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For a transformation F on a measure space (X,µ), we show
that the Perron-Frobenius operator of F can be written by a
representation (L2(X,µ), π) of the Cuntz-Krieger algebra OA
associated with F when F satisfies some assumption. Espe-
cially, when OA is the Cuntz algebra ON and (L2(X,µ), π)
in the above is some irreducible representation of ON , then
there is an F -invariant measure on X which is absolutely con-
tinuous with respect to µ.

1. Introduction

Invariant measures (especially, Haar measures) play an important role in the
representation theory of Lie groups and harmonic analysis. On the other
hand, invariant measures of non invertible transformations are studied in
[4, 5, 6] by the Perron-Frobenius operators of dynamical systems. By using
the Perron-Frobenius operators, the characterization of a given dynamical
system and the construction of invariant measure are obtained. We show
their roles in representation theory of operator algebras in this paper.

Let Lp(X,µ) be the set of all complex-valued measurable functions φ
on a measure space (X,µ) satisfying ‖φ‖Lp < ∞ and let Lp(X,µ; R) be
the subset of all real-valued functions in Lp(X,µ) for p = 1, 2,∞. For a
nonsingular transformation F on X(that is, µ(F−1(A)) = 0 if µ(A) = 0
for A ⊂ X), PF is the Perron-Frobenius operator (or the Frobenius-Perron
operator, the transfer operator) of F if PF is the operator on L1(X,µ) which
satisfies

(1.1)
∫
A

(PFψ)(x) dµ(x) =
∫
F−1(A)

ψ(x) dµ(x) (∀ψ ∈ L1(X,µ))

for each measurable subset A of X ([5]). By (1.1), PFψ is uniquely deter-
mined as an element in L1(X,µ) for each ψ ∈ L1(X,µ). For ψ ∈ L1(X,µ)
and θ ∈ L∞(X,µ), we obtain

∫
X θ(F (x))ψ(x) dµ(x) =

∫
X θ(x)(PFψ)(x) dµ(x).

¿From this, PF is a bounded linear operator on L1(X,µ) and ‖PFψ‖L1 ≤
e-mail:kawamura@kurims.kyoto-u.ac.jp.
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‖ψ‖L1 for each ψ ∈ L1(X,µ; R). Further, a positive function ρ ∈ L1(X,µ)
satisfies PFρ = ρ if and only if ρ is the density of an F -invariant measure,
that is, the following holds for any ψ ∈ L1(X,µ):

(1.2)
∫
X
ψ(F (x))ρ(x) dµ(x) =

∫
X
ψ(x)ρ(x) dµ(x).

In order to describe both the Perron-Frobenius operators and represen-
tations of the Cuntz-Krieger algebras simultaneously, we introduce branch-
ing function systems on a measure space (X,µ). A family f = {fi}Ni=1 of
maps on X is a semibranching function system if there is a finite family
{Di}Ni=1 of measurable subsets of X such that fi is a measurable map from
Di to Ri ≡ fi(Di), µ(X \ R1 ∪ · · · ∪ RN ) = 0, µ(Ri ∩ Rj) = 0 when i 6= j
and there is the Radon-Nikodým derivative Φfi of µ ◦ fi with respect to µ
and Φfi > 0 almost everywhere in Di for i = 1, . . . , N . A map F on X

is called the coding map of a semibranching function system f = {fi}Ni=1 if
F ◦ fi = idDi for i = 1, . . . , N .

For a semibranching function system f = {fi}Ni=1 with the coding map
F , define a family {S(fi)}Ni=1 of operators on L2(X,µ) by

(1.3) (S(fi)φ)(x) ≡ χRi(x) · {ΦF (x)}1/2 · φ(F (x)) (φ ∈ L2(X,µ))

where χRi is the characteristic function of Ri. Then S(fi) is a partial isom-
etry with the initial space L2(Di, µ) and the final space L2(Ri, µ), and
S(fi)S(fj) = S(fi ◦ fj) when Dj ⊂ Ri. For N ≥ 2, let A be an N × N
matrix which consists of elements 0 or 1 and any column and row are not
0. A semibranching function system f = {fi}Ni=1 is an A-branching function
system if µ(Di \

⋃
j;aij=1Rj) = 0 for each i = 1, . . . , N . For an A-branching

function system f = {fi}Ni=1,

(1.4) πf (si) ≡ S(fi) (i = 1, . . . , N),

defines a representation (L2(X,µ), πf ) of the Cuntz-Krieger algebra OA.

Theorem 1.1. For an A-branching function system f = {fi}Ni=1 with the
coding map F , the following holds:

(PFψ)(x) = {(πf (s∗1)
√
ψ)(x)}2 + · · ·+ {(πf (s∗N )

√
ψ)(x)}2

for any positive function ψ ∈ L1(X,µ) where
√
ψ(x) ≡

√
ψ(x).

Theorem 1.2. Assume that F is the coding map of an A-branching function
system f = {fi}Ni=1 on a measure space (X,µ) and bi ≡ Φfi is constant for
i = 1, . . . , N and µ(X) <∞. Then the following holds:

(i) Define a subspace V ≡ Lin < {χR1 , . . . , χRN } > of L2(X,µ). Then
PFV ⊂ V where Ri is the image of fi.
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(ii) For a diagonal matrix B ≡ diag(b1, . . . , bN ) ∈ MN (R), the following
identity of matrices holds:

PF |V = BA

where PF |V is the matrix representation over the basis χR1 , . . . , χRN
of V and the rhs is the product of matrices.

In Theorem 1.2 (ii), the eigenvalues of the Perron-Frobenius operator asso-
ciated with F depend on not only A but also B. In this sense, eigenvalues
of the Perron-Frobenius operator have the information of a representation
of the Cuntz-Krieger algebra.

It is important problem to construct the invariant measure for a given
dynamical system. For example, Lasota-York theorem shows a construction
of invariant measure by using the Perron-Frobenius operator of a dynamical
system ([4]). We show the condition of existence of invariant measure from
the viewpoint of representation theory of the Cuntz algebra.

f = {fi}Ni=1 is a branching function system if f = {fi}Ni=1 is an A-
branching function system for a matrix A = (aij), aij = 1 for each i, j =
1, . . . , N . In this case, (L2(X,µ), πf ) is a representation of the Cuntz algebra
ON . For z = (zi)Ni=1 ∈ SN−1 ≡ {y ∈ RN : ‖y‖ = 1}, (H, π) is GP (z) of ON
if there is a unit cyclic vector Ω ∈ H such that

(1.5) π(z1s1 + · · ·+ zNsN )Ω = Ω.

We call Ω by the GP vector of (H, π). In this case, there is g ∈ O(N) ⊂ U(N)
such that (π◦αg)(s1)Ω = Ω where α is the canonical action of U(N) on ON .
This implies that (H, π ◦αg) is an irreducible permutative representation of
ON ([1]). Hence GP (z) of ON exists uniquely up to unitary equivalence and
it is irreducible. Further we see that GP (z) ∼ GP (y) if and only if z = y
where ∼ means the unitary equivalence.

Theorem 1.3. Let F be the coding map of a branching function system f
on a measure space (X,µ). If there is z ∈ SN−1 such that (L2(X,µ), πf )
is GP (z) with the GP vector Ω ∈ L2(X,µ; R), then there is a probabilistic
F -invariant measure ν on X which is absolutely continuous with respect to
µ and it is given as follows:

dν(x) ≡ {Ω(x)}2dµ(x) (x ∈ X).

In §2, we show the main theorems. It is explained that (1.5) implies
the eigenequation of the Perron-Frobenius operator. In §3, we show concrete
examples.

2. Proofs of the main theorems

For N ≥ 2, let MN ({0, 1}) be the set of all N×N matrices such that each ele-
ment is 0 or 1 and any row and column is not 0. For A = (aij) ∈MN ({0, 1}),
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OA is the Cuntz-Krieger algebra by A if OA is a C∗-algebra which is univer-
sally generated by generators s1, . . . , sN and they satisfy s∗i si =

∑N
j=1 aijsjs

∗
j

for i = 1, . . . , N and
∑N

i=1 sis
∗
i = I ([3]). Especially, when aij = 1 for each

i, j = 1, . . . , N , OA is the Cuntz algebra ON ([2]). In this paper, any repre-
sentation is unital and ∗-preserving.

Proof of Theorem 1.1. By (1.3), the adjoint operator S(fi)∗ of S(fi) on
L2(X,µ) is as follows:

(2.1) (S(fi)∗φ)(x) = χDi(x) · {Φfi(x)}1/2 · φ(fi(x)) (φ ∈ L2(X,µ)).

For the coding map F of a semibranching function system f = {fi}Ni=1, we
have

(2.2) (PFψ)(x) =
N∑
i=1

χDi(x) · Φfi(x) · ψ(fi(x)) (ψ ∈ L1(X,µ)).

By (2.1) and (2.2), we have

(2.3) (PFψ)(x) = {(S(f1)∗
√
ψ)(x)}2 + · · ·+ {(S(fN )∗

√
ψ)(x)}2

for any positive function ψ ∈ L1(X,µ). By (1.4) and (2.3), the statement
holds. �

Proof of Theorem 1.2. Define vi ≡ χRi for i = 1, . . . , N .
(i) We see that χDi =

∑N
k=1 aikvk. By (2.1), (S(fi)∗φ)(x) =

√
biχDi(x)φ(fi(x)).

¿From this, S(fi)∗vj =
∑N

k=1 b
−1/2
i c

(j)
ik vk for i = 1, . . . , N where c

(j)
ik =

δijbiaik. Hence S(fi)∗V ⊂ V . By (2.2), the following holds:

(2.4) PF = b
1/2
1 S(f1)∗ + · · ·+ b

1/2
N S(fN )∗.

Therefore the statement is proved.
(ii) By the proof of (i), we see that S(fi)∗|V = (b−1/2

i c
(i)
jk ) as a matrix with

respect to v1, . . . , vN . From (2.4), the statement holds. �

Corollary 2.1. Let X be a bounded closed interval of R and A ∈MN ({0, 1}).
Assume that f = {fi}Ni=1 is an A-branching function system on X and
bi ≡ Φfi is constant for each i = 1, . . . , N . Then the eigenvalue of BA be-
comes that of the Perron-Frobenius operator of the coding map F of f where
B ≡ diag(b1, . . . , bN ).

Proof of Theorem 1.3. Assume that Ω ∈ L2(X,µ; R) satisfies πf (z1s1 +
· · · + zNsN )Ω = Ω. Define ρ(x) ≡ (Ω(x))2 for x ∈ X. Then ρ ∈ L1(X,µ).
By Theorem 1.1 and πf (si)∗Ω = πf (si)∗πf (z1s1 + · · · + zNsN )Ω = ziΩ, we
have (PFρ)(x) =

∑N
i=1{(π(si)∗Ω)(x)}2 =

∑N
i=1{ziΩ(x)}2 = ρ(x). Hence
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PFρ = ρ. This implies the statement. �

Corollary 2.2. Let X be a measurable subset of R. Assume that a piecewise
C1-class map F on X is the coding map of a branching function system
{fi}Ni=1 on the measure space (X, dx) where dx is the Lebesgue measure. If
φ0 ∈ L2(X, dx; R) satisfies

(2.5)
√
|F ′(x)|φ0 (F (x)) =

√
Nφ0(x) (a.e. x ∈ X),

then dµ(x) ≡ {φ0(x)}2dx is an invariant measure on X with respect to F .

Proof. By (1.3) and (1.4), we see that (πf (s1 + · · · + sN )φ)(x) =√
|F ′(x)|φ(F (x)) for each φ ∈ L2(X, dx). ¿From this and (2.5), πf (N−1/2s1+
· · · + N−1/2sN )φ0 = φ0. By Theorem 1.3 for z = (N−1/2, . . . , N−1/2) ∈
SN−1, the statement holds. �

In §6.5 of [5], it is explained that intertwiners among dynamical systems
bring new invariant measures from known ones. We show its unitary version
as follows:

Proposition 2.3. Let F be the coding map of a branching function system
f = {fi}Ni=1 on a measure space (X,µ). Assume that (L2(X,µ), πf ) is GP (z)
for z ∈ SN−1 with the GP vector Ω ∈ L2(X,µ; R). If ζ is a measure space
isomorphism from (X,µ) to other (Y, ν) and G ≡ ζ ◦ F ◦ ζ−1, then ρ ≡
(S(ζ)Ω)2 is the density of a probabilistic G-invariant measure on Y which
is absolutely continuous with respect to ν where S(ζ) is a unitary operator
from L2(X,µ) to L2(Y, ν) defined by (S(ζ)φ)(y) ≡ {Φζ−1(y)}1/2φ(ζ−1(y)).

Proof. Define a branching function system g = {gi}Ni=1 by gi ≡ ζ ◦fi ◦
ζ−1. Then G is the coding map of g. We see that S(ζ)πf (·)S(ζ)∗ = πg(·),
πg(z1s1 + · · · + zNsN )Ω

′
= Ω

′
for Ω

′ ≡ S(ζ)Ω ∈ L2(Y, ν; R). Hence
(L2(Y, ν), πg) is GP (z) with the GP vector Ω

′
. By Theorem 1.3, we have

the statement. �

3. Examples

Example 3.1. Let 0 < a < 1 and X ≡ [0, 1].

(i) Define a map F on X by F (x) ≡ x/a on R1 ≡ [0, a] and F (x) ≡
−(x− 1)/(1− a) on R2 ≡ [a, 1].
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Then F is the coding map of a branching function system f ≡ {f1, f2}
defined by fi ≡ (F |Ri)−1 for i = 1, 2. Then (πf (s1)φ)(x) = a−1/2χR1(x)φ(x/a),
(πf (s2)φ)(x) = (1−a)−1/2χR2(x)φ(−(x−1)/(1−a)) for φ ∈ L2(X, dx).

(PFψ)(x) = aψ(ax) + (1− a)ψ(−(1− a)x+ 1) (ψ ∈ L1(X, dx)).

The Lebesgue measure dx is the probabilistic invariant measure of X
with respect to F .

(ii) Define f1(x) ≡
√
ax and f2(x) ≡

√
(1− a)x2 + a on X. The cod-

ing map F of f = {f1, f2} is given by F (x) = x/
√
a on [0,

√
a],

F (x) =
√

(x2 − a)/(1− a) on [
√
a, 1]. Then a function Ω(x) ≡

√
2x

on [0, 1] satisfies πf (
√
as1 +

√
1− as2)Ω = Ω. Hence the probabilistic

F -invariant measure on X is 2xdx.

(L2(X, dx), πf ) in both (i) and (ii) is GP (
√
a,
√

1− a) of O2. Both invariant
measures are independent in the parameter a.

Example 3.2. For a, b ∈ R, a 6= 0, define

F (x) ≡ (x− b)2/a+ b− 2a

on X ≡ [−2|a|+b, 2|a|+b]. Define a branching function system f = {f1, f2}
on X by fi ≡ (F |Ri)−1, i = 1, 2 for R1 ≡ [−2|a|+ b, b] and R2 ≡ [b, 2|a|+ b].
Then πf (s1 + s2)Ω = Ω for Ω(x) ≡ π−1/2{4a2 − (x− b)2}−1/4. Hence

ρ(x) ≡ 1
π

1√
4a2 − (x− b)2

is the density of a probabilistic invariant measure on X with respect to F .
When a = −1/4 and b = 1/2, we have

F (x) = 4x(1− x), ρ(x) =
1
π

1√
x(1− x)

.

This was first obtained by Ulman and von Neumann ([8]).
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Example 3.3. For 0 < a < 1, define a map F : [0, 1]→ [0, 1] as follows:

�
�
�
�
�
�
�

�
�
�
� �

10 a

a

1

Define R1 ≡ [0, a], R2 ≡ [a, 1], D1 ≡ [0, 1], D2 ≡ [0, a]. Then F is the

coding map of the following A =
(

1 1
1 0

)
-branching function system on

X = [0, 1]: fi : Di → Ri, f1(x) = ax for x ∈ [0, 1] and f2(x) = (1−a)x/a+a
for x ∈ [0, a]. Define v1 ≡ χ[0,a], v2 ≡ χ[a,1], V ≡ Lin < {v1, v2} >. Then
the matrix representation of PF with respect to v1, v2 is given as follows:

PF |V =
(
a (1− a)/a
a 0

)
.

Hence its eigenvalue are a−1 and 1. Their normalized eigenvectors are given
as follows:

w1 =

√
1− a
a

χ[0,a]−
√

a

1− a
χ[a,1], w2 =

1√
a(1 + a− a2)

(
χ[0,a] + aχ[a,1]

)
.

Especially w2 is the density of the invariant measure on [0, 1] with respect
to F .

Example 3.4. We show applications of Proposition 2.3. The following
(X,F, µ) is a transformation F on X ⊂ R and a probabilistic invariant
measure µ on X:

(i) For b ∈ R \ [−1, 0], X ≡ [0, 1],

F (x) ≡


2b2/(b− x)− 2b (x ∈ D1),

2b2

1 + 3b

{
(1 + b)2

(1 + 3b)x+ b(b− 1)
− 1
}

(x ∈ D2),
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where D1 ≡ [0, b/(2b+ 1)) and D2 ≡ [b/(2b+ 1), 1]. Then

dµ(x) =
b(b+ 1)
(x+ b)2

dx (x ∈ [0, 1]).

(ii) For 0 ≤ k < 1, X ≡ [−1, 1],

F (x) ≡ 2x2

1− k2(1− x2)2
−1. Then dµ(x) =

1
2K

dx√
(1− x2)(1− k2(1− x2))

where K is the positive constant defined by

K ≡
∫ 1

0

1√
(1− x2)(1− k2x2)

dx.

(iii) For an integer N ≥ 2, X ≡ [0, 1] and

F (x) ≡
(
N
√
x−

[
N
√
x
] )2

, we have dµ(x) =
dx

2
√
x

where [·] is the greatest integer less than equal x.
(iv) For a real number a > 1, X ≡ [1, a] and

F (x) ≡ a/x2 (x ∈ [1,
√
a )), F (x) ≡ x2/a (x ∈ [

√
a, a]),

we have dµ(x) = adx/x.
(v) For X ≡ R \ (−1, 1) and F (x) ≡ 2/(2− |x|)− 1, dµ(x) = dx

2x2 .

Example 3.5. Let F be a map defined by the following graph:
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�
�
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A
A
A
AA
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@
@

10 2/31/3

1/3

2/3

1

Define A ≡

 1 1 1
0 1 1
1 0 0

 , B ≡ diag (1/3, 1/2, 1), R1 ≡ [0, 1/3], R2 ≡

[1/3, 2/3], R3 ≡ [2/3, 1], D1 ≡ [0, 1], D2 ≡ [1/3, 1], D3 ≡ [0, 1/3]. The
A-branching function system f = {f1, f2, f3}, fi : Di → Ri, i = 1, 2, 3,
with the coding map F is given by f1(x) = x/3, f2(x) = −(x − 1)/2 +
1/3, f3(x) = −x+1. ¿From this and Theorem 1.2 (ii), PF |W = BA where
W ≡ Lin< {χR1 , χR2 , χR3} >. We see that 0,−1/6, 1 are eigenvalues of
PF |W . Hence they are eigenvalues of PF .

Example 3.6. For A ∈ MN ({0, 1}) and an A-branching function sys-
tem f = {fi}Ni=1 on a measure space (X,µ), µ(X) < ∞, assume that
bi ≡ Φfi is constant for each i = 1, . . . , N . Then bi = ri/(

∑N
j=1 aijrj)
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where ri ≡ µ(Ri). When A ≡

 0 1 1
1 0 1
1 1 1

, we have B = (b1, b2, b3) =

diag
(

r1
r2+r3

, r2
r1+r3

, r3
r1+r2+r3

)
. For 0 < a < b < 1, consider the case F on

X = [0, 1] which graph is given as follows:
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�
�
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F
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r b

10 ba

a

b

1

f1

f2

f3

}
}
}

F is the coding map of an A-branching function system given as follows:
fi : Di → Ri, i = 1, 2, 3,

f1(x) = a
1−a(x− a) (x ∈ D1),

f2(x) =


− b−a

1−b+ax+ b, (x ∈ R1),

− b−a
1−b+a(x− 1) + a (x ∈ R3),

f3(x) = (1− b)x+ b (x ∈ [0, 1]),

where R1 ≡ [0, a], R2 ≡ [a, b], R3 ≡ [b, 1], D1 ≡ [a, 1], D2 ≡ [0, a] ∪ (b, 1],
D3 ≡ [0, 1]. ¿From these, we haveB = diag (a/(1− a), (b− a)/(1− b+ a), 1− b).

Example 3.7. Let F (x) ≡ x3 − 3x on X ≡ [−2, 2]. Then 1
π

dx√
4−x2

is a
probabilistic invariant measure with respect to F . For a branching function
system f = {f1, f2, f3} defined by f1 ≡ (F |[−2,−1])−1, f2 ≡ (F |[−1,1])−1,
f3 ≡ (F |[1,2])−1, (L2[−2, 2], πf ) is GP (3−1/2, 3−1/2, 3−1/2) of O3.

Example 3.8. Let X be the closed bounded region in R2 which is clipped
by 4-curves L1 ≡ {(−x2, x) : x ∈ [−1, 1]}, L2 ≡ {(x,−1) : x ∈ [−1, 1]},
L3 ≡ {(2− x2, x) : x ∈ [−1, 1]}, L4 ≡ {(x, 1) : x ∈ [−1, 1]}. Define a map F
on X by

F (x, y) ≡
(

2x2 + 4xy2 − 2y2 − 4x+ 1, 2y2 − 1
)

((x, y) ∈ X).

Then F (X) = X. There are the following four subregions R1, . . . , R4 of X:
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X
−1

0
1 2

−1

1

R1

R2

R3

R4

where the new center curve in the right figure is {(1− x2, x) : x ∈ [−1, 1]}.
Then X = R1 ∪ · · · ∪ R4 and F |Ri is a bijection from Ri to X for each
i = 1, . . . , 4. Then

dµ(x, y) =
1
π2

dxdy√
(1− y2)(x+ y2)(2− x− y2)

is a probabilistic invariant measure on X with respect to F . For a branching
function system f = {fi}4i=1 defined by fi ≡ (F |Ri)−1, (L2(X, dxdy), πf ) is
GP (1/4, 1/4, 1/4, 1/4) of O4.

Acknowledgement: I would like to thank Makoto Mori for his talk in [7].
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