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Abstract. Special elements are constructed in the higher K-groups of Drin-

feld modular varieties and are shown to form an Euler system. Then a regulator
map is constructed from the K-groups to the space of automorphic forms us-

ing the local model, or the analytic uniformization, at infinity of the modular

variety. It is shown that the image under the regulator map of the special
elements is related to the special value of the L-function of Hecke eigenforms

on Drinfeld modular varieties.

Our result in the case of Drinfeld modular curves is the function field ana-
logue of Beilinson’s result on elliptic modular forms. The proof is not analogous

to that of Beilinson’s; we use that the image under the regulator map is also

an Euler system.

1. Introduction

Beilinson [Be] constructed special elements in the K-group of elliptic modular
curves. He showed that the image under the regulator map is related to the special
value of the L-function. One of our results is the analogue of Beilinson’s result ([Be],
see also [Ka] Theorem 2.6) in the context of Drinfeld modular varieties (Theorem
6.3). The special elements of Beilinson were shown to form an Euler system by
Kato ([Ka] Propositions 2.3, 2.4). Another result of ours is the construction of
Euler systems in the K-group of Drinfeld modular varieties (Theorem 3.7).

The naive positive characteristic analogue of the Beilinson conjectures, where
one describes the special values of L-function up to Q∗ in terms of the covolume
of the regulator map, is not so interesting for the reason that the L-function of
a variety over the function field of a curve over a finite field Fq is essentially a
congruence zeta function, which is a rational function in q−s. Over number fields,
there is the conjecture of Bloch and Kato, which describes the relation between the
special values of the L-function and arithmetic étale cohomology. The analogue
of the prime-to-p part of the conjecture may be easily formulated but is of less
importance, since the L-function over a function field is directly related to étale
cohomology. A naive approach for the p-part fails due to the lack of a good theory
of p-adic cohomology with integral structure for varieties of characteristic p > 0.
Although not in print, we believe that there is a conjecture which describes the exact
value of the L-function of a motive over a global field of positive characteristic in
terms of the regulator maps from K-groups. Our formula (Theorem 6.3) is to be
regarded as the first evidence in higher dimensions toward the conjecture.

During this research, the first author is supported as a Twenty-First Century COE Kyoto

Mathematics Fellow. The second author was partially supported by JSPS Grant-in-Aid for Sci-
entific Research 16244120.
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An Euler system is a series of elements in some cohomology theory, which satisfies
certain properties under norm maps. The properties are described in terms of local
L-factors. The application to Iwasawa theory is prominent, but not many examples
are known. We take as our definition the L-factor of automorphic representation,
whereas in the book of Rubin [Ru] the L-factor of Galois representation is used.
This is natural in the sense that most of the existing Euler systems are constructed
with a help from Shimura varieties. The bridge between the two definitions is given
by Langlands’ conjectural description of the cohomology of Shimura varieties. In
this paper, we construct abstract Euler systems for the L-factors of GLd (Theorem
2.9). This is applied to give Euler systems in the K-groups of Drinfeld modular
varieties (Theorem 3.7).

The sections of this paper are organized as follows. See also the introduction at
the beginning of each section for more technical details.

Let d be a positive integer. The results in Section 2 is based on the basic
observation that any set of d distributions gives rise to an Euler system of GLd. By
a distribution, we mean a system of elements which satisfy the distribution property.
Two well-known examples are cyclotomic units and Siegel units on elliptic modular
curves. Let A be the ring of finite adeles of some global field. A distribution is better
understood as a GLd(A)-homomorphism S(A⊕d) → V where S(A⊕d) is the space
of Schwartz-Bruhat functions (locally constant, compactly supported functions) on
A⊕d, and V is some representation of GLd(A). Any set of d distributions S(A⊕d)→
Vi (i = 1, . . . , d) then gives rise to a GLd(A)-homomorphism S(A⊕d) → V1 ⊗
· · · ⊗ Vd. We may call this homomorphism an Euler system. It is justified by the
following observation. For a finite set S of places, let φS ∈ S(Matd(A)) denote the
characteristic function of the set {X ∈ Matd(Ô) | Xmod v is invertible for any v ∈
S}, where Ô denotes the ring of integers of A. If S = S′q{v}, then the unramified
local L-factor at v, which we consider as an element in the local Hecke algebra at v,
appears in the description of the difference of the two functions φS and φS′ . This
fact plays a key role in the construction of Euler systems of cyclotomic units (d = 1,
A = A∞Q case) and of Kato’s Euler system of Beilinson elements on modular curves
(d = 2, A = A∞Q case); our construction is a generalization to arbitrary d.

For more general applications, for example in K-theory, we give a construction of
Euler systems in an abstract, categorical setting. As a convenient tool in describing
adelic calculations, we introduce the category FCd and a certain topology on the
category. We define special presheaves on this category which we call the Schwartz-
Bruhat sheaves. A distribution is then a morphism of presheaves from the Schwartz-
Bruhat sheaves, and an Euler system is the product of d distributions.

In the first half of Section 2, we list the basic definitions and properties of the
sheaf theory on the new category FCd. The proofs are formal and elementary but
long. We supply them in Appendix A for the reader’s convenience.

In Section 3, we give the construction of special elements in the K-groups of
Drinfeld modular varieties, and we prove that the system of those elements forms
an Euler system. The global units called Siegel units are constructed, and the
special elements are obtained as the image of those units under the symbol map.
This is of course modeled on the construction by Beilinson [Be] (and more explicitly
by Kato [Ka]) in the case of elliptic modular curves.

In Section 4, we prove a function field analogue of the Kronecker limit formula.
This states that the logarithms of Siegel units are expressed as a limit of Eisenstein
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series. This is proved in the case of Drinfeld modules of rank one by Gross and
Rosen ([Gr-Ro]), and in general by the first author ([Ko]). Here we give a shorter,
more conceptual proof. The formula is applied to the computation of the regulator
map in Proposition 6.2.

Studying the regulator map and the Kronecker limit formula, we arrive at an
integral over GLd(A), whose integrand is the product of a cusp form and the product
of d Eisenstein series. In Section 5, we show that the integral is related to the L-
function of the cusp form. The proof differs significantly from the case of elliptic
modular curves. In [Be] (see also [Ka]), the Rankin-Selberg method was used to
compute the integral. We prove that the product of Eisenstein series forms an Euler
system, and use the norm property to unfold the integral.

In the first half of Section 6, we define a regulator map from the K-group of
Drinfeld modular varieties to the group of harmonic cochains on the Bruhat-Tits
building. Our regulator is motivated by the regulator map in the Beilinson conjec-
tures. While the conjectures only handle the Archimedean place, there are a number
of papers in which non-Archimedean places are considered. The very rough idea
is that the regulator of a variety over a local field is simply the boundary map to
the special fiber in the localization sequence. Our approach is very close to that of
Consani ([Con]) and of Sreekantan ([Sr]), but differs from them in that we use rigid
analytic geometry. We use the fact that Drinfeld modular varieties are analytically
uniformized by Drinfeld symmetric spaces. In the second half of Section 6, we
calculate the image under the regulator map of the members of the Euler system
constructed in Section 3. Using the Kronecker limit formula and the result in Sec-
tion 5, we derive our main theorem describing the cusp form part of the image in
terms of the special values of L-functions of cuspidal automorphic representations.
In this description a quantity P (f) appears for each cusp form f . It is a certain
integral concerning f on the normalizer of the diagonal torus of GLd, and is called
the period of f .

Our main interest lies in the case where the local component of f at the specified
place is an Iwahori spherical vector of the Steinberg representations. Then L(f, s)
is conjecturally related to the L-functions of the Galois representation provided
by the (d − 1)-st l-adic cohomology groups of Drinfeld modular varieties. If we
further assume d = 2, the classical theory of Hecke and Jacquet-Langlands gives
us an expression for P (f) in terms of the special value of L(f, s) at s = 1

2 . In
Section 7, under certain conditions on f , we express P (f) as the product of L(f, 0)
and L(f, 1) when d = 3 and when the global field which we are considering is the
rational function field.

In Appendix A, we provide the detailed proofs of the results stated in the first
half of Section 2.

In Appendix B, we express the L-factor at a bad prime as the sum of Hecke
operators. This is included since we were not able to find an appropriate reference
which suits our application. Perhaps it follows from [Ja-Pi-Sh], and it is known to
experts. The approach taken there is again that of Section 2.

In Appendix C, we give an explicit formula (Proposition C.3) of the Iwahori-
spherical Whittaker functions of the Steinberg representation of GLd over a non-
Archimedean local field. This formula is a direct consequence of Li’s generalization
[Li] of the Casselman-Shalika formula, which expresses the values of the Whittaker



4 SATOSHI KONDO AND SEIDAI YASUDA

function on the diagonal torus. This is included since we need it for the calculation
of P (f) in Section 7.

Acknowledgment It was K. Kato who first constructed the symbols in the
higher K-groups of Drinfeld modular varieties. The first author was then asked if
those symbols form an Euler system and if they are related to the special values of
L-functions. He is grateful for numerous discussions.

The second author would like to thank several people for providing him with
the knowledge on the theory of automorphic forms needed to develop the theory
presented in this paper; he wishes to thank T. Moriyama and H. Narita for giving
him basic knowledge of Fourier expansions of automorphic forms, Y. Ishikawa and
T. Konno for valuable comments on the computation of Whittaker functions, and
M. Furusawa and T. Miyazaki for helpful suggestions concerning the periods of
automorphic forms.

2. Abstract construction of Euler systems for GLd from
distributions

We introduce the categories Cd and FCd and develop sheaf theory on them
following Verdier [SGA4]. Those categories are not closed under fiber products,
hence do not convey topology in the sense of Verdier, but we have a cofinality
lemma (Lemma A.3) to circumvent the difficulty. The notion of Galois coverings is
peculiar to our setting; it facilitates our exposition.

We consider three kinds of presheaves: sheaves, semi-sheaves, and presheaves
with transfers. An example of a sheaf is the space of automorphic forms as discussed
in Section 5. The presheaf constructed from K-theory (Section 3) is not a sheaf
but it is equipped with transfers. The theorems are stated in the more general case
of presheaves with semi-transfers. We work in this general setting, since there is a
semi-sheaf of interest which is not a sheaf. An example is the integral structure of
the l-adic sheaf of elliptic modular forms of weight greater than 2.

The connection with the adelic language is given by the functor ω (Section 2.1.4).
We have an equivalence of categories between the category of abelian sheaves on
FCd and the category of smooth GLd(AX)-modules (Section A.1.10).

We could have refrained from using these new categories if we were interested
only in Theorem 6.3, since its proof involves sheaves only. The translation of the
notion of presheaves with transfers in the adelic setting seems difficult.

The functor ω may be interpreted as the fiber functor in Galois theory [SGA1].
From this point of view, our sheaf theory is the Galois theory of the locally profi-
nite group GLd(AX). While classically only profinite groups appear as the Galois
group, this generalization suggests the extension of Galois theory to other algebraic
groups.

For the motivation of the Schwartz-Bruhat sheaves, the reader is referred to
Section 1.

In Section 2.1, we list the basic definitions and properties. The proofs are ele-
mentary but long, hence we give them in Appendix A. Our use of the term “fibra-
tion” should not be interpreted as alluding to homotopical algebra, and the term
“presheaf with transfers” to Voevodsky’s work.

The reader is advised to work out the case when d = 1. It may be applied to
proving the norm compatibility of cyclotomic units. The case when d = 2 is closely
related to the Euler system of Kato. We warn that the normalization is different
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from [Ka]; we choose (m∗,∗)∗ (see text for the notation) for our norm maps, while
Kato chooses (r∗,∗)∗ as his norm maps (see Remark 2.10 for more details).

2.1. Let d ≥ 1 be a positive integer. Let X be a regular noetherian scheme of Krull
dimension one such that the residue field at each closed point is finite.

2.1.1. We define the category Cd = CdX as follows. An object in Cd is a coherent
OX -module of finite length which admits a surjection from O⊕dX . For two objects
N and N ′ in Cd, the set HomCd(N,N ′) of morphisms from N to N ′ is the set of
isomorphism classes of diagrams

N ′ � N ′′ ↪→ N

in the category of coherent OX -modules where the left arrow is surjective and the
right arrow is injective. This definition of morphisms is due to Quillen ([Qu]) except
that here we take morphisms in the opposite direction.

We often consider the following two types of morphisms in Cd. Let N be an
object in Cd. For a sub OX -module N ′ of N , the morphism N ′ = N ′ ↪→ N in Cd is
denoted by rN,N ′ : N → N ′. For a quotient OX -module N ′′ of N , the morphism
N ′′ � N = N in Cd is denoted by mN,N ′′ : N → N ′.

2.1.2. Let FCd denote the category of finite families of objects in Cd. An object in
FCd is a pair (J, (Nj)j∈J) where J is a finite set and (Nj)j∈J is a family of objects
in Cd indexed by J . We denote the object (J, (Nj)j∈J) by

∐
j∈J Nj . We regard Cd

as a full subcategory of FCd. We define π0(
∐
j∈J Nj) to be the set J .

Definition 2.1. A presheaf on FCd is a contravariant functor from FCd to the cat-
egory of sets. A presheaf F on FCd is a sheaf if it satisfies the following conditions
(1), (2) and (3):

(1) The image of the empty set F (∅) is the set of one element.
(2) For two objects N and N ′ in FCd, the canonical map F (NqN ′)→ F (N)×

F (N ′) is an isomorphism.
(3) Let N → N ′ be a covering in FCd. If the fiber product N ×N ′ N exists

in FCd, then F (N ′) is canonically isomorphic to the difference kernel of
F (N) ⇒ F (N ×N ′ N) where the maps are induced by the first and the
second projections.

Let f : N ′ → N be a morphism in FCd, and let G be a subgroup of AutN (N ′).
We say that f is a Galois covering of Galois group G if the fiber product N ′×N N ′

exists and if the morphism
∐
g∈G(g, id) :

∐
g∈GN

′ → N ′×N N ′ is an isomorphism.
The inclusion of the category of sheaves on FCd into the category of presheaves on
FCd has a right adjoint, which provides us with the notion of the sheaf associated
to a presheaf.

2.1.3. Let N be an object in FCd and H be a subgroup of AutFCd(N). We denote

by N/H the sheaf associated to the presheaf HomFCd(−, N)/H. Let F̃C
d

denote
the full subcategory of the category of sheaves on FCd whose objects are sheaves
of the form N/H with N in FCd and H a subgroup of Aut(N).

The notions of π0 and covering are canonically extended to the category F̃C
d
.

We define the notions of sheaves on F̃C
d

and Galois coverings in F̃C
d

in a similar



6 SATOSHI KONDO AND SEIDAI YASUDA

manner. There is an equivalence of categories between the category of sheaves on

FCd and the category of sheaves on F̃C
d
.

2.1.4. We define the functor ω : F̃C
d
→ (Sets) as follows. We consider A⊕dX as the

space of row vectors. Given a presheaf F ∈ Presh(FCd), we define ω(F ) to be

ω(F ) = lim−→
L1⊂L2⊂AdX

F (L2/L1)

where the inductive limit is taken over the filtered ordered set of the pairs of two ÔX -
lattices (L1, L2) in AdX with L1 ⊂ L2. The order is defined as follows: for two such
pairs (L1, L2) and (L′1, L

′
2), (L1, L2) ≥ (L′1, L

′
2) if and only if L′1 ⊂ L1 ⊂ L2 ⊂ L′2.

We define the category (GLd(AX)-sets∗). An object S in (GLd(AX)-sets∗) is a
set with left GLd(AX)-action such that S has finitely many GLd(AX)-orbits, and
for any s ∈ S, the stabilizer at s is a compact open subgroup of GLd(AX).

Lemma 2.2. The functor ω : F̃C
d
→ (Sets) gives an equivalence between the

category F̃C
d

and the category (GLd(AX)-sets∗).

2.1.5. We use the following notations in Section 3.1.5. Let N be an object in

F̃C
d

and let H be a finite group acting on N . Let us consider the presheaf N 7→
N(N)/H. Then its associated sheaf defines an object in F̃C

d
. We denote this sheaf

by N/H. It is easily checked that the set ω(N/H) is canonically isomorphic to
ω(N)/H. We say that the action of H on N is free if the action of H on the set
ω(N) is free. In other words, the action of H on N is free if the canonical morphism
N → N/H is Galois and its Galois group is equal to H.

2.1.6. Variant. A morphism in Cd is called a fibration if it is isomorphic to a
morphism of the form mN,N ′ . A morphism f : M → M ′ in the category FCd is
said to be a fibration if it is a fibration in Cd on each component of M . We note
that in the category FCd, the fiber product of two fibrations always exists.

A presheaf F on FCd is a semi-sheaf if it satisfies the conditions (1), (2) in
Definition 2.1 and the following condition (3)′:

(3)′ If N → N ′ is a covering in FCd which is a fibration, then F (N ′) is canon-
ically isomorphic to the difference kernel of F (N) ⇒ F (N ×N ′ N) where
the maps are induced by the first and the second projections.

The inclusion of the category of semi-sheaves on FCd into the category of presheaves
on FCd has a right adjoint, which provides us with the notion of the semi-sheaf
associated to a presheaf.

Let N be an object in FCd and H be a subgroup of AutFCd(N). We denote

by (N/H)† the semi-sheaf associated to the presheaf HomFCd( , N)/H. Let F̃C
†,d

denote the full subcategory of the category of sheaves on FCd whose objects are
semi-sheaves of the form (N/H)†. The notions of π0 and covering are canonically

extended to the category F̃C
†,d

.

We say that a morphism f in F̃C
†,d

is a fibration if there exist two coverings

g1, g2 in F̃C
†,d

such that g2 ◦f ◦ g1 is a fibration in FCd. We define semi-sheaves on

F̃C
†,d

in a similar way. The fiber product of two fibrations in F̃C
†,d

always exists.
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There is an equivalence of categories between the category of semi-sheaves on FCd

and the category of semi-sheaves on F̃C
†,d

.
The following lemma is used in the proof of Lemma 2.11. See Lemma A.16 for

the proof.

Lemma 2.3. Let f : M → N be a fibration in FCd. Suppose a finite group H acts
equivariantly on M and N . Then the induced morphism m : (M/H)† → (N/H)†

is a fibration in F̃C
†,d

.

2.1.7. We define the functor ω† : Presh(FCd)→ (Sets) as follows. Given a presheaf
F ∈ Presh(FCd), we define ω†(F ) to be

ω†(F ) = lim−→
L⊂Ô⊕dX

F (Ô⊕dX /L)

where the inductive limit is taken over the ÔX -lattices in Ô⊕dX ordered by inclusion.

Let F = (
∐
j∈J Nj)/H be an object in F̃C

†,d
. We have a map

ω†(F ) = (
∐
j∈J

ω†(Hom(−, Nj)))/H → J/H = π0(F )

induced by the map which sends the elements in ω†(Hom(−, Nj)) to j.

Let f : F0 → F be a fibration in F̃C
†,d

. The map ω†(F ) → Z≥0, which sends
x ∈ ω†(F ) to #ω†(f)−1(x), factors through π0(F ). We call the induced map
deg f : π0(F )→ Z≥0 the degree of f .

In Section A.1.11, the degree is defined using the functor ω instead of ω†. The
two definitions coincide for fibrations. The following two lemmas follow from Lem-
mas A.13 and A.14.

Lemma 2.4. Let
F ′1

g1 //

�f ′

��

F1

f

��
F ′2

g2 // F2

be a cartesian diagram in F̃C
†,d

where all morphisms are fibrations. Then for any
y ∈ π0(F ′2), we have (deg f ′)(y) = (deg f)(π0(g2)(y)).

Lemma 2.5. Let N =
∐
i∈π0(N)Ni be an object in FCd and H be a subgroup of

AutFCd(N). Suppose that, for each i ∈ π0(N), the stabilizer Hi ⊂ H of i acts
faithfully on Ni. Then the canonical quotient map f : (N/{idN})† → (N/H)† is a
Galois covering, and we have (deg f)(i) = #H for any i ∈ π0((N/H)†).

2.2. Presheaves with transfers.

Definition 2.6. An abelian presheaf with transfers on F̃C
d

(resp. with semi-transfers

on F̃C
†,d

) is a presheaf F of abelian groups on F̃C
d

(resp. F̃C
†,d

) equipped with,

for each morphism (resp. each fibration) f : N → N ′ in F̃C
d

(resp. in F̃C
†,d

), a
homomorphism f∗ : F (N)→ F (N ′) satisfying the following properties:

(1) For any two composable morphisms (resp. fibrations) f and f ′, (f ◦ f ′)∗ =
f∗ ◦ f ′∗.
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(2) For any cartesian diagram

N ′
1

g1 //

�f ′

��

N1

f

��
N ′

2

g2 // N2

in F̃C
d

(resp. in F̃C
†,d

, with f , f ′ fibrations), we have g∗2 ◦ f∗ = f ′∗ ◦ g∗1 .
(3) The composite f∗ ◦ f∗ is the multiplication by deg f .

2.2.1. Any abelian sheaf on F̃C
d

(resp. semi-sheaf on F̃C
†,d

) has a unique structure

of abelian presheaf with transfers on F̃C
d

(resp. semi-transfers on F̃C
†,d

).

2.2.2. A homomorphism of abelian presheaves with transfers (resp. semi-transfers)
is a homomorphism of abelian presheaves compatible with f∗. If F is an abelian

sheaf (resp. semi-sheaf) on F̃C
d

(resp. on F̃C
†,d

), any homomorphism of abelian
presheaves from an abelian presheaf with transfers (resp. semi-transfers) to F is
compatible with f∗.

2.2.3. Hecke operators. Let N be an object in Cd, and N ′ be an object in F̃C
d
.

Suppose that N ′ is of the form
∐
j N

′
j/Hj such that N ′

j ⊕N is an object in Cd for
every j. We define an object N ′ ⊕ [N ] by

N ′ ⊕ [N ] =
∐
j

(N ′
j ⊕N)/(Hj ×AutOX (N)).

The two morphisms N ′
j = N ′

j ↪→ N ′
j ⊕N and N ′

j � N ′
j ⊕N = N ′

j ⊕N induce the
morphisms

rN ′⊕[N ],N ′ ,mN ′⊕[N ],N ′ : N ′ ⊕ [N ]→ N ′

in F̃C
d
.

Let F be an abelian presheaf with transfers on F̃C
d

(resp. semi-transfers on

F̃C
†,d

). The composite

(mN ′⊕[N ],N ′)∗r∗N ′⊕[N ],N ′ : F (N ′)→ F (N ′)

is called the Hecke operator for [N ] (resp. [N ]†) and is denoted by T[N ] (resp. T[N ]†).

Definition 2.7. A presheaf of rings with transfers on F̃C
d

(resp. semi-transfers on

F̃C
†,d

) is a presheaf G of rings on F̃C
d

(resp. on F̃C
†,d

) equipped with a structure
of abelian presheaf with transfers (resp. semi-transfers) satisfying the following
property:

• For any morphism (resp. fibration) f : N → N ′, x ∈ G(N) and y ∈ G(N ′),
we have f∗(x · f∗y) = f∗(x) · y and f∗(f∗y · x) = y · f∗(x).

Any sheaf of rings on F̃C
d

(resp. semi-sheaf of rings on F̃C
†,d

) has a unique

structure of presheaf of rings with transfers on F̃C
d

(resp. semi-transfers on F̃C
†,d

).

2.3. Distributions.
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2.3.1. We define two special abelian presheaves SB′ = SB′d, and SB∗
′

= SB∗
′

d on
FCd. For an object N in Cd, let SB′(N) (resp. SB∗

′
(N)) be the free abelian group

generated by the set Γ(X,N) (resp. Γ(X,N)\{0}). For a morphism N ′ p
� N ′′ i

↪→ N

from N to N ′ in Cd, define a homomorphism SB′(N ′)→ SB′(N) (resp. SB∗
′
(N ′)→

SB∗
′
(N)) by sending x ∈ Γ(X,N ′) (resp. x ∈ Γ(X,N ′) \ {0}) to the element∑

p(y)=x i(y). Finally, for an object
∐
j Nj in FCd, put SB′(

∐
j Nj) =

∏
j SB′(Nj)

(resp. SB∗
′
(
∐
j Nj) =

∏
j SB∗

′
(Nj)). We denote the sheaf (resp. semi-sheaf) as-

sociated to the presheaf SB′, SB∗
′

by SB, SB∗ (resp. SB†, SB∗†) respectively and
call them the Schwartz-Bruhat sheaf (of rank d), the punctured Schwartz-Bruhat
sheaf (of rank d) (resp. the Schwartz-Bruhat semi-sheaf (of rank d), the punctured
Schwartz-Bruhat semi-sheaf (of rank d)) respectively.

2.3.2. Under the equivalence described in Section A.1.9, the sheaf SB (resp. SB∗)
corresponds to the smooth GLd(AX)-module S(A⊕dX ) of locally constant, compactly
supported Z-valued functions on A⊕dX (resp. the submodule of S(A⊕dX ) of the func-
tions f with f(0) = 0). Similarly, the semi-sheaf SB† corresponds to the submodule
S(Ô⊕dX ) of S(A⊕dX ) which consists of the functions whose support is contained in
Ô⊕dX .

Definition 2.8. Let F be an abelian sheaf on FCd. A distribution (resp. punctured
distribution) with values in F is a homomorphism SB → F (resp. SB∗ → F )
of abelian sheaves on FCd. For an abelian semi-sheaf F , the notions of semi-
distribution and punctured semi-distribution are defined in a similar way.

2.4. Construction of Euler systems.

2.4.1. Let G be a presheaf of rings with semi-transfers on F̃C
†,d

. Suppose for
i = 1, . . . , d the following data are given.

(1) An abelian semi-sheaf Fi on F̃C
†,d

.
(2) A homomorphism αi : Fi → G of presheaves with semi-transfers.
(3) An object Ni in C1 and a generator bi ∈ Γ(X,Ni) as ÔX -module.
(4) A quotient OX -module N ′

i of Ni.

Let b′i denote the image of bi in N ′
i . We write N =

⊕d
j=1Nj , N′ =

⊕
j N

′
j and

N ′′
i = Ker(Ni � N ′

i).
We consider two settings which we call Situation I and Situation II. In Situation

I, we have a semi-distribution gi : SB† → Fi with values in Fi for each i. In Situation
II, we assume N ′

i 6= 0 and we have a punctured semi-distribution gi : SB†∗ → Fi
with values in Fi for each i. We put

κN,(bj) =
d∏
j=1

pr∗j (αjgj(Nj)[bj ]) ∈ G(N)

where prj (j = 1, . . . , d) is the morphism Nj = Nj ↪→ N from N to Nj given by
the inclusion of Nj into the j-th factor of N.

Theorem 2.9. Suppose that we are either in Situation I or in II.
Then the following statements hold.
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(1) If Supp (N ′′
i ) ⊂ Supp (N ′

j) for any 1 ≤ i, j ≤ d, then

(mN,N′)∗κN,(bj) = κN′,(b′j)
.

(2) Let ℘ be a closed point of X. Suppose that Supp (N ′′
i ) ⊂ {℘} ⊂ Supp (Ni)

for every i. Let e denote the number of i’s with ℘ 6∈ Supp (N ′
i). Then

(mN,N′)∗κN,(bj) =
e∑
r=0

(−1)rqr(r−1)/2
℘ T[℘⊕r]†κN′,(b′j)

,

where q℘ is the cardinality of the residue field at ℘.

Remark 2.10. There is a variant of Theorem 2.9 where the roles of mN,N′ and
rN,N′ are interchanged. The association N 7→ D(N) = HomÔX (N,AX/ÔX) gives
a covariant auto-equivalence of the category Cd. It is canonically extended to an
auto-equivalence D of the category FCd. A presheaf F on FCd is called a dual

semi-sheaf if F ◦D is a semi-sheaf. We define the dual version of the category F̃C
d

and the notion of presheaves with dual semi-transfers. Let us change the notations
and the situation in Theorem 2.9 at the following four points:

• The presheaf G is a presheaf of rings with dual semi-transfers.

• For i = 1, . . . , d, Fi is a dual semi-sheaf on F̃C
†,d

.
• For i = 1, . . . , d, N ′

i is a submodule of Ni and b′i ∈ N ′
i is an arbitrary

generator,
• In Situation I (resp. II), SB† (resp. SB†∗) is the dual semi-sheaf associated

to the presheaf SB′ (resp. SB∗
′
).

Then we have formulae describing the image of κN,(bj) under (rN,N′)∗, which are
proved in a manner similar to Theorem 2.9. This variant is not an immediate
consequence of Theorem 2.9, since we do not replace prj ’s by their duals in the
definition of κN,(bj). In [Ka], Kato states the norm relations concerning his system
on elliptic modular curves in the style of this variant. However, we will not pursue
this variant further since this has the disadvantage that extra parameters must
enter in order to describe the relations between bi’s and b′i’s. Details are left to the
reader.

2.5. Proof of Theorem 2.9 (1). We set N′′ =
⊕

iN
′′
i . By induction, we may

assume that lengthOX,xN
′
i⊗OX OX,x ≥ lengthOX,xN

′′
j ⊗OX OX,x for any x ∈ X and

for any i, j.
The morphism mN,N′ : N→ N′ is a Galois covering. Its Galois group is isomor-

phic to HomOX (N,N′′) ∼= AutN′(N) via the map which sends f ∈ HomOX (N,N′′)
to the OX -automorphism n 7→ n + f(n). By the assumption on the length of N ′

i

and of N ′′
i , the Galois group is also isomorphic to HomOX (N′,N′′).

Given an object M in Cd, by abuse of notation, we denote simply by M the
semi-sheaf (M/{idM})†. We define the objects and the morphisms of the following

diagram in F̃C
†,d

and show that it is commutative and that the middle square is
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cartesian:

N
βi //

rN,Ni

&&

mN,N′
��>

>>
>>

>>
> N i

γi //

δi

��
�

Ñi

δ′i
��

r
Ñi,Ni //
m
Ñi,N

′
i

##HHHHHHHHHH Ni

N′
γ′i //

rN′,N′
i

88(Ñi/Hi)†
εi // N ′

i .

Consider the subgroup H ′
i = HomOX (

⊕
j 6=iN

′
j ,N

′′) ⊆ Hom(N′,N′′) for each
i = 1, . . . , d. Let N i = (N/H ′

i)
†, and βi : N → N i be the Galois covering. Then

the canonical morphism

β1 × · · · × βd : N→ N1 ×N′ · · · ×N′ Nd

is an isomorphism.
Let Ñi denote the inverse image of N ′

i ⊂ N′ by the OX -homomorphism N →
N′. Let Hi be the group of the OX -module automorphisms on Ñi which induce
identities on both Ker(Ñi → N ′

i) and N ′
i . Then the morphism mÑi,Ni

factors

through (Ñi/Hi)† as in the diagram above since the morphism of presheaves factors
as HomFCd(−, Ñi)→ HomFCd(−, Ñi)/Hi → HomFCd(−, Ni).

Let us construct the morphism γ′i : N′ → Ñi/Hi. Let X be an object of FCd.
We define the map N′(X) = lim−→X′→X

Hom(X ′,N)→ (Ñi/Hi)†(X) as follows. Let
f ∈ HomFCd(X ′,N) for some Galois covering X ′ → X. By Lemma A.3, there exist
an object M ∈ FCd which is Galois over N ′

i (in particular Galois over X ′), and
morphisms g and h which make the following diagram commutative:

M
g //

h

��

Ñi

m
Ñi,N

′
i

��
X ′ f // N′

rN′,N′
i // N ′

i .

We see that the map HomFCd(X ′,N′) → HomFCd(M, Ñi)/Hi sending f to g is
well-defined, and that rN′,N ′

i
= εi ◦ γ′i.

Consider the morphism rN,Ñi : N → Ñi. Since the morphism of presheaves

factors as HomFCd(−,N) → HomFCd(−,N)/H ′
i → HomFCd(−, Ñi), rN,Ñi factors

as in the diagram.
Note that HomOX (N′,N′′)/H ′

i → Aut(Ñ) which maps f to (n 7→ n + f(n)) is
an isomorphism onto Hi. One can check that the middle square is cartesian.

By the definition of κN,(bj), we have

κN,(bj) = (β1 × · · · × βd)∗
d∏
j=1

p̌r∗j (rÑj ,Njγj)
∗(αjgj(Nj)[bj ])
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where p̌rj : N1 ×N′ · · · ×N′ Nd → N j denotes the j-th projection. Hence,

(mN,N′)∗κN,(bj) = (δ1 × · · · × δd)∗
d∏
j=1

p̌r∗j (rÑj ,Njγj)
∗(αjgj(Nj)[bj ])

=
d∏
j=1

(γ′j)
∗(δ′j)∗r

∗
Ñj ,Nj

(αjgj(Nj)[bj ]).

Let y be an element in Γ(Ñi), and y′ be its image in N ′
i . Suppose that N ′

i is
generated by y′. Let [y] ∈ SB∗†(Ñi) ⊂ SB†(Ñi), [y′] ∈ SB∗†(N ′

i) ⊂ SB†(N ′
i) be the

sections corresponding to y, y′. Then we have

δ′∗δ′∗([b]) =
∑

x∈Ker(Ñ→N ′)

[b+ x] = m∗
Ñ,N ′([b

′]).

The first equality is because the groupHi is isomorphic to Hom(N ′
i ,Ker(Ñi → N ′

i)),
and the second equality follows from the definition of the Schwartz-Bruhat sheaf.
Since δ′ is a fibration, it follows that δ′∗([y]) = ε∗[y′]. Applying this, we then have

(mN,N′)∗κN,(bj) =
∏d
j=1 r

∗
N′,N ′

j
(αjgj(N ′

j)[b
′
j ])

= κN′,(b′j)
.

�

2.6. Proof of Theorem 2.9 (2). By (1), we may and will assume that X =
Spec (OX,℘), e ≥ 1, N1 = · · · = Ne = N ∼= κ(℘), N ′

i = 0 for i = 1, . . . , e,
Ni = N ′

i 6= 0 for i = e+ 1, . . . , d, and we are in Situation I.

2.6.1. We set N′′ =
⊕e

i=1Ni
∼= κ(℘)⊕e. For a sub OX -module M of N′′, let HM

denote the group of the automorphisms of N′′ which stabilize M . For r = 0, . . . , e,

we define two objectsMr, M̃r in F̃C
†,d

as follows. We setM ′′
r =

⊕r
i=1Ni. We define

Mr to be (N/HM ′′
r
)†. The morphisms rN,N′ ,mN,N′ : N → N′ induce morphisms

Mr → N′ which are denoted rMr,N′ , mMr,N′ respectively.
Let h ∈ HM ′′

r
. We have two OX -automorphisms h|M ′′

r
: M ′′

r →M ′′
r and h⊕idN′ :

N = N′′ ⊕N′ → N. We define
∐
ν:N→M ′′

r
N →

∐
ν:N→M ′′

r
N, where ν runs over

the OX -homomorphisms from N to M ′′
r , to be the morphism which maps the α-th

component to the h|M ′′
r
◦ α-th component via the morphism h ⊕ idN′ . This gives

an action of HMr′′ on
∐
ν:N→M ′′

r
N. We let M̃r = ((

∐
ν:N→M ′′

r
N)/HM ′′

r
)† be the

quotient by this action.
The morphism

∐
ν:N→M ′′

r
N → N given by the identity map on every compo-

nent induces the morphism ηr : M̃r → Mr for each r = 0, . . . , e. The morphism∐
ν:N→M ′′

r
N→

∐
ν:N→N N given by the identity map from the ν-th component to

the component associated to the map N → M ′′
r ↪→ N induces fr : M̃r → M̃e for

each r. Let f ′r : Mr → Me be the natural quotient map. Then the following is a

commutative diagram in F̃C
†,d

for each r:

M̃r
ηr−−−−→ Mr

fr

y yf ′r
M̃e

ηe−−−−→ Me.
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2.6.2. For each i = 1, . . . , e, let αi : N → N⊕· · ·⊕N = N′′ ↪→ N be the morphism
given by the inclusion into the i-th factor. The morphism α′i : N→

∐
ν:N→N N→

Me, where the first morphism is the identity map to the αi-th component and
the second map is the natural quotient map, factors as N → M̃e → Me. We let
Me = M̃e ×Me · · · ×Me M̃e be the e-fold fiber product of ηe, and ι : N → Me be
the morphism (α′1, . . . , α

′
e).

2.6.3. For each r = 0, . . . , e, we let Mr denote the e-fold fiber product M̃r ×Mr

· · · ×Mr
M̃r of M̃r over Mr, and let f̃r = fr × · · · × fr : Mr →Me.

Lemma 2.11. Let the notations be as above. The morphisms ι and f̃j for each
j = 0, . . . , d are fibrations, and we have

deg ι =
e∑
r=0

(−1)rqr(r−1)/2
℘ deg f̃e−r.

Proof of Lemma 2.11. We recall some notations in q-calculus. For non-negative

integers s,m ≤ n, we let [s] = q℘
s−1

q℘−1 , [s]! = [s][s−1] · · · [1], and
[
n

m

]
=

[n]!
[m]![n−m]!

.

We pull everything back by the natural quotient map N → Me = N/Aut(N′′).
Note that Mr ×Me

N ∼=
∐

Aut(N′′)/HM′′
r

N, and M̃r ×Mr
N ∼=

∐
ν:N→M ′′

r
N, hence

Mr ×Mr
N ∼=

∐
ν1,...,νe:N→M ′′

r
N. Let Gr(N′′, r) be the set of r-dimensional sub-

spaces of N′′. Then the map which sends g ∈ Aut(N′′) to g(M ′′
r ) induces an

isomorphism Aut(N′′)/HM ′′
r
∼= Gr(N′′, r). We may then express Mr ×Me

N as∐
W∈Gr(N′′,r)

∐
ν1...,νe:N→W

N.

When r = e, Me ×Me
N =

∐
ν1,...,νe:N→N′′ N. The morphism f̃r × idN : Mr ×Me

N → Me ×Me
N maps the component corresponding to (W ; ν1, . . . , νe) to the

component corresponding to (iW ◦ ν1, . . . , iW ◦ νe) where iW : W ↪→ N′′ is the
canonical inclusion map.

With this explicit description of f̃j× idN for each j = 0, . . . , d, we see that f̃j for
each j is a fibration, by using Lemma 2.3. We also find that ι× idN is a fibration;
it implies that ι is a fibration.

Let ν = (ν1, . . . , νe) ∈ π0(Me ×Me
N) and let V =

∑e
i=1 Im νi. The degree

of f̃r × idN on ν ∈ π0(Me ×Me N) is then equal to the number of r-dimensional

subspaces of N′ containing V . Since
[
n

j

]
is the number of j-dimensional subspaces

in an n-dimensional κ(℘)-vector space, we have

deg(f̃r × idN) on ν

=


[
e− dimκ(℘) V

r − dimκ(℘) V

]
, if dimκ(℘) V ≤ r

0, if dimκ(℘) V > r.

Applying Gauss’ binomial formula [Ka-Ch, (5.5)], we have, on ν,
e∑
r=0

(−1)rqr(r−1)/2
℘ deg(f̃e−r × idN) =

{
0, if V 6= N′′

1, if V = N′′.
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On the other hand, the degree of ι× idN on ν is

deg(ι× idN) =
{

0, if V 6= N′′

1, if V = N′′.

Hence
e∑
r=0

(−1)rqr(r−1)/2
℘ deg(f̃e−r × idN ) = deg(ι× idN ).

Let ν ∈ π0(Me) = π0(Me ×Me N)/Aut(N′′) and ν ∈ π0(Me ×Me N) be an
element representing ν. By Lemma 2.4, deg(f̃e−r × idN)(ν) = deg f̃e−r(ν), and
deg(ι× idN )(ν) = deg ι(ν). The assertion follows. �

2.6.4. We return to the proof of Theorem 2.9 (2). For j = 1, . . . , e, the element

([ν(bj)])ν ∈ SB†(
∐

ν:N→N′′

N)

defines an element in SB†(M̃e), which we denote by b̃j . We put g̃j = αjgj(M̃e)(b̃j).
We also set

κ′ =
d∏

j=e+1

r∗N′,Njαjgj(Nj)([bj ]).

Let rMe,N′ , mMe,N′ denote the morphisms rMe,N′ ◦ (ηe × · · · × ηe), mMe,N′ ◦ (ηe ×
· · · × ηe) : Me −→Me → N′ respectively. We have

(mN,N′)∗κN,(bj) = (mMe,N′)∗ι∗ι∗((
e∏
j=1

p̃r∗j g̃j) · r∗Me,N′κ′)

where for j = 1, . . . , e, p̃rj : Me → M̃e is the j-th projection.
Applying Lemma 2.11, it is equal to

e∑
r=0

(−1)rqr(r−1)/2
℘ (mM,N′)∗(f̃e−r)∗f̃∗e−r((

e∏
j=1

p̃r∗j g̃j) · r∗Me,N′κ′).

For each r = 0, . . . , e and each i = 1, . . . , d, consider the following diagram:

M̃r

fr

��

M̃r ×Mr
· · · ×Mr

M̃r

ṗrioo ηr×···×ηr //

f̃r

��

Mr

f ′r

��
M̃e Me

p̃ri

oo ηe×···×ηe //

mMe,N′

88Me

mMe,N′// N′
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where ṗri is the projection to the i-th factor, and ηr and fr are as in Section 2.6.1.
Since the diagram commutes, we have

(mM,N′)∗(f̃r)∗f̃∗r ((
e∏
j=1

p̃r∗j g̃j) · r∗M,N′κ′)

= (mMe,N′)∗(((f̃r)∗f̃∗r
e∏
j=1

p̃r∗j g̃j) · r∗Me,N′κ′)

= (mMe,N′)∗(((f ′r)∗(ηr × · · · × ηr)∗
e∏
j=1

ṗr∗jf
∗
r g̃j) · r∗Me,N′κ′)

= (mMe,N′)∗(((f ′r)∗
e∏
j=1

(ηr)∗f∗r g̃j) · r∗Me,N′κ′)

= (mMr,N′)∗((
e∏
j=1

(ηr)∗f∗r g̃j) · r∗Mr,N′κ′).

Next we consider the diagram

M̃e M̃r

froo ηr // Mr
δr //

rMr,N′

��

mMr,N′

&&
N′ ⊕ [M ′′′

r ]
mN′⊕[M′′′

r ],N′
//

rN′⊕[M′′′
r ],N′

��

N′

N′ N′

where M ′′′
r =

⊕e
i=r+1Ni and δr : Mr → N′ ⊕ [M ′′′

r ] is the unique morphism
satisfying mMr,N′ = mN′⊕[M ′′′

r ],N′ ◦ δr. By Lemma 2.12 (1) below, we have

(mMr,N′)∗((
e∏
j=1

(ηr)∗f∗r g̃j) · r∗Mr,N′κ′)

= (mN′⊕[M ′′′
r ],N′)∗((

e∏
j=1

αjgj(N′ ⊕ [M ′′′
r ])(r∗N′⊕[M ′′′

r ],N′ [0])) · (δr)∗r∗Mr,N′κ′).

Let G be the subgroup of AutOX (N) of elements g such that g|N′ = idN′ ,
g(M ′′

r ) = M ′′
r , and gmodM ′′

r |N′ = idN′ . Here, gmodM ′′
r is the map N/M ′′

r →
N/M ′′

r induced by g : N→ N, and we use the canonical isomorphism N′ ⊕M ′′′
r
∼=

N/M ′′
r . Let G′ be the subgroup of AutOX (N) of elements g′ such that G′|N =

idN, g(N′′) = N′′, and g(M ′′
r ) = M ′′

r . Then G′ is a subgroup of G and G/G′

is isomorphic to HomOX (N′,M ′′
r ). Note that M ′′

r = N/G′, N′ ⊕ [M ′′′
r ] = N/G

and δr : M ′′
r → N′ ⊕ [M ′′′

r ] is the morphism induced from the canonical map of
presheaves HomFCd(−,N)/G′ → HomFCd(−,N)/G.

For each i = e + 1, . . . , d, let Gi be the subgroup of G generated by G′ and
the representatives of the subgroup

⊕
j 6=i HomOX (N ′

j ,M
′′
r ) ⊂ HomOX (N′,M ′′

r ) =
G/G′. We let Mr,i = (N/Gi)† and let β′i : Mr → Mr,i be the canonical quotient
map. Then β′e+1 × · · · × β′d : Mr → Mr,e+1 ×N′⊕[M ′′′

r ] · · · ×N′⊕[M ′′′
r ] Mr,d is an

isomorphism.
Note that the submodule N ′

i ↪→ N is fixed under the action of Gi, hence we have
a morphism Mr,i = (N/Gi)† → N ′

i which we denote hi.
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We have a commutative diagram

Mr

β′i //

rMr,N′

��

Mr,i
ε′i //

hi

��

N′ ⊕ [M ′′′
r ]

rN′⊕[M′′′
r ],N′ // N′

rN′,Ni
��

N′
rN′,N′

i

// N ′
i N ′

i .

By Lemma 2.12 (2) below, we have

(δr)∗r∗Mr,N′κ′

= (ε′e+1 × · · · × ε′d)∗(β′e+1 × · · · × β′d)∗r∗Mr,N′κ′

=
d∏

i=e+1

(ε′i)∗h
∗
i (αigi(N

′
i)(bi))

=
d∏

i=e+1

r∗N′⊕[M ′′′
r ],N′r∗N′,N ′

i
(αigi(N ′

i)(bi))

= r∗N′⊕[M ′′′
r ],N′κ′.

Hence the assertion follows. �

Lemma 2.12. Let the notations be as above.
(1) For j = 1, . . . , e, we have (γr)∗fr∗(b̃j) = δ∗rr

∗
N′⊕[M ′′′

r ],N′([0]) in SB†(Mr).
(2) For i = e + 1, . . . , d, we have (ε′i)∗h

∗
i ([bi]) = r∗N′⊕[M ′′′

r ],N′r∗N′,N ′
i
([bi]) in

SB†(N′ ⊕ [M ′′′
r ]).

Proof. (1) The following is a cartesian diagram in F̃C
†,d

∐
α:N→M ′′

r

N //

��
�

N

h

��
M̃r γr

// Mr.

We have
h∗(γr)∗f∗r (̃bj) =

∑
α:N→M ′′

r

[α(bj)] =
∑
x∈M ′′

r

[x]

= m∗
N,M ′′′

r ⊕N′([0]) = h∗δ∗rr
∗
N′⊕[M ′′′

r ],N′([0]).

Since h is a fibration, we have the assertion.
(2) Let H denote the group of the automorphisms g ∈ Aut(N) which induce

identities on both
⊕

j 6=iNj and N/M ′′
r . Let βr,i : N→ Mr,i and ε′ : Mr,i → N′ ⊕

[M ′′′
r ] be the canonical quotient morphisms induced by the identity map N → N.

Then the following diagram is cartesian:

N //

βr,i

��
�

N/H

��
Mr,i

ε′i

// N′ ⊕ [M ′′′
r ].
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Hence
β∗r,i(ε

′
i)
∗(ε′i)∗h

∗
i ([bi]) =

∑
g∈H

g∗rN,Ni [bi]

= m∗
N,N/M ′′

r
r∗N/M ′′

r ,Ni
([bi])

= β∗r,i(ε
′
i)
∗r∗N′⊕[M ′′′

r ],N′r∗N′,Ni
([bi]).

Since ε′i ◦ βr,i is a fibration, we have the assertion. �

3. Euler systems in the K-theory of Drinfeld modular varieties

The main purpose of this section is to prove Theorem 3.7. In Section 3.1, we
recall some facts on Drinfeld modular varieties. The function field analogue of Siegel
units and theta functions are defined in Sections 3.2 and 3.3. In the case of elliptic
modular curves, the algebraic construction of theta functions is due to Kato ([Ka]).
The construction of special elements follows the idea of Beilinson. The main result
is a rather direct consequence of the result in Section 2.

3.1. Drinfeld modular varieties.

3.1.1. Notations. Let C be a smooth projective geometrically irreducible curve
over the finite field Fq of q elements. Let F denote the function field of C. Fix a
closed point ∞ of C. Let q∞, F∞, | |∞ : F∞ → qZ

∞ ∪ {∞} denote the cardinality
of the residue field of C at ∞, the completion of F at ∞, and absolute value at
∞, respectively. Let A = Γ(C \ {∞},OC) be the coordinate ring of the affine
Fq-scheme.

3.1.2. We fix an integer d ≥ 1.

Definition 3.1 ([Dr]). Let S be an A-scheme. A Drinfeld module of rank d over
S is an A-module scheme E over S satisfying the following conditions:

(1) Zariski locally on S, E is isomorphic to Ga as a commutative group scheme.
(2) If we denote the A-action on E by ϕ : A→ EndS-group(E), then, for every

a ∈ A\{0}, the a-action ϕ(a) : E → E on E is finite, locally free of constant
degree |a|∞.

(3) The A-action on LieE induced by ϕ coincide with the A-action on LieE
which comes from the structure homomorphism A→ Γ(S,OS).

3.1.3. Let N be a torsion A-module. Let U = UN := SpecA \ SuppN be the
spectrum of the localization of A by the elements in A which is invertible on SpecA\
SuppN . Let S be a U -scheme, and (E,ϕ) be a Drinfeld module of rank d over S.

Definition 3.2. A level N -structure on (E,ϕ) is a monomorphism ψ : NS ↪→ E
from the constant group scheme NS to E in the category of A-modules schemes
over S.

3.1.4. Let us consider the sheafMd
N of groupoids which associates, to a U -scheme

S, the groupoid of triples (E,ϕ, ψ) where (E,ϕ) is a Drinfeld module over S and
ψ is a level N -structure. If N 6= 0 (resp. if N is of finite length), the functor
Md

N is representable by an affine U -scheme (resp. by a smooth Deligne-Mumford
U -stack). The proof of Proposition 5.3 [Dr] (see also Theorem 1.4.1 [La]), where
the case N = (I−1/A)⊕d is considered, may be applied to our case.
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3.1.5. Let S be a finite set of closed points of C, and

X = lim←−
S′⊂SpecA\S

(SpecA) \ S′

be the localization of SpecA at S, where in the projective limit S′ runs over the
finite sets of closed points of SpecA \ S. We consider the categories Cd, FCd and

F̃C
d

introduced in Section 2.
To each object N =

∐
i∈π0(N)Ni in FCd, we associate the moduli stackMd

N×UN
(C \ S). Thus we obtain a covariant functor Md,S from FCd to the category of
Deligne-Mumford stacks over A. For each morphism f : M → N in FCd, the
morphism Md,S(f) :Md,S(M)→Md,S(N) is a finite étale morphism.

Lemma 3.3. The functorMd,S preserves fiber products. In particular, if M → N
is a Galois covering in FCd with Galois group G, then Md,S(M)/G → Md,S(N)
is an isomorphism.

Proof. For a Drinfeld module E over T and an ideal I of A, let E[I] ⊂ E denote
the subgroup scheme of I-division points of E. We say that an isogeny u : E → E′

of Drinfeld modules of rank d over T is an S-isogeny if the kernel of u is contained
in E[I] for some ideal I ⊂ A with Supp (A/I) ⊂ S. We denote by (DrModT / ∼S)
the category obtained from the category of Drinfeld modules over T by inverting S-
isogenies. We define the S-Tate module TS(E) of E to be TS(E) = lim←−I E[I], which
we understand as an object in the 2-projective limit Et(T,AX) = 2- lim←−I Et(T,A/I)
of the category of étale A/I-sheaves over T , where I runs over the ideals of A with
Supp (A/I) ⊂ S. We denote by Et(T,AX)⊗AF the F -linearization of the category
Et(T,AX). For an object F in Et(T,AX), we denote by F ⊗A F the corresponding
object in Et(T,AX)⊗AF . Then the association E 7→ TS(E)⊗AF defines a functor
from the category (DrModT / ∼S) to the category Et(T,AX)⊗A F . We denote this
functor by VS .

Let E be an object in (DrModT / ∼S). For an object M =
∐
i∈π0(M)Mi in FCd,

we define an étale sheaf h(VS(E),M) of sets on T in the following way. For an étale
T -scheme T ′ and for i ∈ π0(M), let h′(VS(E),Mi)(T ′) be the set of equivalence
classes of triples (F , ι, p), where F = (FI)I is an object in Et(T ′,AX) such that for
every I, the stalk of FI at every geometric point is a free A/I-module of rank d,
ι : F⊗AF ∼= VS(E×T T ′)⊗AF is an isomorphism in the category Et(T ′,AX)⊗AF ,
and p : F � (Mi ⊗A A/I)I is an epimorphism in the category Et(T ′,AX) from F
to the system of constant sheaves (Mi ⊗A A/I)I . Then we define h(VS(E),M)
to be the sheaf associated to the presheaf T ′ 7→

∐
i h

′(VS(E),Mi)(T ′). At every
geometric point x of T , the stalk of h(VS(E),M) is isomorphic to the set ω(M).
This implies that the functor M 7→ h(VS(E),M) from FCd to the category of étale
sheaves on T preserves fiber products.

The stack Md
M is canonically identified with the functor which associates, to a

UN -scheme T , the groupoid of pairs (E,α) where E is an object in (DrModT / ∼S)
and α is an element in h(VS(E),M)(T ). Therefore, if N1 → N3 ← N2 is a diagram
in FCd such that the fiber product N1 ×N3 N2 exists, then the canonical functor
Md

N1×N3N2
(T ) → Md

N1
×Md

N3
Md

N2
(T ) gives an equivalence of groupoids. Hence

the assertion follows. �
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Let us extend the functor Md,S to a functor from F̃C
d
, which we also denote

by Md,S . For an object N/H in F̃C
d

as in Lemma A.5, we put Md,S(N/H) =

Md,S(N)/H. Let f : N1/H1 → N2/H2 be a morphism in F̃C
d

where, for i = 1, 2,
Ni/Hi is an object as in Lemma A.5. We take an object M in FCd and two
morphisms M → N1, M → N2 in FCd such that the composition M → N1

mN1,0−−−−→ 0
is a Galois covering and the diagram

N1

��

Moo // N2

��
N1/H1

// N2/H2

is commutative. Then by Lemma 3.3, the composition Md,S(M) →Md,S(N2) →
Md,S(N2/H2) canonically descends to a morphism Md,S(f) : Md,S(N1/H1) →
Md,S(N2/H2).

Let N be an object in F̃C
d

and let H be a finite group which acts freely on
N (see Section 2.1.5 for the definition). Then, by the definition of Md,S , we have
Md,S(N/H) ∼=Md,S(N)/H.

Lemma 3.4. The extended functor Md,S preserves fiber products.

Proof. Let N1 → N3 ← N2 be a diagram in F̃C
d
. Take an object M in F̃C

d
and

two morphisms M → N1, M → N2 such that the diagram

M −−−−→ N1y y
N2 −−−−→ N3

is commutative and that for i = 1, 2, 3, the morphism M → N i is a Galois covering.
For i = 1, 2, 3, we denote by Hi the Galois group of M over N i. Then we have

Md,S(N1 ×N3
N2)

∼= Md,S((M ×N3
M)/(H1 ×H2))

∼= Md,S(M ×N3
M)/(H1 ×H2)

∼= (
∐
h∈H3

Md,S(M))/(H1 ×H2)
∼= (Md,S(M)×Md,SMd,S(M))/(H1 ×H2)
∼= Md,S(N1)×Md,S(N3)

Md,S(N2).

�

Let N , N ′, N ′′ be objects in Cd. The morphism N = N ↪→ N ′ is sent via
this functor to the morphism (E, φ, ψ) 7→ (E, φ, ψ|N ) where ψ|N is the restriction
to the submodule N . The morphism N � N ′′ = N ′′ is sent to the morphism
(E, φ, ψ) 7→ (E′′, φ′′, ψ′′) where E′′ = E/φ(Ker(N ′′ � N)), and φ′′, ψ′′ are those
induced by the quotient map ([La, Lemma 1.4.1]). We use the notations such as
rN ′,N and mN ′′,N to denote the corresponding morphisms in the category of stacks
via this functor.

3.2. Theta functions.
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3.2.1. Let (E,ϕ) be a Drinfeld module of rank d over a reduced A-scheme S. Let
π : E → S denote the structure morphism. We regard S as a closed subscheme of
E via the zero section S ↪→ E.

Lemma 3.5. Let the notations be as above. There exists an element f ∈ Γ(E \
S,O×E) satisfying the following properties:

(1) For a ∈ A \ {0}, let Na : O×E\Kerϕ(a) → O
×
E\S denote the norm map with

respect to the finite flat morphism ϕ(a) : E \ Kerϕ(a) → E \ S. Then
Na(f) = f for any a ∈ A \ {0}.

(2) The order ordS(f) of zero of f at the closed subscheme S is equal to qd∞−1.

Proof. Let us consider the exact sequence

0→ O×S → π∗OE\S
ordS−−−→ ZS → 0

of Zariski-sheaves on S. The multiplicative monoid A \ {0} acts on OE\S by the
norm map Na for a ∈ A \ {0}. The above exact sequence induces the structure of
A \ {0}-module on ZS and on O×S , becomes an exact sequence of A \ {0}-modules,
and defines an element of the extension module Ext1Z[A\{0}]S (ZS ,O×S ) in the abelian
category of Zariski sheaves of A \ {0}-modules on E. Since A \ {0} acts trivially
on ZS and via the character | |d∞ : A \ {0} → q

dZ≥0
∞ on O×S , we have (|a|d∞ −

1)Ext1Z[A\{0}]S (ZS ,O×S ) = 0 for any |a|∞ ∈ A \ {0}. Since the greatest common
divisor of |a|d∞ − 1 as a runs through A \ {0} is qd∞ − 1, the extension group
Ext1Z[A\{0}]S (ZS ,O×S ) is annihilated by qd∞ − 1. In particular, the above exact
sequence splits after pulling back by qd∞ − 1 : ZS → ZS . Now let f be the image of
1 ∈ ZS by the section which gives the splitting. �

3.2.2. The choice of f is unique up to HomZ[A\{0}]S (ZS ,O×S ) ∼= µqd∞−1(S). Hence
fq

d
∞−1 does not depend on the choice of f . We denote it by θE/S ∈ Γ(E \ S,O×E)

and call it the theta function of (E,ϕ).
Zariski locally on S, the function θE/S is explicitly calculated in the following

way: Take an S-local defining equation f ′ of the divisor S ↪→ E of the zero section.
Then for any a ∈ A \ {0}, we have

θ

|a|d∞−1

qd∞−1

E/S =

(
f ′
|a|d∞

Na(f ′)

)qd∞−1

.

The following properties are easily checked:

Proposition 3.6. (1) Let g : S′ → S be a morphism from another reduced
scheme S′ to S, gE : E×S S′ → S be the morphism induced by g. Then we
have g∗EθE/S = θE×SS′/S′ .

(2) Let h : E → E′ be an isogeny (that is, a morphism of A-module schemes
with finite kernel) from another Drinfeld module E′ of rank d over S to E.
Then NhθE/S = θE′/S.

�

3.3. Siegel units. Let N be a torsion A-module, and let UN := SpecA \ SuppN
be the spectrum of the localization of A by the elements in A which is invertible
on SpecA \ SuppN . We let EdN → Md

N denote the universal Drinfeld module,
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and ψ : NMd
N
↪→ EdN the universal level structure. For b ∈ N \ {0}, we let

gN,b = ψ∗b θEdN/Md
N
∈ O(Md

N )∗ and call such elements Siegel units.
Let N be an A-module of finite length generated by at most d elements, and

N ′ be a sub A-module of N . By Proposition 3.6(1), we have r∗N,N ′gN ′,b = gN,b
for any b ∈ N ′ \ {0} ⊂ N \ {0}. Let ψ : N → N ′′ be a quotient A-module of N .
It follows from Proposition 3.6(1)(2) that, for any b′′ ∈ N ′′ \ {0}, m∗

N,N ′′gN ′′,b′′ =∏
b∈N,ψ(b)=b′′ gN,b.

3.4. Euler systems in K-theory.

3.4.1. Elements in K-theory. For i = 1, . . . , d, let Ni be a non-zero finite abelian
group which is generated by one element as an A-module. Let bi be an element of
Ni \ {0}. Put N =

⊕d
i=1Ni. For i = 1, . . . , d, let ιi : Ni ↪→ N be the canonical i-th

inclusion. Each induces fi :Md
N →Md

Ni
. Let κKN,(bi) = f∗1 gN1,b1 ⊗· · ·⊗f∗d gNd,bd ∈

O(Md
N)⊗d. We consider κKN,(bi) also as an element in Kd(MN) via the symbol map

O(Md
N)∗⊗d → Kd(Md

N). HereKd(Md
N) is the QuillenK-group of the schemeMd

N.

3.4.2. Main theorem.

Theorem 3.7. Let N ′
i be a quotient OC-module of Ni for i = 1, . . . , d. Let b′i

denote the image of bi in N ′
i . We write N′ =

⊕
j N

′
j and N ′′

i = Ker(Ni � N ′
i).

Let
m :Md

N →Md
N′ ×UN′ UN

be the morphism induced by mN,N′ :Md
N →Md

N′ . Since m is finite étale, we can
consider the transfer map m∗ : Kd(Md

N)→ Kd(Md
N ×UN′ UN) between K-groups.

Let κ′KN′,(b′j)
denote the image of κKN′,(b′j)

in Kd(Md
N′×UN′ UN). Then the following

statements hold.
(1) If SuppN ′′

i ⊂ SuppN ′
j for any 1 ≤ i, j ≤ d, then

m∗κ
K
N,(bj)

= κ′
K
N′,(b′j)

.

(2) Let ℘ be a closed point of C. Suppose that SuppN ′′
i ⊂ {℘} ⊂ SuppNi for

every i. Let e denote the number of i’s with ℘ 6∈ SuppN ′
i . Then

m∗κ
K
N,(bj)

=
e∑
r=0

(−1)rqr(r−1)/2
℘ T[℘⊕r]κ

′K
N′,(b′j)

.

Proof. We set S = SuppN. We consider the functor Md,S introduced in Sec-
tion 3.1.5. Let G be a presheaf of rings on FCd defined by setting G(N) =⊕

j≥0Kj(Md,S(N)) for an object N in F̃C
d
. Here Kj(Md,S(N)) denotes the

j-th algebraic K-group of the Deligne-Mumford stack Md,S(N) defined in [Gi2].

Let N → N
′
be a morphism in F̃C

d
. Since the morphism Md,S(N) →Md,S(N

′
)

of Deligne-Mumford stacks is finite flat, we have a transfer map Kj(Md,S(N
′
))→

Kj(Md,S(N)) between K-groups. The projection formula holds for this transfer
map. It follows formally from the definition of the product of the K-groups in [Wa,
§9]. Hence G is equipped with a structure of a presheaf of rings with transfers.

Let H be a sheaf on FCd defined by H(N) = O(Md
N ⊗A UN)∗ for an object N

in Cd. We define a morphism of presheaves ḡ : SB∗′ → H. Given a non-zero object
N in Cd and an element b in N \ {0}, we define ḡ(N)(b) to be the image of gN,b in
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O(Md
N ⊗A UN)∗. This induces a morphism of sheaves α : SB∗ → H since H is a

sheaf.
We have a morphism β : H → G of abelian presheaves with transfers given by

O(Md
N ⊗A F )∗ → K1(Md

N ⊗A F ) →
⊕d

j≥0Kj(Md
N ⊗A F ), for each object N in

Cd. Now the assertions follow immediately from Theorem 2.9. �

3.4.3. Given two non-zero ideals I ( A, J ( A, we set NI,J = (A/I)⊕d−1 ⊕ A/J
and put

κKI,J = κNI,J ,(1) ∈ Kd(Md
NI,J

).

The following corollary is a special case of the theorem.

Corollary 3.8. The system of elements (κKI,J)I,J indexed by two non-zero ideals
I, J is an Euler system. That is, the following statement holds.

Let I ′ ⊂ I, J ′ ⊂ J be ideals of A. We let ℘ be a prime ideal dividing I ′+J ′, and
assume that Supp (A/I ′) = Supp (A/I℘), Supp (A/J ′) = Supp (A/J℘). Let

m :Md
NI′,J′

→Md
NI,J

×UNI,J
UNI′,J′

be the morphism induced by mNI′,J′ ,NI,J
:Md

NI′,J′
→Md

NI,J
. Let κ′KI,J denote the

image of κKI,J in Kd(Md
NI,J

×UNI,J
UNI′,J′ ).

We let

e℘ =


0 if ℘|I, ℘|J,
1 if ℘|I, ℘ - J,
d− 1 if ℘ - I, ℘|J,
d if ℘ - I, ℘ - J.

Then

m∗κ
K
I′,J ′ =

e℘∑
r=0

(−1)rqr(r−1)/2
℘ T[℘⊕r]κ

′K
I,J .

�

3.4.4. Variant with characters. The elements κKI,J , which we have constructed in
the previous section, are related to the special values of L-functions of automorphic
forms (Section 6). As a variant, we give here a similar system of elements in the
d-th K-group of Drinfeld modular varieties which is related to the L-functions with
twists by an idele class character.

Let I ( A, J ( A be two non-zero ideals of A. We let A denote the ring of
adeles of F . Let χ : F×\A× → C× be a character of the idele class group of F
whose conductor cond∞(χ) divides I and whose ∞-component χ|F×∞ , is trivial.

Let FI,J be the field of constants of the F -scheme Md
NI,J

× F . Then FI,J is
the maximal abelian extension of F unramified outside I and completely split at
∞. Let AI,J denote the normalization of A in FI,J . Then there is a canonical
isomorphism

MNI,J
⊗A AI,J ∼=

∐
σ∈Gal(FI,J/F )

MNI,J
.

We define an element κKI,J,χ ∈ Kd(MNI,J
⊗A AI,J) ⊗Z Z[χ] to be

κKI,J,χ = (χ−1(σ)κKI,J)σ∈Gal(FI,J/F ).
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4. Kronecker limit formula

We prove a function field analogue of the Kronecker limit formula. The case
d = 1 is due to Gross and Rosen [Gr-Ro]. The second author follows the same
line to prove the general case [Ko]. Here we give a simpler, more conceptual proof.
First, we recall the analytic study at infinity of Drinfeld modular varieties. The
reader is referred to [De-Hu] for more details. We then give the analytic description
of theta functions and Siegel units which were defined in Section 3. In Section 4.2,
Eisenstein series with complex parameter s are defined. The limit as s tends to 0
is expressed in terms of those analytic functions (Proposition 4.4).

4.1. Generalities.

4.1.1. Notations. In this section, we use the notations C, F , ∞, q∞, A, and A
introduced in Sections 3.1.1 and 3.4.4. We also let O∞ denote the ring of integers
in F∞ and Â denote the profinite completion of A.

Let us consider the d-dimensional vector space V = F⊕d over F . We regard it as
the set of row vectors. We write V∞ = V ⊗F F∞, OV∞ = O⊕d∞ ⊂ V∞, V∞ = V ⊗F A,
and OV∞ = Â⊕d ⊂ V∞. Given a sub A-module Λ ⊂ V , we put Λ̂ = Λ⊗A Â ⊂ V∞.
We let V ∗ denote the dual of V ; the elements are regarded as column vectors in F .
We define similarly V ∗∞, OV∞∗ , V ∗∞, and OV ∗∞ .

4.1.2. Drinfeld symmetric space. We let X̃ = V ∗C∞\
⋃
H H where V ∗C∞ = V ∗⊗FC∞,

and H runs over the F∞-rational hyperplanes. Dividing out by the similitudes gives
the Drinfeld symmetric space: X = X̃/C×∞. The sets X̃, X are canonically regarded
as the sets of C∞-valued points of certain rigid analytic varieties over F∞ which,
by abuse of notation, are also denoted by the same symbols X̃, X.

4.1.3. Bruhat-Tits building. For 1 ≤ i ≤ d, we let T̃i = {· · · ) L−1 ) L0 )
L1 ) . . . |π∞Li = Lj+i+1 for all j ∈ Z}, where Lk(k ∈ Z) are O∞-lattices in
V∞ and π∞ ∈ F∞ is a uniformizer. We also let Ti denote the quotient T̃i/F×∞. In
particular, T̃0 is the set of O∞-lattices in V∞, which we also denote LatO∞(V∞). We
identify the set T̃0 with the coset GLd(F∞)/GLd(O∞) by associating to an element
g ∈ GLd(F∞)/GLd(O∞) the lattice OV∞g−1. Similarly, we identify the set T̃d−1

with the coset GLd(F∞)/I, where I = {(aij) ∈ GLd(O∞) | aij modπ∞ = 0 if i > j}
is the Iwahori subgroup, by associating to an element g ∈ GLd(F∞)/I the chain
of lattices (Li)i∈Z characterized by Li = OV∞Πig

−1 for i = 0, . . . , d. Here, for i =
0, . . . , d, we let Πi denote the diagonal d×d matrix Πi = diag(π∞, . . . , π∞, 1, . . . , 1)
with π∞ appearing i times and 1 appearing d− i times.

4.1.4. The order on lattices of rigid analytic functions. Let L be an O∞-lattice in
V∞. Take g ∈ GLd(F∞) such that L = OV∞g−1. We let UL = {τ ∈ X̃ |vg−1τ ∈
O∗C∞ for allv ∈ OV∞ \π∞OV∞}. Let h be a rigid analytic function on X̃. We define
ordL by ordLh = infτ∈UL |h(τ )|.

Given a lattice L ∈ T̃0 and a row vector a ∈ V∞, we let ordL(a) = sup{n ∈ Z|a ∈
πn∞L}, and |a|L = q

−ordL(a)
∞ . Note that |a|L = 1 if and only if a ∈ L \ π∞L.

Proposition 4.1. Given a lattice L ∈ T̃0 and a row vector a ∈ V∞, let fa be the
rigid analytic function on X̃ characterized by fa(τ ) = aτ for every column vector
τ ∈ X̃. Then we have ordLfa = ordL(a).
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Proof. Translating by an element g ∈ GLd(F∞), we may and will assume L = O⊕d∞ .
The set UOV∞ is equal to the set of column vectors τ ∈ O⊕d∞ such that τ modulo
the maximal ideal of O∞ does not belong to a κ(∞)-rational hyperplane. Hence,
if a = (a1, . . . , ad), ai ∈ F∞(1 ≤ i ≤ d), then ordLfa = inf1≤i≤d ord ai. The claim
follows. �

4.2. Theta functions and Siegel units. For an A-lattice Λ ⊂ V , and τ ∈ X̃, we
let Λτ = {xτ |x ∈ Λ}. We define σ(z) to be the rigid analytic function on z ∈ C∞:
σ(z) = z

∏
λ∈Λτ\{0}

(
1− z

λ

)
. We note that σ(z) defines a structure of a Drinfeld

module over C∞ on C∞/Λτ .
The theta function defined in Section 3.2.2 on C∞/Λτ has the following descrip-

tion. For any a ∈ A \ {0}, we have

θC∞/Λτ
(z)

|a|d−1
qd∞−1 =

(
σΛτ

Na(σΛτ
)

)qd∞−1

=

(
σΛτ (z)∏

a∈Λ/a σΛτ

(
z
a + aτ

a

))qd∞−1

.

Given b ∈ (V/Λ) \ {0}, we let gΛ,b = θC∞/Λτ
(bτ ). It is an invertible rigid

analytic function on X over F∞.

4.3. Eisenstein series.

4.3.1. We define C((q−s∞ ))-valued functions on the set T̃0 of lattices in V∞. (Here,
q−s∞ is regarded as a variable.) Given an A-lattice Λ ⊂ V and b ∈ (V/Λ) \ {0}, we
let

EΛ,b(L) =
∑

x∈V,xmodΛ=b

|x|−sL .

The sum is convergent in the (q−s∞ )-adic topology.
The following lemma is easily checked.

Lemma 4.2. Let Λ ⊃ Λ′ be two A-lattices in V , and b ∈ (V/Λ) \ {0}. Then
(1) EΛ,b =

∑
b′∈V/Λ′,b′modΛ=bEΛ′,b′ .

(2) If a ∈ A \ {0}, then EaΛ,ab = EΛ,b|a|−s.
�

4.3.2. Let A∞ denote the ring of finite adeles of F . There are canonical isomor-
phisms GLd(A∞)/GLd(Â) ∼= LatÂ(V∞) ∼= LatA(V ), where g∞ ∈ GLd(A∞)/GLd(Â)
is sent to OV∞g∞−1 in LatÂ(V∞), and to OV∞g∞−1∩V in LatA(V ). Then, given
Λ ∈ LatA(V ) and g∞ ∈ GLd(A∞), the lattice Λg∞−1 ∈ LatA(V ) is defined. An
element g∞ ∈ GLd(A∞) induces an isomorphism V/Λ→̃V/(Λg∞−1). We denote by
bg∞−1 ∈ V/(Λg∞−1) the image of b ∈ V/Λ via this isomorphism.

4.3.3. Convention. Given an element g ∈ GLd(A), we always denote by g∞ the
component at infinity, and g∞ the finite part. Given a function f on GLd(A), we
write f(g) = f(g∞, g∞) for g = (g∞, g∞) ∈ GLd(A).

4.3.4. Given an A-lattice Λ ⊂ V and b ∈ (V/Λ) \ {0}, we let

EΛ,b(g∞, g∞) = EΛg∞−1,bg∞−1(OV∞g−1
∞ ),

for (g∞, g∞) ∈ GLd(A).
We note that EΛ,b is a C((q−s∞ ))-valued function

EΛ,b : GLd(F )\GLd(A)/GLd(O∞)KΛ,b → C((q−s∞ ))
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on the double coset space GLd(F )\GLd(A)/GLd(O∞)KΛ,b where

KΛ,b = {g∞ ∈ GLd(A∞) |Λg∞−1 = Λ andbg∞−1 = b}
is a compact open subgroup of GLd(A∞).

4.3.5. We let Λ ⊂ V be an A-lattice, b ∈ (V/Λ) \ {0}, Λ̂ = Λ ⊗A Â ⊂ V∞, and
VA = V ⊗F A = V∞ × V∞.

We define a C((q−s∞ ))-valued function φΛ,b on VA. For x = (x∞,x∞) ∈ VA
where x∞ (resp. x∞) denotes the component at ∞ (resp. the finite part) of x. we
put

φΛ,b(x) = φ∞(x∞)φ∞Λ,b(x∞)

where φ∞Λ,b is defined to be the characteristic function on b + Λ̂ ⊂ V∞, and
φ∞(x∞) = |x∞|−sOV∞ .

Proposition 4.3. If g ∈ GLd(A), then EΛ,b(g) =
∑

x∈V φΛ,b(xg).

Proof. This is immediate from the definition of GLd(A) and of φΛ,b. �

4.4. Limit formula. We give a short proof of th e function field analogue of the
Kronecker limit formula proved in [Gr-Ro] and [Ko].

Proposition 4.4. Let Λ ⊂ V be an A-lattice, b ∈ (V/Λ) \ {0}, and (g∞, g∞) ∈
GLd(A). Then

ordOV∞g−1
∞
gΛg∞−1,bg∞−1 = (1− qd∞)

1− qd−s∞
1− q−s∞

EΛ,b(g∞, g∞)
∣∣∣∣
s=0

.

Proof. Let L ∈ LatO∞(V∞). Using Proposition 4.1, we have

ordLgΛ,b

=
(qd∞ − 1)2

|a|d − 1
×

[
|a|d

ordL(b) +
∑

λ∈Λ\{0}

(ordL(λ− b)− ordL(λ))


−
∑

a∈Λ/a

ordL

(
a + b
a

)
+

∑
λ∈Λ\{0}

(
ordL

(
λ− a + b

a

)
− ordL(λ)

)
]

for any a ∈ A \ {0}. We note that the summands ordL(λ − b) − ordL(λ) and
ordL(λ− a+b

a )− ordL(λ) are zero for almost all λ ∈ Λ \ {0}.
By the definition of the Eisenstein series, the expression above is equal to

(qd∞ − 1)2

|a|d − 1
1

logq∞
∂

∂s

|a|dEΛ,b(L)−
∑

a∈Λ/a

EΛ,(a+b)/a(L)

 .

From Lemma 4.2, we have∑
a∈Λ/a

EΛ,(a+b)/a(L) = EΛ/a,b/a(L) = EΛ,b(L)|a|s.

Applying this, the expression above is equal to

−(qd∞ − 1)
[
qd∞ − qs∞
1− qs∞

EΛ,b(L)
]
s=0

.

The proposition now follows from the definition of adelic Eisenstein series EΛ,b. �
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5. Zeta Integral

We recall the definition of automorphic forms in Section 5.1. Godement and
Jacquet [Go-Ja] first defined the L-function of automorphic representations of GLd.
We define the L-function of automorphic cusp forms explicitly in terms of Hecke
operators. The compatibility of the two definitions is given in Appendices B and C.

We compute the pairing of a cusp form and a certain product of Eisenstein
series (Theorem 5.1). The integral is expressed as the product of L-function and a
simpler integral. The key idea is to use the norm property of the Euler system of
the product of Eisenstein series.

In this section, we use the notations C, F , ∞, q∞, A, and A introduced in
Sections 3.1.1 and 3.4.4, and V , OV∞ , | |OV∞ , and A∞ introduced in Sections 4.1.1
and 4.3.2.

5.1. Automorphic forms. In Sections 5 and 6, we use the term “automorphic
form” in a more brutal sense than usual. Let R be a commutative ring. An R-valued
automorphic form for the general linear group GLd,F over F is just an R-valued
function on GLd(F )\GLd(A) which is invariant under right translation by an open
compact subgroup of GLd(A). We often omit the words “for GLd,F ”. An R-valued
automorphic form f is called a cusp form if there exists an open compact subset
K of GLd(A) such that the support of f is contained in Z(A)K where Z denotes
the center of GLd. The set of R-valued automorphic forms (resp. cusp forms) is an
R-algebra on which the group GLd(A) acts by right translation.

Let χ be a continuous R-valued character (we endow R with the discrete topol-
ogy) of the group Z(F )\Z(A). We say that an R-valued automorphic form f for
GLd,F has central character χ if the subgroup Z(A) of GLd(A) acts on f via χ.
We often identify Z with Gm and regard χ as a character of the idele class group
F×\A×.

For an R-valued character χ∞ of the∞-component Z(F∞) of Z(A), let AR(χ∞)
(resp. Acusp

R (χ∞)) denote the R-algebra of R-valued automorphic forms (resp.
cusp forms) on which Z(F∞) acts via χ∞. For two non-zero ideals I, J ofA,
let AR(I, J, χ∞) (resp. Acusp

R (I, J, χ∞)) denote the K∞
I,J -invariant part of AR(χ∞)

(resp. Acusp
R (χ∞)), where

K∞
I,J = {(gij) ∈ GLd(Â) | (gij)1≤j≤d ≡ (δij)1≤j≤d mod I for 1 ≤ i ≤ d− 1

and mod J for i = d}.

5.2. L-functions.

5.2.1. Hecke operators. We write diag(a1, . . . , ad) for the diagonal (d× d)-matrix
whose diagonal entries are a1, . . . , ad. Let π℘ denote the element in A× whose
component at ℘ is a uniformizer and whose components at other places are 1.

Let I, J ⊂ A be non-zero ideals. Let ℘ be a prime ideal, and let e℘ be the integer
defined in Corollary 3.8. We define the Hecke operators T℘,r and the dual Hecke
operators T ∗℘,r for each r = 0, . . . , e℘.

If ℘ - I, we define T℘,r (resp. T ∗℘,r) to be the operator given by the double coset

K∞
I,Jdiag($℘, . . . , $℘, 1, . . . , 1)K∞

I,J

(resp. K∞
I,Jdiag($−1

℘ , . . . , $−1
℘ , 1, . . . , 1)K∞

I,J)

where $℘ (resp. $−1
℘ ) appears r times.
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If ℘|I, we define T℘,0 and T ∗℘,0 to be the identity. If moreover ℘ - J , we define
T℘,1 (resp. T ∗℘,1) to be the operator given by the double coset

K∞
I,Jdiag(1, . . . , 1, $℘)K∞

I,J

(resp. K∞
I,Jdiag(1, . . . , 1, $−1

℘ )K∞
I,J).

5.2.2. Let f be a C-valued automorphic form. Suppose that f satisfies the following
conditions for some non-zero ideals I ( A, J ( A of A.

(1) The open compact subgroup K∞
I,J of GLd(A∞) acts trivially on f .

(2) Let ℘ be a prime ideal of A not dividing I +J , and define the integer e℘ as
in Corollary 3.8. Then f is an eigenform with respect to the operator T℘,r
for all r ≤ e℘.

These conditions imply that f has a certain central character χ with cond∞(χ)
dividing I ∩ J . Here cond∞(χ) denotes the finite part of the conductor of χ.

5.2.3. Let a℘,r denote the eigenvalue of the operator T℘,r on f .
For a C-valued (quasi-)character χ′ of F×\A× with cond∞(χ′) prime to I, we

define the L-function LI,J(f, s, χ′) of f twisted by χ′ to be the infinite product

LI,J(f, s, χ′) =
∏
℘-I+J

[
e℘∑
r=0

(−1)rχ′(℘)−ra℘,rq
r(r−1)

2 −r(s+ d−1
2 )

℘

]−1

in C((q−s∞ )) where ℘ runs through the prime ideals of A prime to I. The infinite
product LI,J(f, s, χ′) is convergent for the (q−s∞ )-adic topology. The compatibility
of the above definition of LI,J(f, s, χ) with the usual definition of L-function is
explained in Proposition B.1 of Appendix B and Corollary C.7 of Appendix C.

5.3. Zeta Integral. We let 1j denote the row vector (0, . . . , 0,
j

1, 0, . . . , 0) ∈ V =
F⊕d for each j = 1, . . . , d. Set Rd = C((q−s1∞ , . . . , q−sd∞ )). Given two non-zero ideals
I ′, J ′ of A and an element h = (h1, . . . , hd) ∈ GLd(F∞)× · · ·×GLd(F∞) (d times),
we consider the Rd-valued automorphic form

EI′,J ′,h =
d∏
j=1

EI′⊕d−1⊕J′,1j (ghj)(sj),

where EI′⊕d−1⊕J′,1j is as in Section 4.3.4. Then EI′,J ′,h is an element

in ARd(I ′, J ′, | |
−(s1+···+sd)
∞ ), where | |∞ : F×∞ → R× denotes the norm at ∞.

Let χ∞ be a continuous C-valued (quasi-)character of the multiplicative group
F×∞. Let I, J be two non-zero ideals of A. We fix a non-unit a∞ ∈ F×∞, a∞ 6∈ O×F∞ of
F∞ and take a continuous (quasi-)character χ′ of F×\A× satisfying cond∞(χ′)|(I∩
J) and χ∞(a∞) = χ′(a∞)d.

We fix a Haar measure dg℘ of GLd(F℘) for each place ℘ of F such that
∏
℘ dg℘

defines a Haar measure of GLd(A) with vol(GLd(ÔC)) = 1. Let us consider the
C-bilinear map

〈 , 〉χ′ : Acusp
C (I, J, χ∞)×ARd(I, J, | |−(s1+···+sd)

∞ )→ Rd[q
− s1+···+sd

d∞ ]

defined by

〈f1, f2〉χ′ =
∫
aZ
∞GLd(F )\GLd(A)

f1(g)f2(g)|det g|
s1+···+sd

d χ′(det g)−1dg,
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where | | denotes the idelic norm.

Theorem 5.1. Let f be an element in Acusp
C (I, J, χ∞). Suppose that, for every

prime ideal ℘ of A prime to I + J , and for every integer r with 0 ≤ r ≤ e℘ (see
Section 5.2.1 for the definition of e℘), f is an eigenform with respect to the operator
T℘,r. Then for any element h = (h1, . . . , hd) ∈ GLd(F∞)×· · ·×GLd(F∞) (d times),
we have

〈f, EI,J,h〉χ′ = LI,J(f,
s1 + · · ·+ sd

d
− d− 1

2
, χ′−1)vol(K∞

I,J)I∞,h(f, χ′),

where I∞,h(f, χ′) is the integral

I∞,h(f, χ′)

=
∫
aZ
∞\GLd(F∞)

f(g∞, 1)
∏d
j=1 |1jg∞hj |

−sj
OV∞
|det g∞|

s1+···+sd
d∞ χ′(det g∞)−1dg∞.

5.3.1. Proof of Theorem 5.1: Step 1. Application of Euler systems. Set
R = C((q−s∞ )). By considering the R-algebra AR(| |−s∞ ) as a representation of
GLd(A∞), we have (canonically up to canonical isomorphisms) a sheaf ÃR(| |−s∞ )
of R-algebras on FCd for X = SpecA, using Lemma 2.2.

For two non-zero ideals I, J of A, the R-algebra AR(I, J, | |−s∞ ) is canonically
identified with the R-algebra of the sections ÃR(| |−s∞ )((A/I)⊕d−1 ⊕ A/J) of the
sheaf ÃR(| |−s∞ ).

Given an A-lattice Λ ⊂ V and b ∈ (V/Λ) \ {0}, the function EΛ,b is an element
in AR(| |−s∞ ). For each j with 1 ≤ j ≤ d, by assigning hjEΛ,b to the characteristic
function of b+Λ̂, we obtain a punctured distribution SB∗ → AR(| |−s∞ ) with values
in AR(| |−s∞ ).

Proposition 5.2. The system of automorphic forms (EI,J,h)I,J indexed by two
non-zero ideals is an Euler system. That is, the following statement holds.

Let I ′ ⊂ I, J ′ ⊂ J be ideals of A. We let ℘ be a prime ideal dividing I ′+J ′, and
assume that Supp (A/I ′) = Supp (A/I℘), Supp (A/J ′) = Supp (A/J℘). Let e℘ be
as in Corollary 3.8. Then

TrI
′,J ′

I,J EI′,J ′,h =
e℘∑
r=0

(−1)rqr(r−1)/2
℘ T ∗℘,rEI,J,h.

Here T ∗℘,r is the dual Hecke operator defined in Section 5.2.1, and

TrI
′,J ′

I,J : ARd(I ′, J ′, | |
−(s1+···+sd)
∞ )→ ARd(I, J, | |

−(s1+···+sd)
∞ ) is the trace map.

Proof. We apply Theorem 2.9 to the punctured distribution SB∗ → AR(| |−s∞ )
defined above. The assertion follows by noting that T[℘⊕r] corresponds to the dual
Hecke operator T ∗℘,r for each r. �

For any non-zero ideal I ′ of A with I ′ ⊂ I ∩ J , we consider the element

EI,J,I′,h = TrI
′,I′

I,J (EI′,I′,h)

in ARd(I, J, | |
−(s1+···+sd)
∞ ). By Proposition 5.2, we have

EI,J,I′,h =
∏

℘|I′, ℘-I+J

(
e℘∑
r=0

(−1)rqr(r−1)/2
℘ T ∗℘,r

)
EI,J,h,
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where e℘ is as in Corollary 3.8 with J ′ = I ′. Thus

〈f, EI,J,I′,h〉χ′ = 〈
∏

℘|I′, ℘-I+J

(
e℘∑
r=0

(−1)rχ′(π℘)rq
r(r−1)

2 − r(s1+···+sd)
d

℘ T℘,r)f, EI,J,h〉χ′

and hence

〈f, EI,J,h〉χ′ =
∏

℘|I′, ℘-I+J

[
e℘∑
r=0

(−1)rχ′(π℘)ra℘,rq
r(r−1)

2 − r(s1+···+sd)
d

℘

]−1

〈f, EI,J,I′,h〉χ′ .

Next we consider the limit of EI,J,I′,h with respect to I ′. We note that for
all I ′ ⊂ I ∩ J , the function EI,J,I′,h is invariant under the action of K∞ × K∞

I,J ,
where K∞ =

⋂d
j=1 hjGLd(OF∞)h−1

j . It is easily checked that for any g ∈ GLd(A),
the value EI,J,I′,h(g) ∈ Rd converges (and hence uniformly converges on the coset
g(K∞ ×K∞

I,J)) to

EI,J,lim,h(g) =
∑

X∈GLd(F ),Xg∞∈K∞I,J

d∏
j=1

|1jXg∞hj |
−sj
OV∞

with respect to the (q−s1∞ , . . . , q−sd∞ )-adic topology. Since f is a cusp form, the
support of the function f(g)χ′(det g)−1 on aZ

∞\GLd(A) is compact. Hence

〈f, EI,J,h〉χ′ = LI,J(f,
s1 + · · ·+ sd

d
− d− 1

2
, χ′−1)〈f, EI,J,lim,h〉χ′ .

5.3.2. Proof of Theorem 5.1: Step 2. Unfolding the integral. Now to prove
the theorem, it suffices to prove the following proposition.

Proposition 5.3. Let the notations be as above. We have

〈f, EI,J,lim,h〉χ′ = vol(K∞
I,J)I∞,h(f, χ′).

Proof. Given two non-zero ideals I, J of A, we define a function φ̃I,J,h on GLd(A)
as follows. For g = (g∞, g∞) ∈ GLd(A), we let

φ̃I,J,h(g) = φ̃∞I,J(g∞)φ̃∞,h(g∞),

where φ̃∞,h(g∞) =
∏d
j=1 |1jg∞hj |

−sj
OV∞

, and φ̃∞I,J is the characteristic function of
K∞
I,J We have

EI,J,lim,h =
∑

γ∈GLd(F )

φ̃I,J,h(γg).

Hence 〈f, EI,J,lim,h〉χ′ is equal to∫
aZ
∞GLd(F )\GLd(A)

f(g)
∑

γ∈GLd(F )

φ̃I,J,h(γg)|det g|
s1+···+sd

d χ′(det g)−1dg

=
∫
aZ
∞\GLd(A)

f(g)φ̃I,J,h(g)|det g|
s1+···+sd

d χ′(det g)−1dg

= vol(K∞
I,J)

∫
aZ
∞\GLd(F∞)

f(g∞, 1)φ̃∞,h(g∞)|det g∞|
s1+···+sd

d∞ χ′(det g∞)−1dg∞

= vol(K∞
I,J)I∞(f, χ′).

�
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6. Regulators and special values of L-functions

6.1. Regulator. We will construct, in the spirit of [Con] and of [Sr], regulator
maps from the d-th K-group of Drinfeld modular varieties for GLd to the groups
of Z-valued harmonic cochains. Because of a lack of a satisfactory theory of higher
Chow groups in the context of rigid geometry, we give a somewhat ad-hoc method
to construct regulator maps. The reader is referred to [Bo-Gu-Re] for the basics on
rigid analysis. Using the Kronecker limit formula, we express the image under the
regulator map of the special elements in K-groups as the limit of the determinant
of a matrix whose entries are Eisenstein series.

6.1.1. Drinfeld symmetric space X introduced in Section 4.1.2 is a rigid analytic
space over F∞. For each integer m ≥ 0, let Km(X) (resp. Gm(X)) denote the m-th
K-group (resp. the m-th G-group) constructed from the exact category of locally
free coherent OX-modules (resp. coherent OX-modules).

6.1.2. For each integerm with 1 ≤ m ≤ d, we will construct a GLd(F∞)-equivariant
homomorphism

regX : Km(X)→ Map(Tm−1,Z).

There is a canonical continuous map

X→ |T |

from (the underlying topological space of) X to the geometric realization of the
Bruhat-Tits building T . For each cell σ ∈ T∗ =

∐
0≤i≤d Ti, let Uσ = Spm (Aσ)

denote the open affinoid corresponding to the closure of σ. The group PGLd(F∞)
acts both on X and on Ti. The action of g ∈ PGLd(F∞) induces for each σ ∈ T∗ a
canonical isomorphism Uσ

∼=−→ Ugσ.
We have a canonical homomorphism

Km(X)→ lim←−
σ∈T∗

Km(SpecAσ)

of K-groups, where the inverse limit is taken with respect to the inclusions of the
closure of cells. The group GLd(F∞) canonically acts on Kd(X). We have a similar
homomorphism also for G-groups.

For each cell σ ∈ T∗, let Uσ = Spf Aoσ (resp. Vσ = SpecAσ) denote the formal
model (resp. the analytic reduction) of the affinoid Uσ. Since the valuation on F∞
is discrete, Aoσ is an adic noetherian ring of finite Krull dimension. Furthermore,
it is known that Aσ = Aoσ ⊗OF∞ κ(∞) and that Vσ is a normal crossing variety of
pure dimension d− 1 over κ(∞).

The canonical homomorphism Km(Aσ) → Gm(Aσ) from K-theory to G-theory
combined with the localization sequence with respect to SpecAσ ⊂ SpecAoσ ⊃
SpecAσ yields a canonical homomorphism Km(Aσ)→ Gm−1(Aσ).

Let τ be a face of σ. We know that Uσ → Uτ is an open immersion ([Ge, III,1]).
In particular, the morphism Aoτ → Aoσ is flat, which implies that the diagram

Km(Aτ ) −−−−→ Gm−1(Aτ )y y
Km(Aσ) −−−−→ Gm−1(Aσ)
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is commutative. Thus we obtain a GLd(F∞)-equivariant homomorphism

Km(X)→ lim←−
σ∈T∗

Gm−1(Aσ).

For each σ ∈
∐

0≤i≤d−1 Ti, let Xσ denote the intersection of all irreducible com-
ponents in SpecAσ. Then Xσ is a smooth variety over κ(∞) of dimension d−1− i.
When i = d− 1, Xσ is isomorphic to Specκ(∞). When i = d− 2, Xσ is isomorphic
to the projective line over κ(∞) minus all the κ(∞)-rational points. Let σ ∈ Ti
with i ≤ m − 1 and take for j = 0, . . . , i a j-cell σj ∈ Tj such that σi = σ and
σj is a face of σj+1 for j = 0, . . . , i − 1. Then the connecting homomorphisms in
localization sequences yield a homomorphism

Gm−1(Aσ)→ Gm−1(Xσ0)→ Gm−2(Xσ1)→ · · · → Gm−1−i(Xσ).

It is easily checked that this homomorphism depends only on σ and does not depend
on the choice of σj ’s. Using this homomorphism, we obtain

Kd(X)→ lim←−
σ∈
∐

0≤i≤m−1 Ti

Gm−1−i(Xσ).

Looking at the Tm−1-component of this homomorphism, we obtain a GLd(F∞)-
equivariant map

regX,m : Km(X)→ Map(Tm−1,Z).
If m = d ≥ 2, by looking also at the Tm−2-component, we see that the image of
regX,d lies in the space of Z-valued harmonic (d− 1)-cochains.

6.1.3. There exists a canonical symbol map

{ , . . . , } : O(X)∗⊗m → Km(X).

Let reg′X,m : O(X)∗⊗m → Hom(T̃m−1,Z) be the composition of the symbol map
with regX,m. If f1, . . . , fm ∈ O(X)∗ and σ = (Li)i∈Z ∈ T̃m−1, then

reg′X,m(f1 ⊗ · · · ⊗ fm)((Li)i∈Z) = det

 ordL0f1 · · · ordLm−1f1
...

. . .
...

ordL0fm · · · ordLm−1fm

 .

Lemma 6.1. The homomorphism reg′X,m(f1 ⊗ · · · ⊗ fm) coincides
with regX,m({f1, · · · , fm}) in Hom(T̃m−1,Z).

Proof. This follows from the computation of boundary maps in localization se-
quences described in [Gi1, 7.21]. �

6.1.4. Let I ( A, J ( A be two non-zero ideals of A. We set NI,J = (A/I)⊕d−1⊕
A/J . We construct a regulator map

reg : Kd(Md
NI,J

× F∞)→ MapGLd(F )(Td−1 ×GLd(A∞)/K∞
I,J ,Z).

For (σ, g∞) ∈ (
∐

0≤i≤d−1 Ti) × GLd(A∞)/K∞
I,J , there is a canonical morphism

from the affinoid Uσ to the rigid analytic space over F∞ associated toMd
NI,J
×F∞.

This induces a homomorphism Kd(Md
NI,J
×F∞)→ Kd(Aσ) of algebraic K-groups.

Hence we obtain a homomorphism

Kd(Md
NI,J

× F∞)→ MapGLd(F )

(
GLd(A∞)/K∞

I,J , Kd(X)
)
.
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Composing this homomorphism with regX, we obtain the desired homomorphism

Kd(Md
NI,J

× F∞)→ MapGLd(F )

(
Td−1 ×GLd(A∞)/K∞

I,J , Z
)
.

Here, since Td−1 is identified with the coset GLd(F∞)/F×∞I via the isomorphism
in Section 4.1.3, an element in the target MapGLd(F )

(
Td−1 ×GLd(A∞)/K∞

I,J , Z
)

is
regarded as a Z-valued function on GLd(A).

Proposition 6.2. Let I ( A, J ( A be two non-zero ideals of A. For g ∈ GLd(A),
let ẼI,J denote the d× d matrix with entries in C((q−s∞ )) whose (i, j)-component is
EI⊕d−1⊕J,1i(gΠj−1)(s). Let χ : F×\A× → C× be a (quasi-)character of the idele
class group of F whose conductor cond∞(χ) divides IJ and whose ∞-component
χ|F×∞ is trivial. Then

reg(κKI,J,χ)(g) = χ(det(g))(1− qd∞)2d lim
s→0

1
(1− q−s∞ )d

det ẼI,J .

Proof. This follows from Proposition 4.4 and the isomorphism given in Section 4.1.3.
�

6.2. Special values of L-functions. We prove the second of our main theorems
(Theorem 6.3). This is implied by Lemma 6.4, which expresses the integral over
GLd(F∞) as the integral over the diagonal matrices.

6.2.1. Let I ( A,J ( A be two non-zero ideals of A. Let us consider the C-bilinear
map

〈 , 〉 : Acusp
C (I, J, 1)×AC(I, J, 1)→ C

(where 1 denotes the trivial character of the multiplicative group F×∞) defined by
the integral

〈f1, f2〉 =
∫
Z(F∞)GLd(F )\GLd(A)

f1(g)f2(g)dg

similar to the one introduced in Section 5.3.

6.2.2. Given an element σ in the d-th symmetric group Sd, we denote by wσ =
(wσ,∞, w∞σ ) the matrix (δiσ(j))1≤i,j≤d ∈ GLd(F ) diagonally embedded in GLd(A).
For f ∈ Acusp

C (I, J, 1), we define its period P (f) ∈ C by

P (f) =
∑
σ∈Sd

sgn(σ)
∫
Z(F∞)\wσ,∞M(F∞)I

f(g∞, 1)dg∞,

where M denotes the subgroup of diagonal matrices of GLd.

Theorem 6.3. Let χ : F×\A× → C× be a (quasi-)character of the idele class group
of F such that cond∞(χ) divides I ∩ J and χ|F×∞ is trivial. Let f ∈ Acusp

C (I, J, 1)
be a cusp form satisfying the conditions (1), (2) in Section 5.2.2. Then

〈f, reg(κKI,J,χ)〉 = (1− qd∞)2dlog q∞ lim
s→0

∂

∂s
LI,J(f, s− d− 1

2
, χ)vol(K∞

I,J)P (f).
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Proof. For g∞ ∈ GLd(F∞), let H(g∞) denote the d × d matrix with entries in
C((q−s∞ )) whose (i, j)-component isHi,j(g∞) =

∣∣1ig∞Π−1
j−1

∣∣−s
OV∞

. Combining Propo-
sition 6.2 with Theorem 5.1, we have

1
(1− qd∞)2dvol(K∞

I,J)
〈f, reg(κKI,J,χ)〉

= lim
s→0

1
(1− q−s∞ )d

LI,J(f, s− d−1
2 , χ)

×
∫
Z(F∞)\GLd(F∞)

f(g∞, 1) detH(g∞)|det g∞|sdg∞.

Hence the assertion follows from Lemma 6.4 below. �

Lemma 6.4. Let the notations be as above. We have∫
Z(F∞)\GLd(F∞)

f(g∞, 1) detH(g∞)|det g∞|sdg∞ = (1− q−s∞ )d−1P (f).

Proof. Let us fix g∞ and consider the matrix H(g∞). Then for each i = 1, . . . , d,
there exists a unique ni = ni(g∞) ∈ {1, . . . , d} such that Hi,j(g∞) = Hi,1(g∞) for
1 ≤ j ≤ ni and Hi,j(g∞) = q−s∞ Hi,1(g∞) for ni + 1 ≤ j ≤ d. If ni1 = ni2 for
some ii 6= i2, the i1-th row and i2-th row of H(g∞) are linearly dependent and
hence detH(g∞) = 0. Suppose that n1, . . . , nd are distinct. This occurs exactly
when there exists σ such that g∞ ∈ wσ,∞M(F∞)I. Then we have

∏d
i=1Hi,1(g∞) =

|det(g∞)|−s and hence

detH(g∞) = sgn(σ) detH(w−1
σ,∞g∞) = sgn(σ) |det(g∞)|−s detD(s),

where D(s) is the d× d matrix

D(s) =



1 q−s∞ . . . . . . . . . q−s∞
1 1 q−s∞ · · · q−s∞
...

. . .
...

...
. . . q−s∞

1 . . . . . . . . . . . . . . 1

 .

Simple calculation shows that detD(s) = (1 − q−s∞ )d−1, whence the claim follows.
�

7. Diagonal periods of cusp forms on GLd over function fields

In this section, we will do some computation concerning the period P (f) of a cusp
form f , which appeared in Theorem 6.3. When d = 3 and C is rational, imposing
some conditions on the cusp form, we describe P (f) in terms of the L-function
associated to f .

7.1. Notations. In this section, we use the notations C, q, F , ∞, Fq, q∞, A,
A, Â, O∞ and A∞ introduced in Section 3.1.1, 3.4.4, 4.1.1, and 4.3.2 We set
Ô = O∞× Â ⊂ A. Let κ(∞) denote the residue field of O∞. For each place v of F ,
let Fv, Ov denote the completion of F at v, the ring of integers of Fv respectively.
We denote by qv the cardinality of the residue field of Ov.

We denote by Div(C) the group of divisors on C. For D =
∑
v nv[v] ∈ Div(C),

we use the following standard notations: multv(D) = nv for each place v of F ,



34 SATOSHI KONDO AND SEIDAI YASUDA

degD =
∑
v nv[κ(v) : Fq], Supp (D) = {v | nv 6= 0}. For Di =

∑
v ni,v[v] ∈ Div(C),

i = 1, 2, we write D1 ≥ D2 if n1,v ≥ n2,v for all v. For an open subscheme U ⊂ C,
we denote by Div(U) ⊂ Div(C) the subgroup of elements D with Supp (D) ⊂ U .
For D ∈ Div(C) and a subset S ⊂ C, the divisor

∑
v∈S multv(D)[v] is denoted

by D|S . We denote by div : A× → Div(C) the group homomorphism which sends
a = (av)v ∈ A× to

∑
v ordv(av)[v] (we mainly use this notation for a ∈ A×).

Let Pic(A) = F×\A×/F×∞Ô∞× denote the ideal class group of A. It is a finite
abelian group. Form ∈ A×, let cl(m) denote the class ofm in Pic(A). The canonical
homomorphism cl : A× → Pic(A) factors through both div : A× → Div(C) and the
projection A× → A∞×. We use the notation cl(D) for D ∈ Div(C) and cl(m∞) for
m∞ ∈ A∞×.

For D ∈ Div(C), let L(D) ⊂ A denote the Ô-lattice

L(D) = {(av) ∈ A | ordv(av) + multvD ≥ 0 for all v}.

We also denote by H0(L(D)) (resp. H1(L(D))) the kernel (resp. cokernel) of the
composition F ↪→ A � A/L(D). For a pair (D,D′) of two divisors on C with
D′ ≥ 0, there exists a canonical long exact sequence

(7.1)
0 → H0(L(D −D′))→ H0(L(D))→ L(D)/L(D −D′)
→ H1(L(D −D′))→ H1(L(D))→ 0.

For such a pair (D,D′), we denote by (L(D)/L(D −D′))0 the subset

{(av)v∈Supp (D′) ∈ L(D)/L(D−D′) | ordv(av)+multv(D) = 0 for all v ∈ Supp (D′)}

of L(D)/L(D −D′) (when D′ = 0 we understand (L(D)/L(D −D′))0 = 0). Then
for a ∈ (L(D)/L(D−D′))0, its inverse a−1 ∈ (L(−D)/L(−D−D′))0 is well-defined.

7.2. Diagonal periods.

7.2.1. We fix a positive integer d ≥ 2 and consider the group scheme G = GLd over
C. Let G′ denote the group scheme G′ = GLd−1 over C, considered as a subgroup
of G via the embedding

g 7→
(
g 0
0 1

)
.

Let M ′ ⊂ G′ denote the subgroup of diagonal matrices, and let W̃ ′ = NG′(M ′) be
the normalizer of M ′ in G′. If W ′ ⊂ G′ denotes the subgroup of the permutation
matrices, then W̃ ′ is equal to the semi-direct product W̃ ′ = W ′ n M ′. For an
element σ in the (d − 1)-st symmetric group Sd−1, let wσ = (δσ(i)j) ∈ W ′(C)
denote the permutation matrix corresponding to σ.

7.2.2. We define ω̃s,∞ : W̃ ′(F∞) → C((q−s∞ ))× to be the unique continuous char-
acter whose restriction to M ′(F∞) is equal to |det( )|s∞ and whose restriction to
W ′(F∞) ∼= Sd−1 is equal to the signature character.

For each place v of F , we fix a unique Haar measure dmv of M ′(Fv) satisfying
vol(M ′(Ov)) = 1. They induce a Haar measure onM ′(A∞), W̃ ′(F∞) and W̃ ′(F∞)×
M ′(A∞).

Definition 7.1. For a cusp form f : G(F )\G(A)→ C, we put

P∞(f, s) =
∫
W̃ ′(F∞)

f(g∞)ω̃s,∞(g∞)dg∞.
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Since the restriction of f to G′(F∞) has compact support, P∞(f, s) is an element
in C((q−s∞ )).

In the rest of this section, we concentrate on computing P∞(f, s). In the course of
computation, we use the following adelic version of P∞(f, s). Let ω̃∞s : M ′(A∞)→
(C[Pic(A)⊕d−1]((q−s)))× denote the continuous group homomorphism which sends
m∞ = diag(m∞

1 , . . . ,m
∞
d−1) ∈ M ′(A∞) to |det(m∞)|s(cl(m1), . . . , cl(md−1)) ∈

C[Pic(A)⊕d−1]((q−s))×. Let ω̃s : W̃ ′(F∞) ×M ′(A∞) → (C[Pic(A)⊕d−1]((q−s)))×

denote the continuous group homomorphism which sends (g∞,m∞) ∈ W̃ ′(F∞) ×
M ′(A∞) to ω̃s,∞(g∞)ω̃∞s (m∞).

Definition 7.2. For a cusp form f : G(F )\G(A) → C, we define P (f, s) ∈
C[Pic(A)⊕d−1]((q−s)) to be the integral

P (f, s) =
∫
M ′(F )\(W̃ ′(F∞)×M ′(A∞))

f(g)ω̃s(g)dg.

Let ev0 : C[Pic(A)⊕d−1]((q−s)) to C((q−s)) denote the C((q−s))-linear map
which associates the coefficient of 0 ∈ Pic(A)⊕d. When f is M ′(Â)-invariant, we
have an equality P∞(f, s) = qd−1ev0(P (f, s)) in C((q−s)).

7.3. Let the notations be as before. In this section, we consider the following
conditions.

Conditions 7.3. (1) The G(A)-module generated by f is an irreducible cus-
pidal automorphic representation π =

⊗
v πv of G(A).

(2) f is factorizable, i.e. f =
⊗′

v fv for some fv ∈ πv.
(3) π∞ is isomorphic to the Steinberg representation of G(F∞) with trivial

central character, and f∞ ∈ π∞ is an Iwahori-spherical vector.
(4) There exists a place o 6=∞ satisfying the following properties.

• For v 6= o,∞, fv ∈ πv is a new vector (“vector essentielle”) in the
sense of [Ja-Pi-Sh] (in particular fv is G′(Ov)-invariant).
• For v = o, πo is isomorphic to an unramified twist of the Steinberg

representation of G(Fo), and fo ∈ πo is an Iwahori-spherical vector.
(5) d = 3 and the class of o in Pic(A) is trivial.
(6) C = P1

Fq , and ∞, o are the usual ones.

From now on we assume that Conditions 7.3 (1)-(3) are satisfied.

Remark 7.4. When d = 2, by the classical theory of Jacquet-Langlands, the inte-
gral P (f, s) is related to the L-function L(π, s, χ) of π with twists by an unramified
character χ of AF whose ∞-component is trivial. If d ≥ 3 and if fv is a new vector
for all v 6=∞, then P (f, s) vanishes for a trivial reason. This is a basic reason why
we introduce another place o in the condition (4) above.

Remark 7.5. Let f be a cusp form satisfying the conditions (1)-(4) in Condi-
tions 7.3. Let us describe the relation between the period in Section 6.2 and
P∞(f, s). Let us take a uniformizer $o of Fo. Define the cusp form f ′ by f ′(g) =
f(g · diag(1, . . . , 1, $o)) where diag(1, . . . , 1, $o) is the diagonal d × d matrix with
the diagonal entries 1, . . . , 1, $o. Let J denote the the prime-to-∞ part of the con-
ductor of π. We consider J as an ideal of A and write J as the product J = JoJ

∞,o

of the o-part and the prime-to-o part. Then f ′ is an element in Acusp
C (Jo, J∞,o, 1).
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For i = 0, . . . , d − 1, let hi ∈ G(F∞) be as in Appendix C.3 (for K = F∞). Then
we have

P (f ′) =
∑

σ∈Sd−1

sgn(σ)
d−1∑
i=0

(−1)i(d−1)

∫
M ′(F∞)

f(mwσhi)dm

= dP∞(f, 0)

by Lemma C.6.

Let M ⊂ G denote the subgroup of diagonal matrices, B ⊂ G (resp. B′ ⊂ G′)
denote the subgroup of upper triangular matrices, and N ⊂ B (resp. N ′ ⊂ B′)
denote its unipotent radical. We fix a non-trivial additive character ψ : F\A→ C.
For each finite place v of F , let ψv denote the v-component of ψ and ordvψ denote
its conductor. We also set ordψ =

∑
v ordvψ[v] ∈ Div(C). Let ψN : N(A) → C×

denote the character which sends n = (nij) ∈ N(A) to ψ(
∑d−1
i=1 ni,i+1). The v-

component of ψN is denoted by ψN,v. Let Wh =
∏
v Whv : G(A) → C denote the

Whittaker function associated to f and ψN , where, for each v, Whv is the Whittaker
function associated to fv and ψf,v. We put Wh∞ =

∏
v 6=∞ Whv : A∞ → C. We

have a Fourier expansion

f(g) =
∑

γ∈N ′(F )\G′(F )

Wh(γg),

where in the sum in the right hand side, Wh(γg) = 0 except for finitely many γ on
any compact subset of G(A).

Theorem 7.6. Suppose that Conditions 7.3 (1)-(6) are satisfied. Let µo ∈ C×
denote the unique complex number such that πo is isomorphic to the twist of the
Steinberg representation of G(Fo) by the unramified character of F×o which sends
a uniformizer in Fo to µo. For each place v of F , take an element av ∈ Fv with
ordv(av) = −ordvψ and put Cv = Whv(diag(a2

v, av, 1)). It is non-zero and does not
depend on the choice of av. Finally we put C(f) =

∏
v Cv. Then we have

P∞(f, s) = (1 + q)q4−4sµ−1
o C(f)L(π, s)L(π, s+ 1).

Corollary 7.7. Let the notations be as in Theorem 7.6 and in Remark 7.5 above.
We have

P (f ′) = 3(1 + q)q4µ−1
o C(f)L(f, 0)L(f, 1).

Let χ : F×\A× → C× be a character of the idele class group of F such that
cond∞(χ) divides J and χ|F×∞ is trivial. Then we have

〈f ′, reg(κKJo,J∞,o,χ)〉 = 3(1 + q)q4(1− qd∞)2dvol(K∞
Jo,J∞,o

)
×µ−1

o C(f)L(π,−1, χ)L(f, 0)L(f, 1).

Proof. The first equation is an immediate consequence of Theorem 6.3 and the
formula in Remark 7.5. The second equation follows from the first one combined
with Theorem 6.3, Proposition B.1 of Appendix B, and Corollary C.7 of Appendix
C. �

7.4. Strategy of proof of Theorem 7.6. Our proof of Theorem 7.6 consists of
three steps. The first (resp. second) step is Proposition 7.8 (resp. Proposition 7.9),
which is proved in Section 7.5 (resp. Section 7.8). The final step is given in Sec-
tion 7.9.
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7.4.1. Let B′− ⊂ G′ denote the Borel subgroup of lower triangular matrices, and
N ′− ⊂ B′− denote its unipotent radical. Let I ′ ⊂ G′(F∞) be the Iwahori subgroup,
that is, the subgroup of G′(O∞) of elements whose image in G′(κ(∞)) is an upper
triangle matrix. For an invertible matrix g ∈ G′(F∞) whose diagonal entries are
all 1, let IW(g) ⊂M ′(F∞) denote the open subset defined by

IW(g) = {m ∈M ′(F∞) | m−1gm ∈ I ′}.

Given an element b ∈ B′−(F∞), we write it in the form b = mn with m ∈M ′(F∞),
n ∈ N ′−(F∞), and then define an element Db,σ in C((q−s∞ )) to be

Db,σ =
∫

IW(w−1
σ nwσ)

Wh∞(mwσm′)|det(m′)|s∞dm′.

When we write b in the form b = n′m with m ∈M ′(F∞), n′ ∈ N ′−(F∞), we have

Db,σ = |det(m)|−s∞
∫

IW(w−1
σ n′wσ)

Wh∞(wσm′)|det(m′)|s∞dm′ = |det(m)|−s∞ Dn′,σ.

Proposition 7.8. Suppose that Conditions 7.3 (1)-(3) are satisfied.
(1) We have

P∞(f, s) =
∑

b∈B′−(F )

 ∑
σ∈Sd−1

sgn(σ)Db,σ

 ∑
σ′∈Sd−1

sgn(σ′)Wh∞(bwσ′)

 .

(2) We have

P (f, s) =
∑

n∈N ′−(F )

 ∑
σ∈Sd−1

sgn(σ)Dn,σ

 ∑
σ′∈Sd−1

sgn(σ′)I∞n,σ′

 ,

where, for σ′ ∈ Sd−1, I∞n,σ′ is the integral

I∞n,σ′ =
∫
M ′(A∞)

Wh∞(nwσ′m∞)ω̃∞s (m∞)dm∞.

7.4.2. In this paragraph we assume that Conditions 7.3 (1)-(5) are satisfied. For
each place v of F , the value Whv(m) of Whv at m = diag(m1,m2) ∈ M ′(Fv) de-
pends only on (ordv(m1), ordv(m2)) ∈ Z⊕2. We denote the value
by Whv(ordv(m1), ordv(m2)). We define a function Wh

′∞,o
: Div(C \ {∞, o})⊕2 →

C by Wh
′∞,o

(D1, D2) =
∏
v 6=∞,o Whv(multv(D1)− 2 ordvψ,multv(D2)− ordvψ).

Proposition 7.9. Suppose that Conditions 7.3 (1)-(5) are satisfied. Let ∆ψ denote
the set of pairs (D1, D2) ∈ Div(C \ {∞, o})⊕2 satisfying D1 ≥ D2 ≥ 0 and cl(D1 +
D2) = 3 cl(ordψ). For (D1, D2) ∈ ∆ψ, let ΣD1,D2 denote the set of pairs (D,m) ∈
Div(C \ {∞, o})× F× satisfying the following conditions.

• D ≥ 0.
• cl(D +D1|C\Supp (D) +D2|SuppD) = cl(2ordψ − (ordψ)|Supp (D)).
• D1 −D2 + div(m)|C\{∞,o} ≥ ordψ|C\{∞,o}.
• D = (D1 −D2 + div(m)− ordψ)|Supp (D).

For each (D1, D2) ∈ ∆ψ, define aψ(D1, D2) ∈ C to be

aψ(D1, D2) = a(0)(D1, D2) +
1
2
a∗ψ(D1, D2),
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where

a(0)(D1, D2) =
{

1, if cl(D1) = cl(2 ordψ) and cl(D2) = cl(ordψ),
0, otherwise

and

a∗ψ(D1, D2) =
∑

(D,m)∈ΣD1,D2

(1− ψ∞(
1
m

))(1− ψo(
1
m

))
∏

v∈Supp (D)

ψv(
1
m

).

Then P∞(f, s) is equal to

qd−1+3 deg(ordψ)sC̃∞(s)C̃o(s)
∑

(D1,D2)∈∆ψ

aψ(D1, D2)q− deg(D1+D2)·sWh
′∞,o

(D1, D2),

where

C̃∞(s) =
C∞q

1+s
∞

(1− q−1−s
∞ )(1− q−2−s

∞ )
and

C̃o(s) =
Coµ

−1
o q1+so

(1− µoq−1−s
o )(1− µoq−2−s

o )
.

7.5. Proof of Proposition 7.8. Before proving Proposition 7.8, we need some
preparations. Iwahori factorization G′(F∞) =

∐
σ∈Sd−1

N ′(F∞)wσM ′(F∞)I ′ ([Iw],
[Br-Ti]) yields a map β : N ′(F∞)\G′(F∞)→ Sd−1 of sets.

Lemma 7.10. For σ ∈ Sd−1, the set wσM ′(F∞)I ′∩B′−(F∞)wσ forms a complete
system of representatives of β−1(σ) = N ′(F∞)\(N ′(F∞)wσM ′(F∞)I ′).

Proof. We will prove that the composition

wσM
′(F∞)I ′ ∩B′−(F∞)wσ ↪→ N(F∞)wσM ′(F∞)I ′ � β−1(σ)

is bijective. The injectivity follows from B′−(F∞) ∩ N ′(F∞) = {1}. For the sur-
jectivity, it suffices to prove that any element in N ′(O∞)\(N ′(O∞)wσI ′) is rep-
resented by an element in wσI ′ ∩ B′−(O∞)wσ. By Bruhat decomposition for
G′(κ(∞)), any element in N ′(O∞)\(N ′(O∞)wσI ′) is represented by an element
in wσI ′ ∩ I ′−(O∞)wσ, where I ′− ⊂ G′(O∞) denotes the subgroup of elements
whose images in G′(κ(∞)) lie in N ′−(κ(∞)). It is easily checked that I ′− =
N ′(O∞)(1) · B′−(O∞), where N ′(O∞)(1) ⊂ N ′(O∞) denotes the subgroup of el-
ements whose images in N ′(κ(∞)) are equal to 1. Since w−1

σ N ′(O∞)(1)wσ ⊂ I ′, we
have wσI ′∩I ′−(O∞)wσ = N ′(O∞)(1) ·(wσI ′∩B′−(O∞)wσ). Hence the surjectivity
follows. �

For σ ∈ Sd−1, we say that an element g ∈ N ′(F∞)\G′(F∞) is σ-generic if
there exists an element there exists a unique element g(σ) ∈ B′−(F∞) such that
g is represented by g(σ)wσ. When g is σ-generic, such g(σ) is unique. If further
g ∈ N ′(F )\G′(F ) ⊂ N ′(F∞)\G′(F∞), then we have g(σ) ∈ B′−(F ).

Corollary 7.11. Suppose that σ ∈ Sd−1 and g ∈ N ′(F∞)\G′(F∞) satisfy β(g) = σ.
Then g is σ-generic and w−1

σ g(σ)wσ ∈M ′(F∞)I ′.

Proof. We take an element k ∈ wσM ′(F∞)I ′ representing g. By Lemma 7.10, we
may assume that k ∈ wσM

′(F∞)I ′ ∩ B′−(F∞)wσ. Hence g is σ-generic and we
have k = g(σ)wσ and w−1

σ g(σ)wσ = w−1
σ k ∈M ′(F∞)I. �
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Proof of Proposition 7.8. First we prove (1). For σ ∈ Sd−1 and g ∈ N ′(F∞)\G′(F∞),
let us define a map Hσ,g : M ′(F∞)→ Sd−1 by putting Hσ,g(m) = β(gwσm). Then
P∞(f, s) is equal to∑

σ∈Sd−1

sgn(σ)
∑

γ∈N ′(F )\G′(F )

∑
σ′∈Sd−1

∫
H−1
σ,γ(σ′)

Wh(γwσ,∞m)|det(m)|s∞dm,

where wσ,∞ is an element in G′(A) whose ∞-component is wσ and whose compo-
nents at the places other than ∞ are 1.

Lemma 7.12. Suppose that two elements σ, σ′ ∈ Sd−1 are given. Then for γ ∈
N ′(F )\G′(F ) and m ∈ M ′(F∞), we have Hσ,γ(m) = σ′ if and only if there exists
an element b ∈ B′−(F ) satisfying the following two properties.

(1) The class γ ∈ N ′(F )\G′(F ) is represented by bwσ′σ−1 ∈ G′(F ).
(2) If we write b in the form b = m′n′ with m′ ∈ M ′(F ), n′ ∈ N ′−(F ), then

m ∈ IW(w−1
σ′ n

′wσ′).

Proof of Lemma 7.12. Suppose that Hσ,γ(m) = σ′. Let us apply Corollary 7.11 for
g = γwσm. Since β(g) = σ′, g is σ′-generic and w−1

σ′ g
(σ′)wσ′ ∈ M ′(F∞)I ′. Hence

γ is σ′σ−1-generic and g(σ′) = γ(σ′σ−1)wσ′mw
−1
σ′ . Hence b = γ(σ′σ−1) satisfies (1).

Since g(σ′) = bwσ′mw
−1
σ′ , we have m−1w−1

σ′ bwσ′m = m−1w−1
σ′ g

σ′wσ ∈ M ′(F∞)I ′.
Write b = m′n′ as in (2). Then sincem−1w−1

σ′ m
′wσ′m·m−1w−1

σ′ n
′wσ′m ∈M ′(F∞)I ′,

we have m−1w−1
σ′ n

′wσ′m ∈ I ′. Hence (2) follows.
Conversely, suppose that there exists b ∈ B′−(F ) satisfying (1) and (2). Then by

(2), we have m−1w−1
σ′ bwσ′m ∈ M ′(F∞)I ′, so that bwσ′σ−1 · wσm ∈ wσ′M ′(F∞)I ′.

Hence, by (1), we have Hσ,γ(m) = σ′. �

We return to the proof of Proposition 7.8. By Lemma 7.12, P∞(f, s) is equal to∑
σ,σ′∈Sd−1

sgn(σ)
∑

b∈B′−(F )
b=m′n′

∫
IW(w−1

σ′ n
′wσ′ )

Wh(bwσ′σ−1wσ,∞m)|det(m)|s∞dm.

Since
Wh(bwσ′σ−1wσ,∞m) = Wh∞(bwσ′m)Wh∞(bwσ′σ−1)

= Wh∞(m′wσ′m)Wh∞(bwσ′σ−1)

for b = m′n′ ∈ B′−(F ) and m ∈ IW(w−1
σ′ n

′wσ′), we have,∑
σ,σ′∈Sd−1

sgn(σ)
∫

IW(w−1
σ′ n

′wσ′ )

Wh(bwσ′σ−1wσ,∞m)|det(m)|s∞dm

=

 ∑
σ′∈Sd−1

sgn(σ′)Db,σ′

 ∑
σ∈Sd−1

sgn(σ)Wh∞(bwσ)

,
whence the assertion follows.

Next we prove (2). Take a complete system of representatives S ⊂ Div(A) =
A∞×/Ô∞× of the quotient Pic(A) = F×\Div(A). Let S̃ ⊂ M ′(A∞) denote
the subset {diag(m∞

1 , . . . ,m
∞
d−1) | div(m∞

i ) ∈ S for all i}. Then the composition
M ′(F∞) × S̃ ↪→ M ′(A) � M ′(F )\M ′(A) induces a bijection (k×)⊕d\(M ′(F∞) ×
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S̃)
∼=−→M ′(F )\M ′(A). Hence

P (f, s) =
1

qd−1

∑
σ∈Sd−1

sgn(σ)
∫
M ′(F∞)×S̃

f(wσm)ω̃s(m)dm.

By (1), we have∑
σ∈Sd−1

sgn(σ)
∫
M ′(F∞)

f(wσ(m∞,m
∞))ω̃s((m∞,m

∞))dm∞

=
∑

b∈B′−(F )

 ∑
σ∈Sd−1

sgn(σ)Db,σ

 ∑
σ′∈Sd−1

sgn(σ′)Wh∞(bwσ′m∞)ω̃∞s (m∞)


for any m∞ ∈M ′(A∞). Hence P (f, s) is equal to

1
qd−1

∑
n′∈N ′−(F )

 ∑
σ∈Sd−1

sgn(σ)Dn′,σ

 ∑
m′∈M ′(F )

|det(m′)|−s∞

×

 ∑
σ′∈Sd−1

sgn(σ′)
∫
S̃

Wh∞(n′m′wσ′m
∞)ω̃∞s (m∞)dm∞


=

∑
n′∈N ′−(F )

 ∑
σ∈Sd−1

sgn(σ)Dn′,σ


×

 ∑
σ′∈Sd−1

sgn(σ′)
∫
M ′(A∞)

Wh∞(n′wσ′m∞)ω̃∞s (m∞)dm∞

.
This completes the proof. �

7.6. Computation of Dn,σ. We compute the integralDn,σ for n = (nij)1≤i,j≤d−1 ∈
N ′−(F ) and σ ∈ Sd−1. Let σ̃ ∈ Sd denote the element defined by σ̃(i) = σ(i) for
i = 1, . . . , d − 1 and σ̃(d) = d. Take an element a ∈ F∞ with ord∞(a) = −ord∞ψ
and put ma = diag(ad−1, ad−2, . . . , a) ∈ M ′(F∞). We define a function Wh′∞ :
G(F∞)→ C by Wh′∞(g) = Wh∞(mag).

Applying Proposition C.3 to Wh′∞, we have, for m ∈M ′(F∞),

Wh∞(wσm) = Wh′∞(m−1
a m′wσ)

=
{

sgn(σ)q−`(σ)
∞ δB(m−1

a m′)Wh′∞(1), if m−1
a m′ ∈M ′(F∞) ∩M(F∞)−σ̃ ,

0, otherwise,

where m′ = wσmw
−1
σ and δB : B(F∞) → R× is the modular character. We

put Xn,σ = wσIW(w−1
σ nwσ)w−1

σ ∩ (M ′(F∞) ∩ maM(F∞)−σ ). Since δB(ma) =

q
(d−1)d(d+1)

6 ord∞ψ
∞ , we have

Dn,σ = sgn(σ)q−`(σ)− (d−1)d(d+1)
6 ord∞ψ

∞ Wh∞(ma)
∫
Xn,σ

δB(m)|det(m)|s∞dm.

We note that for m = diag(m1, . . . ,md−1) ∈ M ′(F∞), m ∈ Xn,σ if and only if the
following three conditions are satisfied.

• For every 1 ≤ i, j ≤ d− 1 with i < j, we have

ord∞(mi)− ord∞(mj) + min(ord∞(nji), (j − i)(1 + ord∞ψ)) ≥ 0.
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• For every 1 ≤ i, j ≤ d− 1 with i < j and σ−1(i) < σ−1(j), we have

ord∞(mi)− ord∞(mj) + min(ord∞(nji), (j − i)(1 + ord∞ψ)) ≥ 1.

• For every 1 ≤ i ≤ d− 1, we have ord∞(mi) + (d− i)(1 + ord∞ψ) ≥ 1.

7.7. Computation of I∞n,σ. From now on we assume that Conditions 7.3 (1)-(4)
are satisfied. For n ∈ N ′−(F ) and σ ∈ Sd−1, we consider the integral

I∞n,σ =
∫
M ′(A∞)

Wh∞(nwσ′m∞)ω̃∞s (m∞)dm∞

appearing in Proposition 7.8(2).
The group Sd−1 acts on the C((q−s))-algebra C[Pic(A)⊕d−1]((q−s)) from the

right via permutations on Pic(A)⊕d−1. Since W ′(Fv) acts trivially on fv for each
v 6=∞, o, we have

I∞n,σ =
∏
v 6=∞

In,σ,v,

where for v 6=∞, o, In,σ,v is the integral

In,σ,v =
∫
M ′(Fv)

Whv(nmv)(ω̃∞s (mv))σdmv = (In,1,v)σ

and

In,σ,o =
∫
M ′(Fo)

Who(nmowσ′)(ω̃∞s (mo))σdmo.

7.8. More computation in d = 3 case and proof of Proposition 7.9. From
now on we assume that Conditions 7.3 (1)-(5) are satisfied.

7.8.1. For n ∈ N ′−(F ), we set c∞(n) = min(0, ord∞(n21)− ord∞ψ− 1). Then the
two subsets Xn,1, Xn,(12) of M ′(F∞) are expressed as follows:

Xn,1 =
{(

m1 0
0 m2

) ∣∣∣ ord∞(
m1

m2
) + c∞(n) ≥ −ord∞ψ, ord∞(m2) ≥ −ord∞ψ

}
,

Xn,(12) =
{(

m1 0
0 m2

) ∣∣∣ ord∞(
m1

m2
) + c∞(n) ≥ −ord∞ψ, ord∞(m2) ≥ −ord∞ψ

}
.

Thus we have

Dn,1 =
C∞q

2c∞(n)+(c∞(n)+3 ord∞ψ)s
∞

(1− q−2−2s
∞ )(1− q−2−s

∞ )

and

Dn,(12) = −C∞q
2c∞(n)+1+(c∞(n)+3 ord∞ψ+1)s
∞

(1− q−2−2s
∞ )(1− q−2−s

∞ )
.

Therefore,

Dn,1 −Dn,(12) =
C∞q

2c∞(n)+1+(c∞(n)+3 ord∞ψ+1)s
∞

(1− q−1−s
∞ )(1− q−2−s

∞ )
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7.8.2.

Lemma 7.13. For x, y ∈ Z, we have Whv(x, y) = 0 unless x + 2 ordvψ ≥ y +
ordvψ ≥ 0.

Proof. Suppose that x, y ∈ Z do not satisfy x + 2ordvψ ≥ y + ordvψ ≥ 0. Take
an element m = diag(m1,m2) ∈M ′(Fv) with (ordv(m1), ordv(m2)) = (x, y). Then
there exists an element n ∈ N(O) satisfying ψN,v(mnm−1) 6= 1. Since Whv(m) =
Whv(mn) = ψN,v(mnm−1)Whv(m), we have Whv(m) = 0. �

We introduce the following notations. For a place v 6= ∞ of F , let Xv, Yv ∈
C[Pic(A)⊕2]((q−s)) denote the two elementsXv = q−sv (cl([v]), 0), Yv = q−sv (0, cl([v])).

Lemma 7.14. For n ∈ N ′−(F ), we have the following formulae describing In,σ,v.
(1) For v 6=∞, o, we have

In,1,v =
∑
x,y∈Z

x+2ordvψ≥y+ordvψ≥0
x−y+ordv(n21)≥0

Whv(x, y)Xx
v Y

y
v

+ψv(
1
n21

)
∑
x,y∈Z

x+2ordvψ≥y+ordvψ≥0
x−y+ordv(n21)≥1

Whv(x, y)Xy−ordv(n21)
v Y x+ordv(n21)

v .

(2) Put co(n) = min(0, ordo(n21)− ordoψ − 1). Then we have

In,1,o = Co
µ
−co(n)
o q

2co(n)+(co(n)+3ordoψ)s
o

(1− µ2
oq
−2−2s
o )(1− µoq−2−s

o )

(
1− ψo(

1
n21

)µ−1
o qso

)
,

and

In,(12),o = Co
µ
−co(n)
o q

2co(n)+(co(n)+3ordoψ)s
o

(1− µ2
oq
−2−2s
o )(1− µoq−2−s

o )

(
−µ−1

o qso + ψo(
1
n21

)
)
.

Here we understand ψv( 1
n21

) = 0 when n = 1.

Proof. (1) We may assume that n 6= 1. For a given m = diag(m1,m2) ∈ M(Fv),
we have

nm ∈


mG′(Ov), if ordv(m1

m2
) + ordv(n21) ≥ 0,(

1 1
n21

0 1

)(m2
n21

0
0 m1n21

)
G′(Ov) if ordv(m1

m2
) + ordv(n21) ≤ 0.

Since fv is G′(Ov)-invariant, we have

Whv(nm) =


Whv(m), if ordv(m1

m2
) + ordv(n21) ≥ 0,

ψv( 1
n21

)Whv(
(m2
n21

0
0 m1n21

)
), if ordv(m1

m2
) + ordv(n21) ≥ −1,

whence, with Lemma 7.13, the claim follows via simple calculation.
(2) We assume that n 6= 1. (In the n = 1 case, the claim follow from similar,

less complicated arguments). Let I ′o ⊂ G′(Oo) denote the Iwahori subgroup. For a
given m = diag(m1,m2) ∈M(Fv), we have

nm ∈


mI ′o, if ordo(m1

m2
) + ordo(n21) ≥ 1,(

1 1
n21

0 1

)(m2
n21

0
0 m1n21

)
w(12)I ′o, if ordv(m1

m2
) + ordv(n21) ≤ 0,
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and

nmw(12) ∈


mw(12)I ′o, if ordo(m1

m2
) + ordo(n21) ≥ 0,(

1 1
n21

0 1

)(m2
n21

0
0 m1n21

)
I ′o, if ordv(m1

m2
) + ordv(n21) ≤ −1.

Let us apply Proposition C.3. We put C ′o = Coµ
3 ordoψ+ordo(detm)
o . Then we have

Who(nm) =



C ′o|m1$
2ordoψ
o |2o,

if ordo(m1
m2

) + ordo(n21) ≥ 1 and
ordo(m1) + 2ordoψ
≥ ordo(m2) + ordoψ ≥ 0,

−C ′oψo( 1
n21

)q−1
o |m2

n21
$2ordoψ
o |2o,

if ordo(m1
m2

) + ordo(n21) ≤ 0 and
ordo(m2

n21
) + 2ordoψ + 1

≥ ordo(m1n21) + ordoψ ≥ 0,
0, otherwise

and

Who(nmw(12)) =



−C ′oq−1
o |m1$

2ordoψ
o |2o,

if ordo(m1
m2

) + ordo(n21) ≥ 0 and
ord(m1) + 2ordoψ + 1
≥ ordo(m2) + ordoψ ≥ 0,

C ′oψo(
1
n21

)|m2
n21

$2ordoψ
o |2o,

if ordo(m1
m2

) + ordo(n21) ≤ −1 and
ord(

m2
n21

) + 2ordoψ
≥ ordo(m1n21) + ordoψ ≥ 0,

0, otherwise

Substituting these into the definitions of In,1,o and In,(12),o, we have the desired
formulae. �

Corollary 7.15. When n 6= 1, we have

In,1,v = ψv(
1
n21

)X−ordv(n21)
v Y ordv(n21)

v In−1,(12),v

for v 6=∞. In particular, we have I∞n,1 = ψ∞( 1
n21

)−1I∞n−1,(12). �

Proof of Proposition 7.9. Using the above corollary and noting that c∞(n) = 0 for
1 6= n ∈ N ′−(F ) with ψ( 1

n21
) 6= 1, we have

P (f, s) = (D1,1 −D1,(1,2))(I∞1,1 − I∞1,(12))

+
1
2

∑
n∈N ′−(F ),n 6=1

(Dn,1 −Dn,(12))(1− ψ(
1
n21

))(I∞n,1 − I∞n,(12))

=
C∞q

1+(3 ord∞ψ+1)s
∞

(1− q−1−s
∞ )(1− q−2−s

∞ )

×

I∞1,1 − I∞1,(12) +
1
2

∑
n∈N ′−(F ),n 6=1

(1− ψ(
1
n21

))(I∞n,1 − I∞n,(12))

.
For n ∈ N ′−(F ), let I∞,o

n,1 denote
∏
v 6=∞,s In,1,v. Since

ev0(I∞n,(12)) = ev0((I∞n,(12))
(12)) = ev0(I

∞,o
n,1 (In,(12),o)(12)),
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we have

P∞(f, s)

=
qd−1C∞q

1+(3 ord∞ψ+1)s
∞

(1− q−1−s
∞ )(1− q−2−s

∞ )

×ev0

I∞1,1 − (I∞1,(12))
(12) +

1
2

∑
n∈N ′−(F ),n 6=1

(1− ψ(
1
n21

))(I∞n,1 − (I∞n,(12))
(12))


=

qd−1C∞q
1+(3 ord∞ψ+1)s
∞

(1− q−1−s
∞ )(1− q−2−s

∞ )

×ev0

 I∞,o
1,1 (I∞,o

1,(12),o − (I1,(12),o)(12))

+ 1
2

∑
n∈N ′−(F ),n 6=1

(1− ψ(
1
n21

))I∞,o
n,1 (In,1,o − (In,(12),o)(12))

.
For n ∈ N ′−(F ) with n 6= 1, we have

In,1,o − (In,(12),o)(12) = (1− ψo(
1
n21

))Co
µ
−co(n)−1
o q

2co(n)+1+(c0(n)+3 ordoψ+1)s
o

(1− µoq−1−s
o )(1− µoq−2−s

o )

= (1− ψo(
1
n21

))Co
µ−1
o q

1+(3 ordoψ+1)s
o

(1− µoq−1−s
o )(1− µoq−2−s

o )
.

Hence the assertion follows from Lemma 7.14. �

7.9. More computation of aψ(D1, D2) and proof of Theorem 7.6. Let the
notations and the assumption be as in Section 7.8. In this section, we compute
aψ(D1, D2) for (D1, D2) ∈ ∆ψ.

For m ∈ F×, we have (1 − ψ∞( 1
m ))(1 − ψo( 1

m )) = 0 unless div(m)|{∞,o} ≥
(ordψ)|{∞,o}+[∞]+[o]. We set D3 = D1−D2−ordψ− [∞]− [o] and define Σ′D1,D2

to be the set of triples (S,D,m) satisfying the following conditions.

• D ∈ Div(C) with D ≥ 0, cl(D +D1) = 2cl(ordψ) + cl(D3|Supp (D)).
• S ⊂ C is a finite closed subset with Supp (D) ⊂ S ⊂ Supp (D) ∪ {∞, o}.
• m ∈ F× with D3 + div(m) ≥ 0.
• D = (D3 + div(m))|S .

For δ = (S,D,m) ∈ Σ′D1,D2
, we set cψ(δ) = (−1)]S∩{∞,o}∏

v∈S ψv(
1
m ). Then we

have

a∗ψ(D1, D2) =
∑

δ∈Σ′D1,D2

cψ(δ).

For δ = (S,D,m) ∈ Σ′D1,D2
, we set deg δ = deg D and ι(δ) = ((Supp (D3 +

div(m))∪{∞, o})\S,D3+div(m)−D,−m). Then ι(δ) is also in Σ′D1,D2
and we have

ι(ι(δ)) = δ, deg(δ)+deg(ι(δ)) = deg(D3), and cψ(δ) = cψ(ι(δ)). Let ΘD1,D2 denote
the set of pairs (S,D) such that the set V0(S,D) = {m ∈ F× | (S,D,m) ∈ Σ′D1,D2

}
is non-empty. The map δ 7→ cψ(δ) induces a map cψ,S,D : V0(S,D) → C. Let
Θ′
D1,D2

⊂ ΘD1,D2 denote the subset of elements (S,D) ∈ ΘD1,D2 satisfying either
2 deg D < deg D3 or both ∞ 6∈ S and 2 deg D = deg D3. Then we have

a∗ψ(D1, D2) = 2
∑

(S,D)∈Θ′
D1,D2

∑
m∈V0(S,D)

cψ,S,D(m).
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The set V0(S,D) is a subset of the Fq-vector space H0(L(D3 − D)). For m ∈
V0(S,D), the value cψ,S,D(m) depends only on the image of m in the quotient

H0(L(D3 −D))
H0(L(D3 −D)) ∩H0L(D3 −D + (D3 −D + ordψ)|S))

.

In particular, if we put D̃ = D + ([∞] + [o])|S , the map cψ,S,D factors through the
canonical map

ΦS,D : V0(S,D) ↪→ H0(L(D3 −D)) �
H0(L(D3 −D))

H0(L(D3 −D − D̃))
.

Let cψ,S,D : Image(ΦS,D)→ C denote the induced map. Then the image of ΦS,D is
a subset of (L(D3 −D)/L(D3 −D − D̃))0. For any m ∈ Image(ΦS,D) ⊂ (L(D3 −
D)/L(D3 −D − D̃))0, we have cψ,S,D(m) = (−1)]S∩{∞,o}∏

v∈S ψv(m
−1).

Proof of Theorem 7.6. We assume that Conditions 7.3 (1)-(6) are satisfied. We
may assume that ψ satisfies ordψ = −[∞] − [o]. Since Pic(A) = 0, we have
∆ψ = {(D1, D2) ∈ Div(Gm)⊕2 | D1 ≥ D2 ≥ 0}. Fix an element (D1, D2) ∈ ∆ψ.
Then we have D3 = D1−D2, and ΘD1,D2 is the set of pairs (S,D) satisfying D ≥ 0,
degD ≤ deg(D1 −D2), and Supp (D) ⊂ S ⊂ Supp (D) ∪ {∞, 0}.

Let (S,D) ∈ Θ′
D1,D2

be an element. Then we have H1(L(D3−D−D̃)) = 0 since
deg(D3−D−D̃) ≥ −1. Hence Image(ΦS,D) equals O×

D̃
. For any m ∈ Image(ΦS,D),

the cardinality of Φ−1
S,D(m) is equal to

](H0(D3 −D − D̃)) = qdeg(D3−2D)−](S∩{∞,o})+1.

if (S,D) 6= (∅, 0). Then we have∑
m∈(L(D3−D)/L(D3−D−D̃))0

∏
v∈S

ψv(m−1) =
∏
v∈S

cD̃,v

where, for v ∈ S, cD̃,v is defined to be

cD̃,v =


qmultvD̃
v − qmultvD̃−1

v , if multv(D3 − D̃) ≥ 0
−qmultvD̃−1

v , if multv(D3 − D̃) = −1
0, otherwise.

Hence we have∑
m∈V0(S,D)

cψ,S,D(m) =

 qdeg D3+1 − 1, if (S,D) = (∅, 0),
(−q)−]S∩{∞,o}qdeg(D3−2D)+1

∏
v∈S

cD̃,v. otherwise.

For each place v of F , we define a polynomial Pv(T ) ∈ C[T ] in the following way.
• When v 6=∞, o, then

Pv(T ) = 1 +
∑

1≤i≤multv(D3)

(q−iv − q−i−1
v )T deg[v]·i − q−1

v (q−1
v T deg[v])multv(D3)+1

=
(1− q−2

v T deg[v])(1− (q−1
v T deg[v])multv(D3) + 1)

1− q−1
v T deg[v]

.

• When v ∈ {∞, o}, then

Pv(T ) = q−1.
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Then aψ(D1, D2) = 1 +
∑

(S,D)∈Θ′
D1,D2

∑
m∈V0(S,D) cψ,S,D(m) is equal to the sum

of coefficients in degree ≤ 1
2 deg D3 of the formal power series

FD3(T ) = qdeg D3+1
(
1 + P∞(T ) + T

1
2Po(T ) + T

1
2P∞(T )Po(T )

) ∏
v 6=∞,o

Pv(T )

in C[[T
1
2 ]]. Since

∏
v 6=∞,o(1− q−2

v T deg[v]) = 1−q−1T
1−q−2T , we have

FD3(T ) =
qdeg D3(1 + q)(1− q−1T )

1− q−1T
1
2

∏
v∈Supp (D3)

1− (q−1
v T deg[v])multv(D3)+1

1− q−1
v T deg[v]

.

Since the sum of coefficients in degree ≤ i
2 of 1−q−1T

1−q−1T
1
2

is equal to 1 + q−i (resp. 1)

if i ≥ 1 (resp. i = 0), we have

aψ(D1, D2) = qdegD3(1 + q)
∑

0≤D≤D3

q−degD

= (1 + q)
∏

v∈Supp (D3)

q
multv(D3)+1
v − 1

qv − 1
.

For v 6= ∞, o, let Wh0
v denote the class one Whittaker function with Wh0

v(1) = 1

with respect to ψ−1
v of the (reducible) principal series IndG

′(Fv)
B′(Fv)

δ
1
2
B′ of G′(Fv) (here

δB′ : B′(Fv)→ R× denotes the modular character). By [Shi] we have

aψ(div(m1),div(m2)) = (1 + q)
∏

v 6=∞,o

Wh0
v(diag(m1,v,m2,v))qordv(m1,v)−ordv(m2,v)

v

for m1 = (m1,v),m2 = (m2,v) ∈ A∞,o. Hence P∞(f, s) equals

(1 + q)q2−6sC̃∞(s)C̃o(s)
∏

v 6=∞,o

∫
M ′(Fv)

Wh0
v(mv)Whv(mv)

∣∣∣∣m1,v

m2,v

∣∣∣∣−1

|detmv|sdmv.

By [Ja-Pi-Sh, §4, Théorème], we have∫
M ′(Fv)

Wh0
v(mv)Whv(mv)

∣∣∣∣m1,v

m2,v

∣∣∣∣−1

|detmv|s−
1
2 dmv

=
∫
N ′(Fv)\G′(Fv)

Wh0
v(gv)Whv(gv)|det gv|s−

1
2 dgv

= Whv(1)L(πv, s− 1
2 )L(πv, s+ 1

2 )

for all v 6=∞, o. Hence

P∞(f, s) = (1 + q)q4−4sC∞Coµ
−1
o

∏
v 6=∞,o

Whv(1)L(π, s)L(π, s+ 1),

which completes the proof. �

Appendix A. The Proofs of the material in Section 2

by Seidai Yasuda

A.1. Let d ≥ 1 be a positive integer. Let X be a regular noetherian scheme of
Krull dimension one such that the residue field at each closed point is finite.
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A.1.1. We define the category Cd = CdX as follows. An object in Cd is a coherent
OX -module of finite length which admits a surjection from O⊕dX . For two objects
N and N ′ in Cd, the set HomCd(N,N ′) of morphisms from N to N ′ is the set of
isomorphism classes of diagrams

N ′ � N ′′ ↪→ N

in the category of coherent OX -modules where the left arrow is surjective and the
right arrow is injective. This definition of morphisms is due to Quillen ([Qu]) except
that here we take morphisms in the opposite direction.

We often consider the following two types of morphisms in Cd. Let N be an
object in Cd. For a sub OX -module N ′ of N , the morphism N ′ = N ′ ↪→ N in Cd is
denoted by rN,N ′ : N → N ′. For a quotient OX -module N ′′ of N , the morphism
N ′′ � N = N in Cd is denoted by mN,N ′′ : N → N ′.

A.1.2. Let FCd denote the category of finite families of objects in Cd. An object in
FCd is a pair (J, (Nj)j∈J) where J is a finite set and (Nj)j∈J is a family of objects
in Cd indexed by J . We denote the object (J, (Nj)j∈J) by

∐
j∈J Nj . We regard Cd

as a full subcategory of FCd. We define π0(
∐
j∈J Nj) to be the set J .

A.1.3. A morphism f : M → M ′ in the category FCd is said to be a covering if
the underlying morphism π0(M)→ π0(M ′) is surjective.

Definition A.1. A presheaf on FCd is a contravariant functor from FCd to the cat-
egory of sets. A presheaf F on FCd is a sheaf if it satisfies the following conditions
(1), (2) and (3):

(1) The image of the empty set F (∅) is the set of one element.
(2) For two objects N and N ′ in FCd, the canonical map F (NqN ′)→ F (N)×

F (N ′) is an isomorphism.
(3) Let N → N ′ be a covering in FCd. If the fiber product N ×N ′ N exists

in FCd, then F (N ′) is canonically isomorphic to the difference kernel of
F (N) ⇒ F (N ×N ′ N) where the maps are induced by the first and the
second projections.

We note that a representable presheaf is not necessarily a sheaf.

A.1.4. Variant. A morphism in Cd is called a fibration if it is isomorphic to a
morphism of the form mN,N ′ . A morphism f : M → M ′ in the category FCd is
said to be a fibration if it is a fibration in Cd on each component of M .

A presheaf F on FCd is a semi-sheaf if it satisfies the conditions (1), (2) in
Definition A.1 and the following condition (3)′:

(3)′ If N → N ′ is a covering in FCd which is a fibration, and if the fiber product
N ×N ′ N exists, then F (N ′) is canonically isomorphic to the difference
kernel of F (N) ⇒ F (N ×N ′ N) where the maps are induced by the first
and the second projections.

We remark that the requirement of the existence of the fiber product N ×N ′ N in
(3)′ is superfluous, since in the category FCd, the fiber product of two fibrations
always exists.
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A.1.5. Let f : N ′ → N be a covering in FCd. We let AutN (N ′) denote the group
of automorphisms σ in FCd of N ′ such that f ◦ σ = f .

Let f : N ′ → N be a morphism in FCd, and let G be a subgroup of AutN (N ′).
We say that f is a Galois covering of Galois group G if the fiber product N ′×N N ′

exists, and the morphism
∐
g∈G(g, id) :

∐
g∈GN

′ → N ′ ×N N ′ is an isomorphism.
If f : N ′ → N be a Galois covering with N ′ and N in Cd, then the standard

argument in the theory of Galois categories shows that its Galois group equals
AutN (N ′).

Lemma A.2. Let f : N ′ → N be a morphism in Cd given by the diagram N
p
�

N ′′ i
↪→ N ′. Suppose there exists a sub OX-module N1 of N such that p−1(N1) ∼=

M⊕d
1 and N ′/i(p−1(N1)) ∼= M⊕d

2 for some M1,M2 in C1. Then f is a Galois
covering.

Proof. Let M be an object in Cd. It suffices to show the map
αM : HomFCd(M,N ′)→ HomFCd(M,N) induced by f is an AutN (N ′)-torsor over
the set HomFCd(M,N).

Since M1 and M2 are generated by one element, there exist sheaves I1 and I2
of ideals such that M1

∼= OX/I1 and M2
∼= OX/I2.

Take an element x ∈ HomFCd(M,N) and let us consider the set α−1
M (x). Suppose

y ∈ α−1
M (x) is given by the diagram N ′ s

′

� F
s
↪→ M . We let F ′ = s′−1(i(p−1(N1)))

and F ′′ = Ker s′.
Since F ′/F ′′ ∼= (OX/I1)⊕d, F/F ′ ∼= (OX/I2)⊕d, and M is generated by d

elements, it follows that F ′/F ′′ = F ′/I1F ′ and F/F ′ is the set of elements z
in M/F ′ such that I2z = 0. Hence F ′′ = I1F ′ and F is the set of elements z
in M such that I2z ⊂ F ′. In particular, s(F ) and s(F ′′) as sub OX -modules
of M are uniquely determined independent of the choice of y. Note that y is
the composition of the canonical morphism s(F )/s(F ′′) � s(F ) ↪→ M and an
isomorphism s(F )/s(F ′′) ∼= N ′. Thus the set α−1

M (x) is canonically isomorphic to
the subset of the set of isomorphisms s(F )/s(F ′′) ∼= N ′ such that the composition
M → s(F )/s(F ′′) ∼= N ′ → N equals the morphism x. Hence the set α−1

M (x) is an
AutN (N ′)-torsor. �

Let AX denote the ring of adeles on X, and ÔX ⊂ AX its ring of integers.

Lemma A.3 (cofinality). Let k be a positive integer. Let Ni (1 ≤ i ≤ k) and N
be objects in Cd, and gi : Ni → N be morphisms. Then there exist an object M in
Cd and morphisms fi : M → Ni such that gi ◦ fi = gj ◦ fj for any 1 ≤ i, j ≤ k and
g1 ◦f1 is a Galois covering. Moreover if gi is a fibration for all i, then one can take
M and fi as above such that fi is a fibration for all i.

Proof. We take ÔX -lattices LNi , L
′
Ni

(1 ≤ i ≤ k), LN , and L′N in A⊕dX such that
• LNi ⊃ LN ⊃ L′N ⊃ L′Ni for 1 ≤ i ≤ k,
• LNi/L′Ni ∼= Ni for all i and LN/L′N ∼= N as ÔX -modules,
• LN/L′N � LN/L

′
Ni
↪→ LNi/L

′
Ni

is identified with gi for all i.

There exists an integral ideal Î ⊂ Ô such that Î−1LN ⊃ LNi and L′Ni ⊂ ÎL
′
N for all

i. Set M = Î−1LN/ÎLN and define the morphisms M → Ni by Ni ∼= LNi/L
′
Ni

�

LNi/ÎLN ↪→ Î−1LN/ÎLN for all i. Then by Lemma A.2, the morphism M → N
and the morphisms M → Ni for all i are Galois. �
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Lemma A.4. A presheaf F on FCd is a sheaf if and only if it satisfies conditions
(1) and (2) in Definition A.1 and (3)′′ below.

(3)′′ For any Galois covering N → N ′ in Cd, F (N ′) is canonically isomorphic
to the AutN ′(N)-fixed part F (N)AutN′ (N) of F (N).

Proof. The implication (3) to (3)′′ is trivial. We prove (3)′′ implies (3). Let f : M →
N be a morphism in FCd such that M ×N M exists. We write M =

∐
i∈π0(M)Mi,

N =
∐
i∈π0(N)Ni with Mi and Ni in Cd. Denote by π0(f) : π0(M) → π0(N) the

morphism induced by f .
For any i, j such that j = π0(f)(i), let f(i,j) : Mi → Nj be the morphisms

induced by f . For each j ∈ π(N), there exist, by Lemma A.3, a Galois covering
f ′j : M ′

j → Nj in Cd and morphisms f ′(j,i) : M ′
j → Mi for any i ∈ π0(M) with

j = π0(f)(i), such that fj = f(i,j) ◦ f ′(j,i). Set M ′ =
∐
i∈π0(M)M

′
π0(f)(i) and

g =
∐
f ′(j,i). By condition (3)′′, we have F (Mi) ∼= F (M ′

π0(f)(i))
Gal(M ′

π0(f)(i)/Mi).
Then Ker[F (M) ⇒ F (M ×N M)] injects into

Ker[F (M ′) ⇒ F (M ′ ×N M ′)]

= Ker

 ∏
i∈π0(M)

F (M ′
π0(f)(i)) ⇒

∏
i1,i2∈π0(M),j∈π0(N)

j=π0(f)(i1)=π0(f)(i2)

F (M ′
j ×Nj M ′

j)


=

∏
j∈π0(N)

F (M ′
j)

Gal(M ′
j/Nj)

which, by condition (3)′′, equals F (N). One can see that this map gives the inverse
of the map F (N)→ Ker[F (M) ⇒ F (M ×N M)]. �

A.1.6. The inclusion of the category of sheaves (resp. semi-sheaves) on FCd into
the category of presheaves on FCd has a right adjoint (−)a (resp. (−)a†). Let us
describe the construction. Given a presheaf F : FCd → (Sets), we define the functor
F a : FCd → (Sets) (resp. F a†). Let N be an object in Cd. Then the section F a(N)
(resp. F a†(N)) is given by

lim−→
M→N

Ker[F (M) ⇒ F (M ×N M)] = lim−→
M→N

F (M)Gal(M/N)

where the limit is taken over (a small skeleton of the category of) all Galois coverings
M → N (resp. all Galois coverings M → N which is a fibration) in Cd. To check
that F a satisfies (1)(2) and (3)′′ , one uses Lemma A.3. One can also check that
F a† is a semi-sheaf. The details are omitted. Note that since F a(N) and F a†(N)
are expressed as filtered inductive limit, the functors (−)a and (−)a† commute with
finite (projective) limits ([Ma] Ch. IX).

A.1.7. Let N be an object in FCd and H be a subgroup of AutFCd(N). We denote
by N/H the sheaf associated to the presheaf HomFCd( , N)/H.

Let F̃C
d

denote the full subcategory of the category of sheaves on FCd whose
objects are sheaves of the form N/H with N in FCd and H a subgroup of Aut(N).

There is a canonical functor FCd → F̃C
d

which sends an object N in FCd to the
sheaf N/{idN}. It commutes with finite (projective) limits.
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We note that the canonical functor FCd → F̃C
d

which sends N to the sheaf
N/{idN} is not fully faithful. For example, the endomorphisms EndFCd(0) consists
of one element {id0}, while the endomorphisms EndF̃Cd(0/{id0}) is isomorphic to
the group of divisors on X. By the adjointness of (−)a and by the definition
of (−)a, we have HomF̃Cd(0/{id0}) = lim−→M→0

HomFCd(M, 0) where the limit is
over all Galois coverings. Using the argument as in the proof of the cofinality
lemma, and taking the automorphisms of M into consideration, we see that it
equals lim−→I1⊂I2

HomFCd((I2/I1)⊕d, 0)Aut((I2/I1)
⊕d) where the limit is over the ÔX -

lattices I1, I2 of AX with I1 ⊂ I2. Now HomFCd((I2/I1)⊕d, 0)Aut((I2/I1)
⊕d) is the

set of sub ÔX -modules of (I2/I1)⊕d which is stable under the action of GLd(I2/I1).
By Morita equivalence (cf. [An-Fu]), it is isomorphic to the set of sub ÔX -modules
of I2/I1. Hence the limit is isomorphic to the set of ÔX -lattices in AX .

Let I be a finite set, Ni be an object in Cd, and Hi be a subgroup of Aut(Ni)

for each i ∈ I. We write
∐
i∈I Ni/Hi for the object (

∐
i∈I Ni)/(

∏
iHi) in F̃C

d
; it

is isomorphic to the sheaf associated to the presheaf
∐
i∈I Hom(−, Ni)/Hi. Any

object in F̃C
d

is isomorphic to an object of the form above.

The notions of π0 and covering are canonically extended to the category F̃C
d

by

putting π0(N/H) = π0(N)/H. We say that an object in F̃C
d

is connected if its π0

consists of one element. We define sheaves on F̃C
d

and Galois coverings in F̃C
d

in
a similar manner.

Lemma A.5. Let N =
∐
i∈π0(N)Ni be an object in FCd and H be a subgroup of

AutFCd(N). Suppose that, for each i ∈ π0(N), the stabilizer Hi ⊂ H of i acts

faithfully on Ni. Then the quotient morphism N/{idN} → N/H in F̃C
d

is a Galois
covering whose Galois group is canonically isomorphic to H.

Proof. For any M ∈ Cd such that HomFCd(M,N) is non-empty, H acts freely on
HomFCd(M,N). Hence we have an isomorphism of presheaves∐

h∈H

Hom(−, N)→ Hom(−, N)×Hom(−,N)/H Hom(−, N).

Since the functor (−)a preserves fiber products, we have the assertion. �

We remark that any object in F̃C
d

is isomorphic to N/H for some N and H
satisfying the assumption in Lemma A.5.

We have an analogue of Lemma A.4 for sheaves on F̃C
d
.

Lemma A.6. A presheaf F on F̃C
d

is a sheaf if and only if it satisfies the conditions
analogous to (1) and (2) in Definition A.1 and (3)′′′ below.

(3)′′′ For any Galois covering N/{idN} → N/H in F̃C
d

as in Lemma A.5,
F (N/H) is canonically isomorphic to the H-fixed part F (N/{idN})H of
F (N/{idN}).

Proof. We prove this lemma using Lemma A.7.
We proceed as in the proof of Lemma A.4. If G is a sheaf, then G obviously

satisfies (3)′′′. We show the other direction. Let f : F ′ → F be a covering in F̃C
d
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such that the fiber product F ′ ×F F ′ exists. Take N and H as in Lemma A.7. If
G is a presheaf satisfying (3)′′′, then

Ker(G(F ′) ⇒ G(F ′ ×F F ′))
→ Ker(G(N/{idN}) ⇒ G(N/{idN} ×N/H N/{idN})) ∼= G(N/H)

gives the inverse of G(F ′) → Ker(G(F ′) ⇒ G(F ′ ×F F ′)), proving that it is an
isomorphism. �

Lemma A.7. Let f : F ′ → F be a covering in F̃C
d
. Then there exist an object N

in FCd, a subgroup H of Aut(N), and a covering g : N/{idN} → F ′ such that the
composition N/{idN} → F ′ → F induces an isomorphism N/H ∼= F .

Proof. We easily reduce to the case where F is connected. We write F = M/G
where M is an object in Cd and G is a subgroup of Aut(M). We further reduce
to the case where F ′ is an object of the form M ′/{idM ′} with M ′ in FCd. Let
Presh(FCd) denote the category of presheaves on FCd. We have

HomF̃Cd(M
′/{idM ′},M/G) = HomPresh(FCd)(HomFCd(−,M ′),M/G)

= M/G(M ′)
= lim−→M ′′→M ′ HomFCd(M ′′,M)/G

where the limit is taken over (a small skeleton of the category of) all Galois coverings

of M ′ in FCd. Hence there exist a Galois covering M ′′ f ′′−−→ M ′ in FCd and a

morphism M ′′ f ′−→M in FCd such that the diagram

M ′′/{idM ′′} f ′−−−−→ M/{idM}

f ′′
y y

M ′/{idM ′} f−−−−→ M/G

is commutative.
It suffices to show that there exist an object N in FCd, a subgroup H ⊂

Aut(N) and a covering N → M ′′ in FCd such that the composition N/{idN} →
M ′′/{idM ′′} →M/G induces an isomorphism N/H ∼= M/G.

Let M ′′ =
∐
j∈JM

′′
j where, for each j ∈ J , M ′′

j is an object in Cd. Let f ′j :
M ′′
j →M denote the morphism induced by f ′ for each j. Applying Lemma A.3 to

the morphisms

M ′′
j

f ′j−→M
mM,0−−−→ 0

for j ∈ J , there exist an object N ′ in FCd and a morphism gj : N ′ → M ′′
j in FCd

for each j ∈ J such that f ′j ◦ gj = f ′j′ ◦ gj′ for all j, j′ ∈ J and mM,0 ◦ f ′j ◦ gj is a
Galois covering.

Suppose the morphism N ′ → M is given by the diagram M
p
� M0

i
↪→ N ′.

Let H ′ denote the subgroup of elements h′ in Aut(N ′) such that h′(Im i) = Im i,
h′(i(Ker p)) = i(Ker p), and the action on (Im i)/i(Ker p) ∼= M induced by h′ is
in G. By the short exact sequence 1 → Gal(N ′/M) → G → H ′ → 1, we have
N ′/H ′ ∼= M/G.

LetH ′′ be a group whose cardinality is equal to the cardinality of the set π0(M ′′).
We fix a bijection H ′′ ∼=−→ π0(M ′′) of sets. Let N =

∐
j∈π0(M ′′)N

′. We let H =
H ′′ × H ′ act on N as follows. The element (h′′, 1) ∈ H ′′ × H ′ acts on N via
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the translation of index set using the isomorphism H ′′ ∼= π0(M ′′). The element
(1, h′) ∈ H ′′×H ′ acts via the diagonal action of H ′. Then N , H, and the covering∐

j∈π0(M ′′)

gj : N =
∐

j∈π0(M ′′)

N ′ →M ′′ =
∐

j∈π0(M ′′)

M ′′
j

have the desired property. �

Let F be a sheaf on FCd. We can construct a sheaf F̃ on F̃C
d

by setting

F̃ (N/H) = F (N)H for an object N/H in F̃C
d
. Using Lemma A.6, we see that the

functor F 7→ F̃ gives an equivalence of categories between the category of sheaves

on FCd and the category of sheaves on F̃C
d
.

A.1.8. We define the functor ω : Presh(FCd) → (Sets) as follows. We consider
A⊕dX as the space of row vectors. Given a presheaf F ∈ Presh(FCd), we define ω(F )
to be

ω(F ) = lim−→
L1⊂L2⊂A⊕dX

F (L2/L1)

where the inductive limit is taken over the filtered ordered set of the pairs of two ÔX -
lattices (L1, L2) in A⊕X with L1 ⊂ L2. The order is defined as follows: for two such
pairs (L1, L2) and (L′1, L

′
2), (L1, L2) ≥ (L′1, L

′
2) if and only if L′1 ⊂ L1 ⊂ L2 ⊂ L′2.

We have two functors FCd f−→ Presh(FCd) ω−→ (Sets) and F̃C
d g−→ Presh(FCd) ω−→

(Sets), where f is the functor N 7→ HomFCd(−, N) and g is the functor induced by
the inclusion of the category of sheaves into presheaves. We call them the canonical
fiber functors, and denote them also by ω. It is easily checked that these canonical

fiber functors are compatible with the canonical functor FCd → F̃C
d

and preserve
fiber products.

Lemma A.8. Given a presheaf F , let F a (resp. F a†) denote the associated sheaf
(resp. semi-sheaf). Then the three sets ω(F ), ω(F a) and ω(F a†) are canonically
isomorphic.

Proof. This follows from the explicit constructions of the associated sheaf functors
F 7→ F a, F 7→ F a†. �

A.1.9. For a presheaf F on FCd, ω(F ) admits a canonical functorial continuous
left action of the adele group GLd(AX). Hence the canonical fiber functors ω :

FCd → (Sets) and ω : F̃C
d
→ (Sets) factor through the category of discrete sets

with continuous left GLd(AX)-action.

Lemma A.9. Let L1 ⊂ L2 ⊂ A⊕dX be two ÔX-lattices of A⊕dX . Let K ⊂ GLd(AX)
denote the compact open subgroup of the elements g ∈ GLd(AX) such that Lig = Li
for i = 1, 2 and the map induced by g on L2/L1 is the identity. Then the following
assertions hold.

(1) There is a canonical GLd(AX)-equivariant isomorphism
ω(L2/L1) ∼= GLd(AX)/K which sends the element in ω(L2/L1) represented
by the element idL2/L1 in Hom(L2/L1, L2/L1) to the class of the identity
matrix GLd(AX)/K.

(2) For any presheaf F on FCd, the canonical map F a(L2/L1) → ω(F a) ∼=
ω(F ) induces an isomorphism F a(L2/L1) ∼= ω(F )K.
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Proof. We can identify ω(L2/L1) with the set of triples (L′, L′′, α) where L′ ⊂
L′′ ⊂ A⊕dX are ÔX -lattices and α : L′′/L′ → L2/L1 is an isomorphism. The
map from GLd(AX)/K which sends the coset gK to the triple (L1g

−1, L2g
−1, g :

L2g
−1/L1g

−1 → L2/L1) then induces the isomorphism in (1).
By definition, F a(L2/L1) = lim−→M→L2/L1

F (M)Gal(M/(L2/L1)) where the limit is

taken over (a small skeleton of the category of) all Galois coverings of L2/L1 in Cd.
By the definition of ω, we have ω(F )K = lim−→L′1⊂L′2⊂AdX

F (L′2/L
′
1)

Gal((L′2/L
′
1)/(L2/L1))

where the limit is taken over all Galois coverings of the form L2/L1 � L2/L
′
1 ↪→

L′2/L
′
1. One sees that the two limits are equal using the argument in the proof of

Lemma A.3. This shows (2). �

Corollary A.10. Let L1 and L2 be as in Lemma A.9. Let H be a subgroup of
AutOX (L2/L1). Let KL1,L2,H ⊂ GLd(AX) denote the compact open subgroup of
the elements g ∈ GLd(AX) such that Lig = Li for i = 1, 2 and the action of g on
L2/L1 lies in H. Then the following assertions hold.

(1) There is a canonical GLd(AX)-equivariant isomorphism ω((L2/L1)/H) ∼=
GLd(AX)/KL1,L2,H which sends the element in ω((L2/L1)/H) represented
by the class of idL2/L1 in Hom(L2/L1, L2/L1)/H to the class of the identity
matrix in GLd(AX)/KL1,L2,H .

(2) For any presheaf F on FCd, the composition

HomPresh(FCd)((L2/L1)/H,F a)→ F a(L2/L1)→ ω(F a) ∼= ω(F )

induces an isomorphism HomPresh(FCd)((L2/L1)/H,F a) ∼= ω(F )KL2,L1,H .
�

We define the category (GLd(AX)-sets∗). An object S in (GLd(AX)-sets∗) is a
set with left GLd(AX)-action such that S has finitely many GLd(AX)-orbits, and
for any s ∈ S, the stabilizer at s is a compact open subgroup of GLd(AX).

Lemma A.11. The canonical fiber functor ω : F̃C
d
→ (Sets) gives an equivalence

between the category F̃C
d

and the category (GLd(AX)-sets∗).

Proof. An object in (GLd(AX)-sets∗) is isomorphic to an object of the form∐
i∈I GLd(AX)/Ki where I is a finite set and Ki is an open compact subgroup

of GLd(AX). Then, by Corollary A.10 (1), it follows that ω is essentially surjective
on (GLd(AX)-sets∗).

To prove that ω is fully faithful, it suffices to treat the connected objects in F̃C
d
.

Such an object is isomorphic to an object of the form (L2/L1)/H where L1 ⊂ L2

are ÔX -lattices in A⊕dX , and H is a subgroup of Aut(L2/L1).
Let L1 ⊂ L2, L

′
1 ⊂ L′2 be ÔX -lattices in A⊕dX , and H,H ′ be subgroups of

Aut(L2/L1), Aut(L′2/L
′
1) respectively. By (2) and (1) of Corollary A.10, we have

HomF̃Cd((L2/L1)/H, (L′2/L
′
1)/H

′) = ω((L′2/L
′
1)/H

′)KL1,L2,H

= (GLd(AX)/KL′1,L
′
2,H

′)KL1,L2,H

where KL1,L2,H and KL′1,L
′
2,H

′ are defined as in Corollary A.10. We see it equals

Hom(GLd(AX)-sets∗)(GLd(AX)/KL1,L2,H ,GLd(AX)/KL′1,L
′
2,H

′)
= Hom(GLd(AX)-sets∗)(ω(L2/L1)/H, ω(L′2/L

′
1)/H

′).

�
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Corollary A.12. (1) For any object F in F̃C
d
, the set π0(N) is canonically

isomorphic to the set of GLd(AX)-orbits in ω(F ).

(2) For any morphism f : F → F ′ in F̃C
d

and for any x ∈ ω(F ′), the fiber
ω(f)−1(x) of ω(f) at x is a finite set.

(3) Fiber products always exist in F̃C
d
.

�

A.1.10. Given a smooth representation V of GLd(AX), we construct a presheaf,
which is also denoted by V , on (GLd(AX)-sets∗). For an object Y in (GLd(AX)-sets∗),
we let V (Y ) denote the set of morphisms Y → V of left GLd(AX)-sets. Let
f : Y1 → Y2 be a morphism in (GLd(AX)-sets∗). We define f∗ : V (Y2) → V (Y1)
to be the composition with f . We thus have a presheaf Y 7→ V (Y ) which may be
checked to be an abelian sheaf.

This gives an equivalence of categories between the category of smooth represen-
tations of the locally profinite group GLd(AX) and the category of abelian sheaves
on (GLd(AX)-sets∗).

A.1.11. Let F = (
∐
j∈J Nj)/H be an object in F̃C

d
. Using Lemma A.8, we have

a map

ω(F ) = (
∐
j∈J

ω(Hom(−, Nj)))/H → J/H = π0(F )

induced by the map which sends the elements in ω(Hom(−, Nj)) to j.

Let f : F0 → F be a morphism in F̃C
d
. The map ω(F ) → Z≥0, which sends

x ∈ ω(F ) to #ω(f)−1(x), factors through π0(F ). We call the induced map deg f :
π0(F )→ Z≥0 the degree of f .

Lemma A.13. Let

F ′1
g1 //

�f ′

��

F1

f

��
F ′2

g2 // F2

be a cartesian diagram in F̃C
d
. Then (deg f ′)(y) = (deg f)(π0(g2)(y)) for any

y ∈ π0(F ′2).

Proof. Recall that the canonical fiber functor ω : F̃C
d
→ (Sets) preserves fiber

products. Thus we have a cartesian diagram

ω(F ′1)
ω(g1) //

�ω(f ′)

��

ω(F1)

ω(f)

��
ω(F ′2)

ω(g2) // ω(F2)

in the category of sets. The assertion then follows easily. �

Lemma A.14. Let f : N/{idN} → N/H be a Galois covering as in Lemma A.5,
then (deg f)(i) = #H for any i ∈ π0(N/H).
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Proof. We may assume that N/H is connected. Then the assertion follows from
the equality lim−→(HomFCd(L2/L1, N)/H) = (lim−→HomFCd(L2/L1, N))/H where the
limit is taken as in the definition of ω. �

A.1.12. Variant. Let N be an object in FCd and H be a subgroup of AutFCd(N).
We denote by (N/H)† the semi-sheaf associated to the presheaf HomFCd(−, N)/H.

Let F̃C
†,d

denote the full subcategory of the category of sheaves on FCd whose
objects are semi-sheaves of the form (N/H)† with N in FCd.

The notions of π0 and covering are canonically extended to the categories F̃C
†,d

.

We say that a morphism f in F̃C
†,d

is a fibration if there exist two coverings

g1, g2 in F̃C
†,d

such that g2 ◦ f ◦ g1 is a fibration in FCd. We define semi-sheaves

on F̃C
†,d

in a similar way. The proof of the following lemma is omitted.

Lemma A.15. A presheaf F on F̃C
†,d

is a semi-sheaf if and only if it satisfies
conditions analogous to (1) and (2) in Definition A.1 and (3)′′′ in Lemma A.6. �

The following lemma is used in the proof of Lemma 2.11.

Lemma A.16. Let f : M → N be a fibration in FCd. Suppose a finite group H acts
equivariantly on M and N . Then the induced morphism m : (M/H)† → (N/H)†

is a fibration in F̃C
†,d

.

Proof. Let f1 : (M/{idM})† → (M/H)† be the quotient map, and f2 : (N/H)† → 0
be the morphism induced by mN,0 : N → 0. Then the composition f2 ◦m ◦ f1 =
mM,0 is a fibration in FCd. �

Let F be a semi-sheaf on FCd. We can construct a semi-sheaf on F̃C
†,d

by

setting F̃ †((N/H)†) = F (N)H for an object (N/H)† in F̃C
†,d

. One can see, using
the previous lemma, that the functor F 7→ F̃ gives an equivalence of categories
between the category of semi-sheaves on FCd and the category of semi-sheaves on

F̃C
†,d

.

A.1.13. We define the functor ω† as follows. For a presheaf F on FCd, we let

ω†(F ) = lim−→L1⊂L2⊂Ô⊕dX
F (L2/L1)

= lim−→L1⊂Ô⊕dX
F (Ô⊕dX /L1)

where the first inductive limit is taken over the filtered ordered set of the pairs of
two ÔX -lattices (L1, L2) in Ô⊕dX with L1 ⊂ L2; the transition maps are defined
in a manner similar to those in the definition of ω in Section A.1.8. The second
inductive limit is taken over the ÔX -lattices in Ô⊕dX ordered by inclusion.

Let Mat− be the monoid consisting of elements g ∈ GLd(AX) such that g−1

belongs to Matd(ÔX). We define the category (Mat−-sets∗). An object S in
(Mat−-sets∗) is a set with left Mat−-action such that S is isomorphic to the dis-
joint union

∐
i∈I Mat−/Ki, where I is a finite set and Ki is an open subgroup of

GLd(ÔX). The proof of the following lemma is similar to that of Lemma A.11,
hence is omitted.

Lemma A.17. The functor ω† : F̃C
†,d
→ (Sets) gives an equivalence between the

category F̃C
†,d

and the category (Mat−-sets∗). �
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We remark that the argument similar to that in Section A.1.10 establishes an
equivalence of categories between the category of smooth representations of the
monoid Mat− and the category of abelian sheaves on (Mat−-sets∗). Here we say
that a representation V of Mat− is smooth if for each v ∈ V , there exists an open
subgroup of GLd(ÔX) which fixes v.

A.1.14. Let S =
∐
i∈I Mat−/Ki be an object of (Mat−-sets∗) where I is a finite

set and Ki is an open subgroup of GLd(ÔX).
Let Y be an object in (Mat−-sets∗). We let Y ∗ = Y \

⋃
m∈Mat−\GLd(ÔX)m · Y .

If f : Y → Z is a morphism in (Mat−-sets∗), then f−1(Z∗) ⊂ Y ∗ holds in general.
We say that a morphism f : Y → Z is a fibration if f(Y ∗) ⊂ Z∗. The following
two lemmas are easily checked.

Lemma A.18. Let f : Y =
∐
i∈I Mat−/Ki → Z =

∐
j∈J Mat−/Kj. The following

conditions are equivalent.
(1) f(Y ∗) = Z∗.
(2) f(Y ∗) ⊂ Z∗ and π0(f) is surjective.
(3) For each i ∈ I, the restriction f |Mat−/Ki : Mat−/Ki → Mat−/Kπ0(f)(i) is a

surjective map of sets, and π0(f) is surjective.
�

Lemma A.19. Let Y
f1−→ Z

f2−→ W be morphisms in (Mat−-sets∗). Then f2 ◦ f1
satisfies the conditions in Lemma A.18 and π0(f1) : π0(Y )→ π0(Z) is surjective if
and only if both f1 and f2 satisfy the conditions in Lemma A.18. �

Lemma A.20. Let M → N be a fibration in FCd. Then ω†(M) → ω†(N) is a
fibration in (Mat−-sets∗).

Proof. We may assume M,N ∈ Cd. It suffices to prove that ω†(M) → ω†(N) is
surjective. By definition, the elements of ω†(M) are represented by diagrams of the
form M � L ↪→ ÔX where L is an ÔX -lattice, and there is a similar expression for
those of ω†(N). Since M → N is a fibration in FCd, it is induced by a surjective
map M � N of ÔX -modules. The induced map Surj(L,M) → Surj(L,N), where
Surj(−,−) denotes the set of surjective maps, is surjective. We see this by reducing
to the case where X is the spectrum of the ring of integers of a local field, and using
Nakayama’s lemma. Hence the assertion follows. �

Proposition A.21. The fiber product of two fibrations in (Mat−-sets∗) exists.

In view of Lemmas A.18 and A.19, we have the following corollary.

Corollary A.22. The fiber product of two fibrations in F̃C
†,d

exists.

Proof of Proposition A.21. Let M1
f1−→ M2 and M3

f2−→ M2 be two fibrations in
(Mat−-sets∗). We construct the fiber product of f1 and f2. We may assume
that each of π0(M1), π0(M2), and π0(M3) consists of one element. Take open
subgroups Ki ⊂ GLd(ÔX) such that Mi

∼= Mat−/Ki for each i = 1, 2, 3 and K1 ⊂
K3 ⊃ K2. Then the set theoretic fiber product Mat−/K1 ×Mat−/K3

Mat−/K2
∼=∐

g∈K1\K3/K2
Mat−/(K1 ∩ gK2g

−1) is an object in (Mat−-sets∗), and hence is the
fiber product in (Mat−-sets∗). �



EULER SYSTEMS ON DRINFELD MODULAR VARIETIES 57

Appendix B. Ramified local L-factors

by Seidai Yasuda

The aim of this section is to derive a formula (Proposition B.1) which expresses
the local L-factor of any ramified generic irreducible admissible representation of
GLd over a local field in terms of the eigenvalues of certain Hecke operators acting
on the space of new vectors. A similar formula for unramified representations is
well-known and is found, for example, in [Cog, Lecture 7].

B.1. Review of functors between categories of presheaves (cf. [SGA4,
Expose I]).

B.1.1. For two categories A, C, let Presh(C,A) denote the category of presheaves
on C with values in A. In this section, we assume that any category denoted by a
letter C with some subscripts has a small skeleton.

B.1.2. Let f : C1 → C2 be a covariant functor. Then the pull-back functor f∗ :
Presh(C2,A)→ Presh(C1,A) is canonically defined.

B.1.3. If the category A has a limit (= projective limit), there is a right adjoint
functor of f∗, which we denote by f∗ : Presh(C1,A) → Presh(C2,A). The functor
f∗ can be explicitly given as follows. Let F be a presheaf on C1, and X be an
object in C2. Then (f∗F )(X) is a limit of F (Y ). Here the limit is taken over (a
small skeleton of) the category of pairs (Y, α) of an object Y in C1 and a morphism
α : f(Y ) → X in C2. When g : C2 → C3 is another covariant functor, we have
g∗f∗ = (gf)∗.

B.2. Ramified local L-factors. Let K be a non-Archimedean local field, OK be
its ring of integers, and $ be a uniformizer. Let (π, V ) be an irreducible admissible
representation of G = GLd(K).

B.2.1. For an integer n ≥ 0, let Kn ⊂ G be the open compact subgroup consisting
of the elements in GLd(OK) whose last row is congruent to (0, . . . , 0, 1) modulo $n.
Let H(G,Kn) be the Hecke algebra consisting of the bi-Kn-invariant functions on G
with compact supports. ThenH(G,Kn) is a convolution algebra with respect to the
Haar measure of G satisfying vol(Kn) = 1, whose unit is the characteristic function
of Kn. For r = 0, . . . , d − 1, let Tn,r = T

(d)
n,r ∈ H(G,Kn) denote the characteristic

function of the double coset

Kn



$
. . .

$
1

. . .
1


Kn

where in the above diagonal matrix $ appears r times and 1 appears d− r times.
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B.2.2. From now on we assume that π is generic and is not an unramified principal
series. Let c denote the conductor of π. Then c ≥ 1 and V Kc is one-dimensional.
The action of H(G,Kc) on V Kc defines an algebra homomorphism χV : H(G,Kc)→
C.

Proposition B.1. Let notations and assumptions be as above. Let L(π, s) be the
local L-factor of π. Then we have

L(π, s)−1 =
d−1∑
r=0

(−1)rχV (Tc,r)q
r(r−1)

2 −r( d−1
2 +s),

where q is the cardinality of the residue field of OK .

It is easy to check Proposition B.1 when π is supercuspidal. Suppose that π is
supercuspidal. Since every matrix coefficient of π has a compact support modulo
center, we have (χV (Tc,r))n = 0 for sufficiently large n when r = 1, . . . , d − 1.
Hence χV (Tc,r) = 0 for r = 1, . . . , d − 1. Thus we have

∑d−1
r=0 χV (Tc,r)q−rs = 1 =

L(π, s)−1.
To prove Proposition B.1 in general case, we use the classification of generic

representations given in [Be-Ze], [Ze].

Remark B.2. Perhaps Proposition B.1 is a consequence of [Ja-Pi-Sh, p. 208,
Théorème].

B.3. Categorical description of parabolic inductions. Let us consider the
category Cd for X = Spec (OK).

B.3.1. For a partition d = (d1, . . . , dm), d = d1 + · · ·+ dm, d1, . . . , dm ≥ 1 of d, let
Ed0 denote the following category. An object in Ed is an object M in Cd endowed
with a decreasing filtration

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ Film+1M = 0

of M by sub OK-modules such that for each i = 1, . . . ,m, GriM = FiliM/Fili+1M
is an object in Cdi . For two objects (M,Fil•), (N,Fil•) in Ed, a morphism from
(M,Fil•M), (N,Fil•) is a Q-morphism from N to M such that the filtration Fil•N
coincides with the the filtration induced from Fil•M . We have the following diagram
of categories

Cd1 × · · · × Cdm gr←− Ed for−−→ Cd,
where, gr (resp. for) denotes the functor which sends an object (M,Fil•) in Ed to
the object (Gr1M, . . . ,GrmM) in Cd1 × · · · × Cdm (resp. the object M in Cd).

Lemma B.3. For i = 1, . . . ,m, let (πi, Vi) be a smooth representation of Gi =
GLdi(K), and Fi be the sheaf (with values in complex vector spaces) on FCdi corre-
sponding to πi. Let π′ = Ind(π1×· · ·×πm) denote the algebraic parabolic induction
of π1×· · ·×πm to GLd(K) (here the word algebraic means that we do not make any
modification by a modular character). Let F ′ be the sheaf on FCd corresponding to
π′. Then we have a canonical isomorphism

F ′|Cd = for∗gr∗(F1|Cd1 � · · ·� Fm|Cdm )

of presheaves on Cd.
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B.3.2. Let F(Ed), F(Cd1×· · ·×Cdm) denote the category of finite families of objects
in Ed, Cd1×· · ·×Cdm , respectively. In a manner similar to that in Definition A.1, we
define sheaves on these categories. Then we can check that the category of abelian
sheaves on F(Ed) (resp. on F(Cd1 × · · · × Cdm)) is canonically equivalent to the
category of smooth representation of the standard parabolic subgroup of GLd(K)
corresponding to the partition d (resp. the group GLd1(K)× · · ·GLdm(K)).

The category F(Cd1 × · · · × Cdm) contains the direct product category FCd1 ×
· · · × FCdm as a full subcategory. When an abelian sheaf Fi on FCdi is given for
each i = 1, . . . ,m, they canonically produce an abelian presheaf, which we denote by
[F1�· · ·�Fm], on F(Cd1×· · ·×Cdm) whose restriction to FCd1×· · ·×FCdm is equal
to the presheaf F1 � · · ·�Fm. For any morphism ϕ : M → N in FCd1×· · ·×FCdm ,
the push-forward map ϕ∗ : [F1 � · · ·�Fm](M)→ [F1 � · · ·�Fm](N) is canonically
defined.

We define a covariant functor h : FCd → F(Cd1 × · · · × Cdm) in the following
way. For an object M in Cd, let Flagd(M) denote the set of decreasing filtrations

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ Film+1M = 0

of M by sub OK-modules such that for each i = 1, . . . ,m, GriM = FiliM/Fili+1M
is an object in Cdi . We define h(M) to be the disjoint sum

h(M) =
∐

Flagd(M)

(Gr1M, . . . ,GrmM).

For an object M =
∐
jMj in Cd, we set h(M) =

∐
j h(Mj).

Corollary B.4. In the notation of Lemma B.3, the sheaf F ′ is given by the pull-
back

F ′ = h∗[F1 � · · ·� Fm].
�

B.3.3.

Proof of Lemma B.3. By the adjointness property of for∗, it suffices to prove that
F ′′ = for∗gr∗(F1|Cd1 �Fm|Cdm ) is the restriction of a sheaf on FCd. Let f : M → N
be a Galois covering in Cd with Galois group G. We set h(M) =

∐
x∈π0(h(M)) h(M)x

and h(N) =
∐
y∈π0(h(N)) h(N)y. Then for any y ∈ π0(h(N)), the morphism∐

π0(h(f))(x)=y h(M)x → h(N)y is a “Galois covering” in F(Cd1 × · · · × Cdm) whose
Galois group Gy is a quotient of G. Hence F ′′(N) is isomorphic to the G-invariant
part of F ′′(M), whence the assertion follows. �

B.4. Description of push-outs.

B.4.1. For a morphism f : M → N in FCd and for x ∈ π0(h(M)), we define the
multiplicity multx(f) of f at x which is a power of q.

B.4.2. An element x ∈ π0(h(M)) corresponds to a pair (M0,Fil•M0) of a connected
component M0 of M and a decreasing filtration

M0 = Fil1M0 ⊃ · · · ⊃Mm+1 = 0

such that for i = 1, . . . , d, GriM0 is an object in Cdi . Let N0 � M ′
0 ↪→ M0 be the

restriction of f to M0, where N0 is an appropriate connected component of N . The
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filtration Fil•M0 on M0 induces a filtration Fil•M ′
0 on M ′

0 and a filtration Fil•N0

on N0. We define multx(f) to be

multx(f) = ](M0/M
′
0)
d
m∏
j=1

(
(]Filj+1M ′

0)
2

]Filj+1M0 · ]Filj+1N0

)dj
.

B.4.3.

Proposition B.5. Let the notations be as above. Then for any morphism f : M →
N in FCd, the push-forward map f∗ : F ′(M)→ F ′(N) is canonically identified with
the map

f ′∗ : [F1 � · · ·� Fm](h(M))→ [F1 � · · ·� Fm](h(N))
which is defined as follows. We set h(M) =

∐
x∈π0(h(M)) h(M)x and

h(N) =
∐
y∈π0(h(N)) h(N)y. On each x ∈ π0(h(M)), we define h(f)x : h(M)x →

h(N)π0(h(f))(x) to be the restriction of the morphism h(f) : h(M) → h(N) to the
component h(M)x. Then f ′∗ is given as the direct sum of the morphisms

multx(f)(h(f)x)∗ : [F1 � · · ·� Fm](h(M)x)→ [F1 � · · ·� Fm](h(N)π0(h(f))(x)).

Proof. We easily reduce to the case where f : M → N is a Galois covering in
Cd. Moreover we may assume that M = (OK/$n)⊕d for some n, and that for
the Q-morphism N � M ′ ↪→ M giving f , M ′ is equal to either M or N . Let
G be the Galois group of M over N . We set h(M) =

∐
x∈π0(h(M)) h(M)x and

h(N) =
∐
y∈π0(h(N)) h(N)y. For x ∈ π0(h(M)), let Gx denote the Galois group of

h(M)x over h(N)π0(h(f))(x). Then it is easily checked that the cardinality of the
kernel of G � Gx is equal to multx(f). Hence the assertion follows. �

B.4.4. Let V be a smooth representation of GLd(F ) and let F be the corresponding
sheaf on FCd with values in complex vector spaces. Let us consider the cyclic
OK-module N = OK/$n of length n. Then for r = 1, . . . , d, Hecke operator
Tn,r : V Kn → V Kn induces an endomorphism F (N)→ F (N) which we also denote
by Tn,r. For i = 1, . . . , d − 1, let mr = m

(d)
r , rr = r

(d)
r denote the morphism from

(OK/$)⊕r ⊕N → N in Cd given by the canonical inclusion N ↪→ (OK/$)⊕r ⊕N ,
by quotient (OK/$)⊕r ⊕N � N respectively. Then we have

Tn,r =
1

]GLr(OK/$)
(rr)∗m∗

r : F (OK/$n)→ F (OK/$n).

Corollary B.6. In the notation of Lemma B.3, suppose that πi is generic of con-
ductor ni for each i = 1, . . . ,m. Put N = OK/$n1+···+nm . Then F ′(N) is one-
dimensional and for i = 0, . . . , d− 1, the eigenvalue of Tr on F ′(N) is equal to the
sum ∑

r=r1+···+rm,
ri≤max(di−ni,di−1)

∏m
i=1 q

ri(
∑

1≤j<i di)

q
∑

1≤i<j≤m rirj
T (d1)
n1,r1 ⊗ · · · ⊗ T

(dm)
nm,rm .

Proof. Let Fil•N be the decreasing filtration of N defined by FiliN = N for i ≤ 1,
FiliN = $n1+···ni−1N for 2 ≤ i ≤ m, and FiliN = 0 for i ≥ m+1. Let x ∈ π0(h(N))
be the connected component corresponding to this filtration. Then it is easily
checked that

[F1 � · · ·� Fm](h(N)) = [F1 � · · ·� Fm](Fil1N/Fil2N, . . . ,FilmN/Film+1N).
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Hence F ′(N) = F1(Gr1N) ⊗ · · · ⊗ F (GrmN) is one-dimensional. Now let us
compute the eigenvalue of Tn,r = 1

]GLr(OK/$) (rr)∗m
∗
r on F ′(N). The only in-

volved connected components x̃ ∈ π0(h((OK/$)⊕r ⊕ N)) are those which satisfy
π0(h(mr))(x̃) = π0(h(rr))(x̃) = x. For each such x̃, the filtration on (OK/$)⊕r⊕N
corresponding to x̃ is the direct sum of a filtration on (OK/$)⊕r and the filtration
Fil•N on N . Hence (mr)∗r∗r is equal to∑

r=r1+···+rm,
ri≤max(di−ni,di−1)

]GLd(OK/$)
∏m
i=1 q

di(
∑
i<j≤m rj)∏m

i=1 ]GLri(OK/$) · qri(
∑
i<j≤m rj)

×((r(d1)r1 )∗m
(d1)∗
r1 )⊗ · · · ⊗ ((r(dm)

rm )∗m
(dm)∗
rm ).

The assertion follows. �

Corollary B.7. In the situation of Corollary B.6, suppose that πi is a discrete
series for each i = 1, . . . ,m. Let S ⊂ {1, . . . ,m} be the subset defined by S =
{i | L(πi, s) 6= 1}. For i ∈ S, let ai denote the eigenvalue of T (di)

ni,1
on Fi(OK/$ni).

Then for i = 0, . . . , d− 1, the eigenvalue of Tn,r on F ′(N) is equal to

q−r(r−1)/2
∑
S′⊂S,
]S′=r

∏
i∈S′

aiq
∑

1≤j<i di

�

B.5. Proof of Proposition B.1. By Corollary B.6 and Corollary B.7, the proof
of Proposition B.1 is easily reduced to the case where π is an unramified twist of
Steinberg representation, that is, π is isomorphic (up to an appropriate unramified
twist) to the quotient of the algebraic parabolic induction Ind(1(1) × · · · × 1(1)) of
d trivial representations 1(1) of GL1(K) to GLd(K) by the canonical image of the
direct sum

Ind(1(2) × 1(1) × · · · × 1(1))⊕ Ind(1(1) × 1(2) × 1(1) × · · · × 1(1))
⊕ · · · ⊕ Ind(1(1) × · · · × 1(1) × 1(2)).

Let CFC1 , CFC2 denote the constant sheaves on FC1, FC2 respectively. Put F ′ =
h∗[CFC1×· · ·×CFC1 ] and F2 = h∗[CFC2×CFC1×· · ·×CFC1 ], F3 = h∗[CFC1×CFC2×
CFC1×· · ·×CFC1 ], . . ., Fd = h∗[CFC1×· · ·×CFC1×CFC2 ]. Then F ′, F2, . . . , Fd are
the sheaves on FCd corresponding to Ind(1(1)×· · ·×1(1)), Ind(1(2)×1(1) · · ·×1(1)),
. . ., Ind(1(1)×· · ·×1(1)×1(2)), respectively. Hence the sheaf on FCd corresponding
to the Steinberg representation is (an appropriate unramified twist of) the quotient
sheaf F of

d⊕
i=2

Fi → F ′.

Let F ′′ denote the quotient presheaf of ⊕di=2Fi → F ′. Then F ′′ is a sub-presheaf of
F . It is known thatOK/$d−1 is one-dimensional. First we show that F ′′(OK/$d−1)
is also one-dimensional, that is, F (OK/$d−1) = F ′′(OK/$d−1). We set S =
{2, . . . , d}. By definition, F (OK/$d−1) is canonically identified with the direct
sum

F (OK/$d−1) =
⊕

α:S→{0,...,d−1}

C,
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where α runs over the non-decreasing map from S to {0, . . . , d − 1}. Similarly for
i ∈ S, Fi(OK/$d−1) is canonically identified with the direct sum

Fi(OK/$d−1) =
⊕

αi:S−{i}→{0,...,d−1}

C,

where αi runs over the non-decreasing map from S − {i} to {0, . . . , d − 1}. For a
map ε : S → {0, 1}, let αε : S → {0, . . . , d − 1} denote the non-decreasing map
defined by αε(i) = i− 2 + ε(i). We also set s(ε) = (−1)

∑
i ε(i). Define the C-linear

map β : F ′′(OK/$d−1) → C by sending (cα)α to
∑
ε s(ε)cαε . Then it is easily

checked that for each i ∈ S the composition Fi(OK/$d−1) → F (OK/$d−1)
β−→ C

is zero. Hence F ′′(OK/$d−1) is at least one-dimensional.
Let ε0 : S → {0} ⊂ {0, 1} be the constant map on S. Let v ∈ F ′(OK/$d−1) the

element whose α = αε0-component is 1 and whose α 6= αε0-component is 0. For
r = 1, . . . , d− 1. set Td−1,r(v) = (wr,α)α. We compute

Cr = β(Td−1,r(v)) =
∑
ε

s(ε)wr,αε .

Among the functions of the form αε, αε0 is the function which takes the minimal
value at each point on S. It follows from this that Cr = wr,αε0 . It is easily
checked that wr,αε0 = 0 for r ≥ 2 and w1,αε0

= 1. This completes the proof of
Proposition B.1. �

Appendix C. The Steinberg representation of GLd and
Iwahori-spherical Whittaker functions

by Seidai Yasuda

In this appendix, after recalling several basic facts on the Steinberg representa-
tion of GLd(K), we give an explicit formula of the Whittaker functions of Iwahori-
spherical vectors of the Steinberg representation of GLd over a non-Archimedean
local field. The result is used in Section 7.

C.1. Notations. In this appendix, we fix a positive integer d ≥ 1. Let G denote
the group scheme GLd over Spec (Z). We use the following notations. Let B ⊂ G
denote the Borel subgroup of upper triangular matrices, N ⊂ B denote its unipotent
radical, and M ⊂ B denote the Levi subgroup of diagonal matrices. We also let
N− ⊂ G denote the group of lower triangular matrices whose diagonal entries are
1.

Let W ⊂ G denote the constant subgroup scheme of permutation matrices. For
an element σ in the d-th symmetric group Sd, let wσ = (δσ(i)j) ∈W (Z) denote the
permutation matrix corresponding to σ. For σ ∈ Sd we set

`(σ) = ]{(i, j) ∈ Z2 | 1 ≤ i < j ≤ d, σ(i) > σ(j)}.

C.2. Basic facts on the Steinberg representation of GLd(K). Let K be a
non-Archimedean local field, OK be its ring of integers, k be its residue field, and
q denote the cardinality of k. Let | | : K → C (resp. ord : K× → Z) denote the
non-Archimedean absolute value (resp. the normalized valuation) of K.
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C.2.1. Let us consider the Steinberg representation St of G(K). First we recall
its definition and its basic properties. Let δB : B(K) → R× denote the modu-
lar character of B(K). Explicitly, the character δB sends b = (bij) ∈ B(K) to
|b11|d−1|b22|d−3 · · · |bdd|−d+1. By definition, St is a unique irreducible subrepresen-
tation of

IndG(K)
B(K)δ

1
2
B = {φ : G(K)→ C | φ(bg) = δB(b)φ(g) for b ∈ B(K), g ∈ G(K)}.

Let I ⊂ G(OK) denote the Iwahori subgroup. It is well-known that StI is a one-
dimensional C-vector space.

C.2.2. By Iwasawa decomposition G(K) = B(K)G(OK), the space IndG(K)
B(K)δ

1
2
B is

canonically isomorphic to the space of C-valued functions on the cosetB(OK)\G(OK)
and this isomorphism is compatible with G(OK)-action. In particular we have

an isomorphism Φ : (IndG(K)
B(K)δ

1
2
B)I

∼=−→ Map(B(OK)\G(OK)/I,C). We note that
G(OK) =

∐
w∈W (K)B(OK)wI by Iwahori factorization.

Lemma C.1. The image Φ(πI) is, as a C-vector space, generated by the function
φ0 : B(OK)\G(OK)/I → C which sends B(OK)wσI to sgn(σ)q−`(σ) for each σ ∈
Sd.

Proof. For i = 1, . . . , d − 1, let Pi ⊃ B be the standard parabolic subgroup corre-

sponding to the partition (

i−1︷ ︸︸ ︷
1, . . . , 1, 2,

d−1−i︷ ︸︸ ︷
1, . . . , 1) of d. Let δPi : Pi(K) → R× denote

the modular character of Pi(K). Explicitly, δPi sends (pjk) ∈ Pi(K) to

|p11|d−1 · · · |pi−1,i−1|d−2i+1|piipi+1,i+1−pi,i+1pi+1,i|d−2i|pi+2,i+2|d−2i−3 · · · |pdd|−d+1.

It is known (cf. [Ca]) that St is equal to the kernel of the canonical homomorphism

IndG(K)
B(K)δ

1
2
B →

d−1⊕
i=1

IndG(K)
Pi(K)δ

1
2
Pi
.

Let I1 ⊂ G(OK) denote the subgroup of the matrices which are congruent to 1
modulo the maximal ideal of OK . Given a function f : B(OK)\G(OK)/I1 → C,
we define for each i = 1, . . . , d − 1 a function pi(f) : Pi(OK)\G(OK)/I1 → C as
follows: for y ∈ Pi(OK)\G(OK)/I1, we put

pi(f)(y) =
∑

x∈B(OK)\G(OK)/I1,x 7→y

f(x).

By Corollary B.4, there is a canonical commutative diagram

IndG(K)
B(K)δ

1
2
B −−−−→ IndG(K)

Pi(K)δ
1
2
Pi

∼=
y y∼=

Map(B(OK)\G(OK)/I1,C)
pi−−−−→ Map(Pi(OK)\G(OK)/I1,C)

Therefore StI is isomorphic to the kernel of

(p1, . . . , pd−1) : Map(B(OK)\G(OK)/I,C)→
d−1⊕
i=1

Map(Pi(OK)\G(OK)/I,C).
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which is, as is easily checked, generated by the function B(OK)\G(OK)/I → C
which sends B(OK)wσG(OK) to sgn(σ)

]B(k)wσB(k)/B(k) . Since ]B(k)wσB(k)/B(k) =
q`(σ) by Bruhat decomposition, we have the assertion. �

C.2.3. Action of the Iwahori-spherical Hecke algebra. Let H = H(G(K), I) denote
the convolution algebra of the I-biinvariant compactly supported C-valued func-
tions on G(K). As a Haar measure of G(K), we take the one with vol(I) = 1, so
that the characteristic function of I is the unit of H. For g ∈ G(K), the charac-
teristic function of the subset IgI ⊂ G(K) is an element in H which, by abuse of
notation, we also denote by IgI. The algebra H acts on the one-dimensional space
StI , which yields a C-algebra homomorphism ν : H → C.

Lemma C.2 (cf. [Iw-Ma, §3], [Sh]). For σ ∈ Sd, we have ν(IwσI) = sgn(σ).

Proof. Let f ∈ StI be the element corresponding to the function φ0 in Lemma C.1
via the isomorphism Φ. Since φ0 takes the constant value sgn(σ)q−`(σ) on IwσI,
we have

Φ(IwσI · f)(1) = vol(IwσI)sgn(σ)q−`(σ) = sgn(σ).

Hence ν(IwσI) = sgn(σ). �

C.3. Explicit formula of the Iwahori-spherical Whittaker functions. From
now on we fix a non-trivial additive character ψ : K → C× of conductor 0. Let
N ⊂ B denote the unipotent radical of B. Let ψN : N(K) → C× denote the
character defined by ψN ((nij) = ψ(

∑d−1
i=1 ni,i+1).

It is well-known that there is an injective G(K)-homomorphism from IndG(K)
B(K)δ

1
2
B

to the space IndG(K)
N(K)ψN of functions ϕ : G(K)→ C satisfying ϕ(ng) = ψN (n)ϕ(g)

for any n ∈ N(K), g ∈ G(K), and such a homomorphism is unique up to a non-zero
scalar. We say that a non-zero element Wh ∈ IndG(K)

N(K)ψN is an Iwahori-spherical

Whittaker function for St if it belongs to the image of StI ⊂ St ⊂ IndG(K)
B(K)δ

1
2
B .

For σ ∈ Sd, let M(K)−σ ⊂ M(K) denote the subset of elements of the form
diag(m1, . . . ,md) with ord(mi) + 1 ≥ ord(mi+1) for 1 ≤ i ≤ d and ord(mi) ≥
ord(mi+1) for 1 ≤ i ≤ d with σ(i) < σ(i+ 1).

Proposition C.3. There is a unique Iwahori-spherical Whittaker function Wh1 ∈
IndG(K)

N(K)ψN for St with Wh1(1) = 1. For m = diag(m1, · · · ,md) ∈ M(K) and for
σ ∈ Sd, we have

(C.1) Wh1(mwσ) =
{

sgn(σ)q−`(σ)δB(m), if m ∈M(K)−σ ,
0, otherwise.

There is another description of the set M(K)σ. Put

S = {(nij) ∈ N−(K) | ord(nij) ≥ i− j for 1 ≤ j ≤ i ≤ d}.

Then
M(K)−σ = {m ∈M(K) | (mwσ)−1S(mwσ) ⊂ I}.

By [Li, Theorem 4.1], there is a unique Iwahori-spherical Whittaker function
Wh1 with Wh1(1) = 1 which satisfies the formula (C.1) for any m ∈ M(K) and
σ = 1. We will check the formula (C.1) for general σ in several steps.
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Lemma C.4. Let m ∈ M(K)−1 and let σ ∈ Sd. Then we have Wh1(mwσ) =
sgn(σ)q−`(σ)δB(m), that is, the formula (C.1) is valid for m ∈M(K)−1 .

Proof. Since m ∈ M(K)−1 , we have mN(OK)m−1 ⊂ KerψN . Since IwσI =
N(OK)wσI, we have Wh1(mg) = Wh1(mwσ) for any g ∈ IwσI. Since ν(IwσI) =
sgn(σ) by Lemma C.2, we have

vol(IwσI)Wh1(mwσ) = sgn(σ)Wh1(m).

Since vol(IwσI) = ](IwσI/I) = ](B(k)wσB(k)/B(k)) and ](B(k)wσB(k)/B(k)) =
q`(σ) by Bruhat decomposition, the assertion follows. �

Let σl ∈ Sd denote the longest element: σl(i) = d+ 1− i for i = 1, . . . , d.

Lemma C.5. The formula (C.1) is valid if it is valid for σ = σl.

Proof. Since ν(Iwσ−1σlI) = sgn(σ−1σl) by Lemma C.2, we have∫
Iwσ−1σl

I
Wh1(mwσg)dg = sgn(σ−1σl)Wh1(mwσ).

Let Nσ denote the subgroup wσNw
−1
σ ∩ N of G. By Bruhat decomposition, the

left hand side is equal to ∑
n∈Nσ(k)

Wh1(ms(n)wσl)

for any set theoretic section s of the canonical surjection Nσ(OK) � Nσ(k). Since

Wh1(ms(n)wσl) = Wh1(ms(n)m−1 ·mwσl)
= ψN (ms(n)m−1)Wh1(mwσl),

we have∫
Iwσ−1σl

I
Wh1(mwσg)dg =

]Nσ(k)
vol(Nσ(OK))

∫
Nσ(OK)

ψN (mnm−1)dn ·Wh1(mwσl).

Let M(K)′σ ⊂M(K) denote the subset

M(K)′σ = {m ∈M(K) | mNσ(OK)m−1 ⊂ Ker(ψN )}.

Then we have

(C.2) sgn(σ)Wh1(mwσ) =
{

sgn(σl)]Nσ(k)Wh1(mwσl), if m ∈M(K)′σ
0, otherwise.

Hence the assertion follows from ]Nσ(k) = q`(σl)−`(σ) and M(K)−σl ∩ M(K)′σ =
M(K)−σ , which are easily checked. �

Let σc ∈ Sd be the cyclic permutation: σc(i) = i + 1 for i = 1, . . . , d − 1 and
σc(d) = 1. Take a uniformizer $ of K. For i = 0, · · · , d, let hi ∈ G(K) be the
element

hi = wσicΠi = (wσcdiag($, 1, . . . , 1))i,

where Πi = diag(
i︷ ︸︸ ︷

$, . . . ,$,

d−i︷ ︸︸ ︷
1, . . . , 1) ∈M(K).

Lemma C.6. We have ν(IhiI) = (−1)i(d−1).
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Proof. Since hiIh−1
i = I, the double coset IhiI consists of the single right coset

hiI. Hence we have Wh1(ghi) = ν(IhiI)Wh1(g) for any g ∈ G(K). Substituting
g = wσ−ic , we have

Wh1(Πi) = ν(IhiI)Wh1(wσ−ic ).

Applying Lemma C.4, we have δB(Πi) = ν(IhiI)sgn(σ−ic )q−`(σ
−i
c ), whence the

assertion follows. �

The following corollary, together with Proposition B.1 is used in Section 5.2 and
Corollary of Section 7.

Corollary C.7. Let K ⊂ I denote the subgroup of matrices (gij) ∈ G(OK) satis-
fying gij mod$ = δij for 1 ≤ i ≤ d, 1 ≤ j ≤ d − 1. Let H(G(K),K) denote the
convolution algebra (with respect to the Haar measure of G(K) with vol(K) = 1)
of the K-biinvariant compactly supported C-valued functions on G(K). Let (π, V )
be a smooth representation of G(K) which is isomorphic to an unramified twist of
St. Let T ∈ H(G(K),K) denote the characteristic function of Kdiag(1, . . . , 1, $)K.
Then for v ∈ V I ⊂ V K, we have

(1− q−sT )v = L(π, s− d− 1
2

)−1v,

where L(π, s) is the local L-factor of π.

Proof. We may assume that V = St. Since K/(K∩Π1KΠ−1
1 ) ∼= I/(I ∩Π1IΠ−1

1 ) ∼=
(OK/$)⊕d−1, the canonical map KΠ1K/K→ IΠ1I/I is bijective. Hence we have

Tv = IΠ1I.v = Iwσ−1
c
I.h1.v = v,

whence the assertion follows. �

Proof of Proposition C.3. By Lemma C.5, it suffices to prove the formula (C.1) for
σ = σl.

Let m = diag(m1, . . . ,md) be an element in M(K). By Lemma C.6, we have
Wh1(mwσlhi) = (−1) i(d− 1)Wh1(mwσl) for i = 0, . . . , d− 1. On the other hand,
since mwσlhi = mΠiwσlσic , we have

Wh1(mwσlhi) =
{

sgn(σic)]Nσlσic(k)Wh1(mΠiwσl), if mΠi ∈M(K)′σlσic ,
0 otherwise,

by (C.2), where Nσlσic and M(K)′σlσic are as in the proof of Lemma C.5. Therefore,

Wh1(mwσl) =
{
δB(Πi)−1Wh1(mΠiwσl), if ord(mi) + 1 ≥ ord(mi+1),
0 otherwise,

whence the assertion inductively follows from Lemma C.4 for σ = σl. �
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I, Ann. Sci. Éc. Norm. Supér., IV. Sér. 10, 441–472 (1977)

[Ca] W. Casselman, The Steinberg character as a true character, in Harmonic Analysis on
homog. Spaces, Proc. Sympos. Pure Math. 26, Williamstown 1972, 413–417 (1973)

[Cog] J. W. Cogdell, Lectures on L-functions, converse theorems, and functoriality for

GLn, in Lectures on Automorphic L-Functions, Fields Institute Monographs 20,
1–96 (2004)

[Con] C. Consani, Double complexes and Euler L-factors, Compos. Math. 111, No.3, 323-
358 (1998)

[De-Hu] P. Deligne, D. Husemoller, Survey of Drinfel’d modules, in Current trends in arith-

metical algebraic geometry, Proc. Summer Res. Conf., Arcata/Calif. 1985, Contemp.
Math. 67 25–91 (1987)

[Dr] V. G. Drinfeld, Elliptic modules, Math. USSR, Sb. 23, 561–592 (1974); translation

from Mat. Sb., n. Ser. 94(136), 594-627 (1974)
[Ge] A. Genestier, Espaces symétriques de Drinfled, Astérisque 234 Paris:Société
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