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Let Gn
a � V =

⊕n
i=1 Vi be the direct sum of n copies V1, . . . , Vn of the 2-

dimensional standard unipotent action of the 1-dimensional additive group
Ga. The induced action on the polynomial ring S2n = C[x1, . . . , xn, y1, . . . , yn]
is as follows:

(t1, . . . , tn) ∈ Cn
� S2n = C[x1, . . . , xn, y1, . . . , yn],

{
xi �−→ xi

yi �−→ tixi + yi,

The restriction of this action to a general linear subspace G ⊂ Cn is called
an action of Nagata type. In [M], generalizing the result of Nagata [N1]
(r = 3 and n = 16), we proved the infinite generation of the invariant ring
SG in the case where the inequality 1/2+1/(n− r)+1/r ≤ 1 holds, where
r is the codimension of G. In this article, we shall show the converse:

Theorem The invariant ring SG of Nagata type is finitely generated if
1/2 + 1/(n− r) + 1/r > 1.

This inequality is equivalent to the finiteness of the Weyl group of the
Dynkin diagram T2,r,n−r with three legs of length 2, r and n− r. There are
four infinite series [1]–[4] and five exceptional cases [5]–[9] for which this
holds:

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Cartan’s symbol BDII DIII EIII EVII EVI EIX EVIII

r 1 2 3 3 4 3 5
n− r 1 2 3 4 3 5 3

diagram An An Dn Dn E6 E7 E7 E8 E8

In the cases [1] and [3], the invariant ring is very explicit and the proof
is immediate ([M, §1]). The case [2] is classical and the invariant ring SG is
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the homogeneous coordinate ring of the Grassmannian variety G(2, n+1).
We assume s := dimG ≥ 2 in the sequel.

In the rest of cases, we start the proof with the following key fact on
the Nagata invariant ring: SG is isomorphic to the total coordinate ring

T C(X) :=
⊕

a,b1,... ,bn∈Z

H0(X,OX(ah− b1e1 − · · · − bnen)) �
⊕

L∈PicX

H0(X,L)

of the variety X = Bln pts P
r−1 ([M, §1], [N1, §3] in the case r = 3).

More precisely, X is the blow-up of the (r − 1)-dimensional projective
space P∗(Cn/G) with center the n points p1, . . . , pn corresponding to the
standard basis of Cn. In the case r = 3, X is a del Pezzo surface and the
theorem follows from [BP].

We make use of the fact that X is the moduli spaces of certain vector
bundles in the case s = 2 and 3. Note that G ⊂ Cn and the standard basis
determine the n points q1, . . . , qn on the projective space P∗G � Ps−1

also. We reduce the finite generation of T C(X) to a geometry of the n-
pointed projective space (Ps−1; q1, . . . , qs), which is the Gale transform of
(Pr−1; p1, . . . , ps) ([DO, III], [EP]). Let Iq1,... ,qn

⊂ OP be the ideal sheaf of
the set of n points {q1, · · · , qn} ⊂ Ps−1. Then we obtain a family of exact
sequences of coherent sheaves of OP-modules

Ex : 0 −→ OP(1) ⊗ Iq1,... ,qn
−→ Ex

π−→ OP −→ 0 (1)

on Ps−1 parameterized by x ∈ P∗H1(OP(1) ⊗ Iq1,... ,qn
) = Pr−1. By the

exact sequence

0 −→ H0(OP(1)) −→ H0(
n⊕

i=1

C(pi)) = Cn −→ H1(OP(1)⊗Iq1,... ,qn
) −→ 0,

H1(Ps−1,OP(1)⊗Iq1,... ,qn
) is isomorphic to the vector space Cn/G including

the assignment of bases. The exact sequence Epi
splits outside qi for every

1 ≤ i ≤ n, that is, Epi
contains a subsheaf � Iqi

on which π is nonzero.
In the case s = 2, Ex is regarded as a quasi-parabolic rank 2 vector

bundle on the n-pointed projective line (P1; q1, . . . , qn). By the correspon-
dence x �→ Ex, the moduli space U(α) of parabolic 2-bundles with a certain
weight α is isomorphic to Pr−1 (§1). The moduli space U(α′) is isomorphic
to the blow up XG for another weight α′. We apply the result of Bauer[B]
on the variation of the moduli spaces U(α) to determine the movable cone
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of them. Then the finite generation follows from the GIT construction of
such moduli spaces by Mehta-Seshadri[MS] and a result of Zariski.

In the case s ≥ 3, the sheaf Ex is not locally free at q1, . . . , qn but
determines uniquely a vector bundle Ẽx on the blow-up S = Blq1,... ,qn

Ps−1.
Especially, In the cases [9] and [7], the correspondence x �→ Ẽx ⊗ OS(1)
gives rise to an isomorphism

Pr−1 ∼−→MS,L(2,−KS, c2 = 2) (2)

of the (r−1)-dimensional projective space to the moduli space of 2-bundles
with the above described invariants on a del Pezzo surface S (of degree 1
and 2) which are stable with respect to a certain ample divisor L. The blow-
up XG is isomorphic to MS,L′(2,−KS, c2 = 2) for another ample divisor L′.
The finite generation essentially follows from the ampleness of −KS (§2).

§1 Moduli of parabolic 2-bundles on P1

Let C be a complete algebraic curve. A pair (E ′ ⊂ E) of an (algebraic)
vector bundle E of rank 2 on C and its subsheaf E ′ of rank 2 is called
a quasi-parabolic 2-bundle. The inclusion detE ′ ⊂ detE determines an
effective divisor on C, which we denote by ∆. E ′ coincides with E outside
the support ofD. Let q1, . . . , qn be a set of distinct n points on C. (E ′ ⊂ E)
with ∆ = q1 + · · ·+qn is called a quasi-parabolic 2-bundle on the n-pointed
curve (C; q1, . . . , qn). A pair (E ′ ⊂ E;α) of a quasi-parabolic 2-bundle and
an n-tuple α = (α1, . . . , αn) of real numbers in the closed interval [0, 1] is
called a parabolic 2-bundle.

Definition 1 A parabolic 2-bundle (E ′ ⊂ E;α) is semi-stable if

degL−
n∑

i=1

αilengthpi
L/(L ∩ E ′) ≤ 1

2
(degE −

n∑
i=1

αi)

holds for every line subbundle L ⊂ E. It is stable if the strict inequality
holds for every line subbundle L ⊂ E.

We only need the case C = P1. Let q1, . . . , qn ∈ P1 and p1, . . . , pn ∈
Pn−3 be as in the introduction. We denote by U(α) the moduli space of
semi-stable parabolic 2-bundles (E ′ ⊂ E;α) on the n-pointed projective
line (P1 : q1, . . . , qn) with detE � OP(1). Since the 2-bundle Ex in (1)
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is a subsheaf of the direct sum OP(1) ⊕ OP, we obtain a quasi-parabolic
2-bundle (Ex ⊂ OP(1)⊕OP) for each x ∈ Pn−3. First we consider the case
where the weight α is diagonal, that is, α = (a, . . . , a), for a ∈ [0, 1]. By
[B], we have the following:

Proposition 1 (1) If 1/n < a < 1/(n − 2), then (Ex ⊂ OP(1) ⊕ OP) is
stable for every x ∈ Pn−3 and the classification morphism

P∗H
1(OP(1)⊗Iq1,... ,qn

) � Pn−3 −→ U(a, . . . , a), x �→ (Ex ⊂ OP(1)⊕OP)

is an isomorphism. (The moduli space is empty if 0 ≤ a < 1/n and consists
of one point if a = 1/n.)

(2) U(a, . . . , a) is isomorphic to the blow-up XG = Blp1,... ,pn
Pn−3 if n ≥

5 and 1/(n− 2) < a < 1/(n− 4).

In order to describe the moduli space U(α) for a general weight α, we
need the family of hyperplanes

HI,k :
∑
j �∈I

αj +
∑
i∈I

(1 − αi) = k

in the hypercube [0, 1]n, where I is a subset of {1, . . . , n} and k is an integer
with |I| ≡ k + 1 mod 2. A connected component of the complement of the
union of all these hyperplanes is called a chamber. The hyperplane HI,k

coincides with HIc,n−k, where Ic is the complement of I. Hence we assume
k ≤ n/2 in the sequel. We recall some results of [B, §2] for our proof.

Proposition 2 (1) Let C be a chamber. Then the moduli space U(β) with
β ∈ C is smooth of dimension n− 3. Moreover, their isomorphism classes
do not depend on β. We denote the isomorphism class by UC.

(2) For each α ∈ C, there exists a (contraction) morphism fC,α : UC −→
U(α).

(3) Let C and C′ be two adjacent chambers separated by the hyperplane
HI,k Assume that

∑
j �∈I αj +

∑
i∈I(1 − αi) − k non-positive on C and non-

negative on C′. Then the two moduli spaces UC and UC′ are related in the
following way.

i) If k = 2, then UC′ is the blow-up of UC at a point.
ii) If 3 ≤ k(≤ n/2), then UC′ is a flop of UC. Let α0 be a general

point of C ∩ C′. The morphism fC,α0
: UC −→ U(α0) contracts a subvariety

isomorphic to Pk−2 to a singular point and fC′,α0
contracts a subvariety

� Pn−k−2 to the same point. Both fC,α0
and fC′,α0

are isomorphisms outside
the subvarieties.
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We also need the behavior of U(α) in the neighborhood of the facets
of [0, 1]n, which is described by the neglect of the parabolic structure
at a (parabolic) point. Let (E ′ ⊂ E) be a parabolic 2-bundle on (P1 :
q1, . . . , qn) and Ei the subsheaf of E which is E ′ outside qi and E itself
in the neighborhood of qi. Then (Ei ⊂ E) is a parabolic 2-bundle on the
(n−1)-pointed projective line (P1 : q1, . . . , q̌i, . . . , qn). Similarly, let Ei be
the subsheaf of E which is E outside qi and E ′ in the neighborhood of qi.
Then (E ′ ⊂ Ei) is also a parabolic 2-bundle.

Proposition 3 Let C be a chamber with αi = 0 as its supporting hyper-
plane. Then the neglect (E ′ ⊂ E) �→ (Ei ⊂ E) defines a morphism UC −→
U′ onto a moduli spaces of parabolic 2-bundles on (P1 : q1, . . . , q̌i, . . . , qn).
A general fiber is isomorphic to P1. Similarly if C has αi = 1 as its
supporting hyperplane, then (E ′ ⊂ E) �→ (E ′ ⊂ Ei) defines a morphism
UC −→ U′′ whose general fiber is also P1.

This is a moduli theoretic interpretation of the following birational ge-
ometry in the case s = 2:

Example 1 The projection Pr−1 · · · → Pr−2 with center pn induces a
rational map XG = BlnP

r−1 · · · → Bln−1P
r−2 to the blow-up of Pr−2 at

the image of (n− 1) points p1, . . . , pn−1. This image is the Gale transform
of q1, . . . , qn−1 ∈ Ps−1. The indeterminacy of this rational map is resolved
by the flop with center the strict transforms of the n − 1 lines joining pn

and pi, 1 ≤ i ≤ n− 1. The resulting morphism is a P1-bundle.

Let Π be the polytope in [0, 1]n defined by the system of 2n−1 inequalities∑
j �∈I αj +

∑
i∈I(1−αi) ≥ 2 for the subsets I ⊂ {1, . . . , n} with |I| odd. Let

Π be its interior. By virtue of (3) of Proposition 2, U(β)’s with β ∈ Π are
isomorphic to each other in codimension one. So they have the common
Picard group and the common total coordinate ring.

The polytope Π is empty if n = 3 and consists of one point (1/2, · · · , 1/2)
if n = 4. So we assume n ≥ 5. The diagonal weight (a, . . . , a) with
1/(n − 2) < a < 1/(n − 4) is contained in Π. Hence, by Proposition 1,
U(β) is isomorphic to XG in codimension one for every interior point β of
Π.

For our proof we need a fact from the construction in [MS] also. The
moduli space U(C:q1,... ,qn)(α) is a GIT quotient of the product of a suitable
Quot scheme and Grassmannians by suitable linearization. Since U(α) is
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the projective spectrum ProjR of a graded ring R, it carries a natural am-
ple (Cartier) divisor, which we regard as a divisor on XG by Proposition 2
and denote by Dα. The choice of linearization in [MS] is linear with respect
to the weight α. Hence we have

Lemma 1 If weights α, α′, α′′ ∈ Π are colinear, then the divisors Dα, Dα′, Dα′′

∈ PicXG are linearly dependent.

Proof of Theorem. Let Π̃ be the cone generated by Dα with α ∈ Π in
PicXG ⊗ R. For a chamber C, we denote the subcone generated by Dα

with α ∈ C by C̃. Then Dα is semi-ample on the moduli space UC by
(2) of Proposition 2. Since C is finitely generated, so is C̃ ∩ PicXG by
Lemma 1. Therefore, by a lemma of Zariski ([HK, Lemma 2.8]), the C̃-
part

⊕
L∈C̃∩PicXG

H0(L) of the total coordinate ring T C(XG) is finitely

generated (over C). Since Π is the union of finitely many C, the Π̃-part of
T C(XG) is also finitely generated.

The supporting hyperplanes of the polytope Π are HI,2’s and αi = 0, 1
for 1 ≤ i ≤ n. Let C ⊂ Π be a chamber with HI,2 as its supporting
hyperplane. Let βI be a general point of the intersection C ∩HI,2. Then
UC → U(βI) is a one-point blow-up by Proposition 2. Let eI be the ex-
ceptional divisor and ZI the line in it. Then (Dα.ZI) is positive for every
α ∈ C and zero for α ∈ C ∩ HI,2 by (3) of Proposition 2. Therefore, by
Lemma 1, the intersection number (D.ZI) is non-negative for every D ∈ Π̃
and (D.ZI) = 0 is a supporting hyperplane of Π̃.

Let C ⊂ Π be as in Proposition 3 and let Fi be a general fiber of the
morphism UC −→ U′. The intersection number (Dα.F ) is positive for
every α ∈ C and zero for α ∈ C ∩ {αi = 0}. Therefore, by Lemma 1, the
intersection number (D.Fi) is non-negative for every D ∈ Π̃ and (Dα.Fi) =
0 is a supporting hyperplane of Π̃.

Now let D be a divisor of XG. If α = (α1, . . . , αn) ∈ Rn does not
belong to Π, then either

∑
j �∈I αj +

∑
i∈I(1 − αi) < 2 holds for a subset

I of {1, . . . , n} or αi < 0 or αi > 1 holds for 1 ≤ i ≤ n. By Lemma 1,
if D does not belong to Π̃, then either (D.ZI) < 0 holds for some I or
(D.Fi) < 0 or (D.F ′

i ) < 0 holds for 1 ≤ i ≤ n, where F ′
i is a general fiber

of the morphism UC −→ U′′ in Proposition 3. Assume that D is effective.
Then the latter is impossible. Hence an effective divisor D �∈ Π̃ contains
the exceptional divisor eI as irreducible component for some I. Therefore,
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TC(XG) is generated as ring by its Π̃-part and the canonical global sections
1 ∈ H0(OX(eI)) of the 2n−1 exceptional divisors eI ’s.

§2 Moduli of certain 2-bundles on a del Pezzo surface

Let p1, . . . , pn ∈ Pr−1 and q1, . . . , qn ∈ Ps−1, r + s = n, be as in the
introduction. They are the Gale transform of each other. Let X = XG and
S = SG be their blow-ups. We need a certain linear isomorphism between
PicX ⊗ Q and PicS ⊗ Q for our proof.

Generally the correspondence ei − ei+1 �→ en+1−i − en−i for 1 ≤ i ≤
n and h −

∑r
1 ei �→ h −

∑s
1 ei gives an isomorphism from the Dynkyn

diagram T2,r,n−r ofX to T2,s,n−s of S, and hence an isometry ϕ0 between two
lattices (−KX)⊥ ⊂ PicX and (−KS)⊥ ⊂ PicS with respect to the inner
product defined in [M, §3]. We identify the two Weyl groups W (T2,s,n−s)
and W (T2,r,n−r) by this correspondence. The following is easily verified:

Proposition 4 Let Ψ be the standard Cremona transformation of Ps−1

with center the s points q1, . . . , qs and Ψ′ that of Pr−1 with center the r
points ps+1, . . . , pn. Then

q1, . . . , qs,Ψ(qs+1), . . . ,Ψ(qn) ∈ Ps−1

and
Ψ′(p1), . . . ,Ψ

′(ps), ps+1, . . . , pn ∈ Pr−1

are the Gale transform of each other.

Now we assume that s = 3 and extend the isometry ϕ0 to a linear
isomorphism ϕ : PicX ⊗ Q −→ PicS ⊗ Q by setting ϕ(KX) = 2KS. The
following is easily calculated:

ϕ(ei) = h− ei, ϕ(h) = (n− 2)h− e. (3)

Remark Though ϕ is not an isometry, (ϕ(D)2) = (D2)−(KS.D)2/4 holds
for every D ∈ PicS.

The main tool of our proof is vector bundle as in previous section. More
precisely we consider torsion free sheaves E on S with

r(E) = 2, c1(E) = −KS and c2(E) = 2. (4)
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For an ample divisor L on S, we denote by MS,L the moduli space of such
torsion free sheaves E which are semi-stable with respect to L in the sense
of Gieseker [G]. It contains the moduli space MS,L of stable bundles as an
open set. MS,L is smooth of dimension n − 4 by the general theory. We
study the variation of MS,L as L moves. See [EG], [FQ] and [MW] for the
general theory.

We further assume that n = (6, )7, 8. Then S is a del Pezzo surface,
that is, a surface with ample −KS. The degree (K2

S) is equal to 9 − n.

Lemma 2 Every member of E ∈MS,L has a nonzero global section.

Proof. By the Riemann-Roch formula, we have χ(E) = 9 − n ≥ 1. Since
H2(E) � Hom (E,OS(KS))∨ = 0, we have H0(E) �= 0. �

Let l be a line, i.e., a smooth rational curve l ⊂ S with (l. −KS) = 1.
When L crosses crosses the hyperplane Hl,1 : (2l + KS.L) = 0 from the
positive side to the negative, the non-trivial extensions

0 −→ OS(−KS − l) −→ E −→ OS(l) −→ 0,

which are parameterized by Pn−6, are replaced by the opposite non-trivial
extensions

0 −→ OS(l) −→ E ′ −→ OS(−KS − l) −→ 0,

which are parameterized by P1, in the moduli spaces. We denote this P1

by Zl. In the case n = 8, −KS belongs to the positive side and the moduli
space is flipped when L crosses the hyperplane Hl,1.

Similarly, let C be a conic, i.e., a smooth rational curve C with (C. −
KS) = 2. When L crosses the hyperplane HC,1 : (2C+KS.L) = 0 from the
positive side, the family of non-trivial extensions E of OS(C) by OS(−KS−
C) parameterized by Pn−5 is replaced by the unique non-trivial opposite
extension EC . In fact, the moduli space is blow down to the point [EC ]. We
denote the exceptional divisor � Pn−5 parameterizing E’s in the moduli
space by eC .

Let Π ⊂ PicS ⊗ R be the cone of ample divisor classes L on S such
that (L.2C +KS) > 0 for every conic C ⊂ S.

Lemma 3 If E ∈ MS,L is strictly µ-semi-stable with respect to an ample
divisor L ∈ Π, then we have either (2l +KS.L) = 0 for a line l or (2C +
KS.L) = 0 for a conic C.
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Proof. E is an extension of a line bundle by another line bundle of the
same degree outside a finite set of points. By Lemma 2, one of these two
line bundles has a nonzero global section and is isomorphic to OS(D) for an
effective divisorD. By the strict µ-semi-stability, we have (2D+KS.L) = 0.
Assume that h0(OS(D)) = 1. Then D is supported by a disjoint union of
lines l1, . . . , ln. Since 2 = (l1.−KS − l1) ≤ (D.−KS −D) ≤ c2(E) = 2, we
have D = l1. Assume that h0(OS(D)) ≥ 2. Then either |D + KS| �= ∅ or
|D−C| �= ∅ for a conic C. But the former contradicts to (2D+KS.L) = 0.
The latter implies D − C = 0 since L ∈ Π. �

Let C be a chamber of Π, that is, a connected component of the com-
plement of

⋃
l : lineHl,1 in Π. For every L ∈ C, every member E ∈ MS,L is

stable. Hence all MS,L (= MS,L), L ∈ C, are isomorphic to each other. We
denote this isomorphism class by MS,C. In particular, MS,L’s, L ∈ Π, are
isomorphic to each other in codimension one.

We relate MS,L with the blow-up XG. By the Riemann-Roch for-
mula, we have χ(Hom (E,OS(h))) = 1. Since H2(S,Hom (E,OS(h))) �
Hom (OS(h), E(KS))∨ = 0, we have dim Hom (E,OS(h)) ≥ 1 for every
semi-stable bundle E ∈ MS,L. In particular, if (L.−KS)/2 > (L.h), then
the moduli space MS,L is empty. For example, this applies if L = ah−KS

and if a > n − 3. In the range n − 5 < a < n − 3, a nonzero homomor-
phism f : E −→ OS(h) is surjective and unique up to constant multipli-
cation. Hence MS,L is isomorphic to the (n − 4)-dimensional projective
space P∗Ext1(OS(h),OS(2h − e)) � P∗H1(P2, Iq1,... ,qn

(1)), where we put
e =

∑n
1 ei. This identification is nothing but (2) in the introduction.

Among these extensions E of OS(h) by OS(2h − e), there is a unique
Ei which contains OS(h − ei) as its subsheaf for each 1 ≤ i ≤ n. Ei is
nothing but Ẽpi

⊗ OS(h) in the introduction. Hence MS,L is the blow-up
XG of the Pn−4 at the n points p1, . . . , pn between a = n− 5 and the next
critical value (= n− 7). Since ah−KS belongs to Π for n− 7 < a < n− 5,
MS,C is isomorphic to XG in codimension one for every chamber C ⊂ Π.
When a = n− 7, we have (2l+KS.ah−KS) = 0 for every l = h− ei − ej,
1 ≤ i < j ≤ n. In fact, at a = n− 7 the moduli space MS,ah−KS

is flopped
with center the strict transforms of lines joining pi and pj.

A line l yields another 1-cycle other than Zl. Let π : S −→ S ′ be the
blow-down of l ⊂ S to a point q on a smooth surface S ′ and assume that
an ample divisor L is sufficiently near to the pull-back of an ample divisor
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L′ on S ′. The direct image π∗E of a member E of MS,L, is not locally free
at q ∈ S ′. But its double dual belongs to MS′,L′ and we get a morphism

MS,L −→MS′,L′, E �→ (π∗E)∨∨. (5)

This morphism is a P1-bundle ove the open set MS′,L′ and interprets Ex-
ample 1 moduli theoretically in the case s = 3. We denote by Fl a general
fiber of this morphism.

The following is a substitute for Lemma 1 in the cases [7] and [9].

Lemma 4 Let l be a line. Then

2(Zl.D) = −(2l +KS.ϕ(D)) and (Fl.D) = (l.ϕ(D))

hold for every divisor D on X.

Proof. We prove the case n = 8. Other cases are similar and easier.
The isomorphism ϕ is W (E8)-equivariant and the Weyl group W (E8) acts
transitively on the set of 240 classes of all lines. Hence, by Proposition 4,
it suffices to verify the assertion for one line l. For the first formula, we
take h − e1 − e2 as l. As we saw above, Zl is the strict transform of the
line passing through p1 and p2. Hence we have (Zl.e1) = (Zl.e2) = 1,
(Zl.ei) = 0 for 3 ≤ i ≤ 8 and (Zl. − KX) = −1. On the other hand
we have (l.h − e1) = (l.h − e2) = 0, (l.h − ei) = 1 for 3 ≤ i ≤ 8 and
(l.−2KS) = 1. Hence, we have the equality (Zl.D) = −(1

2KS + l.ϕ(D)) for
D = e1, . . . , e8,−KX by (3). Since e1, . . . , e8 and −KX generate PicX⊗Q,
the equality holds for every D.

For the second formula, we take e8 as l. By Example 1, Fl is the strict
transform of a general line passing through p8. Hence we have (Fl.ei) = 0
for 1 ≤ i ≤ 7, (Fl.e8) = 1 and (Fl.−KX) = 2. These intersection numbers
on X are equal to (e8.h− ei) and (e8.− 2KS), respectively. �

By the lemma, the hyperplanes Hl,1 and Hl,0 are mapped to those in
PicX ⊗R defined by the 1-cycles Zl and Fl by ϕ−1 respectively. A similar
computation shows that HC,1 is mapped to the hyperplane defined by ZC

for every conic C.

Proof of Theorem. We prove the theorem by the induction on n = (6, )7 and
8. First we show the finite generation of T C(XG) over ϕ−1Π ⊂ PicX ⊗R.
This is equivalent to the following:
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Claim. The ϕ−1C-part of T C(XG) is finitely generated for every cham-
ber C in Π.

Every facet Π corresponds to either the blow-down of eC � Pn−5 or a
generic P1-bundle over MS′,L′, where S ′ is the blow-down of a line from
S. The blow-down of eC is isomorphic in codimension one to Bln−1P

n−4.
Hence, by induction and by the result of §1, ϕ−1F -part of T C(XG) is
finitely generated for every facet F of Π. Let R1, . . . , Rn be the edges of C
contained in Π. We choose an ample divisor Li on S from each Ri. By the
GIT construction, MS,Li

carries a natural ample (Cartier) divisor, which
we denote by Di. Then Di is semi-ample on MS,C. By the first formula of
Lemma 4, Di belongs to the ray ϕ−1Ri. Therefore, by a lemma of Zariski
([HK, Lemma 2.8]), ϕ−1C-part of T C(XG) is finitely generated. Thus the
claim is proved.

The cone ϕ−1Π is defined by two kinds of supporting hyperplanes,
ϕ−1HC,1’s of divisorial (contraction) type and ϕ−1Hl,0’s of fiber type. By
the same argument as the case [4] in §1, T C(XG) is generated by its ϕ−1Π-
part and

⊕
C : conicH

0(OX(eC)). �
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