ΠX ′′ is equal to the identity ΠX ′′
∼→ ΠX ′′

[up to geometric inner automorphisms]. Thus, we have a natural commutative
diagram [well-defined up to geometric inner automorphisms]

DX ′′ ↪→ SX ′′/X (D′′)X ′′
ζ′′
−→ D′′

X ′′
 
 

ΠX ′′ ↪→ SX ′′/X(D′)�=X ′′

ζ′′
�=−→ ΠX ′′

in which the two horizontal composites are isomorphisms; the vertical arrows are
surjections; the left-hand square is cartesian.

(iii) If we carry out the construction of (ii) for the single primed objects, then
the commutative diagram of (i) induces a natural commutative diagram [well-
defined up to geometric inner automorphisms]:

ΠX ′′ ↪→ SX ′′/X(D′′)�=X ′′
ζ′′
�=−→ ΠX ′′
 
 


ΠX ′ ↪→ SX ′/X (D′)�=X ′
ζ′
�=−→ ΠX ′

Moreover, there is a natural outer action of Gal(X ′′/X) (respectively, Gal(X ′/X))
on the first (respectively, second) line of this diagram; these outer actions are com-
patible with one another.

(iv) When considered up to cyclotomically inner automorphisms, the sections
of ζ ′′

�= form a torsor over the following group:∏
(∆X/∆X′′ )\(∆X′′/∆X′′ )

((k′′)×)∧
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[Here, the “\” denotes the set-theoretic complement.] The Gal(X ′′/X)-equivariant
sections of ζ ′′

�= form a torsor over the Gal(X ′′/X)-invariant subgroup of this group.
Similar statements hold for the single primed objects.

(v) The double and single primed torsors of equivariant sections of (iv) are
related, via the right-hand square of the diagram of (iii), by a homomorphism

{ ∏
(∆X/∆X′′ )\(∆X′′/∆X′′ )

((k′′)×)∧
}Gal(X ′′/X)

→
{ ∏

(∆X/∆X′ )\(∆X′/∆X′)

((k′)×)∧
}Gal(X ′/X)

[where the superscripts denote the result of taking invariants with respect to the
action of the superscripted group] with the following property:

An element ξ′′ of the domain maps to an element of the codomain whose
component in the factor labeled a′ ∈ ∆X/∆X ′ is a product of elements of
((k′)×)∧ of the form Nk′

a′′/k′ (λ′′)n′′
.

Here, a′′ ∈ (∆X/∆X ′′)\(∆X ′/∆X ′′) maps to a′ in ∆X/∆X ′; λ′′ ∈ ((k′′)×)∧ is the
component of ξ′′ in the factor labeled a′′; k′

a′′ is an intermediate field extension
between k′ and k′′ such that λ′′ ∈ ((k′

a′′)×)∧; Nk′
a′′/k′ : ((k′

a′′)×)∧ → ((k′)×)∧

is the norm map; n′′ is the cardinality of the ∆X ′-conjugacy class of a′′ in
(∆X/∆X ′′). In particular, by Lemma 1.11 [where we take “H” to be ∆X ′, “H ′′”
to be ∆X ′′ ], for a given ∆X ′, if, for a given positive integer N , ∆X ′′ is “sufficiently
small”, then an arbitrary Gal(X ′′/X)-equivariant section of ζ ′′

�= lies over the
canonical section of ζ ′

�= given in (iii), up to the cyclotomically outer action of
some N-th power of an element of the single primed version of the group exhibited
in the display of (iv).

Proof. All of these assertions follow immediately from the definitions [and, in the
case of assertion (iv), Proposition 1.4, (ii)]. ©

Definition 1.13. Let D′ be a fundamental extension of ΠZ′ ; {Si} a pro-
symmetrized fundamental extension, with limit S∞ [cf. Definition 1.10, (iii)].

(i) We shall refer to as a symmetrized fundamental section a homomorphism

ΠUX×X � SX ′/X(D′)

obtained by composing the surjection ΠUX×X � SX ′/X(D′) of Proposition 1.12,
(i), with the isomorphism SX ′/X(D′) ∼→ SX ′/X (D′) induced by an isomorphism
D′ ∼→ D′ of fundamental extensions of ΠZ′ by MX [which induces the identity on
ΠZ′ , MX ]. We shall refer to an inclusion

DX ↪→ SX ′/X(D′)
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obtained by restricting a symmetrized fundamental section to DX ⊆ ΠUX×X [cf.
Proposition 1.12, (i)] as a fundamental inclusion.

(ii) We shall refer to a compatible system of symmetrized fundamental sections
ΠUX×X → Si as a pro-symmetrized fundamental section and to the resulting limit
homomorphism ΠUX×X → S∞ as a pro-fundamental section. Similarly, we have a
notion of “pro-fundamental inclusions”.

Remark 1.13.1. Thus, by the above discussion, if we take the “Si” to be the
symmetrizations of the Π

L
×
diag[Z

′ ] as in Proposition 1.6, (ii), then we obtain natural
pro-fundamental sections and pro-fundamental inclusions [cf. Proposition 1.12, (i),
(ii), (iii)].

Proposition 1.14. (Maximal Cuspidally Abelian Quotients) Let {Si}
be a pro-symmetrized fundamental extension, with limit S∞ [cf. Definition
1.10, (iii)] and pro-fundamental section ΠUX×X � S∞ [cf. Definition 1.13,
(ii)]; S ⊆ Xcl a finite set of closed points [cf. Remark 1.10.1]. Then:

(i) The pro-fundamental section ΠUX×X � S∞ determines a surjection

ΠUS � (S∞)S

[cf. Proposition 1.8, (iii)]. The resulting quotient of ∆US (respectively, ΠUS ) is the
maximal cuspidally abelian quotient of ∆US (respectively, ΠUS ).

(ii) The quotient of ∆UX×X (respectively, ΠUX×X ) induced by the pro-funda-
mental section ΠUX×X � S∞ is the maximal cuspidally abelian quotient
[which we shall denote by] ∆UX×X � ∆c-ab

UX×X
(respectively, ΠUX×X � Πc-ab

UX×X
)

of ∆UX×X (respectively, ΠUX×X ).

Proof. Indeed, this follows as in the proof of Proposition 1.8, (iii), (iv), by observ-
ing that the cuspidal subgroup of the maximal cuspidally abelian quotient of ∆US

(respectively, ∆UX×X ) is naturally isomorphic to the inverse limit of the cuspidal
subgroups of the maximal cuspidally central quotients of the ∆US×∆X ∆X ′ (⊆ ∆US)
(respectively, ∆UX′×X′ ) [as ∆X ′ ⊆ ∆X ranges over the open normal subgroups of
∆X ]. ©

Proposition 1.15. (Automorphisms and Commensurators) Let {Si} be a
pro-symmetrized fundamental extension, with limit S∞ [cf. Definition 1.10,
(iii)] and pro-fundamental inclusion DX ↪→ S∞ [cf. Definition 1.13, (ii)].
Then:

(i) Any automorphism α of the profinite group Πc-ab
UX×X

which

(a) is compatible with the natural surjection Πc-ab
UX×X

� ΠX×X and induces
the identity on ΠX×X;
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(b) preserves the image of MX
∼= IX ⊆ DX via the natural inclusion DX ↪→

Πc-ab
UX×X

is cuspidally inner.

(ii) ΠX (respectively, ∆X) is commensurably terminal [cf. §0] in ΠX×X

(respectively, ∆X×X).

(iii) DX is commensurably terminal in Si, S∞ ∼= Πc-ab
UX×X

.

Proof. First, we verify assertion (i). By Proposition 1.14, (ii), we have a natural
isomorphism Πc-ab

UX×X

∼→ S∞, so we may think of α as an automorphism of S∞. In
light of (a); Proposition 1.8, (iii), it follows that α is compatible with the natural
surjections S∞ � Si. Write αi for the automorphism of Si induced by α. By (a),
(b), it follows that αi is an automorphism of the extension Si of ΠX×X by a product
of copies of MX which induces the identity on both ΠX×X and the product of copies
of MX [cf. the definition by a certain fiber product of the symmetrized fundamental
extension Si]. [Here, we note that the fact that αi induces the identity on each copy
of MX follows by considering the non-torsion [cf. Propositions 1.2, (ii); 1.6, (i), (ii)]
extension class determined by that copy of MX [which is preserved by αi!], together
with the fact that αi induces the identity on the second cohomology groups of open
subgroups of ∆X×X with coefficients in MX .] Thus, up to cyclotomically inner
automorphisms, αi arises from a collection of elements of (k×

i )
∧
, where ki is some

finite Galois extension of k [cf. Proposition 1.4, (ii)], one corresponding to each
copy of MX . Moreover, since these copies of MX are permuted by the action of
ΠX×X by conjugation, it follows that [up to cyclotomically inner automorphisms]
αi arises from a single element of (k×

i )
∧
, which in fact belongs to (k×)∧ (⊆ (k×

i )
∧
)

[as one sees by considering the conjugation action via the “Gk portion” of ΠX×X ].
On the other hand, since the αi form a compatible system of automorphisms of the
Si, it follows from Proposition 1.9, (iii), that this element of (k×)∧ must be equal
to 1, as desired.

Next, to verify assertion (ii), let us observe that it suffices to show that ∆X is
commensurably terminal in ∆X×X . But this follows immediately from the fact that
∆X is slim [cf. Proposition 1.8, (i)]. Finally, we consider assertion (iii). Clearly,
it suffices to show that DX is commensurably terminal in Si. By assertion (ii),
to verify this commensurable terminality, it suffices to show that the [manifestly
abelian] cuspidal subgroup Hi ⊆ Si [i.e., relative to the natural surjection Si �
ΠX×X ] satisfies the following property: Every h ∈ Hi such that hδ − h ∈ DX ,
for all δ in some open subgroup J of DX , satisfies h ∈ DX . But this property
follows immediately [cf. the definition by a certain fiber product of the symmetrized
fundamental extension Si] from the fact that, for J sufficiently small, the J -module
Hi/(DX

⋂
Hi) is isomorphic to a direct product of a finite number of copies of MX .

©

The following result is the main result of the present §1:
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Theorem 1.16. (Reconstruction of Maximal Cuspidally Abelian Quo-
tients) Let X, Y be hyperbolic curves over a finite or nonarchimedean local
field; denote the base fields of X, Y by kX , kY , respectively. Let ΣX (respectively,
ΣY ) be a set of prime numbers that contains at least one prime number that is
invertible in kX (respectively, kY ); write ∆X (respectively, ∆Y ) for the maximal
cuspidally pro-Σ†

X (respectively, pro-Σ†
Y ) quotient of the maximal pro-ΣX

(respectively, pro-ΣY ) quotient of the tame fundamental group of XkX
(re-

spectively, YkY
) [where “tame” is with respect to the complement of XkX

(respec-
tively, YkY

) in its canonical compactification], and ΠX (respectively, ΠY ) for the
corresponding quotient of the étale fundamental group of X (respectively, Y ). Let

α : ΠX
∼→ ΠY

be an isomorphism of profinite groups. Then:

(i) We have ΣX = ΣY , Σ†
X = Σ†

Y ; write Σ def= ΣX = ΣY , Σ† def= Σ†
X = Σ†

Y .
Moreover, kX is a finite field if and only if kY is; X is of type (g, r) [where g, r ≥ 0
are integers such that 2g−2+r > 0] if and only if Y is of type (g, r). Finally, if kX ,
kY are nonarchimedean local, then their residue characteristics coincide.

(ii) α is compatible with the natural quotients ΠX � GkX , ΠY � GkY .

(iii) Assume that X, Y are proper. Denote by ΠUX×X � Πc-ab
UX×X

, ΠUY ×Y �
Πc-ab

UY ×Y
the maximal cuspidally abelian quotients [cf. Proposition 1.14, (ii);

the discussion preceding Proposition 1.6]. Then there is a commutative diagram,
[well-defined up to cuspidally inner automorphisms]:

Πc-ab
UX×X

αc-ab

−→ Πc-ab
UY ×Y
 


ΠX×X
α×α−→ ΠY ×Y

Here, the horizontal arrows are isomorphisms which are compatible with the
natural inclusions DX ↪→ Πc-ab

UX×X
, DY ↪→ Πc-ab

UY ×Y
[cf. Proposition 1.12, (i)]; the

vertical arrows are the natural surjections. Finally, the correspondence

α 
→ αc-ab

is functorial [up to cuspidally inner automorphisms] with respect to α.

Proof. First, we consider assertions (i), (ii). Note that kX is finite if and only if, for
every open subgroup H ⊆ ΠX , the quotient of the abelianization Hab by the closure
of the torsion subgroup of Hab is topologically cyclic [cf. [Tama], Proposition 3.3,
(ii)]; a similar statement holds for kY , ΠY . In the finite field case, assertion (ii) also
follows from [Tama], Proposition 3.3, (ii); the portion of assertion (i) concerning
ΣX , ΣY follows from assertion (ii). The fact that Σ†

X = Σ†
Y then follows from the

following observation: Either the function

Σ � l 
→ dimQl((∆X)ab ⊗Ql)
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is constant — in which case Σ†
X = Σ — or this function attains a minimum at a

unique element of Σ, which is equal to the residue characteristic of kX [cf. [Tama],
Proposition 3.1]; a similar statement holds for Y . Now by considering the respective
outer actions of GkX , GkY on the maximal pro-l quotients of ∆X , ∆Y , for some
l ∈ Σ†, we obtain that X is of type (g, r) if and only if Y is of type (g, r), by [Mzk9],
Corollary 2.7, (i). This completes the proof of assertions (i), (ii) in the finite field
case.

Next, let us assume that kX , kY are nonarchimedean local. Then the portion of
assertion (i) concerning ΣX , ΣY follows by considering the cohomological dimension
of ΠX , ΠY — cf., e.g., Proposition 1.3, (ii) [in the proper case]. As for assertion
(ii), if the cardinality of Σ is ≥ 2, then assertion (ii) follows from the evident pro-Σ
analogue of [Mzk5], Lemma 1.3.8; if the cardinality of Σ is 1, then assertion (ii)
follows from Lemma 1.17 below. Now the portion of assertion (i) concerning the
residue characteristics of kX , kY follows from assertion (ii) and [Mzk5], Proposition
1.2.1, (i); the fact that X is of type (g, r) if and only if Y is of type (g, r) follows
from [Mzk9], Corollary 2.7, (i). [Here, we note that the hypothesis of “weak l-
graphic fullness” [which must be satisfied in order to apply [Mzk9], Corollary 2.7,
(i)] follows immediately from the “Riemann hypothesis for abelian varieties over
finite fields” — cf., e.g., [Mumf], p. 206 — if Σ contains a prime l that differs from
the the residue characteristic p of kX , kY , and follows from the well-known fact
that the p-adic Galois modules ∆X ⊗ Qp, ∆Y ⊗ Qp are [successive extensions of]
Hodge-Tate modules, with weights contained in the set {0, 1} — cf., e.g., [Tate] —
if Σ = {p}.] This completes the proof of assertions (i), (ii) in the nonarchimedean
local field case.

Finally, we consider assertion (iii). It follows from the definitions that α induces
an isomorphism MX

∼→ MY . If, moreover, Z ′
X → X, Z ′

Y → Y are diagonal
coverings corresponding to [connected] finite étale coverings X ′ → X, Y ′ → Y that
arise from open subgroups of ΠX , ΠY that correspond via α, then α induces an
isomorphism of group cohomology modules

H2(ΠZ′
X

,MX ) ∼→ H2(ΠZ′
Y
,MY )

that preserves the extension classes associated to fundamental extensions of ΠZ′
X

,
ΠZ′

Y
[cf. Proposition 1.6, (i)]. In particular, if D′ (respectively, E ′) is a fundamental

extension of ΠZ′
X

(respectively, ΠZ′
Y
), then α induces an isomorphism

D′ ∼→ E ′

which is compatible with the morphisms MX
∼→MY , ΠZ′

X

∼→ ΠZ′
Y

already induced
by α, and, moreover, uniquely determined, up to cyclotomically inner automor-
phisms, and the action of (k×

X)
∧

(respectively, (k×
Y )

∧
) [cf. Proposition 1.4, (ii)]. On

the other hand, by allowing X ′, Y ′ to vary, taking symmetrizations of the fundamen-
tal extensions involved [which may be constructed entirely group-theoretically!], and
making use of the vertical morphism in the center of the diagram of Proposition
1.9, (ii) [again an object which may be constructed entirely group-theoretically!],
it follows from Proposition 1.9, (iii), that the indeterminacy of the isomorphism
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D′ ∼→ E ′ arising from the action of (k×
X)

∧
, (k×

Y )
∧

“converges to the identity inde-
terminacy” [i.e., by taking D′ ∼→ E ′ to arise as just described from an isomorphism
of fundamental extensions D′′ ∼→ E ′′ associated to [connected] finite étale coverings
X ′′ → X ′, Y ′′ → Y ′ [that arise from open subgroups of ΠX , ΠY that correspond
via α], where the open subgroups ΠX ′′ ⊆ ΠX ′ , ΠY ′′ ⊆ ΠY ′ are sufficiently small].
Thus, in light of the manifest functoriality of the vertical morphism in the center
of the diagram of Proposition 1.9, (ii) [the detailed explication of which, in terms
of various commutative diagrams, is a routine task which we leave to the reader!],
we obtain an isomorphism

{Si} ∼→ {Tj}
of pro-symmetrized fundamental extensions [cf. Definition 1.10, (iii)] of ΠX×X ,
ΠY ×Y , respectively, which arises from α and is completely determined up to cyclo-
tomically inner automorphisms. Here, we pause to note that although in the con-
struction of the symmetrization of a fundamental extension D′ (respectively, E ′),
one must, a priori, contend with a certain indeterminacy with respect to ∆X ′×{1}-
(respectively, ∆Y ′ × {1}-)inner automorphisms [cf., e.g., Proposition 1.9, (ii)], in
fact, by allowing X ′, Y ′ to vary, this indeterminacy also “converges to the identity
indeterminacy” [cf. Remark 1.9.1].

Thus, in summary, α induces an isomorphism [well-defined up to cyclotomically
[or, alternatively, cuspidally] inner automorphisms]

S∞ ∼→ T∞

of pro-fundamental extensions of ΠX×X , ΠY ×Y , respectively. Moreover, by apply-
ing the fact that the left-hand square of the commutative diagram of Proposition
1.12, (ii), is cartesian, together with the fact that the “canonical section” of “ζ ′

�=”
that appears in Proposition 1.12, (iii), is completely determined [cf. Proposition
1.12, (v); Lemma 1.11] by the condition that it lie under an arbitrary “equivariant
section” [cf. Proposition 1.12, (iv)] of the “ζ ′′

�=” associated to coverings “X ′′ → X ′”
arising from arbitrarily small open subgroups ΠX ′′ ⊆ ΠX , it follows that the isomor-
phism S∞

∼→ T∞ just obtained is compatible with the pro-fundamental inclusions
DX ↪→ S∞, DY ↪→ T∞. In particular, by Proposition 1.14, (ii) [cf. also Proposition
1.12, (i)], we conclude that α induces an isomorphism [well-defined up to cuspidally
inner automorphisms]

(S∞ ∼= ) Πc-ab
UX×X

∼→ Πc-ab
UY ×Y

( ∼= T∞)

which is compatible with the natural inclusions DX ↪→ Πc-ab
UX×X

, DY ↪→ Πc-ab
UY ×Y

.
Finally, the functoriality of this isomorphism follows from the naturality of its
construction. ©

Remark 1.16.1. It follows immediately from the naturality of the constructions
used in the proof of Theorem 1.16, (iii), that when “α” arises from an isomorphism
of schemes X

∼→ Y , the resulting αc-ab of Theorem 1.16, (iii), coincides with the
morphism induced on fundamental groups by the resulting isomorphism of schemes
UX×X

∼→ UY ×Y .



28 SHINICHI MOCHIZUKI

Lemma 1.17. (Normal Subgroups of the Absolute Galois Group of
a Nonarchimedean Local Field) Let k be a nonarchimedean local field of
residue characteristic p; write Gk for the absolute Galois group of k. Also, let
us write I ⊆ Gk for the inertia subgroup of Gk and W ⊆ I for the wild inertia
subgroup. [Here, we recall that W is the unique Sylow pro-p subgroup of I.] Let
H ⊆ Gk be a closed subgroup that satisfies [at least] one of the following four
conditions:

(a) H is a finite group.

(b) H commutes with W .

(c) H is a pro-prime-to-p group [i.e., the order of every finite quotient
group of H is prime to p] that is normal in Gk.

(d) H is a topologically finitely generated pro-p group that is normal
in Gk.

Then H = {1}.

Proof. Indeed, suppose that H satisfies condition (a). Then the fact that H = {1}
follows from [NSW], Corollary 12.1.3, Theorem 12.1.7. Now suppose that H satisfies
condition (b). Then by the well-known functorial isomorphism [arising from local
class field theory] between the additive group underlying a finite field extension
of k that corresponds to an open subgroup J ⊆ Gk and the tensor product with
Qp of the image of W

⋂
J in the abelianization Jab, it follows immediately that

the conjugation action of H on W is nontrivial, whenever H is nontrivial. Thus
we conclude again that H = {1}. Next, suppose that H satisfies condition (c).
Then since H, W are both normal in Gk, it follows [by considering commutators
of elements of H with elements of W ] that arbitrary elements of H commute with
arbitrary elements of W . In particular, H satisfies condition (b), so we conclude
yet again that H = {1}.

Finally, we assume that H is nontrivial and satisfies condition (d). Write
Gk � G for the maximal pro-p quotient of Gk. By replacing k by a suitable finite
extension of k, and applying the fact that H is infinite [since we have already shown
that H does not satisfy condition (a)], we may assume without loss of generality
that G is a free pro-p group [cf., e.g., [NSW], Theorem 7.5.8, (i)] such that the
natural map

Hab ⊗ Fp → Gab ⊗ Fp

is injective, but not surjective. Then it follows immediately from the well-known
theory of free pro-p groups that there exists a set of free topological generators
ξ1, . . . , ξn of G [where n = dimFp(Gab⊗Fp)] such that for some integer 1 ≤ m < n,
ξ1, . . . , ξm lie in and topologically generate the image Im(H) ⊆ G of H in G. On the
other hand, since Im(H) is normal in G, it follows from the well-known structure
of free pro-p groups that we obtain a contradiction. This completes the proof of
Lemma 1.17. ©
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Remark 1.17.1. The author would like to thank A. Tamagawa for informing
him of the content of Lemma 1.17.

Definition 1.18. In the situation of Theorem 1.16, (i), (ii):

(i) If, for every finite étale covering X ′ → X of X arising from an open subgroup
ΠX ′ ⊆ ΠX , it holds that the map from (X′)cl+ to conjugacy classes of closed
subgroups of ΠX ′ given by assigning to a closed point its associated decomposition
group is injective, then we shall say that X is Σ-separated.

(ii) If the map induced by α on closed subgroups of ΠX , ΠY induces a bijection
between the decomposition groups of the points of Xcl+, Y cl+, then we shall say
that α is quasi-point-theoretic. If α is quasi-point-theoretic, and, moreover, X, Y
are Σ-separated — in which case α induces bijections

Xcl ∼→ Y cl; Xcl+ ∼→ Y cl+

— then we shall say that α is point-theoretic.

(iii) Suppose further that we are in the finite field case. Then we shall say
that α is Frobenius-preserving if the isomorphism GkX

∼→ GkY induced by α [cf.
Theorem 1.16, (ii)] maps the Frobenius element of GkX to the Frobenius element
of GkY .

Remark 1.18.1. In the finite field case, when Σ† = Primes†, the Frobenius
element of GkX may be characterized as in [Tama], Proposition 3.4, (i), (ii); a
similar statement holds for the Frobenius element of GkY . [Moreover, in the proper
case, the Frobenius element of GkX may be characterized as the element of GkX

that acts on MX via multiplication by the cardinality of kX , i.e., the cardinality of
H1(GkX ,MX) plus 1.] Thus, when Σ† = Primes†, any α as in Theorem 1.16, (i),
(ii), is automatically Frobenius-preserving.

Remark 1.18.2. Note that in the finite field case, any Frobenius-preserving iso-
morphism α as in Theorem 1.16, (i), (ii), is quasi-point-theoretic [cf. the arguments
of [Tama], Corollary 2.10, Proposition 3.8].

Remark 1.18.3. Note that in the finite field case, if α as in Theorem 1.16, (i),
(ii), is Frobenius-preserving, then the characteristics of kX , kY coincide. Indeed,
this follows immediately from Theorem 1.16, (i), (ii); [Tama], Proposition 3.4, (i),
(ii).

Now we return to the notation of the discussion preceding Theorem 1.16. Ob-
serve that the automorphism

τ : X ×X → X ×X
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given by switching the two factors induces an outer automorphism of ΠUX×X . More-
over, by choosing the basepoints used to form the various fundamental groups in-
volved in an appropriate fashion, it follows that there exists an automorphism

Πτ : ΠUX×X → ΠUX×X

among those automorphisms induced by τ [i.e., all of which are related to one
another by composition with an inner automorphism] which induces the automor-
phism on ΠX×X = ΠX ×Gk ΠX given by switching the two factors; preserves the
subgroup DX ⊆ ΠUX×X ; and preserves and induces the identity automorphism on
the subgroup IX ⊆ DX (⊆ ΠUX×X ). Note that by the slimness of Proposition 1.8,
(i), together with the well-known commensurable terminality of DX ⊆ ΠUX×X in
ΠUX×X [cf., e.g., [the proof of] [Mzk5], Lemma 1.3.12], it follows that these three
conditions [are more than sufficient to] determine Πτ , up to composition with an
inner automorphism arising from IX .

Proposition 1.19. (Switching the Two Factors) The automorphism

Πc-ab
τ : Πc-ab

UX×X
→ Πc-ab

UX×X

induced by Πτ is the unique automorphism of the profinite group Πc-ab
UX×X

, up to
composition with a cyclotomically inner automorphism, that satisfies the following
two conditions: (a) it preserves the quotient Πc-ab

UX×X
� ΠX×X and induces on this

quotient the automorphism on ΠX×X = ΠX ×Gk ΠX given by switching the two
factors; (b) it preserves the image of IX ⊆ DX ↪→ Πc-ab

UX×X
.

Proof. This follows immediately from Propositions 1.15, (i). ©
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Section 2: Points and Functions

We maintain the notation of §1 [i.e., the discussion preceding Theorem 1.16].
If x ∈ Xcl, then we shall denote by

Dx ⊆ ΠX

the decomposition group of x [well-defined up to conjugation by an element of ∆X ].
If x ∈ X(k), then Dx determines a section sx : Gk → ΠX [which is well-defined as
a geometrically outer homomorphism].

Next, let S ⊆ Xcl be a finite set. If n is a Σ†-integer [cf. §0], then the Kummer
exact sequence

1→ µn → Gm → Gm → 1

[where Gm → Gm is the n-th power map; µn is defined so as to make the sequence
exact] on the étale site of X determines a homomorphism Pic(X) → H2(∆X ,µn)
[where Pic(X) is the Picard group of X]. Now there is a unique isomorphism

µn
∼→ MX/n ·MX

such that the homomorphism Pic(X) → H2(∆X ,µn) sends line bundles of degree
1 to the element determined by 1 ∈ Z/nZ via the composite of the induced iso-
morphism H2(∆X ,µn) ∼→ H2(∆X ,MX/n ·MX) with the tautological isomorphism
H2(∆X ,MX/n ·MX) ∼→ Z/nZ [cf. Proposition 1.2, (i)]. In the following discussion,
we shall identify µn with MX/n ·MX via this isomorphism.

If we consider the Kummer exact sequence on the étale site of US ⊆ X [and
pass to the inverse limit with respect to n], then we obtain a natural homomorphism

Γ(US ,O×
US

)→ H1(ΠUS ,MX)

[where we note that here, it suffices to consider the group cohomology of ΠUS [i.e.,
as opposed to the étale cohomology of US ], since the extraction of n-th roots of
an element of Γ(US ,O×

US
) yields finite étale coverings of US that correspond to

open subgroups of ΠUS ] which is injective [since the abelian group Γ(US ,O×
US

) is
clearly finitely generated and free of p†-torsion, hence injects into its prime-to-p†

completion] whenever Σ† = Primes†. In particular, by allowing S to vary we obtain
a natural homomorphism

K×
X → lim−→

S

H1(ΠUS ,MX )

[where KX is the function field of X; the direct limit is over all finite subsets S of
Xcl] which is injective whenever Σ† = Primes†.

Proposition 2.1. (Kummer Classes of Functions) If S ⊆ Xcl is a finite
subset, write

∆US � ∆c-ab
US
� ∆c-cn

US
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for the maximal cuspidally abelian and maximal cuspidally central quo-
tients, respectively, and

ΠUS � Πc-ab
US
� Πc-cn

US

for the corresponding quotients of ΠUS . If x ∈ Xcl, then let us write

Dx[US ] ⊆ ΠUS

for the decomposition group of x in ΠUS [which is well-defined up to conjugation
by elements of ∆US ] and Ix[US] ⊆ Dx[US] for the inertia subgroup. [Thus, when
x ∈ S, we obtain [cf. Proposition 1.6, (ii), (iii)] a natural isomorphism of MX with
Ix[US ] def= Dx[US]

⋂
∆US .]

(i) The natural surjections induce isomorphisms as follows:

H1(Πc-cn
US

,MX) ∼→ H1(Πc-ab
US

,MX) ∼→ H1(ΠUS ,MX)

In particular, we obtain natural homomorphisms as follows:

Γ(US ,O×
US

)→ H1(Πc-cn
US

,MX ) ∼→ H1(Πc-ab
US

,MX ) ∼→ H1(ΠUS ,MX)

K×
X → lim−→

S

H1(Πc-cn
US

,MX) ∼→ lim−→
S

H1(Πc-ab
US

,MX) ∼→ lim−→
S

H1(ΠUS ,MX)

These natural homomorphisms are injective whenever Σ† = Primes†.

(ii) Suppose that S ⊆ X(k) is a finite subset. Then restricting cohomology
classes of ΠUS to the various Ix[US ], for x ∈ S, yields a natural exact sequence

1→ (k×)∧ → H1(ΠUS ,MX )→
(⊕

x∈S

Ẑ†
)

[where we identify Hom
�Z†(Ix[US ], MX) with Ẑ†]. Moreover, the image [via the

natural homomorphism given in (i)] of Γ(US ,O×
US

) in H1(ΠUS ,MX ) is equal to the
inverse image in H1(ΠUS ,MX) of the submodule of(⊕

x∈S

Z

)
⊆
(⊕

x∈S

Ẑ†
)

determined by the principal divisors [with support in S]. A similar statement
holds when “ΠUS” is replaced by “Πc-ab

US
” or “Πc-cn

US
”.

(iii) If f ∈ Γ(US ,O×
US

), write

κc-cn
f ∈ H1(Πc-cn

US
,MX); κc-ab

f ∈ H1(Πc-ab
US

,MX ); κf ∈ H1(ΠUS ,MX)

for the associated Kummer classes. If x ∈ Xcl\S, then Dx[US] maps, via the
natural surjection ΠUS � Gk, isomorphically onto the open subgroup Gk(x) ⊆ Gk
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[where k(x) is the residue field of X at x]. Moreover, the images of the pulled back
classes

κc-cn
f |Dx[US ] = κc-ab

f |Dx[US ] = κf |Dx[US ] ∈ H1(Dx[US ], MX) ∼→ H1(Gk(x),MX)
∼→ (k(x)×)∧

in (k(x)×)∧ are equal to the image in (k(x)×)∧ of the value of f at x.

Proof. Assertion (i) follows immediately from the definitions. The exact sequence
of assertion (ii) follows immediately from Proposition 1.4, (ii). The characterization
of the image of Γ(US ,O×

US
) is immediate from the definitions and the exact sequence

of assertion (ii). Assertion (iii) follows immediately from the definitions and the
functoriality of the Kummer class. ©

Remark 2.1.1. If, in the situation of Proposition 2.1, (iii), we think of the
extension of Πc-cn

US
of ΠX as being given by the extension DS [cf. Proposition 1.8,

(iii)], where D is a fundamental extension of ΠX×X that appears as a quotient of
ΠUX×X [hence is “rigid” with respect to the action of (k×)∧ — cf. Proposition 1.9,
(iii); the proof of Theorem 1.16, (iii)], then it follows that the image of Dx[US ] in
Πc-cn

US
may be thought of as the image of Dx[US] in DS . If, moreover, we assume,

for simplicity, that x ∈ X(k), S ⊆ X(k), then this image of Dx[US ] in DS amounts
to a section of DS � ΠX � Gk lying over the section sx of ΠX � Gk. Since
DS is defined as a certain fiber product, this section is equivalent to a collection of
sections [regarded as cyclotomically outer homomorphisms]

γy,x : Gk → Dy,x

[where y ranges over the points of S]. [Here, we note that it is immediate from the
definitions that, as the notation suggests, γy,x depends only on x, y — i.e., that
γy,x is independent of the choice of S.] That is to say, from this point of view,
Proposition 2.1, (iii), may be regarded as stating that:

The image in (k×)∧ = (k(x)×)∧ of the value of a function ∈ Γ(US ,O×
US

)
at x ∈ X(k) may be computed from its Kummer class, as soon as one
knows the sections γy,x : Gk → Dy,x, for y ∈ S.

Also, before proceeding, we note that an arbitrary section of Dy,x � Gk differs [as
a cyclotomically outer homomorphism] from γy,x by the action of an element of
H1(Gk,MX) ∼→ (k×)∧. Thus, the datum of “γy,x” may be regarded as a trivializa-
tion of a certain (k×)∧-torsor.

Remark 2.1.2. The finite field portion of Proposition 2.1 may be regarded as the
evident finite field analogue of [a certain portion of] the theory of [Mzk8], §4. Also,
we observe that the approach of “reconstructing the function field of the curve via
Kummer theory, as opposed to class field theory [as was done in [Tama], [Uchi]]”
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has the advantage of being applicable to nonarchimedean local fields, as well as to
finite fields.

Definition 2.2. For x, y ∈ X(k), we shall refer to the section [regarded as a
cyclotomically outer homomorphism]

γy,x : Gk → Dy,x

as the Green’s trivialization of D at (y, x). If D is a divisor on X supported in the
subset of k-rational points X(k) ⊆ Xcl, then multiplication of the various Green’s
trivializations for the points in the support of D determines a section [regarded as
a cyclotomically outer homomorphism]

γD,x : Gk → DD,x

which we shall refer to as the Green’s trivialization of D at (D,x). [Note that the
definition of γD,x generalizes immediately to the case where the divisor D, but not
necessarily the points in its support, is rational over k — cf. Remark 1.10.1.]

Remark 2.2.1. The terminology of Definition 2.2, is intended to suggest the
similarity between the γy,x of the present discussion and the “Green’s functions”
that occur in the theory of bipermissible metrics — cf., e.g., [MB], §4.11.4.

Remark 2.2.2. Note that the Green’s trivializations are symmetric with respect
to the involution of D induced by the automorphism Πc-ab

τ of Proposition 1.19.
Indeed, relative to the natural projections

ΠUX×X � Πc-ab
UX×X

� D

the Green’s trivialization at (y, x) is simply the section of D � Gk arising [by
composition] from the section of ΠUX×X � Gk determined by the decomposition
group of the point (x, y) ∈ UX×X(k). Thus, the asserted symmetry of the Green’s
trivializations follows from the fact that Πc-ab

τ is compatible with Πτ , together with
the evident fact that [by “transport of structure”] Πτ maps the decomposition
group of (x, y) ∈ UX×X(k) isomorphically onto the decomposition group of (y, x) ∈
UX×X(k).

If d ∈ Z, denote by Jd the subscheme of the Picard scheme of X that parame-
trizes line bundles of degree d; write J

def= J0. Thus, Jd is a torsor over J . Note
that there is a natural morphism X → J1 [given by assigning to a point of X the
line bundle of degree 1 determined by the point]. Thus, the basepoint of X [already
chosen in §1] determines a basepoint of J1. At the level of “geometrically pro-Σ”
étale fundamental groups, this morphism induces a surjective homomorphism

ΠX � ΠJ1
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whose kernel is the kernel of the maximal abelian quotient ∆X � ∆ab
X . In partic-

ular, for x ∈ X(k), the section sx determines a section tx : Gk → ΠJ1 . Note that
applying the “change of structure group” given by the “multiplication by d map”
on J to the J -torsor J1 yields the J -torsor Jd. [Indeed, this follows by considering
the group structure of the Picard scheme.] Thus, we obtain a morphism J1 → Jd

whose induced morphism on fundamental groups

ΠJ1 → ΠJd

determines an isomorphism of ΠJd with the push-forward of the extension ΠJ1 [i.e.,
of Gk by ∆J1 ∼= ∆ab

X ] via the homomorphism ∆ab
X → ∆ab

X given by multiplication
by d. When d ≥ 1, the group structure on the Picard scheme also determines a
morphism ∏

ΠJ1 → ΠJd

[where the product is a fiber product over Gk of d factors of ΠJ1 ] which determines
an isomorphism of ΠJd with the push-forward of the extension constituted by the
fiber product via the homomorphism

∏
∆ab

X → ∆ab
X [i.e., from a product of d

copies of ∆ab
X to ∆ab

X given by adding up the d components]. Moreover, one verifies
immediately that when d ≥ 1, these two constructions of “ΠJd” from ΠJ1 yield
groups that are naturally isomorphic.

Thus, by applying the various homomorphisms induced on fundamental groups
by the group structure of the Picard scheme, it follows that if D is any divisor of
degree d on X whose support lies in the set of k-rational points X(k) ⊆ Xcl, then
D determines a section

tD : Gk → ΠJd

which may be constructed entirely group-theoretically. In particular, if D is of degree
0, then the section tD : Gk → ΠJ may be compared with the identity section of ΠJ

to obtain a cohomology class:

ηD ∈ H1(Gk,∆ab
X )

Now we have the following well-known result:

Proposition 2.3. (Points and Galois Sections) Suppose that Σ = Primes.
Then, in the notation of the above discussion:

(i) The divisor D is principal if and only if ηD = 0.

(ii) The map x 
→ Dx from Xcl to conjugacy classes of closed subgroups of ΠX

is injective, i.e., X is Primes-separated.

Proof. First, we consider assertion (i). By well-known general nonsense [cf., e.g.,
[Naka], Claim (2.2); [NTs], Lemma (4.14); [Mzk4], the Remark preceding Definition
6.2], there is a natural isomorphism

H1(k,∆ab
X ) ∼→ J(k)∧ (⊇ J(k))
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[where the “∧” denotes the profinite completion] which maps ηD to the element of
J(k) determined by D. [Here, we recall that this natural isomorphism arises by
considering the long exact sequence obtained by applying the functors H∗(Gk,−)
to the short exact sequence of Gk-modules

1→ J(k)[n]→ J(k)→ J(k)→ 1

— where n is a positive integer; the morphism J(k)→ J(k) is the “multiplication
by n map”; J(k)[n] is defined so as to make the sequence exact.] Thus, assertion
(i) follows immediately.

To prove assertion (ii), it suffices [by possibly base-changing to a finite exten-
sion of k] to verify that two points x1, x2 ∈ X(k) that induce ∆X-conjugate sections
sx1 , sx2 are necessarily equal [cf. also [Tama], Corollary 2.10]. But this follows for-
mally from assertion (i), by considering the divisor x1 − x2 [and the well-known
fact that the natural morphism X → J1 considered above is an embedding]. ©

Remark 2.3.1. From the point of view of Definition 1.7, (ii), the reader may feel
tempted to expect that [still under the assumption that Σ = Primes] D is principal
if and only if the extension DD of ΠX [by MX ] is trivial [i.e., determines the zero
class in H2(ΠX ,MX)]. When k is nonarchimedean local, it is not difficult to verify,
using Proposition 2.3, (i), that this is indeed the case. On the other hand, when k
is finite, although this condition for principality is easily verified to be necessary,
it is not, however, sufficient, since it only involves the “prime-to-p† portion” of the
point of J(k) determined by D.

Definition 2.4. In the situation of Theorem 1.16, (iii), suppose that α is point-
theoretic. Let S ⊆ Xcl be a [not necessarily finite] subset that corresponds via the
bijection Xcl ∼→ Y cl induced by [the point-theoreticity of] α to a subset T ⊆ Y cl.

(i) Write D (respectively, E) for the fundamental extension of ΠX×X (respec-
tively, ΠY ×Y ) that arises as the quotient of Πc-ab

UX×X
(respectively, Πc-ab

UY ×Y
) by the

kernel of the maximal cuspidally central quotient ∆c-ab
UX×X

� ∆c-cn
UX×X

(respectively,
∆c-ab

UY ×Y
� ∆c-cn

UY ×Y
) [cf. Proposition 1.8, (iv)]. Thus, αc-ab induces an isomorphism:

αc-cn : D ∼→ E

We shall say that α is (S, T )-locally Green-compatible if, for every pair of points
(x1, x2) ∈ X(kX)×X(kX) corresponding via the bijection induced by α to a pair
of points (y1 , y2) ∈ Y (kY )× Y (kY ), such that x2 ∈ S, y2 ∈ T , the isomorphism

Dx1,x2

∼→ Ey1,y2

[obtained by restricting αc-cn] is compatible with the Green’s trivializations. We
shall say that α is (S, T )-locally degree zero (respectively, (S, T )-locally principally)
Green-compatible if, for every x ∈ X(kX )

⋂
S and every divisor of degree zero
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(respectively, principal divisor) D supported in X(kX) ⊆ Xcl corresponding via the
bijection induced by α to a pair (y,E) of Y [so y ∈ Y (kY )

⋂
T ], the isomorphism

DD,x
∼→ EE,y

is compatible with the Green’s trivializations.

(ii) We shall say that α is totally (S, T )-locally Green-compatible (respectively,
totally (S, T )-locally degree zero Green-compatible; totally (S, T )-locally principally
Green-compatible) if, for all pairs of connected finite étale coverings X ′ → X,
Y ′ → Y that arise from open subgroups of ΠX , ΠY that correspond via α, the
isomorphism

ΠX ′
∼→ ΠY ′

induced by α is (S′, T ′)-locally Green-compatible (respectively, (S′, T ′)-locally de-
gree zero Green-compatible; (S′, T ′)-locally principally Green-compatible), where
S ′ ⊆ (X′)cl, T ′ ⊆ (Y ′)cl are the inverse images in X ′, Y ′ of S, T , respectively.

(iii) With respect to the terminology introduced in (i), (ii), when S = Xcl,
T = Y cl, then we shall replace the phrase “(S, T )-locally” by the phrase “globally”.

Remark 2.4.1. In the situation of Definition 2.4, if X ′ → X, Y ′ → Y are con-
nected finite étale coverings that arise from open subgroups of ΠX , ΠY that corre-
spond via α; D ∼→ E is the isomorphism of fundamental extensions of ΠX×X , ΠY ×Y

that arises from the isomorphism αc-ab of Theorem 1.16, (iii); and the points x1, x2

(respectively, y1, y2) are ∆X- (respectively, ∆Y -) conjugate, then it follows imme-
diately from the compatibility of αc-ab with the natural inclusions DX ↪→ Πc-ab

UX×X
,

DY ↪→ Πc-ab
UY ×Y

[cf. Theorem 1.16, (iii)] that the isomorphism Dx1,x2

∼→ Ey1,y2 is
automatically compatible with the Green’s trivializations. [Indeed, this follows from
the easily verified fact that the Green’s trivializations in this case are, in essence,
specializations of the “canonical sections of ζ ′

�=” of Proposition 1.12.] Unfortunately,
however, the author is unable, at the time of writing, to see how to generalize the
argument applied in the proof of Theorem 1.16, (iii), involving Lemma 1.11; Propo-
sition 1.12, (v), so as to cover the case where the points x1, x2 (respectively, y1,
y2) fail to be ∆X - (respectively, ∆Y -) conjugate. Indeed, this sort of generaliza-
tion appears to require the group-theoretic reconstructibility of some collection of
isomorphisms of extensions of GkX , GkY by MX , MY , respectively,

Dx1,x2

∼→ Dx1,x3 ; Ey1,y2

∼→ Ey1,y3

that are compatible both with α and with the respective Green’s trivializations, for
all collections of points x1, x2, x3 ∈ X(k) (respectively, y1, y2, y3 ∈ Y (k)) such that
x2, x3 (respectively, y2, y3) are ∆X - (respectively, ∆Y -) conjugate.

Remark 2.4.2. It is immediate that (S, T )-local Green-compatibility (respec-
tively, (S, T )-local degree zero Green-compatibility) implies (S, T )-local degree zero
Green-compatibility (respectively, (S, T )-local principal Green-compatibility), and
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that total (S, T )-local Green-compatibility (respectively, total (S, T )-local degree
zero Green-compatibility) implies total (S, T )-local degree zero Green-compatibility
(respectively, total (S, T )-local principal Green-compatibility).

Theorem 2.5. (Reconstruction of Functions) In the situation of Theorem
1.16, (iii), suppose further that α is point-theoretic. Then:

(i) Let S ⊆ Xcl, T ⊆ Y cl be finite subsets that correspond via the bijection
Xcl ∼→ Y cl induced by α. Then α, αc-ab induce isomorphisms [well-defined up to
cuspidally inner automorphisms]

Πc-ab
US

∼→ Πc-ab
VT

[where VT
def= Y \T ] lying over α, which are functorial with respect to α and S, T ,

as well as with respect to passing to connected finite étale coverings of X, Y
[that do not necesarily arise from open subgroups of ΠX , ΠY !].

(ii) Suppose that Σ = Primes. Then the bijection Xcl ∼→ Y cl induced by α in-
duces a bijection between the groups of principal divisors on X, Y . This bijection,
together with the isomorphisms of (i), induces a compatible isomorphism

K×
X · (k

×
X)

∧ ∼→ K×
Y · (k

×
Y )

∧

between the push-forwards of the multiplicative groups associated to the function
fields of X, Y , relative to the homomorphisms k×

X ↪→ (k×
X )

∧
, k×

Y ↪→ (k×
Y )

∧
.

Proof. Assertion (i) follows immediately from the definitions; Theorem 1.16, (iii).
[Here, we note that the functoriality asserted in assertion (i), which is somewhat
stronger than the functoriality asserted in Theorem 1.16, (iii), follows from the
definitions, together with the naturality of the constructions applied in the proof
of Theorem 1.16, (iii) — cf., e.g., the diagram of Proposition 1.9, (ii).] Assertion
(ii) follows immediately from assertion (i); Proposition 2.3, (i); Proposition 2.1, (i),
(ii). ©

Remark 2.5.1. In fact, later in §3, we shall construct, in the finite field case, the
crucial isomorphism Πc-ab

US

∼→ Πc-ab
VT

of Theorem 2.5, (i), via a different technique,
without applying Theorem 1.16, (iii). Thus, from this point of view, Theorem 1.16,
(iii), is not logically necessary for the proof of the main results of the present paper
in the finite field case. Nevertheless, we chose to include the proof of Theorem 1.16,
(iii), via Propositions 1.9, 1.12 in the present paper for the following reasons: First
of all, unlike the techniques of §3, the techniques of §1 apply to situations [e.g.,
the case of nonarchimedean local fields!] where the weight filtration [cf. §3] does
not admit a Galois-invariant splitting. Indeed, the techniques of §1, essentially only
require that the Galois cohomology of the base field admit a natural duality pairing.
Secondly, even in the finite field case, in light of the importance of this isomorphism
Πc-ab

US

∼→ Πc-ab
VT

in the theory of the present paper, it is of interest to see that
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this isomorphism may be constructed via two fundamentally different approaches.
Thirdly, although the approach of §3 is better suited to the reconstruction of the
Green’s trivializations, it has the drawback that it depends fundamentally on the
choice of a “basepoint” x∗ ∈ X(k) [cf. the theory of §3, especially the proof of
Theorem 3.10]. Thus, it is of interest to know that this isomorphism may be
constructed [i.e., via the techniques of §1] “cohomologically” [cf. Proposition 1.6,
(i)] without making such a choice.

Remark 2.5.2. In the case of nonarchimedean local fields, it is natural to ask,
in the style of [Mzk8], §4, whether or not various “canonical integral structures” on
the extensions Dx,y [where x, y ∈ X(k)] of Gk by MX are preserved by arbitrary
isomorphisms of arithmetic fundamental groups. When x �= y, such a canonical
integral structure is determined by the Green’s trivialization; when x = y, such a
canonical integral structure is determined by the integral structure [in the usual
sense of scheme theory] on the canonical sheaf of the stable model of the curve
[when the curve has stable reduction] — cf. [Mzk8], §4.

Before proceeding, we note the following “analogue for Πc-ab
US

” of Proposition
1.15, (i):

Proposition 2.6. (Automorphisms and Commensurators) Let Πc-ab
US

be as
in Theorem 2.5, (i). For x ∈ S, write Dx[US ] ↪→ Πc-ab

US
for the natural inclusion.

Then:

(i) Any automorphism α of the profinite group Πc-ab
US

which

(a) is compatible with the natural surjection Πc-ab
US
� ΠX and induces the

identity on ΠX ;

(b) for each x ∈ S, preserves the image of MX
∼= Ix[US] ⊆ Dx[US ] via the

natural inclusion Dx[US] ↪→ Πc-ab
US

is cuspidally inner.

(ii) Suppose that X is Σ-separated. Then for x ∈ S, Dx is commensurably
terminal in ΠX .

(iii) Suppose that X is Σ-separated. Then the image of Dx[US ] ↪→ Πc-ab
US

is
commensurably terminal in Πc-ab

US
.

Proof. First, we observe that assertion (ii) follows formally from the definition of a
“decomposition group” and “Σ-separated”. Thus, assertion (i) (respectively, (iii))
follows by an argument which is entirely similar to the argument that was used to
prove assertion (i) (respectively, (iii)) of Proposition 1.15. ©
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Remark 2.6.1. In the situation of Definition 2.4, suppose that S, T are finite,
and that α arises from an isomorphism

ΠUS

∼→ ΠVT

which is point-theoretic [or, equivalently, quasi-point-theoretic] — a condition that is
automatically satisfied in the finite field case whenever α is Frobenius-preserving [cf.
Remark 1.18.2]. Then observe that, [in light of our point-theoreticity assumption]
it follows from Proposition 2.6,(i), that the resulting induced isomorphism

Πc-ab
US

∼→ Πc-ab
VT

coincides [up to cuspidally inner automorphisms] with the isomorphism of Theorem
2.5, (i). Thus, in light of Remark 2.2.2, it follows formally from the definitions that
α is totally (S, T )-locally Green-compatible.

Corollary 2.7. (Point-theoretic Totally Locally Principally Green-
compatible Isomorphisms) In the situation of Theorem 1.16, (iii), assume fur-
ther that α is point-theoretic and totally (S, T )-locally principally Green-
compatible, for some nonempty subsets S ⊆ Xcl, T ⊆ Y cl which correspond via
the bijection Xcl ∼→ Y cl induced by α, and that Σ = Primes. Then α arises from a
uniquely determined commutative diagram of schemes

X̃
∼→ Ỹ
 


X
∼→ Y

in which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups ΠX , ΠY .

Proof. Corollary 2.7 follows immediately from the definitions; Theorem 2.5, (ii);
Proposition 2.1, (iii); Remark 2.1.1; and [Tama], Lemma 4.7. Here, we note that,
in the present situation, the isomorphism

K×
X · (k

×
X)

∧ ∼→ K×
Y · (k

×
Y )

∧

of Theorem 2.5, (ii), necessarily induces an isomorphism K×
X

∼→ K×
Y [cf. the as-

sumption that Σ† = Primes†]. Indeed, this is immediate in the finite field case. In
the nonarchimedean local field case, it follows via the arguments applied in the proof
of [Mzk8], Theorem 4.10: That is to say, we assume for simplicity that S ⊆ X(kX);
then if f ∈ K×

X , and x ∈ S is a point that does not lie in the divisor of zeroes and
poles of f , then let us observe that the subset

f · k×
X ⊆ f · (k×

X)∧
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may be characterized as the subset of elements whose values [cf. Proposition 2.1,
(iii)] at x lie in k×

X ⊆ (k×
X)∧. Note that since, for a given x1 ∈ S, there clearly exist

f ∈ K×
X [at least after possibly passing to an appropriate connected finite étale

covering of X] that have a zero or pole at x1 but not at some other x ∈ S, this
observation allows us to recover the canonical discrete structure [cf. [Mzk8], Defi-
nition 4.1, (iii); the proof of [Mzk8], Theorem 4.10] on the decomposition groups in
Πc-ab

US1
[where S1 ⊆ Xcl is an arbitrary finite subset containing S, which corresponds,

say, to a subset T1 ⊆ Y cl that contains T ] at arbitrary points [i.e., arbitrary “x1”]
of S. Thus, by applying this canonical discrete structure [as in the proof of [Mzk8],
Theorem 4.10], we may recover the subset

f · k×
X ⊆ f · (k×

X)∧

for arbitrary f ∈ K×
X [i.e., even f that have a zero or pole at every point of S] as

the subset of elements for which the restriction to each point x of S either lies in
k×

X ⊆ (k×
X)

∧
or [when the element in question has a zero or pole at x] is compatible

with the canonical discrete structure at x. Since this characterization of the subset
f · k×

X ⊆ f · (k×
X)∧ is manifestly compatible [in light of the Green-compatibility

assumption on α] with the isomorphisms Πc-ab
US1

∼→ Πc-ab
VT1

induced by α, we thus
conclude that the isomorphism

K×
X · (k

×
X)

∧ ∼→ K×
Y · (k

×
Y )

∧

of Theorem 2.5, (ii), maps the subset K×
X ⊆ K×

X · (k
×
X)∧ onto the subset K×

Y ⊆
K×

Y · (k
×
Y )

∧
, as desired. ©

Remark 2.7.1. Suppose, in the situation of Corollary 2.7, that S = Xcl, T = Y cl.
Then unlike the situation discussed in [Tama], one has the freedom to evaluate
functions at arbitrary points of the entire sets Xcl, Y cl, as opposed to just certain
restricted subsets S ⊆ Xcl, T ⊆ Y cl. Thus, instead of applying [Tama], Lemma
4.7, one may instead apply the somewhat easier argument implicit in [Uchi], §3,
Lemmas 8-11 [which is used to treat the function field case].

Thus, in light of Remark 2.6.1, Corollary 2.7 implies the following result, in
the affine case:

Corollary 2.8. (Point-theoretic Isomorphisms in the Affine Case) Let U ,
V be affine hyperbolic curves over a finite or nonarchimedean local field.
Suppose that Σ = Primes. Then any point-theoretic isomorphism

β : ΠU
∼→ ΠV

arises from a uniquely determined commutative diagram of schemes

Ũ
∼→ Ṽ
 


U
∼→ V
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in which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups ΠU , ΠV .

Remark 2.8.1. In light of the results of [Tama] [cf. Remarks 1.18.1, 1.18.2],
Corollary 2.8 is only truly of interest in the case of nonarchimedean local fields.

Definition 2.9. Suppose that k is a nonarchimedean local field.

(i) A [necessarily affine] hyperbolic curve U over k will be said to be of strictly
Belyi type if it is defined over a number field and isogenous [cf. §0] to a hyperbolic
curve of genus zero.

(ii) A [necessarily affine] hyperbolic curve U over k will be said to be of Belyi
type if it is defined over a number field, and, moreover, for some positive integer m,
there exists a finite sequence

U = U1 � U2 � . . .� Um−1 � Um

of hyperbolic orbicurves [cf. §0] Uj such that Um is a tripod [cf. §0], and, moreover,
for each j = 1, . . . ,m− 1, Uj+1 is related to Uj in one of the following ways:

(a) there exists a finite étale morphism Uj+1 → Uj [i.e., “Uj+1 is a finite
étale covering of Uj”];

(b) there exists a finite étale morphism Uj → Uj+1 [i.e., “Uj+1 is a finite
étale quotient of Uj”];

(c) there exists an open immersion Uj ↪→ Uj+1 [i.e., in the terminology of
[Mzk8], “Uj+1 is a [hyperbolic] partial compactification of Uj”];

(d) there exists a partial coarsification morphism [cf. §0] Uj → Uj+1 [i.e.,
“Uj+1 is a partial coarsification of Uj”].

(iii) A [necessarily affine] hyperbolic curve U over k will be said to be of quasi-
Belyi type if it is defined over a number field and admits a connected finite étale
covering V → U such that V admits a [not necessarily finite or étale!] dominant
morphism V →W to a tripod W .

Remark 2.9.1. It is immediate that every hyperbolic curve of strictly Belyi type
is also of Belyi type [as the terminology suggests]. Moreover, one verifies easily by
“induction on m” [where “m” is as in Definition 2.9, (ii)] that every hyperbolic
curve of Belyi type is also of quasi-Belyi type [as the terminology suggests]. It is
not difficult to see that there exist [multiply] punctured elliptic curves that are of
Belyi type, but not of strictly Belyi type [cf. Remark 2.13.2 below]. On the other
hand, it is not clear to the author at the time of writing whether or not there exist
hyperbolic curves of quasi-Belyi type that are not of Belyi type.
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Remark 2.9.2. Hyperbolic curves of strictly Belyi type are precisely the sort of
curves considered in [Mzk8], Corollaries 2.8, 3.2.

Remark 2.9.3. The author would like to thank A. Tamagawa for useful discus-
sions concerning Definition 2.9, (ii), especially Definition 2.9, (ii), (d).

Proposition 2.10. (Decomposition Groups of Curves of Quasi-Belyi
Type) Let U (respectively, V ) be a hyperbolic curve over a nonarchimedean
local field. Denote the base field of U (respectively, V ) by kU (respectively, kV ), the
étale fundamental group of U (respectively, V ) by ΠU (respectively, ΠV ) [i.e., “we
take Σ = Primes”]. Let

β : ΠU
∼→ ΠV

be an isomorphism of profinite groups. Then:

(i) If U is of quasi-Belyi type, then the closed points of “DLoc-type” [in the
sense of [Mzk8], Definition 2.4] are pU -adically dense [where pU is the residue
characteristic of kU ] in U(kU ).

(ii) If U is of quasi-Belyi type, then β maps every decomposition group of a
closed point of U isomorphically onto a decomposition group of a closed point of V .

(iii) If both U , V are of quasi-Belyi type, then β is point-theoretic.

(iv) If U is of Belyi type, then so is V .

Proof. The proof of assertion (i) is similar to the proof of [Mzk8], Corollary 2.8:
That is to say, in the terminology of loc. cit., it follows formally from the fact that
U is of quasi-Belyi type that the “algebraic” closed points [i.e., closed points defined
over a number field] of U are of “DLoc-type” [cf. the proof of [Mzk8], Corollary
2.8]: Indeed, it suffices to consider the following commutative diagram of hyperbolic
curves, whose existence follows from the assumption that U is of quasi-Belyi type:

V ′ −→ W ′ ↪→ U ′ −→ U
 

U ←− V −→ W

Here, the “hooked arrow ↪→” is an open immersion; all of the “non-hooked arrows”
except for V → W , V ′ → W ′ are finite étale morphisms; V → W , V ′ → W ′ are
dominant; the finite étale morphism U ′ → U is obtained by a base-change to a
finite extension of the base field kU ; and W is a tripod [so W ′ → W is a “Belyi
map”]. Note that the composite arrow V ′ → W ′ ↪→ U ′ → U may be thought of
as an arrow in the category DLockU (U) of [Mzk8], §2. Observe, moreover, that the
arrow W ′ ↪→ U ′ may be chosen to have arbitrarily designated algebraic closed points
in the complement of its image. Thus, we conclude that this diagram exhibits the
[arbitrarily designated] algebraic closed points in the complement of the image of
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W ′ ↪→ U ′ → U as points of DLoc-type, as desired. This completes the proof of
assertion (i).

In light of assertion (i) [applied to the various connected finite étale coverings of
U ], the proof of assertion (ii) is entirely similar to the proof of [Mzk8], Corollary 3.2:
That is to say, by [Mzk8], Corollary 2.5, it follows that β maps decomposition groups
of DLoc-type of U to decomposition groups of DLoc-type of V . Thus, assertion (ii)
follows by applying [Mzk8], Lemma 3.1 [where the density statement of assertion (i)
concerning points of DLoc-type allows one to replace the “algebraicity” condition of
[Mzk8], Lemma 3.1, (iii), by the condition that the points in question be of DLoc-
type]. Finally, assertion (iii) follows formally from assertion (ii) [and Proposition
2.3, (ii)].

Finally, we consider assertion (iv). First, I claim that by applying the iso-
morphism β [and thinking of hyperbolic orbicurves as being represented by their
associated étale fundamental groups], one may transform the sequence

U = U1 � U2 � . . .� Um−1 � Um

of Definition 2.9, (ii), into a sequence

V = V1 � V2 � . . .� Vm−1 � Vm

that also satisfies the conditions of Definition 2.9, (ii), in such a way that we also
obtain compatible isomorphisms βj : ΠUj

∼→ ΠVj [where j = 1, . . . ,m; β1 = β].
Indeed, we reason by induction on m. If [for j = 1, . . . ,m − 1] Uj+1 is related to
Uj as in (a) [of Definition 2.9, (ii)], then it is immediate [by thinking in terms of
open subgroups of ΠUj , ΠVj ] that one may construct [from Vj ] a Vj+1 related to
Vj as in (a). If Uj+1 is related to Uj as in (b) (respectively, (c)), then it follows
from [Mzk6], Theorem 2.4 (respectively, [Mzk8], Theorem 1.3, (iii) [cf. also [Mzk8],
Theorem 2.3]), that one may construct [from Vj ] a Vj+1 related to Vj as in (b)
(respectively, (c)). If Uj+1 is related to Uj as in (d), then ΠUj+1 is obtained from
ΠUj by forming the quotient of ΠUj by the closed normal subgroup of ΠUj generated
by some finite collection of elements of ∆Uj that belong to the decomposition groups
of points of Uj in ∆Uj . Thus, by Lemma 2.11, (v), below, we conclude that the
quotient ΠUj � ΠUj+1 determines a quotient ΠVj � ΠVj+1 that corresponds to a
partial coarsification Vj → Vj+1, as desired. Finally, if Um is a tripod, the existence
of the isomorphism ΠUm

∼→ ΠVm implies that Vm is also a tripod [cf. [Mzk5], Lemma
1.3.9]. This completes the proof of the claim.

Thus, to complete the proof of assertion (iv), it suffices to verify that V is
defined over a number field. But observe that since U is defined over a number
field, there exists a diagram of hyperbolic curves [i.e., in essence, a “Belyi map”]

Um ←− U ′
m ↪→ U ′ −→ U

where the “hooked arrow ↪→” is an open immersion; the “non-hooked arrows”
are finite étale morphisms; and the finite étale morphism U ′ → U is obtained by
a base-change to a finite extension of the base field kU . Now the isomorphisms
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ΠUm

∼→ ΠVm , ΠU
∼→ ΠV allow us to transform [cf. [Mzk8], Theorem 2.3 and its

proof] this diagram into a similar diagram

Vm ←− V ′
m ↪→ V ′ −→ V

whose existence [since Vm is also a tripod!] shows that V is also defined over a
number field, as desired. This completes the proof of assertion (iv). ©

Remark 2.10.1. Note that the essential reason that the author is unable to prove
the stronger statement of Proposition 2.10, (iv), in the quasi-Belyi case is that, in
the notation of the proof of Proposition 2.10, (i), it is unclear how to construct [at
the level of arithmetic fundamental groups] the dominant morphism V → W from
V . That is to say, unlike the situation involving the operations of Definition 2.9,
(ii), (a), (b), (c), (d), it is by no means clear how to construct, via purely group-
theoretic operations, the quotient of an arithmetic fundamental group arising from
an arbitrary dominant morphism.

Lemma 2.11. (Finite Subgroups of Fundamental Groups of Hy-
perbolic Orbicurves) Let W be a hyperbolic orbicurve over an algebraically
closed field of characteristic zero; ΣW a nonempty set of prime numbers. Denote
the maximal pro-ΣW quotient of the étale fundamental group of W by ∆W . Let
A ⊆ ∆W (respectively, B ⊆ ∆W ) be the decomposition group [well-defined up
to conjugation in ∆W ] of a closed point wA (respectively, wB) of W ; suppose that
wA �= wB. Then:

(i) A, B are cyclic.

(ii) A
⋂

B = {1}. In particular, if A �= {1}, then A is normally terminal in
∆W .

(iii) The order of every finite cyclic subgroup C ⊆ ∆W divides the order
of W [cf. §0].

(iv) Every finite subgroup C ⊆ ∆W is contained in a unique decomposi-
tion group of a closed point of W .

(v) The decomposition groups of closed points of W may be characterized as
the maximal finite subgroups of ∆W .

Proof. Assertion (i) follows immediately from the well-known [and easily verified]
fact that the absolute Galois group of a complete discrete valuation field with
algebraically closed residue field of characteristic zero is cyclic.

Next, we consider assertion (ii). Let C ⊆ A
⋂

B be a subgroup of prime
order l ∈ ΣW . Now consider a normal open subgroup H ⊆ ∆W such that the
covering WH → W determined by H is a hyperbolic curve. Note that this implies
that A

⋂
H = B

⋂
H = C

⋂
H = {1}. Write WH → WC → W for the covering

determined by the open subgroup C · H ⊆ ∆W . Observe that there exist closed
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points w′
A, w′

B of WC that lift wA, wB, respectively, and whose decomposition
groups [well-defined up to conjugation in C · H] are equal to C . Note that since
WH is a hyperbolic curve, and C is of prime order l, it follows that the order of
every closed point of WH is equal to either 1 or l. Now if WC is affine, then let v
be a cusp of WC . If WC is proper and admits ≥ 3 points of order l, then let v be a
point of WC of order l such that v �= w′

A, w′
B. Note that if WC is proper and admits

≤ 2 points of order l, then it follows from the hyperbolicity assumption that the
coarsification of WC is a proper smooth curve of genus ≥ 1; thus, by replacing H by
an appropriate open subgroup of H, one verifies immediately that one may assume
without loss of generality that either WC is affine or WC admits ≥ 3 points of order
l. Now observe that WC admits a finite étale cyclic covering W ′

C →WC of degree l
which is étale over the compactification of the coarsification of WC , except over the
points in the compactification of the coarsification of WC corresponding to v, w′

B,
over which W ′

C is totally ramified. In particular, it follows that any point of W ′
C

lying over w′
A (respectively, w′

B) is of order l (respectively, 1), thus contradicting
the observation that the decomposition groups [well-defined up to conjugation in
C ·H] of w′

A, w′
B are equal to C . This completes the proof that A

⋂
B = {1}. By

applying this fact to arbitrary finite étale coverings of W , it follows formally [cf.
Proposition 2.6, (ii)] that A is normally terminal in ∆W , whenever A �= {1}.

Next, we consider assertion (iii). Denote the order of W by n. Now if C ⊆ ∆W

is a nontrivial finite cyclic subgroup, then C maps injectively to the inverse limit
of the abelianizations Hab of the open subgroups H ⊆ ∆W of ∆W that contain C .
Thus, there exists such an H such that the natural map C → Hab is injective. On
the other hand, if we denote by WH →W the covering determined by H, then it is
clear that the order of WH divides n, hence that Hab is the extension of a torsion-
free profinite abelian group by a finite abelian group annihilated by n. Thus, we
conclude from the injection C ↪→ Hab that the order of C divides n, as desired.
This completes the proof of assertion (iii).

Next, we consider assertion (iv). First, let us observe that uniqueness follows
formally from assertion (ii). Next, let us verify assertion (iv) under the further
assumption that C is solvable. By induction on the order of C , we may assume
that [at least] one of the following conditions is satisfied: (a) C is an extension of
a group of prime order by a nontrivial subgroup C1 ⊆ C which is contained in the
decomposition group A; (b) C is of prime order l ∈ ΣW . If (a) is satisfied, then by
replacing W by a finite étale covering of W determined by a suitable open subgroup
containing C , we may assume that (C1 ⊆) A ⊆ C . Thus, if A �= C , then A = C1 is
normal in C . But this implies, by the normal terminality portion of assertion (ii),
that A = C , a contradiction. If (b) is satisfied, then we argue as follows: Observe
that by assertion (iii), every open subgroup H ⊆ ∆W that contains C determines
a finite étale covering WH →W such that the order of WH is divisible by l. Write

Stackl(WH)

for the set of closed points of WH whose order is divisible by l. Now observe that
since the order of WH is divisible by the prime number l, it follows that Stackl(WH)
is nonempty. Since the set Stackl(WH) is finite and nonempty, we thus conclude
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that, if we allow H to vary [among open subgroups H ⊆ ∆W that contain C ], then
the inverse limit

lim←−
H

Stackl(WH)

is nonempty. But, unraveling the definitions, this means precisely that C contains
the decomposition group D associated to some compatible system of points of the
sets Stackl(WH). Since D is of order divisible by l, we thus conclude that D = C ,
as desired. This completes the proof of assertion (iv) for C solvable. On the other
hand, a well-known theorem from the theory of finite groups asserts that a finite
group in which every Sylow subgroup is cyclic is solvable [cf. [Scott], p. 356].
Thus, in light of assertion (i), we conclude that assertion (iv) for C solvable implies
assertion (iv) for C arbitrary.

Finally, we observe that assertion (v) follows formally from assertions (ii), (iv).
©

Remark 2.11.1. The author would like to thank A. Tamagawa for informing him
of Lemma 2.11 and, in particular, of the theorem on finite groups that was applied
in the proof of Lemma 2.11, (iv).

We are now ready to state the following “absolute p-adic version of the Grothen-
dieck Conjecture” for hyperbolic curves of Belyi or quasi-Belyi type:

Corollary 2.12. (Curves of Belyi or Quasi-Belyi Type) Let U (respectively,
V ) be a hyperbolic curve over a nonarchimedean local field. Denote the base field
of U (respectively, V ) by kU (respectively, kV ), the étale fundamental group of U
(respectively, V ) by ΠU (respectively, ΠV ) [i.e., “we take Σ = Primes”]. Suppose
further that at least one of the following conditions holds:

(a) both U and V are of quasi-Belyi type;

(b) either U or V [but not necessarily both!] is of Belyi type.

Then any isomorphism of profinite groups

β : ΠU
∼→ ΠV

arises from a uniquely determined commutative diagram of schemes

Ũ
∼→ Ṽ
 


U
∼→ V

in which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups ΠU , ΠV .
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Proof. In light of Proposition 2.10, (iii), (iv) [cf. also Remark 2.9.1], Corollary
2.12 follows formally from Corollary 2.8. ©

Remark 2.12.1. Note that in the proof of Proposition 2.10, Corollary 2.12, it
is necessary, in the quasi-Belyi case, to apply the full “Hom version” of [Mzk4],
Theorem A. This differs from the situation of [Mzk8], Corollaries 2.8, 3.2 — i.e.,
where one only treats hyperbolic curves of strictly Belyi type — or, indeed, of the
portion of Proposition 2.10, Corollary 2.12, that concerns curves of Belyi type,
in which the “isomorphism version” of [Mzk4], Theorem A, suffices [cf. [Mzk8],
Remark 2.8.1].

Thus, in the terminology of [Mzk6], Definition 3.7, the portion of Corollary 2.12
concerning hyperbolic curves of Belyi type admits the following formal consequence:

Corollary 2.13. (Absoluteness of Curves of Belyi Type) Every hyperbolic
curve of Belyi type over a nonarchimedean local field is absolute.

Remark 2.13.1. It is interesting to note that the essential property that underlies
the absoluteness of Corollary 2.13 is the existence of a Belyi map [since the curve
is defined over a number field], which, in the context of the theory of [Mzk8],
§2, may be regarded as a sort of endomorphism of the curve. From this point of
view, Corollary 2.13 is reminiscent of [Mzk6], Corollary 3.8, which states that the
“canonical curves” of p-adic Teichmüller theory are absolute. Indeed, from the
point of view of the theory of [Mzk2], this canonicality may be regarded as the
existence of a sort of “Frobenius endomorphism” of the curve. It is also interesting
to note that both of these results assert that every member of some countable
collection of nonarchimedean hyperbolic curves is absolute. This suggests that the
property of being absolute is a somewhat unusual property, i.e., a property not
satisfied by “most” nonarchimedean hyperbolic curves [cf., e.g., the Introduction
to [Mzk5]].

Remark 2.13.2. In the context of Remark 2.13.1, it is interesting to note that,
unlike the canonical curves discussed in [Mzk6], §3, the set of points determined
by the hyperbolic curves of strictly Belyi type fails, for all pairs (g, r) such that
2g − 2 + r ≥ 3, g ≥ 1, to be Zariski dense in the moduli stack of hyperbolic curves
of type (g, r). Indeed, this follows immediately from [Mzk1], Theorem B. On the
other hand, it is not clear to the author at the time of writing whether or not the set
of points determined by the hyperbolic curves of Belyi (respectively, quasi-Belyi)
type is Zariski dense in the moduli stack of hyperbolic curves of type (g, r) [when,
say, 2g − 2 + r ≥ 3, g ≥ 2]. Note, however, that when g = 0, 1, [one verifies easily
that] every hyperbolic curve of type (g, r) that is defined over a number field is
automatically of Belyi type.

Remark 2.13.3. Recall [in the context of Remark 2.13.1] that in [Mzk6], Remark
3.6.3, the point of view is advanced that the absoluteness of canonical curves should
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be regarded as the analogue for hyperbolic curves of the fact that Serre-Tate canon-
ical liftings of abelian varieties are defined over number fields. Thus, from this point
of view, curves of Belyi type and canonical curves have in common not only the
property that they admit some sort of nontrivial endomorphism, but also that this
endomorphism appears to be related [indeed, in the Belyi case, is literally related]
to some sort of “generalized version” of the property of being defined over a number
field. Put another way, this state of affairs suggests that:

Perhaps the property of absoluteness is related to some sort of
natural p-adic generalization of the property of being “defined
over a number field”.

Indeed, this state of affairs further suggests that:

Perhaps the property of absoluteness is equivalent to some sort
of natural p-adic generalization for hyperbolic curves of the con-
dition on an abelian variety that the abelian variety be “defined
over a number field” and admit sufficiently many complex multi-
plications.

In particular, this state of affairs suggests that perhaps a natural way to look for
more examples of absolute p-adic hyperbolic curves is to look for other situations in
which p-adic hyperbolic curves admit, in some sort of generalized sense, endomor-
phisms that are reminiscent of endomorphisms of abelian varieties that allow one
to show that the object on which the endomorphism acts is defined over a number
field.



50 SHINICHI MOCHIZUKI

Section 3: Characterization of Green’s Trivializations over Finite Fields

In this §, we apply the theory of the weight filtration [cf. [Kane], [Mtm]] to
show, in the finite field case, that, under quite general conditions [cf. Corollary
3.11 below], an isomorphism “α” as in Theorem 1.16, (iii), is always totally globally
Green-compatible.

In the following discussion, we maintain the notation of §2, and assume further
throughout the present §3 that we are in the finite field case.

Definition 3.1. Let l be a prime number; G, H, A topologically finitely generated
pro-l groups; φ : H → A a [continuous] homomorphism. Suppose further that A is
abelian, and that G is an l-adic Lie group.

(i) We shall refer to as the φ-central filtration on H the filtration defined as
follows:

H(1) def= H

H(2) def= Ker(φ)

H(m) def=
(
the subgroup topologically generated by the commutators

[H(a),H(b)], where a + b = m
)
, ∀ m ≥ 3

Thus, in words, this filtration on H is the “fastest decreasing central filtration among
those central filtrations whose top quotient factors through φ”. We shall say that
H is φ-nilpotent if H(m) = {1} for sufficiently large φ. If H is φ-nilpotent when φ
is taken to be the natural surjection H � Hab to its abelianization Hab, then we
shall say that H is nilpotent. In the following, for a, b, n ∈ Z such that 1 ≤ a ≤ b,
n ≥ 1, we shall write

H(a/b) def= H(a)/H(b)

and
Gr(H)(n) def=

⊕
m≥n

H(m/m + 1) ⊆ Gr(H) def= Gr(H)(1)

Gr(H)(a/b) def= Gr(H)(a)/Gr(H)(b)

and append a subscript Ql to these objects to denote the result of tensoring over Zl

with Ql. Thus, Gr(H), GrQl(H) are graded Lie algebras over Zl, Ql, respectively;
Gr(H)(n) ⊆ Gr(H) is a [Lie algebra-theoretic] ideal. Also, if Z � a ≥ 1, then we
shall write:

H(a/∞) def= lim←−
b

H(a/b)

[where b ranges over the integers ≥ a + 1].

(ii) We shall denote by Lie(G) the Lie algebra over Ql determined by G. If
G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Ql, hence determines
a connected, unipotent linear algebraic group Lin(G), which we shall refer to as
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the linear algebraic group associated to G. In this situation, there is a natural
[continuous] homomorphism [with open image]

G→ Lin(G)(Ql)

[from G to the l-adic Lie group determined by the Ql-valued points of Lin(G)]
which is determined by the condition that it induce the identity morphism on the
associated Lie algebras. In the situation of (i), if Z � a ≥ 1, then we shall write:

Lie(H(a/∞)) def= lim←−
b

Lie(H(a/b)); Lin(H(a/∞)) def= lim←−
b

Lin(H(a/b))

[where b ranges over the integers ≥ a + 1; we recall that it is well-known [or easily
verified] that each H(a/b) is an l-adic Lie group].

Now let us fix a prime number l ∈ Σ†. For S ⊆ X(k) a finite subset, let us
denote by

∆US � ∆(l)
US

; ∆X � ∆(l)
X

the maximal pro-l quotients and by

ΠUS � Π(l)
US

; ΠX � Π(l)
X

the quotients of ΠUS , ΠX by the kernels of ∆US � ∆(l)
US

, ∆X � ∆(l)
X . Also, for

x ∈ Xcl, let us write

D(l)
x [US ] ⊆ Π(l)

US
; I(l)

x [US ] ⊆ ∆(l)
US

for the images of Dx[US], Ix[US], respectively, in Π(l)
US

.

Note that we have a natural surjection:

∆(l)
US
� ∆(l)

X � (∆(l)
X )ab

The cup product on the group cohomology of ∆(l)
X determines an isomorphism [cf.

Proposition 1.3, (ii)]
Hom((∆(l)

X )ab,M
(l)
X ) ∼→ (∆(l)

X )ab

[where we write M
(l)
X

def= MX ⊗ Zl], hence a natural Gk-equivariant injection

M
(l)
X ↪→ ∧2 (∆(l)

X )ab

whose image we denote by I
(l)
cup.

Definition 3.2. We shall refer to the central filtration

{∆(l)
US

(m)}
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on ∆(l)
US

with respect to the natural surjection ∆(l)
US
� (∆(l)

X )ab as the weight filtra-

tion on ∆(l)
US

[cf., e.g., [Mtm], §3, p. 200].

Proposition 3.3. (Free Lie Algebras) Let R be a commutative ring with
unity; V a finitely generated free R-module. Write LieR(V ) for the free Lie
algebra over R associated to V ; for Z � b ≥ 1, denote by Lieb

R(V ) ⊆ LieR(V )
the R-submodule generated by the “alternants of degree b” [cf. [Bour], Chapter II,
§2.6]. Also, we shall denote by UR(V ) the enveloping algebra of LieR(V ). [Thus,
we have a natural inclusion LieR(V ) ↪→ UR(V ).] Then:

(i) Each Lieb
R(V ) is a finitely generated free R-module. Moreover, there is

a natural isomorphism V
∼→ Lie1R(V ).

(ii) Let v ∈ V be a nonzero element such that the quotient module V/R ·
v is free. Then the centralizer of v in UR(V ) is equal to the R-submodule of
UR(V ) generated by the nonnegative powers of v. In particular, if R is a field of
characteristic zero, then the centralizer of v in LieR(V ) is equal to R · v.

(iii) Suppose that the rank of V over R is ≥ 2. Then the Lie algebra LieR(V ) is
center-free. In particular, the adjoint representation of LieR(V ) is faithful.

(iv) Let R′ be an R-algebra which is finitely generated and free as an R-
module. Let φ : R′ � R be a surjection of R-algebras; suppose that V = V ′⊗R′,φ R,
for some finitely generated free R′-module V ′ [so we obtain a natural surjection
V ′ � V compatible with φ]. Then the natural surjection V ′ � V induces a sur-
jection of R-modules Lieb

R(V ′) � Lieb
R(V ) that factors as a composite of natural

surjections as follows:

Lieb
R(V ′)� Lieb

R′(V ′)� Lieb
R(V )

Here, the first arrow of this factorization is the arrow naturally induced by observ-
ing that every Lie algebra over R′ naturally determines a Lie algebra over R; the
second arrow of this factorization is the arrow functorially induced by the natural φ-
compatible surjection V ′ � V . Finally, this second arrow induces an isomorphism
Lieb

R′(V ′)⊗R′,φ R
∼→ Lieb

R(V ).

Proof. Assertion (i) follows immediately from [Bour], Chapter II, §2.11, Theorem
1, Corollary. Assertion (ii) follows from the well-known structure of the enveloping
algebra UR(V ) [i.e., the natural isomorphism of UR(V ) with the free associative
algebra determined by V over R; the fact that when R is a field of characteristic
zero, the image of LieR(V ) in UR(V ) may be identified with the set of primitive ele-
ments — cf. [Bour], Chapter II, §3, Theorem 1, Corollaries 1,2], by considering the
effect on “words” of forming the commutator with v — cf. the argument of [Mtm],
Proposition 3.1 [which is given only in the case where R is a field of characteristic
zero, but does not, in fact, make use of this assumption on R in an essential way].
Assertion (iii) follows immediately from assertion (ii) [by allowing the element “v”
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of assertion (ii) to range over the elements of an R-basis of V ]. Assertion (iv) fol-
lows formally from the universal property of a free Lie algebra, together with the
well-known functoriality of a free Lie algebra with respect to tensor products [cf.
[Bour], Chapter II, §2.5, Proposition 3]. ©

Proposition 3.4. (Freeness and Centralizers of Inertia) Let x ∈ S. Write
Sx

def= S\{x}; r for the cardinality of S, g for the genus of X. For x′ ∈ S, let ζx′ be
a generator of I

(l)
x′ [US ]. By abuse of notation, we shall also denote by ζx′ the image

of ζx′ in ∆(l)
US

(2/3). Then:

(i) Gr(∆(l)
US

) is a free Lie algebra over Zl [hence, in particular, is torsion-free
as a Zl-module] which is freely generated by 2g elements

α1, . . . , αg, β1, . . . , βg ∈ ∆(l)
US

(1/2)

together with the ζx′ ∈ ∆(l)
US

(2/3), for x′ ∈ Sx. Alternatively, for an appropriate

choice of the elements ζx′ , Gr(∆(l)
US

) is the quotient of the free Lie algebra generated

by α1, . . . , αg, β1, . . . , βg, together with the ζx′ ∈ ∆(l)
US

(2/3), for x′ ∈ S, by the
single relation: ∑

x′∈S

ζx′ +
g∑

n=1

[αn, βn] = 0

At a more intrinsic level, this relation is a generator of the image of the natural
Gk-equivariant morphism

M
(l)
X ↪→

(⊕
x′∈S

I
(l)
x′ [US ]

)
⊕ I(l)

cup

[determined by the various natural isomorphisms M
(l)
X

∼→ I
(l)
x′ [US ], M

(l)
X

∼→ I
(l)
cup]],

whose codomain maps to Gr(∆(l)
US

) via the natural Gk-equivariant morphism(⊕
x′∈S

I
(l)
x′ [US ]

)
⊕ I(l)

cup → ∆(l)
US

(2/3)

[determined by the natural inclusions I
(l)
x′ [US ] ↪→ ∆(l)

US
(2/3) and the bracket opera-

tion ∧2 (∆(l)
X )ab → ∆(l)

US
(2/3)].

(ii) Let ξ be any of the elements α1, . . . , αg , β1, . . . , βg; ζx′, where x′ ∈ Sx,
of (i). Then the centralizer in GrQl(∆

(l)
US

) of [the image of] ξ [in GrQl(∆
(l)
US

)] is

equal to Ql · ξ. In particular, the Lie algebra GrQl(∆
(l)
US

) is center-free.

(iii) Let ξ be as in (ii). Then for m ≥ 1, the centralizer in ∆(l)
US

(1/m + 2) of

[the image of] ξ [in ∆(l)
US

(1/m + 2)] is contained in the subgroup of ∆(l)
US

(1/m + 2)

generated by [the image of] ξ and ∆(l)
US

(m/m + 2).
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(iv) Let S∗ ⊆ S be a subset of S. Write

New(l)
S∗ ⊆ Gr(∆(l)

US
)

for the sub-Lie algebra over Zl generated by the image of the restriction( ⊕
x′∈S∗

I
(l)
x′ [US ]

)
⊆
(⊕

x′∈S

I
(l)
x′ [US ]

)
→ ∆(l)

US
(2/3)

to the direct summands indexed by elements of S∗ of the morphism of (i), and
New(l)

S∗(a) def= Gr(∆(l)
US

)(a)
⋂

New(l)
S∗ ; New(l)

S∗(a/b) def= New(l)
S∗(a)/New(l)

S∗(b) for a, b ∈
Z such that 1 ≤ a ≤ b. Then, in the notation of (i), New(l)

S∗ is a free Lie algebra
over Zl generated by the elements ζx′, for x′ ∈ S∗. Moreover, the [“new” and
“co-new”] Zl-modules

New(l)
S∗(a/b); Cnw(l)

S∗(a/b) def= Gr(∆(l)
US

)(a/b)/New(l)
S∗(a/b)

are free. In the following discussion, we shall write Newtor,(l)
S∗ (a/b) def= New(l)

S∗(a/b)⊗
Q/Z.

Proof. Assertion (i) (respectively, (ii)) is, in essence, the content of [Kane], Propo-
sition 1 (respectively, Proposition 3.3, (ii), (iii)). Assertion (iii) follows formally
from assertion (ii). Finally, we consider assertion (iv). By Proposition 3.3, (iii), it
follows that any free Lie algebra over Fl with ≥ 2 generators is center-free. Thus,
let M be the module determined by any faithful representation [e.g., when the car-
dinality of S∗ is ≥ 2, the adjoint representation] of the free Lie algebra F over
Fl in the formal generators ζx′, where x′ ∈ S∗. Now observe that we obtain an
action of GrFl(∆

(l)
US

) on M ′ def= M ⊕M as follows: We let α2, . . . αg; β2, . . . βg ; ζx′,

where x′ ∈ S0
def= S\S∗, act by multiplication by 0 on M ′. We let α1, β1 act on

M ′ = M ⊕M via the matrices(
0

∑
x′∈S∗

ζx′

0 0

)
;

(
0 0

−1 0

)

respectively. Finally, we let ζx′, where x′ ∈ S∗, act on M ′ via the following matrix:(
ζx′ 0

0 −ζx′

)

Thus, [by assertion (i)] M ′ determines a representation of GrFl(∆
(l)
US

) whose re-

striction to the image of New(l)
S∗ ⊗Zl Fl in GrFl(∆

(l)
US

) determines [via the natural

surjection F � New(l)
S∗⊗Zl Fl] a faithful representation of F . Thus, we conclude that

the natural surjection F � New(l)
S∗ ⊗Zl Fl is an isomorphism, and that New(l)

S∗ ⊗Zl Fl

injects into GrFl(∆
(l)
US

). Assertion (iv) now follows formally. ©
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Remark 3.4.1. The author wishes to thank A. Tamagawa for pointing out to
him the content of Proposition 3.4, (i).

Next, let us fix an x∗ ∈ S, as well as a choice of decomposition group

Dx∗ [US] ⊆ ΠUS

[i.e., among the various ΠUS -conjugates of this subgroup] associated to x∗. [Thus,
Dx∗ [US ] determines a specific subgroup [i.e., not just a conjugacy class of subgroups]
D

(l)
x∗ [US ] ⊆ Π(l)

US
.] Recall that the natural exact sequence

1→ I(l)
x∗ [US ]→ D(l)

x∗ [US ]→ Gk → 1

splits. [Indeed, extracting l-power roots of any local uniformizer of X at x∗ deter-
mines such a splitting — cf., e.g., the discussion at the beginning of [Mzk8], §4.] In
the following discussion, we shall fix a splitting

Gk → D(l)
x∗ [US ]

of this exact sequence. Thus, this splitting determines a natural action of Gk [by
conjugation] on ∆(l)

US
, hence also on

Lin(l)
US

(a/b) def= Lin(∆(l)
US

(a/b))(Ql); Lie(l)
US

(a/b) def= Lie(∆(l)
US

(a/b))

GrQl(∆
(l)
US

)(a/b)

[where a, b ∈ Z; 1 ≤ a ≤ b]. Write

Fk ∈ Gk

for the Frobenius element of Gk. In the following, we shall denote the cardinality
of k by qk.

Proposition 3.5. (Galois Invariant Splitting) Let a, b ∈ Z, 1 ≤ a ≤ b.

(i) The eigenvalues of the action of Fk on Lie(l)
US

(a/a+1) are algebraic num-

bers all of whose complex absolute values are equal to q
a/2
k .

(ii) There is a unique Gk-equivariant isomorphism of Lie algebras

Lie(l)
US

(a/b) ∼→ GrQl(∆
(l)
US

)(a/b)

which induces the identity isomorphism Lie(l)
US

(c/c + 1) ∼→ GrQl(∆
(l)
US

)(c/c + 1), for
all c ∈ Z such that a ≤ c ≤ b− 1.
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(iii) The isomorphism of (ii) together with the natural inclusions I
(l)
x [US ] ↪→

∆(l)
US

for x ∈ S [which are well-defined up to ∆(l)
US

-conjugation] determine a Gk-
equivariant morphism(⊕

x∈S

I(l)
x [US ]⊗Ql

)
⊕ Lie(l)

US
(1/2)→ Lie(l)

US
(1/∞)

which exhibits, in a Gk-equivariant fashion, Lie(l)
US

(1/∞) as the quotient of the
completion [with respect to the filtration topology] of the free Lie algebra generated
by the finite dimensional Ql-vector space(⊕

x∈S

I(l)
x [US ]⊗Ql

)
⊕ Lie(l)

US
(1/2)

[equipped with a natural grading, hence also a filtration, by taking the I
(l)
x [US]⊗

Ql to be of weight 2, Lie(l)
US

(1/2) to be of weight 1], by the single relation deter-
mined by the image of the morphism

M
(l)
X ⊗Ql ↪→

(⊕
x∈S

I(l)
x [US ]⊗Ql

)
⊕ (I(l)

cup ⊗Ql)

of Proposition 3.4, (i), tensored with Ql.

(iv) For each g ∈ Lin(l)
US

(1/∞), there exists a unique h ∈ Lin(l)
US

(1/∞) such
that

Fk ◦ Inng = Innh ◦ Fk ◦ Innh−1

[where “Inn” denotes the inner automorphism of Lin(l)
US

(1/∞) defined by conjuga-

tion by the subscripted element]. Moreover, when g lies in the image of I
(l)
x∗ ⊗ Ql

[which is stabilized by the action of Fk], h also lies in the image of I
(l)
x∗ ⊗Ql.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for abelian
varieties over finite fields” — cf., e.g., [Mumf], p. 206. Assertion (ii) (respec-
tively, (iii); (iv)) follows formally from assertion (i) (respectively, and Proposition
3.4, (i); and successive approximation of h with respect to the natural filtration
Lin(l)

US
(a/∞) ⊆ Lin(l)

US
(1/∞)). ©

Next, let
S∗ ⊆ S

be a subset such that x∗ ∈ S∗; S0
def= S\S∗. In the following, we shall regard

Lin(l)
US

(a/b) as being equipped with its natural l-adic topology. Thus, Gk acts con-

tinuously on Lin(l)
US

(a/b), Lie(l)
US

(a/b), and we have natural Gk-equivariant surjec-
tions:

Lin(l)
US

(a/b)� Lin(l)
US0

(a/b); Lie(l)
US

(a/b)� Lie(l)
US0

(a/b)
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Let us write
Lin(l)

US/US0
(a/b); Lie(l)

US/US0
(a/b)

for the kernels of these surjections. In the following, to simplify the notation, we
shall often omit the superscript (l) from the objects “Lin(l)”, “Lie(l)”, “New(l)”,
“Newtor,(l)” introduced above and write:

LinUS (a/b); LieUS (a/b); LinUS0
(a/b); LieUS0

(a/b)

LinUS/US0
(a/b); LieUS/US0

(a/b); NewS∗(a/b); Newtor
S∗ (a/b)

Also, we shall write:

NewQ
S∗(a/b) def= NewS∗(a/b) ⊗Q; ∆Lie

US

def= LinUS (1/∞)×LinUS0
(1/∞) ∆US0

Note that, for Z � b ≥ 1, we have a natural Gk-equivariant inclusion

LinUS/US0
(b + 1/∞) ∼→ LinUS/US0

(b + 1/∞)×{1} {1} ↪→ LinUS (1/∞)×LinUS0
(1/∞) ∆US0

= ∆Lie
US

whose image forms a normal subgroup of ∆Lie
US

; write

∆Lie
US
� ∆Lie≤b

US

for the quotient of ∆Lie
US

by this normal subgroup. Also, we have a natural Gk-
equivariant [composite] inclusion

NewQ
S∗(b+1/b+2) ↪→ LieUS/US0

(b+1/b+2) ∼→ LinUS/US0
(b+1/b+2) ↪→ ∆Lie≤b+1

US

whose image forms a normal subgroup of ∆Lie≤b+1
US

; write

∆Lie≤b+1
US

� ∆Lie≤b+
US

for the quotient of ∆Lie≤b+1
US

by this normal subgroup. Thus, we have natural Gk-
equivariant homomorphisms of topological groups:

∆US → ∆Lie
US
� ∆Lie≤b+

US
� ∆Lie≤b

US
� ∆US0

[the last three of which are easily verified to be surjective]. Moreover, forming the
semi-direct product with Gk [via the natural actions of Gk] yields topological groups
and homomorphisms as follows:

ΠUS → ΠLie
US
� ΠLie≤b+

US
� ΠLie≤b

US
� ΠUS0

Also, we note that we have natural exact sequences:

1→ LinUS/US0
(1/∞)→ ∆Lie

US
→ ∆US0

→ 1

1→ LinUS/US0
(1/∞)→ ΠLie

US
→ ΠUS0

→ 1
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Definition 3.6.

(i) We shall refer to ∆Lie
US

(respectively, ΠLie
US

; ∆Lie≤b
US

; ΠLie≤b
US

; ∆Lie≤b+
US

; ΠLie≤b
US

)
as the [l-adic] Lie-ification (respectively, Lie-ification; Lie-ification, truncated to
order b; Lie-ification, truncated to order b; Lie-ification, truncated to order b+; Lie-
ification, truncated to order b+) of ∆US (respectively, ΠUS ; ∆US ; ΠUS ; ∆US ; ΠUS )
[over ∆US0

(respectively, ΠUS0
; ∆US0

; ΠUS0
; ∆US0

; ΠUS0
)].

(ii) Observe that it follows immediately from the definitions that, for Z � b ≥ 1,
we have natural exact sequences

1→ NewQ
S∗(b + 1/b + 2)→ ∆Lie≤b+1

US
→ ∆Lie≤b+

US
→ 1

1→ NewQ
S∗(b + 1/b + 2)→ ΠLie≤b+1

US
→ ΠLie≤b+

US
→ 1

on which ΠLie≤b+1
US

acts naturally by conjugation. [Here, we note in passing that it
is immediate from the definitions that the submodule

NewS∗(b + 1/b + 2) ⊆ NewQ
S∗(b + 1/b + 2)

is contained in the image of ∆US .] In particular, we obtain a natural inclusion:

NewS∗(b + 1/b + 2) ↪→ ∆Lie≤b+1
US

(⊆ ΠLie≤b+1
US

)

We shall refer to the quotients of ∆Lie≤b+1
US

, ΠLie≤b+1
US

by the image of this natural
inclusion as the toral Lie-ifications ∆tor≤b+1

US
, Πtor≤b+1

US
of ∆US , ΠUS [over ∆US0

,
ΠUS0

]. Thus, we have natural exact sequences

1→ Newtor
S∗ (b + 1/b + 2)→ ∆tor≤b+1

US
→ ∆Lie≤b+

US
→ 1

1→ Newtor
S∗ (b + 1/b + 2)→ Πtor≤b+1

US
→ ΠLie≤b+

US
→ 1

on which ΠLie≤b+1
US

acts naturally by conjugation.

(iii) Suppose that U ′
S′

0
→ US0 is a connected finite étale covering that arises

from an open subgroup ΠU ′
S′
0

⊆ ΠUS0
; write X ′ → X for the normalization of X in

U ′
S′

0
. Then we shall say that the [ramified] covering X ′ → X is (S, S0,Σ)-admissible

if every closed point of X ′ that lies over a point of S is rational over the base field
k′ of X ′, and, moreover, ΠU ′

S′
0

is a characteristic subgroup of ΠUS0
.

Remark 3.6.1. Note that it follows immediately from the definition of ΠLie
US

[cf.
also Proposition 3.5, (iii)] that we obtain a natural subgroup

DLie
x∗

def=
(
I(l)
x∗ [US]⊗Q

)
� Gk ⊆ ΠLie

US

which contains the image of the decomposition group Dx∗ [US] ⊆ ΠUS via the
natural homomorphism ΠUS → ΠLie

US
. Let us write, for Z � b ≥ 1, DLie≤b

x∗ ⊆ ΠLie≤b
US
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for the image of DLie
x∗ in ΠLie≤b

US
; ILie

x∗
def= DLie

x∗

⋂
∆Lie

US
; ILie≤b

x∗
def= DLie≤b

x∗

⋂
∆Lie≤b

US
.

[Also, we shall use similar notation when “b” is replaced by “b+”.]

Proposition 3.7. (Center-freeness of Lie-ification) ∆Lie
US

is center-free.

Proof. Since ∆US0
is center-free [cf. Proposition 1.8, (iii)], and the natural

morphism ∆Lie
US
→ ∆US0

is surjective, it suffices to verify that the centralizer in
LinUS(1/∞) of the image of ∆Lie

US
is trivial. But the image of ∆Lie

US
in LinUS (1/∞)

contains the image of ∆US in LinUS (1/∞). In particular, it follows that the cen-
tralizer in question lies in the center of LinUS (1/∞). Thus, Proposition 3.7 follows
from Propositions 3.4, (ii) [or, alternatively, (iii)]. ©

Remark 3.7.1. Observe that changing the choice of splitting

Gk → D(l)
x∗ [US ]

affects the image of the element Fk ∈ Gk via the composite of the inclusion Gk ↪→
ΠUS with the morphisms

ΠUS → ΠLie
US

; ΠUS → ΠLie≤b
US

; ΠUS → ΠLie≤b+
US

by conjugation by an element h ∈ ILie
x∗ , which, up to a denominator dividing qk− 1,

lies in the image of Ix∗[US ] ⊆ ∆US — cf. Proposition 3.5, (iv); Proposition 3.7. In
particular, it follows that changing the choice of splittings Gk → D

(l)
x∗ [US ] affects

the Galois invariant splittings of Proposition 3.5, (ii), by conjugation by h. Put
another way, if we identify the “LinUS(1/∞)”, “LinUS0

(1/∞)” portions of ∆Lie
US

[cf.
the definition of ∆Lie

US
] with the [completions of the] corresponding graded objects

“GrQl(−)(1/∞)” via the Galois invariant splittings of Proposition 3.5, (ii), then it
follows that: Changing the choice of splitting Gk → D

(l)
x∗ [US] affects the images of

the morphisms

ΠUS → ΠLie
US

; ΠUS → ΠLie≤b
US

; ΠUS → ΠLie≤b+
US

[where Z � b ≥ 1] by conjugation by h.

In light of Proposition 3.7, we may apply the exact sequence “1 → (−) →
Aut(−)→ Out(−)→ 1” [cf. §0] to construct the following topological group:

∆LIE
US

def= lim←−
X ′

Aut(∆Lie
U ′

S′
)×Out(∆Lie

U ′
S′

) Gal(X ′
k
/Xk)

[where X ′ → X ranges over the (S, S0,Σ)-admissible coverings of X; U ′
S′ ⊆ X ′ is

the open subscheme determined by the complement of the set S ′ of closed points
of X ′ that lie over points of S]. Note that Gk acts naturally on ∆LIE

US
; thus, we may

form the semi-direct product of ∆LIE
US

with Gk to obtain a topological group ΠLIE
US

.
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Next, let us observe that, for Z � b ≥ 1, the various quotients ∆Lie
U ′

S′
�

∆tor≤b+1
U ′

S′
� ∆Lie≤b+

U ′
S′

� ∆Lie≤b
U ′

S′
determine quotients of topological groups ∆LIE

US
�

∆TOR≤b+1
US

� ∆LIE≤b+
US

� ∆LIE≤b
US

, ΠLIE
US
� ΠTOR≤b+1

US
� ΠLIE≤b+

US
� ΠLIE≤b

US
.

Thus, we obtain natural homomorphisms of topological groups:

∆US → ∆LIE
US
� ∆TOR≤b+1

US
� ∆LIE≤b+

US
� ∆LIE≤b

US
� ∆US0

ΠUS → ΠLIE
US
� ΠTOR≤b+1

US
� ΠLIE≤b+

US
� ΠLIE≤b

US
� ΠUS0

We shall denote by

∆≤b+
US
⊆ ∆LIE≤b+

US
; Π≤b+

US
⊆ ΠLIE≤b+

US
; ∆≤b

US
⊆ ∆LIE≤b

US
; Π≤b

US
⊆ ΠLIE≤b

US

the respective images of ∆US , ΠUS via these natural homomorphisms. Thus, one
may think of ∆≤b

US
, Π≤b

US
as being a sort of “canonical integral structure” on the

“inverse limit truncated Lie-ifications” ∆LIE≤b
US

, ΠLIE≤b
US

.

Here, we note in passing, relative to the theory of §1, 2, that [it is immediate
from the definitions that] when S = S∗ [so US0 = X], the quotient ΠUS � Π≤2

US
is

the maximal cuspidally abelian quotient of ΠUS [cf. Proposition 1.14, (i)].

Next, let us observe that in the inverse limit used to define ∆LIE
US

, ΠLIE
US

, the
various “ILie

x∗ ”, “DLie
x∗ ” [cf. Remark 3.6.1] form a compatible system, hence give rise

to subgroups

ILIE
x∗ ⊆ DLIE

x∗ ⊆ ΠLIE
US

; ILIE≤b
x∗ ⊆ DLIE≤b

x∗ ⊆ ΠLIE≤b
US

together with natural exact sequences and isomorphisms [when b ≥ 2]

1→ ILIE
x∗ → DLIE

x∗ → Gk → 1

1→ ILIE≤b
x∗ → DLIE≤b

x∗ → Gk → 1

ILIE
x∗
∼= ILIE≤b

x∗
∼= I

(l)
x∗ [US ]⊗Q

[and similarly when “b” is replaced by “b+”]. Also, the images of the subgroups
Ix∗ [US ], Dx∗ [US ] of ΠUS determine subgroups

I≤b
x∗ ⊆ D≤b

x∗ ⊆ Π≤b
US

[and similarly when “b” is replaced by “b+”].

In the following, let us write [cf. Proposition 3.4, (iv)]

CnwS∗(a/b) def= Cnw(l)
S∗(a/b); CnwQ

S∗(a/b) def= Cnw(l)
S∗(a/b)⊗Q

[where a, b ∈ Z, 1 ≤ a ≤ b].
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Before proceeding, let us observe that [it is immediate from the definitions
that] the natural surjections

∆LIE≤1+
US

� ∆LIE≤1
US

� ∆US0
; ΠLIE≤1+

US
� ΠLIE≤1

US
� ΠUS0

are isomorphisms. On the other hand, for b ≥ 2, we have the following result:

Proposition 3.8. (Plus Liftings of Canonical Integral Structures) For
Z � b ≥ 2:

(i) The natural surjections ∆≤b+
US
� ∆≤b

US
, Π≤b+

US
� Π≤b

US
are isomorphisms.

(ii) Any two liftings of the natural inclusion Π≤b
US

↪→ ΠLIE≤b
US

to inclusions
Π≤b

US
↪→ ΠLIE≤b+

US
differ by conjugation in ΠLIE≤b+

US
by a unique element of the

kernel of ΠLIE≤b+
US

� ΠLIE≤b
US

.

(iii) Any two liftings of the natural inclusion Π≤b
US

↪→ ΠLIE≤b
US

to inclusions
Π≤b

US
↪→ ΠLIE≤b+

US
whose images contain D≤b+

x∗ in fact coincide.

Proof. First, we consider assertion (i). It follows immediately from the definitions
that the kernel in question

Ker(∆≤b+
US
� ∆≤b

US
) = Ker(Π≤b+

US
� Π≤b

US
)

is given by the inverse limit

lim←−
X ′

CnwS′∗
(b + 1/b + 2)

[where X ′ → X ranges over the (S, S0,Σ)-admissible coverings of X; S ′
∗ (respec-

tively, S ′) is the set of closed points of X ′ that lie over points of S∗ (respectively,
S)]. On the other hand, it follows from the definition of “CnwS′∗

(b + 1/b + 2)”
that CnwS′∗

(b + 1/b + 2) is generated by certain successive brackets of the var-

ious generators of the Lie algebra Gr(∆(l)
U ′

S′
) [cf. Proposition 3.4, (i)] with the

property that at least one of the generators appearing in the successive bracket is
[in the notation of Proposition 3.4, (i)] either one of the [analogue for X ′ of the]
“α1, . . . , αg, β1, . . . , βg” or one of the “ζx′”, where x′ ∈ S ′

0
def= S ′\S ′∗. Moreover,

since, by taking ΠU ′′
S′′
0

⊆ ΠU ′
S′
0

to be sufficiently small, one may arrange that the

image of ∆ab
U ′′

S′′
0

in ∆ab
U ′

S′
0

be contained in an arbitrarily small open subgroup of ∆ab
U ′

S′
0

,

it thus follows that the above inverse limit vanishes. This completes the proof of
assertion (i).

Next, let us observe that to prove assertion (ii), it suffices — in light of the
natural isomorphism

Ker(ΠLIE≤b+
US

� ΠLIE≤b
US

) ∼→ lim←−
X ′

CnwQ
S′∗

(b + 1/b + 2)
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[where X ′, S ′∗ are as above] — to show that

Hi(Π≤b
US

,CnwQ
S′∗

(b + 1/b + 2)) = 0

for i = 0, 1, each S ′
∗ as above. Since the action of ∆≤b

US
on CnwQ

S′∗
(b + 1/b + 2)

clearly factors through a finite quotient of ∆≤b
US
� ∆US0

, it thus suffices to observe
[by considering the Leray spectral sequence associated to the surjection Π≤b

US
� Gk]

that the action of Fk on CnwQ
S′∗

(b+1/b+2) is “of weight b+1 ≥ 3”, while the action

of Fk on (∆(l)
U ′

S′
)ab is “of weight ≤ 2” [cf. Proposition 3.5, (i)]. This completes the

proof of assertion (ii).

Finally, we consider assertion (iii). First, let us observe that any two liftings of
the natural inclusion Π≤b

US
↪→ ΠLIE≤b

US
to inclusions Π≤b

US
↪→ ΠLIE≤b+

US
whose images

contain D≤b+
x∗

∼→ D≤b
x∗ [since b ≥ 2] in fact coincide on D≤b

x∗ ⊆ Π≤b
US

. Thus, by
assertion (ii), it suffices to verify that the submodule of Fk-invariants of

Ker(ΠLIE≤b+
US

� ΠLIE≤b
US

)

is zero. But in light of the natural isomorphism

Ker(ΠLIE≤b+
US

� ΠLIE≤b
US

) ∼→ lim←−
X ′

CnwQ
S′∗

(b + 1/b + 2)

[where S ′∗ is as above], this follows from Proposition 3.5, (i). This completes the
proof of assertion (iii). ©

Next, for Z � b ≥ 1, let us denote by

∆≤b++
US

⊆ ∆TOR≤b+1
US

; Π≤b++
US

⊆ ΠTOR≤b+1
US

the respective images of ∆US , ΠUS via the natural homomorphisms considered
above and by

I≤b++
x∗ ⊆ D≤b++

x∗ ⊆ Π≤b++
US

the images of the subgroups Ix∗ [US ], Dx∗ [US ] of ΠUS . Observe that it follows from
the definition of ∆TOR≤b+1

US
, ΠTOR≤b+1

US
that the natural surjections ∆≤b++

US
�

∆≤b+
US

, Π≤b++
US

� Π≤b+
US

are, in fact, isomorphisms. Thus, by Proposition 3.8, (i),
we obtain a commutative diagram of natural homomorphisms

Π≤b+1
US

� Π≤b++
US

∼→ Π≤b+
US

∼→ Π≤b
US
 
 
 


ΠLIE≤b+1
US

� ΠTOR≤b+1
US

� ΠLIE≤b+
US

� ΠLIE≤b
US

[where the vertical arrows are the natural inclusions; all of the horizontal arrows are
surjections; the second two upper horizontal arrows are isomorphisms]. Moreover,
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it follows immediately from the definitions that the first square in this commuta-
tive diagram is cartesian. That is to say, the subgroup Π≤b+1

US
⊆ ΠLIE≤b+1

US
may be

thought of as the inverse image via the natural surjection ΠLIE≤b+1
US

� ΠTOR≤b+1
US

of the image of a certain lifting of the natural inclusion Π≤b
US

↪→ ΠLIE≤b+
US

[cf. Propo-
sition 3.8, (i)] to an inclusion Π≤b

US
↪→ ΠTOR≤b+1

US
.

Let us write:
Π≤b

US
[new] def= Ker(Π≤b

US
� ΠUS0

)

Π≤b++
US

[new] def= Ker(Π≤b++
US

� ΠUS0
)

for the “new-cuspidal” subgroup of Π≤b
US

.

Proposition 3.9. (Extensions of Canonical Integral Structures)

(i) Let b
def= 1. Then any two liftings of the natural inclusion Π≤b

US
↪→ ΠLIE≤b+

US

to inclusions Π≤b
US

↪→ ΠTOR≤b+1
US

whose restrictions to the cuspidal subgroup Π≤b
US

[csp]
def= Ker(Π≤b

US
� ΠX) of Π≤b

US
coincide differ by conjugation in ΠTOR≤b+1

US
by an

element of the kernel of ΠTOR≤b+1
US

� ΠLIE≤b+
US

.

(ii) Let Z � b ≥ 2; suppose that S∗ is of cardinality one. Then any two
liftings of the natural inclusion Π≤b

US
↪→ ΠLIE≤b+

US
to inclusions Π≤b

US
↪→ ΠTOR≤b+1

US

whose images contain I≤b++
x∗ differ by conjugation in ΠTOR≤b+1

US
by an element

of the kernel of ΠTOR≤b+1
US

� ΠLIE≤b+
US

.

(iii) Suppose that S∗ is of cardinality one. Let β be an automorphism of the
profinite group Π≤b+1

US
that satisfies the following two conditions: (a) β preserves

and induces the identity on the quotient Π≤b+1
US

� Π≤b
US

; (b) β preserves the subgroup
I≤b+1
x∗ ⊆ Π≤b+1

US
. If b = 1, then we also assume that β induces the identity on

the cuspidal subgroup Π≤b+1
US

[csp] def= Ker(Π≤b+1
US

� ΠX) of Π≤b+1
US

. Then β is a
Ker(Π≤b+1

US
� Π≤b

US
)-inner automorphism.

(iv) Suppose that S∗ is of cardinality one. Let β be an inner automorphism
of the group ΠTOR≤b+1

US
arising from an element of Ker(ΠTOR≤b+1

US
� ΠLIE≤b+

US
).

Suppose that for each γ ∈ Π≤b++
US

⊆ ΠTOR≤b+1
US

, β preserves the Π≤b++
US

[new]-
conjugacy class of subgroups of ΠTOR≤b+1

US
defined by γ · D≤b++

x∗ · γ−1. Then β is
the identity automorphism.

(v) Write

ΠUS � Π≤∞
US

def= lim←−
b

Π≤b
US

for the the quotient of ΠUS defined by the inverse limit of the Π≤b
US

. Then ΠUS �
Π≤∞

US
(respectively, the resulting quotient ∆US � ∆≤∞

US
) is the maximal “new-

cuspidally” pro-l quotient of ΠUS (respectively, ∆US ).
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Proof. First, we consider assertions (i), (ii). Observe that, for Z � b ≥ 1, the
difference of any two liftings of the natural inclusion Π≤b

US
↪→ ΠLIE≤b+

US
to inclusions

Π≤b
US

↪→ ΠTOR≤b+1
US

determines a compatible collection of cohomology classes

ηS′ ∈ H1(Π≤b
US

,Newtor
S′∗

(b + 1/b + 2))

[where X ′ → X ranges over the (S, S0,Σ)-admissible coverings of X; S ′∗ (respec-
tively, S ′) is the set of closed points of X ′ that lie over points of S∗ (respectively,
S)].

Next, let us observe that by Proposition 3.5, (i), the zeroth cohomology module

H0(Π≤b
US

,Newtor
S′∗

(b + 1/b + 2))

is finite. This finiteness implies that any [not necessarily compatible!] system of
sections of a compatible system of torsors over H0(Π≤b

US
,Newtor

S′∗
(b+1/b+2)) always

admits a compatible cofinal subsystem. In light of the natural isomorphism

Ker(ΠTOR≤b+1
US

� ΠLIE≤b+
US

) ∼→ lim←−
X ′

Newtor
S′∗

(b + 1/b + 2))

[where X ′, S ′∗ are as described above], we thus conclude that in order to show
that the two inclusions Π≤b

US
↪→ ΠTOR≤b+1

US
differ by conjugation by an element of

Ker(ΠTOR≤b+1
US

� ΠLIE≤b+
US

), it suffices to show that the ηS′ = 0.

Note that Π≤b
US

[new] acts trivially on Newtor
S′∗

(b + 1/b + 2)). Now I claim that:

If b ≥ 2 (respectively, b = 1), then each ηS′ arises from a unique class
[which, by abuse of notation, we shall also denote by ηS′ ] in

H1(ΠUS0
,Newtor

S′∗
(b + 1/b + 2)) (respectively, H1(ΠX , (Newtor

S′∗
(b + 1/b + 2))ΠUS0

[csp]))

[where ΠUS0
[csp] def= Ker(ΠUS0

� ΠX)].

Indeed, if b = 1, this claim is immediate [cf. the statement of assertion (i)], so
assume that b ≥ 2, and that we are in the situation of assertion (ii). Now ob-
serve that, in light of our assumption that S∗ is of cardinality one, it follows that
Π≤b

US
[new] (respectively, Π≤b++

US
[new]) is topologically generated by the Π≤b

US
- (respec-

tively, Π≤b++
US

-) conjugates of I≤b
x∗ (respectively, I≤b++

x∗ ). Note, moreover, that it is
immediate from the definitions that every element of Ker(ΠTOR≤b+1

US
� ΠLIE≤b+

US
)

commutes with I≤b++
x∗ ). In particular, it follows that the images of Π≤b

US
[new] via

the two inclusions Π≤b
US

↪→ ΠTOR≤b+1
US

under consideration necessarily coincide. But
this implies that each ηS′ arises from a unique class in H1(ΠUS0

,Newtor
S′∗

(b+1/b+2)),
thus completing the proof of the claim.

Next, [returning to the general situation involving both assertions (i) and (ii)]
let

X ′′ → X ′
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be a morphism of (S, S0,Σ)-admissible coverings of X. Write U ′′
S′′ ⊆ X ′ for the open

subscheme determined by the complement of the set S ′′ of closed points of X ′′ that
lie over points of S. Note that since the cohomology group H1(ΠUS0

,Newtor
S′∗

(b +
1/b + 2)) is unaffected by replacing X ′ by the result of base-changing X ′ to some
finite extension of the base field of X ′, we may assume without loss of generality
[from the point of viewing of showing that ηS′ = 0] that X ′′ → X ′ induces an
isomorphism between the base fields of X ′′, X ′. Also, let us assume that the
open subgroup ∆U ′′

S′′
0

⊆ ∆U ′
S′
0

arises from some open subgroup H ′ ⊆ ∆ab
U ′

S′
0

that is

preserved by the action of ΠUS0
. Thus, it follows that the covering X ′′ → X ′ is

abelian. Set:
R′ def= Zl; R′′ def= Zl[Gal(X ′′/X ′)]

Thus, R′′ is a commutative ring with unity whose underlying R′-module is finite
and free; moreover, R′′ admits a natural ΠUS0

-action [induced by the conjugation
action of Gal(X/X′) on Gal(X ′′/X ′)].

Next, let us observe that S ′
∗, S ′′

∗ admit natural ΠUS0
-actions with respect to

which we have natural isomorphisms of ΠUS0
-modules [cf. Proposition 3.4, (i), (iv)]

NewS′∗
(1/2) ∼→ R′[S ′

∗]⊗M
(l)
X ; NewS′′∗

(1/2) ∼→ R′[S ′′
∗ ]⊗M

(l)
X

which determine natural isomorphisms of ΠUS0
-modules as follows:

NewS′∗
(b + 1/b + 2) ∼→ Lieb+1

R′ (R′[S ′
∗]⊗M

(l)
X )

NewS′′∗
(b + 1/b + 2) ∼→ Lieb+1

R′ (R′[S ′′∗ ]⊗M
(l)
X )

In the following, we shall identify the domains and codomains of these isomorphisms
via these isomorphisms.

Next, let us observe that the R′-module R′[S ′′
∗ ] admits a natural R′′-module

structure that is compatible with the ΠUS0
-action on R′′, R′[S ′′∗ ]. Note, more-

over, that R′[S ′′
∗ ] is a free R′′-module, and that the natural augmentation R′′ � R′

[given by mapping all of the elements of Gal(X ′′/X ′) to 1] induces a natural isomor-
phism R′[S ′′

∗ ]⊗R′′ R′ ∼→ R′[S ′
∗]. Also, we observe that any choice of representatives

in S ′′∗ of the ∆U ′
S′
0

/∆U ′′
S′′
0

= Gal(X ′′/X ′)-orbits of S ′′∗ [where we note that the

set of such orbits may be naturally identified with S ′
∗] determines an R′′-basis of

R′[S ′′
∗ ], hence [by considering “Hall bases” — cf., e.g., [Bour], Chapter II, §2.11] an

R′′-basis of Lieb+1
R′′ (R′[S ′′∗ ]). In particular, it follows that the Gal(X ′′/X ′)-module

Lieb+1
R′′ (R′[S ′′

∗ ]) is an “induced” Gal(X ′′/X ′)-module [in the terminology of the co-
homology theory of finite groups]. Consideration of such bases also shows that
we obtain natural, ΠUS0

-equivariant isomorphisms [which are independent of the
choices of representatives/bases!]

R′[S ′
∗]

∼→ R′[S ′′
∗ ]Gal(X ′′/X′); Lieb+1

R′ (R′[S ′
∗])

∼→ Lieb+1
R′′ (R′[S ′′

∗ ])Gal(X ′′/X′)

[where the superscript “Gal(X ′′/X ′)” denotes the submodule of Gal(X ′′/X ′)-inva-
riants]. Relative to these natural isomorphisms, the restrictions of the natural
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surjections R′[S ′′∗ ] � R′[S ′∗], Lieb+1
R′′ (R′[S ′′∗ ]) � Lieb+1

R′ (R′[S ′∗]) to the respective
submodules of Gal(X ′′/X ′)-invariants thus induce the endomorphisms of R′[S ′∗],
Lieb+1

R′ (R′[S ′
∗]) given by multiplication by the order of Gal(X ′′/X ′).

In light of the above observations [together with Propositions 3.3, (iv); 3.4,
(iv)], we conclude the following:

(A) The natural surjection of ΠUS0
-modules

Newtor
S′′∗

(b + 1/b + 2)� Newtor
S′∗

(b + 1/b + 2)

admits a factorization

Newtor
S′′∗

(b + 1/b + 2)� Newtor
S′∗

(b + 1/b + 2) ⊗R′ R′′ � Newtor
S′∗

(b + 1/b + 2)

which is compatible with the natural action of ΠUS0
on Newtor

S′′∗
(b + 1/b + 2),

Newtor
S′∗

(b + 1/b + 2) and with a certain “unnatural action” of ΠUS0
on Newtor

S′∗
(b +

1/b + 2) ⊗R′ R′′ whose restriction to ∆U ′
S′
0

is equal to the tensor product of the

trivial action of ∆U ′
S′
0

on Newtor
S′∗

(b + 1/b + 2) with the action of ∆U ′
S′
0

on R′′

given by multiplication, relative to the ring structure of R′′, via the natural map
∆U ′

S′
0

� Gal(X ′′/X ′) ↪→ R′′. Nevertheless, this “unnatural action” of ΠUS0
on

Newtor
S′∗

(b + 1/b + 2) ⊗R′ R′′ is compatible with the natural R′′-module structure of
Newtor

S′∗
(b + 1/b + 2)⊗R′ R′′, relative to the natural action of ΠUS0

on R′′.

(B) The induced morphism on ∆U ′
S′
0

-invariants

Newtor
S′′∗

(b + 1/b + 2)
∆U ′

S′
0 → Newtor

S′∗
(b + 1/b + 2)

∆U ′
S′
0 = Newtor

S′∗
(b + 1/b + 2)

of the natural surjection of (A) factors, in a ΠUS0
-equivariant fashion, through the

morphism
Newtor

S′∗
(b + 1/b + 2)→ Newtor

S′∗
(b + 1/b + 2)

given by multiplication by the order of Gal(X ′′/X ′).

Now let us take H ′ def= ln ·∆ab
U ′

S′
0

⊆ ∆ab
U ′

S′
0

, where n is some “sufficiently large”

positive integer, to be chosen below. Write:

HX ′
def= H1(∆U ′

S′
0

,M
(l)
X ); HX ′′

def= H1(∆U ′′
S′′
0

,M
(l)
X ) ∼→H1(∆U ′

S′
0

,M
(l)
X [Gal(X ′′/X ′)])

Now if we compute the cohomology of ΠUS0
via the Leray spectral sequence as-

sociated to the surjection ΠUS0
� ΠUS0

/∆U ′
S′
0

, then (A) implies that the natural

morphism

H1(∆U ′
S′
0

,Newtor
S′′∗

(b + 1/b + 2))→ H1(∆U ′
S′
0

,Newtor
S′∗

(b + 1/b + 2))
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[which maps the image of ηS′′ to the image of ηS′ !] factors through a direct sum of
copies of the [result of tensoring with Q/Z] the “trace map”

TrH : HX ′′ → HX ′

— i.e., the map induced by the morphism of coefficients M
(l)
X [Gal(X ′′/X ′)]�M

(l)
X

that maps each element of Gal(X ′′/X ′) to 1.

Now I claim that the image of TrH lies in ln · HX ′ . Indeed, if S0 = ∅ [so
US0 = X, U ′

S′
0

= X ′], then this trace map TrH is well-known to be dual [via Poincaré
duality — cf., e.g., [FK], pp. 135-136] to the pull-back morphism; we thus conclude
that, relative to the natural isomorphisms HX ′′

∼→ ∆ab
X ′′ ⊗ Zl, HX ′

∼→ ∆ab
X ′ ⊗ Zl

[arising from Poincaré duality — cf., e.g., Proposition 1.3, (ii)], the trace map
corresponds to the natural morphism

HX ′′ = ∆ab
X ′′ → ∆ab

X ′ = HX ′

induced by the inclusion ∆X ′′ ⊆ ∆X ′ — hence factors through the endomorphism
of HX ′ given by multiplication by ln, as claimed. If, on the other hand, S0 is
not empty, then observe that [since the order of Gal(X ′′/X ′) is a power of l] the
construction of the morphism TrH only involves the maximal pro-l quotient ∆(l)

U ′
S′
0

of ∆U ′
S′
0

, which is a free pro-l group on finitely many generators ξ1, . . . , ξm. For

j = 1, . . . ,m, write (Zl
∼=) Ξj ⊆ ∆(l)

U ′
S′
0

for the subgroup topologically generated

by ξj. Since restriction to the cohomology of the Ξj determines an isomorphism
of HX ′ with the product of the H1(Ξj ,M

(l)
X ), and the composite of TrH with the

restriction morphism to Ξj clearly factors through the “trace map”

Trj : H1(Ξj ,M
(l)
X [Gal(X ′′/X ′)])→ H1(Ξj ,M

(l)
X )

[i.e., the map induced by the morphism of coefficients M
(l)
X [Gal(X ′′/X ′)] � M

(l)
X

that maps each element of Gal(X ′′/X ′) to 1], it follows that to complete the proof
of the claim, it suffices to verify that the image of Trj lies in ln · H1(Ξj ,M

(l)
X ).

But in light of the simple structure of Ξj
∼= Zl, this is an easy computation. This

completes the proof of the claim.

In light of the claim just verified, we thus conclude that TrH factors through the
endomorphism of HX ′ given by multiplication by ln. In particular, in the situation
of assertion (ii), since the submodule of ΠUS0

-invariants of H1(∆U ′
S′
0

,Newtor
S′∗

(b +

1/b + 2)) is finite [cf. our assumption that b ≥ 2; Proposition 3.5, (i)], we conclude
that the image of ηS′′ in H1(∆U ′

S′
0

,Newtor
S′′∗

(b + 1/b + 2)) [which is ΠUS0
-invariant]

maps to an ln-multiple of an ΠUS0
-invariant in H1(∆U ′

S′
0

,Newtor
S′∗

(b + 1/b + 2)),

which will be zero if we take n to be “sufficiently large”, hence that the image of
ηS′ in H1(∆U ′

S′
0

,Newtor
S′∗

(b + 1/b + 2)) is zero.
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On the other hand, in the situation of assertion (i) [so b = 1], by replac-

ing “H1(∆U ′
S′
0

,−)” by “H1(∆X ′, (−)
∆U ′

S′
0

[csp]

)” [where ∆U ′
S′
0

[csp] def= Ker(∆U ′
S′
0

def=

∆X ′)] and taking H ′ def= ln · ∆ab
U ′

S′
0

+ Im(∆U ′
S′
0

[csp]) ⊆ ∆ab
U ′

S′
0

, a similar argument

shows that image of ηS′ in H1(∆U ′
S′
0

,Newtor
S′∗

(b + 1/b + 2)) is zero in the situation

of assertion (i), as well.

Now I claim that the image of ηS′′ in

H1(∆U ′
S′
0

,Newtor
S′∗

(b + 1/b + 2)⊗R′ R′′)

[obtained by applying the surjection

Newtor
S′′∗

(b + 1/b + 2))� Newtor
S′∗

(b + 1/b + 2) ⊗R′ R′′

of (A)] is zero. Indeed, by applying the conclusion of the above discussion concern-
ing X ′ to X ′′, we obtain first of all that the image of ηS′′ in H1(∆U ′′

S′′
0

,Newtor
S′′∗

(b +

1/b + 2)) is zero, hence that the image in question in the claim arises from a class
in the following cohomology module:

H1(Gal(X′′/X ′),(Newtor
S′∗

(b + 1/b + 2)⊗R′ R′′)
∆U ′′

S′′
0 )

= H1(Gal(X′′/X ′),Newtor
S′∗

(b + 1/b + 2)⊗R′ R′′) = 0

[where the last cohomology module vanishes since Newtor
S′∗

(b+1/b +2)⊗R′ R′′ is an
induced Gal(X ′′/X ′)-module]. This completes the proof of the claim.

Thus, in summary, we conclude that the image of ηS′′ in H1(ΠUS0
,Newtor

S′∗
(b +

1/b + 2)⊗R′ R′′) [obtained by applying the surjection of (A)] arises from a unique
class in

H1(ΠUS0
/∆U ′

S′
0

,(Newtor
S′∗

(b + 1/b + 2)⊗R′ R′′)
∆U ′

S′
0 )

∼→ H1(ΠUS0
/∆U ′

S′
0

,Newtor
S′∗

(b + 1/b + 2))

which maps to the unique class in

H1(ΠUS0
/∆U ′

S′
0

,Newtor
S′∗

(b + 1/b + 2))

that gives rise to ηS′ via multiplication by the order of Gal(X ′′/X ′) [cf. (B)]. In
particular, by taking n to be “sufficiently large” [cf. Proposition 3.5, (i); the fact
that b+1 ≥ 2 > 0; the finiteness of ∆US0

/∆U ′
S′
0

], we may conclude that ηS′ = 0, as

desired. That is to say:

This completes the proof that the two inclusions Π≤b
US

↪→ ΠTOR≤b+1
US

differ
by conjugation by an element of Ker(ΠTOR≤b+1

US
� ΠLIE≤b+

US
).
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In particular, the proof of assertions (i), (ii) is complete.

Next, we consider assertion (iii). First, let us observe that when b = 1, assertion
(iii) follows immediately from [the argument of] Proposition 2.6, (i); Proposition
3.5, (i) [cf. Remark 3.9.1 below]. Thus, in the remainder of the proof of assertion
(iii), we assume that b ≥ 2. Note that since the elements of Ker(Π≤b+1

US
� Π≤b

US
)

manifestly commute with the elements of I≤b+1
x∗ , it follows from conditions (a), (b),

the fact that b ≥ 2, and the assumption that S∗ is of cardinality one that β induces
the identity on Π≤b+1

US
[new] [cf. the proof of assertion (ii) above]. Thus, to complete

the proof of assertion (iii), it suffices to show that the compatible system of classes

λS′ ∈ H1(ΠUS0
,NewS′∗

(b + 1/b + 2))

determined by β [cf. Proposition 3.8, (i)] vanishes. Note that since (∆(l)
US0

)ab is of
“weight ≤ 2”, and NewS′∗

(b + 1/b + 2) is of “weight b + 1 ≥ 3” [cf. Proposition 3.5,
(i)], it follows immediately from the Leray spectral sequence for ΠUS0

� Gk that
we have a natural injection

H1(ΠUS0
,NewS′∗

(b + 1/b + 2)) ↪→ H1(Gk, (NewS′∗
(b + 1/b + 2))∆US0 )

[where the superscript “∆US0
” denotes the ∆US0

-invariants] and that the module
H1(Gk, (NewS′∗

(b + 1/b + 2))∆US0 ) is finite. Thus, to show that the λS′ = 0, it
suffices to show that the inverse limit

lim←−
X ′

(NewS′∗
(b + 1/b + 2))∆US0

[where X ′, S ′∗ are as described in the proof of assertions (i), (ii)] is zero. But this
follows from observation (B) of the proof of assertions (i), (ii). This completes the
proof of assertion (iii).

Next, we consider assertion (iv). First, I claim that β preserves and induces the
identity on each subgroup γ ·D≤b++

x∗ ·γ−1 [where γ ∈ Π≤b++
US

⊆ ΠTOR≤b+1
US

]. Indeed,
this follows immediately by projecting via ΠTOR≤b+1

US
� ΠLIE≤b+

US
[which induces an

isomorphism Π≤b++
US

∼→ Π≤b+
US

]. Thus, the element of Ker(ΠTOR≤b+1
US

� ΠLIE≤b+
US

)
that gives rise to β centralizes each subgroup γ ·D≤b++

x∗ · γ−1. Put another way, we
may think of the element of Ker(ΠTOR≤b+1

US
� ΠLIE≤b+

US
) that gives rise to β as a

compatible system of elements

κS′ ∈ Newtor
S′∗

(b + 1/b + 2)

such that each κS′ is fixed by every ΠUS0
-conjugate of the Frobenius element de-

termined by Fk [which, by abuse of notation, we shall also denote by Fk] in ΠUS0
.

Thus, to complete the proof of assertion (iv), it suffices to show that such a com-
patible system of elements {κS′} is necessarily zero.

Note that instead of thinking of κS′ as being held fixed by every ΠUS0
-conjugate

of Fk, we may [equivalently] think of κS′ as being held fixed by Fk and by all
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“Frobenius commutators” in ∆US0
[i.e., elements of ∆US0

that may be written as the
commutator of Fk with an element of ∆US0

]. Note, moreover, that by Proposition
3.5, (i), it follows that the Frobenius commutators topologically generate an open
subgroup of (∆(l)

US0
)ab. Let us refer to an open subgroup

H ′ ⊆ (∆(l)
U ′

S′
0

)ab

that is stabilized by ΠUS0
as Frobenius-admissible if it arises as the inverse image

via the natural morphism (∆(l)
U ′

S′
0

)ab → (∆(l)
US0

)ab of the image H ⊆ (∆(l)
US0

)ab of

H ′ in (∆(l)
US0

)ab and, moreover, satisfies the condition that the image of (∆(l)
U ′

S′
0

)ab

in (∆(l)
US0

)ab lies in the submodule of (∆(l)
US0

)ab generated by H and the Frobenius
commutators. Note that by taking the open subgroups ΠU ′

S′
0

⊆ ΠUS0
[i.e., that

index the system {κS′}] to be sufficiently small, we may assume that each ΠU ′
S′
0

satisfies the condition that (∆(l)
U ′

S′
0

)ab contains Frobenius-admissible open subgroups

H ′ ⊆ (∆(l)
U ′

S′
0

)ab which are of arbitrarily large index in (∆(l)
U ′

S′
0

)ab.

Now let us apply the observation (B) made in the proof of assertions (i), (ii), to
a covering X ′′ → X ′ that arises from a Frobenius-admissible H ′ ⊆ (∆(l)

U ′
S′
0

)ab. Note

that it follows from the definitions of “Frobenius-admissible” that ∆U ′
S′
0

is contained

in the subgroup of ∆US0
generated by ∆U ′′

S′′
0

and the Frobenius commutators. On

the other hand,
κS′′ ∈ Newtor

S′′∗
(b + 1/b + 2)

is manifestly fixed by ∆U ′′
S′′
0

. Since, as observed above, κS′′ is also fixed by the

Frobenius commutators of ∆US0
, we thus conclude that κS′′ is ∆U ′

S′
0

-invariant.

Since, on the other hand, κS′′ is also fixed by Fk, and the submodule of Newtor
S′∗

(b+
1/b + 2) consisting of elements fixed by Fk is clearly finite [cf. Proposition 3.5, (i)],
we thus conclude from observation (B) that, for H ′ ⊆ (∆(l)

U ′
S′
0

)ab of sufficiently large

index in (∆(l)
U ′

S′
0

)ab, κS′′ maps to zero in Newtor
S′∗

(b + 1/b + 2). But this implies that

κS′ = 0, thus completing the proof of assertion (iv).

Finally, we consider assertion (v). It is immediate from the definitions that the
quotients ΠUS � Π≤∞

US
, ∆US � ∆≤∞

US
are new-cuspidally pro-l. That these quo-

tients are the maximal new-cuspidally pro-l quotients follows from the construction
of Π≤∞

US
and the easily verified fact that each ∆(l)

U ′
S′

injects into Lin(∆(l)
U ′

S′
(1/∞))(Ql).

©

Remark 3.9.1. Proposition 3.9, (iii), may be regarded as a “higher order, pro-l,
possibly affine analogue” of Proposition 2.6, (i).
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We are now ready to prove the main technical result of the present §3:

Theorem 3.10. (Reconstruction of Once-Punctured Maximal New-
cuspidally Pro-l Extensions) Let X, Y be proper hyperbolic curves over a
finite field; denote the base fields of X, Y by kX , kY , respectively. Suppose further
that we have been given finite subsets

S ⊆ X(kX ); T ⊆ Y (kY )

as well as subsets S∗ = {x∗} ⊆ S, T∗ = {y∗} ⊆ T of cardinality one; write
S0

def= S\S∗, US
def= X\S, US0

def= X\S0, T0
def= T\T∗, VT

def= Y \T , VT0

def= Y \T0.
Let Σ be a set of prime numbers that contains at least one prime number that
is invertible in kX , kY ; thus, Σ determines various quotients ΠUS , ΠUS0

, ΠVT ,
ΠVT0

[cf. Proposition 1.8, (iii)] of the étale fundamental groups of US, VT ,
respectively. Let

α : ΠUS0

∼→ ΠVT0

be a Frobenius-preserving [hence also quasi-point-theoretic — cf. Remark
1.18.2] isomorphism of profinite groups that maps the decomposition group of x∗
in ΠUS0

[which is well-defined up to conjugation] to the decomposition group of y∗
in ΠVT0

[which is well-defined up to conjugation]. Then for each prime l ∈ Σ such
that l �= p, there exists a commutative diagram

Π≤∞
US

α∞−→ Π≤∞
VT
 


ΠUS0

α−→ ΠVT0

— in which ΠUS � Π≤∞
US

, ΠVT � Π≤∞
VT

are the maximal new-cuspidally pro-l
quotients [cf. Proposition 3.9, (v)]; the vertical arrows are the natural morphisms;
α∞ is an isomorphism, well-defined up to composition with a new-cuspidally inner
automorphism, that is compatible, relative to the natural surjections

Π≤∞
US
� Π≤2

US
� Πc-ab,l

US
; Π≤∞

VT
� Π≤2

VT
� Πc-ab,l

VT

— where we write Πc-ab
US
� Πc-ab,l

US
, Πc-ab

VT
� Πc-ab,l

VT
for the respective maximal

cuspidally pro-l quotients — with the isomorphism Πc-ab
US

∼→ Πc-ab
VT

of Theorem
2.5, (i).

Proof. In the following argument, let us identify the “LinUS (1/∞)”, “LinX(1/∞)”
portions of ∆Lie

US
with the [completions, relative to the natural filtration topology, of

the] corresponding graded objects “GrQl(−)(1/∞)” via the Galois invariant split-
tings of Proposition 3.5, (ii), and similarly for VT . Then, in light of our assump-
tion that α is Frobenius-preserving [hence also quasi-point-theoretic — cf. Remark
1.18.2], it follows immediately from the naturality of our constructions [cf., espe-
cially, Proposition 3.5, (iii)] that α induces, for each Z � b ≥ 1, an isomorphism

αLIE≤b : ΠLIE≤b
US

∼→ ΠLIE≤b
VT
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that is compatible, with respect to the natural projections ΠLIE≤b
US

� ΠX , ΠLIE≤b
VT

�
ΠY , with α. Moreover, it follows from the construction of “ΠLIE≤b

(−) ” that this

isomorphism maps DLIE≤b
x∗ ⊆ ΠLIE≤b

US
bijectively onto DLIE≤b

y∗ ⊆ ΠLIE≤b
VT

, and that
the resulting isomorphism DLIE≤b

x∗
∼→ DLIE≤b

y∗ induces an isomorphism

D≤b
x∗

∼→ D≤b
y∗

which is compatible [again by construction!] with the respective Frobenius elements
“Fk” on either side.

Now I claim that the isomorphism αLIE≤b maps Π≤b
US

bijectively onto Π≤b
VT

, thus
inducing a compatible inverse system [parametrized by b] of isomorphisms

α≤b : Π≤b
US

∼→ Π≤b
VT

that are compatible, with respect to the natural projections Π≤b
US
� ΠX , Π≤b

VT
�

ΠY , with α. Note that since these isomorphisms were constructed via the explicit
presentation of Proposition 3.5, (iii), it follows from Proposition 3.9, (iii), that, when
b ≥ 2, these isomorphisms will be compatible, relative to the natural surjections
Π≤b

US
� Π≤2

US
� Πc-ab,l

US
, Π≤b

VT
� Π≤2

VT
� Πc-ab,l

VT
, with the isomorphism Πc-ab

US

∼→ Πc-ab
VT

of Theorem 2.5, (i). Thus, to complete the proof of Theorem 3.10, it suffices to
verify the above claim.

To verify this claim, we apply induction on b. The case b = 1 is vacuous. Thus,
we assume that b ≥ 1, and that the claim has been verified for “b” that are ≤ the
b under consideration. Now observe that by Propositions 3.8, (iii); 3.9, (i), (ii), it
follows that the isomorphism

ΠLIE≤b+1
US

∼→ ΠLIE≤b+1
VT

maps Π≤b+1
US

bijectively onto a Ker(ΠLIE≤b+1
VT

� ΠLIE≤b+
VT

)-conjugate of Π≤b+1
VT

.
[Here, we note that when b = 1, the fact that the hypotheses of Proposition 3.9, (i),
are satisfied follows immediately from the fact that the isomorphism αLIE≤2 was
constructed via the explicit presentation of Proposition 3.5, (iii).] In particular, by
conjugating by an appropriate element γ ∈ Ker(ΠLIE≤b+1

VT
� ΠLIE≤b+

VT
), we obtain

an isomorphism
βb+1 : Π≤b+1

US

∼→ Π≤b+1
VT

that is compatible with α≤b and, moreover, [since γ commutes with I≤b+1
y∗ ] maps

I≤b+1
x∗ bijectively onto I≤b+1

y∗ . Also, we observe in passing that by Propositions 3.5,
(i); 3.9, (iii), it follows that the choice of γ is unique, modulo Ker(Π≤b+1

VT
� Π≤b+

VT
).

Note that conjugation by γ on ΠTOR≤b+1
VT

also determines an isomorphism

βTOR
b+1 : ΠTOR≤b+1

US

∼→ ΠTOR≤b+1
VT

which may be constructed directly from βb+1 via appropriate “Lie-ification” and
“push-forward” operations whose detailed explication is a routine task which we
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leave to the reader. Also, we observe that since βb+1 is compatible with α≤b, and
the natural projections determine isomorphisms Π≤b++

US

∼→ Π≤b
US

, Π≤b++
VT

∼→ Π≤b
VT

[cf.
Proposition 3.8, (i); the discussion preceding Proposition 3.9], it follows that βTOR

b+1

maps the subgroup D≤b++
x∗ ⊆ Π≤b++

US
⊆ ΠTOR≤b+1

US
bijectively onto the subgroup

D≤b++
y∗ ⊆ Π≤b++

VT
⊆ ΠTOR≤b+1

VT
.

Next, let us observe that all of the constructions executed so far depend on the
choice of subgroups Dx∗ [US ] ⊆ ΠUS , Dy∗ [VT ] ⊆ ΠVT among the various conjugates
of these subgroups. Now we would like to consider what happens when we make
a different choice for these subgroups, i.e., by conjugating Dx∗ [US ] (respectively,
Dy∗ [VT ]) by an element ζx∗ ∈ ΠUS (respectively, ζy∗ ∈ ΠVT ), where we assume
that the images of ζx∗, ζy∗ in Π≤b

US
, Π≤b

VT
are compatible with respect to α≤b. By

transport of structure, the various objects obtained for these alternative choices may
be computed by conjugating by ζx∗ , ζy∗ , respectively. Note that conjugating by ζx∗

on ΠLIE≤b+1
US

differs [relative to the isomorphism αLIE≤b+1 : ΠLIE≤b+1
US

∼→ ΠLIE≤b+1
VT

obtained above] from conjugating by ζy∗ on ΠLIE≤b+1
VT

by conjugation by some
element ζδ ∈ Ker(ΠLIE≤b+1

VT
� ΠLIE≤b

VT
). Nevertheless, computing with the data for

the alternative choices yields an isomorphism

βalt
b+1 : Π≤b+1

US

∼→ Π≤b+1
VT

that is still compatible with α≤b [by our assumption that the images of ζx∗, ζy∗

in Π≤b
US

, Π≤b
VT

are compatible with respect to α≤b]. Since, moreover, ζδ commutes
with ζy∗ · I≤b+1

y∗ · ζ−1
y∗ , it follows that βalt

b+1 maps ζx∗ · I≤b+1
x∗ · ζ−1

x∗ bijectively onto
ζy∗ · I≤b+1

y∗ · ζ−1
y∗ , hence that βalt

b+1 maps I≤b+1
x∗ bijectively onto I≤b+1

y∗ . Thus, by
Proposition 3.9, (iii), it follows that βalt

b+1 differs from βb+1 by composition with a
Ker(Π≤b+1

VT
� Π≤b

VT
)-inner automorphism. [Here, we note that when b = 1, the fact

that the hypotheses of Proposition 3.9, (iii), are satisfied follows immediately from
the fact that the isomorphism αLIE≤2 was constructed via the explicit presentation
of Proposition 3.5, (iii).]

On the other hand, by construction [relative to the alternative choices!] it
follows that βalt

b+1 induces [via appropriate “Lie-ification” and “push-forward” op-
erations] an isomorphism

βalt,TOR
b+1 : ΠTOR≤b+1

US

∼→ ΠTOR≤b+1
VT

which maps the subgroup ζx∗ ·D≤b++
x∗ · ζ−1

x∗ ⊆ ΠTOR≤b+1
US

bijectively onto the sub-
group ζy∗ ·D≤b++

y∗ ·ζ−1
y∗ ⊆ ΠTOR≤b+1

VT
. Thus, since βTOR

b+1 , βalt,TOR
b+1 differ, as observed

above, by conjugation by an element of Ker(Π≤b+1
VT

� Π≤b
VT

), we conclude that, for
each ηx∗ ∈ Π≤b++

US
⊆ ΠTOR≤b+1

US
, ηy∗ ∈ Π≤b++

VT
⊆ ΠTOR≤b+1

VT
that correspond via

α≤b, βTOR
b+1 maps the subgroup of ΠTOR≤b+1

US
defined by ηx∗ · D≤b++

x∗ · η−1
x∗ to the

subgroup of ΠTOR≤b+1
VT

defined by ηy∗ ·D≤b++
y∗ · η−1

y∗ . But by Proposition 3.9, (iv)
[and the uniqueness of γ, modulo Ker(Π≤b+1

VT
� Π≤b+

VT
), that was observed above],

this implies that the element γ ∈ Ker(ΠLIE≤b+1
VT

� ΠLIE≤b+
VT

) in fact belongs to
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Ker(Π≤b+1
VT

� Π≤b+
VT

). That is to say, we may conclude that the original isomor-
phism

αLIE≤b+1 : ΠLIE≤b+1
US

∼→ ΠLIE≤b+1
VT

maps Π≤b+1
US

bijectively onto Π≤b+1
VT

. This completes the proof of the claim.

Finally, we note that the indeterminacy, referred to in the statement of The-
orem 3.10, of the isomorphism α∞ up to composition with a new-cuspidally inner
automorphism arises precisely from the indeterminacy of the choice of the subgroups
Dx∗ [US ] ⊆ ΠUS , Dy∗ [VT ] ⊆ ΠVT with respect to new-cuspidally inner automor-
phisms of ΠUS , ΠVT , respectively. ©

Remark 3.10.1. The argument of the proof of Theorem 3.10 involving Proposi-
tion 3.9, (i), (ii), (iii), (iv), may be regarded as a sort of “higher order analogue”
of the argument applied in the proof of Theorem 1.16, (iii), involving Lemma 1.11;
Proposition 1.12, (v).

Remark 3.10.2. It seems reasonable to expect that, when, say, Σ = {l}, the
techniques applied in the proof of Theorem 3.10, together with the theory of [Mtm],
should allow one to reconstruct the [geometrically pro-Σ] étale fundamental groups
of the various configuration spaces [i.e., finite products of copies of X over kX ,
with the various diagonals removed] “group-theoretically” from ΠX [under, say, an
appropriate hypothesis of “Frobenius-preservation” as in Theorem 3.10]. This topic,
however, lies beyond the scope of the present paper.

Remark 3.10.3. When Σ = {l}, it is tempting to try to generalize Theorem
3.10 to the case where S∗ ⊆ S, T∗ ⊆ T are subsets of arbitrary finite cardinality,
by applying Theorem 3.10 [as stated above] recursively. Although such a recursive
argument is formally possible, it appears, however, to lead to complications [whose
resolution or, indeed, detailed explication is beyond the scope of the present paper!]
when X fails to be Σ-separated. Nevertheless, this approach appears, to the author,
to be an interesting direction for further research.

Remark 3.10.4. One essential portion of the proof of Theorem 3.10 is the Galois
invariant splitting of Proposition 3.5, (ii). Although it does not appear likely that
such a splitting exists in the case of a nonarchimedean local base field [cf., e.g., the
theory of [Mzk4]], it would be interesting to investigate the extent to which a result
such as Theorem 3.10 may be generalized to the nonarchimedean local case, perhaps
by making use of some sort of splitting such as the Hodge-Tate decomposition, or
a splitting that arises via crystalline methods. In the context of absolute anabelian
geometry over nonarchimedean local fields, however, such p-adic Hodge-theoretic
splittings might not be available, since the isomorphism class of the Galois module
“Cp” is not preserved by arbitrary automorphisms of the absolute Galois group of
a nonarchimedean local field [cf. the theory of [Mzk3]].

The development of the theory underlying Theorem 3.10 was motivated by the
following important consequence:
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Corollary 3.11. (Total Global Green-compatibility) In the situation of
Theorem 1.16, (iii) [in the finite field case], suppose further that Σ† = Primes†,
and that X, Y are Σ-separated [which implies that α is Frobenius-preserving
and point-theoretic — cf. Remarks 1.18.1, 1.18.2]. Then the isomorphism α is
totally globally Green-compatible.

Proof. Indeed, we may apply Theorem 3.10 to the isomorphism α of Theorem
1.16, (iii), and arbitrary choices of sets of cardinality one S = {x∗}, T = {y∗} [so
US0 = X, VT0 = Y ] that correspond via α. Then let us observe that the quotient
ΠUS � Π≤∞

US
satisfies the following property:

If ΠUS � Q is a finite quotient of ΠUS such that for some quotient Q� Q′

whose kernel has order a power of l, ΠUS � Q′ factors through ΠUS �
Π≤∞

US
, then ΠUS � Q also factors through ΠUS � Π≤∞

US
.

A similar statement holds for the quotient ΠVT � Π≤∞
VT

. In light of this observation,
together with our assumption that Σ† = Primes† [which implies that α is Frobenius-
preserving], it follows that the reasoning of [Tama], Corollary 2.10, Proposition 3.8,
may be applied to the isomorphism

α∞ : Π≤∞
US

∼→ Π≤∞
VT

of Theorem 3.10 to conclude that the isomorphism α∞ maps the set of decompo-
sition subgroups of the domain bijectively onto the set of decomposition subgroups
of the codomain.

On the other hand, sorting through the definitions, the datum of the lifting of
a decomposition group of ΠX , ΠY corresponding to a point that does not belong
to S, T to a [noncuspidal] decomposition group of the domain or codomain of
α∞ determines, by projection to Πc-ab,l

US
, Πc-ab,l

VT
, the l-adic portion of the Green’s

trivialization associated to this point and the unique point of S or T . Since l is an
arbitrary element of Σ† = Primes†, and the points x∗, y∗ are arbitrary points that
correspond via α, this shows that α is globally Green-compatible. That α is totally
globally Green-compatible follows by applying this argument to the isomorphism
induced by α between open subgroups of ΠX , ΠY . ©

Theorem 3.12. (The Grothendieck Conjecture for Proper Hyperbolic
Curves over Finite Fields) Let X, Y be proper hyperbolic curves over a
finite field; denote the base fields of X, Y by kX , kY , respectively. Write ΠX , ΠY

for the étale fundamental groups of X, Y , respectively. Let

α : ΠX
∼→ ΠY

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of schemes

X̃
∼→ Ỹ
 


X
∼→ Y
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in which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale universal coverings determined by the profinite groups ΠX , ΠY .

Proof. Theorem 3.12 follows formally from Corollaries 2.7, 3.11; Remarks 1.18.1,
1.18.2. ©
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