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ABSTRACT. Special elements are constructed in the higher K-groups of Drin-
feld modular varieties and are shown to form an Euler system. Then a regulator
map is constructed from the K-groups to the space of automorphic forms us-
ing the local model, or the analytic uniformization, at infinity of the modular
variety. It is shown that the image under the regulator map of the special
elements is related to the special value of the L-function of Hecke eigenforms
on Drinfeld modular varieties.

Our result in the case of Drinfeld modular curves is the function field ana-
logue of Beilinson’s result on elliptic modular forms. The proof is not analogous
to that of Beilinson’s; we use that the image under the regulator map is also
an Euler system.

1. INTRODUCTION

Beilinson [Be] constructed special elements in the K-group of elliptic modular
curves. He showed that the image under the regulator map is related to the special
value of the L-function. One of our results is the analogue of Beilinson’s result ([Be],
see also [Ka] Theorem 2.6) in the context of Drinfeld modular varieties (Theorem
6.3). The special elements of Beilinson were shown to form an Euler system by
Kato ([Ka] Propositions 2.3, 2.4). Another result of ours is the construction of
Euler systems in the K-group of Drinfeld modular varieties (Theorem 3.7).

The naive positive characteristic analogue of the Beilinson conjectures, where
one describes the special values of L-function up to Q* in terms of the covolume
of the regulator map, is not so interesting for the reason that the L-function of
a variety over the function field of a curve over a finite field [, is essentially a
congruence zeta function, which is a rational function in ¢~%. Over number fields,
there is the conjecture of Bloch and Kato, which describes the relation between the
special values of the L-function and arithmetic étale cohomology. The analogue
of the prime-to-p part of the conjecture may be easily formulated but is of less
importance, since the L-function over a function field is directly related to étale
cohomology. A naive approach for the p-part fails due to the lack of a good theory
of p-adic cohomology with integral structure for varieties of characteristic p > 0.
Although not in print, we believe that there is a conjecture which describes the exact
value of the L-function of a motive over a global field of positive characteristic in
terms of the regulator maps from K-groups. Our formula (Theorem 6.3) is to be
regarded as the first evidence in higher dimensions toward the conjecture.

During this research, the first author is supported as a Twenty-First Century COE Kyoto
Mathematics Fellow. The second author was partially supported by JSPS Grant-in-Aid for Sci-
entific Research 16244120.
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An Euler system is a series of elements in some cohomology theory, which satisfies
certain properties under norm maps. The properties are described in terms of local
L-factors. The application to Iwasawa theory is prominent, but not many examples
are known. We take as our definition the L-factor of automorphic representation,
whereas in the book of Rubin [Ru] the L-factor of Galois representation is used.
This is natural in the sense that most of the existing Fuler systems are constructed
with a help from Shimura varieties. The bridge between the two definitions is given
by Langlands’ conjectural description of the cohomology of Shimura varieties. In
this paper, we construct abstract Euler systems for the L-factors of GLy (Theorem
2.9). This is applied to give Euler systems in the K-groups of Drinfeld modular
varieties (Theorem 3.7).

The sections of this paper are organized as follows. See also the introduction at
the beginning of each section for more technical details.

Let d be a positive integer. The results in Section 2 is based on the basic
observation that any set of d distributions gives rise to an Euler system of GLg4. By
a distribution, we mean a system of elements which satisfy the distribution property.
Two well-known examples are cyclotomic units and Siegel units on elliptic modular
curves. Let A be the ring of finite adeles of some global field. A distribution is better
understood as a GL4(A)-homomorphism S(A%®?) — V where S(A®9) is the space
of Schwartz-Bruhat functions (locally constant, compactly supported functions) on
A®d and V is some representation of GL4(A). Any set of d distributions S(A®9) —
V; (i = 1,...,d) then gives rise to a GLg(A)-homomorphism S(A%®?) — V; ®
-+ ® Vg. We may call this homomorphism an Euler system. It is justified by the
following observation. For a finite set S of places, let ¢s € S(Maty(A)) denote the
characteristic function of the set {X € Maty(O) | X mod v is invertible for any v €
S}, where O denotes the ring of integers of A. If S = S’ IT1{v}, then the unramified
local L-factor at v, which we consider as an element in the local Hecke algebra at v,
appears in the description of the difference of the two functions ¢g and ¢g. This
fact plays a key role in the construction of Euler systems of cyclotomic units (d = 1,
A = AZ’ case) and of Kato’s Euler system of Beilinson elements on modular curves
(d=2,A= AY case); our construction is a generalization to arbitrary d.

For more general applications, for example in K-theory, we give a construction of
Euler systems in an abstract, categorical setting. As a convenient tool in describing
adelic calculations, we introduce the category FC? and a certain topology on the
category. We define special presheaves on this category which we call the Schwartz-
Bruhat sheaves. A distribution is then a morphism of presheaves from the Schwartz-
Bruhat sheaves, and an Euler system is the product of d distributions.

In the first half of Section 2, we list the basic definitions and properties of the
sheaf theory on the new category FC?. The proofs are formal and elementary but
long. We supply them in Appendix A for the reader’s convenience.

In Section 3, we give the construction of special elements in the K-groups of
Drinfeld modular varieties, and we prove that the system of those elements forms
an Euler system. The global units called Siegel units are constructed, and the
special elements are obtained as the image of those units under the symbol map.
This is of course modeled on the construction by Beilinson [Be] (and more explicitly
by Kato [Ka]) in the case of elliptic modular curves.

In Section 4, we prove a function field analogue of the Kronecker limit formula.
This states that the logarithms of Siegel units are expressed as a limit of Eisenstein
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series. This is proved in the case of Drinfeld modules of rank one by Gross and
Rosen ([Gr-Ro]), and in general by the first author ([Ko]). Here we give a shorter,
more conceptual proof. The formula is applied to the computation of the regulator
map in Proposition 6.2.

Studying the regulator map and the Kronecker limit formula, we arrive at an
integral over GL4(A), whose integrand is the product of a cusp form and the product
of d Eisenstein series. In Section 5, we show that the integral is related to the L-
function of the cusp form. The proof differs significantly from the case of elliptic
modular curves. In [Be| (see also [Ka]), the Rankin-Selberg method was used to
compute the integral. We prove that the product of Eisenstein series forms an Euler
system, and use the norm property to unfold the integral.

In the first half of Section 6, we define a regulator map from the K-group of
Drinfeld modular varieties to the group of harmonic cochains on the Bruhat-Tits
building. Our regulator is motivated by the regulator map in the Beilinson conjec-
tures. While the conjectures only handle the Archimedean place, there are a number
of papers in which non-Archimedean places are considered. The very rough idea
is that the regulator of a variety over a local field is simply the boundary map to
the special fiber in the localization sequence. Our approach is very close to that of
Consani ([Con]) and of Sreekantan ([Sr]), but differs from them in that we use rigid
analytic geometry. We use the fact that Drinfeld modular varieties are analytically
uniformized by Drinfeld symmetric spaces. In the second half of Section 6, we
calculate the image under the regulator map of the members of the Fuler system
constructed in Section 3. Using the Kronecker limit formula and the result in Sec-
tion 5, we derive our main theorem describing the cusp form part of the image in
terms of the special values of L-functions of cuspidal automorphic representations.
In this description a quantity P(f) appears for each cusp form f. It is a certain
integral concerning f on the normalizer of the diagonal torus of GLg4, and is called
the period of f.

Our main interest lies in the case where the local component of f at the specified
place is an Iwahori spherical vector of the Steinberg representations. Then L(f, s)
is conjecturally related to the L-functions of the Galois representation provided
by the (d — 1)-st l-adic cohomology groups of Drinfeld modular varieties. If we
further assume d = 2, the classical theory of Hecke and Jacquet-Langlands gives
us an expression for P(f) in terms of the special value of L(f,s) at s = % In
Section 7, under certain conditions on f, we express P(f) as the product of L(f,0)
and L(f,1) when d = 3 and when the global field which we are considering is the
rational function field.

In Appendix A, we provide the detailed proofs of the results stated in the first
half of Section 2.

In Appendix B, we express the L-factor at a bad prime as the sum of Hecke
operators. This is included since we were not able to find an appropriate reference
which suits our application. Perhaps it follows from [Ja-Pi-Sh], and it is known to
experts. The approach taken there is again that of Section 2.

In Appendix C, we give an explicit formula (Proposition C.3) of the Iwahori-
spherical Whittaker functions of the Steinberg representation of GL; over a non-
Archimedean local field. This formula is a direct consequence of Li’s generalization
[Li] of the Casselman-Shalika formula, which expresses the values of the Whittaker
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function on the diagonal torus. This is included since we need it for the calculation
of P(f) in Section 7.
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2. ABSTRACT CONSTRUCTION OF EULER SYSTEMS FOR GL,; FROM
DISTRIBUTIONS

We introduce the categories C%¢ and FC? and develop sheaf theory on them
following Verdier [SGA4]. Those categories are not closed under fiber products,
hence do not convey topology in the sense of Verdier, but we have a cofinality
lemma (Lemma A.3) to circumvent the difficulty. The notion of Galois coverings is
peculiar to our setting; it facilitates our exposition.

We consider three kinds of presheaves: sheaves, semi-sheaves, and presheaves
with transfers. An example of a sheaf is the space of automorphic forms as discussed
in Section 5. The presheaf constructed from K-theory (Section 3) is not a sheaf
but it is equipped with transfers. The theorems are stated in the more general case
of presheaves with semi-transfers. We work in this general setting, since there is a
semi-sheaf of interest which is not a sheaf. An example is the integral structure of
the [-adic sheaf of elliptic modular forms of weight greater than 2.

The connection with the adelic language is given by the functor w (Section 2.1.4).
We have an equivalence of categories between the category of abelian sheaves on
FC and the category of smooth GL4(A x)-modules (Section A.1.10).

We could have refrained from using these new categories if we were interested
only in Theorem 6.3, since its proof involves sheaves only. The translation of the
notion of presheaves with transfers in the adelic setting seems difficult.

The functor w may be interpreted as the fiber functor in Galois theory [SGA1].
From this point of view, our sheaf theory is the Galois theory of the locally profi-
nite group GL4(Ax). While classically only profinite groups appear as the Galois
group, this generalization suggests the extension of Galois theory to other algebraic
groups.

For the motivation of the Schwartz-Bruhat sheaves, the reader is referred to
Section 1.

In Section 2.1, we list the basic definitions and properties. The proofs are ele-
mentary but long, hence we give them in Appendix A. Our use of the term “fibra-
tion” should not be interpreted as alluding to homotopical algebra, and the term
“presheaf with transfers” to Voevodsky’s work.

The reader is advised to work out the case when d = 1. It may be applied to
proving the norm compatibility of cyclotomic units. The case when d = 2 is closely
related to the Euler system of Kato. We warn that the normalization is different
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from [Kal; we choose (M. )« (see text for the notation) for our norm maps, while
Kato chooses (74 «)« as his norm maps (see Remark 2.10 for more details).

2.1. Let d > 1 be a positive integer. Let X be a regular noetherian scheme of Krull
dimension one such that the residue field at each closed point is finite.

2.1.1. We define the category C% = C% as follows. An object in C? is a coherent
Ox-module of finite length which admits a surjection from O?éd. For two objects
N and N’ in C¢, the set Homea(N, N') of morphisms from N to N’ is the set of
isomorphism classes of diagrams

N « N'"— N
in the category of coherent Ox-modules where the left arrow is surjective and the
right arrow is injective. This definition of morphisms is due to Quillen ([Qu]) except
that here we take morphisms in the opposite direction.

We often consider the following two types of morphisms in C¢. Let N be an
object in C%. For a sub Ox-module N’ of N, the morphism N’ = N’ < N in C? is
denoted by ry N/ : N — N'. For a quotient Ox-module N” of N, the morphism
N" « N = N in C? is denoted by my v : N — N'.

2.1.2. Let FC? denote the category of finite families of objects in C?. An object in
FC%is a pair (J, (N;);es) where J is a finite set and (N;) e is a family of objects
in C? indexed by J. We denote the object (J, (N;);jes) by [T;c; Nj- We regard c?
as a full subcategory of FC?. We define mo([;es Nj) to be the set J.

Definition 2.1. A presheafon FC? is a contravariant functor from FC? to the cat-
egory of sets. A presheaf F' on FC? is a sheaf if it satisfies the following conditions
(1), (2) and (3):
(1) The image of the empty set F(0)) is the set of one element.
(2) For two objects N and N’ in FC?, the canonical map F(NTIN') — F(N)x
F(N') is an isomorphism.
(3) Let N — N’ be a covering in FC%. If the fiber product N xn N exists
in FC%, then F(N’) is canonically isomorphic to the difference kernel of
F(N) = F(N xx+ N) where the maps are induced by the first and the
second projections.

Let f: N — N be a morphism in FC? and let G be a subgroup of Auty(N).
We say that f is a Galois covering of Galois group G if the fiber product N’ x y N’
exists and if the morphism [] 5 (g,id) : [[,cq N" — N' xn N’ is an isomorphism.
The inclusion of the category of sheaves on FC into the category of presheaves on
FC? has a right adjoint, which provides us with the notion of the sheaf associated
to a presheaf.

2.1.3. Let N be an object in FC? and H be a subgroup of Aut zca(N). We denote

—~d
by N/H the sheaf associated to the presheaf Homgea(—, N)/H. Let FC denote
the full subcategory of the category of sheaves on FC? whose objects are sheaves
of the form N/H with N in FC% and H a subgroup of Aut(N).

~d
The notions of my and covering are canonically extended to the category FC .

—~d ~d
We define the notions of sheaves on FC and Galois coverings in FC in a similar



6 SATOSHI KONDO AND SEIDAI YASUDA

manner. There is an equivalence of categories between the category of sheaves on
~d
FC? and the category of sheaves on FC .

~d
2.1.4. We define the functor w : FC — (Sets) as follows. We consider AY? as the
space of row vectors. Given a presheaf F' € Presh(FC?), we define w(F) to be
w(F)=lm  F(Ly/L1)
LiCLyCA%

where the inductive limit is taken over the filtered ordered set of the pairs of two 0 x-
lattices (L1, L2) in A% with L1 C L. The order is defined as follows: for two such
pairs (L1, Le) and (L}, LY), (L1, Lo) > (L}, LY) if and only if L] € Ly C Ly C Lj.

We define the category (GLg4(Ax)-sets*). An object S in (GL4(Ax)-sets®) is a
set with left GL4(Ax)-action such that S has finitely many GLg4(Ax)-orbits, and
for any s € S, the stabilizer at s is a compact open subgroup of GLg(Ax).

~d
Lemma 2.2. The functor w : FC — (Sets) gives an equivalence between the
~d
category FC  and the category (GLg(Ax)-sets™).

2.1.5. We use the following notations in Section 3.1.5. Let N be an object in
~d _
FC and let H be a finite group acting on N. Let us consider the presheaf N —

N(N)/H. Then its associated sheaf defines an object in ﬁd. We denote this sheaf
by N/H. It is easily checked that the set w(N/H) is canonically isomorphic to
w(N)/H. We say that the action of H on N is free if the action of H on the set
w(N) is free. In other words, the action of H on N is free if the canonical morphism
N — N/H is Galois and its Galois group is equal to H.

2.1.6. Variant. A morphism in C? is called a fibration if it is isomorphic to a
morphism of the form mpy n/. A morphism f : M — M’ in the category Fclis
said to be a fibration if it is a fibration in C% on each component of M. We note
that in the category FC?, the fiber product of two fibrations always exists.

A presheaf F on FC? is a semi-sheaf if it satisfies the conditions (1), (2) in

Definition 2.1 and the following condition (3)’:

(3) If N — N’ is a covering in FC? which is a fibration, then F(N’) is canon-
ically isomorphic to the difference kernel of F(N) = F(N Xy N) where
the maps are induced by the first and the second projections.

The inclusion of the category of semi-sheaves on FC? into the category of presheaves
on FC? has a right adjoint, which provides us with the notion of the semi-sheaf

associated to a presheaf.
Let N be an object in FC? and H be a subgroup of Autzea(N). We denote

—~ t.d
by (N/H)' the semi-sheaf associated to the presheaf Hom zca( , N)/H. Let .FCT

denote the full subcategory of the category of sheaves on FC? whose objects are
semi-sheaves of the form (N/H)'. The notions of my and covering are canonically

~,T.d
extended to the category FC .
. . o=hd . . .
We say that a morphism f in FC is a fibration if there exist two coverings
. =,Td . . . .
g1,92 in FC'~ such that goo fogy is a fibration in FC?. We define semi-sheaves on

~T.d .. . . =,hd .
]-"CT in a similar way. The fiber product of two fibrations in FC  always exists.
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There is an equivalence of categories between the category of semi-sheaves on FC?
. ~,1.d
and the category of semi-sheaves on FC .

The following lemma is used in the proof of Lemma 2.11. See Lemma A.16 for
the proof.

Lemma 2.3. Let f : M — N be a fibration in FC?. Suppose a finite group H acts
equivariantly on M and N. Then the induced morphism m : (M/H)" — (N/H)f

~ t.d
is a fibration in }'CT .
2.1.7. We define the functor w : Presh(FC%) — (Sets) as follows. Given a presheaf
F € Presh(FC?%), we define w'(F) to be

Wi(F)= lim FOY/L)
Lcog?

where the inductive limit is taken over the O x-lattices in @?@d ordered by inclusion.
. . =, Td
Let F' = ([];c; Nj)/H be an object in FC' . We have a map

wl(F) = (] ] w!(Hom(—, N;)))/H — J/H = mo(F)
jeJ
induced by the map which sends the elements in w'(Hom(—, N;)) to j.
~ t,d

Let f : Fy — F be a fibration in FCT . The map w!(F) — Z>p, which sends
r € wi(F) to #w(f)~!(z), factors through my(F). We call the induced map
deg f : mo(F) — Z>¢ the degree of f.

In Section A.1.11, the degree is defined using the functor w instead of wf. The

two definitions coincide for fibrations. The following two lemmas follow from Lem-
mas A.13 and A.14.

Lemma 2.4. Let
Fl 25 p

sl oo

g2
F)—=F,

—~ t,d
be a cartesian diagram in ]—'CJr where all morphisms are fibrations. Then for any
y € mo(F3), we have (deg f')(y) = (deg f)(mo(g2)(y))-

Lemma 2.5. Let N = HiEWO(N) N; be an object in FC* and H be a subgroup of
Aut zoa(N). Suppose that, for each i € mo(N), the stabilizer H; C H of i acts
faithfully on N;. Then the canonical quotient map f : (N/{idy})t — (N/H)" is a
Galois covering, and we have (deg f)(i) = #H for any i € mo((N/H)T).

2.2. Presheaves with transfers.

—~d
Definition 2.6. An abelian presheaf with transferson FC (resp. with semi-transfers
~ t,d ~d ~ t.d
on }'CT ) is a presheaf F' of abelian groups on FC (resp. .7’-'CT ) equipped with,
~d ~ t,d
for each morphism (resp. each fibration) f : N — N’ in FC (resp. in ]—'CT ), a
homomorphism f, : F(N) — F(N') satisfying the following properties:

(1) For any two composable morphisms (resp. fibrations) f and f/, (fo f'). =
feo fi.
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(2) For any cartesian diagram

91
N —= N

| o |

92
N ——= N,

~d ~ t.d
in FC (resp. in fCT , with f, f’ fibrations), we have g4 o f. = f. o g}.
(3) The composite f. o f* is the multiplication by deg f.

~d ~ t,d
2.2.1. Any abelian sheaf on FC (resp. semi-sheaf on ]—'CJr ) has a unique structure

. . P . = 1d
of abelian presheaf with transfers on FC (resp. semi-transfers on FC ).

2.2.2. A homomorphism of abelian presheaves with transfers (resp. semi-transfers)
is a homomorphism of abelian presheaves compatible with f,. If F is an abelian

. ) = 1d . .
sheaf (resp. semi-sheaf) on FC (resp. on FC ), any homomorphism of abelian
presheaves from an abelian presheaf with transfers (resp. semi-transfers) to F' is
compatible with fi.

~d
2.2.3. Hecke operators. Let N be an object in C?, and N’ be an object in FC .
Suppose that N’ is of the form []; Nj/H; such that N} & N is an object in C? for
every j. We define an object N’ @ [N] by
N' & [N] = [[(V] & N)/(H; x Autoy (N)).

J
The two morphisms N; = N < N;@® N and N «- N; @& N = N; @ N induce the
morphisms
NN, M@ N N @[N] — N
in ﬁd. y
Let F be an abelian presheaf with transfers on FC (resp. semi-transfers on
],-'VCT’d). The composite

(mnvgn )TN a e F(N) — F(N')
is called the Hecke operator for [N] (resp. [N]T) and is denoted by Ty (resp. Tinyt).-

—d
Definition 2.7. A presheaf of rings with transfers on FC (resp. semi-transfers on

~ t.d —~d ~ ,d
]—"CT ) is a presheaf G of rings on FC (resp. on ]-"CT ) equipped with a structure
of abelian presheaf with transfers (resp. semi-transfers) satisfying the following
property:
e For any morphism (resp. fibration) f: N — N’, z € G(N) and y € G(N'),
we have f.(z- f*y) = fi(z) -y and f.(f*y-2) =y - f(2).
~d ~ t,d
Any sheaf of rings on FC (resp. semi-sheaf of rings on .7-'CT ) has a unique

d

. . = . —~, T
structure of presheaf of rings with transfers on FC (resp. semi-transfers on FC ).

2.3. Distributions.



EULER SYSTEMS ON DRINFELD MODULAR VARIETIES 9

2.3.1. We define two special abelian presheaves SB’ = SB/;, and SB* = SBZI on
FC?. For an object N in C%, let SB'(N) (resp. SB*,(N)) be the free abelian group
generated by the set I'(X, N) (resp. I'(X, N)\{0}). For a morphism N’ & N'S N
from N to N’ in C%, define a homomorphism SB’(N’) — SB'(N) (resp. SB*/(N’) —
SB*/(N)) by sending x € T'(X,N’) (resp. z € I'(X,N’) \ {0}) to the element
> p(y)=a i(%,). Finally, for an o/bject [1; N in 7€, put SB'([; N;) = [, SB'(V;)
(resp. SB™ (I[; N;) = I[;SB™ (IV;)). We denote the sheaf (resp. semi-sheaf) as-
sociated to the presheaf SB’, SB* by SB, SB* (resp. SBT, SB*T) respectively and
call them the Schwartz-Bruhat sheaf (of rank d), the punctured Schwartz-Bruhat
sheaf (of rank d) (resp. the Schwartz-Bruhat semi-sheaf (of rank d), the punctured
Schwartz-Bruhat semi-sheaf (of rank d)) respectively.

2.3.2. Under the equivalence described in Section A.1.9, the sheaf SB (resp. SB*)
corresponds to the smooth GLg(A x )-module S(AG?) of locally constant, compactly
supported Z-valued functions on A_??d (resp. the submodule of § (A?@d) of the func-
tions f with f(0) = 0). Similarly, the semi-sheaf SB' corresponds to the submodule
S (@?@d) of S(AS?) which consists of the functions whose support is contained in
oot

Definition 2.8. Let F be an abelian sheaf on FC¢. A distribution (resp. punctured
distribution) with values in F' is a homomorphism SB — F (resp. SB* — F')

of abelian sheaves on FC?. For an abelian semi-sheaf F, the notions of semi-
distribution and punctured semi-distribution are defined in a similar way.

2.4. Construction of Euler systems.

—~ t.d
2.4.1. Let G be a presheaf of rings with semi-transfers on ]-'CJr . Suppose for
1 =1,...,d the following data are given.

(1) An abelian semi-sheaf F; on .7-,'VCT7d.

(2) A homomorphism «; : F; — G of presheaves with semi-transfers.

(3) An object N; in C! and a generator b; € T'(X, N;) as Ox-module.

(4) A quotient Ox-module N/ of N,.
Let b} denote the image of b; in N/. We write N = @?21 Nj, N = P, Nj and
N!" = Ker(N; — N]).

We consider two settings which we call Situation I and Situation II. In Situation

I, we have a semi-distribution g; : SBY — F; with values in F} for each i. In Situation
IT, we assume N/ # 0 and we have a punctured semi-distribution g; : SB™* — F;
with values in F; for each i. We put

d
i) = [T prj (g (N5 b)) € G(N)

where pr; (j = 1,...,d) is the morphism N; = N; — N from N to N; given by
the inclusion of IN; into the j-th factor of N.

Theorem 2.9. Suppose that we are either in Situation I or in II.
Then the following statements hold.
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(1) If Supp (N;") C Supp (N;) for any 1 <i,j < d, then
(MNNY)«EN (b)) = FNY (b))

(2) Let p be a closed point of X. Suppose that Supp (N]') C {p} C Supp (IV;)
for every i. Let e denote the number of i’s with o ¢ Supp (N}). Then

€

(MNN BN, (b;) = Z(_l)rq;(r_l)/ZT[p@r]’rKN’,(b’j)v
r=0

where q,, is the cardinality of the residue field at p.

Remark 2.10. There is a variant of Theorem 2.9 where the roles of mn N/ and
r~,Nv are interchanged. The association N +— D(N) = Homg_ (N, AX/@X) gives
a covariant auto-equivalence of the category C¢. It is canonically extended to an
auto-equivalence I of the category FC?. A presheaf F' on FC? is called a dual
semi-sheaf if F'oD is a semi-sheaf. We define the dual version of the category .73de

and the notion of presheaves with dual semi-transfers. Let us change the notations
and the situation in Theorem 2.9 at the following four points:

e The presheaf G is a presheaf of rings with dual semi-transfers.
Fori=1,...,d, F; is a dual semi-sheaf on .7-?CT’d.

e For ¢ = 1,...,d, N/ is a submodule of N; and b, € N/ is an arbitrary
generator,

In Situation I (resp. II), SBT (resp. SB'*) is the dual semi-sheaf associated
to the presheaf SB’ (resp. SB*).

Then we have formulae describing the image of rn ;) under (rN,N)«, which are
proved in a manner similar to Theorem 2.9. This variant is not an immediate
consequence of Theorem 2.9, since we do not replace pr;’s by their duals in the
definition of rn (5,)- In [Ka], Kato states the norm relations concerning his system
on elliptic modular curves in the style of this variant. However, we will not pursue
this variant further since this has the disadvantage that extra parameters must
enter in order to describe the relations between b;’s and b}’s. Details are left to the
reader.

2.5. Proof of Theorem 2.9 (1). We set N” = ., N;'. By induction, we may
assume that lengthy N/ ®o, Ox,» > lengthy N/ ®o, Ox , for any x € X and
for any i, j.

The morphism mn n' : N — N’ is a Galois covering. Its Galois group is isomor-
phic to Home, (N, N") 2 Autn (IN) via the map which sends f € Homp,, (N, N")
to the Ox-automorphism n — n + f(n). By the assumption on the length of N/
and of N/'| the Galois group is also isomorphic to Home, (N, N"").

Given an object M in C?, by abuse of notation, we denote simply by M the
semi-sheaf (M/{idps})t. We define the objects and the morphisms of the following

~,T.d .. . . .
diagram in .FCT and show that it is commutative and that the middle square is
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cartesian:
TN,N;

N N;

SN

mN N’

<—2

N/H THN/

v

"N/, N/

Consider the subgroup H; = Homo, (B;,; N;,N”) C Hom(N’,N") for each
i=1,...,d. Let N; = (N/H/)', and 8; : N — N, be the Galois covering. Then
the canonical morphism

6 Xﬁd N—?NlXN/--'XN/Wd

is an isomorphism.

Let NZ denote the inverse image of N/ C N’ by the Ox-homomorphism N —
N’. Let H; be the group of the Ox-module automorphisms on NZ which induce
identities on both Ker(]\~/ — N/) and N/. Then the morphism mg. N, factors
through (N /H; )Jr as in the diagram above since the morphism of presheaves factors
as Hom zpa (— N — Hom zea(—, N;)/H; — Homypea(—, N;).

Let us construct the IIlOI‘phlSHl ~vi: N’ — N;/H;. Let X be an object of Fcl.
We define the map N'(X) =lim,,  Hom(X',N)— (N;/H;)t(X) as follows. Let
f € Homgea (X', N) for some Galois covering X’ — X. By Lemma A.3, there exist
an object M € FC? which is Galois over N/ (in particular Galois over X’), and
morphisms g and ~A which make the following diagram commutative:

M—-—=~ sy,

m~
ih \L leN{
f ’I"N/ N’

b >N/ —— N’

We see that the map Homyea(X',N') — Homyea(M,N;)/H; sending f to g is
well-defined, and that rnv 7 = €; 07

Consider the morphism NN, N — N;. Since the morphism of presheaves
factors as Hom zpa(—, N) — Hom ypa(—, N)/H! — Hom rca(—, N;), NN, factors
as in the diagram. o

Note that Home, (N’,N")/H! — Aut(N) which maps f to (n — n+ f(n)) is
an isomorphism onto H;. One can check that the middle square is cartesian.

By the definition of rn,(5,), we have

d
KNL(b;) = (B1 X - X Ba)” H v ) (g5 (NG)[bs])
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where pr; : N1 XN+ XN Ng — N denotes the j-th projection. Hence,
d
(MNND kN, ;) = (01 X -+ X 8q)s Hpvr}f(Tﬁj,Nﬂj)*(ajgj(Nj)[bj])
j=1

d
= H(W})*(%)*T}j,m (95 (N;)[b5])-
j=1

Let y be an element in F(Kfi), and 3’ be its image in N/. Suppose that N/ is
generated by ¢/. Let [y] € SB*T(N;) € SBY(N,), [y'] € SB*T(N/) c SBY(N/) be the
sections corresponding to ¥, y'. Then we have

()= Y bHal=my ().

z€Ker(N—N')

The first equality is because the group H; is isomorphic to Hom(N/, Ker(1\~fi — N))),
and the second equality follows from the definition of the Schwartz-Bruhat sheaf.
Since ¢’ is a fibration, it follows that ¢’ ([y]) = €*[¢']. Applying this, we then have

d .
(MmN )b, my) = Tljmn e v (@95 (N7)[B3])
= "{N/,(b;)~

(]

2.6. Proof of Theorem 2.9 (2). By (1), we may and will assume that X =
Spec (Ox,), e > 1, Ny = -+ = N, = N = k(p), N/ = 0for i = 1,... ¢,
N;=N/#0fori=e+1,...,d, and we are in Situation I.

2.6.1. We set N” = @:_, N; = x(p)®e. For a sub Ox-module M of N, let Hy,
denote the group of the automorphisms of N’ which stabilize M. For r =0, ... e,

we define two objects M., MT in }:VCT’d as follows. We set M = 692:1 N;. We define
M, to be (N/HM;/)T. The morphisms rN N/, mN,N ¢ N — N induce morphisms
M, — N’ which are denoted 77, N/, M, N Tespectively.

Let h € Hpr. We have two O x-automorphisms by : M) — M) and h®idn: -
N =N"@® N — N. We define ]_[V:NHM;, N — HV:NHM;, N, where v runs over
the Ox-homomorphisms from N to M/, to be the morphism which maps the a-th
component to the A[ys o a-th component via the morphism h @ idns. This gives
an action of Hysr on [],. v 1 N. We let M, = (L. 5— v N)/Haz)T be the
quotient by this action. ’ ’

The morphism [, y_, M N — N given by the identity map on every compo-

nent induces the morphism 7, : M\; — M, for each r = 0,...,e. The morphism
L. ~voa N =11, y_n N given by the identity map from the v-th component to

the component associated to the map N — M/ — N induces f, : M, — M, for
each r. Let f/ : M, — M, be the natural quotient map. Then the following is a

. . . =, Td
commutative diagram in FC  for each r:
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2.6.2. Foreachi=1,...,e,leta; : N > N®---dN = N” — N be the morphism
given by the inclusion into the é-th factor. The morphism o/ : N — [,y N —
M., where the first morphism is the identity map to the «;-th component and
the second map is the natural quotient map, factors as N — J\Z — M.. We let
M, = J\Z XM, " XM, Z\Afe be the e-fold fiber product of 7., and ¢ : N — M, be

the morphism (af,...,al).

2.6.3. For each r = 0,...,e, we let M, denote the e-fold fiber product ]\7[; X M,
- xXpp, My of M, over M,, and let f, = f x --- x f : M, — ML,.

Lemma 2.11. Let the notations be as above. The morphisms ¢ and fj for each
j=0,...,d are fibrations, and we have

€

degt =Y (=1)"qr" "1/ deg fo_,.

r=0
Proof of Lemma 2.11. We recall some notations in g¢-calculus. For non-negative

integers s,m < n, we let [s] = qqij__ll, [s]!=[s][s—1]---[1], and LZJ = [m]'[[:]im]'

We pull everything back by the natural quotient map N — M, = N/Aut(N").
Note that M, x»;, N & HAut(N,,)/HM;, N, and M, xp;, N =[],y N, hence
M, xp, N=T],  noe N Let Gr(N”,r) be the set of r-dimensional sub-
spaces of N”. Then the map which sends g € Aut(N") to g(M/) induces an
isomorphism Aut(N")/Hp» = Gr(N”,r). We may then express M, x s, N as

11 II ~

WeGr(N,r)vi...,ve:N—W

When r =e, M, xp, N=1] N~ N. The morphism f, x idn : M, X,

V1y..sVet
N — M, xp, N maps the component corresponding to (W;vq,...,v.) to the
component corresponding to (iw o vi,...,iw o v,) where iy : W — N” is the

canonical inclusion map. N N
With this explicit description of f; x idn for each j =0, ...,d, we see that f; for
each j is a fibration, by using Lemma 2.3. We also find that ¢ x idn is a fibration;
it implies that ¢ is a fibration.
Let v = (v1,...,ve) € mo(Me xp, N) and let V = Y7 Imw;. The degree

of ﬁ x idn on v € mo(M, x s, N) is then equal to the number of r-dimensional
n

subspaces of N’ containing V. Since | .| is the number of j-dimensional subspaces
J

in an n-dimensional k(p)-vector space, we have
deg(f, x idn) on v

€ — dim,{(p) \%4

r—dim, ) V

0, if dimg oy V > 7.

], if dimgy V <

Applying Gauss’ binomial formula [Ka-Ch, (5.5)], we have, on v,

(&

S (1) 2 deg(fy x idn) = {

r=0

0, ifV#N"
1, ifV=N"
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On the other hand, the degree of ¢ X idn on v is

0, ifV#N"

deg(s xidn) = { 1, ifV=N"

Hence

€

z:(—l)rqg”"_l)/2 deg(for x idy) = deg(e x idy).
r=0
Let 7 € mo(M.) = mo(Me xpr, N)/Aut(N") and v € mo(Me xp, N) be an

element representing 7. By Lemma 2.4, deg(fe » X 1dN)(v) = deg fe ~(7), and
deg(r x idy)(v) = deg¢(7). The assertion follows. O

2.6.4. We return to the proof of Theorem 2.9 (2). For j =1,...,e, the element

() €SB [T N)

v:N—N"’

defines an element in SBT(M ), which we denote by b . We put g; = a;9;(M.)(b;).
We also set

H TNY,N a]gj N;)([bj])-
j=e+1

Let rm, N7, M, N denote the morphisms a7, N7 © (e X -+ X 1), M, N/ © (e X
- X Ne) : M — M, — N’ respectively. We have

(MNN)«EN,(b;) = (mMe’N/)*L*L*((H ﬁr}fﬁj) ~ri§,le,N,/-@’)
j=1

where for j =1,... ¢, pr; : M, — Me is the j-th projection.
Applying Lemma 2.11, it is equal to

€

> =0 g2 mna ) (Femr)s Fo (T 9E5)) - g, o)

r=0 j=1
For each r =0,...,e and each ¢ = 1,...,d, consider the following diagram:
- p ey — N X XNy
M, <—— M, xp, - Xp, My —————> M,
ﬂl l: if,’.
—~ Ne X - XNe Mare N/
M, M. M. N’

p~!‘ i w

mME ,N/
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where pr; is the projection to the i-th factor, and 7, and f, are as in Section 2.6.1.
Since the diagram commutes, we have

(mna )« (o) S (T 55535 - e )

j=1

= (mar, ) ((F) 7 1] 92595) - v, o)
j=1

= (mar, N (D)« On - e ) [T 005 £7G5) - s, o)
j=1

= mar, ) () TLON A1) -7, o)

= (mag, ) (T 0) e £785) - s, 1),

Jj=1
Next we consider the diagram
M, N/

Me fr MT MNr M,r Or N/ @ [MT/‘II] - S N/

mN/QB[M;‘”] N/

"M, N’ J{ lTN’ea[M,:.”],N’

N’ N’

where M) = @;_, . N; and 6, : M, — N’ @ [M]"] is the unique morphism

satisfying mas, Nv = mnvg N © 6. By Lemma 2.12 (1) below, we have

€

(moag, ) (LT ) 5255) - 7t o)

j=1

= (mN’GB[ML”LN/)*((H a;g;(N" & [M;”])(rltl/@[M;”],N’ [01)) - (67) <73, v ).
j=1

Let G be the subgroup of Autep, (N) of elements g such that g|n = idne,
g(M]") = M/, and gmod M'|n+ = idn. Here, gmod M/’ is the map N/M/ —
N/M]/" induced by g : N — N, and we use the canonical isomorphism N’ & M/’ =
N/M]'. Let G’ be the subgroup of Autp, (IN) of elements ¢’ such that G'|n =
idn, g(N”) = N”, and g(M)) = M). Then G’ is a subgroup of G and G/G’
is isomorphic to Home, (N’, M/). Note that M = N/G', N’ ¢ [M]"] = N/G
and 0, : M/ — N’ @ [M/"] is the morphism induced from the canonical map of
presheaves Hom zpa(—, N)/G" — Homrea(—,N)/G.

For each i = e+ 1,...,d, let G; be the subgroup of G generated by G’ and
the representatives of the subgroup B, ; Homo (N}, M]") C Homo, (N', M}’) =
G/G'. We let M,; = (N/G;)" and let 8 : M, — M,.; be the canonical quotient
map. Then ﬁé+1 X oo X ﬁél M, — Mr,e+1 XN’@[MT’,”] XN’@[M,,’,”] Mr,d is an
isomorphism.

Note that the submodule N; — N is fixed under the action of G;, hence we have
a morphism M, ; = (N/G)t — N/ which we denote h;.
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We have a commutative diagram

B; € TN/ @M, N/
M, M,, N @ [Mr) EN
7"M,«.,N’l ihi TN',Nil
12 ! !
N *MN/,Nf N; N;.
T

By Lemma 2.12 (2) below, we have

(5r)*7"7\4T,N'/‘5/
= (eppq X o X e)w(Bogy X oo X ﬁ(lj)*ﬁwr,N/"El
d

= I (€)uhi(cigi(N])(b:))
i=e+1
d

= H TI*\I'EB[M;N],N/T;I,,N{ (algl (Nz,) (bl))
1=e+1
= TI*V/@ [M;”] N/ KII-

Hence the assertion follows. O

Lemma 2.12. Let the notations be as above.
(1) Forj=1,...,e, we have ()« f"(b;) = 5% ppaar.ne ([0]) in SBI(M,).
(2) For i = e+ 1,...,d, we have (€;).h:([b;]) = r;ﬁ@[M;//],N/Tl*\I’,N;([bi]) in
SBT(N' @ [M!")).

—~ t.d
Proof. (1) The following is a cartesian diagram in fCT

H N ——> N
a:N—M]!

We have
W) fi () = > lab)l = Y [a]
a:N—M/ zeM!
= ml*V,M;‘”EBN,([OD = h*(;;k',’&/@[]w;//LN/([O]).
Since h is a fibration, we have the assertion.

(2) Let H denote the group of the automorphisms g € Aut(N) which induce
identities on both EBJ»# N; and N/M/. Let 3,;,: N — M,; and ¢ : M,;, — N' &
[M!"] be the canonical quotient morphisms induced by the identity map N — N.
Then the following diagram is cartesian:

N—)N/H

W e

My —>N' & [M]"],
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Hence
rale) (€)hi () =D gt [bi]
geH
= M N/My TN/ MY N, (b))
= 6:,1'(62)*7"1*\1/@[M;/'LN/TT\I’,M ([b:])-
Since € o §,.; is a fibration, we have the assertion. O

3. EULER SYSTEMS IN THE K-THEORY OF DRINFELD MODULAR VARIETIES

The main purpose of this section is to prove Theorem 3.7. In Section 3.1, we
recall some facts on Drinfeld modular varieties. The function field analogue of Siegel
units and theta functions are defined in Sections 3.2 and 3.3. In the case of elliptic
modular curves, the algebraic construction of theta functions is due to Kato ([Kal).
The construction of special elements follows the idea of Beilinson. The main result
is a rather direct consequence of the result in Section 2.

3.1. Drinfeld modular varieties.

3.1.1. Notations. Let C' be a smooth projective geometrically irreducible curve
over the finite field I, of ¢ elements. Let F' denote the function field of C. Fix a
closed point oo of C. Let oo, Foos | |oo @ Foo — ¢% U {0} denote the cardinality
of the residue field of C' at oo, the completion of F' at oo, and absolute value at
oo, respectively. Let A = I'(C'\ {00}, O¢) be the coordinate ring of the affine
F,-scheme.

3.1.2. We fix an integer d > 1.

Definition 3.1 ([Dr]). Let S be an A-scheme. A Drinfeld module of rank d over
S is an A-module scheme E over S satisfying the following conditions:

(1) Zariski locally on S, E is isomorphic to G, as a commutative group scheme.

(2) If we denote the A-action on E by ¢ : A — Endg_group(E), then, for every
a € A\{0}, the a-action ¢(a) : E — E on F is finite, locally free of constant
degree |a|oo.

(3) The A-action on Lie E induced by ¢ coincide with the A-action on Lie E
which comes from the structure homomorphism A — I'(S, Og).

3.1.3. Let N be a torsion A-module. Let U = Uy := Spec A \ Supp N be the
spectrum of the localization of A by the elements in A which is invertible on Spec A\
Supp N. Let S be a U-scheme, and (E, ¢) be a Drinfeld module of rank d over S.

Definition 3.2. A level N-structure on (FE,p) is a monomorphism ¢ : Ng — E
from the constant group scheme Ng to E in the category of A-modules schemes
over S.

3.1.4. Let us consider the sheaf Mﬁl\, of groupoids which associates, to a U-scheme
S, the groupoid of triples (E, ¢, 1) where (E, ) is a Drinfeld module over S and
¥ is a level N-structure. If N # 0 (resp. if N is of finite length), the functor
M is representable by an affine U-scheme (resp. by a smooth Deligne-Mumford
U-stack). The proof of Proposition 5.3 [Dr] (see also Theorem 1.4.1 [Lal), where
the case N = (I71/A)®4 is considered, may be applied to our case.
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3.1.5. Let S be a finite set of closed points of C', and

X= lim (SpecA)\S’
S’CSpec A\S

be the localization of Spec A at S, where in the projective limit S’ runs over the
finite sets of closed points of Spec A \ S. We consider the categories C9, Fct and

—~d
FC introduced in Section 2.
To each object N = Hiewo(N) N; in FC?, we associate the moduli stack M% x 7,

(C'\ S). Thus we obtain a covariant functor M%* from FC? to the category of
Deligne-Mumford stacks over A. For each morphism f : M — N in FC?, the
morphism M%%(f) : M5 (M) — M%5(N) is a finite étale morphism.

Lemma 3.3. The functor M®® preserves fiber products. In particular, if M — N
is a Galois covering in FC* with Galois group G, then M*5(M)/G — M%S(N)
is an isomorphism.

Proof. For a Drinfeld module E over T' and an ideal I of A, let E[I] C E denote
the subgroup scheme of I-division points of E. We say that an isogeny v : £ — E’
of Drinfeld modules of rank d over T is an S-isogeny if the kernel of u is contained
in E[I] for some ideal I C A with Supp (A/I) C S. We denote by (DrMody/ ~g)
the category obtained from the category of Drinfeld modules over T by inverting S-
isogenies. We define the S-Tate module Ts(E) of E to be Ts(E) = lim  E[I], which
we understand as an object in the 2-projective limit Et(T, Ax) = 2-lim Et(T, A/T)
of the category of étale A/I-sheaves over T, where I runs over the ideals of A with
Supp (A/1) C S. We denote by Et(T, Ax) ® 4 F the F-linearization of the category
Et(T,Ax). For an object F in Et(T, Ax), we denote by F ® 4 F the corresponding
object in Et(T,Ax)®4 F. Then the association F +— Ts(E)®4 F defines a functor
from the category (DrModr/ ~g) to the category Et(T, Ax) ®4 F. We denote this
functor by V.

Let E be an object in (DrModz/ ~g). For an object M =[] oy M in Fce,
we define an étale sheaf h(Vs(E), M) of sets on T in the following way. For an étale
T-scheme T and for i € mo(M), let W' (Vs(E), M;)(T') be the set of equivalence
classes of triples (F,,p), where F = (Fy); is an object in Et(7”, Ax) such that for
every I, the stalk of F; at every geometric point is a free A/I-module of rank d,
1 FRaF =2 Vg(ExrT')®4F is an isomorphism in the category Et(T", Ax)®4 F,
and p: F — (M; ®4 A/I)r is an epimorphism in the category Et(7”, Ax) from F
to the system of constant sheaves (M; ®4 A/I);. Then we define h(Vs(E), M)
to be the sheaf associated to the presheaf T — [], h'(Vs(E), M;)(T"). At every
geometric point x of T, the stalk of h(Vs(E), M) is isomorphic to the set w(M).
This implies that the functor M +— h(Vs(E), M) from FC? to the category of étale
sheaves on T preserves fiber products.

The stack M9, is canonically identified with the functor which associates, to a
Un-scheme T, the groupoid of pairs (E,a) where E is an object in (DrModr/ ~g)
and « is an element in h(Vs(E), M)(T). Therefore, if N; — N3 « Ns is a diagram
in FC? such that the fiber product Nj X, N2 exists, then the canonical functor
M(Ii\ths N, (T) — MG, X Mg, M, (T) gives an equivalence of groupoids. Hence

PET

the assertion follows. O
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Let us extend the functor M%° to a functor from ]-?Cd, which we also denote
by M%5. For an object N/H in .%VCd as in Lemma A.5, we put M%S(N/H) =
MES(NY/H. Let f: Ni/H; — No/Hs be a morphism in ]/-"de where, for i = 1,2,
N,;/H; is an object as in Lemma A.5. We take an object M in FC¢ and two
morphisms M — Ny, M — N in FC% such that the composition M — Ny TN 0
is a Galois covering and the diagram

Ny M Ny

i |

Nl/Hl %NQ/HQ

is commutative. Then by Lemma 3.3, the composition M%5 (M) — M®%5(Ny) —
M®S(Ny/Hy) canonically descends to a morphism M®S(f) : M®S(N,/H;) —
Md’S(NQ/HQ).

Let N be an object in ﬁd and let H be a finite group which acts freely on
N (see Section 2.1.5 for the definition). Then, by the definition of M%9 we have
MES(N/H) =2 M5 (N)/H.

Lemma 3.4. The extended functor M%S preserves fiber products.

_ — — —~d — . ~d
Proof. Let Ny — N3 < N3 be a diagram in 7C . Take an object M in FC and

two morphisms M — N, M — Ny such that the diagram

is commutative and that for ¢ = 1, 2, 3, the morphismﬁ — Nlis a Galois covering.
For i = 1, 2,3, we denote by H; the Galois group of M over N;. Then we have

Md,S(Nl XNS NQ)

MES((M x5, M)/(Hy x Hy))
M®S(M x M)/(Hy x Hy)

(e g7, M@ (B)/(H, % Hy)

(M®E5 (M) x pqas M (M) /(Hy x Ha)
Md’S(Nl) XM”’S(N;;) Md,S(Nz).

1R 1R 1R 1R

O

Let N, N’, N” be objects in C%. The morphism N = N < N’ is sent via
this functor to the morphism (E, ¢,9) — (E, ¢,9|n) where 9|y is the restriction
to the submodule N. The morphism N « N” = N’ is sent to the morphism
(E,¢,9) — (E",¢",4") where E" = E/¢(Ker(N” — N)), and ¢”, 1" are those
induced by the quotient map ([La, Lemma 1.4.1]). We use the notations such as
rys,n and my» n to denote the corresponding morphisms in the category of stacks
via this functor.

3.2. Theta functions.
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3.2.1. Let (E, ) be a Drinfeld module of rank d over a reduced A-scheme S. Let
m: E — S denote the structure morphism. We regard S as a closed subscheme of
E via the zero section S — FE.

Lemma 3.5. Let the notations be as above. There exists an element f € T'(E \

S,05) satisfying the following properties:
(1) Fora € A\{0}, let Na : OF gerp) — Omys denote the norm map with
respect to the finite flat morphism @(a) : E \ Kerp(a) — E\ S. Then

No(f) = f for any a € A\ {0}.
(2) The order ords(f) of zero of f at the closed subscheme S is equal to & —1.

Proof. Let us consider the exact sequence

0—0J ﬁW*OE\S&ZsHO
of Zariski-sheaves on S. The multiplicative monoid A\ {0} acts on Op\g by the
norm map N, for a € A\ {0}. The above exact sequence induces the structure of
A\ {0}-module on Zg and on OF , becomes an exact sequence of A\ {0}-modules,
and defines an element of the extension module Ext%[ A\(o}s (Zs, Og) in the abelian
category of Zariski sheaves of A\ {0}-modules on E. Since A\ {0} acts trivially
on Zs and via the character | |4 : A\ {0} — ¢%2>° on 0%, we have (|a|d —
1)Ext2[A\{O}]S(Z5,(’)§) = 0 for any |aloo € A\ {0}. Since the greatest common
divisor of |a|¢ — 1 as a runs through A \ {0} is ¢% — 1, the extension group
Exté[A\{O}]s(Zs,Og) is annihilated by ¢ — 1. In particular, the above exact
sequence splits after pulling back by ¢% —1: Zg — Zg. Now let f be the image of
1 € Zgs by the section which gives the splitting. ([

8.2.2. The choice of f is unique up to Homgz a\ (0y]5(Zs, OF) = pige _1(S). Hence

fqgc_1 does not depend on the choice of f. We denote it by 05,5 € T'(E\ S,Op)
and call it the theta function of (E,p).

Zariski locally on S, the function 6,5 is explicitly calculated in the following
way: Take an S-local defining equation f of the divisor S < FE of the zero section.
Then for any a € A\ {0}, we have

ald — ald qiﬁl
9'(1;;[2%11 _ f/| oo
E/S Na(f")

The following properties are easily checked:

Proposition 3.6. (1) Let g : 8" — S be a morphism from another reduced
scheme S’ to S, gg : E xg S’ — S be the morphism induced by g. Then we
have g0r;s = Opx s/ -

(2) Let h : E — E' be an isogeny (that is, a morphism of A-module schemes
with finite kernel) from another Drinfeld module E' of rank d over S to E.
Then NheE/S = eE’/S'

([l

3.3. Siegel units. Let N be a torsion A-module, and let Uy := Spec A \ Supp N
be the spectrum of the localization of A by the elements in A which is invertible
on Spec A \ Supp N. We let E4 — M4, denote the universal Drinfeld module,
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and ¢ : Nyga — E; the universal level structure. For b € N \ {0}, we let
INy = Vp0pa jpe € O(M%,)* and call such elements Siegel units.

Let N be an A-module of finite length generated by at most d elements, and
N’ be a sub A-module of N. By Proposition 3.6(1), we have 73 rvgn/ b = N
for any b € N'\ {0} ¢ N\ {0}. Let vy : N — N” be a quotient A-module of N.
It follows from Proposition 3.6(1)(2) that, for any 0" € N\ {0}, my nngnr o =
[loen ()= IN.b-

3.4. Euler systems in K-theory.

3.4.1. Elements in K-theory. For i =1,...,d, let N; be a non-zero finite abelian
group which is generated by one element as an A-module. Let b; be an element of
N;\ {0}. Put N = @?:1 N;. Fori=1,...,d,let t; : N; — N be the canonical i-th
inclusion. Each induces f; : Mg — MY, Let w3 4,y = fignio @ @ f19Nuba €
O(Mg)®?. We consider &g (;, ) also as an element in K4(Mn) via the symbol map
O(ML)*®4 — Ky(ME). Here K (M) is the Quillen K-group of the scheme M.

3.4.2. Main theorem.

Theorem 3.7. Let N/ be a quotient Oc-module of N; fori = 1,...,d. Let b
denote the image of b; in N;. We write N' = €D; N} and N}’ = Ker(N; — N;).
Let
m: MG — M, XUy UN
be the morphism induced by mn N : /\/ldN — M. Since m is finite étale, we can
consider the transfer map m, : Kq(M%) — Kq(M% xu,, Un) between K -groups.
Let x’ﬁ,?(b;) denote the image of /ﬁg,’(blj) in Kq(M%, xuy, Un). Then the following
statements hold.
(1) If Supp N;" C Supp Nj for any 1 < i,j < d, then

K
MARR () = KN 05
(2) Let p be a closed point of C. Suppose that Supp N;' C {9} C Supp N; for
every i. Let e denote the number of i’s with o & Supp N!. Then
- T . r{r— K
MR o) = (-1 ) P Tgen N ).
r=0
Proof. We set S = SuppN. We consider the functor M%* introduced in Sec-
tion 3.1.5. Let G be a presheaf of rings on FC? defined by setting G(N) =

D,>o K;j(M%3(N)) for an object N in f&d. Here K;(M®%5(N)) denotes the
j-th algebraic K-group of the Deligne-Mumford stack M®%*(N) defined in [Gi2].
Let N — N be a morphism in ]?Cd. Since the morphism M®%%(N) — Md’S(N/)
of Deligne-Mumford stacks is finite flat, we have a transfer map K;(M®S (WI)) —
K;(M%5(N)) between K-groups. The projection formula holds for this transfer
map. It follows formally from the definition of the product of the K-groups in [Wa,
§9]. Hence G is equipped with a structure of a presheaf of rings with transfers.
Let H be a sheaf on FC? defined by H(N) = O(M% ©4 Un)* for an object N

in C?. We define a morphism of presheaves g : SB* — H. Given a non-zero object
N in C% and an element b in N \ {0}, we define g(IN)(b) to be the image of gy in
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O(M%, ®4 Un)*. This induces a morphism of sheaves « : SB* — H since H is a
sheaf.

We have a morphism 3 : H — G of abelian presheaves with transfers given by
O(M% @4 F)* — K1 (M @4 F) — @?20 Kj(M$% @4 F), for each object N in
C?. Now the assertions follow immediately from Theorem 2.9. O

3.4.3. Given two non-zero ideals I C A, J C A, we set N7 ; = (A/)®1 g A/J
and put

Kf] = KNy;,.(1) € Kd(MdNI,J)'

The following corollary is a special case of the theorem.

Corollary 3.8. The system of elements (/{fJ)LJ indexed by two non-zero ideals
1, J is an Euler system. That is, the following statement holds.
Let I' C I,J" C J be ideals of A. We let p be a prime ideal dividing I' +J', and
assume that Supp (A/I") = Supp (4/1p), Supp (A/J") = Supp (A/Jp). Let
m: MdNI,

d
g7 - MNI,J XUNI,J UNI/J/

be the morphism induced by MmN, Ny MdNI/ — ./\/ldNu. Let n'f} denote the

!
, K d
image of k7 5 in Ka(Mg, , XUny , UNy )

We let
0 if plI, el
e )1 i oll, ot
@ d=1 if ptI, p|J,
d if 11, p1tJ.
Then

T, r(r— K
m*l-@ﬁf = Z(fl) qp( 1)/2T[p@r]n'17j.
r=0

O

3.4.4. Variant with characters. The elements K;(: 7, which we have constructed in
the previous section, are related to the special values of L-functions of automorphic
forms (Section 6). As a variant, we give here a similar system of elements in the
d-th K-group of Drinfeld modular varieties which is related to the L-functions with
twists by an idele class character.

Let I C A, J C A be two non-zero ideals of A. We let A denote the ring of
adeles of F'. Let x : F*\A* — C* be a character of the idele class group of F'
whose conductor cond™(x) divides I and whose oo-component x|, is trivial.

Let Fy ; be the field of constants of the F-scheme M% =~ x F. Then Fj ; is
the maximal abelian extension of F unramified outside I and completely split at
oo. Let Ay ; denote the normalization of A in Fy ;. Then there is a canonical
isomorphism

MNLJ ®a AI,J = H MNI,J'
UEG&I(FI,J/F)

We define an element /ifhhx € KiMn,, ®a Ary) @z Z[x] to be

K’?:J,X = (X_l(U)HEJ)G'GGal(FI,J/F)'
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4. KRONECKER LIMIT FORMULA

We prove a function field analogue of the Kronecker limit formula. The case
d = 1 is due to Gross and Rosen [Gr-Ro|. The second author follows the same
line to prove the general case [Ko]. Here we give a simpler, more conceptual proof.
First, we recall the analytic study at infinity of Drinfeld modular varieties. The
reader is referred to [De-Hu] for more details. We then give the analytic description
of theta functions and Siegel units which were defined in Section 3. In Section 4.2,
Eisenstein series with complex parameter s are defined. The limit as s tends to 0
is expressed in terms of those analytic functions (Proposition 4.4).

4.1. Generalities.

4.1.1. Notations. In this section, we use the notations C, F, 00, ¢s0, A, and A
introduced in Sections 3.1.1 and 3.4.4. We also let O, denote the ring of integers
in F, and A denote the profinite completion of A.

Let us consider the d-dimensional vector space V = F®? over F. We regard it as
the set of row vectors. We write Voo, = V@p Fop, Oy, = 021 C Vo, V= = VRFA,
and Oy = A% c V> Given a sub A-module A C V', we put A=A®@sAC V™.
We let V* denote the dual of V; the elements are regarded as column vectors in F'.
We define similarly VX, Oy_«, V**®°, and Oy+e.

4.1.2. Drinfeld symmetric space. We let X = Ve \Uy H where Ve =V*®rCx,
and H runs over the F-rational hyperplanes. Dividing out by the similitudes gives
the Drinfeld symmetric space: X = X JCX. The sets Z%, X are canonically regarded
as the sets of C-valued points of certain rigid analytic varieties over Fo, which,
by abuse of notation, are also denoted by the same symbols %, X.

4.1.3. Bruhat-Tits building. For 1 < i < d, we let 7, = {--- 2 L_y 2 Ly 2
Ly D ...|noLli = Lji;qq1 forallj € Z}, where Li(k € Z) are Oqo-lattices in
Vs and 7o, € F is a uniformizer. We also let 7; denote the quotient ’Z JFZ. In
particular, ’Z~6 is the set of Oy-lattices in V., which we also denote Lato_ (Vo). We
identify the set 7y with the coset GLg(Faso)/GL4(Oss) by associating to an element
g € GL4(Fy)/GL4(Os) the lattice Oy._g~!. Similarly, we identify the set 'ZNQ,l
with the coset GL4(Fuo)/Z, where Z = {(a;;) € GLq(Ox) | aij mod moe = 0if i > j}
is the Iwahori subgroup, by associating to an element g € GL4(F)/Z the chain
of lattices (L;);cz characterized by L; = Oy_Il;g~! for i = 0,...,d. Here, for i =
0,...,d, we let II; denote the diagonal d x d matrix II; = diag(meo, - -, Moo, Ly .-, 1)
with 7T, appearing ¢ times and 1 appearing d — 4 times.

4.1.4. The order on lattices of rigid analytic functions. Let L be an Oy-lattice in
Vio. Take g € GLg(Fso) such that L = Oy_g~!. We let U, = {r € X|vg 't €
Og_ for allv € Oy, \7Ov, }. Let h be arigid analytic function on X. We define
ordy, by ordph = inf ey, |h(T)].

Given a lattice L € Ty and a row vector a € Vs, we let ordy (a) = sup{n € Zla €
7 L}, and |a|p, = 2@ Note that lajp = 1if and only if a € L \ moo L.
Proposition 4.1. Given a lattice L € Ty and a row vector a € Voo, let fa be the
rigid analytic function on X characterized by fa(T) = at for every column vector
7 € X. Then we have ordy fo = ordy (a).
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Proof. Translating by an element g € GL4(Fx), we may and will assume L = 024
The set Up,__ is equal to the set of column vectors 7 € O2? such that 7 modulo
the maximal ideal of O does not belong to a k(co)-rational hyperplane. Hence,
ifa=(a1,...,aq),a; € Fso(1 < i < d), then ordy fa = inf1<;<qorda;. The claim
follows. O

4.2. Theta functions and Siegel units. For an A-lattice A C V, and 7 € %, we
let Ar = {x7|x € A}. We define o(z) to be the rigid analytic function on z € C:
o(2) = z]Lea\ 0y (1—%). We note that o(z) defines a structure of a Drinfeld
module over Co on Cuo /A.

The theta function defined in Section 3.2.2 on C's, /A has the following descrip-
tion. For any a € A\ {0}, we have

41
b a, () ( L )w o, (2) =
Coo/Ar oo = _— = 2 p=
/ NG(UAT) HaEA/a OA- (E + %)

Given b € (V/A) \ {0}, we let gap = Oc/a,(bT). It is an invertible rigid
analytic function on X over F.

4.3. Eisenstein series.

4.3.1. We define C((¢°))-valued functions on the set 7, of lattices in Vao. (Here,
q° is regarded as a variable.) Given an A-lattice A C V and b € (V/A) \ {0}, we

let
Erp(L) = Z Ix|L.”.
x€V,xmodA=b

The sum is convergent in the (g-.°)-adic topology.
The following lemma is easily checked.

Lemma 4.2. Let A D A’ be two A-lattices in V', and b € (V/A)\ {0}. Then
(1) Exb = X brev/ar,brmodr=b LA/ b -
(2) If a € A\ {0}, then Eqp qb = Eaplal™".
(]

4.3.2. Let A*° denote the ring of finite adeles of F'. There are canonical isomor-
phisms GL4(A>)/GL4(A) = Lat 7(V>°) & Lat 4 (V), where g € GLg(A>)/GL4(A)
is sent to Oy g " in Lat 3(V>°), and to Oy=g>® "NV in Lat (V). Then, given
A € Lat4(V) and g € GLg(A™), the lattice Ag™®~! € Lat (V) is defined. An
element g € GL4(A>) induces an isomorphism V/A=V/(Ag>® ™). We denote by
bg>~! € V/(Ag™~") the image of b € V/A via this isomorphism.

4.3.3. Convention. Given an element g € GLg(A), we always denote by ¢, the
component at infinity, and g the finite part. Given a function f on GL4(A), we

write f(g) = f(go0, %) for g = (goc,9%) € GLa(A).
4.3.4. Given an A-lattice A C V and b € (V/A) \ {0}, we let
Eab(9o0s §°°) = Engoo—1 bg=—1(Ov. 95 ),

for (goo, g™°) € GL4(A).
We note that Ej p is a C((¢gs))-valued function

Eapb : GLg(F)\GL4(A)/GL4(Ox)Kap — C((g))
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on the double coset space GL4(F)\GLg(A)/GL4(Os)Ka b where
Kap = {9 € GLg(A®) | Ag® ' = Aandbg™ "' = b}
is a compact open subgroup of GLg(A>).
4.3.5. We let A C V be an A-lattice, b € (V/A)\ {0}, A=A ®4 A C V>, and
Va=VeprA=V,xV>®.
We define a C((g*))-valued function ¢pp on Vi. For x = (Xo0,x>) € Vi

where X, (resp. x*°) denotes the component at oo (resp. the finite part) of x. we
put

PAb(X) = Poo(Xoo)OR b (X™)
where ¢3°, is defined to be the characteristic function on b + A C V>, and
boo (%00) = IXocl5_-
Proposition 4.3. If g € GLq(A), then Exp(g) = > (cv Pab(X9).
Proof. This is immediate from the definition of GL4(A) and of ¢4 p. O

4.4. Limit formula. We give a short proof of th e function field analogue of the
Kronecker limit formula proved in [Gr-Ro] and [Ko].

Proposition 4.4. Let A C V be an A-lattice, b € (V/A)\ {0}, and (90,9>) €
GL4(A). Then

1- q2078 0o

Ordovoog;lgAg‘X’_Hbgoo_l = (1 - qgo) 73]}?‘1\,]3(900,9 )

1- oo s=0

Proof. Let L € Latp_ (Vo). Using Proposition 4.1, we have

ordzga b
(qgo - ]-)2 d
= W X ||a|® < ordg(b) + Z (ordr (A —b) —ordp (X))
AEAV{0}
b b
- Z ordy, (a+ ) + Z (ordL ()\— at ) —ordL(A)> ]
acA/a ¢ AeA\{0} a

for any a € A\ {0}. We note that the summands ordy (A — b) — ord(A) and
ord, (A — 2ER) — ord; (X) are zero for almost all A € A\ {0}.
By the definition of the Eisenstein series, the expression above is equal to

(¢ —-1)* 1 9 d
‘;{di—llogq 75 al"Exn(L) = Y Ea(a+b)/a(L)
> acl/a

From Lemma 4.2, we have
Z Ep a+b)/a(L) = Erjapra(L) = Epp(L)|al®.
aclA/a
Applying this, the expression above is equal to
d _ s
- | B e m)]
— A4 s=0

The proposition now follows from the definition of adelic Eisenstein series Ep p. U



26 SATOSHI KONDO AND SEIDAI YASUDA

5. ZETA INTEGRAL

We recall the definition of automorphic forms in Section 5.1. Godement and
Jacquet [Go-Ja] first defined the L-function of automorphic representations of GLg.
We define the L-function of automorphic cusp forms explicitly in terms of Hecke
operators. The compatibility of the two definitions is given in Appendices B and C.

We compute the pairing of a cusp form and a certain product of Eisenstein
series (Theorem 5.1). The integral is expressed as the product of L-function and a
simpler integral. The key idea is to use the norm property of the Euler system of
the product of Eisenstein series.

In this section, we use the notations C, F, 00, ¢s, A, and A introduced in
Sections 3.1.1 and 3.4.4, and V, Oy, | |o,._, and A> introduced in Sections 4.1.1
and 4.3.2.

5.1. Automorphic forms. In Sections 5 and 6, we use the term “automorphic
form” in a more brutal sense than usual. Let R be a commutative ring. An R-valued
automorphic form for the general linear group GL4 r over F' is just an R-valued
function on GL4(F)\GL4(A) which is invariant under right translation by an open
compact subgroup of GL4(A). We often omit the words “for GLg4 z”. An R-valued
automorphic form f is called a cusp form if there exists an open compact subset
K of GL4(A) such that the support of f is contained in Z(A)K where Z denotes
the center of GL4. The set of R-valued automorphic forms (resp. cusp forms) is an
R-algebra on which the group GL4(A) acts by right translation.

Let x be a continuous R-valued character (we endow R with the discrete topol-
ogy) of the group Z(F)\Z(A). We say that an R-valued automorphic form f for
GLg r has central character x if the subgroup Z(A) of GLg(A) acts on f via x.
We often identify Z with G,,, and regard x as a character of the idele class group
FX\A*.

For an R-valued character x o, of the co-component Z(Fy,) of Z(A), let Ar(Xo)
(resp. AR (X)) denote the R-algebra of R-valued automorphic forms (resp.
cusp forms) on which Z(Fw) acts via xoo. For two non-zero ideals I,J ofA,
let Ar(I,J, Xoo) (resp. AR (I, J, Xo0)) denote the K7°;-invariant part of Apg(xoo)
(resp. AR (X0)), where

-~

K2 = {(9i5) € GLa(A) | (9ij)1<j<a = (dij)1<jcamod ] for 1 <i<d—1
and mod J for i = d}.

5.2. L-functions.

5.2.1. Hecke operators. We write diag(aq,...,aq) for the diagonal (d x d)-matrix
whose diagonal entries are ai,...,aq. Let m, denote the element in A* whose
component at g is a uniformizer and whose components at other places are 1.

Let I, J C A be non-zero ideals. Let p be a prime ideal, and let e, be the integer
defined in Corollary 3.8. We define the Hecke operators 7}, , and the dual Hecke
operators Tj, , for each r =0,..., e,

If p 11, we define T}, , (resp. T}; ) to be the operator given by the double coset

K?f’Jdiag(wp, RN v/ 7 P 1)K?i,
(resp. K,diag(w, ', ... w1, 1K)

—1 .
where @, (resp. @, ") appears 7 times.
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If p|I, we define T}, o and T o to be the identity. If moreover p 1 J, we define
Tp,1 (resp. Tg’l) to be the operator given by the double coset

K diag(L, ..., 1,@,) K,
(resp. KEydiag(l, ..., 1, wgl)K?iz)-

5.2.2. Let f be a C-valued automorphic form. Suppose that f satisfies the following
conditions for some non-zero ideals I C A, J C A of A.
(1) The open compact subgroup K7°; of GL4(A>) acts trivially on f.
(2) Let p be a prime ideal of A not dividing I + J, and define the integer e, as
in Corollary 3.8. Then f is an eigenform with respect to the operator T, ,
for all r < e,

These conditions imply that f has a certain central character y with cond™(x)
dividing I N J. Here cond®(x) denotes the finite part of the conductor of x.

5.2.3. Let a, , denote the eigenvalue of the operator T}, , on f.
For a C-valued (quasi-)character x’ of F*\A* with cond®™(x’) prime to I, we
define the L-function LT/ (f,s,x’) of f twisted by X’ to be the infinite product

—1
o r(r=1)

r —r —s T 5""%
L (fsx)= T [Do(-1D"X(0) " aprae (o+57)

pf+J Lr=0

in C((g*)) where p runs through the prime ideals of A prime to I. The infinite
product L17(f,s,x’) is convergent for the (¢_*)-adic topology. The compatibility
of the above definition of L*/(f,s,x) with the usual definition of L-function is

explained in Proposition B.1 of Appendix B and Corollary C.7 of Appendix C.

5.3. Zeta Integral. We let 1, denote the row vector (0,...,0, i, 0,...,0) e V=
F® for each j = 1,...,d. Set Ry = C((¢*,...,q’®)). Given two non-zero ideals
I', J' of A and an element h = (hy,...,hq) € GLg(Fx) X -+ X GLg(Fs) (d times),
we consider the Rg4-valued automorphic form

d
gf/,J’,h = HE[(@EL*I@J/’].J_ (ghj)(Sj),
=1
where Epea-1g, 5, is as in Section 4.3.4.  Then &p yp is an element

in Ag, (I, J', | |;O(Sl+”'+sd)), where | |o : FX — R* denotes the norm at oo.

Let xoo be a continuous C-valued (quasi-)character of the multiplicative group
EFX. Let I, J be two non-zero ideals of A. We fix a non-unit as, € FY, oo & (9;00 of
F and take a continuous (quasi-)character x’ of F*\A* satisfying cond™ (x')[(IN
J) and Xoo(aoo) = X/(aoo)d‘

We fix a Haar measure dg, of GLa(Fy,) for each place p of I such that [[ dg,
defines a Haar measure of GLg(A) with vol(GLg(O¢)) = 1. Let us consider the
C-bilinear map

. Acusp —(s14++54) —ndte
(0 et AL T Xo) X ARy (1| 50 ) = Ralgoo
defined by

s1+ o tsg

i o) = / £1(9) fo(g)] det g 57 ¥/ (det ) dg,
0%, GLa(F)\GLa(4)
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where | | denotes the idelic norm.

Theorem 5.1. Let f be an element in ALY (1, J, Xoo). Suppose that, for every
prime ideal o of A prime to I + J, and for every integer r with 0 < r < e, (see
Section 5.2.1 for the definition of e,,), f is an eigenform with respect to the operator
T, . Then for any elementh = (hq,...,hq) € GLg(Fx)X---xGLg(Fx) (d times),
we have

s1+--+sq d—1

<f7 EI,J,h>X’ = LI’J(fv d - 9 7X,71)V01(K}>?J)Hoo,h(fv X,)v

where Loo w(f, X') is the integral

HOO,h(f’ X/)
a —s, o -1
:fazo\GLd(Foo) f(gooa1> Hj:l ‘ljgoohj|(’)voo|detgoo|00 X (dethO> ngO

5.3.1. Proof of Theorem 5.1: Step 1. Application of Euler systems. Set
R = C((¢%)). By considering the R-algebra Ag(] |5°) as a representation of
GL4(A>), we have (canonically up to canonical isomorphisms) a sheaf Ag(| |2)
of R-algebras on FC? for X = Spec A, using Lemma 2.2.

For two non-zero ideals I,J of A, the R-algebra Ag(I,J,| |°) is canonically
identified with the R-algebra of the sections Ag( Y(A/D®4=L @ A/J) of the
sheaf Ag(| |22).

Given an A-lattice A C V and b € (V/A) \ {0}, the function Ex 1, is an element
in Ar(] |5°). For each j with 1 < j < d, by assigning h;Es 5 to the characteristic

|15
o0

function of b+ A, we obtain a punctured distribution SB* — Ag(| |2*) with values

in Agr(| I5)-

Proposition 5.2. The system of automorphic forms (Er yn)r,; indexed by two
non-zero ideals is an FEuler system. That is, the following statement holds.

Let I' C I,J C J be ideals of A. We let p be a prime ideal dividing I' +J', and
assume that Supp (A/I") = Supp (A/Ip), Supp (A/J") = Supp (A/Jp). Let e, be
as in Corollary 3.8. Then

o

. _
TrI,ZJJ Erym = Z(—l)TQQ(T 1)/2T;,7~81,J,h~
r=0

Here T3, is the dual Hecke operator defined in Section 5.2.1, and
’I&ri:,‘]/ s Ap, (I, 0| [y o Ag (1,0, ] |55 s the trace map.

Proof. We apply Theorem 2.9 to the punctured distribution SB* — Ag(] |27°)
defined above. The assertion follows by noting that Tj,e- corresponds to the dual
Hecke operator T . for each r. O

For any non-zero ideal I’ of A with I’ C TN J, we consider the element
1 n = TY?Z;I (€11 n)
in Ap, (I, J,] |57 79)). By Proposition 5.2, we have

51,.],]/7h = H <Z(_1)rq;(r1)/2Tg,T> €I,J7h,

oI, ptI+J \r=0
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where e, is as in Corollary 3.8 with J’ = I’. Thus

Cp
r(r=1) _r(sit+--+sq)
(F€armye=C JI O_-1X(me)ge !

o', ptI+J =0

Tp,r)fa 51,J,h>x’

and hence

e -1
© r(r=1) _r(si+-+sg)

(f€run)x = H Z(*l)rxl(%)r%,r% ? ¢ (fs €101 m)y -
plI’, ptI+J Lr=0
Next we consider the limit of & jpn with respect to I’. We note that for
all I' ¢ I NJ, the function & j v n is invariant under the action of Ko x K7,
where K, = ﬂle thLd(OFM)hj_l. It is easily checked that for any g € GL4(A),
the value &1 51 n(g) € Rq converges (and hence uniformly converges on the coset
(Koo % KCI),CJ)) to

d
&1,71imn(9) = > 1T X gochylor

XEGLq(F),Xg= €Ky, j=1

with respect to the (¢3°!,...,q°?)-adic topology. Since f is a cusp form, the
support of the function f(g)x’(det g)~! on a% \GL4(A) is compact. Hence

S1+--+sqg d-—1

(f.€rum)y = L"(f, ] - XTI EL gt ) -

5.3.2. Proof of Theorem 5.1: Step 2. Unfolding the integral. Now to prove
the theorem, it suffices to prove the following proposition.

Proposition 5.3. Let the notations be as above. We have
<fa 5I,J,lim,h>x’ - VOI(K?,OJ)]IOO,h(fa X/)

Proof. Given two non-zero ideals I, J of A, we define a function (;NSL 7h on GLg4(A)
as follows. For g = (go0, 9°°) € GL4(A), we let

gl,J,h(g) = 5??J(goo)$oo,h(goo)7

where Goon(goo) = H?Zl 11;900h5]0,” » and (E?o, is the characteristic function of
K7°; We have

Er,7limh = Z 5I,J,h(W9)-

vE€GL4(F)
Hence (f, &1, 70im,n)y is equal to
- s
/ 19) Y Granlrg)det g Ty (det )1 dg
% GL4(F)\GLg(A) S eGTa(F)

s1t--+sq

- / F(@)3r.am(9)| det g X574/ (det g) 1 dg
aZ \GLa(A)

s1+-tsg

vol(K32,) o )f(gw71)($oo,h(goo)|det900|00 T X (det goo) T dgo
% \GLy(Fao

vol(K77 /) oo (£, X')-
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6. REGULATORS AND SPECIAL VALUES OF L-FUNCTIONS

6.1. Regulator. We will construct, in the spirit of [Con] and of [Sr], regulator
maps from the d-th K-group of Drinfeld modular varieties for GLy to the groups
of Z-valued harmonic cochains. Because of a lack of a satisfactory theory of higher
Chow groups in the context of rigid geometry, we give a somewhat ad-hoc method
to construct regulator maps. The reader is referred to [Bo-Gu-Re] for the basics on
rigid analysis. Using the Kronecker limit formula, we express the image under the
regulator map of the special elements in K-groups as the limit of the determinant
of a matrix whose entries are Eisenstein series.

6.1.1. Drinfeld symmetric space X introduced in Section 4.1.2 is a rigid analytic
space over F.,. For each integer m > 0, let K,,,(X) (resp. G, (X)) denote the m-th
K-group (resp. the m-th G-group) constructed from the exact category of locally
free coherent Ox-modules (resp. coherent Ox-modules).

6.1.2. For each integer m with 1 < m < d, we will construct a GLg(F )-equivariant
homomorphism

regy - Km(:{) - Map(Tmflvz)‘
There is a canonical continuous map
X — 7|

from (the underlying topological space of) X to the geometric realization of the
Bruhat-Tits building 7. For each cell o € T, = [[y<;<;7i, let Uy = Spm (4,)
denote the open affinoid corresponding to the closure of o. The group PGLg(Fs)
acts both on X and on 7;. The action of g € PGL4(F) induces for each o € 7, a

canonical isomorphism U, — g, .
We have a canonical homomorphism

K (X) — lim K, (Spec Ay)
oeT,

of K-groups, where the inverse limit is taken with respect to the inclusions of the
closure of cells. The group GL4(Fs) canonically acts on K4(X). We have a similar
homomorphism also for G-groups.

For each cell o € 7., let U, = Spf A% (resp. V, = Spec A,) denote the formal
model (resp. the analytic reduction) of the affinoid il,. Since the valuation on F,
is discrete, A is an adic noetherian ring of finite Krull dimension. Furthermore,
it is known that A, = A2 ®op, k(o) and that V; is a normal crossing variety of
pure dimension d — 1 over k(00).

The canonical homomorphism K,,(A,) — G, (A,) from K-theory to G-theory
combined with the localization sequence with respect to Spec A, C Spec A2 D
Spec A, yields a canonical homomorphism K,,(A4,) — Gm_1(4,).

Let 7 be a face of 0. We know that U, — U, is an open immersion ([Ge, III,1]).
In particular, the morphism A2 — A¢ is flat, which implies that the diagram

Km(AT) E— Gm—l(zT)
(

Km Ao’) E— Gm—l(za)
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is commutative. Thus we obtain a GL4(Fx )-equivariant homomorphism
K, (%) — lim Gm-1(4,).
oeT,
For each o € H0<i< a1 Zi, let X, denote the intersection of all irreducible com-

ponents in Spec A,. Then X, is a smooth variety over x(oo) of dimension d — 1 —i.
When i = d—1, X, is isomorphic to Spec k(c0). When i = d — 2, X, is isomorphic
to the projective line over k(oco) minus all the k(oco)-rational points. Let o € 7;
with 4 < m — 1 and take for j = 0,...,7 a j-cell 0; € 7; such that o; = o and
o is a face of 041 for j = 0,...,% — 1. Then the connecting homomorphisms in
localization sequences yield a homomorphism

Gmfl(za) - Gmfl(Xoo) - Gm72(X01> — Gmflfi(XU>-

It is easily checked that this homomorphism depends only on ¢ and does not depend
on the choice of ¢;’s. Using this homomorphism, we obtain

Kd(%) — lln Gmflfi(Xg).
o€locicm-1Ti
Looking at the 7,,_1-component of this homomorphism, we obtain a GLg(Fy)-
equivariant map
€8x 1 ¢ K (%) = Map(7,,—1,7Z).
If m = d > 2, by looking also at the 7,,_s-component, we see that the image of
regy 4 lies in the space of Z-valued harmonic (d — 1)-cochains.

6.1.3. There exists a canonical symbol map
{0, J:0X)*®" - Kp(X).

Let regl ,, : O(X)*®™ — Hom(7,,_1,7Z) be the composition of the symbol map
with regy ,,,- If f1,..., fm € O(X)* and 0 = (L;)iez € ’jv'm,l, then

OTdLO f1 s OI'dL7n71f1
regl (f1 @ ® frn)((Li)icz) = det . :
ordr, fm -+ ordr, ,fm
Lemma 6.1. The homomorphism vegh ,(fi ® -+ ® fn) coincides

with regy ,, ({1, , fm}) in Hom(7,, 1, 7Z).

Proof. This follows from the computation of boundary maps in localization se-
quences described in [Gil, 7.21]. O

6.1.4. Let I C A, J C A be two non-zero ideals of A. We set N; ; = (A/I)®?" 1o
A/J. We construct a regulator map

reg : Kd(MdN,,J X Foo) — Mapgr, (r) (Ta—1 x GLa(A™) /K7, Z).
For (0,9%) € (Up<ica_1 Zi) X GLa(A>)/K$°;, there is a canonical morphism
from the affinoid 4, to the rigid analytic space over Fi, associated to /\/ldNI.J X Fo.
This induces a homomorphism Kd(MdNI_J X Foo) = K4(Ay) of algebraic K-groups.

Hence we obtain a homomorphism

Ka(M%, , X Fx) = Mapgr,, () (GLa(A%) /K7, Ka(X)) .
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Composing this homomorphism with reg;., we obtain the desired homomorphism
Ka(M%, , x Fs) = Mapgr,,(r) (Ta-1 x GLa(A®) /K7, Z) .

Here, since 741 is identified with the coset GL4(Fuo)/FXZ via the isomorphism
in Section 4.1.3, an element in the target Mapqy, (g (Tg—1 x GLa(A>) /KT, Z) is
regarded as a Z-valued function on GLg(A).

Proposition 6.2. Let I C A, J C A be two non-zero ideals of A. For g € GLg4(A),
let &y denote the d x d matriz with entries in C((q*)) whose (i, j)-component is
Erea-1g71,(9;-1)(s). Let x : F*\A* — C* be a (quasi-)character of the idele
class group of F whose conductor cond™(x) divides IJ and whose co-component
X|px is trivial. Then

. 1 =
reg(/ﬁfJ,X)(g) = x(det(g))(1 — ¢&)* llg(l) m det &7 5.

Proof. This follows from Proposition 4.4 and the isomorphism given in Section 4.1.3.
O

6.2. Special values of L-functions. We prove the second of our main theorems
(Theorem 6.3). This is implied by Lemma 6.4, which expresses the integral over
GL4(Fx) as the integral over the diagonal matrices.

6.2.1. Let I C A,J C A be two non-zero ideals of A. Let us consider the C-bilinear
map

<ﬂ >1AE:HSP(LJ71) XAC(17J71) —-C

(where 1 denotes the trivial character of the multiplicative group FJ) defined by

the integral
k) = [ f1(9) f2(g)dg
Z(Foo)GLa(F)\GLq(A)

similar to the one introduced in Section 5.3.

6.2.2. Given an element o in the d-th symmetric group Sy, we denote by w, =
(Wo,00, W) the matrix (0;(;))1<i,j<a € GL4(F') diagonally embedded in GL4(A).
For f € AZ"P(I,J,1), we define its period P(f) € C by

P = Y snio) | F(goes 1)dgoc,

oESy Z(Foo)\Wo,00 M (Foo)T
where M denotes the subgroup of diagonal matrices of GLg.

Theorem 6.3. Let x : F*\A* — C* be a (quasi-)character of the idele class group
of F such that cond™(x) divides I N.J and x|px is trivial. Let f € AZ™P(I,J,1)

be a cusp form satisfying the conditions (1), (2) in Section 5.2.2. Then

d

.9 —1 .
(oreg(sf ) = (1= g )P og o lim = L1 (f,5 — S )vol(KF,)P(f).



EULER SYSTEMS ON DRINFELD MODULAR VARIETIES 33

Proof. For goo € GLg(Fx), let H(gs) denote the d x d matrix with entries in

C((¢5)) whose (i, j)-component is H; j(goo) = ‘ligoon__ll |:98 . Combining Propo-
, e

sition 6.2 with Theorem 5.1, we have

1
(1 gL pvol(ize) 8

= lim ———L"(f,s — 454, x)
5—0 (1 — oo )d 2

X f(goo, 1) det H(goo)| det goo|*dgo -
Z(Foo)\GLd(Foo)

Hence the assertion follows from Lemma 6.4 below. O

Lemma 6.4. Let the notations be as above. We have

/ F(goes 1) et H(gc) | det go*dgec = (1= 4" PLf)
Z(Foo)\GLa(Foo)

Proof. Let us fix go, and consider the matrix H(go). Then for each i = 1,...,d,
there exists a unique n; = n;(90) € {1,...,d} such that H; ;(goo) = Hi1(goo) for
1 <j<mn;and H; ;(9oo) = ¢°Hi1(9oo) for n; +1 < j < d. If n;; = n,, for
some i; # i9, the i;-th row and is-th row of H(gs) are linearly dependent and
hence det H(g~) = 0. Suppose that ng,...,ng are distinct. This occurs exactly
when there exists o such that go € W 0o M (Foo)Z. Then we have ngl H;i1(900) =
| det(goo )| and hence

det H(goo) = sgn(o) det H(w; L goc) = sgn(o) [det(goe)|” " det D(s),
where D(s) is the d x d matrix

1 g ... >
I U5’
D(s) = '
I
1 1

Simple calculation shows that det D(s) = (1 — ¢.*)?~!, whence the claim follows.
O

7. DIAGONAL PERIODS OF CUSP FORMS ON GL; OVER FUNCTION FIELDS

In this section, we will do some computation concerning the period P(f) of a cusp
form f, which appeared in Theorem 6.3. When d = 3 and C' is rational, imposing
some conditions on the cusp form, we describe P(f) in terms of the L-function
associated to f.

7.1. Notations. In this section, we use the notations C, ¢, F, oo, Fy, goo, 4,
A E, O and A introduced in Section 3.1.1, 3.4.4, 4.1.1, and 4.3.2 We set
O =0, xACA. Let k(00) denote the residue field of On,. For each place v of F,
let F,, O, denote the completion of F' at v, the ring of integers of F,, respectively.
We denote by g, the cardinality of the residue field of O,.

We denote by Div(C') the group of divisors on C. For D = )" n,[v] € Div(C),
we use the following standard notations: mult,(D) = n, for each place v of F,
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deg D =3 nylk(v) : Fyl, Supp (D) = {v | n, # 0}. For D; = %" n;,[v] € Div(C),
i =1,2, we write D1 > Dy if ny, > na, for all v. For an open subscheme U C C,
we denote by Div(U) C Div(C) the subgroup of elements D with Supp (D) C U.
For D € Div(C) and a subset S C C, the divisor ) g mult,(D)[v] is denoted
by D|s. We denote by div : A* — Div(C) the group homomorphism which sends
a = (ay)y € A* to ), ordy(a,)[v] (we mainly use this notation for a € A*).

Let Pic(4) = FX\AX/FX0>* denote the ideal class group of A. It is a finite
abelian group. For m € A% let cl(m) denote the class of m in Pic(A). The canonical
homomorphism cl : A* — Pic(A) factors through both div : A* — Div(C) and the
projection A* — A**. We use the notation cl(D) for D € Div(C') and cl(m>) for
m>® € A>x, R

For D € Div(C'), let L(D) C A denote the O-lattice

L(D) = {(av) € A | ord,(ay) + mult,D > 0 for all v}.

We also denote by HY(L(D)) (resp. H'(L(D))) the kernel (resp. cokernel) of the
composition F — A — A/L(D). For a pair (D,D’) of two divisors on C' with
D' > 0, there exists a canonical long exact sequence

0 — HO(,C(D - D) — Ho(ﬁ(D)) — L(D)/L(D - D)
— H'(L(D — D)) — H'(L(D)) — 0.

For such a pair (D, D’), we denote by (£(D)/L(D — D'))° the subset
{(av)vesupp (1) € L(D)/L(D—-D") | ord,(a,)+mult, (D) = 0 for all v € Supp (D’)}

of L(D)/L(D — D') (when D’ = 0 we understand (£(D)/L(D — D'))? = 0). Then
fora € (L(D)/L(D—-D"))?, its inverse a~! € (L(—D)/L(—D—D"))? is well-defined.

(7.1)

7.2. Diagonal periods.

7.2.1. We fix a positive integer d > 2 and consider the group scheme G = GL,; over
C. Let G’ denote the group scheme G’ = GLg4_1 over C, considered as a subgroup

of G via the embedding
g 0
g (0 1) |

Let M’ C G’ denote the subgroup of diagonal matrices, and let W’ = Ng/(M') be
the normalizer of M "in G'. If W’ C G’ denotes the subgroup of the permutation
matrices, then W' is equal to the semi-direct product W/ = W' x M’. For an
element o in the (d — 1)-st symmetric group Sg_1, let w, = (0,(;);) € W'(C)
denote the permutation matrix corresponding to o.

7.2.2. We define Ws o : /V[v/’(Foo) — C((g7))* to be the unique continuous char-
acter whose restriction to M'(F) is equal to |det( )|5, and whose restriction to
W'(Fy) =2 S4_1 is equal to the signature character.

For each place v of F', we fix a unique Haar measure dm,, of M'(F,,) satisfying
vol(M'(0,)) = 1. They induce a Haar measure on M’(A>), W' (Fy.) and W' (Fa) x
M’ (A>).

Definition 7.1. For a cusp form f : G(F)\G(A) — C, we put

Poo(f.s) = /~ F(Go0) T e (90 ) g

W/ (Foo)
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Since the restriction of f to G'(F ) has compact support, P (f,s) is an element
in C((g50"))-

In the rest of this section, we concentrate on computing Po. (f, s). In the course of
computation, we use the following adelic version of Py (f,s). Let 02 : M'(A>) —
(C[Pic(A)®?=1]((g~*)))* denote the continuous group homomorphism which sends
m>® = diag(m$°,...,m3>,) € M'(A®) to |det(m®™)|*(cl(m1),...,cl(mg_1)) €
C[Pic(A)®4~1)((g™*))%. Let &y : W'(Fao) x M'(A%) — (C[Pic(A)®~Y((g7*)))*
denote the continuous group homomorphism which sends (goo, m™) € W'(Fs) X
M'(A) 10 Ws,00 (oo JWS° (M)

Definition 7.2. For a cusp form f : G(F)\G(A) — C, we define P(f,s) €
C[Pic(A4)®9=1]((¢~*)) to be the integral

P(f,s) = f(g)ws(g)dg.

/ (E)\(W' (Foo) x M/ (A%))

Let evg : C[Pic(A)®?1]((¢™*)) to C((¢~*)) denote the C((g—*))-linear map
which associates the coefficient of 0 € Pic(4)®?. When f is M'(A)-invariant, we
have an equality P (f,s) = ¢ tevo(P(f,s)) in C((¢~*)).

7.3. Let the notations be as before. In this section, we consider the following
conditions.

Conditions 7.3. (1) The G(A)-module generated by f is an irreducible cus-
pidal automorphic representation 7 = @), 7, of G(A).
(2) f is factorizable, i.e. f = Q). f, for some f, € T,.
(3) 7o is isomorphic to the Steinberg representation of G(Fu) with trivial
central character, and f,, € 7y, is an Iwahori-spherical vector.
(4) There exists a place o # oo satisfying the following properties.
e For v # 0,00, f, € T, is a new vector (“vector essentielle”) in the
sense of [Ja-Pi-Sh] (in particular f, is G'(O,)-invariant).
e For v = o, 7, is isomorphic to an unramified twist of the Steinberg
representation of G(F},), and f, € 7, is an Iwahori-spherical vector.
(5) d =3 and the class of o in Pic(A) is trivial.
(6) C = P]%q, and oo, o are the usual ones.

From now on we assume that Conditions 7.3 (1)-(3) are satisfied.

Remark 7.4. When d = 2, by the classical theory of Jacquet-Langlands, the inte-
gral P(f,s) is related to the L-function L(m, s, x) of 7 with twists by an unramified
character y of Ap whose co-component is trivial. If d > 3 and if f, is a new vector
for all v # oo, then P(f,s) vanishes for a trivial reason. This is a basic reason why
we introduce another place o in the condition (4) above.

Remark 7.5. Let f be a cusp form satisfying the conditions (1)-(4) in Condi-
tions 7.3. Let us describe the relation between the period in Section 6.2 and
P (f,s). Let us take a uniformizer w, of F,. Define the cusp form f’ by f'(g) =
f(g-diag(1,...,1,w@,)) where diag(1,...,1,2,) is the diagonal d x d matrix with
the diagonal entries 1,...,1,w,. Let J denote the the prime-to-oc part of the con-
ductor of m. We consider J as an ideal of A and write J as the product J = J,J*°
of the o-part and the prime-to-o part. Then f is an element in A (J,, J°°,1).
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Fori=0,...,d—1, let h; € G(Fx) be as in Appendix C.3 (for K = F,). Then
we have
d—

=

P(f) = son —1)id-1) ohi)d
() ;g COWC A op Jmughi)im

by Lemma C.6.

Let M C G denote the subgroup of diagonal matrices, B C G (resp. B’ C G')
denote the subgroup of upper triangular matrices, and N C B (resp. N’ C B’)
denote its unipotent radical. We fix a non-trivial additive character ¢ : F\A — C.
For each finite place v of F', let 1, denote the v-component of ¢ and ord, denote
its conductor. We also set ordy) = 3 ord,[v] € Div(C). Let ¢y : N(A) — C*
denote the character which sends n = (n;;) € N(A) to 1/)(2?;11 nii+1). The v-
component of ¢ is denoted by ¥y . Let Wh =[], Wh, : G(A) — C denote the
Whittaker function associated to f and vy, where, for each v, Wh,, is the Whittaker
function associated to f, and v¢,. We put Wh™ = Hwéoo Wh, : A — C. We

have a Fourier expansion

flo)= >, Whiyg),

YEN'(FO\G'(F)

where in the sum in the right hand side, Wh(~vg) = 0 except for finitely many ~ on
any compact subset of G(A).

Theorem 7.6. Suppose that Conditions 7.3 (1)-(6) are satisfied. Let p, € C*
denote the unique complex number such that w, is isomorphic to the twist of the
Steinberg representation of G(F,) by the unramified character of F)* which sends
a uniformizer in F, to p,. For each place v of F, take an element a, € F, with
ord,(a,) = —ord, and put C, = Wh,(diag(a2, a,,1)). It is non-zero and does not
depend on the choice of a,. Finally we put C(f) =], Cy. Then we have

Poo(f,s) = (1+a)g" " *ug ' C(f)L(m, 5)L(m, s +1).

Corollary 7.7. Let the notations be as in Theorem 7.6 and in Remark 7.5 above.
We have

P(f") =31+ a)q"ng " C(f)L(f,0)L(f. 1).
Let x : FX\A* — C* be a character of the idele class group of F such that
cond™ (x) divides J and x|px is trivial. Then we have

(f' 1eg(K] joeon)) = 31+ a)g" (1 — % )*Vol(KF o)
xpg C(f)L(m, =1, x)L(f, 0)L(f,1).

Proof. The first equation is an immediate consequence of Theorem 6.3 and the
formula in Remark 7.5. The second equation follows from the first one combined
with Theorem 6.3, Proposition B.1 of Appendix B, and Corollary C.7 of Appendix
C. O

7.4. Strategy of proof of Theorem 7.6. Our proof of Theorem 7.6 consists of
three steps. The first (resp. second) step is Proposition 7.8 (resp. Proposition 7.9),
which is proved in Section 7.5 (resp. Section 7.8). The final step is given in Sec-
tion 7.9.
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7.4.1. Let B~ C G’ denote the Borel subgroup of lower triangular matrices, and
N'~ C B’ denote its unipotent radical. Let Z' C G'(F4) be the Iwahori subgroup,
that is, the subgroup of G'(O) of elements whose image in G’ (k(c0)) is an upper
triangle matrix. For an invertible matrix g € G’(F) whose diagonal entries are
all 1, let IW(g) C M'(F ) denote the open subset defined by

IW(g) = {m e M'(Fy) | m ‘gm e T'}.

Given an element b € B'~(F,), we write it in the form b = mn with m € M'(F),
n € N'~(Fy), and then define an element Dy, , in C((gs°)) to be

Dy o =/ Wheo (mwem”)| det(m”)|5,dm’.
IW(w;lnwg)
When we write b in the form b = n'm with m € M'(F), n’ € N'~(F), we have
Dy,» = |det(m)|;os/ Whoo (wem')| det(m”)|5.dm’ = | det(m)| Dy o
IW(w;ln’wc,)

Proposition 7.8. Suppose that Conditions 7.3 (1)-(3) are satisfied.
(1) We have

Po(f,s) = Z Z sgn(o)Dy,» Z sgn(o’)Wh™ (bwg)

beB’'~(F) \0€Sa_1 0'€Sa—1

(2) We have

P(f,s)= Z Z Sgn<U)Dn,o Z Sgn(al)lrifo’ )

neN’'—(F) \0€Sa_1 o'€Sa—1

where, for o' € Sq_1, I, is the integral

n,o

Ir., = / Wh (nw,m>)w® (m>)dm>.
’ M (A%)

7.4.2. In this paragraph we assume that Conditions 7.3 (1)-(5) are satisfied. For
each place v of F, the value Wh,(m) of Wh, at m = diag(my, ms) € M'(F,) de-
pends only on (ord,(mi),ord,(mz)) € Z%2 We denote the value
by Wh, (ord, (1m1), ord, (m2)). We define a function Wh' " : Div(C'\ {o0, 0})®2 —
C by Wh'™"’(D1, D2) = [T, 00,0 Whe (mult, (Dy) — 2ord, ), mult, (D) — ord,).

Proposition 7.9. Suppose that Conditions 7.3 (1)-(5) are satisfied. Let Ay, denote
the set of pairs (D1, D3) € Div(C'\ {00, 0})®? satisfying D1 > D3 > 0 and cl(D; +
D) = 3cl(ord ). For (D1, D2) € Ay, let ¥p, p, denote the set of pairs (D, m) €
Div(C'\ {00, 0}) x F* satisfying the following conditions.

D > 0.

cl(D + Dile\supp (p) + Dalsupp p) = cl(20rd ¢ — (ord ¥)[supp (D) )-

Dy — Doy + diV(m)|c\{0070} > ord "/}|C\{oo,o}-

D = (Dl — D2 + le(m) — 0rd1/})|5upp (D)-

For each (D1, D3) € Ay, define ay(D1, D3) € C to be

1
aw(Dl, Dg) = a(o)(D1,D2) + iaZ(Dh DQ),
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where

o (Dy, Dy) = { 1, if cl(D1) =cl(2ordv) and cl(D2) = cl(ord ),

0, otherwise
and
DL = Y A==t [ ().
P ’ 0o m o m v m
(Dvm)GEDl,DQ vESupp (D)

Then Px(f,s) is equal to
qd71+3 deg(ordw)sém(s)ao(s) Z ay (D17 D2)q7 deg(D1+D2).sW/oo,o(Dl’ DQ),

(D1,D2)EAy
where .
~ Cooq +s
COO(S) = —1-s = —2—s
(1—g<x ") (1 =g ™)
and
=~ Cotty 'gp**

Co(s) = — -
(1 _Moqol )(1 _/J'Oq02 )

7.5. Proof of Proposition 7.8. Before proving Proposition 7.8, we need some
preparations. Iwahori factorization G'(Feo) = [[, g, , N'(Foo)woe M’ (Foo)Z" ([Iw],
[Br-Ti]) yields a map 8 : N'(Fs)\G'(Fs) — Sq—1 of sets.

Lemma 7.10. Foro € Sy_1, the set woM'(Fso)I' N B'~ (Foo)w, forms a complete
system of representatives of 371 () = N'(Fuo)\(N'(Foo )wo M’ (Foo)T").

Proof. We will prove that the composition
wo M'(Fx)T' N B (Fao)wy < N(Foo)we M'(Foo)T' — B71(0)

is bijective. The injectivity follows from B'~(Fw) N N'(Fs) = {1}. For the sur-
jectivity, it suffices to prove that any element in N'(Oux)\(N'(Ooo)wsZ’) is rep-
resented by an element in w,Z' N B'~(Ox)w,. By Bruhat decomposition for
G'(k(00)), any element in N'(Ou)\(N' (O )wsZ’) is represented by an element
in weZ' N7~ (O )wy, where T/~ C G'(Os) denotes the subgroup of elements
whose images in G'(k(00)) lie in N~ (k(c0)). It is easily checked that 7'~ =
N'(0x)V) - B'=(04), where N'(Os)) € N'(O) denotes the subgroup of el-
ements whose images in N'(k(00)) are equal to 1. Since w; ' N'(Ou) M w, C I’, we
have w,Z'NZ'~ (O )Wy = N'(Os)D. (weZ'NB'~ (O )wes). Hence the surjectivity
follows. ]

For 0 € Sy4_1, we say that an element g € N'(Fx)\G'(Fx) is o-generic if
there exists an element there exists a unique element g(®) € B'~(F,,) such that
g is represented by ¢(”w,. When g is o-generic, such ¢(?) is unique. If further
g€ N'(F)\G'(F) C N'(Fy)\G'(Fs), then we have ¢\®) € B'~(F).

Corollary 7.11. Suppose thato € Sq—1 and g € N'(Foo)\G'(Fx) satisfy B(g) = o.
Then g is o-generic and w; g w, € M'(F.0)T'.

Proof. We take an element k € w, M'(Fy)Z’ representing g. By Lemma 7.10, we
may assume that k € w, M'(Fs)Z' N B’ (Fs)ws. Hence g is o-generic and we
have k = g(w, and w; g w, = w; 'k € M'(Fy)T. O
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Proof of Proposition 7.8. First we prove (1). Foro € Sq_1 and g € N'(Foo)\G' (Foo),
let us define a map H, 4 : M'(Fx) — Sq—1 by putting H, 4(m) = B(gwem). Then
P (f,s) is equal to

Z sgn(o) Z Z / ) Wh(ywe,com)| det(m)|5 dm,

0€ESG_1 YEN'(F)\G'(F)o’€Sa_1 Hs ~(0")

where w, o0 is an element in G'(A) whose co-component is w, and whose compo-
nents at the places other than oo are 1.

Lemma 7.12. Suppose that two elements o,0’ € Sq_1 are given. Then for v €
N'(F)\G'(F) and m € M'(Fy), we have Hy (m) = o’ if and only if there exists
an element b € B'~(F) satisfying the following two properties.
(1) The class v € N'(F)\G'(F) is represented by bwyry—1 € G'(F)
(2) If we write b in the form b = m'n’ with m" € M'(F), n' € N'=(F), then
m € TW(w'n'w,y).

Proof of Lemma 7.12. Suppose that H, ,(m) = o’. Let us apply Corollary 7.11 for
g = yw,m. Since 3(g) = o', g is o’-generic and w,'¢\"w, € M'(Fy)Z’. Hence

~ is 0’0~ L-generic and ¢(@") = ("7 gy, smw!. Hence b = ("/"71) satisfies (1).

Since g(") = bw, mw ~!. we have m “lw, Ywem = m~ Yw Lgo "w, € M'(Foo)Z'.

Write b = m/n’ asin (2). Then since m 1w0_ Ym/werm-m 1w0 1n wem € M'(Foo)Z',
1,,—1

we have m™'w_, n'w,m € I'. Hence (2) follows.

Conversely, suppose that there exists b € B'~(F) satisfying (1) and (2). Then by
(2), we have m™ w ' bw,m € M'(Fao)Z', s0 that bwyrg—1 - wem € wer M’ (Fuo)T'.
Hence, by (1), we have H, ,(m) = o’. O

We return to the proof of Proposition 7.8. By Lemma 7.12, P (f, s) is equal to

> sen(o Z / Wh(bw o1 Wa 0em)| det(m)|3 dm.
o,0'€84_1 beB'~ (w,/ n'w,r)
b=m'n’

Since
Wh(bwyrg-1We,00m) = Wheo (bwem)Wh™ (bwyrs-1)
= Whe (m,wﬂlm)Whoo (bw(r’o'*l)

for b=m'n’ € B'~(F) and m € IW(w,,'n'w,), we have,

Z sgn(a)/ Wh(bw,o-1ws 00m)| det(m)|5 dm
0,0/ €S4_1 IW(w;/ln’wa/)
= Z sgn(c”) Dy, o Z sgn(o)Wh™ (bw,) |,
o'€Sq_1 c€Sq_1

whence the assertion follows.

Next we prove (2). Take a complete system of representatives S C Div(4) =
A% /O of the quotient Pic(A) = F*\Div(A). Let S C M’'(A*) denote
the subset {diag(mg°,...,m3> ) | div(m$®) € S for all ¢}. Then the composition

M'(Fy) X S < M'(A) — M'(F)\M'(A ) induces a bijection (k*)®9\(M'(Fy) x
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S) = M'(F)\M'(A). Hence

P(f,s) = # Z sgn(o)/ fwem)@s(m)dm.

By (1), we have

Z Sgn(a)/ F(We (Moo, m™))@s (Moo, M) )dMme

og€ESy_1 M/(Foc)
= Z Z sgn(o) Dy o Z sgn (o’ YWh™ (bwym®™)w® (m)
beB'—(F) \0€Sa—1 o’'€Sq_1

for any m® € M’'(A*). Hence P(f,s) is equal to

# Z Z sgn(o) Dy o Z | det(m’)|

n’€N’'—(F) \0€Sa_1 m/ €M’ (F)

X Z sgn(a')/g\7\/h°°(n’m’u}a/m‘x’)fusoo(m"o)dmoo

o'eSq-_1

= Z Z sgn(o) Dy o

n’€N’'~(F) \0€Sq_1

X Z sgn(a')/ Wh (0w, m>)w® (m>)dm™>
0'€Sq-1 My (A%)

This completes the proof. ([

7.6. Computation of D,, ,. We compute the integral D,, , for n = (n;)1<i j<d—1 €
N'~(F) and 0 € Sq_1. Let ¢ € Sy denote the element defined by & (i) = o (i) for
i=1,...,d—1and o(d) = d. Take an element a € F, with orde(a) = —ordee?
and put m, = diag(a?"!,a?"2,... a) € M'(F). We define a function Wh’_ :
G(Foo) — C by Whgo(g) = Whoo(mag>'
Applying Proposition C.3 to Wh’_, we have, for m € M'(Fy,),
Wheo (w,m) = Wh (m; 'm’w,)
_ { sgn(0)gu 7 (my I YWhi (1), if mg 'm’ € M'(Foo) N M(Fxo)5,

0, otherwise,

where m’ = wymw, ! and dp : B(Fyx) — R is the modular character. We
put Xpno = welW(w, 'nw,)w,;t N (M'(Fyx) N meM(F);). Since 6p(m,) =

(d—l)d(d+1)0rdoc,¢
oo © , we have

—0(0)— (d—l)g(d+1)

Dyo = sgn(0)goe VW o () / 85 (m)| det(m)|5. dm.

Xn.o

We note that for m = diag(mq,...,mq—1) € M'(Fx), m € X, » if and only if the
following three conditions are satisfied.

e For every 1 <i,5 <d—1 with ¢ < j, we have
ordes (m;) — orde (m;) + min(orde (n;), (j — ) (1 + ordectp)) > 0.
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e Forevery 1 <i,j <d—1withi<jand oc7'(i) < o71(j), we have
ordeo(m;) — ordes (m;) + min(ordes (nj:), (j — )(1 + ordectp)) > 1.
e For every 1 <i < d—1, we have orde (m;) + (d — i)(1 + ordec ) > 1.

7.7. Computation of /5. From now on we assume that Conditions 7.3 (1)-(4)
are satisfied. For n € N'~(F) and ¢ € S4_1, we consider the integral

S

Ir = / Wh (nw, m>)w® (m>)dm>
’ M/ (A%)

appearing in Proposition 7.8(2).
The group Syq_1 acts on the C((g~*))-algebra C[Pic(A)®9~1]((¢~*)) from the
right via permutations on Pic(A4)®4~1. Since W'(F,) acts trivially on f, for each

v # 00,0, we have
oo
In,a = H ITL,O',’LH

vF# 00

where for v # 00,0, I, 5, is the integral
Inow :/ Why, (nm ) (037 (me))7dmy, = (In,1,0)°
M'(Fy)

and

Inoo= / Why, (nmoewe ) (02 (M) dm,.
M/(F,)

7.8. More computation in d = 3 case and proof of Proposition 7.9. From
now on we assume that Conditions 7.3 (1)-(5) are satisfied.

7.8.1. For n € N'~(F), we set coo(n) = min(0, orde (n21) — ordeot) — 1). Then the
two subsets X, 1, X, (12) of M'(F,) are expressed as follows:

_Jfm 0 my _ _
Xn1= {( 0 m2> ‘ ordoo(mz) + coo(n) > —ordeot), ordes (ma) > OI‘doo’L/)},

X (12) = {(T’él 0 ) ’ ordw(%) + Coo(n) > —ordoot), ordeo (me) > —ordoow}.

ma

Thus we have
Cooqggoo (n)+(coo (n)+30rdect))s

D = )
and
Dot = 7Cooqggoc(");l;(cx(n)+3ir2djow+1)s
’ (T =g )1 =g ")
Therefore,
2¢00 () 414 (Coo (n)+3 0rd o th+1) s
Dyp1— Dy 12) = Cootloe

(11— %) (1 - gx""%)
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7.8.2.

Lemma 7.13. For z,y € Z, we have Why(x,y) = 0 unless x + 2ord, ¢ > y +
ord,y > 0.

Proof. Suppose that x,y € Z do not satisfy x + 2ord,v > y + ord,v > 0. Take
an element m = diag(mq, mq) € M'(F,) with (ord,(m1),ord,(msz)) = (z,y). Then
there exists an element n € N(O) satisfying ¥ ,(mnm™1) # 1. Since Wh,(m) =
Wh, (mn) = ¥y, (mnm=1)Wh,(m), we have Wh,(m) = 0. O

We introduce the following notations. For a place v # oo of F, let X,,,Y, €
C[Pic(A)#2]((¢~*)) denote the two elements X, = ¢, *(cl([v]),0), Y, = g, *(0, cl([v])).

Lemma 7.14. Forn € N'~(F), we have the following formulae describing I, 5.
(1) For v # 00,0, we have

In,l,'u = § Whv($7y)X§YUy
z,yEZ
x+2ord, Y >y+ord, >0
w7y+](-)rd,,,(n21)20
+77Z1v _ E Wh z,y Xy ord, (ngl)Yerord (’I’Lgl)
(n21 ) ( )

z,YEL
z+2ord, Y >y+ord, >0
x—y+ord,(n21)>1

(2) Put co(n) = min(0,ord,(ng1) — ordyt) — 1). Then we have

co(n) 2co(n)+(co(n)+3ordy1h)s
o = Ol (1= vl e
n, ,0 T (1 o ‘uo —2— 23)(1 o ,Uroqu_s) o Noy o 5

and

Ho 1 s
I, =C, + o (—
7(12 (1 o Oqo—2 29)(1 . Iuoqo—2 9) qo 1/)0(712

Here we understand ¢U(Tm) =0 whenn=1.

—co(n) 200(n)+(co(n)+3ord01/1)s < 1
9o ))
1

Proof. (1) We may assume that n # 1. For a given m = diag(mq,ms) € M(F,),
we have

mG'(Oy), if ord, (1) + ordy(n21) > 0,
nm € J - 2 0 . m
(0 nfl) < 0 m1n21> G'(Ov) i ordy (72) + ordy(n21) < 0.
Since f, is G'(O,)-invariant, we have
Whv(m)7 if ordv(%) + Ordv(nm) >0,
Wh, (nm) = my 0 ) .
1/)v(n21) (( g mlngl))’ if ord, (%1) + ord, (n21) > —1,

whence, with Lemma 7.13, the claim follows via simple calculation.

(2) We assume that n # 1. (In the n = 1 case, the claim follow from similar,
less complicated arguments). Let Z! C G'(O,) denote the Iwahori subgroup. For a
given m = diag(my, ms) € M(F,), we have

mZ!, if ordo (k) +ordo(nor) > 1,

nm € 1 L nz 0
(O nfl) (nal m1n21> waz)Zo, if ord, (T5) + ordy (n21) <0,
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and
mwi2)Z,, if ord, (1) + orde(na1) > 0,
nmuwg) € 1 LN [z 0 .
(12) (O nf1> (n61 m1n21> I;,, if ord,(7) +ordy(nar) < —1.

3ord,y+ord,(det m)

Let us apply Proposition C.3. We put C!, = C,po . Then we have

if ord, (i) + orde(n21) > 1 and
C!|mymg2erdo?|2, ord, (ml) + 2ordt)
> ord,(mse) + ord,y > 0,
Wh,(nm) = if ord,(7;2) 4 orde(no1) < 0 and
() | E2 VR, ordy(22) 4 201t + 1
> ord, (mlngl) + ord,y > 0,

0, otherwise
and
if ord,(7;2) + orde(no1) > 0 and
—C! g5 tmyww2erde¥|2, ord(my) + 2ord,1) + 1
> ord,(msg) + ord,y > 0,
Why(nmwi2y) = if ord, (1) + ordo(n21) < —1 and

C’ wo(nm )| 7717;21 wgordowﬁ)7 ord( ) + 2ord, ¥
> ord (mlngl) + ordyy > 0,
0, otherwise

Substituting these into the definitions of I, 1, and I, (12),,, we have the desired
formulae. [

Corollary 7.15. When n # 1, we have

n,l,v wv( 1) v_ordﬂ (TLQI)Y'Uord“(n2l)In*1,(12),v

for v # oco. In particular, we have I3% = 1#@(%)71]2317(12)- O

Proof of Proposition 7.9. Using the above corollary and noting that ¢ (n) = 0 for
1#n € N'~(F) with (- —) # 1, we have

P(f,s) = (Dll,l - D17(1,2))(If,01 - If?(u)) )
t5 Z (Dni = D a2)) (1 = (=) (L1 — [512)

i n21
neEN’'—(F),n#1
C q1+(3 ordec?p+1)s

o0 o0

(1—gx )1 —gx"")

X ITh — IT9) + Z (1- w(n Ny — 1, ,(12))
neN’—(F),ngél 2

For n € N'~(F), let I,}%° denote [[,_., , In,1,0- Since

eVO(Iz?(u)) = eVO((Iz?(lz))(lz)) = eVO(IZ?iD(In,(lZ),o)(m))a
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we have

qd_lcooq;j(dordool/ﬂrl)s

(1-g )1 = q%)

xevo | IT] — (11,(12))(12) + 9 Z (1- w(ni))(jn,l - (In,(12))(12))
neN’'—(F),n#1 2

qd_loooqg(li ordec+1)s

(1-g' )1 —qx>™")

Iy (I (0 — (I1,12),0) ")

1 0,0
xevo | 41 Z (1— g[;(n—))lml’ (1,0 — (In,(12).0) ™)
nEN'—(F),n#l 2

For n € N'~(F) with n # 1, we have

1 —co(n)—1 2co(n)+14+(co(n)+3ordotp+1)s
qo

Mo
In,l,o - (In, 12 70)(12) = (1 - %( ))CO —1—s —2—s
(12) na1 (1= oo ") (1 — pogo >~*)
1 M_lq;+(30rdow+1)s
= (1 - wO(i))Co ° i p— —2—5\ "
n21 (1= 110g0 %) (1 = pogo ®~%)

Hence the assertion follows from Lemma 7.14. O

7.9. More computation of ay(D;, D) and proof of Theorem 7.6. Let the
notations and the assumption be as in Section 7.8. In this section, we compute
aw(Dl,Dg) for (Dl,DQ) € Aw.

For m € F*, we have (1 — oo (£))(1 — 1ho(L)) = 0 unless div(m)|{c,0} >
(0rdy)) |{oe,0) +[00] +[0]. We set D3 = D1 — Da —ordy) — [oo] — [o] and define ¥, 1,
to be the set of triples (S, D, m) satisfying the following conditions.

D € Div(C) with D > 0, cl(D + Dy) = 2cl(ordi) + cl(Ds|supp (D))-

S C C is a finite closed subset with Supp (D) C S C Supp (D) U {0, 0}.
m € F* with D3 + div(m) > 0.

D= (Ds+ div(m))|5.

For 6 = (S,D,m) € ¥, p,, we set cy(d) = (—1)#50 e} TT o by (L). Then we
have

aj(D1,Da) = Y cy(d).

‘5622)1,132

For 6 = (S,D,m) € ¥} p,, we set deg § = deg D and ¢(§) = ((Supp (D3 +
div(m))U{oo, 0})\S, D3+div(m)—D, —m). Then ¢(d) is also in X}, ., and we have
1((0)) =9, deg(d) +deg(c(d)) = deg(D3), and ¢y (8) = ¢y (¢(6)). Let ©p, p, denote
the set of pairs (5, D) such that the set Vo(S, D) = {m € F* | (S,D,m) € ¥ p,}
is non-empty. The map § — ¢y (d) induces a map ¢y 5,p : Vo(S,D) — C. Let

Dr.0, C Op,,p, denote the subset of elements (S5, D) € ©p, p, satisfying either
2 deg D < deg D3 or both co ¢ S and 2 deg D = deg D3. Then we have

aj(Dy,Dy) =2 > > cpsn(m).

(S,D)EO, 1, MEVY(S,D)



EULER SYSTEMS ON DRINFELD MODULAR VARIETIES 45

The set Vo(S, D) is a subset of the Fy-vector space H°(L(Ds — D)). For m €
Vo(S, D), the value ¢y g, p(m) depends only on the image of m in the quotient
H°(L(D3 — D))
HO(L(Ds — D)) NH°L(Ds — D + (D3 — D 4 ordy)|s))

In particular, if we put D = D + ([oo] + [0])|s, the map ¢, g, p factors through the
canonical map

HO(L(Ds — D))
HO(L(Ds — D~ D))’
Let ¢y 5. p : Image(®g p) — C denote the induced map. Then the image of ®g p is
a subset of (£(D3 — D)/L(D3 — D — D))°. For any m € Image(®s p) C (L(D3 —
D)/L(Ds — D — D)), we have Gy, s, p(m) = (=180 [T _ b, (m1).

Proof of Theorem 7.6. We assume that Conditions 7.3 (1)-(6) are satisfied. We
may assume that ¢ satisfies ordyp = —[oo] — [0]. Since Pic(4) = 0, we have
Ay = {(D1,D3) € Div(G,,)®% | D; > Dy > 0}. Fix an element (D1, D3) € Ay.
Then we have D3 = Dy — Dy, and Op, p, is the set of pairs (S, D) satistying D > 0,
deg D < deg(D; — D3), and Supp (D) C S C Supp (D) U {0, 0}.

Let (S,D) € O, p, be an element. Then we have H'(£(Ds —D—D)) = 0 since
deg(Ds—D—D) > —1. Hence Image(®g p) equals (’)g. For any m € Image(®g p),

®s,p : Vo(S, D) — H(L(Ds — D)) —

the cardinality of <I>§)1D (m) is equal to
ﬁ(HO(Dg _D— f))) _ qdeg(Dg—QD)—ﬂ(Sﬁ{oo,O})-‘rl.
if (S, D) # (0,0). Then we have
> [[¢etm™) =] 5.
me(L(D3—D)/L(Ds—D—D))0 vES ves

where, for v € S, ¢, is defined to be

qir)nult,,,f) _ quj‘ﬂultvﬁfl7 if multv(Dg, _ D) 2 0
65771 = 7qvmu1tvD71, if multv (Dg . D) - 1
0, otherwise.
Hence we have
qdeg Ds+1 _ 17 if (S, D) _ (@70)’
Z cy.5,p(m) = (—q)_ﬁsm{m’o}qdeg(D?’_ZDH'1 H cp,- Ootherwise.
meVy(S,D) vES

For each place v of F', we define a polynomial P,(T) € C[T] in the following way.
e When v # 00, 0, then
PU(T) =14 Z (q;z - q;ifl)Tdeg[v]-i _ q;1(qvfleeg[v])multv(Dg)Jrl

1<i<mult, (D3)
. (1 — q;QTdeg[v])(l _ (qngdeg[u])multv(Dg) + 1)

n 1 — gy tTdes]
e When v € {00, 0}, then

Py(T)=q"".
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Then ay(D1,D2) = 14325 pycer Y mevi(s,p) Cu,5,0(m) is equal to the sum

Dq,Dy
of coefficients in degree < %deg D3 of the formal power series

Fp, (T) = gie& Da+1 (1+P90(T)+T%PO(T)+T P ) I 2.
V#£00,0
1

in C[[T'2]]. Since [Ttooo(l — gy 2Tdesll) = 1= = —r, we have

qdeg D3(1 + q)(l _ q—lT) H 1— (qv—leeg[v])multu(Ds)—i-l

Fp,(T) = 1—q Tz 1 — gy ' Tdesl]

veSupp (D3)

Since the sum of coefficients in degree < % of % is equal to 1+ ¢~% (resp. 1)
—q— 2
if i > 1 (resp. i = 0), we have

ay(D1,Dy) =¢8P (1+q) Y ¢ "
0<D<D
qm?llt1)(D3)+1 _ 1

=(1+9q) H UQT

vESupp (D3)

For v # 00,0, let WhY denote the class one Whittaker function with WhY(1) = 1
with respect to ¥, 1 of the (reducible) principal series IndB,EI; gég, of G'(F,) (here

dp : B'(F,) — R* denotes the modular character). By [Shi] we have
ay(div(my),div(ma)) = (1+¢q) [[ Wh(diag(ma,m, ma,))gyrdr ) —erde(ma.)

V#£00,0
for my = (m1,4), M2 = (Ma,) € A>°. Hence Py (f,s) equals
-1

.0 | det my, |*dm,.

(1+q)g* % Coo( s) |1 /M - )Who My )Why (m,)
V#00,0

By [Ja-Pi-Sh, §4, Théoreme], we have

ma .«

-1

M | det mv|87%dmv

/ Wh (m,)Wh, (m,,)
M'(Fy)

;1
= WhY)(g,)Why (g,)| det g, |*~ 2 dg,
NY(F)\G'(F)
= Why(1)L(m, s — 3)L(mp, s+ 3)

for all v # oo, 0. Hence

Poo(f,8) = (14 q)g* *CocCop; ! H Wh, (1)L(m, s)L(m, s+ 1),

VF#00,0

2,v

which completes the proof. O
APPENDIX A. THE PROOFS OF THE MATERIAL IN SECTION 2
by Seidai Yasuda

A.1. Let d > 1 be a positive integer. Let X be a regular noetherian scheme of
Krull dimension one such that the residue field at each closed point is finite.
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A.1.1. We define the category C¢ = C%} as follows. An object in C? is a coherent
Ox-module of finite length which admits a surjection from (’)E’?d. For two objects
N and N’ in C?¢, the set Homea(N, N') of morphisms from N to N’ is the set of
isomorphism classes of diagrams

N « N'"— N

in the category of coherent Ox-modules where the left arrow is surjective and the
right arrow is injective. This definition of morphisms is due to Quillen ([Qu]) except
that here we take morphisms in the opposite direction.

We often consider the following two types of morphisms in C¢. Let N be an
object in C%. For a sub Ox-module N’ of N, the morphism N’ = N’ < N in C? is
denoted by ry s : N — N'. For a quotient Ox-module N” of N, the morphism
N" « N = N in C? is denoted by my n» : N — N'.

A.1.2. Let FC? denote the category of finite families of objects in C%. An object in
FC%is a pair (J, (N;);es) where J is a finite set and (N;) e is a family of objects
in C¢ indexed by J. We denote the object (.J, (N;)jes) by [T;c; Nj.- We regard c?
as a full subcategory of FC?. We define mo([L e INj) to be the set J.

A.1.3. A morphism f : M — M’ in the category FC? is said to be a covering if
the underlying morphism mo(M) — m(M’) is surjective.

Definition A.1. A presheafon FC® is a contravariant functor from FC? to the cat-
egory of sets. A presheaf F on FC? is a sheaf if it satisfies the following conditions
(1), (2) and (3):
(1) The image of the empty set F'(0) is the set of one element.
(2) For two objects N and N’ in FC%, the canonical map F(NIIN') — F(N) x
F(N') is an isomorphism.
(3) Let N — N’ be a covering in FC?. If the fiber product N xn: N exists
in FC? then F(N’) is canonically isomorphic to the difference kernel of
F(N) = F(N xpn+ N) where the maps are induced by the first and the
second projections.

We note that a representable presheaf is not necessarily a sheaf.

A.1.4. Variant. A morphism in C?¢ is called a fibration if it is isomorphic to a
morphism of the form mpy n/. A morphism f : M — M’ in the category Fclis
said to be a fibration if it is a fibration in C% on each component of M.

A presheaf F on FC? is a semi-sheaf if it satisfies the conditions (1), (2) in
Definition A.1 and the following condition (3)":

(3)) If N — N’ is a covering in FC? which is a fibration, and if the fiber product
N xpn+ N exists, then F(N’) is canonically isomorphic to the difference
kernel of F(N) = F(N xy+ N) where the maps are induced by the first
and the second projections.

We remark that the requirement of the existence of the fiber product N x s N in
(3)" is superfluous, since in the category FC?, the fiber product of two fibrations
always exists.
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A.1.5. Let f: N’ — N be a covering in FC?. We let Auty(N’) denote the group
of automorphisms o in FC? of N’ such that foo = f.

Let f: N’ — N be a morphism in FC%, and let G be a subgroup of Auty (N').
We say that f is a Galois covering of Galois group G if the fiber product N’ x ; N’
exists, and the morphism [[ . 5(9,id) : [{,cq N' — N’ Xy N’ is an isomorphism.

If f: N — N be a Galois covering with N’ and N in C%, then the standard

argument in the theory of Galois categories shows that its Galois group equals
Auty (N').

Lemma A.2. Let f: N' — N be a morphism in C* given by the diagram N

N" < N'. Suppose there exists a sub Ox-module Ny of N such that p~1(Ny)
MP and N'Ji(p~*(Ny)) = MP? for some My, My in C*. Then f is a Galois
COVETing.

R T

Proof. Let M be an object in C% It suffices to show the map
oy Hompea (M, N') — Hom rea (M, N) induced by f is an Auty (N')-torsor over
the set Hom rea (M, N).

Since My and M, are generated by one element, there exist sheaves Z; and Z,
of ideals such that M; =2 Ox /Z; and My = Ox /5.

Take an element » € Hom zca(M, N) and let us consider the set o, (). Suppose

y € oy} (x) is given by the diagram N’ « F < M. We let F/ = '~ (i(p~'(]V,)))
and F" = Kers'.

Since F'/F" = (Ox/1,)®?, F/F' = (Ox/I5)®%, and M is generated by d
elements, it follows that F'/F"” = F'/I\F’ and F/F’ is the set of elements z
in M/F' such that Irz = 0. Hence F’" = Z3F’ and F is the set of elements z
in M such that Zoz C F’. In particular, s(F) and s(F") as sub Ox-modules
of M are uniquely determined independent of the choice of y. Note that y is
the composition of the canonical morphism s(F)/s(F") « s(F) — M and an
isomorphism s(F)/s(F") = N’. Thus the set a; (z) is canonically isomorphic to
the subset of the set of isomorphisms s(F')/s(F") = N’ such that the composition
M — s(F)/s(F") = N’ — N equals the morphism z. Hence the set a}; (z) is an
Auty (N')-torsor. O

Let Ax denote the ring of adeles on X, and @X C Ax its ring of integers.

Lemma A.3 (cofinality). Let k be a positive integer. Let N; (1 < i < k) and N
be objects in C, and g; : N; — N be morphisms. Then there exist an object M in
C4 and morphisms f; : M — N; such that g; o f; = gj o fj for any 1 <1i,j <k and
g1 0 f1 is a Galois covering. Moreover if g; is a fibration for all i, then one can take
M and f; as above such that f; is a fibration for all i.
Proof. We take @X—lattices Ly, Lﬁvi (1<i<k), Ly, and Ly in Ag’éd such that

e Ly, DLy DLy DLy for1<i<k,

o Ly, /Ly = N foralliand Ly/Ly = N as @X—modules,

o Ly/L)y « Ln/LYy, — Ln, /LY, is identified with g; for all i.
There exists an integral ideal I C O such that I~'Ly D Ly, and Ly, C TLy for all
1. Set M = f’lLN/fLN and define the morphisms M — N; by N; = LNi/LN,- “
LNi/fLN — f’lLN/IALN for all i. Then by Lemma A.2, the morphism M — N
and the morphisms M — N, for all i are Galois. (]
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Lemma A.4. A presheaf F on FC% is a sheaf if and only if it satisfies conditions
(1) and (2) in Definition A.1 and (3)" below.
(3)" For any Galois covering N — N’ in C¢, F(N') is canonically isomorphic
to the Auty/(N)-fived part F(N)A%~x(N) of F(N).

Proof. The implication (3) to (3)” is trivial. We prove (3)” implies (3). Let f : M —
N be a morphism in FC? such that M x x M exists. We write M = Hierro(M) M;,
N = Hieﬂo(N) N; with M; and N; in C¢. Denote by mo(f) : mo(M) — mo(N) the
morphism induced by f.

For any 4,j such that j = mo(f)(i), let fu ;) : M; — N; be the morphisms
induced by f. For each j € w(N), there exist, by Lemma A.3, a Galois covering
fi+ Mj — Nj in C? and morphisms f(’j,i) : M} — M; for any i € mo(M) with
Jj = mo(f)(i), such that f; = fq;) o f(/j,i)' Set M’ = HiGﬂo(]W) M;O(f)(i) and
g =11 1{; - By condition (3)", we have F'(M;) = F(M;O(f)(i))Gal(M’/foﬁf)(i)/Mi).

Then Ker[F(M) = F(M xy M)] injects into

Ker[F(M') = F(M' xn M")]

/ / /
= Ker| [[ FOM )= 11 F(Mj xn; Mj)
i€mo (M) i1,ig€mg(M),jETG(N)
J=mo(f)(i1)=mo(f)(i2)
JETo(N)

which, by condition (3)”, equals F(N). One can see that this map gives the inverse
of the map F(N) — Ker[F(M) = F(M xy M)]. O

A.1.6. The inclusion of the category of sheaves (resp. semi-sheaves) on FC? into
the category of presheaves on FC? has a right adjoint (—)* (resp. (—)*f). Let us
describe the construction. Given a presheaf F' : FC? — (Sets), we define the functor
Fe: FC* — (Sets) (resp. F1). Let N be an object in C?. Then the section F¢(N)
(resp. FoT(N)) is given by

lim Ker[F(M) = F(M xy M) = lim F(M)%M/N)

M—N M—N
where the limit is taken over (a small skeleton of the category of) all Galois coverings
M — N (resp. all Galois coverings M — N which is a fibration) in C%. To check
that F* satisfies (1)(2) and (3)” , one uses Lemma A.3. One can also check that
F91 is a semi-sheaf. The details are omitted. Note that since F*(N) and FeT(N)
are expressed as filtered inductive limit, the functors (—)® and (=)' commute with
finite (projective) limits ([Ma] Ch. IX).

A.1.7. Let N be an object in FC% and H be a subgroup of Aut zca(N). We denote
by N/H the sheaf associated to the presheaf Hom zea( ,N)/H.

—~d
Let FC denote the full subcategory of the category of sheaves on FC? whose
objects are sheaves of the form N/H with N in FC® and H a subgroup of Aut(N).

—~d
There is a canonical functor FC? — FC which sends an object N in FC? to the
sheaf N/{idy}. It commutes with finite (projective) limits.
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—~d
We note that the canonical functor FC¢ — FC which sends N to the sheaf
N/{idn} is not fully faithful. For example, the endomorphisms End z¢4(0) consists
of one element {ido}, while the endomorphisms End ~,4(0/{ido}) is isomorphic to
the group of divisors on X. By the adjointness of (—)* and by the definition
of (=)*, we have Hom ~.4(0/{ido}) = lim ~ Homgzca(M,0) where the limit is
over all Galois coverings. Using the argument as in the proof of the cofinality
lemma, and taking the automorphisms of M into consideration, we see that it
equals hi%lhclz Homfcd((lg/ll)@d,O)A‘lt((12/11)®d) where the limit is over the Ox-
lattices Iy, I of Ax with I; C Ir. Now Homyea((Io/I1)®?,0)Aut((2/1)%) g the
set of sub Ox-modules of (I5/I;)®? which is stable under the action of GLg(I2/Iy).
By Morita equivalence (cf. [An-Fu]), it is isomorphic to the set of sub O x-modules
of Iy/I;. Hence the limit is isomorphic to the set of Ox-lattices in Ax.
Let I be a finite set, N; be an object in C%, and H; be a subgroup of Aut(N;)
~d
for each 7 € I. We write [[;; Ni/H; for the object (][,c; N:)/(I]; Hi) in FC ; it
is isomorphic to the sheaf associated to the presheaf [, ., Hom(—, N;)/H;. Any
~d
object in FC is isomorphic to an object of the form above.
~d
The notions of my and covering are canonically extended to the category FC by
~d
putting mo(N/H) = mo(N)/H. We say that an object in FC is connected if its mg
—~d ~d
consists of one element. We define sheaves on FC and Galois coverings in FC in
a similar manner.

Lemma A.5. Let N = ]_L.GWO(N) N; be an object in FC* and H be a subgroup of

Autgeca(N). Suppose that, for each i € mo(N), the stabilizer H; C H of i acts
~d

faithfully on N;. Then the quotient morphism N/{idx} — N/H in FC is a Galois

covering whose Galois group is canonically isomorphic to H.

Proof. For any M € C% such that Hom za (M, N) is non-empty, H acts freely on
Hom 04 (M, N). Hence we have an isomorphism of presheaves

H Hom(—, N) — Hom(—, N) X Hom(—,N)/H Hom(—, N).
heH

Since the functor (—)® preserves fiber products, we have the assertion. O

~d
We remark that any object in FC is isomorphic to N/H for some N and H
satisfying the assumption in Lemma A.5.

~d
We have an analogue of Lemma A.4 for sheaves on FC .

~d
Lemma A.6. A presheaf F' on FC is a sheaf if and only if it satisfies the conditions
analogous to (1) and (2) in Definition A.1 and (3)" below.

~d
(3)""" For any Galois covering N/{idy} — N/H in FC as in Lemma A.5,
F(N/H) is canonically isomorphic to the H-fived part F(N/{idy})* of
F(N/{idn}).
Proof. We prove this lemma using Lemma A.7.
We proceed as in the proof of Lemma A.4. If G is a sheaf, then G obviously
~d
satisfies (3)"”". We show the other direction. Let f : F' — F be a covering in FC
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such that the fiber product F’ x p F’ exists. Take N and H as in Lemma A.7. If
G is a presheaf satisfying (3)"’, then

Ker(G(F') = G(F' xp F"))

~ Ker(G(N/{idn}) = G(N/{idn } xx/s N/{idy})) = G(N/H)
gives the inverse of G(F') — Ker(G(F') = G(F' xp F")), proving that it is an
isomorphism. O

~d
Lemma A.7. Let f: F' — F be a covering in FC . Then there exist an object N
in FCY, a subgroup H of Aut(N), and a covering g : N/{idx} — F' such that the
composition N/{idy} — F' — F induces an isomorphism N/H = F.

Proof. We easily reduce to the case where F' is connected. We write F' = M/G
where M is an object in C? and G is a subgroup of Aut(M). We further reduce
to the case where F’ is an object of the form M’/{idy;} with M’ in FC?. Let
Presh(]:Cd) denote the category of presheaves on FC¢. We have

HOm]’_:éd (M//{ldM/},M/G) = HOmPresh(}‘cd)(HOm]:C(i(—,M/),M/G)
— M/G(M)
= li_n)lM//H]\/[/ Hom]-'Cd (MN’ M)/G

where the limit is taken over (a small skeleton of the category of) all Galois coverings

1"

of M' in FC% Hence there exist a Galois covering M” S M in FC? and a
morphism M” I M in FC? such that the diagram

M J{idp ) —— M/ fida)

| l

M /{idyy —L— MG
is commutative.

It suffices to show that there exist an object N in FC?, a subgroup H C
Aut(N) and a covering N — M" in FC? such that the composition N/{idy} —
M" /{idpr»} — M/G induces an isomorphism N/H = M/G.

Let M" = [];c; M} where, for each j € J, M} is an object in C?. Let fi:
M} — M denote the morphism induced by f’ for each j. Applying Lemma A.3 to
the morphisms

TR VN

for j € J, there exist an object N’ in FC? and a morphism gj : N' — M} in Fcl
for each j € J such that fjog; = f}, o gy for all j,j' € J and mpr0 fjog;is a
Galois covering.

Suppose the morphism N’ — M is given by the diagram M & My < N’
Let H' denote the subgroup of elements A’ in Aut(N’) such that h'(Imi) = Imi,
K (i(Kerp)) = i(Kerp), and the action on (Imi)/i(Kerp) = M induced by h' is
in G. By the short exact sequence 1 — Gal(N'/M) — G — H' — 1, we have
N'/H' = M/G.

Let H” be a group whose cardinality is equal to the cardinality of the set mo(M").
We fix a bijection H” = mo(M") of sets. Let N = Icryaem N We let H =
H"” x H' act on N as follows. The element (h”,1) € H” x H' acts on N via
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~

the translation of index set using the isomorphism H” 2= mo(M"). The element
(1,h') € H” x H' acts via the diagonal action of H'. Then N, H, and the covering

I o:8= J] M->M'= [ M

jEmo (M) JEm (M) JjEmo (M)

have the desired property. (I

~ ~d

Let F be a sheaf on FC?. We can construct a sheaf F on FC by setting
~ ~d
F(N/H) = F(N) for an object N/H in FC . Using Lemma A.6, we see that the

functor F' — F gives an equivalence of categories between the category of sheaves

—~d
on FC? and the category of sheaves on FC .

A.1.8. We define the functor w : Presh(FC?) — (Sets) as follows. We consider
Ai’?d as the space of row vectors. Given a presheaf F' € Presh(F Cd)7 we define w(F)
to be
w(F)= lim  F(Ly/L1)
LiCLycA%?

where the inductive limit is taken over the filtered ordered set of the pairs of two O x-
lattices (L1, L2) in Ai’? with Ly C Lo. The order is defined as follows: for two such
pairs (L1, L2) and (L}, L), (L1, Lo) > (L}, LY) if and only if L} C Ly C Ly C L}.

We have two functors £C* L Presh(FC?) % (Sets) and .7r-"VCd 2, Presh(FC?) 2
(Sets), where f is the functor N — Hom rea(—, N) and g is the functor induced by
the inclusion of the category of sheaves into presheaves. We call them the canonical
fiber functors, and denote them also by w. It is easily checked that these canonical

—~d
fiber functors are compatible with the canonical functor FC? — FC and preserve
fiber products.

Lemma A.8. Given a presheaf F, let F® (resp. F') denote the associated sheaf
(resp. semi-sheaf). Then the three sets w(F), w(F®) and w(F") are canonically
isomorphic.

Proof. This follows from the explicit constructions of the associated sheaf functors
F— F¢ F s Fat, O

A.1.9. For a presheaf F' on FC% w(F) admits a canonical functorial continuous
left action of the adele group GLg4(Ax). Hence the canonical fiber functors w :

—~d
FC — (Sets) and w : FC — (Sets) factor through the category of discrete sets
with continuous left GL4(A x)-action.

Lemma A.9. Let Ly C Ly C A?@d be two @X—lattz’ces of A?@d. Let K € GL4(Ax)
denote the compact open subgroup of the elements g € GL4(Ax) such that L;g = L;
fori=1,2 and the map induced by g on Lo/Ly is the identity. Then the following
assertions hold.

(1) There is a canonical  GLg(Ax)-equivariant isomorphism
w(La/L1) =2 GL4(Ax)/K which sends the element in w(La/L1) represented
by the element idy,,r, in Hom(Lo/Ly, Lo/ Ly) to the class of the identity
matriz GLqg(Ax)/K.

(2) For any presheaf F on FC, the canonical map F*(Ly/Ly) — w(F®) =
w(F) induces an isomorphism F*(Ly/L;1) = w(F)¥.
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Proof. We can identify w(Lo/L1) with the set of triples (L', L”,«) where L' C
L' C A?i—d are Ox-lattices and « : L"/L' — Ly/L; is an isomorphism. The
map from GL4(Ax)/K which sends the coset gK to the triple (L1g™!, Lag™t, g :
Lag™'/L1g™! — La/L;) then induces the isomorphism in (1).

By definition, F*(Ly/Ly) = H_H}IM Lo/L F(M)GI(M/(L2/L1)) where the limit is
— L2 1

taken over (a small skeleton of the category of) all Galois coverings of La/L; in C¢.
By the definition of w, we have w(F)% = h—H>1L’1CL’2CA§( F(LY) L)) G (L2 /1) /(L2 /L))
where the limit is taken over all Galois coverings of the form Lo/L; « Lo/L} —

5/L4. One sees that the two limits are equal using the argument in the proof of

Lemma A.3. This shows (2). O

Corollary A.10. Let L1 and Lo be as in Lemma A.9. Let H be a subgroup of
Autp, (La/L1). Let Ki, 1, m C GL4(Ax) denote the compact open subgroup of
the elements g € GL4(Ax) such that L;g = L; for i = 1,2 and the action of g on
Lo/Ly lies in H. Then the following assertions hold.

(1) There is a canonical GLa(Ax)-equivariant isomorphism w((Le/L1)/H) =
GL4(Ax)/Kp, L, m which sends the element in w((La/L1)/H) represented
by the class of idy, /1, in Hom(Ly/L1, Lo/Ly)/H to the class of the identity
matriz in GLd(AX)/KLl,Lz,H-

(2) For any presheaf F on FC%, the composition

Homp, g reay((L2/L1)/H, F*) — F*(Ly/L1) — w(F?) = w(F)

induces an isomorphism Homp, ey, rcay((L2/L1)/H, F'*) = wW(F)KLo.Ly.m
(]

We define the category (GL4(Ax)-sets*). An object S in (GLg(Ax)-sets*) is a
set with left GL4(Ax)-action such that S has finitely many GL4(Ax)-orbits, and
for any s € S, the stabilizer at s is a compact open subgroup of GL4(Ax).

~d
Lemma A.11. The canonical fiber functor w : FC — (Sets) gives an equivalence

~d
between the category FC and the category (GLg(Ax)-sets*).

Proof. An object in (GL4(Ax)-sets*) is isomorphic to an object of the form
[;c; GLa(Ax)/K; where I is a finite set and K; is an open compact subgroup
of GL4(Ax). Then, by Corollary A.10 (1), it follows that w is essentially surjective
on (GL4(Ax)-sets™).

To prove that w is fully faithful, it suffices to treat the connected objects in .?/:éd.
Such an object is isomorphic to an object of the form (Ls/L1)/H where Ly C Lo
are Ox-lattices in A4, and H is a subgroup of Aut(Ly/L).

Let Ly C Lo, L} C L be Ox-lattices in A4, and H,H' be subgroups of
Aut(La/Lq), Aut(L5/LY) respectively. By (2) and (1) of Corollary A.10, we have

Hom 4 ((La/Ly)/H, (Ly/Ly)/H') - = w((Ly/Ly)/H')<Fa bzt
= (GLa(Ax)/Kpy,py pr) b2t

where K, 1, g and Kz, 1, 5+ are defined as in Corollary A.10. We see it equals

Homqr, (ax)-sets*) (GLa(Ax)/Kp, 1,0, GLa(Ax) /K 17 1)
= Hom(GLd(Ax)-SetS*)(w(L2/L1)/H7w(L/2/L/1)/H/)'
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~d
Corollary A.12. (1) For any object F in FC , the set mo(N) is canonically
isomorphic to the set of GL4(Ax)-orbits in w(F).

—d
(2) For any morphism f : F — F' in FC and for any x € w(F"), the fiber
w(f)~Y(z) of w(f) at x is a finite set.
d

(3) Fiber products always exist in FC.
O

A.1.10. Given a smooth representation V' of GL4(Ax), we construct a presheaf,
which is also denoted by V', on (GL4(Ax)-sets*). For an object Y in (GLg(Ax)-sets*),
we let V(Y) denote the set of morphisms Y — V of left GLi(Ax)-sets. Let
f Y1 — Y3 be a morphism in (GLg(Ax)-sets*). We define f* : V(Y2) — V(Y7)
to be the composition with f. We thus have a presheaf Y — V(Y") which may be
checked to be an abelian sheaf.

This gives an equivalence of categories between the category of smooth represen-
tations of the locally profinite group GL4(Ax) and the category of abelian sheaves
on (GLg(Ax)-sets*).
A.1.11. Let F = (][;.; N;)/H be an object in 7' Using Lemma A.8, we have

a map

jeJ

w(F) = (] wHom(~, N;)))/H — J/H = mo(F)
=
induced by the map which sends the elements in w(Hom(—, N;)) to j.
~d
Let f : Fy — F be a morphism in FC . The map w(F) — Zx(, which sends
r € w(F) to #w(f)~*(z), factors through my(F). We call the induced map deg f :
mo(F') — Z>¢ the degree of f.
Lemma A.13. Let
F{ —">F)
f'l ad lf
Fy > F,
~—d
be a cartesian diagram in FC . Then (deg f')(y) = (deg f)(mo(92)(y)) for any
Yy e 7T0(F2/)

~d
Proof. Recall that the canonical fiber functor w : FC — (Sets) preserves fiber
products. Thus we have a cartesian diagram

w(F)) 22 (R

w(f") O w(f)
/ w(g2)
w(Fy) — w(Fz)

in the category of sets. The assertion then follows easily. O

Lemma A.14. Let f : N/{idn} — N/H be a Galois covering as in Lemma A.5,
then (deg f)(i) = #H for any i € mo(N/H).
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Proof. We may assume that N/H is connected. Then the assertion follows from
the equality lim(Homzea(L2/L1, N)/H) = (lim Homgzea(La/L1, N))/H where the
limit is taken as in the definition of w. U

A.1.12. Variant. Let N be an object in FC% and H be a subgroup of Aut zca(N).
We denote by (N/H)' the semi-sheaf associated to the presheaf Hom zca(—, N)/H.

Let .7’-'VCT7d denote the full subcategory of the category of sheaves on FC? whose
objects are semi-sheaves of the form (N/H)" with N in FC%.
The notions of 7y and covering are canonically extended to the categories ﬁhd
We say that a morphism f in ]-?(?T’d is a fibration if there exist two coverings
g1,92 in ]?éT’d such that g5 o f 0 ¢q is a fibration in FC?. We define semi-sheaves

on FC ' in a similar way. The proof of the following lemma is omitted.

~ t.d
Lemma A.15. A presheaf F on .7-'CT is a semi-sheaf if and only if it satisfies
conditions analogous to (1) and (2) in Definition A.1 and (3)" in Lemma A.6. O

The following lemma is used in the proof of Lemma 2.11.

Lemma A.16. Let f : M — N be a fibration in FC?. Suppose a finite group H acts
equivariantly on M and N. Then the induced morphism m : (M/H)" — (N/H)t

~ 1,d
is a fibration in .7:C]L
Proof. Let fi : (M/{ida})T — (M/H)' be the quotient map, and fo : (N/H)T — 0
be the morphism induced by muy, : N — 0. Then the composition fy omo f; =
maro is a fibration in FC?. O

. . ~1d
Let F be a semi-sheaf on FC?. We can construct a semi-sheaf on FC by
~ —~t.d
setting FT((N/H)") = F(N)H for an object (N/H)" in FC . One can see, using
the previous lemma, that the functor F' +— F gives an equivalence of categories
between the category of semi-sheaves on FC% and the category of semi-sheaves on

7.

A.1.13. We define the functor w' as follows. For a presheaf F on FC?, we let
WwH(F) = th crocose t F(Ly/Ly)
= lim, o0 FOF/L1)

where the first inductive limit is taken over the filtered ordered set of the pairs of
two @X lattices (L1, Ls) in @?@d with Ly C Lo; the transition maps are defined
in a manner similar to those in the definition of w in Section A.1.8. The second
inductive limit is taken over the O x-lattices in O_E,? ordered by inclusion.

Let Mat™ be the monoid consisting of elements g € GL4(Ax) such that g
belongs to Maty(Ox). We define the category (Mat -sets*). An object S in
(Mat ™ -sets*) is a set with left Mat™-action such that S is isomorphic to the dis-
joint union [];., Mat™ /K;, where I is a finite set and K; is an open subgroup of

-1

GLd(@X). The proof of the following lemma is similar to that of Lemma A.11,
hence is omitted.

—~ +.d
Lemma A.17. The functor w' : ]—'CT — (Sets) gives an equivalence between the

—~ +.d
category .7-"CT and the category (Mat™ -sets™). a
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We remark that the argument similar to that in Section A.1.10 establishes an
equivalence of categories between the category of smooth representations of the
monoid Mat™ and the category of abelian sheaves on (Mat™ -sets*). Here we say
that a representation V of Mat™ is smooth if for each v € V| there exists an open
subgroup of GLq(Ox) which fixes v.

A.1.14. Let S = [[,.; Mat™ /K; be an object of (Mat™-sets*) where I is a finite
set and K; is an open subgroup of GLd(@X).

Let Y be an object in (Mat™-sets*). We let Y* =Y\ UmEMat*\GLd(ax) m-Y.
If f:Y — Z is a morphism in (Mat™-sets*), then f~!(Z*) C Y* holds in general.
We say that a morphism f : Y — Z is a fibration if f(Y*) C Z*. The following
two lemmas are easily checked.

Lemma A.18. Let f: Y =]
conditions are equivalent.
(1) fyr) =2z~
(2) f(Y*)C Z* and mo(f) is surjective.
(3) For each i € I, the restriction f|\ae-/x, : Mat™ /K; — Mat™ /Ky (py(4) 18 a
surjective map of sets, and wo(f) is surjective.

Mat™ /K; — Z =[]..;Mat™ /K;. The following

iel jeJ

O

Lemma A.19. Let Y 5% 7 L W pe morphisms in (Mat™ -sets*). Then fs o fi
satisfies the conditions in Lemma A.18 and mo(f1) : mo(Y) — mo(Z) is surjective if
and only if both f1 and fa satisfy the conditions in Lemma A.18. (]

Lemma A.20. Let M — N be a fibration in FC*. Then w'(M) — w(N) is a
fibration in (Mat™ -sets™).

Proof. We may assume M, N € C?. It suffices to prove that wf(M) — w'(N) is
surjective. By definition, the elements of w'(M) are represented by diagrams of the
form M « L < O x where L is an O x-lattice, and there is a similar expression for
those of wf(N). Since M — N is a fibration in FC% it is induced by a surjective
map M — N of Ox-modules. The induced map Surj(L, M) — Surj(L, N), where
Surj(—, —) denotes the set of surjective maps, is surjective. We see this by reducing
to the case where X is the spectrum of the ring of integers of a local field, and using
Nakayama’s lemma. Hence the assertion follows. ([l

Proposition A.21. The fiber product of two fibrations in (Mat™ -sets™) exists.

In view of Lemmas A.18 and A.19, we have the following corollary.
—~ t.d
Corollary A.22. The fiber product of two fibrations in .7-"CT eTiSts.

Proof of Proposition A.21. Let M, ELR My and M; EN M5 be two fibrations in
(Mat™-sets*). We construct the fiber product of f; and fo. We may assume
that each of mo(My), mo(Ms), and mo(Ms) consists of one element. Take open
subgroups K; C GLd(@X) such that M; = Mat™ /K; for each ¢ = 1,2,3 and Ky C
K3 D Ka. Then the set theoretic fiber product Mat™ /Ky Xypa- /x, Mat™ /Ky =
Hyex,\xs i, Mat™ /(Ki N gKzg71) is an object in (Mat™-sets*), and hence is the
fiber product in (Mat™-sets*). O
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APPENDIX B. RAMIFIED LOCAL L-FACTORS

by Seidai Yasuda

The aim of this section is to derive a formula (Proposition B.1) which expresses
the local L-factor of any ramified generic irreducible admissible representation of
GL, over a local field in terms of the eigenvalues of certain Hecke operators acting
on the space of new vectors. A similar formula for unramified representations is
well-known and is found, for example, in [Cog, Lecture 7).

B.1. Review of functors between categories of presheaves (cf. [SGA4,
Expose I]).

B.1.1. For two categories A, C, let Presh(C,.A) denote the category of presheaves
on C with values in A. In this section, we assume that any category denoted by a
letter C with some subscripts has a small skeleton.

B.1.2. Let f : C; — C2 be a covariant functor. Then the pull-back functor f* :
Presh(Cy, A) — Presh(C1, A) is canonically defined.

B.1.3. If the category A has a limit (= projective limit), there is a right adjoint
functor of f*, which we denote by f. : Presh(Cy,.A) — Presh(Cs,.A). The functor
f+« can be explicitly given as follows. Let F' be a presheaf on C;, and X be an
object in Cy. Then (f.F)(X) is a limit of F(Y). Here the limit is taken over (a
small skeleton of) the category of pairs (Y, «) of an object Y in C; and a morphism
a: f(Y) - X in C;. When g : Co — Cs is another covariant functor, we have

Gxfu = (gf)*

B.2. Ramified local L-factors. Let K be a non-Archimedean local field, Ok be
its ring of integers, and w be a uniformizer. Let (7, V') be an irreducible admissible
representation of G = GL4(K).

B.2.1. For an integer n > 0, let K,, C G be the open compact subgroup consisting
of the elements in GL4(Ok) whose last row is congruent to (0, ...,0,1) modulo w".
Let H(G,K,) be the Hecke algebra consisting of the bi-K,,-invariant functions on G
with compact supports. Then H(G,K,,) is a convolution algebra with respect to the
Haar measure of G satistying vol(K,,) = 1, whose unit is the characteristic function
of K,. Forr=0,...,d—1,let T}, , = Ty(ff,z € H(G,K,) denote the characteristic
function of the double coset

where in the above diagonal matrix w appears r times and 1 appears d — r times.
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B.2.2. From now on we assume that 7 is generic and is not an unramified principal
series. Let ¢ denote the conductor of 7. Then ¢ > 1 and V¥« is one-dimensional.
The action of H(G,K.) on Ve defines an algebra homomorphism yyv : H(G,K.) —
C.

Proposition B.1. Let notations and assumptions be as above. Let L(w,s) be the
local L-factor of w. Then we have

d—1
_ r(r—l)_ d—1
L(m,s) ' :Z(_l)rXV(Tcm)q 2 (% +s)’
r=0

where q is the cardinality of the residue field of Ok .

It is easy to check Proposition B.1 when 7 is supercuspidal. Suppose that 7 is
supercuspidal. Since every matrix coefficient of 7 has a compact support modulo
center, we have (xv(T¢.))" = 0 for sufficiently large n when r = 1,...,d — 1.
Hence xv(T¢,) =0 for r =1,...,d — 1. Thus we have Zf;é xv(Ter)g ™ =1=
L(m,s)~ %

To prove Proposition B.1 in general case, we use the classification of generic
representations given in [Be-Ze], [Ze].

Remark B.2. Perhaps Proposition B.1 is a consequence of [Ja-Pi-Sh, p. 208,
Théoréme].

B.3. Categorical description of parabolic inductions. Let us consider the
category C? for X = Spec (O).

B.3.1. For a partition d = (dy,...,dm),d=d1+--+dm, d1,...,dmn > 1 of d, let
&S denote the following category. An object in €9 is an object M in C? endowed
with a decreasing filtration

M =Fil'!M > Fi’M > --- D Fil™™ M =0

of M by sub Og-modules such that for each i = 1,...,m, Gr'M = Fil' M/Fil'™' M
is an object in C%. For two objects (M, Fil*), (N,Fil*) in £9, a morphism from
(M,Fil*M), (N, Fil*) is a Q-morphism from N to M such that the filtration Fil®* N
coincides with the the filtration induced from Fil®* M. We have the following diagram
of categories

Ch % oo x Clm B gd Tor, od

where, gr (resp. for) denotes the functor which sends an object (M, Fil®) in £9 to
the object (Gr'M,...,Gr™M) in C% x --- x C% (resp. the object M in C%).

Lemma B.3. Fori = 1,...,m, let (m;,V;) be a smooth representation of G; =
GLy, (K), and F; be the sheaf (with values in complex vector spaces) on FC% corre-
sponding to m;. Let 7’ = Ind(my X« -+ X m,,) denote the algebraic parabolic induction
of T X -+ X 7y, to GLy(K) (here the word algebraic means that we do not make any
modification by a modular character). Let F' be the sheaf on FC? corresponding to

7', Then we have a canonical isomorphism

F/|cd = fOI"*gI‘*(F1|Cd1 X... X Fm|cdm)

of presheaves on C?.
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B.3.2. Let F(£9), F(C% x---xC%m) denote the category of finite families of objects
in &9, C% x...xC% respectively. In a manner similar to that in Definition A.1, we
define sheaves on these categories. Then we can check that the category of abelian
sheaves on F(E€9) (resp. on F(C% x --- x C%)) is canonically equivalent to the
category of smooth representation of the standard parabolic subgroup of GL4(K)
corresponding to the partition d (resp. the group GLg4, (K) X ---GLg,, (K)).

The category F(C% x --- x C%) contains the direct product category FCh x
oo x FC% as a full subcategory. When an abelian sheaf F; on FC% is given for
eachi = 1,...,m, they canonically produce an abelian presheaf, which we denote by
[F1X---®E,], on F(CN x---xC%) whose restriction to FC™ x - - - x FC%™ is equal
to the presheaf Fy X---X F,,. For any morphism ¢ : M — N in FC¥ x ... x FC%m,
the push-forward map ¢, : [F1X---KF,,|(M) — [F; K- K F,,](N) is canonically
defined.

We define a covariant functor h : FC* — F(C% x --- x C%) in the following
way. For an object M in C?, let Flagd(M ) denote the set of decreasing filtrations

M =Fil'M >Fil’M >--- DFil""'M =0
of M by sub Og-modules such that for each i = 1,...,m, Gr'M = FiliM/FiliHM
is an object in C%. We define h(M) to be the disjoint sum
)= [ (G'M,... .G™M).
Flagd (M)
For an object M = [[; M; in C4, we set h(M) = LI h(M;).

Corollary B.4. In the notation of Lemma B.3, the sheaf F’ is given by the pull-
back

F =Rk R RF,.

B.3.3.

Proof of Lemma B.3. By the adjointness property of for,, it suffices to prove that
F" = for,gr* (F}|ca, ¥ Fy,|cam ) is the restriction of a sheaf on FC%. Let f: M — N
be a Galois covering in C? with Galois group G. We set h(M) = o erohary) PIM )z
and A(N) = Il exnny) MN)y. Then for any y € m(h(N)), the morphism
Lo (n( 1)) )=y BM )z — 1(N)y is a “Galois covering” in F(C™ x -+ x C%) whose
Galois group G, is a quotient of G. Hence F”'(IV) is isomorphic to the G-invariant
part of F/(M), whence the assertion follows. O

B.4. Description of push-outs.

B.4.1. For a morphism f : M — N in FC? and for & € mo(h(M)), we define the
multiplicity mult, (f) of f at 2 which is a power of q.

B.4.2. Anelement z € my(h(M)) corresponds to a pair (Mg, Fil®* My) of a connected
component My of M and a decreasing filtration
My=Fil' My > -+ D Mp41 =0

such that for i = 1,...,d, Gr'Mj is an object in C%. Let Ny « M|, — My be the
restriction of f to My, where Ny is an appropriate connected component of N. The
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filtration Fil®* M, on My induces a filtration Fil®* M) on M/ and a filtration Fil®Nj
on Ny. We define mult,(f) to be

oy [ CFEag: "
mult, (f) = #(Mo/M]) H )

RV M, - #FIP TN,

j=1
B.4.3.

Proposition B.5. Let the notations be as above. Then for any morphism f: M —
N in FC?, the push-forward map f, : F'(M) — F'(N) is canonically identified with
the map
F3 PR R B((M)) = [Fy R 8 B (h(N))

which is defined as follows. We set h(M) = [l eromnry M)z and
h(N) = Iyeno iy MN)y- On each x € mo(h(M)), we define h(f)s : h(M)y —
R(N)ro(h(f))(z) to be the restriction of the morphism h(f) : h(M) — h(N) to the
component h(M),. Then f. is given as the direct sum of the morphisms

multy (f)(A(f)e)x : [FL B B ] (h(M)2) — [FL B B E ] (AN ) ro (n(£)) (@))-

Proof. We easily reduce to the case where f : M — N is a Galois covering in
Ce. Moreover we may assume that M = (Ox/@")®? for some n, and that for
the @Q-morphism N « M’ — M giving f, M’ is equal to either M or N. Let
G be the Galois group of M over N. We set h(M) = [, cn,(nar) MM)s and
h(N) = I eno(n(ny) MN)y. For @ € mo(h(M)), let G, denote the Galois group of
h(M)y over h(N)x(n(s))(z)- Then it is easily checked that the cardinality of the
kernel of G — G, is equal to mult,(f). Hence the assertion follows. O

B.4.4. Let V be a smooth representation of GL4(F') and let F' be the corresponding
sheaf on FC? with values in complex vector spaces. Let us consider the cyclic
Ok-module N = Ok /w" of length n. Then for r = 1,...,d, Hecke operator
Ty : VE» — VEn induces an endomorphism F(N) — F(N) which we also denote
by Tp,,. Fori=1,...,d =1, let m, = mg-d)7 r, = r,,(«d) denote the morphism from
(O /@)®" @ N — N in C? given by the canonical inclusion N — (O /w@)®" @ N,
by quotient (Ok /w)®" & N — N respectively. Then we have
1

1GL,(Ok /w)

Corollary B.6. In the notation of Lemma B.3, suppose that mw; is generic of con-
ductor n; for each i = 1,...,m. Put N = O /@™t *t"m_ Then F'(N) is one-
dimensional and for i =0,...,d — 1, the eigenvalue of T, on F'(N) is equal to the

sum

r=rideet T,
ri<max(d; —n;,d;—1)

Thr= (rr)emy : F(Og/w") — F(Ok /@").

moor; iei di
oy

ni,r1 N, Tm

q21§i<j§m 7Ty

Proof. Let Fil*N be the decreasing filtration of N defined by Fil'N = N for i < 1,
Fil'N = @™t "i-1 N for 2 <i < m, and Fil'N = 0 fori > m+1. Let € mo(h(N))
be the connected component corresponding to this filtration. Then it is easily
checked that

[ KE,(h(N)) = [, K- B E,)(Fil' N/FiI’N, ..., Fil” N/Fil" ' N).
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Hence F'(N) = F;(Gr'N) ® --- ® F(Gr™N) is one-dimensional. Now let us
compute the eigenvalue of T,,, = m(n)*m; on F'(N). The only in-
volved connected components & € mo(h((Ox /@)% @ N)) are those which satisfy
7o(h(m,))(Z) = mo(h(r,))(Z) = x. For each such 7, the filtration on (O /w)®" &N
corresponding to Z is the direct sum of a filtration on (O /w)®" and the filtration
Fil*N on N. Hence (m,).r} is equal to

Z #GLy(Ok /w) H;Zl qdi(2i<j§m )
[, 4GL,, (Ok /w) - g7 (EicizmTs)

r=ritectrm,
r; <max(d; —n;,d;—1)

) ((ri),m ) @ @ (L)) Ty,

The assertion follows. O

Corollary B.7. In the situation of Corollary B.6, suppose that m; is a discrete
series for each i = 1,...,m. Let S C {1,...,m} be the subset defined by S =
{i | L(m;, 8) # 1}. Fori € S, let a; denote the eigenvalue of TT(Ldl) on Fy(Ok [w™).
Then fori=0,...,d — 1, the eigenvalue of T,,, on F'(N) is equal to

q—?”(7’—1)/2 Z H aiqzlgj«‘di

s'cs,ies!
§S' =r

d

B.5. Proof of Proposition B.1. By Corollary B.6 and Corollary B.7, the proof
of Proposition B.1 is easily reduced to the case where 7 is an unramified twist of
Steinberg representation, that is, 7 is isomorphic (up to an appropriate unramified
twist) to the quotient of the algebraic parabolic induction Ind(1(") x --- x 1)) of
d trivial representations 1) of GL;(K) to GL4(K) by the canonical image of the
direct sum

Ind(1® x 1M x - x 1MW) @ Ind (1M x 13 x 1) x ... x 1)
®---®Ind(1M x -+ x 1M x 1)),

Let Cz¢1, Cxe2 denote the constant sheaves on FC', FC? respectively. Put F’ =
h* [Cfcl X -X(Cj:cl] and Fg =h* [(C]:c’z XC]_‘cl X -focl}, F3 =h* [C]_‘cl X(C]:cz X
Crerx - xCgeily ..., Fg = h*[Crer X+ - - X Crer X Crez]. Then F/ Fy, ..., Fy are
the sheaves on FC? corresponding to Ind(1(M) x - -+ x 1)), Ind(1®) x 11 ... x 1D,
R Ind(l(l) X e x 1) 1(2))7 respectively. Hence the sheaf on FC? corresponding
to the Steinberg representation is (an appropriate unramified twist of) the quotient

sheaf F' of
d
Ppr-rF.
i=2

Let F” denote the quotient presheaf of @¢_,F; — F’. Then F" is a sub-presheaf of
F. Tt is known that Ok /ww?~! is one-dimensional. First we show that F” (O /w?~!)
is also one-dimensional, that is, F(Ox/w? 1) = F"(Ox/@w?1). We set S =
{2,...,d}. By definition, F(Ok/w?!) is canonically identified with the direct
sum

F(Or/w® ) = b c
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where « runs over the non-decreasing map from S to {0,...,d — 1}. Similarly for
i €8, F;(Ok/w?!) is canonically identified with the direct sum

Fy(Ok /w1 = b C,

a;:S—{i}—{0,...,d—1}

where «; runs over the non-decreasing map from S — {i} to {0,...,d — 1}. For a
map € : S — {0,1}, let a. : S — {0,...,d — 1} denote the non-decreasing map
defined by (i) =i — 2+ €(i). We also set s(e) = (—1)2: <), Define the C-linear
map 3 : F"(Og/w® ') — C by sending (ca)a to Y., s(€)ca.. Then it is easily
checked that for each i € S the composition F;(Og /w?™ ') — F(Ok/wi™) LN
is zero. Hence F” (O /w?1) is at least one-dimensional.

Let €g : S — {0} C {0,1} be the constant map on S. Let v € F'(Ok /@@~ !) the
element whose o = «,-component is 1 and whose o # o,-component is 0. For
r=1,...,d—1. set Ty_1,(v) = (Wr,a)a. We compute

Cr = B(Ta1,(v)) =Y 8(Wpa,-

€

Among the functions of the form «., a., is the function which takes the minimal

value at each point on S. It follows from this that C; = wyq, . It is easily
checked that Wra., =0 for r > 2 and w1, = L. This completes the proof of
Proposition B.1. ([

APPENDIX C. THE STEINBERG REPRESENTATION OF GL,; AND
IWAHORI-SPHERICAL WHITTAKER FUNCTIONS

by Seidai Yasuda

In this appendix, after recalling several basic facts on the Steinberg representa-
tion of GL4(K), we give an explicit formula of the Whittaker functions of Iwahori-
spherical vectors of the Steinberg representation of GL4 over a non-Archimedean
local field. The result is used in Section 7.

C.1. Notations. In this appendix, we fix a positive integer d > 1. Let G denote
the group scheme GL4 over Spec (Z). We use the following notations. Let B C G
denote the Borel subgroup of upper triangular matrices, N C B denote its unipotent
radical, and M C B denote the Levi subgroup of diagonal matrices. We also let
N~ C G denote the group of lower triangular matrices whose diagonal entries are
1.

Let W C G denote the constant subgroup scheme of permutation matrices. For
an element ¢ in the d-th symmetric group Sg, let w, = (d,(;);) € W(Z) denote the
permutation matrix corresponding to o. For o € S; we set

Uo)=t{(i,j) € Z* | 1 <i<j<d, o(i) >a(j)}

C.2. Basic facts on the Steinberg representation of GL;(K). Let K be a
non-Archimedean local field, Ok be its ring of integers, k be its residue field, and
¢ denote the cardinality of k. Let | | : K — C (resp. ord : K* — Z) denote the
non-Archimedean absolute value (resp. the normalized valuation) of K.
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C.2.1. Let us consider the Steinberg representation St of G(K). First we recall
its definition and its basic properties. Let ép : B(K) — R* denote the modu-
lar character of B(K'). Explicitly, the character 65 sends b = (b;;) € B(K) to
|b11|?bo2|473 - - - |baa| ~9TL. By definition, St is a unique irreducible subrepresen-
tation of

md§(1)5% = {6 : G(K) — C | (bg) = 55(b)é(g) for b€ B(K),g € G(K)}.

Let T C G(Of) denote the Iwahori subgroup. It is well-known that St* is a one-
dimensional C-vector space.

1
C.2.2. By Iwasawa decomposition G(K) = B(K)G(Og), the space Indgg;cﬁg is
canonically isomorphic to the space of C-valued functions on the coset B(Ox)\G(Ok)
and this isomorphism is compatible with G(Og)-action. In particular we have

an isomorphism ® : (Indgggcﬁs)z = Map(B(Ox)\G(Ok)/Z,C). We note that
G(Ok) = [lyew(x) B(Ok)wZ by Iwahori factorization.
Lemma C.1. The image ®(n?) is, as a C-vector space, generated by the function

b0 : B(Og)\G(Ok)/T — C which sends B(Ox)w,I to sgn(o)q ) for each o €
Sa-

Proof. Fori=1,...,d—1, let P, D B be the standard parabolic subgroup corre-
i—1 d—1—i

sponding to the partition (1,...,1,2,1,...,1) of d. Let dp, : P;(K) — R* denote
the modular character of P;(K). Explicitly, dp, sends (pjx) € P;i(K) to
\1011|d*1 e |pi—1,i—1|d72i+1|piipi+1,i+1_pi,i+1pi+1,i|d72i|pi+2,i+2|d72i73 s |Pdd|7d+1-

It is known (cf. [Cal) that St is equal to the kernel of the canonical homomorphism

d—1
G(K) 53 G(K)
Indy )07 — €D Indy) (K)azl.
et

Let Z; € G(Ok) denote the subgroup of the matrices which are congruent to 1
modulo the maximal ideal of Og. Given a function f : B(Ox)\G(Ok)/Z1 — C,
we define for each i = 1,...,d — 1 a function p;(f) : P,(Ox)\G(Ok)/I; — C as
follows: for y € P;(Ox)\G(Ok)/Z1, we put

pi()(y) = > f(@).
2€B(Or)\G(Ok)/T1,z—y
By Corollary B.4, there is a canonical commutative diagram
G(K G(K) ¢35
md§ %) 5% — Indi\() 62,

|

Map(B(Ox)\G(Ok)/T1,C) —— Map(P;(Ox)\G(Ok)/T1,C)

Therefore St” is isomorphic to the kernel of

(1, -, pa—1) : Map(B(Ok )\G(Ok)/Z,C) @Map (Ok)\G(Ok)/Z,C).
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which is, as is easily checked, generated by the function B(Ox)\G(Ok)/T — C

which sends B(Ok)w,G(Ok) to %. Since #B(k)w,B(k)/B(k) =

¢““) by Bruhat decomposition, we have the assertion. ([

C.2.3. Action of the Iwahori-spherical Hecke algebra. Let H = H(G(K),Z) denote
the convolution algebra of the Z-biinvariant compactly supported C-valued func-
tions on G(K). As a Haar measure of G(K), we take the one with vol(Z) = 1, so
that the characteristic function of Z is the unit of H. For g € G(K), the charac-
teristic function of the subset ZgZ C G(K) is an element in H which, by abuse of
notation, we also denote by ZgZ. The algebra H acts on the one-dimensional space
St which yields a C-algebra homomorphism v : H — C.

Lemma C.2 (cf. [Iw-Ma, §3], [Sh]). For o € S4, we have v(Zw,T) = sgn(o).

Proof. Let f € StT be the element corresponding to the function ¢y in Lemma C.1
via the isomorphism ®. Since ¢q takes the constant value sgn(o)q~*?) on Zw,Z,
we have

®(ZTw,T - f)(1) = vol(ZweT)sgn(c)q ") = sgn(o).
Hence v(Zw,Z) = sgn(o). O

C.3. Explicit formula of the Iwahori-spherical Whittaker functions. From
now on we fix a non-trivial additive character b : K — C* of conductor 0. Let
N C B denote the unipotent radical of B. Let ¢y : N(K) — C* denote the

character defined by ¥ ((n:;) = ¢(Z;j:_11 Miit1)-

It is well-known that there is an injective G(K)-homomorphism from Indgggéé

to the space Indi((ll?)zpjv of functions ¢ : G(K) — C satisfying ¢(ng) = ¥n(n)e(g)

for any n € N(K), g € G(K), and such a homomorphism is unique up to a non-zero

scalar. We say that a non-zero element Wh € Ind%((?)z/w is an [wahori-spherical

Whittaker function for St if it belongs to the image of St C St C Indggg 6%.

For o € Sy, let M(K), C M(K) denote the subset of elements of the form

diag(my,...,mg) with ord(m;) + 1 > ord(m;41) for 1 < i < d and ord(m;) >
ord(m;41) for 1 <i < d with o(¢) < o(i + 1).

Proposition C.3. There is a unique Iwahori-spherical Whittaker function Why €

Indg((?)ﬁw for St with Why(1) = 1. For m = diag(mq,--+ ,mq) € M(K) and for

o € S4, we have

sgn(o)g “ép(m), ifme M(K);,

(C.1) Wh (mw, ) = { 0, otherwise.

There is another description of the set M (K),. Put

S ={(n;;) e N (K) | ord(n;;) >i—jfor 1 <j<i<d}

Then
M(K); = {m € M(K) | (mw,)™*S(mw,) C T}.
By [Li, Theorem 4.1], there is a unique Iwahori-spherical Whittaker function

Wh; with Wh; (1) = 1 which satisfies the formula (C.1) for any m € M(K) and
o = 1. We will check the formula (C.1) for general ¢ in several steps.
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Lemma C.4. Let m € M(K)] and let 0 € Sq. Then we have Why(mw,) =
sgn(o)q~ )5z (m), that is, the formula (C.1) is valid for m € M(K); .

Proof. Since m € M(K);, we have mN(Og)m™! C Kervy. Since Zw,I =
N(Og)wsZ, we have Why (mg) = Wh; (mw,) for any g € Tw,Z. Since v(Zw,I) =
sgn(o) by Lemma C.2, we have

vol(Zw,Z)Whj (mw,) = sgn(c)Why(m).
Since vol(Zw,Z) = #(Zw,Z/T) = §(B(k)w,B(k)/B(k)) and §(B(k)ws B(k)/B(k))

¢"(?) by Bruhat decomposition, the assertion follows. (I

Let 0, € Sy denote the longest element: o;(i) =d+1—ifori=1,...,d.
Lemma C.5. The formula (C.1) is valid if it is valid for o = oy.

Proof. Since v(Zw,-1,,Z) = sgn(c~'o;) by Lemma C.2, we have
/ Wh; (mw,g)dg = sgn(o~ o) Why (mw,).
Iwo-_lalI

Let N, denote the subgroup wy, Nw,! N N of G. By Bruhat decomposition, the
left hand side is equal to

Z Why (ms(n)we,)
n€N, (k)

for any set theoretic section s of the canonical surjection N,(Og) — N, (k). Since

Whi(ms(n)w,,) = Why(ms(n)m™1 - muw,,)

= Yy (ms(n)m=)Why (mwy, ),

we have
N, (k
/ Whi (mws,g)dg = AN, (k)

Iwaflalz

-1
VO Jy o 77 i W)

Let M(K)! C M(K) denote the subset
M(K), ={m € M(K) | mN,(Og)m™" C Ker(¢y)}.
Then we have

sgn(o)i Ny (k)Why (mw,,), if m e M(K).

(C.2)  sgn(o)Why(mw,) = { 0, otherwise.

Hence the assertion follows from N, (k) = ¢““)=%?) and M(K); N M(K), =
M(K), , which are easily checked. O

Let 0. € Sy be the cyclic permutation: o.(i) =i+ 1 for i =1,...,d — 1 and
o.(d) = 1. Take a uniformizer w of K. For i = 0,--- ,d, let h; € G(K) be the
element

he = wpsTli = (g ding(w, 1,...., 1)),
i d—i
——
where II; = diag(%, ..., w,1,...,1) € M(K).

Lemma C.6. We have v(ZTh;T) = (—1)* =1,



66 SATOSHI KONDO AND SEIDAI YASUDA

Proof. Since h;Zh; 1 = 7, the double coset Th,Z consists of the single right coset
hi;Z. Hence we have Why (gh;) = v(Zh,Z)Wh;(g) for any g € G(K). Substituting
g=w,-i, we have

Wh1 (Hz) = V(IhZI)Whl (wggi ) .

Applying Lemma C.4, we have dp(Il;) = V(IhiI)sgn(a;i)qu(”;i), whence the
assertion follows. (]

The following corollary, together with Proposition B.1 is used in Section 5.2 and
Corollary of Section 7.

Corollary C.7. Let K C T denote the subgroup of matrices (g;;) € G(Ok) satis-
fying gijmodw = ;5 for 1 <i<d, 1< j<d—1. Let H({G(K),K) denote the
convolution algebra (with respect to the Haar measure of G(K) with vol(K) = 1)
of the K-biinvariant compactly supported C-valued functions on G(K). Let (w,V)
be a smooth representation of G(K) which is isomorphic to an unramified twist of
St. Let T € H(G(K),K) denote the characteristic function of Kdiag(1l,...,1,w)K.
Then for v e VI c VK, we have

(1T = L(m,s — S=1) 1y,
where L(m, s) is the local L-factor of .

Proof. We may assume that V = St. Since K/(KNI,KII; ') = Z/(ZNILZI; ) =
(Ok J@)®9=1 the canonical map KII;K/K — ZII,Z/Z is bijective. Hence we have

Tv=TIIIZ.v= IwUC_1I.h1.U =,
whence the assertion follows. O

Proof of Proposition C.3. By Lemma C.5, it suffices to prove the formula (C.1) for
g =0].

Let m = diag(myq,...,mg) be an element in M(K). By Lemma C.6, we have
Why (mwg, h;) = (—1) i(d — 1)Why (mw,,) for i =0,...,d — 1. On the other hand,
since mweg, h; = mlljwg, 51, we have
sgn(00)iNg, o1 (k) Why (mllwg, ), if mIl; € M(K),, i

h ) =
Whi (mwe, h;) { 0 otherwise,

by (C.2), where Ny, i and M(K)! . are as in the proof of Lemma C.5. Therefore,

i
ool

Why (miw,) = Sp(IL;) "*Why (mIlw,, ), if ord(m;) +1 > ord(m;i1),
ot 0 otherwise,
whence the assertion inductively follows from Lemma C.4 for o = o;. O
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