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Abstract. A higher level analog of Weyl modules over multi-variable currents
is proposed. It is shown that the sum of their dual spaces form a commutative
algebra. The structure of these modules and the geometry of the projective
spectrum of this algebra is studied for the currents of dimension one and two.
Along the way we prove some particular cases of the conjectures in [FL1] and
propose a generalization of the notion of parking function representations.

Introduction

Let us start from some geometrical background. The Borel–Weyl theorem
provides a construction of finite–dimensional representations of a simple Lie algebra
in spaces of sections of line bundles on the corresponding flag variety. This theorem
can be generalized for affine algebras, but the affine flag varieties are infinite–
dimensional and it is not so convenient to work with them. One approach is to
treat this variety as a limit of finite–dimensional Schubert subvarieties. And the
space of sections of that line bundles on these subvarieties are known as Demazure
modules.

The affine Demazure modules are well studied (see [KMOTU], [FoL], [S]),
but there was a lack of construction for such modules, which are not bases on
infinite–dimensional representation theory. Now it appears that for the level one
case the Demazure modules are isomorphic to the classical Weyl modules introduced
in [CP1] (see [CL] for slr case, still a conjecture otherwise). Then the higher level
Demazure modules can be constructed in a standard way (See Section 1.1 and
Section 2).

Another construction, based on the fusion product introduced in [FL1], is
related to the tensor product structure as a module over constant currents (see
[CP1] for Weyl modules and [FoL] for Demazure modules). Here we show that in
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slr case the fusion product of irreducible representations produces the Demazure
modules (see [CL] for the level one case).

In [FL2] an analog of Weyl modules for multi-dimensional currents was intro-
duced. It can be considered as a candidate for a level one Demazure module over
the multi–dimensional current algebra. Here we construct higher level Weyl mod-
ules that pretend to be Demazure modules of arbitrary level. In particular, their
dual spaces form a commutative algebra, whose spectrum can be considered as a
multi–dimensional analog of a corresponding Schubert variety.

In the case of double affine (toroidal) algebras things become exciting. Recall
that the toroidal algebra is the universal central extension of g⊗ C[x, x−1, y, y−1].
An analog of level one integrable representations (and their quantum version) was
introduced in [VV], [STU].

Weyl modules are also studied for that case in [FL2], [FL3]. For g = slr its
structure was established for the weights, proportional to the weight of vector repre-
sentation, and a conjecture for other weights was proposed. Since the construction
in [FL3] is pretty similar to given in [VV], [STU], we are convinced that the
Weyl modules over two-dimensional polynomial ring are isomorphic to g⊗C[x, y]–
submodules of that toroidal modules. So the Weyl modules can be considered as
an analog of level one Demazure modules also in toroidal settings. Moreover, in
[FL3] an action of the universal central extension of g ⊗ C[x, x−1, y] on the limits
of Weyl modules is proposed. We expect that these limits are just the restriction
of the corresponding toroidal modules to g⊗ C[x, x−1, y].

Recall that in [FL3] we construct glr ⊗ C[x, y]–modules from cyclic modules
over glr ⊗ BN , where BN is the associative algebra of upper–triangular N × N
matrices. Note that glr ⊗ BN is isomorphic to a parabolic subalgebra p ⊂ glNr,
so we can obtain such representations from the spaces of sections of p–equivariant
bundles. Namely, suppose we have a line bundle on a closure of a p–orbit. Then
the space, dual to its section, is a cyclic representation of p, so we can produce from
it a representation of glr ⊗ C[x, y]. And our conjecture that the higher level Weyl
modules can be obtained in this way from Schubert varieties.

We start Section 1 from some general notion and constructions. Namely, we
introduce higher level cyclic modules and the structure of commutative algebra on
their dual spaces. Then we discuss the geometry of the spectrum of this algebra
and propose some useful examples. At the end of the section we recall the definition
of Weyl modules.

In Section 2 we discuss in more detail higher level Weyl modules and fusion
modules over one–dimensional currents. Here we relate them each to other as well
as to Demazure modules. In slr case we construct each higher level Weyl module
as a fusion module as well as a Demazure module.

In Section 3 we proceed to two–dimensional currents. Here we relate the higher
level Weyl modules to the coordinate ring of the usual Schubert varieties in a
Grassmann variety, using the deformation of Weyl modules proposed in [FL3].
Also we introduce a higher level generalization of the parking function notion.

Acknowledgments We are grateful to V. Chari and M. Okado for useful
discussions.
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1. Generalities

Recall that a module, generated by a single vector, is called a cyclic module
and this vector is called a cyclic vector.

1.1. Higher level modules.

Definition 1.1. Let W be a cyclic module over a Lie algebra a generated
by a fixed cyclic vector w. Introduce the module W [k] as the submodule of W⊗k

generated by w⊗k

Proposition 1.2. Suppose W0 is a quotient of W , fix the image w0 of w as
the cyclic vector in W0. Then W

[k]
0 is a quotient of W [k].

Proof. We have the natural map of modules W⊗k → W⊗k
0 sending w⊗k to

w⊗k
0 . Then the image of W [k] is the submodule of W⊗k

0 , generated by w⊗k
0 , that is

W
[k]
0 . ¤

Now suppose that the action of a on W is extended to an action of a corre-
sponding connected Lie group A.

Proposition 1.3. We have W [k] is the A-submodule in W⊗k generated by
w⊗k.

Proof. Proceeding to the tangent spaces, we obtain that this A-submodule
contains W [k]. On the other hand, sinceA is generated by the image of the exponent
map, we have the inverse inclusion. ¤

1.2. Multiplication. Note that we have the natural inclusion

mk1,k2 : W [k1+k2] ↪→ W [k1] ⊗W [k2]

of subspaces in W⊗(k1+k2).

Proposition 1.4. Let W [∗] =
⊕

k≥0

(
W [k]

)∗
, where W [0] = C. The map

m∗ =
⊕

k1,k2

m∗
k1,k2

: W [∗] ⊗W [∗] → W [∗]

defines a structure of commutative algebra on W [∗].

Proof. Let mk1,k2,k3 : W [k1+k2+k3] ↪→ W [k1] ⊗ W [k2] ⊗ W [k3] be the similar
inclusion. Then we have

m∗
k1,k2+k3

(1⊗m∗
k2,k3

) = m∗
k1,k2,k3

= m∗
k1+k2,k3

(m∗
k1,k2

⊗ 1).

So m∗(1⊗m∗) = m∗(m∗ ⊗ 1), that is associativity. ¤

We can also view the algebra W [∗] as the coordinate ring of the projective
variety Proj

(
W [∗]).

Suppose that a is the Lie algebra of a connected Lie group A acting on W . Let
O(k) be the line bundles on P (W ) formed by homogeneous polynomials of degree
k. Consider the A–orbit of Cw in the projective space P (W ). Note that the closure
Nw of this orbit is algebraic.

Proposition 1.5. We have Proj
(
W [∗]) ∼= Nw and W [k] ∼= Γ(Nw,O(k))∗ as

A–modules.
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Proof. First we have the natural isomorphism ev : Sk(W ) → Γ(P (W ),O(k))∗.
Here ev(u⊗k) evaluate the sections at the point Cu ∈ P (W ), and Sk(W ) is spanned
by such vectors.

The space Γ(Nw,O(k)) is the quotient of Γ(P (W ),O(k)) by the subspace of
sections vanishing at Nw. On the other hand, taking into account Proposition 1.3,
we have W [k] is the subspace of Sk(W ) spanned by u⊗k with Cu ∈ Nw (we can
proceed to the closure because any linear subspace is closed). So they are dual each
to other.

Concerning the multiplication, due to the action of a the maps mk1,k2 are
uniquely defined by the image of w⊗k. And for γ1 ∈ O(k1), γ2 ∈ O(k2) we have
ev(w⊗k)(γ1 · γ2) = ev(w⊗k1)(γ1) ev(w⊗k2)(γ2), so we have an isomorphism of alge-
bras. ¤

1.3. Examples.
Example 1.6. Let a = g be a simple Lie algebra, let V (λ) be the irreducible

finite-dimensional representation with highest weight λ. Fix the highest weight
vector in V (λ) as the cyclic one. Then V (λ)[k] ∼= V (kλ) and Proj

(
V (λ)[∗]

)
is

known as a generalized flag variety of the corresponding group G (that is the usual
flag variety if λ is big enough).

Example 1.7. Let a = b ⊂ g be the Borel subalgebra (that stabilizes the
highest weight vector). For an element w of the Weyl group introduce the extremal
vector vw ∈ V (λ) as the vector with the weight obtained from the highest weight
by the action of w. This vector is defined uniquely up to multiplication by a scalar.

Take vw as the cyclic vector of Vvw(λ) = U(b)vw ⊂ V (λ). Then we have
Vvw(λ)[k] = Vvw(kλ) and Proj

(
Vvw(λ)[∗]

)
is known as the Schubert subvariety of

the generalized flag variety.
Note that these varieties are well–defined and the same situation holds for affine

Lie algebras.
Example 1.8. Let g = glr, Take λ = ωn, that is the n-th fundamental weight,

so V (λ) = ∧nV , where V is the r–dimensional vector representation of glr. Then
Proj

(
V (λ)[∗]

)
is the Grassmann variety Gr(n, r) formed by n–dimensional planes

in Cr. The restriction of O(1) to Gr(n, r) is dual to the determinant bundle with
stalks ∧nP over each plane P .

Choose a basis v1, . . . , vr in V , then fix the Borel subalgebra b of upper–
triangular matrices mapping each vi to a linear combination of vj with j ≤ i.
Then extremal vectors in ∧nV are just monomials of the form vη = vη1 ∧ · · · ∧ vηn ,
η1 < · · · < ηn. The corresponding Schubert subvariety Shη = Proj

(
Vvη (ωn)[∗]

)
consists of planes, whose intersection with 〈v1, v2, . . . vηi〉 has dimension at least i.

1.4. Cyclic adjoint module. Suppose we have an increasing filtration on
the Lie algebra a: F 0a ⊂ F 1a ⊂ . . . . Then it can be extended to the filtration
F 0U(a) ⊂ F 1U(a) ⊂ . . . .

For a cyclic module W introduce the filtration and the adjoint graded space

F i
CW = (F iU(a))w, grCW =

⊕

i

F i
CW/F i−1

C W.

Then grCW is a module over grA.
For u ∈ W by u denote the corresponding vector in grCW . Fix w as a cyclic

vector in grCW .
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Proposition 1.9. We have (grCW )[k] is a quotient of grCW [k].

Proof. First let us construct a map

ρ : grCW [k] → (grCW )⊗k.

We have
F i

CW [k] ⊂
∑

i1+···+in=i

F i1
C W ⊗ · · · ⊗ F in

C W.

As
(
F i1

C W ⊗ · · · ⊗ F in

C W
)∩

(
F

i′1
C W ⊗ · · · ⊗ F

i′n
C W

)
= F

min(i1,i′1)
C W⊗· · ·⊗F

min(in,i′n)
C W,

it gives a map

F i
CW [k] →

⊕

i1+···+in=i

gri1
C W ⊗ · · · ⊗ grin

C W,

where gri
CW = F i

CW/F i−1
C W . As the image of F i−1

C W [k] under this map is zero,
we obtain the map ρ.

Note that ρ(w⊗k) = w⊗k, so the image of ρ is (grCW )[k] and we have the
statement of the proposition. ¤

1.5. Weyl modules. Let g be a reductive Lie algebra. Choose a Cartan and a
Borel subalgebras h ⊂ b ⊂ g. In this paper we consider mainly a = g⊗C[x1, . . . , xd]
and the following class of modules.

Definition 1.10. For a weight λ : b → h → C let W d(λ) be the maximal
finite-dimensional module over g⊗ C[x1, . . . , xd] generated by wλ such that

(1.1) (g⊗ P )wλ = λ(g)P (0)wλ for g ∈ b.

By maximal we mean that any finite-dimensional module generated by wλ is a
quotient of W d(λ).

In [FL2] it is shown that W d(λ) exists and that it is non-trivial for a dominant
λ. Also it is shown there that W d(λ) is graded as g ⊗ C[x1, . . . , xd]–module, that
is we have

W d(λ) =
⊕

i1,...,id≥0

W d(λ)i1,...,id ,

where W d(λ)i1,...,id are g⊗1–modules and g⊗(x1)j1 . . . (xd)jd acts from W d(λ)i1,...,id

to W d(λ)i1+j1,...,id+jd .
This grading can be extended in the usual way to the grading on the tensor

product and therefore on the higher level Weyl modules.
Finally, let us introduce the notation for graded character of any graded module

W by

chdW =
∑

i1,...,id≥0

ti11 . . . tid

d · chW i1,...,id ,

where ch denotes the usual character of g–modules.

2. One-dimensional case

In this section g denotes a semi–simple Lie algebra. Let R denotes the set of
roots and Q denotes the root lattice of g. Let ω1, . . . ωr be the fundamental weights.
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2.1. Demazure modules. Let ĝ be the central extension of g ⊗ C[x−1, x].
Note that the restriction of the central extension to g⊗ C[x] is trivial, so we have
g⊗ C[x] ⊂ ĝ.

Let Lk be the integrable level k vacuum representation of ĝ, let wk ∈ Lk be the
highest weight vector.

For a weight λ let ιλ : ĝ → ĝ be the automorphism mapping g⊗xn to g⊗xn+λ(α)

when g belongs to the root space gα, α ∈ R. Note that it coincides with the action
of the corresponding translation from the extended Weyl group. Let g[x] = g⊗C[x]
and let g[x]λ = ιλ(g⊗ C[x]). In other words, we have

g[x]λ =
⊕

α∈R

gα ⊗ xλ(α)C[x] ⊂ ĝ.

Definition 2.1. Introduce the Demazure module over g[x] by

D(k, λ) = ι∗λ (U(g[x]λ)wk) .

Namely, it is isomorphic to U(g[x]λ)wk as the vector space, where g[x] acts via
identification ιλ with g[x]λ.

Proposition 2.2. We have D(1, λ)[k] ∼= D(k, λ).

Proof. It follows from L
[k]
1
∼= Lk. And this is because L

[k]
1 is integrable and

generated by the highest weight vector with the corresponding highest weight. ¤

Corollary 2.3. (see also [FF3]) Suppose λ ∈ Q. Then Proj
(
D(1, λ)[∗]

)
is a

Schubert cell in the affine Grassmann variety for ĝ.

Concerning the dimension, one can use the following result.

Theorem 2.4. [FoL] We have

dim D(k, λ) =
r∏

i=1

(dimD(k, ωi))
λi .

Proposition 2.5. We have D(k, λ) is a quotient of W 1(λ)[k].

Proof. The module D(1, λ) is finite–dimensional and the image of w1 in
D(1, λ) satisfies (1.1), so D(1, λ) is a quotient of W 1(λ).

As D(k, λ) ∼= D(1, λ)[k], the proposition follows from Proposition 1.2. ¤

Conjecture 2.6. (see [CP2]) For a dominant λ we have

dim D(1, λ) = dim W 1(λ).

This conjecture is already proved in slr case ([CL]). Summarizing the state-
ments above, we have the following description of the higher level Weyl modules.

Proposition 2.7. In the case when Conjecture 2.6 holds we have W 1(λ)[k] ∼=
D(k, λ), therefore for λ ∈ Q we have Proj

(
W 1(λ)[∗]

)
is a Schubert cell in the affine

Grassmann variety.
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2.2. Fusion. For z ∈ Cd let ϕ(z) be the automorphism of g⊗ C[x] sending x
to x+z. For a module W over g⊗ C[x] define the shifted module W (z) = ϕ(z)∗W ,
so W (z) ∼= W as a vector space and the action is combined with ϕ(z).

Let W1, . . . ,Wn be cyclic modules over g⊗ C[x] such that for a certain N the
subalgebra g⊗ xNC[x] acts on each Wi by zero. By w1, . . . , wn denote their cyclic
vectors.

Proposition 2.8. [FL1] If zi are pairwise distinct then the vector w1⊗· · ·⊗wn

is cyclic in W1(z1)⊗ · · · ⊗Wn(zn).

Proof. Let

g[N(z1, . . . , zn)] = g⊗ (
C[x]/(x− z1)N . . . (x− zn)NC[x]

)
.

As the ideal g⊗ (x− z1)N . . . (x− zn)NC[x] acts on the tensor produce by zero,
W1(z1)⊗ · · · ⊗Wn(zn) is a module over g[N(z1, . . . , zn)].

Next note that we have the natural projections pi : g[N(z1, . . . , zn)] → g[N(zi)].
Then it is known that the direct sum

⊕pi : g[N(z1, . . . , zn)] →
n⊕

i=1

g[N(zi)]

is an isomorphism. Note that the preimage of each g[N(zi)] belongs to the ideal
g⊗ (x− z1)N . . . (x− zi−1)N (x− zi+1)N . . . (x− zn)NC[x]. So we have

(2.1) U(g[N(z1, . . . , zn)])(w1⊗· · ·⊗wn) = (U(g[N(z1)])w1⊗· · ·⊗(U(g[N(zn)])wn

that is equal to W1(z1)⊗ · · · ⊗Wn(zn). ¤

Introduce the filtration on g⊗C[x] such that F i(g⊗C[x]) consists of g-valued
polynomials whose degree does not exceed i. Then gr(g ⊗ C[x]) = g ⊗ C[x], so we
can produce a graded module from any cyclic module.

Definition 2.9. [FL1] For given z1, . . . , zn introduce the g⊗ C[x]-module

W1 ∗ · · · ∗Wn(z1, . . . , zn) = grC(W1(z1)⊗ · · · ⊗Wn(zn)).

We call it the fusion module.
Proposition 2.10. For any g⊗C[x]–modules W1, . . . , Wn we have the module

(W1 ∗ · · · ∗Wn(z1, . . . , zn))[k] is a quotient of W
[k]
1 ∗ · · · ∗W

[k]
n (z1, . . . , zn).

Proof. Note that due to the isomorphism (2.1) we have

(W1(z1)⊗ · · · ⊗Wn(zn))[k] ∼= W
[k]
1 (z1)⊗ · · · ⊗W [k]

n (zn).

Then the statement follows from Proposition 1.9. ¤

For any g–module V introduce the evaluation g⊗C[x]–module V [0], isomorphic
to V as a vector space, where g⊗ xC[x] acts by zero and g⊗ 1 acts as g on V . For
a set of g–modules V1, . . . , Vn let us set

V1 ∗ · · · ∗ Vn(z1, . . . , zn) = V1[0] ∗ · · · ∗ Vn[0](z1, . . . , zn).

Conjecture 2.11. For any simple g and any weights λ1, . . . , λn we have
(
V (λ1) ∗ · · · ∗ V (λn)(z1, . . . , zn)

)[k] ∼= V (kλ1) ∗ · · · ∗ V (kλn)(z1, . . . , zn).

Note that V (kλ) ∼= V (λ)[k], so by Proposition 2.10 the left hand side in this
Conjecture is a quotient of the right hand side.
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2.3. Fusion of Weyl modules.
Proposition 2.12. For any λ1, . . . , λn we have W 1(λ1)∗· · ·∗W 1(λn)(z1, . . . , zn)

is a quotient of W 1(λ1 + · · ·+ λn).

Proof. The cyclic vector of the left hand side satisfies (1.1). ¤

Together with Proposition 1.9 it motivates the following conjecture.
Conjecture 2.13. We have

W 1(λ1)[k] ∗ · · · ∗W 1(λn)[k](z1, . . . , zn) ∼= W 1(λ1 + · · ·+ λn)[k],

in particular, the left hand side is independent on (z1, . . . , zn).
Theorem 2.14. Conjecture 2.6 implies Conjecture 2.13.

Proof. In the case k = 1 Conjecture 2.6 together with Theorem 2.4 implies the
equality of dimensions, so this case of Conjecture 2.13 follows from Proposition 2.12.

Note that by Proposition 2.10 the module W 1(λ1)[k]∗· · ·∗W 1(λs)[k](z1, . . . , zs)
has the quotient

W 1(λ1) ∗ · · · ∗W 1(λs)(z1, . . . , zs)[k] ∼= D(1, λ1 + · · ·+ λs)[k]

which is isomorphic to D(k, λ1 + · · ·+ λs) as well as to W 1(λ1 + · · ·+ λs)[k].
By Theorem 2.4 we have

dim D(k, λ1 + · · ·+ λs) = dim D(k, λ1) · · · dim D(k, λs),

that by assumption is equal to dim W 1(λ1)[k] ∗ · · · ∗W 1(λs)[k](z1, . . . , zs). So this
quotient is the whole space and we have the isomorphism proposed in Conjec-
ture 2.13. ¤

2.4. glr case. Now suppose g = glr.
Theorem 2.15. [CL] For g = glr we have W 1(λ) ∼= D(1, λ).
So Conjecture 2.6 and therefore Conjecture 2.13 is already proved in this case.
Note that for g = glr we have W (ωi) ∼= V (ωi)[0], where the right hand side is

the evaluation representation defined above.
Corollary 2.16. We have

V (kω1)∗λ1 ∗ · · · ∗ V (kωr−1)∗λr−1(z1, . . . , z|λ|) ∼= D(k, λ),

in particular, the left hand side does not depend on z1, . . . , zn.
So we proved a substantial case of the Conjecture 1.8 of [FL1]. And we can deduce
the similar case of Conjecture 2.11.

Corollary 2.17. For 1 ≤ i1, . . . , in ≤ r − 1 we have

(V (lωi1) ∗ · · · ∗ V (lωin)(z1, . . . , zn))[k] ∼= V (klωi1) ∗ · · · ∗ V (klωin)(z1, . . . , zn).

Remark 2.18. It seems that Conjecture 2.11 can be proved for the set of
weights l1ωi1 , . . . , lnωin using the methods of [FF2], where fusion product em-
bedded into a direct sum of integrable modules. Then the corresponding variety
Proj

(
V (l1ωi1) ∗ · · · ∗ V (lnωin)(z1, . . . , zn)[∗]

)
coincides with the generalized Schu-

bert varieties introduced and described for g = sl2 in [FF3], [F].
Remark 2.19. Note that due to the result of [S] on Demazure modules we

also have a formula for the graded character ch1V (kω1)∗λ1 ∗ · · · ∗ V (kωr−1)∗λr−1 in
terms of parabolic Kostka polynomials as expected in [FL1].
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3. Two-dimensional case

Here let us consider the case d = 2 and g = glr. Here we use the partition
notation for weights of glr.

3.1. Deformation of Weyl modules. Let us recall a construction from
[FL3].

The Lie algebra glr ⊗ C[x1, x2] can be deformed into the Lie algebra glr ⊗
C 〈X,Y 〉, where C 〈X, Y 〉 is the associative algebra, generated by X and Y under the
relation Y X−XY = X. The algebra glr⊗C 〈X, Y 〉 has the natural representation
in C[t, t−1], where X acts by multiplication on t and Y acts as t∂/∂t.

By V denote the r–dimensional vector representation of glr. Let v1, . . . , vr be
the standard basis vectors in V . For a partition ξ introduce the glr ⊗ C[x1, x2]–
module Vξ as the submodule of

∧|ξ| (
V ⊗ C[t, t−1]/C[t]

)
, generated by vξ =

r∧

i=1

ξi∧

j=1

vi ⊗ t−j .

Theorem 3.1. [FL3] There is a filtration F iglr ⊗C 〈X, Y 〉 such that grCVξ is
a quotient of W 2(ξ). Moreover, if ξ = (n) then grCVξ

∼= W 2(ξ).

Conjecture 3.2. We have W 2(ξ)[k] ∼= grC

(
V

[k]
ξ

)
.

Note that for ξ = (n) we know by Proposition 1.9 that the left hand side is a
quotient of the right hand side.

3.2. Relation to Schubert cells. Let us enumerate the basis vectors of V ⊗
C[t−1, t] as follows. Denote vi ⊗ t−j by urj−i+1.

For a partition ξ = ξ1 ≥ · · · ≥ ξr ≥ 0 introduce η(ξ) as the ordered set of
numbers η1 < η2 < · · · < ηn equal to lr − s with 0 ≤ s < ξt

l , l = 1, 2, . . . , where ξt

is the transposed partition. So

vξ =
∧

i∈η(ξ)

ui.

Then our modules are related to Example 1.8 in the following way.

Proposition 3.3. We have V
[k]
ξ

∼= Γ(Shη(ξ),O(k))∗ and Proj
(
V

[∗]
ξ

) ∼= Shη(ξ).

Proof. Note that Vξ is indeed a submodule of
∧|ξ|

U , where

U = V ⊗ (
t−NC[t]/C[t]

)
, N = ξ1,

or, in other words, U = 〈ui〉i=1...Nr.
The action of glr⊗C 〈X, Y 〉 on U defines a map from glr⊗C 〈X, Y 〉 to End(U) =

glNr. It is shown in [FL3] that the image of this map is the “block upper-triangular”
Lie subalgebra p mapping each ui to a linear combination of uj with the integer
part of (j − 1)/r not exceeding the integer part of (i − 1)/r. Then V

[k]
ξ is the

p–submodule of
∧|ξ|

U , generated by v⊗k
ξ .

Let b ⊂ End(U) be the Lie algebra of upper-triangular matrices, that is endo-
morphisms mapping each ui to a linear combination of uj with j ≤ i. Consider
the projection p+ : p → b along the strictly lower–triangular matrices. Since for
any g ∈ p we have gv⊗k

ξ = p+(g)v⊗k
ξ , the subspace V

[k]
ξ is indeed the b–submodule

generated by v⊗k
ξ .



10 B. FEIGIN, A.N. KIRILLOV, AND S. LOKTEV

So we are in the situation of Example 1.8. ¤

For a matrix A = (aij), i = 1 . . . k, j = 1 . . . n, of positive integers introduce
the functional u∗A on V

[k]
ξ by

u∗A =
k⊗

i=1

n∧

j=1

u∗aij
.

Corollary 3.4. [HP] Let

M[k]
η = {A = (aij) | ai1 < · · · < ain, 1 ≤ a1j ≤ · · · ≤ akj ≤ ηj}.

Then elements u∗A with A ∈M[k]
η(ξ) form a basis in

(
V

[k]
ξ

)∗
.

Remark 3.5. Another way to describe the set M[k]
η is the notion of plane

partitions. Recall that a plane partition of shape λ is a filling of the diagram of
partition λ by non-negative integers weakly increasing along rows and columns. Let
PPλ(k) denotes the set of such plane partitions, filled by integers not exceeding k,
and let ppλ(k) denotes their number.

Then we have the following bijection between PPλ(k) and M[k]
η , where λ =

(ηn − n ≥ · · · ≥ η1 − 1). For any plane partition from PPλ(k) let aij − j be the
number of integers in n − j + 1-th row less than i. Then the set (aij) belongs to
M[k]

η and one can see that it gives us a bijection.
Remark 3.6. Note that Conjecture 3.2 implies that Proj

(
W 2(ξ)[∗]

)
is a de-

generation of the Schubert variety Shη(ξ).

3.3. Module structure. First let us calculate the character of V
[k]
ξ as glr–

module.
Proposition 3.7. We have

chV
[k]
ξ =

∑

A∈M[k]
η(ξ)

∏

i,j

xaij mod r,

where a mod r takes values from 1 to r.
Let Fr

n be the map from the Grothendiek ring of representations of the sym-
metric group Σn to the Grothendiek ring of glr–modules defined by

Fr
n(π) =

(
V ⊗n ⊗ π

)Σn
.

In other word, it maps the representation of Σn corresponding to a partition ξ to the
glr–module corresponding to the same partition if ξr+1 = 0 and to zero otherwise.

Recall the notion of skew Schur function:

sλ\µ =
∑

kij≥1, (i,j)∈λ\µ

kij≤ki+1,j ; kij<ki,j+1

∏

(i,j)∈λ\µ
xkij .

and the representation of Σ|λ|−|µ|

πλ\µ =
∑

Cν
λµπν ,

where Cν
λµ are Littlewood–Richardson coefficients. The representation πλ\µ corre-

sponds to the symmetric function sλ\µ as follows.
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Proposition 3.8. [M] We have

chFr
|λ|−|µ|(πλ\µ) = sλ\µ(x1, . . . , xr, 0, 0, . . . ).

At last for representations π1 of Σn1 and π2 of Σn2 introduce the outer product

π1 ¯ π2 = IndΣn1+n2
Σn1×Σn2

π1 £ π2.

Note that we have Fr
n(π1 ¯ π2) = Fr

n(π1)⊗Fr
n(π2).

For our purpose introduce the following representation.

Definition 3.9. The Higher Parking Functions representation of Σkn is given
by

CPF[k]
Sign(ξ) =

⊕

∅=λ0⊂λ1⊂···⊂λn=kn

λs⊃k
ξt
1+···+ξt

s

n⊙
s=1

πλs\λs−1 ,

where ξt is the transposed partition and km = (k ≥ · · · ≥ k), where m is the
number of entrees.

Remark 3.10. For k = 1 this representation is the tensor product of the sign
representation and the representation in ρ–parking functions introduced in [PSt]
for ρ = (1ξt

12ξt
2 . . . ), that is the partition where each j appears ξt

j times, and ξt is
the transposed partition.

Proposition 3.11. We have V
[k]
ξ

∼= Fr
kn

(
CPF[k]

Sign(ξ)
)

as glr-modules.

Proof. It is enough to compare the characters.
For Λ = (∅ = λ0 ⊂ λ1 ⊂ λ2 ⊂ · · · ⊂ λn = kn) introduce the set M(Λ)

consisting of matrices (aij) such that

ai1 < · · · < ain, a1j ≤ · · · ≤ akj , r(s− 1) < aij ≤ rs for (i, j) ∈ λs \ λs−1.

Then M[k]
η(ξ) is union of M(Λ) for all Λ satisfying λs ⊃ kξt

1+···+ξt
s .

Next note that

∑

A∈M(Λ)

∏

i,j

xaij mod r =
n∏

s=1

∑

r≥kij≥1, (i,j)∈λs\λs−1

kij≤ki+1,j ; kij<ki,j+1

∏

(i,j)∈λs\λs−1

xkij

by setting kij = aij mod r. And the right hand side is equal to

n∏
s=1

sλs\λs−1(x1, . . . , xr, 0, 0, . . . ) = chFr
rn

(
n⊙

s=1

πλs\λs−1

)

¤

Remark 3.12. The module W 2(ξ)[k] is bi-graded and one of these grading
remains in V

[k]
ξ as the grading by degree of t. This grading can be also viewed in

CPF[k]
Sign(ξ) by fixing |λ1|+ · · ·+ |λn| in the direct sum.
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3.4. Dimension formula. The dimension of Γ(Shη,O(k)) is given by the
following Hodge postulation formula.

Theorem 3.13. [HP][St1] For η = (η1 < · · · < ηn) we have

dimΓ(Shη,O(k)) = Det
((

ηj + k − j

i + k − j

))

1≤i,j≤n

.

For the case ξ = (n), that is η = (r, 2r, . . . , nr) let us deduce an explicit formula.
Note that for k = 1 it gives the higher Catalan number C

(r)
n (see e.g. [FL3])

dim V(n) = C(r)
n :=

1
n + 1

(
r(n + 1)

n

)
.

Theorem 3.14. We have

(3.1) dim V
[k]
(n) =

n∏

j=1

(jr + k − j)!
(jr − 1)!

· (kr + jr − 1)!
(kr + jr − j)!

· (j − 1)!
(k + j − 1)!

.

Proof. Let di,j(k, r) =
(

rj+k−j
i+k−j

)
. We have dim V

[k]
(n) = Det (di,j)1≤i,j≤n.

First let us make the entrees of this matrix polynomials in k and r. To do it
note that

di,j(k, r) =
(jr + k − j)!

(k − j + n)!(jr − 1)!
d′i,j(k, r)

for d′i,j(k, r) = (k−j+i+1)n−i(rj−i+1)i−1, where (m)i = m(m+1) . . . (m+i−1).
So

dim V
[k]
(n) = ∆(k, r)

n∏

j=1

(jr + k − j)!
(k − j + n)!(jr − 1)!

, ∆(k, r) = Det
(
d′i,j(k, r)

)
1≤i,j≤n

.

Note that ∆(k, r) is a polynomial in k and r of degree n(n− 1)/2 in k and of
the same degree in r.

Let us show that ∆(k, r) = 0 for r = b/(a + k), 1 ≤ b < a ≤ n. In this case for
any j we have

n∑

i=1

d′i,j

(
k

(
a− b− 1
i− b− 1

)
+ i

(
a− b

i− b

))
= 0,

so the rows of this matrix are linearly dependent.
As the polynomials kr + ar − b, 1 ≤ b < a ≤ n are irreducible and have

no common divisors, ∆(k, r) is divisible by
∏

1≤b<a≤n

(kr + ar − b) and therefore

proportional to this polynomial.
Then note that the maximal degree term in ∆(k, r) is equal to

Det
(
kn−i(rj)i−1

)
1≤i,j≤n

= (kr)n(n−1)/2 Det
(
ji−1

)
1≤i,j≤n

=

= (kr)n(n−1)/2
∏

1≤b<a≤n

(a− b).

Summarizing, we obtain

dim V
[k]
(n) =

∏

1≤b<a≤n

(a− b)(kr + ar − b)
n∏

j=1

(jr + k − j)!
(k − j + n)!(jr − 1)!

.
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At last writing this in the uniform way using
∏

1≤b<a≤n

(a− b) =
n∏

j=1

(j − 1)!,
∏

1≤b<a≤n

(kr + ar − b) =
n∏

j=1

(kr + jr − 1)!
(kr + jr − j)!

,

and
∏n

j=1(k−j+n)! =
∏n

j=1(k+j−1)!, we obtain the statement of the theorem. ¤

Corollary 3.15. We have

dim W 2(nω1)[k] ≥
n∏

j=1

(jr + k − j)!
(jr − 1)!

· (kr + jr − 1)!
(kr + jr − j)!

· (j − 1)!
(k + j − 1)!

.

Remark 3.16. To the best of our knowledge the product formula for the num-
ber of plane partitions ppλ(k) in the case λ = (nr + p, (n − 1)r + p, · · · , r + p, p),
has been obtained for the first time by R.Proctor (unpublished manuscript dated
January 1984, but see [P], Corollary 4.1, for the case r = 1). As far as we aware
the first published proof of the product formula for ppλ(k) in question, is due to
C. Krattenthaler [Kr]. We refer the reader to [St2], p.550, for an elegant product
formula for the number ppλ(k), due to R.Proctor, as well as for additional historical
comments. We include a (new) proof of Theorem 3.14 since it directly furnishes
the product formula (3.1) which is more suitable for our purposes.

Remark 3.17. Using the same method we can prove more generally that for
λ = (n(r − 1) + p, (n− 1)(r − 1) + p, · · · , r − 1 + p) we have

ppλ(k) = Det
((

rj + p + k − j

i + k − j

))

1≤i,j≤n

=

n∏

j=1

(jr + p + k − j)!
(jr + p− 1)!

· (kr + jr + p− 1)!
(kr + jr + p− j)!

· (j − 1)!
(k + j − 1)!

.

The observation that the higher Catalan number C
(r)
n is equal to the number

of plane partitions pp(n(r−1),(n−1)(r−1),··· ,r−1)(1) can be generalized to the natural
bijection between the set of trapezoidal paths [L] of type (n, p, r) and the set of
plane partitions PP ((n−1)(r−1)+p,··· ,r−1+p)(1).
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